

US005795626A

United States Patent [19]

Gabel et al.

[11] Patent Number: 5,795,626

[45]	Date	of Patent:	Aug.	18, 1998

[54]	COATING OR ABLATION APPLICATOR		
	WITH A DEBRIS RECOVERY ATTACHMENT		

[75] Inventors: Howard Gabel. Cupertino, Calif.;

Ralph M. Tapphorn, Las Cruces, N.

Mex.

[73] Assignee: Innovative Technology Inc., Menlo

Park, Calif.

[21] Appl. No.: 719,740

[22] Filed: Sep. 25, 1996

Related U.S. Application Data

[63]	Continuation of Ser. No. 430,419, Apr. 28, 1995.
[51]	Int. Cl. ⁶ B05D 1/06; B05B 5/00;
	B05B 5/12; B05C 5/02
[52]	U.S. Cl. 427/458; 427/476; 427/478;
_	118/621; 118/622; 15/1.51; 15/345; 15/354;
	451/38; 451/87; 451/102
[58]	Field of Search 427/458, 476,
	427/478, 483; 118/50, 312, 317, 326, 622,
	621; 15/1.51, 3.5, 3.51, 345, 359; 451/38–40,

[56] References Cited

U.S. PATENT DOCUMENTS

76, 87, 102; 222/424, 528; 239/693, 704

3,100,724	8/1963	Rocheville 118/308
3,565,296	2/1971	Brush 222/193
3,678,534	7/1972	Hilbig 15/345
3,753,318	8/1973	Eskijian 51/11
3,757,079	9/1973	Blomgren, Sr 219/137
3,770,482	11/1973	Millar et al 117/17
3,788,010	1/1974	Goff 51/9
3,806,029	4/1974	Hughes 239/3
3,894,364	7/1975	Kom 51/320
3,894,851	7/1975	Gorman 55/263
3,895,211	7/1975	Pentegov 219/113
3,895,465	7/1975	Kom 51/320
3,916,568	11/1975	Rose 51/8 R
4,038,786	8/1977	Fong 51/320
4,069,974	1/1978	Zawacki 239/15
4,132,039	1/1979	Gilbert 51/424
4,203,177	5/1980	Kegg 16/24

4.389,820	6/1983	Fong 51/320
4,561,808	12/1985	Spaulding 406/118
		Tapphorn 172/413
4,633,623	1/1987	Spitz 51/321
4.646,482	3/1987	Chitjian 51/424
4.703.590	11/1987	Westergaard 51/320

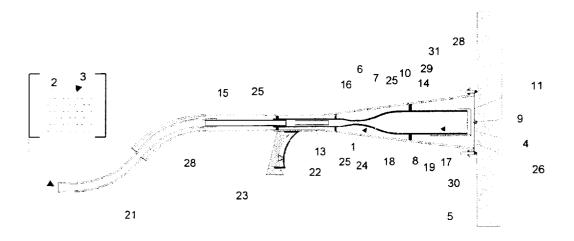
(List continued on next page.)

FOREIGN PATENT DOCUMENTS

37-18621	12/1962	Japan .	
1046614	10/1966	United Kingdom	427/470

OTHER PUBLICATIONS

"Vacu-Blasting", Technical Brochure, 1994, 1 page. U.S. Statutory Invention Registration No. H1379, Published Dec. 6, 1994 to Meuer.


(List continued on next page.)

Primary Examiner—Shrive Beck
Assistant Examiner—Fred J. Parker
Attorney, Agent, or Firm—Wilson Sonsini Goodrich &
Rosati

[57] ABSTRACT

An environmentally compliant triboelectric applicator and process for coating or ablating a substrate and for retrieving excess or ejected material from the substrate. The applicator comprises an inner supersonic nozzle for accelerating triboelectrically charged projectile particles entrained in a supersonic gas to speeds sufficiently high to coat or ablate a substrate and an outer evacuator nozzle coaxially surrounding the inner supersonic nozzle for retrieving excess projectile particles, ablated substrate powders, or other environmentally hazardous materials. A fluid dynamic coupling uses the efficacy of the Mach turning angle associated with a supersonic boundary layer of carrier gas to aspirate the central core of the supersonic two-phase jet. This fluid coupling and spacing between the outlet of the supersonic nozzle and the substrate also permits the projectile particles and substrate to triboelectrically charge to levels which induce electrostatic discharges at the substrate simultaneous to the impacts.

