US 20240371073A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0371073 A1l

van Antwerpen et al.

43) Pub. Date: Nov. 7, 2024

(54)

(71)

(72)

@

(22)

(60)

RAY OFFSETTING FOR NUMERICAL
IMPRECISION COMPENSATION IN
CONTENT GENERATION SYSTEMS AND
APPLICATIONS

Applicant: Nvidia Corporation, Santa Clara, CA
(US)

Inventors: Dirk Gerrit van Antwerpen, Berlin
(DE); Carsten Alexander Waechter,
Berlin (DE); Oliver Klehm,
Braunschweig (DE)

Appl. No.: 18/597,392
Filed:

Mar. 6, 2024

Related U.S. Application Data

Provisional application No. 63/463,305, filed on May
2, 2023.

Publication Classification

(51) Int. CL
GOG6T 15/06 (2006.01)
(52) US.CL
CPC ... GOG6T 15/06 (2013.01); GO6T 2210/21
(2013.01)
(57) ABSTRACT

Approaches presented herein provide for the reduction in
artifacts in image data rendered using ray or path tracing,
such as may be due to self-intersections with scene geom-
etry. In at least one embodiment, an appropriate offset value
is automatically determined that is to be applied to the spawn
point of a secondary ray to be traced, such as may corre-
spond to a hit point of an incoming ray on scene geometry.
In at least one embodiment, a single offset value can be
calculated that accounts for all sources of numerical error in
both construction of the spawn point and during ray tra-
versal, including sources of error in both object space and
world space. Once calculated, this single offset can be
applied along a normal of a scene geometry, so that any ray
traced from a shifted spawn point will not self-intersect the
triangle, even for edge or corner cases.

500

3

502
1

Trace a first ray for an image of a scene to be rendered

L

504 8]

Determine a hit point where the first ray intersects scene geometry

12

506
—l

Determine that a second ray is fo be traced from the hit point (for a surface
interaction)

N

508
U

Calculate an offset distance for the second ray based in part on two or
more sources of numerical imprecision

&

510
U

Set a spawn point for the second ray at the offsef distance from the hit
point, along a normal of the scene geometry

L

512
_L

Trace the second ray from the spawn point

514

More No

rays?

Yes \L

516
U

Provide information corresponding fo traced rays for use in rendering the
image of the scene

Patent Application Publication

Nov. 7,2024 Sheet 1 of 18

106
104 ':\/“0
112
102 '
— 108
FIG. 1A
T v
106 P 112
11oﬁ ~7
102 P
| 108 !
136
134
132
FIG. 1B
102

US 2024/0371073 Al

5 100

S 130

S 160

Patent Application Publication Nov. 7, 2024 Sheet 2 of 18 US 2024/0371073 A1

200
User Shader | Ray Traversal and Intersection ¥~/

216
208~ PRI

S -
-
oy
]
1
S

280

10 cm @

20m

1\ 1km 4—?
FIG. 2B FIG. 2C

Patent Application Publication Nov. 7, 2024 Sheet 3 of 18 US 2024/0371073 A1

Virtual -

Environment Asset
300 302

I N
User Device
304
A4
Compute
Resource ACOIinc;(:tri];n CPU
306 PP ao8 310
7 —
: Resource | Rendering
I Manager 318 | | Manager
| | 312
| [Gpu][cPU] |
| | 320A]|320B| | | Geometry Rasterizati
| . : asterization
| GPU 1 GPU | | (incl. ;:midlng) 316
| |320¢ | | 320D : —
Image User/Display
322 Device 323

FIG. 3

US 2024/0371073 Al

Nov. 7,2024 Sheet 4 of 18

Patent Application Publication

v Ol

N

157
awel

ndino

—

(1572
Jeyng-9
p— T orF 80% 7 707
WNooY (5)19pEUS Bunybim K uonelseues) [¢— yojed Jeyng-9 k— suonoRIBI|
paoeli]-Aey aidwes b % “foid-yoeg aoeung

e

2ov
(ejep |oxid)
swe.i- Jnduj

ooy w

Patent Application Publication Nov. 7, 2024 Sheet S of 18 US 2024/0371073 A1

500

5

502

1 Trace a first ray for an image of a scene to be rendered €
504 >

1 Determine a hit point where the first ray intersects scene geometry
506 v

—l Determine that a second ray is to be traced from the hit point (for a surface

interaction)
¥
508 1_ Calculate an offset distance for the second ray based in part on two or
more sources of numerical imprecision
510'1_ Set a spawn point for the second ray at the offset distance from the hit
point, along a normal of the scene geometry

)

512
1 Trace the second ray from the spawn point
514
More No
rays?
Yes ¢

516
U

Provide information corresponding to traced rays for use in rendering the
image of the scene

FIG. 5A

Patent Application Publication Nov. 7, 2024 Sheet 6 of 18 US 2024/0371073 A1

550

5

Determine that a second ray is to be traced from a hit point of an incoming
ray on scene geometry corresponding to a scene object

¥

Determine a first error corresponding to construction of the hit point in
object space

¥

Determine a second error corresponding to transformation of the hit point
to a hit point in world space for the scene

L

558 1_ Determine a third error corresponding to transformation of the second ray,
traced from the hit point, back into object space

L

5601 Determine a fourth error corresponding to primitive infersection errorin
object space

L

Determine a single offset value based in part on the first, second, third, and
fourth errors

L

564 "L Provide the single offset to be used to determine a spawn point for the
second ray

552
1

5541

556
_l

562
1

FIG. 5B

Patent Application Publication Nov. 7, 2024 Sheet 7 of 18 US 2024/0371073 A1

S

600

Display 606 Audio 608

Client Device 602

Control Application 604

GUI Cont. Mgr.
610 612

[

Other Client Third Party Service
Device Network 660

650 640 Content App 662

Render

614

Server 620

Transmission Manager 622

Content Application 624

Content Rendering Content Offset
Manager 628 Generator || Manager
626 — 630 632

Y
Asset User
634 636

FIG. 6

US 2024/0371073 Al

Nov. 7,2024 Sheet 8 of 18

Patent Application Publication

V. Old

< > 01z
(S)LINN 219071 JILANHLINY
(o7 Y A
JOVHOLS “. _
NOILVAILDY | “
| 507 T07 _
_ I9VHOLS V1vd I9vH0OLS V.1vd _
|
| _
|

1Z (S)34NLONYLS IHVYMAHVYH

US 2024/0371073 Al

Nov. 7,2024 Sheet 9 of 18

Patent Application Publication

d/ 9Old

0c’

3OVHOLS NOILVAILDV

.

™,

907 20z
J4VMAYVH J4VMAYVH
TVNOILVLINdINOD TVNOILVLINdINOD
S0/ 101
3OVd01S vivd 3OVd01S vivd

1Z (S)34NL1ONY1S IHVMAYVH

Patent Application Publication Nov. 7,2024 Sheet 10 of 18 US 2024/0371073 A1l

DATA CENTER
800 Y

APPLICATION LAYER 840

APPLICATION(S) 842

SOFTWARE LAYER 830

SOFTWARE 832

FRAMEWORK LAYER 820

JOB CONFIGURATION
SCHEDULER 822 MANAGER 824

DISTRIBUTED FILE SYSTEM 828

RESOURCE MANAGER 826

DATA CENTER INFRASTRUCTURE LAYER 81

RESOURCE ORCHESTRATOR 812

GROUPED COMPUTING RESOURCES 814
| 715 |

¢®¢ (NODEC.R.

NODE C.R.
816(1)

NODE C.R.

Patent Application Publication

Nov. 7,2024 Sheet 11 of 18

US 2024/0371073 Al

PROCESSOR 902

EXECUTION UNIT 908

15
CACHE REGISTER FILE PACKE%:E'_'FSJOF;UCT'ON
904 906 =
PROCESSOR BUS 910
MEMORY 920
GRAPHICS/ o MEMORY °C
SRpPHICS <£> CONLFEJ%LLER <;_}:> INSTRUCTION(S) 919
912 916 DATA 921
j} 922 LEGACY /O
OATA CONTROLLER 923
STORAGE K= (N
924 USER INPUT
INTERFACE(S) 925
110
WIRELESS CONTROLLER
TRANSCEIVER K— HUB SERIAL EXPANSION
926 930 K= PORT 927
FLASHBIOS |4 AUDIO CONTROLLER

900 \J

I

NETWORK
CONTROLLER
934

FIG. 9

US 2024/0371073 Al

Nov. 7,2024 Sheet 12 of 18

Patent Application Publication

ozoT Te0T Ol ©Il4
I BT ayvOgAI NV
L Z90T dINY HSV1d | _¢Sd —v " snams BE0T YOSN3S
voor a ssv1o M4 8801 | | =o7 o3 | » IVINYIHL
SINOHAAVIH aNv 93409 soig WdL <
— olany] ¢sd PHOT
sydivads | < 0901 9,1 [3dOOSOMAD
0201 VAH | dSd || 14g 9d
agH¥o ass | VaH i _ cvol
VARES vy Vv 4 ‘o _w SSVdINOD
mmem— 4 z
¢S0L LINN - |« > Sv0T ¥OSN3S —
140N || HIOOLaNE | i€ asn > Snane] TYWE3HL < cvol
— 1¥VN 2 SV
0501 | o1as > OT i
LINN NYIM | > < ovmw m:mz —
HOSN3 «—>
m_On_ ON_ 9. HALFNOHYATADOV
JE— 4
7G0T NIS p—
SHOT
517 < —| 00T avd
2 snans | LINN 0N HONOL
449N 9501 P » —
LINN NYAMM c/z asn oror ’ GZOF NIIHOS
¥0SS3I00¥d 9, HONOL
GGOl Sd9 |« >
0.1 4O 1dvN < I ﬁmwa
wGor -
VHIWYD 0°€ SN _
S10T €daadi / 0001
i

Patent Application Publication

Nov. 7,2024 Sheet 13 of 18

US 2024/0371073 Al

IJ_ _________________]
MEMORY DEVICE- | Lo —==————f————————— —)
1120 : |
PROCESSOR CORE(S
INSTRUCTION - cAcHE || REGISTER SR CORESI
FILE ==L |
1121 1104 INSTRUCTION SET I
1106 1109 /!
DATA - 1122 (}_;_:\V | 711 | [:
|
|
MEMORY GRAPHICS : |
A N CONTROLLER PROCESSOR(S)
DISPLAY DEVICE 1111 {—— 116 1108 ::
I EXTERNAL GRAPHICS | | 11 | | :
| PROCESSOR 1112 <:{> I |
I 711
L _[——— l_ — _! INTERFACE BUS(ES) - 1110 : |
|
DATA STORAGE l
DEVICE 1124 (— | :
|
|
TOUCH SENSORS I
1125 <}"_—{> '
— PLATFORM CONTROLLER HUB | :
WIRELESS <}:I\v 130 : |
TRANSCEIVER 112 /!
|
|
FIRMWARE 1
INTERFACE 1128 K Ik
1L r 1.3
NETWORK AUDIO : |
CONTROLLER | | CONTROLLER | LEGACY /0 I
1134 1146 CONTROLLER |
— : 1140 |
/ | — !
7
USB CONTROLLER(S)
1100 1142

—_————y———-

r
| KEYBOARDY || CAMERA
| MOUSE 1143 |

1144

FIG. 11

US 2024/0371073 Al

Nov. 7,2024 Sheet 14 of 18

Patent Application Publication

¢l 9Old

Gl/

80c¢1
40OSS3I30Ud SOIHAVYD

9lcth
(S)LINN
¥3T1041INOD
sng

vicl
43110HLINOD
AdOW3IN

Licl
4310ULINOD
AV1dSIA

0LZl 3¥0D
1IN3IDV WALSAS

AT NE
90¢T — (S)LINN IHOVD AIYVHS
...... 7
| NvOZT X V502t
| (S)LNN (S)LINN
| 3HOVD Illl IHDOVYD
FTTTTTT
———— - —
LSt 1z
|
NZO0Zl mmOU|“ VZ0cZ 1 340D

e
FTNAOCIN AHONTIN
clch a3aa4ding
o/l

N

0021 40SS300dd

¢l 9Old

US 2024/0371073 Al

Nov. 7,2024 Sheet 15 of 18

FHVYMAEVYH
ccel

SEINNCERY

JAIVYML40S

8lEl

=T VISl —
9lel oLel oncL
(s)13aoIN o._ZM“M_ﬁ,uq_w_/_._. NOILYLONNY ,wwwm_
1nd1nO a3Lsissy-Iv ONIOVINI

90€)l W3ALSAS
IN3IWAOTd3Q

clel
viv(

% a3zn3aav

H

ﬁ y0€|l WILSAS ONINIVA] w
_

el
ALLSIOTY

3o

00ct

Patent Application Publication

US 2024/0371073 Al

Nov. 7,2024 Sheet 16 of 18

(0] 4"

Patent Application Publication

vl Old

T
J— 7T p
oﬂmoﬂw $ZPT WILSAS |V E 5
D . 442) m
_I:E HE SOIHAYHS/SNdD fn
= g
N
PaN N
OSPT WHOH1Y1d ONILNdWOY) 131Tvevd o
o
<
[e (@]
: VONS ST5T oIVl m
$)30INY3S (s)301ny3S N
NOILYZITYNSIA (8)301N238 IV 3LNdNOD <«
[e»)
A QZF 1 WILSAS NOILYHLISTIHOE(Q NOILYOITddyY A

e — ™ e
) arer 90v 1 VZorT &
AR IR (s)13a0W (Sh3ao aaNIvyL-3¥d) ¥aLdvay n
YIOVNVIN 3NM3dId azovt 1ndLino p—) NOJlId g
) ddldvay oz_z_<ﬂﬁm.r_moo_>_ e || 7
- J olel -
Olvl No2Id S [NolLvionNy | || [
(S)aNnadid LINIWAOTAAQ TOFT QaLSISSY-IY o

. L (s)aNI3adid SNINIvVY]) —

OST WILSAS INIWAOTJ3AQ POST WILSAS ONINIVY]

VGl 9Old

US 2024/0371073 Al

[+ =]
Yo
s 13AOIN A3aNIdTY _ ADVHNODY A3INOAdN| v T3AOIA TVILIN|
o~
Yo
b ONINIVH] T3dOIAN 13sviv(
[-P]
o d3NOLSN
= VIl 9
3 % ¥0S 1L
=] @
o
=
>
(=
z

i

YOS WILSAS ONINIVY] 13AON 90%1 (s)13aon
Q3aNIvyL-3dd

/

0051

Patent Application Publication

dgl Old

US 2024/0371073 Al

=]
= sl
ow (s)13aoN
® d3aNIvd | -3dd
2
=
wn
s
S ovst
S orSl
= Y3IAYIS LNVISISSY
2 NOILY.LONNY
Z
Sl
]
8¢€Gl ocS| real
vivQ 7100] NOILYLONNY SAOVIN| MY'Y
ONINIVY | aalsiIssy-|v

cegl

Patent Application Publication

US 2024/0371073 Al

RAY OFFSETTING FOR NUMERICAL
IMPRECISION COMPENSATION IN
CONTENT GENERATION SYSTEMS AND
APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application Ser. No. 63/463,305, filed May 2, 2023,
and entitled “Robust Ray Offsetting,” which is hereby
incorporated herein in its entirety and for all purposes.

BACKGROUND

[0002] In various content generation applications—such
as for gaming, animation, or virtual reality content genera-
tion, for example—it can be desirable to generate image
content that is of high perceptual quality when displayed or
presented. In many situations, the quality will be limited to
some extent by the limitations of the display mechanism,
such as the number or size of pixels used to generate the
display. Systems also typically limit the precision with
which mathematical calculations are performed, or with
which values are represented, due in part to the inability to
adequately represent sub-pixel features. Storing a large set
of numbers in high precision can require a significant
amount of resources, and in many instances the value of that
high precision will be minimal at best with respect to the
quality of the final displayed image. There are situations,
however, where image artifacts can arise from the use of
lower precision, where numbers are rounded to the closest
value with this lower, target precision. As an example, a ray
tracing algorithm might trace a first ray that is determined to
intersect with, or “hit,” the surface of an object at a specific
location. If there is a surface interaction—such as may
correspond to a reflection or refraction of an incoming light
ray at a surface—a second ray can then be traced from the
location of that intersection or hit point. Due to the rounding
error, lower/finite precision of the position information, or
floating point operations in the hardware, however, it is
possible that the secondary ray will intersect that same
surface again, which can result in improper color informa-
tion being used for the corresponding pixel location. These
“self-intersections” can result in undesirable visible image
artifacts in the resulting rendered image data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various embodiments in accordance with the pres-
ent disclosure will be described with reference to the draw-
ings, in which:

[0004] FIGS. 1A-1C illustrate sample ray paths for incom-
ing and secondary rays, according to at least one embodi-
ment;

[0005] FIGS. 2A-2C illustrate sources of error for a traced
ray and an offset that can be determined based on those
sources of error, according to at least one embodiment;
[0006] FIG. 3 illustrates components of an example con-
tent generation system, according to at least one embodi-
ment;

[0007] FIG. 4 illustrates components of an example ren-
dering pipeline, according to at least one embodiment;
[0008] FIGS. 5A and 5B illustrate example processes for
determining and applying offset values to spawn points for
secondary rays, according to at least one embodiment;

Nov. 7, 2024

[0009] FIG. 6 illustrates components of a distributed sys-
tem that can be utilized to generate and provide image
content, according to at least one embodiment;

[0010] FIG. 7A illustrates inference and/or training logic,
according to at least one embodiment;

[0011] FIG. 7B illustrates inference and/or training logic,
according to at least one embodiment;

[0012] FIG. 8 illustrates an example data center system,
according to at least one embodiment;

[0013] FIG. 9 illustrates a computer system, according to
at least one embodiment;

[0014] FIG. 10 illustrates a computer system, according to
at least one embodiment;

[0015] FIG. 11 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0016] FIG. 12 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0017] FIG. 13 is an example data flow diagram for an
advanced computing pipeline, in accordance with at least
one embodiment;

[0018] FIG. 14 is a system diagram for an example system
for training, adapting, instantiating and deploying machine
learning models in an advanced computing pipeline, in
accordance with at least one embodiment; and

[0019] FIGS. 15A and 15B illustrate a data flow diagram
for a process to train a machine learning model, as well as
client-server architecture to enhance annotation tools with
pre-trained annotation models, in accordance with at least
one embodiment.

DETAILED DESCRIPTION

[0020] In the following description, various embodiments
will be described. For purposes of explanation, specific
configurations and details are set forth in order to provide a
thorough understanding of the embodiments. However, it
will also be apparent to one skilled in the art that the
embodiments may be practiced without the specific details.
Furthermore, well-known features may be omitted or sim-
plified in order not to obscure the embodiment being
described.

[0021] The systems and methods described herein may be
used by, without limitation, non-autonomous vehicles, semi-
autonomous vehicles (e.g., in one or more advanced driver
assistance systems (ADAS)), piloted and un-piloted robots
or robotic platforms, warehouse vehicles, off-road vehicles,
vehicles coupled to one or more trailers, flying vessels,
boats, shuttles, emergency response vehicles, motorcycles,
electric or motorized bicycles, aircraft, construction
vehicles, trains, underwater craft, remotely operated
vehicles such as drones, and/or other vehicle types. Further,
the systems and methods described herein may be used for
a variety of purposes, by way of example and without
limitation, for machine control, machine locomotion,
machine driving, synthetic data generation, model training
or updating, perception, augmented reality, virtual reality,
mixed reality, robotics, security and surveillance, simulation
and digital twinning, autonomous or semi-autonomous
machine applications, deep learning, environment simula-
tion, object or actor simulation and/or digital twinning, data
center processing, conversational Al, generative Al with
large language models (LLMs), light transport simulation
(e.g., ray-tracing, path tracing, etc.), collaborative content
creation for 3D assets, cloud computing and/or any other
suitable applications.

US 2024/0371073 Al

[0022] Disclosed embodiments may be comprised in a
variety of different systems such as automotive systems
(e.g., a control system for an autonomous or semi-autono-
mous machine, a perception system for an autonomous or
semi-autonomous machine), systems implemented using a
robot, aerial systems, medial systems, boating systems,
smart area monitoring systems, systems for performing deep
learning operations, systems for performing simulation
operations, systems for performing digital twin operations,
systems implemented using an edge device, systems incor-
porating one or more virtual machines (VMs), systems for
performing synthetic data generation operations, systems
implemented at least partially in a data center, systems for
performing conversational Al operations, systems for per-
forming generative Al operations using LLMs, systems for
performing light transport simulation, systems for perform-
ing collaborative content creation for 3D assets, systems
implemented at least partially using cloud computing
resources, and/or other types of systems.

