
USOO9424073B1

(12) United States Patent (10) Patent No.: US 9,424,073 B1
Schulz (45) Date of Patent: Aug. 23, 2016

(54) TRANSACTION HANDLING BETWEEN (58) Field of Classification Search
SOFT LOGIC AND HARD LOGIC None
COMPONENTS OF A MEMORY See application file for complete search history.
CONTROLLER

(56) References Cited

(71) Applicant: Air Corporation, San Jose, CA U.S. PATENT DOCUMENTS

7,490.209 B1* 2/2009 Charagulla G06F 13,1668
(72) Inventor: Jeffrey Schulz, Milpitas, CA (US) 711 167

8,347,005 B2 * 1/2013 Bresniker G06F 13, 1694
71 Of 74

(73) Assignee: Altera Corporation, San Jose, CA 8,495.330 B2 * 7/2013 Vergis G06F 13, 1694
(US) 711/17O

2013/0138911 A1* 5/2013 Gopalakrishnan ... G06F 12/0646
(*) Notice: Subject to any disclaimer, the term of this 711/17O

patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 141 days.

Primary Examiner — Gary Portka
(21) Appl. No.: 14/297,455 (74) Attorney, Agent, or Firm — Fletcher Yoder, P.C.

(22) Filed: Jun. 5, 2014 (57) ABSTRACT
Techniques and mechanisms handle transactions between

(51) Int. Cl. various components of a memory controller. For example, a
G06F 3/16 (2006.01) memory controller may include a component implemented
G06F 9/46 (2006.01) in configurable logic and another component implemented

(52) U.S. Cl in hard logic.
CPC G06F 9/467 (2013.01) 17 Claims, 8 Drawing Sheets

Scheduling

225 N
Burst Transaction Adaptability Scheduling TimerS

325 320

|
Y 31 5

--->

310 1 O - Y

33O

Buffer POOl
Transaction

To Memory Units

U.S. Patent Aug. 23, 2016 Sheet 1 of 8 US 9,424,073 B1

1OO
N 110

125

120

FIGURE 1

U.S. Patent Aug. 23, 2016 Sheet 2 of 8 US 9.424,073 B1

105 110

125

FIGURE 2A

FIGURE 2B

U.S. Patent Aug. 23, 2016 Sheet 3 of 8 US 9,424,073 B1

105

215

225

210

FIGURE 2C

U.S. Patent Aug. 23, 2016 Sheet 4 of 8 US 9,424,073 B1

Burst Transaction
Adaptability scheduling Timers

325 320

Y 15 :

330
Transaction
Buffer POOl

-

To Memory Units

FIGURE 3A

U.S. Patent Aug. 23, 2016 Sheet S of 8 US 9,424,073 B1

210 N

220-N -

Scheduling

225
Burst ?N

Transaction Adaptability Scheduling TimerS

330
Transaction

Buffer Pool

-

To Memory Units

FIGURE 3B

U.S. Patent Aug. 23, 2016 Sheet 6 of 8 US 9,424,073 B1

Method for handling transactions between
Soft logic and hard logic Components of a

memory COntroller 400

Receive transaction from master unit 41

Load transaction into buffer pool 420

Provide transaction to memory unit 430

DOne

FIGURE 4

U.S. Patent Aug. 23, 2016 Sheet 7 of 8 US 9,424,073 B1

500

501
Input Stage

505

Logic Description 503

507
Synthesis Tool

513
Verification Stage

519
Physical Design Stage

523

FIGURE 5

U.S. Patent Aug. 23, 2016 Sheet 8 of 8 US 9,424,073 B1

600

N. 614 610

606

Processor

602

604

Network
Connection

FIGURE 6

US 9,424,073 B1
1.

TRANSACTION HANDLING BETWEEN
SOFT LOGIC AND HARD LOGIC
COMPONENTS OF A MEMORY

CONTROLLER

TECHNICAL FIELD

This disclosure generally relates to integrated circuits.
More specifically, the disclosure relates to systems and
methods for managing transactions between soft logic and
hard logic components of a memory controller. 10

DESCRIPTION OF THE RELATED
TECHNOLOGY

A programmable logic device (PLD) is a semiconductor 15
integrated circuit which contains logic circuitry and routing
that may be configured to perform a host of logic functions.
In a typical scenario, a designer uses electronic design
automation (EDA) tools to create a design. These tools use
information regarding the hardware capabilities of a given 20
programmable logic device to help the designer implement
the custom logic using multiple resources available on that
given programmable logic device.

In some scenarios, a designer of a PLD may want logic in
the PLD to interface with one or more memory units. In such 25
scenarios, a memory controller may manage the transactions
between master units in the PLD and the memory units.

SUMMARY
30

The subject matter described herein provides a technique
for a device, such as a programmable logic device (PLD), to
Support an interface between Soft logic and hard logic
components of a memory controller.

In some scenarios, a designer of a PLD may include logic 35
in the PLD that may interface with one or more memory
units. For instance, a master unit in the configurable, or soft,
logic of the PLD may issue a write command to a memory
unit. The issued transaction indicating a write to the memory
unit may be provided to a memory controller. Other trans- 40
actions may also be received from the same or other masters
in the PLD.

Often, memory controllers may require a large amount of
logic to communicate between masters and memory units. In
Some implementations, the memory controller may be 45
implemented in the configurable, or soft, logic of the PLD.
However, implementation of logic in the configurable logic
of the PLD often brings additional overhead, and therefore,
reduces the availability of configurable logic for other
functionality. In other implementations, the memory con- 50
troller may be implemented in hard logic, for example, in the
periphery of the PLD. However, implementing the controller
in hard logic may reduce customization of the controller for
a particular application.

In one example, a memory controller may include a hard 55
logic component (i.e., implemented as an ASIC or fixed
circuitry) and a soft logic component (i.e., implemented in
the configurable logic of a PLD).