34 Claims, 7 Drawing Sheets

U.S. PATENT DOCUMENTS

4,703,591	11/1987	Herrington 51/321
4,723,378	2/1988	VanKuiken, Jr 51/424
4,726,715	2/1988	Steen 406/55
4,740,112	4/1988	Muehlberger 406/50
4,788,082	11/1988	Schmitt 427/248.1
4,808,042	2/1989	Muehlberger 406/66
4,979.680	12/1990	Bauch 239/692
4,987,001	1/1991	Knobbe et al 427/478
5.035.089	7/1991	Tillman
5.160.547	11/1992	Kirschner 51/307
5,173,325	12/1992	Knobbe et al 427/476
5.197.160	3/1993	Smith 15/1.7
5,203,794	4/1993	Stratford 51/410
5,205,085	4/1993	Urakami 15/353
5,207,034	5/1993	Lynn 51/425
5,256,201	10/1993	Gelain 118/308
5.256.205	10/1993	Schmitt, III 118/718
5,263,897	11/1993	Kondo 454/76
5,269,949	12/1993	Tuszko 175/53
5,271,965	12/1993	Browning 427/446
5,273,647	12/1993	Tuszko 55/216
5.283,985	2/1994	Browning 51/319
5,302,414	4/1994	Alkhimov 427/191
5,330,798	7/1994	Browning 239/79
5,337,834	8/1994	Tapphorn 37/409
5,340,615	8/1994	Browning 427/426
5,356,672	10/1994	Schmitt, III
5,356,673	10/1994	Schmitt 427/250
,,- · -		

OTHER PUBLICATIONS

Seiner, J.M., "Shock-Free Supersonic Elliptic Nozzles and Method of Forming Same", Patent Application.

Blythe, A. R. and Reddish, W., "Charges on Powders and Bulking Effects", Electrostatics 1979, Conference on Electrostatic Phenomena, St. Catherine's College, Oxford, England, The Institute of Physics, pp. 107–114 (1979).

Sampuran-Singh, Hughes, J. F. and Bright, A. W., "Discharges in Electrostatically Deposited Films", Electrostatics 1979, Conference on Electrostatic Phenomena, St. Catherine's College, Oxford, England, The Institute of Physics, pp. 17–25 (1979).

Alkhimov, A. P., et al., "Experimental Investigation of the Effect of Velocity Lag of Particles in a Supersonic Gas Stream", Plenum Publishing Corporation (1978), [Zhurnal Prikladnoi Mekhaniki I Tekhnicheskoi Fiziki, No. (?), pp. 80–88, Jul.-Aug., 1977].

Academician, N. N., et al., "Variation of Wave Structure in Supersonic Two-phase Flow Around Obstacles", American Institute of Physics, pp. 943-945 (1982), [Sov. Phys. Dokl. 26(10), Oct. 1981].

Alkhimov, A. P., et al., "Experimental Investigation of Supersonic Two-phase Flow of Bodies", Plenum Publishing Corporation, 219–226 (1982), [Zhurnal Pridladnoi Mekaniki Teknicheskoi Fiziki, No. 2, pp. 66–74, Mar.-Apr., 1982]. Fujii, K. and Kutler, P., "Computations of Two-phase Supersonic Nozzle Flows by a Space-marching Method", NASA Ames Research Center (1983).

Hwang, C. J. and Chang, G. C., "Numerical Study of Gas-Particle Flow in a Solid Rocket Nozzle", AIAA Journal, vol. 26. No. 6, pp. 682–689.

Kaunov, A. M., et al., "Structure and Properties of Kh18N15 Steel Coatings Produced with the Use of Shock Waves", Plenum Publishing Corporation, pp. 105, 107, 394, 396, 403–404 (1989), Poroshkovaya Metallurgiya, No. 2(314), pp. 35–38, Feb., 1989.