[0023] Approaches in accordance with various illustrative
embodiments provide for the reduction of artifacts in ren-
dered images. In particular, various embodiments can
attempt to reduce or eliminate the presence of image arti-
facts resulting from self-intersections in rendering opera-
tions, such as those that use ray and/or path tracing algo-
rithms. In at least one embodiment, an approach to ray
tracing attempts to automatically determine appropriate off-
set values to be applied to the origins (or spawn points) of
secondary rays to be traced from ray hit points on scene
geometry, where these secondary rays may be due in part to
surface interactions (e.g., reflections or refractions) of a first
or incoming ray intersecting the scene geometry at those hit
points. By offsetting the origin of a secondary ray from the
imprecise hit point location, that secondary ray can be traced
from a spawn point that will be positioned at a sufficient
distance from the scene geometry to account for any differ-
ences due at least in part to numerical imprecision. For
example, there may be some error in the computed hit-
distance along the ray due to rounding or limited precision
in the distance determination. There may also be some error
that is proportional in the length of a connection ray. Such
an offset can account for any error in the spawn-point
reconstruction and the subsequent traversal of the secondary
ray. A mathematical approach is used to calculate a single
overall offset to be applied to a secondary ray, including
those errors that may be introduced before and/or after the
offset is applied. In at least one embodiment, a single offset
value can be calculated that accounts for all sources of
numerical error in both construction of the spawn point and
during ray traversal, including sources of error in both object
space and world space. Once calculated, this single offset
can be applied along a normal of a triangle, or other element
of scene geometry, so that a ray traced from a shifted spawn
point will not self-intersect the triangle, even for edge or
corner cases. In one embodiment, the error includes three
error components in object space and one error component
in world space. An example set of error components includes
an object-space primitive intersection error, as well as a
world space error bound on an object-to-world space trans-
formation (before traversal), an object-space hit point recon-
struction error, and a world-to-object space transformation
error. Hit point reconstruction error (or imprecision) can be
addressed that is due to interpolation of, for example, a ray
or one or more vertices of the triangle. Once calculated, the

Nov. 7, 2024

offset can be applied to a world-space secondary ray origin
in a positive or a negative direction, corresponding to a
reflection or refraction from the triangle, for example, and
can be applied to other secondary rays (such as shadow rays)
to be spawned for the same hit point. The application of the
offset to the connection ray direction can be used specifically
for connection rays, such as shadow rays, to also prevent
self-intersection at the opposite end of the connection ray.
After applying the regular offset to the origin of the con-
nection ray, another independent offset can be computed for
the endpoint of the connection ray—in a very similar
manner as for the secondary ray origin—and this offset can
be applied to the connection ray direction.

[0024] Variations of this and other such functionality can
be used as well within the scope of the various embodiments
as would be apparent to one of ordinary skill in the art in
light of the teachings and suggestions contained herein.

[0025] As mentioned, various approaches to rendering
image content—including not only static image data but also
video, virtual reality (VR)/augmented reality (AR)/en-
hanced reality (ER), holographic, and other such image-
based or image-inclusive content—can utilize approaches
such as ray tracing or path tracing to determine values, such
as the appropriate color values, for specific pixels or other
regions or points of the generated content. An example of the
use of a ray tracing algorithm is illustrated in the view 100
of FIG. 1A. For simplicity of explanation the disclosure will
use ray tracing as a primary example, but it should be
understood that other types of tracing algorithms—such as
path tracing or particle tracing algorithms—can be used as
well within the scope of the various embodiments unless
otherwise specifically stated. In this example, a ray tracing
algorithm can “cast” a number of rays starting from a virtual
camera or at least one light source in a scene. In FIG. 1A,
this first ray 106 is shown to originate from a cast point 104
(here corresponding to the position of a virtual camera or
light source) in a determined direction. A ray tracing algo-
rithm will typically cast a number of rays in different
directions from this position in order to provide a realistic
sampling of light from a light source, or to a camera, such
as may be appropriate for the resolution of the camera. In
this example, the first cast ray 106 is determined to intersect
with scene geometry 102. Here, the scene geometry is the
surface of a table, as may be represented by a triangular
mesh or other such geometry. Although illustrated in two
dimensions, it should be understood that the scene geometry
can be represented in three dimensions within a three-
dimensional environment, such as a portion of an environ-
ment corresponding to a scene to be represented in a
generated image. In this example, the surface of the table is
at least partially reflective, as may be specified by one or
more material properties associated with the surface of the
table (or other region or texture) corresponding to the
intersection point 108 of the first ray with the scene geom-
etry. In order to account for a realistic reflection, a second
ray 112 (sometimes referred to as a secondary ray) can be
traced from the intersection point 108 in a direction that, for
perfect reflections is “equal and opposite” to that of the
incoming first ray 106, essentially mirroring the direction of
the incoming ray with respect to a normal 110 of the surface
of the scene geometry 102 at the intersection point. Other
types of reflections, such as diffuse or glossy reflections,
may occur as well, where rays may be scattered in random
directions as may be based on a scattering distribution

US 2024/0371073 Al

function, and where multiple secondary rays may be traced
from a given intersection point. Here, the magnitude or
intensity of the second ray 112 will likely be less than that
of the first ray (unless the surface is a perfect reflector) due
to aspects such as absorption or scattering of light due to the
material properties of the surface of the scene geometry at
the intersection point 108. Other aspects, such as the color,
of the second ray 112 may be impacted by the material
properties of the surface of the scene geometry 102 at the
intersection point 108 as well. Although a reflection is
illustrated, other second rays corresponding to other surface
interactions, such as refractions, transmissions, or diffrac-
tions, for example, may be represented as well within the
scope of various embodiments.

[0026] As illustrated, such a tracing algorithm can attempt
to construct light paths by starting at a camera or a light
source and intersecting cast rays with the relevant scene
geometry, such as geometry that will be visible in a rendered
image or is within a determined distance of such visible
geometry. As objects are hit by these cast rays, one or more
additional (e.g., secondary) rays can be generated on/from
these surfaces in order to continue the paths. In theory, a
second ray 112 cast from an intersection point 108 on a
surface that was intersected by a first ray 106 will not yield
another intersection with that same surface, as intersections
at a distance of zero from the cast point are excluded by the
intersection. In practice, however, the limited precision—
such as finite floating-point precision—used in the actual
implementation can lead to false positive results, often
referred to as “self-intersections.” As illustrated in the
example view 130 of FIG. 1B, an intersection of a first ray
106 with a surface of the scene geometry 102 can be
identified, but due to the limited precision the rounded
position value may correspond to an “intersection” point 132
that is actually some non-zero distance away from the
surface. It should be understood that reference numbers may
be carried over between figures for similar elements for ease
of explanation and understanding, but such usage should not
be interpreted as a limitation on the scope of the various
embodiments unless otherwise specifically stated. When
tracing a second ray due to a reflection from the surface in
this example, the second ray 112 would theoretically start
from an intersection point 108 that lies along the intersected
surface. Due to the limited precision in the position of the
intersection point 132, however, the second ray 134 will
actually start from a position that is a slight distance away
from the surface. As illustrated, this second ray 134 which
is cast from a point “on the other side” of the surface, might
then be determined to intersect the surface again at a second
intersection point 136. The use of information—such as
material properties—from this second intersection point 136
with the same surface, or self-intersection point, can result
in incorrect color or other values being determined for that
ray, or set of rays. Further, the system may then attempt
another reflection from this second intersection point 136
which would then propagate down in the figure, which may
result in even less accurate color or pixel value determina-
tion. The occurrence of improper self-intersections can
result in various artifacts in image data generated using the
results of the tracing algorithm. One type of artifact that can
be present in the rendered image is a shadow acne artifact,
for example, where a surface can appear to improperly
shadow itself. Self-intersections may also occur in other
instances as well, such as at the endpoint of visibility rays

Nov. 7, 2024

when connecting shading points to light sources. It should be
noted that endpoint visibility rays may occur when the light
source itself is a geometric shape or surface, similar to other
geometry in a scene. A cast point 104 may thus correspond
to a point on the surface of an area light source, and not be
limited to a single point light source.

[0027] Approaches in accordance with at least one
embodiment can attempt to avoid, or at least minimize, the
occurrence of self-intersections and other such precision-
related issues through use of robust offsetting. An example
of one such offsetting approach is illustrated in the view 160
of FIG. 1C. As was discussed with respect to FIG. 1B, a first
ray 106 can be determined to intersect a surface of an
object—or other scene geometry 102—but due in part to the
limited precision of the position data the determined inter-
section point 132 will be offset from the actual surface by
some distance, as may correspond to a rounding error due to
the limited precision. If a second ray were to be traced from
this offset intersection point 132, a self-intersection might
occur as discussed with respect to FIG. 1B. In this example
approach, however, an offset can be determined such that a
second ray 164 will be cast from an offset intersection point
162, or spawn point. The location of the offset intersection
point 162 can be determined such that it will account for any
error in precision of the location data with respect to the
surface. In FIG. 1C, this can correspond to an offset inter-
section point 162 that is far enough away from the deter-
mined (imprecise) intersection point 132 to avoid a self-
intersection, but also close enough to an ideal intersection
point on the surface such that the second ray 164 will be
relatively close in space to a theoretical second ray 112 if it
were cast from an intersection point on the surface. Small
offsets between the theoretical ray 112 and the actual second
ray 164 will often result in small errors in color value that
may not be noticeable in the final rendered image in many
instances, or will likely at least result in more accurate pixel
values than would have been determined from a self-
intersection, and will likely avoid the occurrence of notice-
able shadow acne or other such image artifacts.

[0028] As discussed, a first, incoming ray can be traced
that can intersect scene geometry, such as a triangle, at a
determined hit point. In the event of a surface interaction, for
example, a secondary ray can be traced that coincides with,
or spawns from, the hit point on the intersected triangle. In
order to make the lighting appear as physically realistic as
possible, as well as to avoid various image artifacts, an
attempt can be made to compute a spawn point reasonably
close to the hit point in the triangle plane. A spawn point that
is too close to the triangle may result in self-intersection
artifacts, but a spawn point that is too far away from the
triangle may push the spawn point past nearby geometry,
causing light leaking artifacts, A single offset determination
approach may not be sufficient, however, as there may be
other factors that may impact self-intersection type artifacts
as well. For example, the offset needed near the edge of a
triangle may need to be larger, as the adjacent triangles of an
object may not be co-planar, and a small offset that might be
sufficient in the center of the triangle might not be sufficient
to avoid a self-intersection near the edge of that triangle.

[0029] FIG. 2A illustrates example sources 200 of numeri-
cal error that can be accounted for in at least one embodi-
ment. This example includes both sources of error occurring
in a user shader (left) as well as in ray tracing hardware or
equivalent software in a ray traversal and intersection pro-

US 2024/0371073 Al

cess. In a user shader, the object-space hit point 202 can be
reconstructed and then transformed into a hit point 204 in
world-space. During ray traversal, the world-space ray is
transformed back into object-space 206 and intersected
against triangles 208. Each of these operations can accumu-
late numerical errors, which may then result in self-inter-
sections. Approaches in accordance with at least one
embodiment can attempt to determine an offset that accounts
for any and/or all of these errors. In at least one embodiment,
an offset determination approach can involve computing a
minimal uncertainty interval centered around the intended
ray origin 210 on the triangle at each operation. The approxi-
mate ray origin 212 will lie within this uncertainty interval.
The ray origin 212 is offset along the triangle normal 214
beyond the final uncertainty interval to prevent self-inter-
sections. As illustrated, each error or uncertainty builds on
the previous error or uncertainty, so in order to determine a
proper offset 216 to avoid self-intersections it can be ben-
eficial to first determine the total uncertainty.

[0030] In at least one embodiment, a robust offsetting
method can be applied to secondary rays spawned from
scene geometry, such as triangles of a triangular object
mesh. Such approaches can be based in part on a thorough
numerical analysis of various sources of numerical impre-
cision. The analysis can be used to compute the locations to
use as spawn points for secondary rays, which can have a
low probability of the occurrence of self-intersections. Such
an approach does not require modification of any traversal or
ray/surface intersection routines, and can thus be used with
closed source and hardware-accelerated ray tracing inter-
faces, such as application programming interfaces (APIs)
including DirectX Raytracing (DXR) and OptiX. Such
approaches also do not rely on self-intersection rejection,
such as may require use of an appropriate shader, and can
incur a fixed overhead per shading point. In at least one
embodiment, a safe offset value can be computed that
accounts for multiple (and in at least some instances all)
sources of numerical error in the construction of the spawn
point, and as well as during ray traversal on rendering
hardware. Applying such a safe offset to a spawn point along
a surface normal, before traversal, can prevent self-intersec-
tion during traversal for rays originating from arbitrary
triangles and with arbitrary invertible transformation matri-
ces, as well as those rays optionally connecting to points on
other arbitrary triangles and with other arbitrary (or invert-
ible) transformation matrices.

[0031] In at least one embodiment, triangle (or other
geometric) vertices can be used to compute an object-space
error bound on a ray-triangle intersection test and the
barycentric interpolation of the spawn-point. An object-to-
world transformation matrix can then be used to compute a
world-space error bound on the object-to-world transforma-
tion of the spawn point before traversal. A world-to-object
transformation matrix can also be used to compute an
object-space error bound on the world-to-object traversal
transformation. These calculated error bounds can then be
combined into a single offset along the world-space normal
with respect to the intersected surface. In at least one
embodiment, such an approach can also be used to compute
a similar safe offset for the endpoint of a connection ray.
Applying such an offset to a world-space connection ray
direction can prevent self-intersections at the endpoint.

[0032] As mentioned, in at least one embodiment, the
spawn point of a secondary ray can coincide with the hit

Nov. 7, 2024

point on a triangle of a first, or incoming, ray. Referring
again to FIG. 2A, an offset determination process can be
used to attempt to compute a spawn point as close as
possible to the hit point in the triangle plane, while still
avoiding self-intersections. In at least one embodiment, such
a process can begin by reconstructing the hit point and the
geometric triangle normal in object-space hit point 202. The
hit point can be computed by, for example, interpolating the
triangle vertices v,, v,, and v, using the two-dimensional
(2D) barycentric hit coordinates barys. Although the inter-
polated hit point could be computed using two fused mul-
tiply-add operations, in this example, the base vertex v, is
added last. Such ordering can help to reduce the maximum
rounding error on the base vertex, which in practice has been
observed to frequently dominate the rounding error in this
computation. The object-space position can then be trans-
formed to world-space 204. Instead of using matrix multi-
plication intrinsics provided by the shading API, such as the
mul intrinsic in the high-level shader language (HLSL),
which have implementation-dependent precision, the trans-
formation can be determined explicitly in order to ensure
that the translational part ms of the transformation is added
last. Such an approach can help to reduce the rounding error
on the translation, which has been observed to frequently
dominate the error in this computation. The object-space
normal can then be transformed to world-space and normal-
ized. In at least one embodiment, such a process does not
normalize the object-space normal before the transforma-
tion, as normalization would need to be performed again in
world-space anyway. The inverse length of the world normal
can be used later in the process to appropriately scale the
error bounds, so normalization can be performed explicitly
rather than using, for example, the HLSL normalize intrin-
sic.

[0033] In at least one embodiment, a world-space hit point
could also be computed by advancing an incoming ray by its
hit distance. While such an approach does not require the
triangle vertices or the object-to-world transformation, the
error in the computed hit point may be unacceptably large.
Furthermore, the triangle vertices will generally be used to
compute the surface normal and compute bounds on the
rounding errors, as discussed in more detail elsewhere
herein. Operations that are concerned with precision may
advantageously use an approach such as barycentric inter-
polation in at least one potential implementation.

[0034] Once an approximate world-space position and
surface normal are determined, this example process can
continue by computing error bounds on the computed posi-
tion, bounding the maximum finite precision rounding error.
It can be beneficial to account for rounding errors in the
computations discussed previously, as well as rounding
errors that may occur during traversal. During traversal, a
world-to-object transformation 206 can be applied and a
ray-triangle intersection test performed 208, both in finite
precision which can introduce additional rounding errors. In
at least one embodiment, a combined object-space error
bound can be computed that accounts both for the rounding
errors in reconstructing an object-space triangle hit point and
rounding errors due to the ray-triangle intersection test. It
can be noted that the error on the triangle intersection can be
bounded by an amount that is proportional to the maximum
triangle extent (according to an implementation-dependent
constant scaling factor) along the three dimensions. In an
intuitive justification, various ray-triangle intersection algo-

US 2024/0371073 Al

rithms reorient the triangle into “ray space” by subtracting
the ray origin, before performing the intersection test. In the
context of self-intersection, the ray origin lies on the tri-
angle. The magnitude of the remaining triangle vertices in
this ray space is then bounded by the extent of the triangle
along each dimension. Such algorithms typically also proj-
ect the triangle into a 2D plane, and this projection can cause
error along one dimension to bleed over into the other
dimensions. Accordingly, the maximum extent can be taken
along all dimensions, instead of treating the error along the
dimensions independently. In at least one embodiment, the
exact bound on the ray-triangle intersection test may be
hardware specific, so one or more constants used may
require some tuning on different platforms. Error bounds for
custom intersection primitives may depend at least in part on
the implementation details of the respective intersection
shader. An approach in accordance with at least one embodi-
ment can compute the world-space error bound due to the
transformation of the hit point from object-space to world-
space. Like the ray-triangle intersection test, the rounding
error in the world-to-object transformation can depend at
least in part on the hardware.

[0035] FIG. 2B illustrates an example offsetting approach
250 that can be used in accordance with at least one
embodiment. In this example, self-intersection can be
avoided by offsetting the origin 262 for a ray 254 along the
normal to a distance 258 outside the error interval 252. As
discussed, bounds can be computed on the rounding errors
for secondary ray construction and traversal. These bounds
can provide an interval around the approximate, finite pre-
cision ray origin. The intended, full-precision “true” ray
origin (with near infinite precision and accuracy) can be
guaranteed to lie somewhere in this interval. The “true”
surface will pass through this true ray origin, so the true
surface will also pass through this interval. The approach
250 illustrated in FIG. 2B demonstrates one example to
offsetting the approximate origin 264 from the determined
origin 262 along the surface normal 260, to guarantee that
the approximate origin 264 after the offsetting lies “above”
the true surface 256, thus preventing self-intersections with
the true surface 256 due to secondary rays cast from the
approximate and offset origin 264. The error bound A can be
projected onto the normal n to obtain an offset & along the
normal, as may be given by:

P A -abs(n)

n-n

It should be noted that the offset computed here is a scaler
on the normal, not an absolute length along the normal. This
matters when the normal is not unit length.

[0036] In at least one embodiment, errors in the compu-
tation and transformation of the normal can be ignored.
Rounding errors on the normal are of similar magnitude as
rounding errors on the computation of the error bounds and
offset themselves. These are vanishingly small and can be
ignored in at least some instances. In at least one embodi-
ment, the object and world-space offsets can be combined
into a single world-space offset along the world-space
normal. For example, the normalized world-space normal n,,
can be used, such that the world-space offset 8, simplifies to:

Nov. 7, 2024

0w = A-abs(m,)

[0037] Similarly, the object-space offset 8, along the
object-space normal n, can be transformed into world-space
as 0,Mn,,. It can be noted, however, that the transformed
object-space offset is not necessarily parallel to the world-
space normal n . To obtain a single combined offset along
the world-space normal, the transformed object-space offset
can be projected onto the world-space normal, as 8 Mn,n,,.
Using that

=M Tn,

this simplifies to

SoMny-M Tn, =

8o Mn) M iy =6ony- M M Tn, = 6,n,-n, = A-abs(n)

[0038] The computed offset can then be used to perturb the
hit point 262 along the surface normal 260, which can
provide a front spawn point 264, as well as potentially a back
spawn point, that are both safe from self-intersection. The
derived error bounds, and thus offsets, neither depend on the
incoming ray direction nor the outgoing secondary ray
direction. The same spawn points can then be reused for all
secondary rays originating from this hit point. In at least one
embodiment, reflection rays can use the front spawn point
while transmission rays can use the back spawn point. In at
least one embodiment, small rounding errors in the ray
direction can be ignored. It can be noted that at extreme
grazing angles, rounding errors in the world-to-object trans-
formation of the direction may cause it to flip sides, orient-
ing back towards the triangle. At least some offsetting
approaches may not protect against such rounding errors,
such that it may be beneficial in at least some instances to
filter out secondary rays at extreme angles. Alternatively,
similar error bounds can be derived on the ray direction
transformation. Offsetting the ray direction along the surface
normal as done for the ray origin can then guarantee its
sidedness. However, as the reflectance distribution of com-
mon BRDF models tends towards zero at grazing angles,
this problem can in many applications safely be ignored in
at least some embodiments.