These and other features will be presented in more detail
in the following specification and the accompanying figures, 60
which illustrate by way of example.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic of a device communicating 65
with memory units in accordance with Some implementa
tions.

2
FIG. 2A illustrates a memory controller implemented in

configurable logic in accordance with Some implementa
tions.

FIG. 2B illustrates a memory controller implemented in
hard logic in accordance with some implementations.

FIG. 2C illustrates a memory controller with components
implemented in configurable logic and hard logic in accor
dance with Some implementations.

FIG. 3A illustrates a schematic of a memory controller in
accordance with Some implementations.

FIG. 3B illustrates another schematic of a memory con
troller in accordance with some implementations.

FIG. 4 is a flowchart illustrating a process flow for
handling transactions between soft logic and hard logic
components of a memory controller.

FIG. 5 illustrates a technique for implementing a pro
grammable chip.

FIG. 6 illustrates one example of a computer system.

DETAILED DESCRIPTION OF PARTICULAR
EMBODIMENTS

The techniques and mechanisms disclosed herein are
primarily described with reference to programmable logic
devices (PLDs) such as Field Programmable Gate Arrays
(FPGAs), but are not necessarily limited to PLDs. The
present disclosure provides examples of several, but not all,
configurations.

FIG. 1A illustrates an example of a schematic of a device
communicating with memory units. In the implementation
of FIG. 1A, system 100 includes device 105 interfacing with
a variety of memory units 110, 115, 120, and 125. Memory
units 110, 115, 120, and 125 may be the same or different
types of memories. For example, memory units 110, 115,
120, and 125 may be any combination of DRAM (e.g.,
DDR4, RMDRAM3, etc.), static random-access memory
(SRAM), non-volatile random-access memory (NVRAM),
reduced-latency dynamic random access memory (RL
DRAM), or other memories. In some implementations,
device 105 may include one or more master units that
provide transactions (e.g., read or write commands) to
memory units 110, 115, 120, and 125. One or more memory
controllers may manage the transactions between the master
units and the memory units.

Different memory types may require different logic to
properly communicate with master units implemented in
device 105. For example, dual date rate (DDR) may require
a substantially different memory controller implementation
than RLDRAM.

Additionally, different systems may implement different
policies and/or buses when managing transactions. For
example, transactions providing read or write commands to
the memory units may be received from multiple master
units in device 105. For one system design, if commands are
received from multiple masters, a priority Scheme may be
used to determine which command may be handled by the
memory controller and provided to a memory unit first.
However, another system design may include a different
priority Scheme.

Moreover, in some systems, a different number of
memory units may be used. For example, in system 100 of
FIG. 1, four memory units are provided. However, in other
systems, a single memory unit may be used. In other
implementations, more than four units may be used. For
example, in Some implementations, such as 2.5 DRAM, a
high number of memory units may be interfacing with a
device.

US 9,424,073 B1
3

FIG. 2A illustrates an example of a memory controller
implemented in configurable logic. In FIG. 2A, device 105
includes soft logic 205. In some implementations, Soft logic
205 may be the configurable logic of an FPGA. Memory
controller 210 in FIG. 2A is implemented in soft logic 205.
Accordingly, memory controller 210 in soft logic 205 may
receive transactions from master units and provide an inter
face to communicate with memory units 110, 115, 120, and
125.

In the implementation of FIG. 2A, all of memory con
troller 210 is implemented in soft logic 205. As such,
memory controller 210 may be customized to properly
interface with each of memory units 110, 115, 120, and 125.
Additionally, memory controller 210 may be configured in
Soft logic 205 to implement a particular policy for managing
transactions received and/or directed to master units imple
mented in device 105.

For example, if memory units 110, 115, 120, and 125 all
require a DDR protocol rather than a RLDRAM protocol,
memory controller 210 in soft logic 205 may be customized
to only provide logic associated with DDR rather than both
DDR and RLDRAM memory types.

However, the implementation of FIG. 2A may provide a
high amount of overhead. For example, configuring the logic
for memory controller 210 in soft logic 205 may take a high
amount of resources associated with soft logic 205. That is,
for example, the placement and routing associated with
memory controller 210 in soft logic 205 may reduce the
availability of resources for other logic needing to be
implemented in soft logic 205. Additionally, the perfor
mance of memory controller 210 implemented in soft logic
205 may also be lower than an implementation in hard logic.

FIG. 2B illustrates an example of a memory controller
implemented in hard logic. In FIG. 2B, device 105 also
includes soft logic 205. In some implementations, Soft logic
205 may be the configurable logic of an FPGA. However,
memory controller 210 in FIG. 2B is implemented in hard
logic 215 rather than soft logic 205 as in the implementation
of FIG. 2A. Accordingly, memory controller 210 in hard
logic 215 may receive transactions from master units and
provide an interface to communicate with memory units
110, 115, 120, and 125.

In the implementation of FIG. 2B, all of memory con
troller 210 is implemented in hard logic 215. As such,
memory controller 210 may be specifically designed, for
example as an application specific integrated circuit (ASIC),
to interface with each of memory units 110, 115, 120, and
125. Additionally, memory controller 210 in hard logic 215
may also implement a particular policy for managing trans
actions received and/or directed to master units implemented
in device 105.

In some implementations, the implementation of memory
controller 210 in hard logic 215 may occupy less area of the
chip die than being implemented in soft logic 205 as in FIG.
2A. Moreover, implementation in hard logic 215 may offer
better performance than implementation in soft logic 205.
Additionally, implementation of memory controller 210 in
hard logic 215 can make more resources within Soft logic
205 available for other logic to be implemented. For
example, more master units or any other type of logic may
be implemented in soft logic 205.