Deriglazova, F. G., et al., "Calculation of Two-phase Flow in an Axisymmetric Laval Nozzle with Allowance for Particle Reflection from the Walls", Plenum Publishing Corporation, pp. 230–235 (1990), Izvestiya Akademii Nauk SSSR, Mekhanida Zhidkosti I Gaza, No. 2, pp. 79–85, Mar.-Apr., 1990

Kondrashov, V. V. and Soloukhin, R. I., "Studying Unstable Regimes of Jet Interaction with approaching Flows", Plenum Publishing Corporation, pp. 1134–1139 (1990), Inzhenerno-Fizicheskii Zhurnal, vol. 57, No. 4, pp. 539–545, Oct., 1989.

Wheaton, J. W., "Combustion Head Modifications Increase Spray Particle Velocity", Design News, Jun. 25, 1990, pp. 128–129 (1990).

Forney, L. J., "Particle Impaction in Axially Symmetric Supersonic Flow", Aerosol Science and Technology, vol. 15, pp. 49–59 (1991).

Alkhimov, A. P., et al., "A Method of 'Cold' Gas-dynamic Deposition", American Institute of Physics, pp. 1047-1049 (1991), Sov. Phys. Dokl., 35(12), Dec., 1990.

Browning, J. A., "Hypervelocity Impact Fusion-13 A Technical Note", Journal of Thermal Spray Technology, vol. 1(4), pp. 289–292, Dec., 1992.

Institute of Theoretical and Applied Mechanics—Siberian Division of the Russian Academy of Sciences. "A New Method for Coatings Deposition: New Generation of Technologies". 1993.

Institute of Theoretical and Applied Mechanics, Installation Diagram—Presentation Foils, 1993.

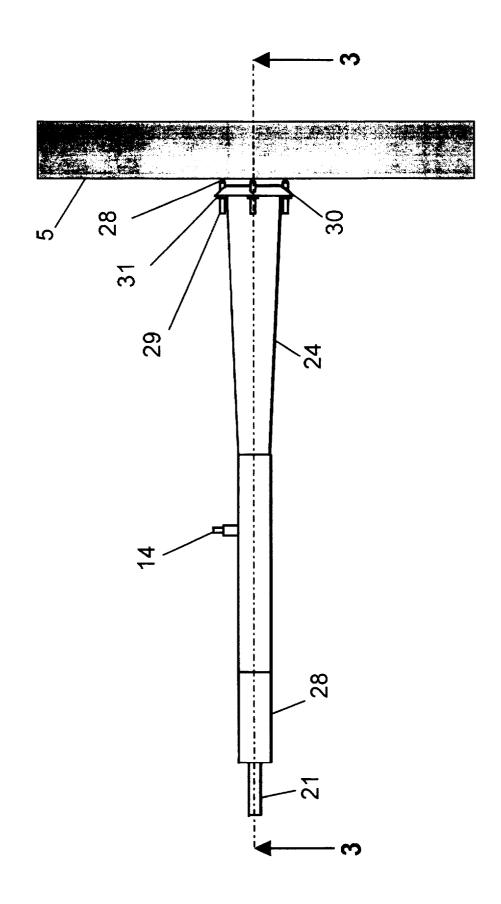
Irving, B., et al., "The HVOF Process: The Hottest Topic in the Thermal Spray Industry", Welding Journal, pp. 25–30, Jul., 1993.

Forney, L. J., "Particle Impaction on a Supersonic Cone", Aerosol Science and Technology, vol. 20, pp. 318–329 (1994).

Oh, J. J. and Kim S. S., "Particle Deposition on a Truncated Cylinder in a Supersonic Flow at Low Pressure", Aerosol Science and Technology, vol. 20, pp. 375–384 (1994).

Brochure, "Vacu-blasting", 1994.

Brochure, "Iontech—3600 Series: Powder Coating Equipment from Onoda Ionics", 1995.