[0039] In at least one embodiment, a calculated offset can
grow linearly in the triangle extent and the magnitude of the
triangle base vertex in object-space. For small triangles, the
rounding error in the base vertex can dominate the object-
space error. The object-space error can therefore be reduced
by repositioning geometry in object-space, centering the
geometry around the object-space origin so as to minimize
the distance to the origin. For geometry with extremely large
triangles, such as ground planes, it may be worthwhile to
tessellate the geometry and further reduce the rounding
errors in the triangle extent. As illustrated in the example
view 280 of FIG. 2C, offset magnitudes scale linearly with
the triangle extent, object-space position, and world-space
position magnitudes. For an example secondary ray
spawned on a 10 cm extent leaf, in a 20 m tall tree (with the

US 2024/0371073 Al

object-space origin at the root) that is 1 km away from the
world space origin, the offset magnitudes due to the triangle
extent, object-space position, and world-space position will
be in the order of 45 nm, 4 um and 0.25 mm, respectively.
It has been observed that the offset due to world-space
position tends to dominate in practice. It should be noted that
the offset magnitude is independent of the relative camera
position in this example.

[0040] It can also be noted that the rounding errors in the
world-space position tend to dominate all rounding errors in
practice as well. This can be particularly true for large scenes
of relatively small objects. The magnitude of the offset will
grow linearly with the magnitudes of the world-space posi-
tion. The proportionality constant c, is approximately 1 ulps.
Instanced geometry at a distance d from the scene origin in
world-space will have a maximum rounding error in the
order of d272, or 1 mm of offset for every 4 km distance.
It can be noted that d is the distance to the scene origin, not
the scene camera. Consequently, if the camera is far away
from the scene origin, the offsets for rays spawned from
nearby geometry may become prohibitively large, resulting
in visual artifacts.

[0041] In at least one embodiment, this problem can be
reduced be translating the entire scene into camera space. All
instances can be repositioned so the camera origin coincides
with the world-space origin. Consequently, the distance d
becomes the distance to the camera in this camera space and
the offset magnitudes will be proportional to the distance to
the camera. Rays spawned from geometry near the camera
will enjoy relatively small offsets, reducing the likelihood of
visual artifacts due to offsetting.

[0042] As discussed, a ray origin can be offset to prevent
self-intersection at, or near, that origin. Ray and path tracing
algorithms can also trace rays to evaluate visibility between
two points on different triangles. This can include tracing
rays such as shadow rays connecting a shading point and a
light source. These rays may suffer from self-intersection on
either end of the ray. To avoid self-intersections, both ends
of a ray can be offset. The offset for an endpoint can be
computed is a similar fashion as for the ray origin, but using
the object-to-world and world-to-object transformation
matrices, barycentrics, and triangle vertices of the endpoint,
and using the connection ray direction as the incoming ray
direction. Contrary to scattering rays, it can be appropriate
to account for rounding errors in the world-to-object ray
direction transform during traversal. Instead of offsetting the
endpoint and recomputing the ray direction, the offset can be
applied directly to the world-space direction. The ray length
can also be shortened by one ulp to account for rounding
errors in the direction computation. Alternatively, identifier-
based self-intersection rejection is often sufficient to avoid
endpoint self-intersection.

[0043] As mentioned, there are other approaches that can
be used to attempt to avoid self-intersection and other such
artifacts, but at least some of these approaches come with
various deficiencies. For example, it is possible to simply
exclude the triangle intersected by an incoming ray from the
hit testing of a corresponding secondary ray, but such an
approach requires tracking the current triangle in addition to
the instance, and such an approach is not robust at the edges
of triangles. Further, there may be a planar surface (at least
locally) made up of a plurality of mostly parallel triangles,
and if testing is performed based on the indexing of the
triangle the same issue may be experienced with respect to

Nov. 7, 2024

a neighboring triangle. Such an approach can also be per-
formance costly, as for every triangle the process has to
perform an identity test, which in ray tracing APIs such as
DXR and OptiX involves the invocation of user code (e.g.,
an AnyHit shader). Another example approach attempted to
determine a universal offset experimentally, but such an
approach is not robust and does not scale. Other approaches
to estimating an appropriate offset do not address instancing,
or come with various other defects.

[0044] FIG. 3 illustrates an example system for rendering
an image, video frame, or other instance of image-related
content in accordance with at least one embodiment. Such a
system can include or incorporate functionality as presented
herein to generate a representation of motion being per-
formed by, for example, one or more virtual objects or
assets. In this example, an image is to be rendered for a scene
(or other view, portion, or region) in a virtual environment
300, although images can be rendered for semi-virtual or
real environments as well using such a system. The virtual
environment 300 may include geometry and other data
representative of shapes or objects in the environment, such
as three-dimensional (3D) objects that are representative, or
are to be included in, a scene that occurs within the envi-
ronment, as may include foreground objects such as people
or vehicles, or background objects such as roads and build-
ings, among other such options. In at least some embodi-
ments, at least some of the content to be inserted may be
obtained from a source such as an asset repository 302,
image repository 322, or other such location, which can
contain content—such as geometry, textures, and density
data—that can be used to render one or more objects placed
into a view of the scene. In at least some embodiments or
instances, there can be a user device 304 running a content
generation or management application that can allow a user
to select assets 302 and at least a relevant portion of the
virtual environment 300 to use in rendering a composite
image for the scene. The user device 304 can also allow a
user to control aspects of the image to be rendered, such as
the location or pose of an object in the scene, as well as a
viewpoint and other parameters of a virtual camera to be
used to render an image of the virtual environment 300. The
rendered content may be displayed on the user device 304 or
a separate user or display device 323, among other such
options.

[0045] In this example, at least one compute resource 306
is used to perform the rendering. This resource may corre-
spond to one or more servers, for example, that may be
located locally or across at least one network, among other
such options. In some embodiments, the rendering may
instead be at least partially performed on the user device
304. The compute resource 306 may obtain or receive data
to be used for the rendering, as may include geometry,
texture, and density data for the virtual environment or
assets, as well as information about the locations and poses
of those objects in the scene and parameters of a virtual
camera to be used to determine the view of the scene to be
rendered. This information may be received to a content
application 308, for example, that may be executing on a
central processing unit (CPU) 310 of the compute resource
that is responsible for tasks such as collecting data, causing
an image to be rendered, and performing any formatting or
encoding of a produced image, among other such operations.
The content application can work with a rendering manager
312, for example, which can be responsible for coordinating

US 2024/0371073 Al

operations of a rendering pipeline executing on the compute
resource 306, as may include modules 314, 316 or processes
responsible for tasks such as geometry related tasks (includ-
ing lighting and shading tasks) and rasterization, among
other such tasks. Offset determinations used to attempt to
avoid self-intersections can account for errors, and be imple-
mented in, these modules. In at least some embodiments, at
least some rendering tasks may be performed using one or
more GPUs 320A-D of the compute resource, as well as
potentially one or more processors or compute instances
(physical or virtual) of one or more other compute resources.

[0046] A task such as light transport simulation (e.g., ray
tracing, path tracing, ray marching, etc.) or volumetric
sampling can be performed using a single processor, such as
a single GPU, or can have operations distributed across
multiple GPUs 320A-D). In this example, there can be a
pool or set of GPUs 320A-D, and a resource manager 318
can be at least partially responsible for allocating a GPU to
perform the processing for an operation. If it is desired or
beneficial to use more than one GPU then the resource
manager 318 can allocate one or more GPUs having the
appropriate capacity or capabilities. This can include allo-
cating a number of GPUs indicated in a request, or deter-
mining a number of GPUs to allocate based in part on the
request. In some embodiments, the resource manager may
also be able to monitor an available bandwidth or memory
in order to determine which and how many GPUs to
allocate, such as where having high bandwidth capacity can
allow operations to be spread across a greater number of
GPUs, where bandwidth impact due to forwarding ray
information will not be as critical, while having a bandwidth
constrained system may cause the resource manager to
attempt to allocate as few GPUs as possible in order to
attempt to reduce the number of forwarding messages
required.

[0047] In at least one embodiment, a partitioning of data
can be performed by a rendering manager 312, for example,
and the assigning of data to different processors can be
performed by a resource manager 318 of the system. The
resource manager can receive information from the render-
ing component, and can select appropriate processors from
a pool of available processors 320 or processor capacity. In
some embodiments, the rendering application can choose
the partitioning, while in other embodiments the renderer
may have no control over the data partitioning, which may
be done by a separate management component (not illus-
trated in FIG. 3).

[0048] FIG. 4 illustrates an example image generation
pipeline 400 that can be used in a system—such as that
illustrated in FIG. 3—to render one or more images, such as
video frames in a sequence. In this example, pixel data 402
for a current frame to be rendered (as may include G-buffer
data for primary surfaces) can be received as input to a
surface interactions component 404 of a rendering system. A
surface interactions component 404 can use this data to
attempt to determine data for any specific types of surface
interactions (e.g., reflections, transmissions, diffractions,
and/or refractions, etc.) in the pixel data, and can provide
this data to a back-projection and G-buffer patching com-
ponent 406, which can perform back-propagation as dis-
cussed herein to locate corresponding points for those sur-
face interactions, and use this data to patch the G-buffer 418,
which can provide updated input for a subsequent frame to
be rendered. The data can then be provided to a light sample

Nov. 7, 2024

generation component 408 to perform light sampling, a
ray-traced lighting component 410 to perform ray-traced
lighting, and one or more shaders 412, which can set the
pixel colors for the various pixels of the frame based at least
in part upon the determined lighting information (along with
other information such as color, texture, and so on). As
mentioned, errors can be determined from the ray-traced
lighting component 410 and/or shader 412 components that
can be used to determine offset values for secondary ray
spawn points. The results can be accumulated by an accu-
mulation module 414 or component for generating an output
frame 416 of a desired size, resolution, or format.

[0049] In at least one embodiment, a shader 412 can
perform the backward projection step. Once a backward
projection pass has finished, and gradient surface parameters
have been patched into the current G-buffer, a renderer can
execute the lighting passes. Using information from the
lighting passes and the lighting results from the previous
frame, gradients can be computed then filtered and used for
history rejection. Such an approach can be used to compute
robust temporal gradients between current and previous
frames in a temporal denoiser for ray traced renderers. Such
a backward projection-based approach can also work
through surface interactions, and can work with rasterized
G-buffers. Previous approaches for backward projection
omitted any G-buffer patching and relied on the raw current
G-buffer samples instead, which also results in false positive
gradients. Patching the surface parameters can eliminate
false positives in the vast majority of cases, making the
denoised image very stable yet still quickly reacting to
lighting changes. Once the backward projection pass is
finished, and gradient surface parameters have been patched
into the current G-buffer, a renderer can execute the lighting
passes. Using the information from the lighting passes and
the lighting results from the previous frame, the gradients
are computed then filtered and used for history rejection. As
discussed with respect to FIGS. 3A-3D, relighting and
compositing of NeRF objects and non-NeRF objects can be
placed at various location in such a pipeline, such as before
or after ray-traced lighting component 410 is performed, or
as part of an accumulation module 414, among other such
options discussed or suggested herein.

[0050] In at least some embodiments, components of a
rendering pipeline may use one or more machine learning
(ML) models or deep neural networks (DNNs). This may
include, for example, generative networks to generate image
content. Machine learning can also be used in approaches to
avoiding self-intersections with traced paths or rays, for
example, such as where appropriate offsets or spawn loca-
tions are inferred based on multiple sources of error as
discussed herein, to attempt to use an offset that is as small
as possible (to provide accurate color and lighting informa-
tion) while avoiding self-intersections or otherwise intro-
ducing image artifacts.

[0051] FIG. 5A illustrates a first example process 500
trace a second ray from an offset spawn point that can be
performed in accordance with at least one embodiment. It
should be understood that for this and other processes
presented herein that there may be additional, fewer, or
alternative steps performed or similar or alternative orders,
or at least partially in parallel, within the scope of the various
embodiments unless otherwise specifically stated. Further,
although this example will be discussed with respect to first
and second rays, there may be multiple rays traced from a

US 2024/0371073 Al

sequence of hit points, and paths may be traced in place of
rays, among other such variations, within the scope of
various embodiments. In this example, a first ray is traced
502 for an image to be rendered of a scene. The scene can
include one or more objects, with the objects having shapes
in this example represented by triangles or other scene
geometry. A hit point can be determined 504 where a first
cast ray intersects scene geometry. It can then be determined
506 that there is to be a surface interaction (e.g., a reflection
or a refraction) of the light, for example, such that a second
ray is to be traced from that hit point. In order to attempt to
avoid a self-intersection, for example, an offset distance can
be calculated 508 for the second ray based in part upon two
or more sources of numerical imprecision, such as errors
experienced in a user shader or during ray traversal in ray
tracing hardware or software. This offset value can be
determined automatically, using a robust determination pro-
cess that does not produce offset values that are too large or
too small to avoid image artifacts. A spawn point can then
be set 510 for the second ray at the offset distance from the
hit point, along a surface normal of the scene geometry. The
second ray can then be traced 512 from the spawn point. It
can be determined 514 if there are other rays to be traced for
this image to be rendered, and if so the process can continue
with a next traced ray. If not, information (e.g., pixel-specific
lighting information) corresponding to the traced rays can be
provided 516 for use in rendering the image of the scene.

[0052] FIG. 5B illustrates an example process 550 for
calculating an appropriate offset value that can be used in a
process such as that described with respect to FIG. 5A. In
this example, it is determined 552 that a second ray (or
secondary ray) is to be traced from a hit point of an incoming
ray on scene geometry corresponding to a scene object. This
may be, for example, a hit point corresponding to an
intersection with a triangle approximating the shape of the
scene object, where that hit point is subject to at least some
amount of precision error. In this example process, a number
of error bounds will be determined that can be used to
automatically determine an appropriate offset value. For
example, a first error can be determined 554 that corre-
sponds to the (re)construction of the hit point in object
space. A second error can be determined 556 that corre-
sponds to a transformation of this hit point in object space
to a hit point in world space for the scene. A third error can
be determined 558 that corresponds to a transformation of
the ray, traced from the hit point, back into object space. A
fourth error can be determined 560 that corresponds to the
primitive intersection in object space. A single offset value
can be determined 562 that is a function of the first, second,
third, and fourth errors, such as may be a linear combination
or scaled sum of these errors. This calculated single offset
value can then be provided 564 to be used to determine a
spawn point for the second ray to be traced. Such an
approach can automatically determine an offset that can
push the spawn point just outside of the overall error range
for that hit point. The offset should be sufficient to handle
various edge cases, such as where the hit point is near the
edge of a triangle and the offset is sufficient to avoid
intersection with an adjacent triangle of the same scene
object. In at least one embodiment, the errors in object space
are along an object space normal, and the error in world
space is along a world space normal, and these two normals
are related to each other by a transformation, such as the
inverse transpose of the instance transform. The same offset

Nov. 7, 2024

value can be used whether the second ray is for a reflection,
from a front surface of the scene geometry, or a refraction,
from a back surface of the scene geometry. While the offset
value is direction independent, the offset is dependent on the
respective hit point and triangle, so in at least one embodi-
ment an offset can be calculated for each hit point identified
during ray tracing. If multiple rays are to be traced from a
hit point to multiple light sources or cameras, such as for
shadow rays and determinations, however, the same offset
values can be used for each of those secondary rays.

[0053] In at least one embodiment, the content to be
rendered is not limited to a single image, but can include, or
correspond to, various types of representations of one or
more objects in a scene or environment. For example, the
rendered content can include video frames, streaming media,
or multidimensional object representations, such as may be
useful for various operations, including—but not limited
to—those related to gaming, animation, simulation, autono-
mous navigation, or virtual reality (VR)/augmented reality
(AR)/enhanced reality (ER) applications, among other such
options.

[0054] Aspects of various approaches presented herein
can be lightweight enough to execute in various locations,
such as on a device such as a client device that include a
personal computer or gaming console, in real time. Such
processing can be performed on, or for, content that is
generated on, or received by, that client device or received
from an external source, such as streaming data or other
content received over at least one network from a cloud
server 620 or third party service 660, among other such
options. In some instances, at least a portion of the process-
ing, generation, compositing, and/or determination of this
content may be performed by one of these other devices,
systems, or entities, then provided to the client device (or
another such recipient) for presentation or another such use.

[0055] As an example, FIG. 6 illustrates an example
network configuration 600 that can be used to provide,
generate, modify, encode, process, and/or transmit image
data or other such content. In at least one embodiment, a
client device 602 can generate or receive data for a session
using components of a content application 604 on client
device 602 and data stored locally on that client device. In
at least one embodiment, a content application 624 execut-
ing on a server 620 (e.g., a cloud server or edge server) may
initiate a session associated with at least one client device
602, as may utilize a session manager and user data stored
in a user database 636, and can cause content such as one or
more digital assets (e.g., implicit and/or explicit object
representations) from an asset repository 634 to be deter-
mined by a content manager 626. A content manager 626
may work with a rendering module 628 to generate or select
objects, digital assets, or other such content to be placed in
a scene or other virtual environment. Views of these objects
can be rendered by the rendering module 628, and provided
for presentation via the client device 602. In at least one
embodiment, this rendering module 628 can work with a
content generator 630 that may determine image content to
be rendered by the rendering module 628 as part of a content
offering. As mentioned, an offset manager 632 may be used,
separately or as part of the rendering module 628 or a ray
tracing module, to determine offset values to use for sec-
ondary rays to avoid artifacts resulting from self-intersec-
tions. At least a portion of the rendered content may be
transmitted to the client device 602 using an appropriate

US 2024/0371073 Al

transmission manager 622 to send by download, streaming,
or another such transmission channel. An encoder may be
used to encode and/or compress at least some of this data
before transmitting to the client device 602. In at least one
embodiment, the client device 602 receiving such content
can provide this content to a corresponding content appli-
cation 604, which may also or alternatively include a graphi-
cal user interface 610, content manager 612, and rendering
module 614 for use in providing, synthesizing, rendering,
compositing, modifying, or using content for presentation
(or other purposes) on or by the client device 602. A decoder
may also be used to decode data received over the network
(s) 640 for presentation via client device 602, such as image
or video content through a display 606 and audio, such as
sounds and music, through at least one audio playback
device 608, such as speakers or headphones. In at least one
embodiment, at least some of this content may already be
stored on, rendered on, or accessible to client device 602
such that transmission over network 640 is not required for
at least that portion of content, such as where that content
may have been previously downloaded or stored locally on
a hard drive or optical disk. In at least one embodiment, a
transmission mechanism such as data streaming can be used
to transfer this content from server 620, or user database
636, to client device 602. In at least one embodiment, at least
a portion of this content can be obtained, enhanced, and/or
streamed from another source, such as a third party service
660 or other client device 650, that may also include a
content application 662 for generating, enhancing, or pro-
viding content. In at least one embodiment, portions of this
functionality can be performed using multiple computing
devices, or multiple processors within one or more comput-
ing devices, such as may include a combination of CPUs and
GPUs.

[0056] In this example, these client devices can include
any appropriate computing devices, as may include a desk-
top computer, notebook computer, set-top box, streaming
device, gaming console, smartphone, tablet computer, VR
headset, AR goggles, wearable computer, or a smart televi-
sion. Each client device can submit a request across at least
one wired or wireless network, as may include the Internet,
an FEthernet, a local area network (LAN), or a cellular
network, among other such options. In this example, these
requests can be submitted to an address associated with a
cloud provider, who may operate or control one or more
electronic resources in a cloud provider environment, such
as may include a data center or server farm. In at least one
embodiment, the request may be received or processed by at
least one edge server, that sits on a network edge and is
outside at least one security layer associated with the cloud
provider environment. In this way, latency can be reduced by
enabling the client devices to interact with servers that are in
closer proximity, while also improving security of resources
in the cloud provider environment.

[0057] In at least one embodiment, such a system can be
used for performing graphical rendering operations. In other
embodiments, such a system can be used for other purposes,
such as for providing image or video content to test or
validate autonomous machine applications, or for perform-
ing deep learning operations. In at least one embodiment,
such a system can be implemented using an edge device, or
may incorporate one or more Virtual Machines (VMs). In at

Nov. 7, 2024

least one embodiment, such a system can be implemented at
least partially in a data center or at least partially using cloud
computing resources.

Inference and Training Logic

[0058] FIG. 7A illustrates inference and/or training logic
715 used to perform inferencing and/or training operations
associated with one or more embodiments. Details regarding
inference and/or training logic 715 are provided below in
conjunction with FIGS. 7A and/or 7B.