However, the implementation of FIG. 2B may, in some
scenarios, require logic Supporting multiple types of
memory types. For example, if device 105 is to be compat
ible with RLDRAM and DDR, then memory controller 210
implemented in hard logic 215 may need to implement
different logical functionalities for the multiple types of

10

15

25

30

35

40

45

50

55

60

65

4
memories. However, in Some system designs, only a single
type of memory may be needed, and therefore, a portion of
memory controller 210 may be wasted. Additionally, if a
designer does not wish to interface device 105 with a
memory unit, or less memory units than memory controller
210 is configured to work with, then the implementation of
memory controller 210 inhard logic 215 may be inefficient.
Moreover, the designer may want to interface device 105
with more memory units than memory controller 210 imple
mented in hard logic 215 is designed to work with. Device
105 may also be limited to interfacing with memory types
that memory controller 210 has been designed to be com
patible with. Therefore, if a new memory standard is
released, device 105 may be incompatible with the new
standard.

In some scenarios, the portion of memory controller 210
dedicated to custom logic implementing a particular policy
or interface for a particular type of memory may be upwards
of 85% of the logic of memory controller 210. Approxi
mately 15% of memory controller 210 may be dedicated to
operations common to many memory types. For example,
many DRAM memory types (e.g., DDR, RLDRAM, etc.)
may include a Subset of functionality that is common
between them. Accordingly, a memory controller may be
split among soft logic 205 and hard logic 215. That is, a
portion of a memory controller associated with custom logic
associated with a particular memory type and a custom bus
policy may be configured in soft logic 205. The portion of
the memory controller associated with dedicated logic asso
ciated with multiple memory types may be designed in hard
logic 215.
As an example, FIG. 2C illustrates a memory controller

with components implemented in soft logic 205 and hard
logic 215. In FIG. 2C, the memory controller 210 includes
two components: memory controller soft logic component
220 implemented in soft logic 205 and memory controller
hard logic component 225 implemented in hard logic 215.
That is, functionality of the memory controller 210 in FIG.
2C includes logic implemented in soft logic 205 and hard
logic 215 rather than only soft logic 205 or only hard logic
215.

In some implementations, memory controller soft logic
component 220 may include customized logic for a particu
lar application of device 105. For example, if device 105 is
to interface only with DDR memories, then logic allowing
a master in device 105 to communicate with a DDR memory
unit may be included in memory controller soft logic com
ponent 220. However, logic allowing device 105 to properly
interface with a RLDRAM memory may not be imple
mented, and therefore, increase the availability of resources
for placement and routing of other logic.

Moreover, memory controller hard logic component 225
may include standardized or common logic between differ
ent memory types. That is, certain types of logic or func
tionality may be common between different memory types,
and therefore, may be implemented in memory controller
hard logic component 225 in hard logic 215. Accordingly,
memory controller Soft logic component 220 may include
customizable logic that may be different between different
buses, memories, and applications of device 105. Memory
controller hard logic component 225 may include common
logic or functionality between different buses, memories,
and applications of device 105.

In some implementations, memory controller soft logic
component 220 may be smaller than the implementation of
memory controller 210 in soft logic 205 in FIG. 2A. That is,
memory controller soft logic component 220 in FIG. 2C may

US 9,424,073 B1
5

utilize less resources within soft logic 205 than memory
controller 210 in FIG. 2A. Likewise, memory controller
hard logic component 225 in FIG. 2C may be smaller than
the implementation of memory controller 210 in hard logic
215 in FIG. 2B. That is, memory controller hard logic
component 225 may take less area and include less circuitry
than memory controller 210 within hard logic 215 of FIG.
2B.

FIG. 3A illustrates a schematic of a memory controller in
accordance with some implementations. In FIG. 3A,
memory controller 210 communicates with a variety of
master units 305a,305b, 305c, and 305d. Memory controller
210 also communicates with a variety of memory units.

In some implementations, master units 305a-d may trans
mit a variety of transactions to memory controller 210. For
example, master unit 305a may transmit a read command
from a particular address in a particular memory unit. Master
unit 305b may transmit a write command to a particular
address in a particular memory unit. Likewise, master units
305c and 305d may also transmit commands.

Scheduling unit 310 of memory controller 210 may
schedule the transactions to be transmitted to the memory
units in a particular order in accordance with a priority
scheme. As previously discussed, different bus interconnect
implementations may involve different priority schemes. For
example, in Some bus implementations, master unit 305a
may be designated as having a higher priority than master
unit 305b, and therefore, transactions from master unit 305a
should be first attempted to be transmitted to a memory unit
than transactions from master unit 305b. However, another
implementation may have the first eight transactions from
master unit 305a prioritized over transactions from master
unit 305b. After the first eight transactions from master unit
305a, transactions from master unit 305b may be prioritized.
Accordingly, the implementation of scheduling unit 310
may be specific for each particular use.

Burst adaptability unit 315 may also include logic specific
for different uses. In some implementations, memory units
may require fixed-length transactions of a particular size.
However, based on the design of master units 305a-d.
transactions may be of a different size. That is, transactions
received from master units 305a-d may need to be frag
mented into Smaller sizes (i.e., fragment a transaction from
a master unit into multiple individual transactions) or pad
ded to larger sizes (i.e., combine multiple transactions from
a master unit into a single transaction) in order to be
compatible with an interface for a particular memory unit of
a particular memory type. Accordingly, the implementation
of burst adaptability unit 315 may also be specific for each
particular use.

Transaction scheduling unit 325 of memory controller
210 may also include logic that may be specific for different
memory types or bus interconnect types. In some imple
mentations, memory controller 210 may receive multiple
transactions. For example, a first transaction, a second
transaction, and a third transaction may be received in that
order. However, transaction scheduling unit 325 may reorder
the transactions such that they are issued in a different order.