Brochure, "The Jet Vapor Deposition™ Process", 1995.

Brochure, "Hunter Products, Inc.—Micro-Jet 200", 1995.

Tables charting properties of various elements; "Velocity of Particle" and Power Density are the only dynamic values.

Aug. 18, 1998

26 28 30 Ŋ 9 16

Fig. 5

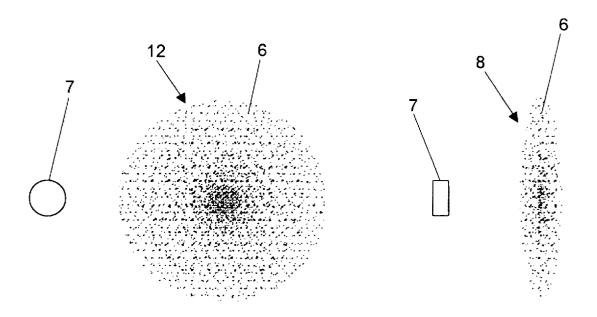


Fig. 6

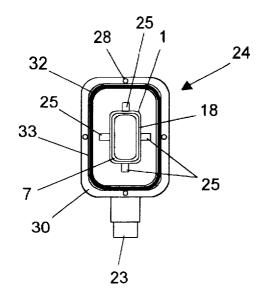
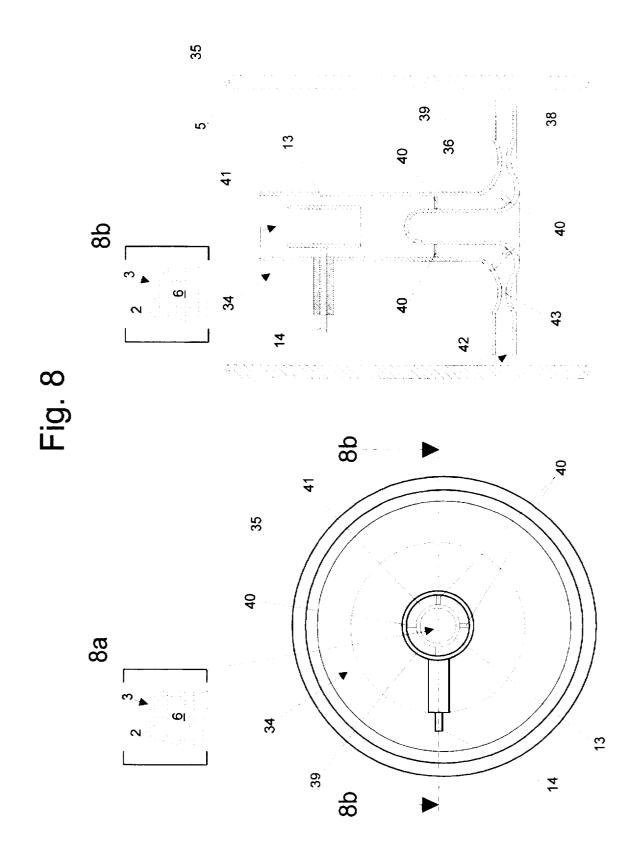



Fig. 7

Aug. 18, 1998

COATING OR ABLATION APPLICATOR WITH A DEBRIS RECOVERY ATTACHMENT

This application is a continuation of application Ser. No. 08/430.419, filed Apr. 28, 1995, abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention (Technical Field)

The present invention is directed to an environmentally 10 compliant applicator gun which uses a supersonic nozzle to convey high-speed triboelectrically charged particles to a substrate for effecting a coating or ablating the substrate. The supersonic nozzle of the applicator gun is fluidly dynamically coupled to the substrate and the evacuator 15 nozzle to enhance the triboelectric charging, reduce the inlet gas pressure required for supersonic expansion, reduce heat losses due to convection at the substrate, and retrieve the excess particles. The impact energies achieved by accelerating small triboelectrically-charged projectile particles (i.e. 20 <100 microns in diameter) to speeds in excess of several hundred meters per second coupled with the electrostatic discharge energy provides an interaction energy that is significantly greater than that which can be attained in the art. Furthermore, the present invention is directed to a 25 method for enhancing the melting and annealing of the substrate (e.g. to reduce residual stress) by triboelectric discharges which occur as a result of charge buildup on the substrate as triboelectrically charged particles impact the substrate.