[0059] In at least one embodiment, inference and/or train-
ing logic 715 may include, without limitation, code and/or
data storage 701 to store forward and/or output weight
and/or input/output data, and/or other parameters to config-
ure neurons or layers of a neural network trained and/or used
for inferencing in aspects of one or more embodiments. In
at least one embodiment, training logic 715 may include, or
be coupled to code and/or data storage 701 to store graph
code or other software to control timing and/or order, in
which weight and/or other parameter information is to be
loaded to configure, logic, including integer and/or floating
point units (collectively, arithmetic logic units (ALUs). In at
least one embodiment, code, such as graph code, loads
weight or other parameter information into processor AL Us
based on an architecture of a neural network to which the
code corresponds. In at least one embodiment, code and/or
data storage 701 stores weight parameters and/or input/
output data of each layer of a neural network trained or used
in conjunction with one or more embodiments during for-
ward propagation of input/output data and/or weight param-
eters during training and/or inferencing using aspects of one
or more embodiments. In at least one embodiment, any
portion of code and/or data storage 701 may be included
with other on-chip or off-chip data storage, including a
processor’s L1, L2, or L3 cache or system memory.
[0060] In at least one embodiment, any portion of code
and/or data storage 701 may be internal or external to one or
more processors or other hardware logic devices or circuits.
In at least one embodiment, code and/or data storage 701
may be cache memory, dynamic randomly addressable
memory (“DRAM”), static randomly addressable memory
(“SRAM”), non-volatile memory (e.g., Flash memory), or
other storage. In at least one embodiment, choice of whether
code and/or data storage 701 is internal or external to a
processor, for example, or comprised of DRAM, SRAM,
Flash or some other storage type may depend on available
storage on-chip versus off-chip, latency requirements of
training and/or inferencing functions being performed, batch
size of data used in inferencing and/or training of a neural
network, or some combination of these factors.

[0061] In at least one embodiment, inference and/or train-
ing logic 715 may include, without limitation, a code and/or
data storage 705 to store backward and/or output weight
and/or input/output data corresponding to neurons or layers
of a neural network trained and/or used for inferencing in
aspects of one or more embodiments. In at least one embodi-
ment, code and/or data storage 705 stores weight parameters
and/or input/output data of each layer of a neural network
trained or used in conjunction with one or more embodi-
ments during backward propagation of input/output data
and/or weight parameters during training and/or inferencing
using aspects of one or more embodiments. In at least one
embodiment, training logic 715 may include, or be coupled
to code and/or data storage 705 to store graph code or other

US 2024/0371073 Al

software to control timing and/or order, in which weight
and/or other parameter information is to be loaded to con-
figure, logic, including integer and/or floating point units
(collectively, arithmetic logic units (ALUs). In at least one
embodiment, code, such as graph code, loads weight or other
parameter information into processor ALUs based on an
architecture of a neural network to which the code corre-
sponds. In at least one embodiment, any portion of code
and/or data storage 705 may be included with other on-chip
or off-chip data storage, including a processor’s [.1, [.2, or
L3 cache or system memory. In at least one embodiment,
any portion of code and/or data storage 705 may be internal
or external to on one or more processors or other hardware
logic devices or circuits. In at least one embodiment, code
and/or data storage 705 may be cache memory, DRAM,
SRAM, non-volatile memory (e.g., Flash memory), or other
storage. In at least one embodiment, choice of whether code
and/or data storage 705 is internal or external to a processor,
for example, or comprised of DRAM, SRAM, Flash or some
other storage type may depend on available storage on-chip
versus off-chip, latency requirements of training and/or
inferencing functions being performed, batch size of data
used in inferencing and/or training of a neural network, or
some combination of these factors.

[0062] In at least one embodiment, code and/or data
storage 701 and code and/or data storage 705 may be
separate storage structures. In at least one embodiment, code
and/or data storage 701 and code and/or data storage 705
may be same storage structure. In at least one embodiment,
code and/or data storage 701 and code and/or data storage
705 may be partially same storage structure and partially
separate storage structures. In at least one embodiment, any
portion of code and/or data storage 701 and code and/or data
storage 705 may be included with other on-chip or off-chip
data storage, including a processor’s L1, [.2, or L3 cache or
system memory.

[0063] In at least one embodiment, inference and/or train-
ing logic 715 may include, without limitation, one or more
arithmetic logic unit(s) (“ALU(s)”) 710, including integer
and/or floating point units, to perform logical and/or math-
ematical operations based, at least in part on, or indicated by,
training and/or inference code (e.g., graph code), a result of
which may produce activations (e.g., output values from
layers or neurons within a neural network) stored in an
activation storage 720 that are functions of input/output
and/or weight parameter data stored in code and/or data
storage 701 and/or code and/or data storage 705. In at least
one embodiment, activations stored in activation storage 720
are generated according to linear algebraic and or matrix-
based mathematics performed by ALU(s) 710 in response to
performing instructions or other code, wherein weight val-
ues stored in code and/or data storage 701 and/or code
and/or data storage 705 are used as operands along with
other values, such as bias values, gradient information,
momentum values, or other parameters or hyperparameters,
any or all of which may be stored in code and/or data storage
701 or code and/or data storage 705 or another storage on or
off-chip.

[0064] In at least one embodiment, ALU(s) 710 are
included within one or more processors or other hardware
logic devices or circuits, whereas in another embodiment,
ALU(s) 710 may be external to a processor or other hard-
ware logic device or circuit that uses them (e.g., a co-
processor). In at least one embodiment, ALU(s) 710 may be

Nov. 7, 2024

included within a processor’s execution units or otherwise
within a bank of ALLUs accessible by a processor’s execution
units either within same processor or distributed between
different processors of different types (e.g., central process-
ing units, graphics processing units, fixed function units,
etc.). In at least one embodiment, code and/or data storage
701, code and/or data storage 705, and activation storage
720 may be on same processor or other hardware logic
device or circuit, whereas in another embodiment, they may
be in different processors or other hardware logic devices or
circuits, or some combination of same and different proces-
sors or other hardware logic devices or circuits. In at least
one embodiment, any portion of activation storage 720 may
be included with other on-chip or off-chip data storage,
including a processor’s .1, .2, or L3 cache or system
memory. Furthermore, inferencing and/or training code may
be stored with other code accessible to a processor or other
hardware logic or circuit and fetched and/or processed using
a processor’s fetch, decode, scheduling, execution, retire-
ment and/or other logical circuits.

[0065] In at least one embodiment, activation storage 720
may be cache memory, DRAM, SRAM, non-volatile
memory (e.g., Flash memory), or other storage. In at least
one embodiment, activation storage 720 may be completely
or partially within or external to one or more processors or
other logical circuits. In at least one embodiment, choice of
whether activation storage 720 is internal or external to a
processor, for example, or comprised of DRAM, SRAM,
Flash or some other storage type may depend on available
storage on-chip versus off-chip, latency requirements of
training and/or inferencing functions being performed, batch
size of data used in inferencing and/or training of a neural
network, or some combination of these factors. In at least
one embodiment, inference and/or training logic 715 illus-
trated in FIG. 7A may be used in conjunction with an
application-specific integrated circuit (“ASIC”), such as
Tensorflow® Processing Unit from Google, an inference
processing unit (IPU) from Graphcore™, or a Nervana®
(e.g., “Lake Crest”) processor from Intel Corp. In at least
one embodiment, inference and/or training logic 715 illus-
trated in FIG. 7A may be used in conjunction with central
processing unit (“CPU”) hardware, graphics processing unit
(“GPU”) hardware or other hardware, such as field program-
mable gate arrays (“FPGAs”).

[0066] FIG. 7B illustrates inference and/or training logic
715, according to at least one or more embodiments. In at
least one embodiment, inference and/or training logic 715
may include, without limitation, hardware logic in which
computational resources are dedicated or otherwise exclu-
sively used in conjunction with weight values or other
information corresponding to one or more layers of neurons
within a neural network. In at least one embodiment, infer-
ence and/or training logic 715 illustrated in FIG. 7B may be
used in conjunction with an application-specific integrated
circuit (ASIC), such as Tensorflow® Processing Unit from
Google, an inference processing unit (IPU) from
Graphcore™, or a Nervana® (e.g., “Lake Crest”) processor
from Intel Corp. In at least one embodiment, inference
and/or training logic 715 illustrated in FIG. 7B may be used
in conjunction with central processing unit (CPU) hardware,
graphics processing unit (GPU) hardware or other hardware,
such as field programmable gate arrays (FPGAs). In at least
one embodiment, inference and/or training logic 715
includes, without limitation, code and/or data storage 701

US 2024/0371073 Al

and code and/or data storage 705, which may be used to
store code (e.g., graph code), weight values and/or other
information, including bias values, gradient information,
momentum values, and/or other parameter or hyperparam-
eter information. In at least one embodiment illustrated in
FIG. 7B, each of code and/or data storage 701 and code
and/or data storage 705 is associated with a dedicated
computational resource, such as computational hardware
702 and computational hardware 706, respectively. In at
least one embodiment, each of computational hardware 702
and computational hardware 706 comprises one or more
ALUs that perform mathematical functions, such as linear
algebraic functions, only on information stored in code
and/or data storage 701 and code and/or data storage 705,
respectively, result of which is stored in activation storage
720.

[0067] In at least one embodiment, each of code and/or
data storage 701 and 705 and corresponding computational
hardware 702 and 706, respectively, correspond to different
layers of a neural network, such that resulting activation
from one “storage/computational pair 701/702” of code
and/or data storage 701 and computational hardware 702 is
provided as an input to “storage/computational pair 705/
706” of code and/or data storage 705 and computational
hardware 706, in order to mirror conceptual organization of
a neural network. In at least one embodiment, each of
storage/computational pairs 701/702 and 705/706 may cor-
respond to more than one neural network layer. In at least
one embodiment, additional storage/computation pairs (not
shown) subsequent to or in parallel with storage computa-
tion pairs 701/702 and 705/706 may be included in inference
and/or training logic 715.

Data Center

[0068] FIG. 8 illustrates an example data center 800, in
which at least one embodiment may be used. In at least one
embodiment, data center 800 includes a data center infra-
structure layer 810, a framework layer 820, a software layer
830, and an application layer 840.

[0069] In at least one embodiment, as shown in FIG. 8,
data center infrastructure layer 810 may include a resource
orchestrator 812, grouped computing resources 814, and
node computing resources (“node C.R.s”) 816(1)-816(N),
where “N” represents any whole, positive integer. In at least
one embodiment, node C.R.s 816(1)-816(N) may include,
but are not limited to, any number of central processing units
(“CPUSs”) or other processors (including accelerators, field
programmable gate arrays (FPGAs), graphics processors,
etc.), memory devices (e.g., dynamic read-only memory),
storage devices (e.g., solid state or disk drives), network
input/output (“NW 1/O0”) devices, network switches, virtual
machines (“VMs”), power modules, and cooling modules,
etc. In at least one embodiment, one or more node C.R.s
from among node C.R.s 816(1)-816(N) may be a server
having one or more of above-mentioned computing
resources.

[0070] In at least one embodiment, grouped computing
resources 814 may include separate groupings of node C.R.s
housed within one or more racks (not shown), or many racks
housed in data centers at various geographical locations
(also not shown). Separate groupings of node C.R.s within
grouped computing resources 814 may include grouped
compute, network, memory or storage resources that may be
configured or allocated to support one or more workloads. In

Nov. 7, 2024

at least one embodiment, several node C.R.s including CPUs
or processors may grouped within one or more racks to
provide compute resources to support one or more work-
loads. In at least one embodiment, one or more racks may
also include any number of power modules, cooling mod-
ules, and network switches, in any combination.

[0071] In at least one embodiment, resource orchestrator
812 may configure or otherwise control one or more node
C.R.s 816(1)-816(N) and/or grouped computing resources
814. In at least one embodiment, resource orchestrator 812
may include a software design infrastructure (“SDI”’) man-
agement entity for data center 800. In at least one embodi-
ment, resource orchestrator 812 may include hardware,
software or some combination thereof.

[0072] In at least one embodiment, as shown in FIG. 8,
framework layer 820 includes a job scheduler 822, a con-
figuration manager 824, a resource manager 826 and a
distributed file system 828. In at least one embodiment,
framework layer 820 may include a framework to support
software 832 of software layer 830 and/or one or more
application(s) 842 of application layer 840. In at least one
embodiment, software 832 or application(s) 842 may
respectively include web-based service software or applica-
tions, such as those provided by Amazon Web Services,
Google Cloud and Microsoft Azure. In at least one embodi-
ment, framework layer 820 may be, but is not limited to, a
type of free and open-source software web application
framework such as Apache Spark™ (hereinafter “Spark™)
that may use distributed file system 828 for large-scale data
processing (e.g., “big data™). In at least one embodiment, job
scheduler 822 may include a Spark driver to facilitate
scheduling of workloads supported by various layers of data
center 800. In at least one embodiment, configuration man-
ager 824 may be capable of configuring different layers such
as software layer 830 and framework layer 820 including
Spark and distributed file system 828 for supporting large-
scale data processing. In at least one embodiment, resource
manager 826 may be capable of managing clustered or
grouped computing resources mapped to or allocated for
support of distributed file system 828 and job scheduler 822.
In at least one embodiment, clustered or grouped computing
resources may include grouped computing resource 814 at
data center infrastructure layer 810. In at least one embodi-
ment, resource manager 826 may coordinate with resource
orchestrator 812 to manage these mapped or allocated
computing resources.

[0073] In at least one embodiment, software 832 included
in software layer 830 may include software used by at least
portions of node C.R.s 816(1)-816(N), grouped computing
resources 814, and/or distributed file system 828 of frame-
work layer 820. The one or more types of software may
include, but are not limited to, Internet web page search
software, e-mail virus scan software, database software, and
streaming video content software.

[0074] In at least one embodiment, application(s) 842
included in application layer 840 may include one or more
types of applications used by at least portions of node C.R.s
816(1)-816(N), grouped computing resources 814, and/or
distributed file system 828 of framework layer 820. One or
more types of applications may include, but are not limited
to, any number of a genomics application, a cognitive
compute, and a machine learning application, including
training or inferencing software, machine learning frame-
work software (e.g., PyTorch, TensorFlow, Caffe, etc.) or

US 2024/0371073 Al

other machine learning applications used in conjunction
with one or more embodiments.

[0075] In at least one embodiment, any of configuration
manager 824, resource manager 826, and resource orches-
trator 812 may implement any number and type of self-
modifying actions based on any amount and type of data
acquired in any technically feasible fashion. In at least one
embodiment, self-modifying actions may relieve a data
center operator of data center 800 from making possibly bad
configuration decisions and possibly avoiding underused
and/or poor performing portions of a data center.

[0076] In at least one embodiment, data center 800 may
include tools, services, software or other resources to train
one or more machine learning models or predict or infer
information using one or more machine learning models
according to one or more embodiments described herein.
For example, in at least one embodiment, a machine learning
model may be trained by calculating weight parameters
according to a neural network architecture using software
and computing resources described above with respect to
data center 800. In at least one embodiment, trained machine
learning models corresponding to one or more neural net-
works may be used to infer or predict information using
resources described above with respect to data center 800 by
using weight parameters calculated through one or more
training techniques described herein.

[0077] In at least one embodiment, data center may use
CPUs, application-specific integrated circuits (ASICs),
GPUs, FPGAs, or other hardware to perform training and/or
inferencing using above-described resources. Moreover, one
or more software and/or hardware resources described above
may be configured as a service to allow users to train or
performing inferencing of information, such as image rec-
ognition, speech recognition, or other artificial intelligence
services.

[0078] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment,
inference and/or training logic 715 may be used in system
FIG. 8 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0079] Such components can be used to render objects of
different types, determine consistent secondary lighting
effects for those objects, then composite the objects using
the secondary lighting effects to generate composite images.

Computer Systems

[0080] FIG. 9is a block diagram illustrating an exemplary
computer system 900, which may be a system with inter-
connected devices and components, a system-on-a-chip
(SOC) or some combination thereof formed with a processor
that may include execution units to execute an instruction,
according to at least one embodiment. In at least one
embodiment, computer system 900 may include, without
limitation, a component, such as a processor 902 to employ
execution units including logic to perform algorithms for
process data, in accordance with present disclosure, such as
in embodiment described herein. In at least one embodi-
ment, computer system 900 may include processors, such as

Nov. 7, 2024

PENTIUM® Processor family, Xeon™, Itanium®,
XScale™ and/or StrongARM™, Intel® Core™, or Intel®
Nervana™ microprocessors available from Intel Corpora-
tion of Santa Clara, California, although other systems
(including PCs having other microprocessors, engineering
workstations, set-top boxes and like) may also be used. In at
least one embodiment, computer system 900 may execute a
version of WINDOWS’ operating system available from
Microsoft Corporation of Redmond, Wash., although other
operating systems (UNIX and Linux for example), embed-
ded software, and/or graphical user interfaces, may also be
used.

[0081] Embodiments may be used in other devices such as
handheld devices and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net Protocol devices, digital cameras, personal digital assis-
tants (“PDAs”), and handheld PCs. In at least one embodi-
ment, embedded applications may include a microcontroller,
a digital signal processor (“DSP”), system on a chip, net-
work computers (“NetPCs”), set-top boxes, network hubs,
wide area network (“WAN”) switches, or any other system
that may perform one or more instructions in accordance
with at least one embodiment.

[0082] In at least one embodiment, computer system 900
may include, without limitation, processor 902 that may
include, without limitation, one or more execution unit(s)
908 to perform machine learning model training and/or
inferencing according to techniques described herein. In at
least one embodiment, computer system 900 is a single
processor desktop or server system, but in another embodi-
ment computer system 900 may be a multiprocessor system.
In at least one embodiment, processor 902 may include,
without limitation, a complex instruction set computing
(“CISC”) microprocessor, a reduced instruction set comput-
ing (“RISC”) microprocessor, a very long instruction word
computing (“VLIW”) microprocessor, a processor imple-
menting a combination of instruction sets, or any other
processor device, such as a digital signal processor, for
example. In at least one embodiment, processor 902 may be
coupled to a processor bus 910 that may transmit data
signals between processor 902 and other components in
computer system 900.

[0083] In at least one embodiment, processor 902 may
include, without limitation, a Level 1 (“L.1”) internal cache
memory (“cache”) 904. In at least one embodiment, proces-
sor 902 may have a single internal cache or multiple levels
of'internal cache. In at least one embodiment, cache 904 may
reside external to processor 902. Other embodiments may
also include a combination of both internal and external
caches depending on particular implementation and needs.
In at least one embodiment, register file 906 may store
different types of data in various registers including, without
limitation, integer registers, floating point registers, status
registers, and instruction pointer register.

[0084] In at least one embodiment, execution unit(s) 908,
including, without limitation, logic to perform integer and
floating point operations, also resides in processor 902. In at
least one embodiment, processor 902 may also include a
microcode (“ucode”) read only memory (“ROM”) that
stores microcode for certain macro instructions. In at least
one embodiment, execution unit(s) 908 may include logic to
handle a packed instruction set 909. In at least one embodi-
ment, by including packed instruction set 909 in an instruc-
tion set of a general-purpose processor 902, along with

US 2024/0371073 Al

associated circuitry to execute instructions, operations used
by many multimedia applications may be performed using
packed data in a general-purpose processor 902. In one or
more embodiments, many multimedia applications may be
accelerated and executed more efficiently by using full width
of a processor data bus 910 for performing operations on
packed data, which may eliminate need to transfer smaller
units of data across processor data bus 910 to perform one
or more operations one data element at a time.

[0085] In at least one embodiment, execution unit(s) 908
may also be used in microcontrollers, embedded processors,
graphics devices, DSPs, and other types of logic circuits. In
at least one embodiment, computer system 900 may include,
without limitation, a memory 920. In at least one embodi-
ment, memory 920 may be implemented as a Dynamic
Random Access Memory (“DRAM”) device, a Static Ran-
dom Access Memory (“SRAM”) device, flash memory
device, or other memory device. In at least one embodiment,
memory 920 may store instruction(s) 919 and/or data 921
represented by data signals that may be executed by pro-
cessor 902.