For example, transactions one and two may be issued to
a first DRAM bank. Transaction three may be issued to a
second DRAM bank. Generally, before the second transac
tion may be provided to the first DRAM bank, the first
transaction may need to be issued, acted upon, and cleanup
operations performed. However, since transaction three is
associated with a different DRAM bank (i.e., the second
DRAM bank rather than the first DRAM bank), transaction
scheduling unit 325 may reschedule transaction three to be

10

15

25

30

35

40

45

50

55

60

65

6
issued after transaction one. Accordingly, transaction one
may be issued to the first DRAM bank, followed by the
issuance of transaction three to the second DRAM bank. The
second transaction may be issued after the third transaction
when the first transaction is finished.

In some implementations, transaction scheduling unit 325
may also reorder transactions received from any memory
units for systems utilizing an interconnect bus expecting
transactions to come back in a particular order. For example,
a master unit may transmit three transactions. Transaction
scheduling unit 325 may reschedule the transactions to the
DRAM banks such that the third transaction may be issued
between the issuance of the first transaction and the second
transaction. However, if for example, all of the transactions
are read commands, then the master unit may be expecting
all of the transactions to be returning in the same order as
issued. Accordingly, transaction scheduling unit 325 may
delay transmitting the third transaction back to the master
unit until the second transaction is received and transmitted
back. As such, the implementation of transaction scheduling
unit 325 may also be specific for particular uses.

In an implementation, because scheduling unit 310, burst
adaptability 315, and transaction scheduling 325 include
logic that may be customized for different applications (e.g.,
different bus interconnects, memory types, etc.), they may
be implemented in soft logic 205. For example, in some
designs, only two master units may be implemented and
providing transactions. In other designs, four master units
may be implemented and providing transactions. Accord
ingly, the implementation with four master units may have
more logic associated with scheduling unit 310, burst adapt
ability 315, and transaction scheduling 325 than the imple
mentation with two master units because four master units
may include scheduling, prioritizing, etc. between transac
tions from more master units. Additionally, different imple
mentations may include different prioritizing schemes, as
previously discussed. Because scheduling unit 310, burst
adaptability 315, and transaction scheduling 325 may be
implemented in soft logic 205, only the schemes for the
particular application may be implemented. As such, less of
the resources available for placement and routing may be
utilized, and therefore, more of soft logic 205 may be
available for other applications. For example, wider data
paths, more master units, or more complicated priority
schemes or algorithms may be available to be implemented
in soft logic 205.

However, in some implementations, the logic associated
with transaction buffer pool 330 and timers 320 may be
common to many memory types and bus interfaces rather
than being specific or customized to a particular implemen
tation.

For example, transaction buffer pool 330 may receive
transactions from burst adaptability unit 315. Accordingly,
transaction buffer pool 330 may store the transactions
received from master units 305a-d. As previously discussed,
the transactions may be prioritized by scheduling unit 310
and fragmented by burst adaptability 315. Additionally,
transactions may be transmitted to memory banks or
memory units in a different order due to input from trans
action scheduling unit 325, as previously discussed.

Timers 320 may also be common to many different bus
interconnects and memory types. In an implementation,
timers 320 may include the availability of a transaction to
change to another state. For example, a transaction may be
associated with a variety of states in a series of states. In an
implementation, transactions states may progress through
and include “empty.” “waiting bank allocation,” “granted

US 9,424,073 B1
7

bank,” “read/write,” and “bank cleanup.” Empty may indi
cate that transaction buffer pool 330 does not include a
transaction for the “slot or spot for the transaction, and
therefore, may be able to receive a transaction to put in.
Waiting bank allocation may indicate that the transaction is
waiting for a bank to be available to read or write to, as
previously discussed. When a bank is granted to a transac
tion in transaction buffer pool 330, the transaction may
progress to the granted bank State. Read/write may indicate
that the transaction is operating on a memory unit, and
therefore, is writing or reading data. Bank cleanup may
indicate a variety of operations to "cleanup' the transaction
and make the memory unit or memory bank available to
another transaction. In some implementations, transactions
may progress through the states in an order of "empty.”
“waiting bank allocation,” “granted bank,” “read/write,” and
“bank cleanup.” In other implementations, additional states,
less states, or a different order may be used.

In some implementations, timers 320 may also include a
minimum number of clock cycles between transitioning
between states. For example, a certain number of clock
cycles may be needed between the “granted bank” state and
the “read/write” state. In some implementations, each state
transition may be associated with upwards of 10-15 counters
that may need to be checked before a transaction is allowed
to proceed to the next state.

Since the logic associated with transaction buffer pool 330
and timers 320 may be common to many memory types and
bus interfaces rather than being specific or customized to a
particular implementation, transaction buffer pool 330 and
timers 320 may be implemented in hard logic 215 rather than
soft logic 205. Accordingly, scheduling unit 310, burst
adaptability 315, and transaction scheduling 325 may be
associated with a first component of memory controller 210
that is implemented in soft logic 205. Transaction buffer
pool 330 and timers 320 may be associated with a second
component of memory controller 210 that is implemented in
hard logic 215.

In some implementations, transaction buffer pool 330
may provide data regarding the transactions it may be
holding. For example, transaction buffer pool 330 may
provide a signal or assert a flag to burst adaptability unit 315
that it is “not full.” and therefore, may store an additional
transaction. Accordingly, burst adaptability unit 315 may
provide a transaction to be stored in transaction buffer pool
330.

If burst adaptability unit 315 and transaction buffer pool
330 are both in hard or soft logic, then a flag indicating
available capacity, Such as “not full.” may indicate that a
single transaction may be stored in transaction buffer pool
330. However, if burst adaptability 315 and transaction
buffer pool 330 are separately implemented in soft logic and
hard logic, then additional data regarding transactions stored
in transaction buffer pool 330 may be provided because, in
Some implementations, Soft logic 205 may run slower than
hard logic 215. Accordingly, the interface between soft logic
205 and hard logic 215 may be a bottleneck that can be
reduced in order to provide more efficient handling of
transactions between masters 305a-d and memory units
handled by memory controller 210.