The coating process or ablation process is determined by the material properties of the powder particles and substrate, and the energy densities deposited via the collisional energy and the triboelectric discharge energy at the impact zone. For producing metallized or polymerized coatings, the powder 35 particles must be ductile or must have a sufficiently low glass transition temperature, and must adhere to the substrate for a sufficient duration to allow the binding energy between the particle and the substrate to establish a good bond.

The ablation process occurs with powder particles which have sufficient hardness and high melting point to preclude adhesion upon contact with the substrate. The ablation mechanism consists of erosion, melting, or evaporation of the uppermost substrate layer as determined by the speed of the particle, the triboelectric discharge energy, and the substrate material properties. The salient advantage of this invention over the art is the ablation efficiency provided by the high impact pressure of smaller diameter particles coupled with the triboelectric discharge energy.

2. Background Art

Several references disclose methods of coating substrates by conveying powder particles in a carrier gas at high velocities and impacting the substrate to form the coating. Many of these references disclose use of high temperature carrier gases that melt the powder particles. U.S. Pat. No. 5.340,615 to Browning and U.S. Pat. No. 5.330,798 to Browning are exemplary of these high temperature methods.

Recently, U.S. Pat. No. 5,302,414 to Alkhimov, et al., 60 discloses a low temperature method for coating substrates with metals, alloys, polymers, or mechanical mixtures of a metal and alloy by conveying powder particles at high speeds in a supersonic jet which is directed at a substrate to be coated.

Applications of the high temperature coating references are limited to depositions onto substrates which do not melt,

2

burn, corrode, oxidize, or otherwise degrade in the high temperature environment of the carrier gas as it impinges on the substrate. Recently, U.S. Pat. No. 5,271,965 to Browning disclosed a method of injecting the particles at various locations in the expanding jet of the carrier gas so as to control the amount of particle melting prior to impact. The U.S. Pat. No. 5,302,414 to Alkhimov, et al., discloses a method of forming the gas and particles into a supersonic jet having a temperature sufficiently low to prevent thermal softening of the first material and a particle velocity from about 300 to about 1,200 m/sec. Although this latter method enables the coating of substrates without degrading materials by melting, burning, or evaporation, it does not address the issue of the residual stresses introduced in the coating and substrate materials by the plastic deformation of the impact process.

U.S. Pat. No. 4,979,680 to Bauch, et al., discloses a spray gun with electrokinetic charging of powdered material for the purpose of electrostatically coating workpieces with a plastic powder coating. U.S. Pat. No. 3,757,079 to Blomgren, Sr., uses an electrostatic field with corona discharge in the vicinity of an electric arc to provide a distortion-free weld of high integrity, and U.S. Pat. No. 3,895,211 to Pentegov, discloses a circuit design for implementing an electrostatic field generator. Triboelectric charging of particles during coating and painting processes have been conventionally used to affect coatings, and to control the coating thickness.

All of the electrostatic coating references disclose use of electrostatic charging of particles as a means of affecting coatings through electrostatic attraction or repulsion, but none of these references disclose the use of electrostatic discharge as a means of adding energy to the coating so as to affect the melting or annealing of the coating deposition. Only U.S. Pat. No. 3,757,079 to Blomgren, Sr., demonstrates that an electrostatic field with corona discharge may affect the integrity of an arc weld, but does not teach any device or method for coating or ablating a substrate.

Many types of sandblasting devices for cleaning the surface of a substrate have been disclosed in various patents. The following list is exemplary of the types of patents issued in this class: U.S. Pat. No. 5,283,985 to Browning, U.S. Pat. No. 5,160,547 to Kirschner, U.S. Pat. No. 3,894,364 to Korn, et al., U.S. Pat. No. 3,753,318 to Eskijian, U.S. Pat. No. 3,895,465 to Korn, et al., and U.S. Pat. No. 3,916,568 to Rose, et al. Two patents, U.S. Pat. No. 5,203,794 to Stratford, et al. and U.S. Pat. No. 4,703,590 to Westergaard also disclose methods of using particles which sublimate after impingement on the substrate.