[0086] In atleast one embodiment, system logic chip may
be coupled to processor bus 910 and memory 920. In at least
one embodiment, system logic chip may include, without
limitation, a memory controller hub (“MCH”) 916, and
processor 902 may communicate with MCH 916 via pro-
cessor bus 910. In at least one embodiment, MCH 916 may
provide a high bandwidth memory path 918 to memory 920
for instruction and data storage and for storage of graphics
commands, data and textures. In at least one embodiment,
MCH 916 may direct data signals between processor 902,
memory 920, and other components in computer system 900
and to bridge data signals between processor bus 910,
memory 920, and a system [/O 922. In at least one embodi-
ment, system logic chip may provide a graphics port for
coupling to a graphics controller. In at least one embodi-
ment, MCH 916 may be coupled to memory 920 through a
high bandwidth memory path 918 and graphics/video card
912 may be coupled to MCH 916 through an Accelerated
Graphics Port (“AGP”) interconnect 914.

[0087] In at least one embodiment, computer system 900
may use system [/O 922 that is a proprietary hub interface
bus to couple MCH 916 to I/O controller hub (“ICH”) 930.
In at least one embodiment, ICH 930 may provide direct
connections to some 1/O devices via a local I/O bus. In at
least one embodiment, local I/O bus may include, without
limitation, a high-speed I/O bus for connecting peripherals
to memory 920, chipset, and processor 902. Examples may
include, without limitation, an audio controller 929, a firm-
ware hub (“flash BIOS”) 928, a wireless transceiver 926, a
data storage 924, a legacy 1/O controller 923 containing user
input and keyboard interface(s) 925, a serial expansion port
927, such as Universal Serial Bus (“USB”), and a network
controller 934. Data storage 924 may comprise a hard disk
drive, a floppy disk drive, a CD-ROM device, a flash
memory device, or other mass storage device.

[0088] In at least one embodiment, FIG. 9 illustrates a
system, which includes interconnected hardware devices or
“chips”, whereas in other embodiments, FIG. 9 may illus-
trate an exemplary System on a Chip (“SoC”). In at least one
embodiment, devices may be interconnected with propri-
etary interconnects, standardized interconnects (e.g., PCle)
or some combination thereof. In at least one embodiment,

Nov. 7, 2024

one or more components of computer system 900 are
interconnected using compute express link (CXL) intercon-
nects.

[0089] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment,
inference and/or training logic 715 may be used in system
FIG. 9 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0090] Such components can be used to render objects of
different types, determine consistent secondary lighting
effects for those objects, then composite the objects using
the secondary lighting effects to generate composite images.
[0091] FIG. 10 is a block diagram illustrating an electronic
device 1000 for using a processor 1010, according to at least
one embodiment. In at least one embodiment, electronic
device 1000 may be, for example and without limitation, a
notebook, a tower server, a rack server, a blade server, a
laptop, a desktop, a tablet, a mobile device, a phone, an
embedded computer, or any other suitable electronic device.
[0092] In at least one embodiment, electronic device 1000
may include, without limitation, processor 1010 communi-
catively coupled to any suitable number or kind of compo-
nents, peripherals, modules, or devices. In at least one
embodiment, processor 1010 coupled using a bus or inter-
face, such as a 1° C. bus, a System Management Bus
(“SMBus”), a Low Pin Count (LLPC) bus, a Serial Peripheral
Interface (“SPI”), a High Definition Audio (“HDA”) bus, a
Serial Advance Technology Attachment (“SATA”) bus, a
Universal Serial Bus (“USB”) (versions 1, 2, 3), or a
Universal Asynchronous Receiver/Transmitter (“UART”)
bus. In at least one embodiment, FIG. 10 illustrates an
electronic device 1000, which includes interconnected hard-
ware devices or “chips”, whereas in other embodiments,
FIG. 10 may illustrate an exemplary System on a Chip
(“SoC”). In at least one embodiment, devices illustrated in
FIG. 10 may be interconnected with proprietary intercon-
nects, standardized interconnects (e.g., PCle) or some com-
bination thereof. In at least one embodiment, one or more
components of FIG. 10 are interconnected using compute
express link (CXL) interconnects.

[0093] In at least one embodiment, FIG. 10 may include a
display 1024, a touch screen 1025, a touch pad 1030, a Near
Field Communications unit (“NFC”) 1045, a sensor hub
1040, a thermal sensor 1046, an Express Chipset (“EC”)
1035, a Trusted Platform Module (“TPM”) 1038, BIOS/
firmware/flash memory (“BIOS, FW Flash™) 1022, a DSP
1060, a drive 1020 such as a Solid State Disk (“SSD”) or a
Hard Disk Drive (“HDD”), a wireless local area network
unit (“WLAN”) 1050, a Bluetooth unit 1052, a Wireless
Wide Area Network unit (“WWAN”) 1056, a Global Posi-
tioning System (GPS) 1055, a camera (“USB 3.0 camera”)
1054 such as a USB 3.0 camera, and/or a Low Power Double
Data Rate (“LPDDR”) memory unit (“LPDDR3”) 1015
implemented in, for example, LPDDR3 standard. These
components may each be implemented in any suitable
manner.

[0094] In at least one embodiment, other components may
be communicatively coupled to processor 1010 through

US 2024/0371073 Al

components discussed above. In at least one embodiment, an
accelerometer 1041, Ambient Light Sensor (“ALS”) 1042,
compass 1043, and a gyroscope 1044 may be communica-
tively coupled to sensor hub 1040. In at least one embodi-
ment, thermal sensor 1039, a fan 1037, a keyboard 1036, and
a touch pad 1030 may be communicatively coupled to EC
1035. In at least one embodiment, speakers 1063, head-
phones 1064, and microphone (“mic”) 1065 may be com-
municatively coupled to an audio unit (“audio codec and
class d amp™) 1062, which may in turn be communicatively
coupled to DSP 1060. In at least one embodiment, audio unit
1062 may include, for example and without limitation, an
audio coder/decoder (“codec”) and a class D amplifier. In at
least one embodiment, SIM card (“SIM”) 1057 may be
communicatively coupled to WWAN unit 1056. In at least
one embodiment, components such as WLAN unit 1050 and
Bluetooth unit 1052, as well as WWAN unit 1056 may be
implemented in a Next Generation Form Factor (“NGFF”).
[0095] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment,
inference and/or training logic 715 may be used in system
FIG. 10 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0096] Such components can be used to render objects of
different types, determine consistent secondary lighting
effects for those objects, then composite the objects using
the secondary lighting effects to generate composite images.
[0097] FIG. 11 is a block diagram of a processing system,
according to at least one embodiment. In at least one
embodiment, processing system 1100 includes one or more
processor(s) 1102 and one or more graphics processor(s)
1108, and may be a single processor desktop system, a
multiprocessor workstation system, or a server system hav-
ing a large number of processor(s) 1102 or processor core(s)
1107. In at least one embodiment, processing system 1100 is
a processing platform incorporated within a system-on-a-
chip (SoC) integrated circuit for use in mobile, handheld, or
embedded devices.

[0098] In at least one embodiment, processing system
1100 can include, or be incorporated within a server-based
gaming platform, a game console, including a game and
media console, a mobile gaming console, a handheld game
console, or an online game console. In at least one embodi-
ment, processing system 1100 is a mobile phone, smart
phone, tablet computing device or mobile Internet device. In
at least one embodiment, processing system 1100 can also
include, coupled with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In at least one embodiment, processing system 1100
is a television or set top box device having one or more
processor(s) 1102 and a graphical interface generated by one
or more graphics processor(s) 1108.

[0099] In at least one embodiment, one or more processor
(s) 1102 each include one or more processor core(s) 1107 to
process instructions which, when executed, perform opera-
tions for system and user software. In at least one embodi-
ment, each of one or more processor core(s) 1107 is con-

Nov. 7, 2024

figured to process a specific instruction set 1109. In at least
one embodiment, instruction set 1109 may facilitate Com-
plex Instruction Set Computing (CISC), Reduced Instruction
Set Computing (RISC), or computing via a Very Long
Instruction Word (VLIW). In at least one embodiment,
processor core(s) 1107 may each process a different instruc-
tion set 1109, which may include instructions to facilitate
emulation of other instruction sets. In at least one embodi-
ment, processor core(s) 1107 may also include other pro-
cessing devices, such a Digital Signal Processor (DSP).

[0100] In at least one embodiment, processor(s) 1102
includes cache memory (“cache”) 1104. In at least one
embodiment, processor(s) 1102 can have a single internal
cache or multiple levels of internal cache. In at least one
embodiment, cache 1104 is shared among various compo-
nents of processor(s) 1102. In at least one embodiment,
processor(s) 1102 also uses an external cache (e.g., a Level-3
(L3) cache or Last Level Cache (LLLLC)) (not shown), which
may be shared among processor core(s) 1107 using known
cache coherency techniques. In at least one embodiment,
register file 1106 is additionally included in processor(s)
1102 which may include different types of registers for
storing different types of data (e.g., integer registers, floating
point registers, status registers, and an instruction pointer
register). In at least one embodiment, register file 1106 may
include general-purpose registers or other registers.

[0101] In at least one embodiment, one or more processor
(s) 1102 are coupled with one or more interface bus(es) 1110
to transmit communication signals such as address, data, or
control signals between processor(s) 1102 and other com-
ponents in processing system 1100. In at least one embodi-
ment, interface bus(es) 1110, in one embodiment, can be a
processor bus, such as a version of a Direct Media Interface
(DMI) bus. In at least one embodiment, interface bus(es)
1110 is not limited to a DMI bus, and may include one or
more Peripheral Component Interconnect buses (e.g., PCI,
PCI Express), memory buses, or other types of interface
buses. In at least one embodiment processor(s) 1102 include
an integrated memory controller 1116 and a platform con-
troller hub 1130. In at least one embodiment, memory
controller 1116 facilitates communication between a
memory device 1120 and other components of processing
system 1100, while platform controller hub (PCH) 1130
provides connections to /O devices via a local 1/0 bus.

[0102] In at least one embodiment, memory device 1120
can be a dynamic random access memory (DRAM) device,
a static random access memory (SRAM) device, flash
memory device, phase-change memory device, or some
other memory device having suitable performance to serve
as process memory. In at least one embodiment memory
device 1120 can operate as system memory for processing
system 1100, to store data 1122 and instruction 1121 for use
when one or more processor(s) 1102 executes an application
or process. In at least one embodiment, memory controller
1116 also couples with an optional external graphics pro-
cessor 1112, which may communicate with one or more
graphics processor(s) 1108 in processor(s) 1102 to perform
graphics and media operations. In at least one embodiment,
a display device 1111 can connect to processor(s) 1102. In at
least one embodiment display device 1111 can include one
or more of an internal display device, as in a mobile
electronic device or a laptop device or an external display
device attached via a display interface (e.g., DisplayPort,
etc.). In at least one embodiment, display device 1111 can

US 2024/0371073 Al

include a head mounted display (HMD) such as a stereo-
scopic display device for use in virtual reality (VR) appli-
cations or augmented reality (AR) applications.

[0103] In atleast one embodiment, platform controller hub
1130 allows peripherals to connect to memory device 1120
and processor(s) 1102 via a high-speed I/O bus. In at least
one embodiment, I/O peripherals include, but are not limited
to, an audio controller 1146, a network controller 1134, a
firmware interface 1128, a wireless transceiver 1126, touch
sensors 1125, a data storage device 1124 (e.g., hard disk
drive, flash memory, etc.). In at least one embodiment, data
storage device 1124 can connect via a storage interface (e.g.,
SATA) or via a peripheral bus, such as a Peripheral Com-
ponent Interconnect bus (e.g., PCI, PCI Express). In at least
one embodiment, touch sensors 1125 can include touch
screen sensors, pressure sensors, or fingerprint sensors. In at
least one embodiment, wireless transceiver 1126 can be a
Wi-Fi transceiver, a Bluetooth transceiver, or a mobile
network transceiver such as a 3G, 4G, or Long Term
Evolution (LTE) transceiver. In at least one embodiment,
firmware interface 1128 allows communication with system
firmware, and can be, for example, a unified extensible
firmware interface (UEFI). In at least one embodiment,
network controller 1134 can allow a network connection to
a wired network. In at least one embodiment, a high-
performance network controller (not shown) couples with
interface bus(es) 1110. In at least one embodiment, audio
controller 1146 is a multi-channel high definition audio
controller. In at least one embodiment, processing system
1100 includes an optional legacy /O controller 1140 for
coupling legacy (e.g., Personal System 2 (PS/2)) devices to
system. In at least one embodiment, platform controller hub
1130 can also connect to one or more Universal Serial Bus
(USB) controller(s) 1142 connect input devices, such as
keyboard and mouse 1143 combinations, a camera 1144, or
other USB input devices.

[0104] In at least one embodiment, an instance of memory
controller 1116 and platform controller hub 1130 may be
integrated into a discreet external graphics processor, such
as external graphics processor 1112. In at least one embodi-
ment, platform controller hub 1130 and/or memory control-
ler 1116 may be external to one or more processor(s) 1102.
For example, in at least one embodiment, processing system
1100 can include an external memory controller 1116 and
platform controller hub 1130, which may be configured as a
memory controller hub and peripheral controller hub within
a system chipset that is in communication with processor(s)
1102.

[0105] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment
portions or all of inference and/or training logic 715 may be
incorporated into processing system 1100. For example, in at
least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
embodied in a graphics processor. Moreover, in at least one
embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIGS. 7A and/or 7B. In at least one embodi-
ment, weight parameters may be stored in on-chip or off-
chip memory and/or registers (shown or not shown) that
configure ALUs of a graphics processor to perform one or

Nov. 7, 2024

more machine learning algorithms, neural network architec-
tures, use cases, or training techniques described herein.
[0106] Such components can be used to render objects of
different types, determine consistent secondary lighting
effects for those objects, then composite the objects using
the secondary lighting effects to generate composite images.
[0107] FIG. 12 is a block diagram of a processor 1200
having one or more processor core(s) 1202A-1202N, an
integrated memory controller 1214, and an integrated graph-
ics processor 1208, according to at least one embodiment. In
at least one embodiment, processor 1200 can include addi-
tional cores up to and including additional core(s) 1202N
represented by dashed lined boxes. In at least one embodi-
ment, each of processor core(s) 1202A-1202N includes one
or more internal cache unit(s) 1204A-1204N. In at least one
embodiment, each processor core also has access to one or
more shared cached unit(s) 1206.

[0108] In at least one embodiment, internal cache unit(s)
1204A-1204N and shared cache unit(s) 1206 represent a
cache memory hierarchy within processor 1200. In at least
one embodiment, cache memory unit(s) 1204A-1204N may
include at least one level of instruction and data cache within
each processor core and one or more levels of shared
mid-level cache, such as a Level 2 (L.2), Level 3 (L3), Level
4 (L4), or other levels of cache, where a highest level of
cache before external memory is classified as an LL.C. In at
least one embodiment, cache coherency logic maintains
coherency between various cache unit(s) 1206 and 1204A-
1204N.

[0109] In at least one embodiment, processor 1200 may
also include a set of one or more bus controller unit(s) 1216
and a system agent core 1210. In at least one embodiment,
one or more bus controller unit(s) 1216 manage a set of
peripheral buses, such as one or more PCI or PCI express
buses. In at least one embodiment, system agent core 1210
provides management functionality for various processor
components. In at least one embodiment, system agent core
1210 includes one or more integrated memory controller(s)
1214 to manage access to various external memory devices
(not shown).

[0110] In at least one embodiment, one or more of pro-
cessor core(s) 1202A-1202N include support for simultane-
ous multi-threading. In at least one embodiment, system
agent core 1210 includes components for coordinating and
processor core(s) 1202A-1202N during multi-threaded pro-
cessing. In at least one embodiment, system agent core 1210
may additionally include a power control unit (PCU), which
includes logic and components to regulate one or more
power states of processor core(s) 1202A-1202N and graph-
ics processor 1208.

[0111] In at least one embodiment, processor 1200 addi-
tionally includes graphics processor 1208 to execute graph-
ics processing operations. In at least one embodiment,
graphics processor 1208 couples with shared cache unit(s)
1206, and system agent core 1210, including one or more
integrated memory controller(s) 1214. In at least one
embodiment, system agent core 1210 also includes a display
controller 1211 to drive graphics processor output to one or
more coupled displays. In at least one embodiment, display
controller 1211 may also be a separate module coupled with
graphics processor 1208 via at least one interconnect, or may
be integrated within graphics processor 1208.

[0112] In at least one embodiment, a ring based intercon-
nect unit 1212 is used to couple internal components of

US 2024/0371073 Al

processor 1200. In at least one embodiment, an alternative
interconnect unit may be used, such as a point-to-point
interconnect, a switched interconnect, or other techniques.
In at least one embodiment, graphics processor 1208 couples
with ring based interconnect unit 1212 via an I/O link 1213.
[0113] In at least one embodiment, I/O link 1213 repre-
sents at least one of multiple varieties of I/O interconnects,
including an on package 1/O interconnect which facilitates
communication between various processor components and
a high-performance embedded memory module 1218, such
as an eDRAM module. In at least one embodiment, each of
processor core(s) 1202A-1202N and graphics processor
1208 use embedded memory module 1218 as a shared Last
Level Cache.

[0114] In at least one embodiment, processor core(s)
1202A-1202N are homogenous cores executing a common
instruction set architecture. In at least one embodiment,
processor core(s) 1202A-1202N are heterogeneous in terms
of instruction set architecture (ISA), where one or more of
processor core(s) 1202A-1202N execute a common instruc-
tion set, while one or more other cores of processor core(s)
1202A-1202N executes a subset of a common instruction set
or a different instruction set. In at least one embodiment,
processor core(s) 1202A-1202N are heterogeneous in terms
of microarchitecture, where one or more cores having a
relatively higher power consumption couple with one or
more power cores having a lower power consumption. In at
least one embodiment, processor 1200 can be implemented
on one or more chips or as an SoC integrated circuit.
[0115] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment
portions or all of inference and/or training logic 715 may be
incorporated into processor 1200. For example, in at least
one embodiment, training and/or inferencing techniques
described herein may use one or more of ALLUs embodied in
graphics processor 1208, graphics core(s) 1202A-1202N, or
other components in FIG. 12. Moreover, in at least one
embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIGS. 7A and/or 7B. In at least one embodi-
ment, weight parameters may be stored in on-chip or off-
chip memory and/or registers (shown or not shown) that
configure AL Us of graphics processor 1200 to perform one
or more machine learning algorithms, neural network archi-
tectures, use cases, or training techniques described herein.
[0116] Such components can be used to render objects of
different types, determine consistent secondary lighting
effects for those objects, then composite the objects using
the secondary lighting effects to generate composite images.

Virtualized Computing Platform

[0117] FIG. 13 is an example data flow diagram for a
process 1300 of generating and deploying an image pro-
cessing and inferencing pipeline, in accordance with at least
one embodiment. In at least one embodiment, process 1300
may be deployed for use with imaging devices, processing
devices, and/or other device types at one or more facility
(ies) 1302. Process 1300 may be executed within a training
system 1304 and/or a deployment system 1306. In at least
one embodiment, training system 1304 may be used to
perform ftraining, deployment, and implementation of

Nov. 7, 2024

machine learning models (e.g., neural networks, object
detection algorithms, computer vision algorithms, etc.) for
use in deployment system 1306. In at least one embodiment,
deployment system 1306 may be configured to offload
processing and compute resources among a distributed com-
puting environment to reduce infrastructure requirements at
facility(ies) 1302. In at least one embodiment, one or more
applications in a pipeline may use or call upon services (e.g.,
inference, visualization, compute, Al, etc.) of deployment
system 1306 during execution of applications.

[0118] In at least one embodiment, some of applications
used in advanced processing and inferencing pipelines may
use machine learning models or other Al to perform one or
more processing steps. In at least one embodiment, machine
learning models may be trained at facility(ies) 1302 using
data 1308 (such as imaging data) generated at facility(ies)
1302 (and stored on one or more picture archiving and
communication system (PACS) servers at {facility(ies)
1302), may be trained using imaging or sequencing data
1308 from another facility(ies), or a combination thereof. In
at least one embodiment, training system 1304 may be used
to provide applications, services, and/or other resources for
generating working, deployable machine learning models
for deployment system 1306.