For example, transaction buffer pool 330 may be concep
tualized as including a variety of "slots’ for storing trans
actions. Accordingly, each slot may include a slot status
associated with the state of the transaction as previously
discussed (e.g., empty, waiting bank allocation, granted
bank, read/write, and bank cleanup). Therefore, the state of
each slot may be provided to burst adaptability unit 315

10

15

25

30

35

40

45

50

55

60

65

8
and/or transaction scheduling unit 325. That is, data regard
ing transaction buffer pool 330 in hard logic 215 may cross
an interface between hard logic and soft logic to burst
adaptability unit 315 and transaction scheduling unit 325.

Additionally, transaction buffer pool 330 may also pro
vide the number of empty slots. That is, transaction buffer
pool 330 may provide capacity data regarding the number of
available slots. For example, rather than indicating that
transaction buffer pool 330 is either full or not full, the
number of available slots that may store a transaction may
be provided to the units implemented in the soft logic
component of memory controller 210. In some implemen
tations, providing the number of available slots rather than
a full or not full flag or signal may reduce the bottleneck
between the interface between soft logic 205 and hard logic
215. For example, if it takes four clock cycles for the logic
implemented in soft logic 205 to respond, then providing the
number of available slots may allow burst adaptability unit
315 to send four back-to-back transactions rather than
sending individual transactions based on a full/not full flag.
Accordingly, providing the number of available slots may
reduce the bottleneck at the interface between hard logic and
Soft logic.

In an implementation, transaction buffer pool 330 in hard
logic may provide slot status data regarding transactions and
empty slots to transaction scheduling unit 325 in Soft logic.
Transaction scheduling unit 325 may then indicate that a
particular transaction may advance to a Subsequent state. For
example, a slot associated with a transaction may transmit
data indicating that it is in the “waiting bank allocation”
state. If transaction scheduling unit 325 determines that the
transaction may advance to the “bank granted” state' data
may be provided to transaction buffer pool 330 indicating
that the transaction may advance to the “bank granted State.
AS Such, the hard logic component of memory controller

210 may provide the number of available slots in transaction
buffer pool 330, timer information for transactions, and the
slot status of each slot or transaction. The soft logic com
ponent of memory controller 210 may provide transactions
to load into transaction buffer pool 330 and provide data
indicating that a transaction may advance to another state.
As an example, FIG. 3B illustrates another schematic of a
memory controller 210 in accordance with some implemen
tations. In FIG. 3B, scheduling unit 310, burst adaptability
unit 315, and transaction scheduling unit 325 may be
included in memory controller soft logic component 220.
Timers 320 and transaction buffer pool 330 may be included
in memory controller hard logic component 225.

FIG. 4 is a flowchart illustrating a process flow for
handling transactions between soft logic and hard logic
components of a memory controller. In block 410 of method
400, a transaction (e.g., a read or write to an address in a
memory unit) may be received from a master unit. At block
420, the transaction may be loaded into a transaction buffer
pool. At block 430, the transaction in the transaction buffer
pool may be provided to the memory unit indicated by the
master unit.
Though some of the techniques and mechanisms herein

are primarily described with reference to PLDs such as
FPGAs, they are not necessarily limited to PLDs. The
techniques and mechanisms may be implemented in hard
logic and Soft logic in a variety of configurations. Both hard
logic and Soft logic may be on a single device. Additionally,
hard logic and Soft logic may be on separate devices or
chips. For example, a master unit may be on one device, a
memory controller including hard and Soft logic components
on a second device, and a memory unit on a third device.

US 9,424,073 B1

In some implementations, the logic disclosed herein may
all be on hard logic. Alternatively, the logic may all be
implemented in Soft logic. In some implementations, Sched
uling unit 310, burst adaptability 315, transaction scheduling
325, transaction buffer pool 330, and timers 330 may be
mixed among hard and/or soft logic. For example, Sched
uling unit 310 may be implemented in soft logic while burst
adaptability unit 315, transaction scheduling unit 325, trans
action buffer pool 330, and timers 320 may be implemented
in hard logic. Accordingly, the units described may be
implemented in hard logic or soft logic.

In an implementation, an electronic design automation
(EDA) tool may be used to select a particular memory type.
For example, a graphical user interface (GUI) may be used
to select a particular type of memory, bus interconnect, and
other settings that a system design may be interfacing with
or using. Accordingly, the soft logic component of memory
controller 210 may be generated and customized by the
EDA tool and integrated into the user's design. In some
implementations, the EDA tool may generate a configuration
bit stream or other type of configuration file which may be
used to configure the PLD to include the soft logic compo
nent of the memory controller. The generated Soft logic
component of the memory controller may, in the design, be
coupled to the user design and the hard logic component of
the memory controller. Accordingly, the Soft logic compo
nent of the memory controller may include logic Such that
the memory controller may properly function with the
selected memory type or types, bus interconnect, and other
Settings.

For example, a system design may include a master unit
expecting to interface with a memory unit through a memory
controller. If DDR4 DRAM is selected as the memory type,
logic associated with scheduling unit 310, burst adaptability
unit 315, and transaction scheduling unit 325 may be imple
mented in soft logic 205 such that the custom logic for
DDR4 may be implemented correctly, and therefore, the
master unit may communicate properly with a DDR4
memory unit. That is, the Soft logic component of memory
controller 210 may be implemented in the configurable logic
Such that it may communicate with the hard logic compo
nent of memory controller 210 to properly interface with the
DDR4 memory unit. In some implementations, configura
tion data may be generated to include the Soft logic com
ponent of memory controller 210 as well as couple the soft
logic component with the hard logic component. Accord
ingly, configuration circuitry in the device may configure the
soft logic component into soft logic 205 and couple it with
the hard logic component.