All of these references use relatively large projectile particles (i.e. in excess of 100 microns in diameter) at low velocities (i.e. less than 300 meters/second) to abrade the substrate surface. The low impact pressures (determined by density of particle times velocity squared) attained by these methods abrade the substrate by an impact deformation process which fractures the brittle or work-hardened substrate surface. This abrasion process precludes the possibility of ablating the uppermost layer of many substrates by melting or evaporation, because the impact energies are too low.

In addition, several patents; U.S. Pat. No. 3,788,010 to Goff, U.S. Pat. No. 4,646,482 to Chitjian, U.S. Pat. No. 5,035,089 to Tillman, et al., U.S. Pat. No. 4,132,039 to Gilbert, et al., U.S. Pat. No. 3,894,851 to Gorman, U.S. Pat. No. 3,916,568 to Rose, et al., U.S. Pat. No. 5,197,160 to

Smith A. L., U.S. Pat. No. 5,205,085 to Urakami, Fukashi, U.S. Pat. No. 5,256,201 to Gelain, et al., U.S. Pat. No. 5,263,897 to Kondo, et al., U.S. Pat. No. 5,269,949 Tuszko, et al., and U.S. Pat. No. 5,273,647 Tuszko, et al., disclose methods for recovering the excess blasting particles, 5 retrieving, and filtering the abraded material. Although these devices have been effectively used with both subsonic and supersonic sandblasting nozzles, these references do not claim any special fluid dynamic coupling between the ejection nozzle and the recovery nozzle which maintains the supersonic two-phase flow within the supersonic nozzle nor do they disclose the use of a triboelectrical discharge as a means for affecting the coating or ablating process during the substrate impact.

SUMMARY OF THE INVENTION (DISCLOSURE OF THE INVENTION)

The present invention discloses an environmentally compliant applicator and process for coating or ablating a substrate and for retrieving excess or ejected material from 20 the substrate. The present invention comprises an application nozzle comprising an inner supersonic nozzle for conveying, accelerating, and triboelectrically charging projectile particles entrained in a supersonic gas to speeds sufficiently high to coat or ablate the uppermost surface of 25 a substrate when impacted by the two-phase jet. The salient feature of the invention over the art is an applicator that provides the means of accelerating projectile particles to supersonic speeds combined with the triboelectric charging of the powder particles. The triboelectric charging is induced 30 by rubbing the projectile particles on the sidewalls of the supersonic nozzle and by rubbing the projectile particles against each other in the confined throat of the nozzle. In other embodiments of the invention, the triboelectric charging is supplemented by applying a charging voltage source 35 to electrostatic electrode pads installed on the inner walls of the inner supersonic nozzle which enhances the charging of the projectile particles.

The coating process or ablation process is determined by the material properties of the powder particles and substrate, and the amount of energy deposited via the collisional energy and the triboelectric discharge energy at the substrate. For producing metallized or polymerized coatings, the powder particles must be plastically ductile, or must have a sufficiently low glass transition temperature, and must adhere to the substrate for a sufficient duration to allow the binding energy between the particle and the substrate to establish a good bond. Conversion of the kinetic and triboelectric discharge energy to heat provides the means of melting and fusing particles to the substrate while building up a coating layer.

The ablation process occurs with powder particles which have a sufficient hardness and high melting point to preclude adhesion upon contact with the substrate. The ablation process consists of erosion, melting, or evaporation of the uppermost substrate layer as determined by the speed of the particle, the triboelectric discharge energy, and the substrate Si-Si binding en material properties.

The interaction energies involved in the impact process 60 consist of the kinetic energy of the particle plus the triboelectric discharge energy induced at the substrate. The power densities provide by the kinetic energy impact process are easily estimated from the interaction energies as outlined below.