[0119] In at least one embodiment, model registry 1324
may be backed by object storage that may support version-
ing and object metadata. In at least one embodiment, object
storage may be accessible through, for example, a cloud
storage compatible application programming interface (API)
from within a cloud platform. In at least one embodiment,
machine learning models within model registry 1324 may
uploaded, listed, modified, or deleted by developers or
partners of a system interacting with an API. In at least one
embodiment, an API may provide access to methods that
allow users with appropriate credentials to associate models
with applications, such that models may be executed as part
of execution of containerized instantiations of applications.
[0120] In at least one embodiment, training pipeline 1304
(FIG. 13) may include a scenario where facility(ies) 1302 is
training their own machine learning model, or has an exist-
ing machine learning model that needs to be optimized or
updated. In at least one embodiment, imaging data 1308
generated by imaging device(s), sequencing devices, and/or
other device types may be received. In at least one embodi-
ment, once imaging data 1308 is received, Al-assisted
annotation 1310 may be used to aid in generating annota-
tions corresponding to imaging data 1308 to be used as
ground truth data for a machine learning model. In at least
one embodiment, Al-assisted annotation 1310 may include
one or more machine learning models (e.g., convolutional
neural networks (CNNs)) that may be trained to generate
annotations corresponding to certain types of imaging data
1308 (e.g., from certain devices). In at least one embodi-
ment, Al-assisted annotation 1310 may then be used directly,
or may be adjusted or fine-tuned using an annotation tool to
generate ground truth data. In at least one embodiment,
Al-assisted annotation 1310, labeled data 1312, or a com-
bination thereof may be used as ground truth data for
training a machine learning model. In at least one embodi-
ment, a trained machine learning model may be referred to
as output model(s) 1316, and may be used by deployment
system 1306, as described herein.

[0121] In at least one embodiment, a training pipeline may
include a scenario where facility(ies) 1302 needs a machine

US 2024/0371073 Al

learning model for use in performing one or more processing
tasks for one or more applications in deployment system
1306, but facility(ies) 1302 may not currently have such a
machine learning model (or may not have a model that is
optimized, efficient, or effective for such purposes). In at
least one embodiment, an existing machine learning model
may be selected from a model registry 1324. In at least one
embodiment, model registry 1324 may include machine
learning models trained to perform a variety of different
inference tasks on imaging data. In at least one embodiment,
machine learning models in model registry 1324 may have
been trained on imaging data from different facilities than
facility(ies) 1302 (e.g., facilities remotely located). In at
least one embodiment, machine learning models may have
been trained on imaging data from one location, two loca-
tions, or any number of locations. In at least one embodi-
ment, when being trained on imaging data from a specific
location, training may take place at that location, or at least
in a manner that protects confidentiality of imaging data or
restricts imaging data from being transferred off-premises.
In at least one embodiment, once a model is trained—or
partially trained—at one location, a machine learning model
may be added to model registry 1324. In at least one
embodiment, a machine learning model may then be
retrained, or updated, at any number of other facilities, and
a retrained or updated model may be made available in
model registry 1324. In at least one embodiment, a machine
learning model may then be selected from model registry
1324—and referred to as output model(s) 1316—and may
be used in deployment system 1306 to perform one or more
processing tasks for one or more applications of a deploy-
ment system.

[0122] In atleast one embodiment, a scenario may include
facility(ies) 1302 requiring a machine learning model for use
in performing one or more processing tasks for one or more
applications in deployment system 1306, but facility(ies)
1302 may not currently have such a machine learning model
(or may not have a model that is optimized, efficient, or
effective for such purposes). In at least one embodiment, a
machine learning model selected from model registry 1324
may not be fine-tuned or optimized for imaging data 1308
generated at facility(ies) 1302 because of differences in
populations, robustness of training data used to train a
machine learning model, diversity in anomalies of training
data, and/or other issues with training data. In at least one
embodiment, Al-assisted annotation 1310 may be used to
aid in generating annotations corresponding to imaging data
1308 to be used as ground truth data for retraining or
updating a machine learning model. In at least one embodi-
ment, labeled data 1312 may be used as ground truth data for
training a machine learning model. In at least one embodi-
ment, retraining or updating a machine learning model may
be referred to as model training 1314. In at least one
embodiment, model training 1314—e.g., Al-assisted anno-
tation 1310, labeled data 1312, or a combination thereof—
may be used as ground truth data for retraining or updating
a machine learning model. In at least one embodiment, a
trained machine learning model may be referred to as output
model(s) 1316, and may be used by deployment system
1306, as described herein.

[0123] In at least one embodiment, deployment system
1306 may include software 1318, services 1320, hardware
1322, and/or other components, features, and functionality.
In at least one embodiment, deployment system 1306 may

Nov. 7, 2024

include a software “stack,” such that software 1318 may be
built on top of services 1320 and may use services 1320 to
perform some or all of processing tasks, and services 1320
and software 1318 may be built on top of hardware 1322 and
use hardware 1322 to execute processing, storage, and/or
other compute tasks of deployment system 1306. In at least
one embodiment, software 1318 may include any number of
different containers, where each container may execute an
instantiation of an application. In at least one embodiment,
each application may perform one or more processing tasks
in an advanced processing and inferencing pipeline (e.g.,
inferencing, object detection, feature detection, segmenta-
tion, image enhancement, calibration, etc.). In at least one
embodiment, an advanced processing and inferencing pipe-
line may be defined based on selections of different con-
tainers that are desired or required for processing imaging
data 1308, in addition to containers that receive and con-
figure imaging data for use by each container and/or for use
by facility(ies) 1302 after processing through a pipeline
(e.g., to convert outputs back to a usable data type). In at
least one embodiment, a combination of containers within
software 1318 (e.g., that make up a pipeline) may be referred
to as a virtual instrument (as described in more detail
herein), and a virtual instrument may leverage services 1320
and hardware 1322 to execute some or all processing tasks
of applications instantiated in containers.

[0124] In at least one embodiment, a data processing
pipeline may receive input data (e.g., imaging data 1308) in
a specific format in response to an inference request (e.g., a
request from a user of deployment system 1306). In at least
one embodiment, input data may be representative of one or
more images, video, and/or other data representations gen-
erated by one or more imaging devices. In at least one
embodiment, data may undergo pre-processing as part of
data processing pipeline to prepare data for processing by
one or more applications. In at least one embodiment,
post-processing may be performed on an output of one or
more inferencing tasks or other processing tasks of a pipe-
line to prepare an output data for a next application and/or
to prepare output data for transmission and/or use by a user
(e.g., as a response to an inference request). In at least one
embodiment, inferencing tasks may be performed by one or
more machine learning models, such as trained or deployed
neural networks, which may include output model(s) 1316
of training system 1304.

[0125] In at least one embodiment, tasks of data process-
ing pipeline may be encapsulated in a container(s) that each
represents a discrete, fully functional instantiation of an
application and virtualized computing environment that is
able to reference machine learning models. In at least one
embodiment, containers or applications may be published
into a private (e.g., limited access) arca of a container
registry (described in more detail herein), and trained or
deployed models may be stored in model registry 1324 and
associated with one or more applications. In at least one
embodiment, images of applications (e.g., container images)
may be available in a container registry, and once selected
by a user from a container registry for deployment in a
pipeline, an image may be used to generate a container for
an instantiation of an application for use by a user’s system.
[0126] In at least one embodiment, developers (e.g., soft-
ware developers, clinicians, doctors, etc.) may develop,
publish, and store applications (e.g., as containers) for
performing image processing and/or inferencing on supplied

US 2024/0371073 Al

data. In at least one embodiment, development, publishing,
and/or storing may be performed using a software develop-
ment kit (SDK) associated with a system (e.g., to ensure that
an application and/or container developed is compliant with
or compatible with a system). In at least one embodiment, an
application that is developed may be tested locally (e.g., at
a first facility, on data from a first facility) with an SDK
which may support at least some of services 1320 as a
system (e.g., processor 1200 of FIG. 12). In at least one
embodiment, because DICOM objects may contain any-
where from one to hundreds of images or other data types,
and due to a variation in data, a developer may be respon-
sible for managing (e.g., setting constructs for, building
pre-processing into an application, etc.) extraction and
preparation of incoming data. In at least one embodiment,
once validated by process 1300 (e.g., for accuracy), an
application may be available in a container registry for
selection and/or implementation by a user to perform one or
more processing tasks with respect to data at a facility (e.g.,
a second facility) of a user.

[0127] In at least one embodiment, developers may then
share applications or containers through a network for
access and use by users of a system (e.g., process 1300 of
FIG. 13). In at least one embodiment, completed and vali-
dated applications or containers may be stored in a container
registry and associated machine learning models may be
stored in model registry 1324. In at least one embodiment,
a requesting entity—who provides an inference or image
processing request—may browse a container registry and/or
model registry 1324 for an application, container, dataset,
machine learning model, etc., select a desired combination
of elements for inclusion in data processing pipeline, and
submit an imaging processing request. In at least one
embodiment, a request may include input data (and associ-
ated patient data, in some examples) that is necessary to
perform a request, and/or may include a selection of appli-
cation(s) and/or machine learning models to be executed in
processing a request. In at least one embodiment, a request
may then be passed to one or more components of deploy-
ment system 1306 (e.g., a cloud) to perform processing of
data processing pipeline. In at least one embodiment, pro-
cessing by deployment system 1306 may include referenc-
ing selected elements (e.g., applications, containers, models,
etc.) from a container registry and/or model registry 1324. In
at least one embodiment, once results are generated by a
pipeline, results may be returned to a user for reference (e.g.,
for viewing in a viewing application suite executing on a
local, on-premises workstation or terminal).

[0128] In at least one embodiment, to aid in processing or
execution of applications or containers in pipelines, services
1320 may be leveraged. In at least one embodiment, services
1320 may include compute services, artificial intelligence
(AD) services, visualization services, and/or other service
types. In at least one embodiment, services 1320 may
provide functionality that is common to one or more appli-
cations in software 1318, so functionality may be abstracted
to a service that may be called upon or leveraged by
applications. In at least one embodiment, functionality pro-
vided by services 1320 may run dynamically and more
efficiently, while also scaling well by allowing applications
to process data in parallel (e.g., using a parallel computing
platform). In at least one embodiment, rather than each
application that shares a same functionality offered by
services 1320 being required to have a respective instance of

Nov. 7, 2024

services 1320, services 1320 may be shared between and
among various applications. In at least one embodiment,
services 1320 may include an inference server or engine that
may be used for executing detection or segmentation tasks,
as non-limiting examples. In at least one embodiment, a
model training service may be included that may provide
machine learning model training and/or retraining capabili-
ties. In at least one embodiment, a data augmentation service
may further be included that may provide GPU accelerated
data (e.g., DICOM, RIS, CIS, REST compliant, RPC, raw,
etc.) extraction, resizing, scaling, and/or other augmentation.
In at least one embodiment, a visualization service may be
used that may add image rendering effects—such as ray-
tracing, rasterization, denoising, sharpening, etc.—to add
realism to two-dimensional (2D) and/or three-dimensional
(3D) models. In at least one embodiment, virtual instrument
services may be included that provide for beam-forming,
segmentation, inferencing, imaging, and/or support for other
applications within pipelines of virtual instruments.

[0129] In at least one embodiment, where a services 1320
includes an Al service (e.g., an inference service), one or
more machine learning models may be executed by calling
upon (e.g., as an API call) an inference service (e.g., an
inference server) to execute machine learning model(s), or
processing thereof, as part of application execution. In at
least one embodiment, where another application includes
one or more machine learning models for segmentation
tasks, an application may call upon an inference service to
execute machine learning models for performing one or
more of processing operations associated with segmentation
tasks. In at least one embodiment, software 1318 imple-
menting advanced processing and inferencing pipeline that
includes segmentation application and anomaly detection
application may be streamlined because each application
may call upon a same inference service to perform one or
more inferencing tasks.

[0130] In at least one embodiment, hardware 1322 may
include GPUs, CPUs, graphics cards, an Al/deep learning
system (e.g., an Al supercomputer, such as NVIDIA’s
DGX), a cloud platform, or a combination thereof. In at least
one embodiment, different types of hardware 1322 may be
used to provide efficient, purpose-built support for software
1318 and services 1320 in deployment system 1306. In at
least one embodiment, use of GPU processing may be
implemented for processing locally (e.g., at facility(ies)
1302), within an Al/deep learning system, in a cloud system,
and/or in other processing components of deployment sys-
tem 1306 to improve efficiency, accuracy, and efficacy of
image processing and generation. In at least one embodi-
ment, software 1318 and/or services 1320 may be optimized
for GPU processing with respect to deep learning, machine
learning, and/or high-performance computing, as non-lim-
iting examples. In at least one embodiment, at least some of
computing environment of deployment system 1306 and/or
training system 1304 may be executed in a datacenter one or
more supercomputers or high performance computing sys-
tems, with GPU optimized software (e.g., hardware and
software combination of NVIDIA’s DGX System). In at
least one embodiment, hardware 1322 may include any
number of GPUs that may be called upon to perform
processing of data in parallel, as described herein. In at least
one embodiment, cloud platform may further include GPU
processing for GPU-optimized execution of deep learning
tasks, machine learning tasks, or other computing tasks. In

US 2024/0371073 Al

at least one embodiment, cloud platform (e.g., NVIDIA’s
NGC) may be executed using an Al/deep learning super-
computer(s) and/or GPU-optimized software (e.g., as pro-
vided on NVIDIA’s DGX Systems) as a hardware abstrac-
tion and scaling platform. In at least one embodiment, cloud
platform may integrate an application container clustering
system or orchestration system (e.g., KUBERNETES) on
multiple GPUs to allow seamless scaling and load balanc-
ing.

[0131] FIG. 14 is a system diagram for an example system
1400 for generating and deploying an imaging deployment
pipeline, in accordance with at least one embodiment. In at
least one embodiment, system 1400 may be used to imple-
ment process 1300 of FIG. 13 and/or other processes includ-
ing advanced processing and inferencing pipelines. In at
least one embodiment, system 1400 may include training
system 1304 and deployment system 1306. In at least one
embodiment, training system 1304 and deployment system
1306 may be implemented using software 1318, services
1320, and/or hardware 1322, as described herein.

[0132] In at least one embodiment, system 1400 (e.g.,
training system 1304 and/or deployment system 1306) may
implemented in a cloud computing environment (e.g., using
cloud 1426). In at least one embodiment, system 1400 may
be implemented locally with respect to a healthcare services
facility, or as a combination of both cloud and local com-
puting resources. In at least one embodiment, access to APIs
in cloud 1426 may be restricted to authorized users through
enacted security measures or protocols. In at least one
embodiment, a security protocol may include web tokens
that may be signed by an authentication (e.g., AuthN, AuthZ,
Gluecon, etc.) service and may carry appropriate authoriza-
tion. In at least one embodiment, APIs of virtual instruments
(described herein), or other instantiations of system 1400,
may be restricted to a set of public IPs that have been vetted
or authorized for interaction.

[0133] In at least one embodiment, various components of
system 1400 may communicate between and among one
another using any of a variety of different network types,
including but not limited to local area networks (LANs)
and/or wide area networks (WANs) via wired and/or wire-
less communication protocols. In at least one embodiment,
communication between facilities and components of sys-
tem 1400 (e.g., for transmitting inference requests, for
receiving results of inference requests, etc.) may be com-
municated over data bus(ses), wireless data protocols (Wi-
Fi), wired data protocols (e.g., Ethernet), etc.

[0134] In at least one embodiment, training system 1304
may execute training pipeline(s) 1404, similar to those
described herein with respect to FIG. 13. In at least one
embodiment, where one or more machine learning models
are to be used in deployment pipeline(s) 1410 by deploy-
ment system 1306, training pipeline(s) 1404 may be used to
train or retrain one or more (e.g. pre-trained) models, and/or
implement one or more of pre-trained model(s) 1406 (e.g.,
without a need for retraining or updating). In at least one
embodiment, as a result of training pipeline(s) 1404, output
model(s) 1316 may be generated. In at least one embodi-
ment, training pipeline(s) 1404 may include any number of
processing steps, such as but not limited to imaging data (or
other input data) conversion or adaption In at least one
embodiment, for different machine learning models used by
deployment system 1306, different training pipeline(s) 1404
may be used. In at least one embodiment, training pipeline

Nov. 7, 2024

(s) 1404 similar to a first example described with respect to
FIG. 13 may be used for a first machine learning model,
training pipeline(s) 1404 similar to a second example
described with respect to FIG. 13 may be used for a second
machine learning model, and training pipeline(s) 1404 simi-
lar to a third example described with respect to FIG. 13 may
be used for a third machine learning model. In at least one
embodiment, any combination of tasks within training sys-
tem 1304 may be used depending on what is required for
each respective machine learning model. In at least one
embodiment, one or more of machine learning models may
already be trained and ready for deployment so machine
learning models may not undergo any processing by training
system 1304, and may be implemented by deployment
system 1306.

[0135] In at least one embodiment, output model(s) 1316
and/or pre-trained model(s) 1406 may include any types of
machine learning models depending on implementation or
embodiment. In at least one embodiment, and without
limitation, machine learning models used by system 1400
may include machine learning model(s) using linear regres-
sion, logistic regression, decision trees, support vector
machines (SVM), Naive Bayes, k-nearest neighbor (Knn), K
means clustering, random forest, dimensionality reduction
algorithms, gradient boosting algorithms, neural networks
(e.g., auto-encoders, convolutional, recurrent, perceptrons,
Long/Short Term Memory (LSTM), Hopfield, Boltzmann,
deep belief, deconvolutional, generative adversarial, liquid
state machine, etc.), and/or other types of machine learning
models.

[0136] In at least one embodiment, training pipeline(s)
1404 may include Al-assisted annotation, as described in
more detail herein with respect to at least FIG. 14. In at least
one embodiment, labeled data 1312 (e.g., traditional anno-
tation) may be generated by any number of techniques. In at
least one embodiment, labels or other annotations may be
generated within a drawing program (e.g., an annotation
program), a computer aided design (CAD) program, a
labeling program, another type of program suitable for
generating annotations or labels for ground truth, and/or
may be hand drawn, in some examples. In at least one
embodiment, ground truth data may be synthetically pro-
duced (e.g., generated from computer models or renderings),
real produced (e.g., designed and produced from real-world
data), machine-automated (e.g., using feature analysis and
learning to extract features from data and then generate
labels), human annotated (e.g., labeler, or annotation expert,
defines location of labels), and/or a combination thereof. In
at least one embodiment, for each instance of imaging data
1308 (or other data type used by machine learning models),
there may be corresponding ground truth data generated by
training system 1304. In at least one embodiment, Al-
assisted annotation 1310 may be performed as part of
deployment pipelines 1410; either in addition to, or in lieu
of Al-assisted annotation 1310 included in training pipeline
(s) 1404. In at least one embodiment, system 1400 may
include a multi-layer platform that may include a software
layer (e.g., software 1318) of diagnostic applications (or
other application types) that may perform one or more
medical imaging and diagnostic functions. In at least one
embodiment, system 1400 may be communicatively coupled
to (e.g., via encrypted links) PACS server networks of one
or more facilities. In at least one embodiment, system 1400
may be configured to access and referenced data from PACS

US 2024/0371073 Al

servers to perform operations, such as training machine
learning models, deploying machine learning models, image
processing, inferencing, and/or other operations.

[0137] In at least one embodiment, a software layer may
be implemented as a secure, encrypted, and/or authenticated
API through which applications or containers may be
invoked (e.g., called) from an external environment(s) (e.g.,
facility(ies) 1302). In at least one embodiment, applications
may then call or execute one or more services 1320 for
performing compute, Al, or visualization tasks associated
with respective applications, and software 1318 and/or ser-
vices 1320 may leverage hardware 1322 to perform pro-
cessing tasks in an effective and efficient manner. In at least
one embodiment, communications sent to, or received by, a
training system 1304 and a deployment system 1306 may
occur using a pair of DICOM adapters 1402A, 1402B.
[0138] In at least one embodiment, deployment system
1306 may execute deployment pipeline(s) 1410. In at least
one embodiment, deployment pipeline(s) 1410 may include
any number of applications that may be sequentially, non-
sequentially, or otherwise applied to imaging data (and/or
other data types) generated by imaging devices, sequencing
devices, genomics devices, etc.—including Al-assisted
annotation, as described above. In at least one embodiment,
as described herein, a deployment pipeline(s) 1410 for an
individual device may be referred to as a virtual instrument
for a device (e.g., a virtual ultrasound instrument, a virtual
CT scan instrument, a virtual sequencing instrument, etc.).
In at least one embodiment, for a single device, there may be
more than one deployment pipeline(s) 1410 depending on
information desired from data generated by a device. In at
least one embodiment, where detections of anomalies are
desired from an MRI machine, there may be a first deploy-
ment pipeline(s) 1410, and where image enhancement is
desired from output of an MRI machine, there may be a
second deployment pipeline(s) 1410.

[0139] In at least one embodiment, an image generation
application may include a processing task that includes use
of' a machine learning model. In at least one embodiment, a
user may desire to use their own machine learning model, or
to select a machine learning model from model registry
1324. In at least one embodiment, a user may implement
their own machine learning model or select a machine
learning model for inclusion in an application for perform-
ing a processing task. In at least one embodiment, applica-
tions may be selectable and customizable, and by defining
constructs of applications, deployment and implementation
of applications for a particular user are presented as a more
seamless user experience. In at least one embodiment, by
leveraging other features of system 1400—such as services
1320 and hardware 1322—deployment pipeline(s) 1410
may be even more user friendly, provide for easier integra-
tion, and produce more accurate, efficient, and timely
results.