In some implementations, a high-level synthesis tool may
analyze software code and determine a type of memory
controller suited for the implementation of the software code
into the device. For example, a digital signal processing
(DSP) algorithm may be developed in C code. A high-level
synthesis tool. Such as an OpenCL compiler, may synthesize
structural logic providing the behavioral functionality of the
code for implementation in the soft logic of the device. The
high-level synthesis tool may also determine the amount of
memory needed to implement the behavioral functionality of
the software code into logic. Depending on the amount of
memory needed, the memory may be mapped to on-chip
memory or off-chip memory. For example, if the amount of
memory needed exceeds on-chip memory, off-chip memory
may be used.
Though the high-level code may provide behavioral func

tionality and provide references to data storage, variables,
and other objects, the actual implementation of the memory

10

15

25

30

35

40

45

50

55

60

65

10
controller is not provided in the code. Rather, the high-level
synthesis tool may determine the type of memory, and
therefore the type of controller, suited for the implementa
tion of the high-level code in the device based on an analysis
of the code.

In particular, certain types of memories may be better
suited for different types of behavioral functionality that is
synthesized by the high-synthesis tool. For example, if the
high-level code has a regular and somewhat predictable
memory access pattern, then implementing the synthesized
software code to work with DDR may be determined. As an
example, if memory addresses are to be sequentially
accessed, DDR may provide better performance than
RLDRAM, and therefore, the high-level synthesis tool may
determine that some DDR memory controller (e.g., DDR4)
functionality may be implemented in the soft logic, as
previously discussed. If an analysis of the Software code
indicates that memory may be accessed in a random manner,
then RLDRAM may be selected, and therefore, the high
level synthesis tool may determine that some RLDRAM
memory controller functionality may be implemented in the
Soft logic, as previously discussed. Accordingly, the high
level synthesis tool may determine the address locality of the
Software code (e.g., DSP algorithm), and select a particular
memory controller type based on level of address locality
(i.e., a high address locality may select DDR whereas a low
address locality may select RLDRAM)

In some implementations, after the high-level synthesis
program (e.g., OpenCL compiler) selects the type of
memory controller, portions of the memory controller may
be implemented in the soft logic of the device by generating
the appropriate configuration data, as previously discussed.
In some implementations, the program may also ensure that
the portion of the memory controller implemented in the soft
logic may also meet particular timing requirements (e.g.,
operating frequency) Such that the soft logic-implemented
portions of the memory controller operate at a consistent
performance. That is, regardless of the type of memory
controller chosen, the Soft logic component stays within
particular operating parameters to Smoothly interface with
the hard logic components of the memory controller.

In some implementations, the type of memory controller
may be dynamically changed (e.g., via partial reconfigura
tion). For example, the software code, when synthesized,
may provide a first portion better suited for DDR memory
and a second portion better suited for RLDRAM. When the
logic associated with the first portion is being used, the
memory controller portions in the soft logic may be imple
mented with DDR. When the logic associated with the
second portion starts being used, the portion of the memory
controller in the soft logic may be reconfigured to provide,
for example, a controller for RLDRAM. Accordingly, an
implementation may use different memory controller stan
dards and Switch between them.

In some implementations, address locality may be deter
mined while the logic design corresponding to the software
code is active. For example, as the logic design accesses
memory addresses, patterns of high address locality and low
address locality may be recognized. When a pattern of
memory accesses correspond to a high address locality, the
memory controller components in soft logic may be recon
figured to provide a memory controller better suited for high
address locality (e.g., DDR). When a pattern of memory
accesses correspond to a low address locality, the memory
controller components in Soft logic may be reconfigured to
provide a memory controller better suited for low address
locality (e.g., RLDRAM). In some implementations, the

US 9,424,073 B1
11

memory controller components in Soft logic are reconfigured
upon a number of continuous memory accesses correspond
ing to a certain type of locality (i.e., high or low) meeting a
threshold number. For example, 100 straight memory
accesses with high address locality may cause the soft logic
to be reconfigured to provide functionality associated with a
DDR memory controller. In other implementations, the
number of memory accesses that correspond to both high
address locality and low address locality are recorded and
the one with the highest number of accesses is used to
determine the memory controller to be implemented. When
the type of memory accesses Switches (e.g., from majority
high address locality accesses to majority low address
locality accesses), then a new memory controller may be
reconfigured, as discussed above.

Additionally, the type of memory controller used may be
selected based on a simulation of the software code or the
synthesized logic corresponding to the software code. For
example, address locality may be determined through simu
lation rather than an analysis of the software code. If the
simulation shows a low address locality, then RLDRAM
may be selected even if a preliminary analysis of the code
(i.e., before the simulation) Suggests that a high address
locality may exist. Accordingly, simulation data may be used
to select the type of memory controller.
As previously discussed, various components may be

implemented in soft logic of a programmable chip. FIG. 5
illustrates a technique for implementing a programmable
chip. An input stage 501 receives selection information
typically from a user for logic Such as a processor core as
well as other components to be implemented on an elec
tronic device. In one example, the input received is in the
form of a high-level language program. A generator program
505 creates a logic description and provides the logic
description along with other customized logic to any of a
variety of synthesis tools, place and route programs, and
logic configuration tools to allow a logic description to be
implemented on an electronic device.

In one example, an input stage 501 often allows selection
and parameterization of components to be used on an
electronic device. The input stage 501 also allows configu
ration of hard coded logic. In some examples, components
provided to an input stage include intellectual property
functions, megafunctions, and intellectual property cores.
The input stage 501 may be a graphical user interface using
wizards for allowing efficient or convenient entry of infor
mation. The input stage may also be a text interface or a
program reading a data file Such as a spreadsheet, database
table, or schematic to acquire selection information. The
input stage 501 produces an output containing information
about the various modules selected. At this stage, the user
may enter security information about individual components
that needs to be isolated. For example, different levels of
component security and which components are allowed to
communicate with each other may be entered.