For a 7.0 micron diameter zinc particle traveling at 750 m/s, the kinetic energy (½*m*v²) per particle is approxi-

mately 3.6×10^{-7} Joules/particle. A 3.0 micron diameter nickel particle accelerated to a speed of 1300 m/s has a kinetic energy of 1.06×10^{-7} Joules/particle, while a 12.0 micron tungsten particle accelerated to a velocity of 1000 m/s has a kinetic energy of 8.7×10^{-6} Joules/particle. Considering that most of these powders can be sprayed at 0.45-4.5 kilograms/hour (1-10 lbs per hour) with the applicator of this invention, the power densities provided by the kinetic energy impact process is on the order of 10-200 megawatts per square meter ($10-200\times10^6$ Watts/m²). This is comparable to the energy densities provided by many LASERS currently used in the LASER ablation, coating, and cutting processes.

The triboelectric discharge energy is determined by the 15 amount of charge deposited with each particle and the level of charge that can be sustained or built up on the substrate. Electrostatic theory teaches (e.g. Bylthe A. R. and Reddish W. "Charges on Powders and Bulking Effects", Electrostatics 1979, Conference on Electrostatic Phenomena 5th, St. Catherine's College, Oxford, England, The Institute of Physics, Bristol and London, 1979, pp. 107-114) that the maximum charge on a particle can be estimated from the electric field strength required to induce dielectric breakdown (approximately 3 million volts per meter in air) of the gaseous environment surrounding the charged particle. This gives a surface charge density of approximately 26 microcoulomb per square meter. Thus, the maximum charge that can be acquired on a 7.0 micron diameter zinc particle in a supersonic air stream is approximately 4 femtocoulombs (4.0×10⁻¹⁵ Coulombs). If all of this charge is accelerated through a potential of 1,000 volts, the maximum triboelectric discharge energy that can be added to the substrate is 4.0×10⁻¹² Joules. While the triboelectric discharge energy per particle is quite small, the charge on the substrate region within the impingement zone of the jet (approximately 5.0×10^{-6} square meters for one embodiment of this invention) can reach 130 picocoulombs (130.0×10^{-12}) Coulombs). If this amount of charge is accelerated through a 1,000 volt triboelectric discharge potential, the resulting energy generated is 1.3×10⁻⁷ Joules. Assuming most of this energy is deposited locally as heat on the substrate, it is comparable to the enthalpy required to melt a single zinc powder particle (3.4×10^{-7}) Joules/particle).

Charging of the substrate is continually replenished by the stream of triboelectrically charged powder particles with repeat discharges occurring during the deposition process. Discharges associated with the electrostatic deposition of films have been observed by others (e.g. Sampuran-Singh J. F. Hughes and Bright A. W., "Discharges in Electrostatically Deposited Films", *Electrostatics* 1979, *Conference on Electrostatic Phenomena 5th*. St. Catherine's College, Oxford, England, The Institute of Physics, Bristol and London, 1979, pp. 17-25). These authors measured discharge energies of 1-2×10⁻⁷ Joules which is comparable to the energies of the present invention.

Similarly, for ablating materials such as a silicon substrate, the enthalpy of ablation can be obtained from the Si—Si binding energy which is 326.8 kJ/mole or 11.671.4 Kj/kg. Neglecting the kinetic energy associated with a SiC particle (3 micron dia.), the triboelectric charging required to deliver 1.3×10⁻⁷ Joules to the substrate during a triboelectric discharge through 1.000 volts potential is 130 picoCoulombs. Considering that this interaction energy is delivered locally to a portion of the substrate having a mass approximately equal to the mass of the impinging projectile particle, the triboelectric discharge energy equals approximately one-third of the binding energy of Si atoms in this local impact

region of the substrate. Thus, combining the triboelectric discharge energy with the particle kinetic energy easily provides sufficient energy to ablate the Si substrate in this