[0140] In at least one embodiment, deployment system
1306 may include a user interface (“UI”) 1414 (e.g., a
graphical user interface, a web interface, etc.) that may be
used to select applications for inclusion in deployment
pipeline(s) 1410, arrange applications, modify or change
applications or parameters or constructs thereof, use and
interact with deployment pipeline(s) 1410 during set-up
and/or deployment, and/or to otherwise interact with deploy-
ment system 1306. In at least one embodiment, although not
illustrated with respect to training system 1304, Ul 1414 (or

Nov. 7, 2024

a different user interface) may be used for selecting models
for use in deployment system 1306, for selecting models for
training, or retraining, in training system 1304, and/or for
otherwise interacting with training system 1304.

[0141] In at least one embodiment, pipeline manager 1412
may be used, in addition to an application orchestration
system 1428, to manage interaction between applications or
containers of deployment pipeline(s) 1410 and services 1320
and/or hardware 1322. In at least one embodiment, pipeline
manager 1412 may be configured to facilitate interactions
from application to application, from application to services
1320, and/or from application or service to hardware 1322.
In at least one embodiment, although illustrated as included
in software 1318, this is not intended to be limiting, and in
some examples pipeline manager 1412 may be included in
services 1320. In at least one embodiment, application
orchestration system 1428 (e.g., Kubernetes, DOCKER,
etc.) may include a container orchestration system that may
group applications into containers as logical units for coor-
dination, management, scaling, and deployment. In at least
one embodiment, by associating applications from deploy-
ment pipeline(s) 1410 (e.g., a reconstruction application, a
segmentation application, etc.) with individual containers,
each application may execute in a self-contained environ-
ment (e.g., at a kernel level) to increase speed and efficiency.

[0142] In atleast one embodiment, each application and/or
container (or image thereof) may be individually developed,
modified, and deployed (e.g., a first user or developer may
develop, modify, and deploy a first application and a second
user or developer may develop, modify, and deploy a second
application separate from a first user or developer), which
may allow for focus on, and attention to, a task of a single
application and/or container(s) without being hindered by
tasks of another application(s) or container(s). In at least one
embodiment, communication, and cooperation between dif-
ferent containers or applications may be aided by pipeline
manager 1412 and application orchestration system 1428. In
at least one embodiment, so long as an expected input and/or
output of each container or application is known by a system
(e.g., based on constructs of applications or containers),
application orchestration system 1428 and/or pipeline man-
ager 1412 may facilitate communication among and
between, and sharing of resources among and between, each
of applications or containers. In at least one embodiment,
because one or more of applications or containers in deploy-
ment pipeline(s) 1410 may share same services and
resources, application orchestration system 1428 may
orchestrate, load balance, and determine sharing of services
or resources between and among various applications or
containers. In at least one embodiment, a scheduler may be
used to track resource requirements of applications or con-
tainers, current usage or planned usage of these resources,
and resource availability. In at least one embodiment, a
scheduler may thus allocate resources to different applica-
tions and distribute resources between and among applica-
tions in view of requirements and availability of a system. In
some examples, a scheduler (and/or other component of
application orchestration system 1428) may determine
resource availability and distribution based on constraints
imposed on a system (e.g., user constraints), such as quality
of service (QoS), urgency of need for data outputs (e.g., to
determine whether to execute real-time processing or
delayed processing), etc.

US 2024/0371073 Al

[0143] In at least one embodiment, services 1320 lever-
aged by and shared by applications or containers in deploy-
ment system 1306 may include compute service(s) 1416, Al
service(s) 1418, visualization service(s) 1420, and/or other
service types. In at least one embodiment, applications may
call (e.g., execute) one or more of services 1320 to perform
processing operations for an application. In at least one
embodiment, compute service(s) 1416 may be leveraged by
applications to perform super-computing or other high-
performance computing (HPC) tasks. In at least one embodi-
ment, compute service(s) 1416 may be leveraged to perform
parallel processing (e.g., using a parallel computing plat-
form 1430) for processing data through one or more of
applications and/or one or more tasks of a single application,
substantially simultaneously. In at least one embodiment,
parallel computing platform 1430 (e.g., NVIDIA’s CUDA)
may allow general purpose computing on GPUs (GPGPU)
(e.g., GPUs/Graphics 1422). In at least one embodiment, a
software layer of parallel computing platform 1430 may
provide access to virtual instruction sets and parallel com-
putational elements of GPUs, for execution of compute
kernels. In at least one embodiment, parallel computing
platform 1430 may include memory and, in some embodi-
ments, a memory may be shared between and among mul-
tiple containers, and/or between and among different pro-
cessing tasks within a single container. In at least one
embodiment, inter-process communication (IPC) calls may
be generated for multiple containers and/or for multiple
processes within a container to use same data from a shared
segment of memory of parallel computing platform 1430
(e.g., where multiple different stages of an application or
multiple applications are processing same information). In at
least one embodiment, rather than making a copy of data and
moving data to different locations in memory (e.g., a read/
write operation), same data in same location of a memory
may be used for any number of processing tasks (e.g., at a
same time, at different times, etc.). In at least one embodi-
ment, as data is used to generate new data as a result of
processing, this information of a new location of data may
be stored and shared between various applications. In at least
one embodiment, location of data and a location of updated
or modified data may be part of a definition of how a payload
is understood within containers.

[0144] In atleast one embodiment, Al service(s) 1418 may
be leveraged to perform inferencing services for executing
machine learning model(s) associated with applications
(e.g., tasked with performing one or more processing tasks
of an application). In at least one embodiment, Al service(s)
1418 may leverage Al system 1424 to execute machine
learning model(s) (e.g., neural networks, such as CNNs) for
segmentation, reconstruction, object detection, feature
detection, classification, and/or other inferencing tasks. In at
least one embodiment, applications of deployment pipeline
(s) 1410 may use one or more of output model(s) 1316 from
training system 1304 and/or other models of applications to
perform inference on imaging data. In at least one embodi-
ment, two or more examples of inferencing using applica-
tion orchestration system 1428 (e.g., a scheduler) may be
available. In at least one embodiment, a first category may
include a high priority/low latency path that may achieve
higher service level agreements, such as for performing
inference on urgent requests during an emergency, or for a
radiologist during diagnosis. In at least one embodiment, a
second category may include a standard priority path that

Nov. 7, 2024

may be used for requests that may be non-urgent or where
analysis may be performed at a later time. In at least one
embodiment, application orchestration system 1428 may
distribute resources (e.g., services 1320 and/or hardware
1322) based on priority paths for different inferencing tasks
of Al service(s) 1418.

[0145] In at least one embodiment, shared storage may be
mounted to Al service(s) 1418 within system 1400. In at
least one embodiment, shared storage may operate as a
cache (or other storage device type) and may be used to
process inference requests from applications. In at least one
embodiment, when an inference request is submitted, a
request may be received by a set of API instances of
deployment system 1306, and one or more instances may be
selected (e.g., for best fit, for load balancing, etc.) to process
a request. In at least one embodiment, to process a request,
a request may be entered into a database, a machine learning
model may be located from model registry 1324 if not
already in a cache, a validation step may ensure appropriate
machine learning model is loaded into a cache (e.g., shared
storage), and/or a copy of a model may be saved to a cache.
In at least one embodiment, a scheduler (e.g., of pipeline
manager 1412) may be used to launch an application that is
referenced in a request if an application is not already
running or if there are not enough instances of an applica-
tion. In at least one embodiment, if an inference server is not
already launched to execute a model, an inference server
may be launched. Any number of inference servers may be
launched per model. In at least one embodiment, in a pull
model, in which inference servers are clustered, models may
be cached whenever load balancing is advantageous. In at
least one embodiment, inference servers may be statically
loaded in corresponding, distributed servers.

[0146] In at least one embodiment, inferencing may be
performed using an inference server that runs in a container.
In at least one embodiment, an instance of an inference
server may be associated with a model (and optionally a
plurality of versions of a model). In at least one embodiment,
if an instance of an inference server does not exist when a
request to perform inference on a model is received, a new
instance may be loaded. In at least one embodiment, when
starting an inference server, a model may be passed to an
inference server such that a same container may be used to
serve different models so long as inference server is running
as a different instance.

[0147] In at least one embodiment, during application
execution, an inference request for a given application may
be received, and a container (e.g., hosting an instance of an
inference server) may be loaded (if not already), and a start
procedure may be called. In at least one embodiment,
pre-processing logic in a container may load, decode, and/or
perform any additional pre-processing on incoming data
(e.g., using a CPU(s) and/or GPU(s)). In at least one
embodiment, once data is prepared for inference, a container
may perform inference as necessary on data. In at least one
embodiment, this may include a single inference call on one
image (e.g., a hand X-ray), or may require inference on
hundreds of images (e.g., a chest CT). In at least one
embodiment, an application may summarize results before
completing, which may include, without limitation, a single
confidence score, pixel level-segmentation, voxel-level seg-
mentation, generating a visualization, or generating text to
summarize findings. In at least one embodiment, different
models or applications may be assigned different priorities.

US 2024/0371073 Al

For example, some models may have a real-time (TAT<1
min) priority while others may have lower priority (e.g.,
TAT<10 min). In at least one embodiment, model execution
times may be measured from requesting institution or entity
and may include partner network traversal time, as well as
execution on an inference service.

[0148] In at least one embodiment, transfer of requests
between services 1320 and inference applications may be
hidden behind a software development kit (SDK), and
robust transport may be provide through a queue. In at least
one embodiment, a request will be placed in a queue via an
API for an individual application/tenant ID combination and
an SDK will pull a request from a queue and give a request
to an application. In at least one embodiment, a name of a
queue may be provided in an environment from where an
SDK will pick it up. In at least one embodiment, asynchro-
nous communication through a queue may be useful as it
may allow any instance of an application to pick up work as
it becomes available. Results may be transferred back
through a queue, to ensure no data is lost. In at least one
embodiment, queues may also provide an ability to segment
work, as highest priority work may go to a queue with most
instances of an application connected to it, while lowest
priority work may go to a queue with a single instance
connected to it that processes tasks in an order received. In
at least one embodiment, an application may run on a
GPU-accelerated instance generated in cloud 1426, and an
inference service may perform inferencing on a GPU.

[0149] In at least one embodiment, visualization service(s)
1420 may be leveraged to generate visualizations for view-
ing outputs of applications and/or deployment pipeline(s)
1410. In at least one embodiment, GPUs/Graphics 1422 may
be leveraged by visualization service(s) 1420 to generate
visualizations. In at least one embodiment, rendering effects,
such as ray-tracing, may be implemented by visualization
service(s) 1420 to generate higher quality visualizations. In
at least one embodiment, visualizations may include, with-
out limitation, 2D image renderings, 3D volume renderings,
3D volume reconstruction, 2D tomographic slices, virtual
reality displays, augmented reality displays, etc. In at least
one embodiment, virtualized environments may be used to
generate a virtual interactive display or environment (e.g., a
virtual environment) for interaction by users of a system
(e.g., doctors, nurses, radiologists, etc.). In at least one
embodiment, visualization service(s) 1420 may include an
internal visualizer, cinematics, and/or other rendering or
image processing capabilities or functionality (e.g., ray
tracing, rasterization, internal optics, etc.).

[0150] In at least one embodiment, hardware 1322 may
include GPUs/Graphics 1422, Al system 1424, cloud 1426,
and/or any other hardware used for executing training sys-
tem 1304 and/or deployment system 1306. In at least one
embodiment, GPUs/Graphics 1422 (e.g., NVIDIA’s TESLA
and/or QUADRO GPUs) may include any number of GPUs
that may be used for executing processing tasks of compute
service(s) 1416, Al service(s) 1418, visualization service(s)
1420, other services, and/or any of features or functionality
of software 1318. For example, with respect to Al service(s)
1418, GPUs/Graphics 1422 may be used to perform pre-
processing on imaging data (or other data types used by
machine learning models), post-processing on outputs of
machine learning models, and/or to perform inferencing
(e.g., to execute machine learning models). In at least one
embodiment, cloud 1426, Al system 1424, and/or other

Nov. 7, 2024

components of system 1400 may use GPUs/Graphics 1422.
In at least one embodiment, cloud 1426 may include a
GPU-optimized platform for deep learning tasks. In at least
one embodiment, Al system 1424 may use GPUs, and cloud
1426—or at least a portion tasked with deep learning or
inferencing—may be executed using one or more Al sys-
tems 1424. As such, although hardware 1322 is illustrated as
discrete components, this is not intended to be limiting, and
any components of hardware 1322 may be combined with,
or leveraged by, any other components of hardware 1322.

[0151] In at least one embodiment, Al system 1424 may
include a purpose-built computing system (e.g., a super-
computer or an HPC) configured for inferencing, deep
learning, machine learning, and/or other artificial intelli-
gence tasks. In at least one embodiment, Al system 1424
(e.g., NVIDIA’s DGX) may include GPU-optimized soft-
ware (e.g., a software stack) that may be executed using a
plurality of GPUs/Graphics 1422, in addition to CPUs,
RAM, storage, and/or other components, features, or func-
tionality. In at least one embodiment, one or more Al
systems 1424 may be implemented in cloud 1426 (e.g.,ina
data center) for performing some or all of Al-based process-
ing tasks of system 1400.

[0152] In at least one embodiment, cloud 1426 may
include a GPU-accelerated infrastructure (e.g., NVIDIA’s
NGC) that may provide a GPU-optimized platform for
executing processing tasks of system 1400. In at least one
embodiment, cloud 1426 may include an Al system(s) 1424
for performing one or more of Al-based tasks of system
1400 (e.g., as a hardware abstraction and scaling platform).
In at least one embodiment, cloud 1426 may integrate with
application orchestration system 1428 leveraging multiple
GPUs to allow seamless scaling and load balancing between
and among applications and services 1320. In at least one
embodiment, cloud 1426 may tasked with executing at least
some of services 1320 of system 1400, including compute
service(s) 1416, Al service(s) 1418, and/or visualization
service(s) 1420, as described herein. In at least one embodi-
ment, cloud 1426 may perform small and large batch infer-
ence (e.g., executing NVIDIA’s TENSOR RT), provide an
accelerated parallel computing API and platform 1430 (e.g.,
NVIDIA’s CUDA), execute application orchestration sys-
tem 1428 (e.g., KUBERNETES), provide a graphics ren-
dering API and platform (e.g., for ray-tracing, 2D graphics,
3D graphics, and/or other rendering techniques to produce
higher quality cinematics), and/or may provide other func-
tionality for system 1400.

[0153] FIG. 15A illustrates a data flow diagram for a
process 1500 to train, retrain, or update a machine learning
model, in accordance with at least one embodiment. In at
least one embodiment, process 1500 may be executed using,
as a non-limiting example, system 1400 of FIG. 14. In at
least one embodiment, process 1500 may leverage services
and/or hardware as described herein. In at least one embodi-
ment, refined model 1512 generated by process 1500 may be
executed by a deployment system for one or more contain-
erized applications in deployment pipelines 1510.

[0154] In at least one embodiment, model training 1514
may include retraining or updating an initial model 1504
(e.g., a pre-trained model) using new training data (e.g., new
input data, such as customer dataset 1506, and/or new
ground truth data associated with input data). In at least one
embodiment, to retrain, or update, initial model 1504, output
or loss layer(s) of initial model 1504 may be reset, deleted,

US 2024/0371073 Al

and/or replaced with an updated or new output or loss
layer(s). In at least one embodiment, initial model 1504 may
have previously fine-tuned parameters (e.g., weights and/or
biases) that remain from prior training, so training or retrain-
ing 1514 may not take as long or require as much processing
as training a model from scratch. In at least one embodiment,
during model training, by having reset or replaced output or
loss layer(s) of initial model 1504, parameters may be
updated and re-tuned for a new data set based on loss
calculations associated with accuracy of output or loss
layer(s) at generating predictions on new, customer dataset
1506.

[0155] In at least one embodiment, pre-trained model(s)
1506 may be stored in a data store, or registry. In at least one
embodiment, pre-trained model(s) 1506 may have been
trained, at least in part, at one or more facilities other than
a facility executing process 1500. In at least one embodi-
ment, to protect privacy and rights of patients, subjects, or
clients of different facilities, pre-trained model(s) 1506 may
have been trained, on-premise, using customer or patient
data generated on-premise. In at least one embodiment,
pre-trained model(s) 1506 may be trained using a cloud
and/or other hardware, but confidential, privacy protected
patient data may not be transferred to, used by, or accessible
to any components of a cloud (or other off premise hard-
ware). In at least one embodiment, where pre-trained model
(s) 1506 is trained at using patient data from more than one
facility, pre-trained model(s) 1506 may have been individu-
ally trained for each facility prior to being trained on patient
or customer data from another facility. In at least one
embodiment, such as where a customer or patient data has
been released of privacy concerns (e.g., by waiver, for
experimental use, etc.), or where a customer or patient data
is included in a public data set, a customer or patient data
from any number of facilities may be used to train pre-
trained model(s) 1506 on-premise and/or off premise, such
as in a datacenter or other cloud computing infrastructure.

[0156] In at least one embodiment, when selecting appli-
cations for use in deployment pipelines, a user may also
select machine learning models to be used for specific
applications. In at least one embodiment, a user may not
have a model for use, so a user may select pre-trained
model(s) 1506 to use with an application. In at least one
embodiment, pre-trained model(s) 1506 may not be opti-
mized for generating accurate results on customer dataset
1506 of a facility of a user (e.g., based on patient diversity,
demographics, types of medical imaging devices used, etc.).
In at least one embodiment, prior to deploying a pre-trained
model into a deployment pipeline for use with an application
(s), pre-trained model(s) 1506 may be updated, retrained,
and/or fine-tuned for use at a respective facility.

[0157] In at least one embodiment, a user may select
pre-trained model(s) 1506 that is to be updated, retrained,
and/or fine-tuned, and this pre-trained model may be
referred to as initial model 1504 for a training system within
process 1500. In at least one embodiment, a customer
dataset 1506 (e.g., imaging data, genomics data, sequencing
data, or other data types generated by devices at a facility)
may be used to perform model training (which may include,
without limitation, transfer learning) on initial model 1504
to generate refined model 1512. In at least one embodiment,
ground truth data corresponding to customer dataset 1506
may be generated by model training system 1304. In at least

Nov. 7, 2024

one embodiment, ground truth data may be generated, at
least in part, by clinicians, scientists, doctors, practitioners,
at a facility.

[0158] In at least one embodiment, Al-assisted annotation
1310 may be used in some examples to generate ground
truth data. In at least one embodiment, Al-assisted annota-
tion 1310 (e.g., implemented using an Al-assisted annotation
SDK) may leverage machine learning models (e.g., neural
networks) to generate suggested or predicted ground truth
data for a customer dataset. In at least one embodiment, a
user may use annotation tools within a user interface (a
graphical user interface (GUI)) on a computing device.
[0159] In at least one embodiment, user 1510 may interact
with a GUI via computing device 1508 to edit or fine-tune
(auto)annotations. In at least one embodiment, a polygon
editing feature may be used to move vertices of a polygon
to more accurate or fine-tuned locations.

[0160] In at least one embodiment, once customer dataset
1506 has associated ground truth data, ground truth data
(e.g., from Al-assisted annotation, manual labeling, etc.)
may be used by during model training to generate refined
model 1512. In at least one embodiment, customer dataset
1506 may be applied to initial model 1504 any number of
times, and ground truth data may be used to update param-
eters of initial model 1504 until an acceptable level of
accuracy is attained for refined model 1512. In at least one
embodiment, once refined model 1512 is generated, refined
model 1512 may be deployed within one or more deploy-
ment pipelines at a facility for performing one or more
processing tasks with respect to medical imaging data.
[0161] In at least one embodiment, refined model 1512
may be uploaded to pre-trained models in a model registry
to be selected by another facility. In at least one embodi-
ment, this process may be completed at any number of
facilities such that refined model 1512 may be further
refined on new datasets any number of times to generate a
more universal model.