In typical implementations, the generator program 505
can identify the selections and generate a logic description
with information for implementing the various modules. The
generator program 505 can be a Perl script creating HDL
files such as Verilog, Abel, VHDL, and AHDL files from the
module information entered by a user. In one example, the
generator program identifies a portion of a high-level lan
guage program to accelerate. The other code is left for
execution on a processor core. According to various embodi
ments, the generator program 505 identifies pointers and
provides ports for each pointer. One tool with generator
program capabilities is System on a Programmable Chip

10

15

25

30

35

40

45

50

55

60

65

12
(SOPC) Builder available from Altera Corporation of San
Jose, Calif. The generator program 505 also provides infor
mation to a synthesis tool 507 to allow HDL files to be
automatically synthesized. In some examples, a logic
description is provided directly by a designer. Hookups
between various components selected by a user are also
interconnected by a generator program. Some of the avail
able synthesis tools are Leonardo Spectrum, available from
Mentor Graphics Corporation of Wilsonville, Oreg. and
Synplify available from Synplicity Corporation of Sunny
vale, Calif. The HDL files may contain technology specific
code readable only by a synthesis tool. The HDL files at this
point may also be passed to a simulation tool.
As will be appreciated by one of skill in the art, the input

stage 501, generator program 505, and synthesis tool 507
can be separate programs. The interface between the sepa
rate programs can be a database file, a log, or simply
messages transmitted between the programs. For example,
instead of writing a file to storage, the input stage 501 can
send messages directly to the generator program 505 to
allow the generator program to create a logic description.
Similarly, the generator program can provide information
directly to the synthesis tool instead of writing HDL files.
Similarly, input stage 501, generator program 505, and
synthesis tool 507 can be integrated into a single program.
A user may select various modules and an integrated

program can then take the user selections and output a logic
description in the form of a synthesized netlist without
intermediate files. Any mechanism for depicting the logic to
be implemented on an electronic device is referred to herein
as a logic description. According to various embodiments, a
logic description is an HDL file such as a VHDL, Abel,
AHDL, or Verilog file. A logic description may be in various
stages of processing between the user selection of compo
nents and parameters to the final configuration of the device.
According to other embodiments, a logic description is a
synthesized netlist Such as an Electronic Design Interchange
Format Input File (EDF file). An EDF file is one example of
a synthesized netlist file that can be output by the synthesis
tool SOT.
A synthesis tool 507 can take HDL files and output EDF

files. Tools for synthesis allow the implementation of the
logic design on an electronic device. Some of the available
synthesis tools are Leonardo Spectrum, available from Men
tor Graphics Corporation of Wilsonville, Oreg. and Synplify
available from Symplicity Corporation of Sunnyvale, Calif.
Various synthesized netlist formats will be appreciated by
one of skill in the art.
A verification stage 513 typically follows the synthesis

stage 507. The verification stage checks the accuracy of the
design to ensure that an intermediate or final design realizes
the expected requirements. A verification stage typically
includes simulation tools and timing analysis tools. Tools for
simulation allow the application of inputs and the observa
tion of outputs without having to implement a physical
device. Simulation tools provide designers with cost effec
tive and efficient mechanisms for both functional and timing
verification of a design. Functional verification involves the
circuit's logical operation independent of timing consider
ations. Parameters such as gate delays are disregarded.

Timing verification involves the analysis of the designs
operation with timing delays. Setup, hold, and other timing
requirements for sequential devices such as flip-flops are
confirmed. Some available simulation tools include Synop
sys VCS, VSS, and Scirocco, available from Synopsys
Corporation of Sunnyvale, Calif. and Cadence NC-Verilog
and NC-VHDL available from Cadence Design Systems of

US 9,424,073 B1
13

San Jose, Calif. After the verification stage 513, the synthe
sized netlist file can be provided to physical design tools 519
including place and route and configuration tools. A place
and route tool locates logic cells on specific logic elements
of a target hardware device and connects wires between the
inputs and outputs of the various logic elements in accor
dance with logic and security provided to implement an
electronic design. According to various embodiments of the
present invention, the place and route tool may perform the
techniques of the present invention to implement the various
security requirements and rules as defined by the user. The
iterative technique may be transparent to the user, but the
resulting device can be physically tested at 523.

For programmable logic devices, a programmable logic
configuration stage can take the output of the place and route
tool to program the logic device with the user selected and
parameterized modules. According to various embodiments,
the place and route tool and the logic configuration stage are
provided in the Quartus Development Tool, available from
Altera Corporation of San Jose, Calif. As will be appreciated
by one of skill in the art, a variety of synthesis, place and
route, and programmable logic configuration tools can be
used using various techniques of the present invention.
As noted above, different stages and programs can be

integrated in a variety of manners. According to one embodi
ment, the input stage 501, the generator program 505, the
synthesis tool 507, the verification tools 513, and physical
design tools 519 are integrated into a single program. The
various stages are automatically run and transparent to a
user. The program can receive the user-selected modules,
generate a logic description depicting logic for implement
ing the various selected modules, and implement the elec
tronic device. As will be appreciated by one of skill in the
art, HDL files and EDF files are mere examples of a logic
description. Other file formats as well as internal program
representations are other examples of a logic description.

FIG. 6 illustrates one example of a computer system. The
computer system 600 includes any number of processors
602 (also referred to as central processing units, or CPUs)
that are coupled to devices including memory 606 (typically
a random access memory, or “RAM), memory 604 (typi
cally a read only memory, or “ROM). The processors 602
can be configured to generate an electronic design. As is well
known in the art, memory 604 acts to transfer data and
instructions uni-directionally to the CPU and memory 606
are used typically to transfer data and instructions in a
bi-directional manner.