[0162] FIG. 15B is an example illustration of a client-
server architecture 1532 to enhance annotation tools with
pre-trained annotation model(s) 1542, in accordance with at
least one embodiment. In at least one embodiment, Al-
assisted annotation tool 1536 may be instantiated based on
a client-server architecture 1532. In at least one embodi-
ment, Al-assisted annotation tool 1536 in imaging applica-
tions may aid radiologists, for example, identify organs and
abnormalities. In at least one embodiment, imaging appli-
cations may include software tools that help user 1510 to
identify, as a non-limiting example, a few extreme points on
a particular organ of interest in raw images 1534 (e.g., in a
3D MRI or CT scan) and receive auto-annotated results for
all 2D slices of a particular organ. In at least one embodi-
ment, results may be stored in a data store as training data
1538 and used as (for example and without limitation)
ground truth data for training. In at least one embodiment,
when computing device 1508 sends extreme points for
Al-assisted annotation, a deep learning model, for example,
may receive this data as input and return inference results of
a segmented organ or abnormality. In at least one embodi-
ment, pre-instantiated annotation tools, such as Al-assisted
annotation tool 1536 in FIG. 15B, may be enhanced by
making API calls (e.g., API Call 1544) to a server, such as
an annotation assistant server 1540 that may include a set of
pre-trained model(s) 1542 stored in an annotation model
registry, for example. In at least one embodiment, an anno-

US 2024/0371073 Al

tation model registry may store pre-trained model(s) 1542
(e.g., machine learning models, such as deep learning mod-
els) that are pre-trained to perform Al-assisted annotation
1310 on a particular organ or abnormality. These models
may be further updated by using training pipelines. In at
least one embodiment, pre-installed annotation tools may be
improved over time as new labeled data is added.

[0163] Various embodiments can be described by the
following clauses:

[0164] 1. A computer-implemented method, comprising:

[0165] determining, based in part on an intersection of
a primary ray with scene geometry for an image to be
rendered, that a secondary ray is to be traced from a
location of the intersection;

[0166] calculating an offset distance based in part on
two or more sources of numerical imprecision;

[0167] setting a spawn point for the secondary ray at the
offset distance from the intersection along a normal of
the scene geometry; and

[0168] tracing the secondary ray from the spawn point.

[0169] 2. The computer-implemented method of clause 1,
wherein the scene geometry includes a triangle of a set of
triangles approximating a surface of an object to be repre-
sented in the image.

[0170] 3. The computer-implemented method of clause 2,
wherein the two or more sources of numerical imprecision
include at least one source in object space associated with
the object to be represented in the image, and at least one
source in world space associated with an environment in
which the scene geometry is located.

[0171] 4. The computer-implemented method of clause 1,
wherein the two or more sources of numerical imprecision
include at least an object space hit test bounding error, an
object space hit reconstruction error, a world space error
bound on an object-to-world space transformation, or a
world-to-object space transformation error.

[0172] 5. The computer-implemented method of clause 1,
further comprising:

[0173] normalizing one or more coordinates in world
space before performing a world-to-object space trans-
formation.

[0174] 6. The computer-implemented method of clause 1,
wherein the intersection of the primary ray with the scene
geometry is calculated using two-dimensional barycentric
hit coordinates.

[0175] 7. The computer-implemented method of clause 1,
wherein the offset distance is able to be applied in either
direction along the normal of the scene geometry to provide
for surface interactions of traced rays with respect to the
scene geometry.

[0176] 8. The computer-implemented method of clause 1,
wherein the offset distance is selected to avoid a self-
intersection of the secondary ray with the intersected scene
geometry due in part to numerical imprecision correspond-
ing to the location of the intersection of the primary ray with
the scene geometry.

[0177] 9. The computer-implemented method of clause 1,
wherein the location of the intersection is determined using
interpolation of vertices of the scene geometry.

[0178] 10. A processor, comprising:

[0179] one or more circuits to:

[0180] determine a location of a spawn point for a ray
with respect to scene geometry;

Nov. 7, 2024

[0181] calculate an offset based in part on two or
more sources of numerical imprecision associated
with the location; and
[0182] trace the ray from the spawn point as sepa-

rated from the determined location by the offset

along a surface normal of the scene geometry.
[0183] 11. The processor of clause 10, wherein the spawn
point corresponds to an intersection point of an incoming ray
with the scene geometry.
[0184] 12. The processor of clause 11, wherein the two or
more sources of numerical imprecision include at least one
source in object space, associated with the object to be
represented in the image, and at least one source in world
space, associated with an environment in which the scene
geometry is located.
[0185] 13. The processor of clause 10, wherein the two or
more sources of numerical imprecision include at least an
object space hit test bounding error, an object space hit
reconstruction error, a world space error bound on an
object-to-world space transformation, or a world-to-object
space transformation error.
[0186] 14. The processor of clause 13, wherein the one or
more circuits are further to:

[0187] normalize one or more coordinates in world
space before performing the world-to-object space
transformation.

[0188] 15. The processor of clause 10, wherein the pro-
cessor is comprised in at least one of:

[0189] a system for performing simulation operations;

[0190] asystem for performing simulation operations to
test or validate autonomous machine applications;

[0191] a system for performing digital twin operations;

[0192] a system for performing light transport simula-
tion;

[0193] a system for rendering graphical output;

[0194] a system for performing deep learning opera-
tions;

[0195] a system implemented using an edge device;

[0196] a system for generating or presenting virtual

reality (VR) content;

[0197] asystem for generating or presenting augmented
reality (AR) content;

[0198] a system for generating or presenting mixed
reality (MR) content;

[0199] a system incorporating one or more Virtual
Machines (VMs);

[0200] a system implemented at least partially in a data
center;

[0201] a system for performing hardware testing using
simulation;

[0202] a system for synthetic data generation;

[0203] a system for performing generative Al opera-

tions using a large language model (LLM),

[0204] a collaborative content creation platform for 3D
assets; or
[0205] a system implemented at least partially using

cloud computing resources.
[0206] 16. A system, comprising:

[0207] one or more processors to avoid self-intersection
of a second ray with scene geometry by, in part,
determining an intersection point of a first ray with the
scene geometry, and offsetting a spawn point for the
second ray by an offset amount from the intersection
point along a surface normal of the scene geometry, the

US 2024/0371073 Al

offset amount calculated using two or more sources of

numerical imprecision associated with the intersection

point.
[0208] 17. The system of clause 16, wherein the scene
geometry includes a triangle of a set of triangles approxi-
mating a surface of an object to be represented in the image.
[0209] 18. The system of clause 16, wherein the two or
more sources of numerical imprecision include at least one
source in object space associated with the object to be
represented in the image, and at least one source in world
space associated with an environment in which the scene
geometry is located.
[0210] 19. The system of clause 16, wherein the two or
more sources of numerical imprecision include at least an
object space hit test bounding error, an object space hit
reconstruction error, a world space error bound on an
object-to-world space transformation, or a world-to-object
space transformation error.
[0211] 20. The system of clause 16, wherein the system
comprises at least one of:

[0212] a system for performing simulation operations;
[0213] asystem for performing simulation operations to
test or validate autonomous machine applications;

[0214] a system for performing digital twin operations;

[0215] a system for performing light transport simula-
tion;

[0216] a system for rendering graphical output;

[0217] a system for performing deep learning opera-
tions;

[0218] a system for performing generative Al opera-

tions using a large language model (LLM),

[0219] a system implemented using an edge device;

[0220] a system for generating or presenting virtual
reality (VR) content;

[0221] a system for generating or presenting augmented
reality (AR) content;

[0222] a system for generating or presenting mixed
reality (MR) content;

[0223] a system incorporating one or more Virtual
Machines (VMs);

[0224] a system implemented at least partially in a data
center;

[0225] a system for performing hardware testing using
simulation;

[0226] a system for synthetic data generation;

[0227] a collaborative content creation platform for 3D
assets; or

[0228] a system implemented at least partially using

cloud computing resources.

[0229] Other variations are within spirit of present disclo-
sure. Thus, while disclosed techniques are susceptible to
various modifications and alternative constructions, certain
illustrated embodiments thereof are shown in drawings and
have been described above in detail. It should be understood,
however, that there is no intention to limit disclosure to
specific form or forms disclosed, but on contrary, intention
is to cover all modifications, alternative constructions, and
equivalents falling within spirit and scope of disclosure, as
defined in appended claims.

[0230] Use of terms “a” and “an” and “the” and similar
referents in context of describing disclosed embodiments
(especially in context of following claims) are to be con-
strued to cover both singular and plural, unless otherwise
indicated herein or clearly contradicted by context, and not

Nov. 7, 2024

as a definition of a term. Terms “comprising,” “having,”
“including,” and “containing” are to be construed as open-
ended terms (meaning “including, but not limited to,”)
unless otherwise noted. Term “connected,” when unmodi-
fied and referring to physical connections, is to be construed
as partly or wholly contained within, attached to, or joined
together, even if there is something intervening. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within range, unless otherwise indicated herein
and each separate value is incorporated into specification as
if it were individually recited herein. Use of term “set” (e.g.,
“a set of items™) or “subset,” unless otherwise noted or
contradicted by context, is to be construed as a nonempty
collection comprising one or more members. Further, unless
otherwise noted or contradicted by context, term “subset” of
a corresponding set does not necessarily denote a proper
subset of corresponding set, but subset and corresponding
set may be equal.

[0231] Conjunctive language, such as phrases of form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with con-
text as used in general to present that an item, term, etc., may
be either A or B or C, or any nonempty subset of set of A and
B and C. For instance, in illustrative example of a set having
three members, conjunctive phrases “at least one of A, B,
and C” and “at least one of A, B and C” refer to any of
following sets: {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A,
B, C}. Thus, such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of A, at least one of B, and at least one of C each to be
present. In addition, unless otherwise noted or contradicted
by context, term “plurality” indicates a state of being plural
(e.g., “a plurality of items” indicates multiple items). A
plurality is at least two items, but can be more when so
indicated either explicitly or by context. Further, unless
stated otherwise or otherwise clear from context, phrase
“based on” means “based at least in part on” and not “based
solely on.”

[0232] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. In at
least one embodiment, a process such as those processes
described herein (or variations and/or combinations thereof)
is performed under control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g., executable instructions, one or more computer
programs or one or more applications) executing collec-
tively on one or more processors, by hardware or combina-
tions thereof. In at least one embodiment, code is stored on
a computer-readable storage medium, for example, in form
of'a computer program comprising a plurality of instructions
executable by one or more processors. In at least one
embodiment, a computer-readable storage medium is a
non-transitory computer-readable storage medium that
excludes transitory signals (e.g., a propagating transient
electric or electromagnetic transmission) but includes non-
transitory data storage circuitry (e.g., buffers, cache, and
queues) within transceivers of transitory signals. In at least
one embodiment, code (e.g., executable code or source
code) is stored on a set of one or more non-transitory
computer-readable storage media having stored thereon
executable instructions (or other memory to store executable

US 2024/0371073 Al

instructions) that, when executed (i.e., as a result of being
executed) by one or more processors of a computer system,
cause computer system to perform operations described
herein. A set of non-transitory computer-readable storage
media, in at least one embodiment, comprises multiple
non-transitory computer-readable storage media and one or
more of individual non-transitory storage media of multiple
non-transitory computer-readable storage media lack all of
code while multiple non-transitory computer-readable stor-
age media collectively store all of code. In at least one
embodiment, executable instructions are executed such that
different instructions are executed by different processors—
for example, a non-transitory computer-readable storage
medium store instructions and a main central processing unit
(“CPU”) executes some of instructions while a graphics
processing unit (“GPU”) executes other instructions. In at
least one embodiment, different components of a computer
system have separate processors and different processors
execute different subsets of instructions.

[0233] Accordingly, in at least one embodiment, computer
systems are configured to implement one or more services
that singly or collectively perform operations of processes
described herein and such computer systems are configured
with applicable hardware and/or software that enable per-
formance of operations. Further, a computer system that
implements at least one embodiment of present disclosure is
a single device and, in another embodiment, is a distributed
computer system comprising multiple devices that operate
differently such that distributed computer system performs
operations described herein and such that a single device
does not perform all operations.

[0234] Use of any and all examples, or exemplary lan-
guage (e.g., “such as”) provided herein, is intended merely
to better illuminate embodiments of disclosure and does not
pose a limitation on scope of disclosure unless otherwise
claimed. No language in specification should be construed
as indicating any non-claimed element as essential to prac-
tice of disclosure.

[0235] All references, including publications, patent appli-
cations, and patents, cited herein are hereby incorporated by
reference to same extent as if each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth in its entirety herein.

[0236] In description and claims, terms “coupled” and
“connected,” along with their derivatives, may be used. It
should be understood that these terms may be not intended
as synonyms for each other. Rather, in particular examples,
“connected” or “coupled” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other. “Coupled” may also mean
that two or more elements are not in direct contact with each
other, but yet still co-operate or interact with each other.

[0237] Unless specifically stated otherwise, it may be
appreciated that throughout specification terms such as
“processing,” “computing,” “calculating,” “determining,” or
like, refer to action and/or processes of a computer or
computing system, or similar electronic computing device,
that manipulate and/or transform data represented as physi-
cal, such as electronic, quantities within computing system’s
registers and/or memories into other data similarly repre-
sented as physical quantities within computing system’s
memories, registers or other such information storage, trans-
mission or display devices.

Nov. 7, 2024

[0238] In a similar manner, term “processor” may refer to
any device or portion of a device that processes electronic
data from registers and/or memory and transform that elec-
tronic data into other electronic data that may be stored in
registers and/or memory. As non-limiting examples, “pro-
cessor” may be a CPU or a GPU. A “computing platform”
may comprise one or more processors. As used herein,
“software” processes may include, for example, software
and/or hardware entities that perform work over time, such
as tasks, threads, and intelligent agents. Also, each process
may refer to multiple processes, for carrying out instructions
in sequence or in parallel, continuously or intermittently.
Terms “system” and “method” are used herein interchange-
ably insofar as system may embody one or more methods
and methods may be considered a system.

[0239] In present document, references may be made to
obtaining, acquiring, receiving, or inputting analog or digital
data into a subsystem, computer system, or computer-imple-
mented machine. Obtaining, acquiring, receiving, or input-
ting analog and digital data can be accomplished in a variety
of ways such as by receiving data as a parameter of a
function call or a call to an application programming inter-
face. In some implementations, process of obtaining, acquir-
ing, receiving, or inputting analog or digital data can be
accomplished by transferring data via a serial or parallel
interface. In another implementation, process of obtaining,
acquiring, receiving, or inputting analog or digital data can
be accomplished by transferring data via a computer net-
work from providing entity to acquiring entity. References
may also be made to providing, outputting, transmitting,
sending, or presenting analog or digital data. In various
examples, process of providing, outputting, transmitting,
sending, or presenting analog or digital data can be accom-
plished by transferring data as an input or output parameter
of a function call, a parameter of an application program-
ming interface or interprocess communication mechanism.
[0240] Although discussion above sets forth example
implementations of described techniques, other architec-
tures may be used to implement described functionality, and
are intended to be within scope of this disclosure. Further-
more, although specific distributions of responsibilities are
defined above for purposes of discussion, various functions
and responsibilities might be distributed and divided in
different ways, depending on circumstances.

[0241] Furthermore, although subject matter has been
described in language specific to structural features and/or
methodological acts, it is to be understood that subject
matter claimed in appended claims is not necessarily limited
to specific features or acts described. Rather, specific fea-
tures and acts are disclosed as exemplary forms of imple-
menting the claims.

What is claimed is:

1. A computer-implemented method, comprising:

determining, based in part on an intersection of a primary
ray with scene geometry for an image to be rendered,
that a secondary ray is to be traced from a location of
the intersection;

calculating an offset distance based in part on two or more
sources of numerical imprecision;

setting a spawn point for the secondary ray at the offset
distance from the intersection along a normal of the
scene geometry; and

tracing the secondary ray from the spawn point.

US 2024/0371073 Al

2. The computer-implemented method of claim 1,
wherein the scene geometry includes a triangle of a set of
triangles approximating a surface of an object to be repre-
sented in the image.

3. The computer-implemented method of claim 2,
wherein the two or more sources of numerical imprecision
include at least one source in object space associated with
the object to be represented in the image, and at least one
source in world space associated with an environment in
which the scene geometry is located.

4. The computer-implemented method of claim 1,
wherein the two or more sources of numerical imprecision
include at least an object space hit test bounding error, an
object space hit reconstruction error, a world space error
bound on an object-to-world space transformation, or a
world-to-object space transformation error.

5. The computer-implemented method of claim 1, further
comprising:

normalizing one or more coordinates in world space

before performing a world-to-object space transforma-
tion.

6. The computer-implemented method of claim 1,
wherein the intersection of the primary ray with the scene
geometry is calculated using two-dimensional barycentric
hit coordinates.

7. The computer-implemented method of claim 1,
wherein the offset distance is able to be applied in either
direction along the normal of the scene geometry to provide
for surface interactions of traced rays with respect to the
scene geometry.

8. The computer-implemented method of claim 1,
wherein the offset distance is selected to avoid a self-
intersection of the secondary ray with the intersected scene
geometry due in part to numerical imprecision correspond-
ing to the location of the intersection of the primary ray with
the scene geometry.

9. The computer-implemented method of claim 1,
wherein the location of the intersection is determined using
interpolation of vertices of the scene geometry.

10. A processor, comprising:

one or more circuits to:

determine a location of a spawn point for a ray with
respect to scene geometry,

calculate an offset based in part on two or more sources
of numerical imprecision associated with the loca-
tion; and

trace the ray from the spawn point as separated from the
determined location by the offset along a surface
normal of the scene geometry.

11. The processor of claim 10, wherein the spawn point
corresponds to an intersection point of an incoming ray with
the scene geometry.

12. The processor of claim 11, wherein the two or more
sources of numerical imprecision include at least one source
in object space, associated with the object to be represented
in the image, and at least one source in world space,
associated with an environment in which the scene geometry
is located.

13. The processor of claim 10, wherein the two or more
sources of numerical imprecision include at least an object
space hit test bounding error, an object space hit reconstruc-
tion error, a world space error bound on an object-to-world
space transformation, or a world-to-object space transfor-
mation error.

Nov. 7, 2024

14. The processor of claim 13, wherein the one or more
circuits are further to:

normalize one or more coordinates in world space before

performing the world-to-object space transformation.

15. The processor of claim 10, wherein the processor is
comprised in at least one of:

a system for performing simulation operations;

a system for performing simulation operations to test or
validate autonomous machine applications;
system for performing digital twin operations;
system for performing light transport simulation;
system for rendering graphical output;
system for performing deep learning operations;
system implemented using an edge device;
system for generating or presenting virtual reality (VR)
content;

a system for generating or presenting augmented reality

(AR) content;

a system for generating or presenting mixed reality (MR)
content;

a system incorporating one or more Virtual Machines

(VMs);

system implemented at least partially in a data center;

system for performing hardware testing using simula-

tion;

a system for synthetic data generation;

a system for performing generative Al operations using a

large language model (LLM),

a collaborative content creation platform for 3D assets; or

a system implemented at least partially using cloud com-

puting resources.

16. A system, comprising:

one or more processors to avoid self-intersection of a

second ray with scene geometry by, in part, determin-
ing an intersection point of a first ray with the scene
geometry, and offsetting a spawn point for the second
ray by an offset amount from the intersection point
along a surface normal of the scene geometry, the offset
amount calculated using two or more sources of
numerical imprecision associated with the intersection
point.

17. The system of claim 16, wherein the scene geometry
includes a triangle of a set of triangles approximating a
surface of an object to be represented in the image.

18. The system of claim 16, wherein the two or more
sources of numerical imprecision include at least one source
in object space associated with the object to be represented
in the image, and at least one source in world space
associated with an environment in which the scene geometry
is located.

19. The system of claim 16, wherein the two or more
sources of numerical imprecision include at least an object
space hit test bounding error, an object space hit reconstruc-
tion error, a world space error bound on an object-to-world
space transformation, or a world-to-object space transfor-
mation error.

20. The system of claim 16, wherein the system comprises
at least one of:

a system for performing simulation operations;

a system for performing simulation operations to test or

validate autonomous machine applications;

a system for performing digital twin operations;

a system for performing light transport simulation;

a system for rendering graphical output;

oo o® o ®W

o o

US 2024/0371073 Al Nov. 7, 2024
28

a system for performing deep learning operations;

a system for performing generative Al operations using a
large language model (LLM),

a system implemented using an edge device;

a system for generating or presenting virtual reality (VR)
content;

a system for generating or presenting augmented reality
(AR) content;

a system for generating or presenting mixed reality (MR)
content;

a system incorporating one or more Virtual Machines
(VMs);

a system implemented at least partially in a data center;

a system for performing hardware testing using simula-
tion;

a system for synthetic data generation;

a collaborative content creation platform for 3D assets; or

a system implemented at least partially using cloud com-
puting resources.

#* #* #* #* #*