Both of these memory devices may include any suitable
type of the computer-readable media described above. A
mass storage device 608 is also coupled bi-directionally to
CPU 1102 and provides additional data storage capacity and
may include any of the computer-readable media described
above. The mass storage device 608 may be used to store
programs, data and the like and is typically a secondary
storage medium such as a hard disk that is slower than
memory. The mass storage device 608 can be used to hold
a library or database of prepackaged logic or intellectual
property functions, as well as information on generating
particular configurations. It will be appreciated that the
information retained within the mass storage device 608,
may, in appropriate cases, be incorporated in standard fash
ion as part of memory 606 as virtual memory. A specific
mass storage device such as a CD-ROM 614 may also pass
data uni-directionally to the CPU.
CPU 602 is also coupled to an interface 610 that includes

one or more input/output devices such as such as video
monitors, track balls, mice, keyboards, microphones, touch

10

15

25

30

35

40

45

50

55

60

65

14
sensitive displays, transducer card readers, magnetic or
paper tape readers, tablets, styluses, voice or handwriting
recognizers, or other well-known input devices Such as, of
course, other computers. The CPU 602 may be a design tool
processor. Finally, CPU 602 optionally may be coupled to a
computer or telecommunications network using a network
connection as shown generally at 612. With such a network
connection, it is contemplated that the CPU might receive
information from the network, or might output information
to the network in the course of performing the above
described process steps. It should be noted that the system
600 might also be associated with devices for transferring
completed designs onto a programmable chip. The above
described devices and materials will be familiar to those of
skill in the computer hardware and software arts.

Although many of the components and processes are
described above in the singular for convenience, it will be
appreciated by one of skill in the art that multiple compo
nents and repeated processes can also be used to practice the
techniques of the present invention.

While particular embodiments of the invention have been
particularly shown and described with reference to specific
embodiments thereof, it will be understood by those skilled
in the art that changes in the form and details of the disclosed
embodiments may be made without departing from the spirit
or scope of the invention. For example, embodiments of the
present invention may be employed with a variety of com
ponents and should not be restricted to the ones mentioned
above. It is therefore intended that the invention be inter
preted to include all variations and equivalents that fall
within the true spirit and scope of the present invention.

What is claimed is:
1. A memory controller circuit comprising:
a first component of the memory controller circuit in

configurable logic, the first component providing func
tionality associated with a first memory type; and

a second component of the memory controller circuit
implemented in hard logic, the second component
providing functionality associated with a plurality of
memory types including the first memory type, wherein
the second component includes a transaction buffer
pool configured to store transactions received from a
memory based on the first memory type, and the second
component provides capacity information associated
with the transaction buffer pool to the first component
to manage transactions between the first component
implemented in the configurable logic and the second
component implemented in the hard logic.

2. The circuit of claim 1, wherein the first component
includes a burst adaptability unit configured to provide
transactions to the second component.

3. The circuit of claim 2, wherein the second component
includes the transaction buffer pool and is configured to store
transactions provided by the burst adaptability unit in the
first component.

4. The circuit of claim 1, wherein the capacity information
includes a number of transactions available to be stored in
the transaction buffer pool.

5. The circuit of claim 1, wherein the second component
provides, to the first component, status information regard
ing transactions stored in the transaction buffer pool.

6. The circuit of claim 5, wherein the status information
includes a state of the transaction among a series of States.

7. The circuit of claim 1, wherein the plurality of memory
types includes a second memory type, and the first compo
nent is incompatible with the second memory type.

US 9,424,073 B1
15

8. A method for implementing a memory controller, the
method comprising:

generating, by a processor, configuration data including a
first component of the memory controller, wherein the
first component is associated with a first memory type,
wherein the first component is implemented in con
figurable logic, and wherein the first component is
configured to communicate with a second component
of the memory controller implemented in hard logic,
wherein the second component is associated with a
plurality of memory types including the first memory
type, wherein the second component includes a trans
action buffer pool configured to store transactions
received from a memory based on the first memory
type, and the second component provides capacity
information associated with the transaction buffer pool
to the first component to manage transactions between
the first component implemented in the configurable
logic and the second component implemented in the
hard logic.

9. The method of claim 8, wherein the first component
includes a burst adaptability unit configured to provide
transactions to the second component.

10. The method of claim 9, wherein the second compo
nent includes the transaction buffer pool configured to store
transactions provided by the burst adaptability unit in the
first component.

11. The method of claim 8, wherein the capacity infor
mation includes a number of transactions available to be
stored in the transaction buffer pool.

12. The method of claim 8, wherein the second compo
nent provides, to the first component, status information
regarding transactions stored in the transaction buffer pool.

10

15

25

30

16
13. The method of claim 12, wherein the status informa

tion includes a state of the transaction among a series of
States.

14. The method of claim 12, wherein the first component
provides, to the second component, an indication that the
state of a selected transaction can advance to the next state
in the series of states.

15. The method of claim 8, wherein the plurality of
memory types includes a second memory type, and the first
component is incompatible with the second memory type.

16. A method for managing transactions between a hard
logic component and a configurable logic component of a
memory controller, the method comprising:

receiving, at a first component implemented in configu
rable logic, a transaction from a memory, wherein the
first component is associated with a first memory type
of the memory; and

storing, at a second component implemented in hard
logic, the transaction in a transaction buffer pool con
figured to store the transactions, wherein the second
component is associated with the first memory type and
a second memory type, and the second component
provides capacity information associated with the
transaction buffer pool to the first component to man
age transactions between the first component imple
mented in the configurable logic and the second com
ponent implemented in the hard logic.

17. The method of claim 16, wherein the first component
is incompatible with the second memory type.

k