5

The applicator also comprises an outer evacuator nozzle 5 coaxially surrounding the inner supersonic nozzle for retrieving the excess projectile particles and the ablated substrate material. The outer evacuator nozzle is mechanically and fluidly dynamically coupled to the inner supersonic nozzle and the substrate which provides the means for entraining the excess projectile particles, the ablated substrate particles, and other physical and chemical forms liberated from the substrate material. This fluid dynamic coupling, which specifically uses the aspiration efficacy of the Mach turning angle, allows the central core of the supersonic two-phase jet to operate at exit pressures suffi- 15 ciently below the ambient pressure so as to reduce the inlet carrier gas pressures required to maintain supersonic twophase flow (shock-free) within the central core region of the inner supersonic nozzle. This fluid dynamic coupling feature also reduces the heat losses due to convection at the sub- 20 strate and allows efficient conversion of the impact and triboelectric discharge energy to heat which melts and fuses the particles.

In addition, the dynamic fluid coupling of the outer evacuator nozzle relative to the substrate also provides the 25 means for suspending the application nozzle on an air bearing which allows the unit to glide smoothing over the substrate surface, while the influx of air through the airbearing channel prevents environmentally hazardous materials from escaping into the air.

The inner supersonic nozzle comprises a nozzle optimized for two-phase flow of triboelectrically charged projectile particles entrained in a supersonic gas jet. The outlet expansion contour of the inner supersonic nozzle wall is designed and shaped to achieve approximate parallel flow of the 35 gas may consist of, but not be limited to nitrogen, argon, two-phase mixture within the central core such that the projectile particles speeds are sufficiently high to cause coating or ablation of the substrate when coupled with the triboelectric discharges. The material of construction for the supersonic nozzle is selected to induce and enhance tri- 40 ticles depend on drag coefficient, gas density and supersonic boelectric charging of the particles as they pass through the

The projectile particles consist of a material designed for the particular application. If the applicator is used to produce a metallized coating, then metallic powder particles or 45 immediately following the deposition or removal process. mixtures of metallic and nonmetallic powder particles are selected to achieve the required coating. For example, to deposit metal coatings including aluminum, nickel, copper, or zinc on metallic, ceramic, or polymeric substrates, a particular metal powder of interest is selected for the pro- 50 jectile particles. If an alloy coating is required, then powder particles consisting of a mixture of metallic powders in proportion to the constituents of the alloy are selected. The simultaneous injection or alternate injection of various types of powder particles fed by a plurality of powder feeders is 55 also disclosed in this invention as a method for creating functionally graded coatings. Overlap and interleaving of various layers to form a final coating with unique material and physical properties is achieved by oscillating the injection of two or more different types of powder particles. 60 Nonmetallic coatings may also be deposited with the invention by using nonmetallic powders. Methods of creating various degrees of porosity adjacent to the substrate by controlling the types of projectile particles and the nozzle parameters is expected to enable the deposition of coating 65 materials capable of enhancing and promoting bone growth or aiding in the implantation of biomedical devices.

For ablation, if the process involves evaporation of the uppermost substrate layer, then a projectile material (e.g. ceramic Al₂O₃, fused silica SiO₂ or carborundum SiC), having a sufficiently high vaporization temperature. high latent heat of vaporization, and mechanical hardness is selected and accelerated to a sufficiently high speed in the supersonic nozzle to induce substrate material evaporation when coupled with the triboelectric discharge energy. In other embodiments of this invention, the projectile powder or particle materials may be selected from metals, alloys, polymers, ceramics, or other chemical compounds. The impact speed of the projectile particle coupled with the triboelectric discharge energy determines the amount of stress and heat induced in the uppermost layer of the substrate which in turn determines the ablation mechanism. For simple impact erosion of a substrate oxide layer, the projectile particles could be selected as a metal, alloy, polymer or ceramic powder and accelerated to a speed sufficiently low to preclude impact adhesion, but still cause fracture ablation to occur with the simultaneous triboelectric discharge.

The projectile particles are introduced into the carrier gas stream of the inner supersonic nozzle using conventional powder feeders (similar to the powder feed units disclosed in e.g. U.S. Pat. No. 4,808,042 to Muehlberger, et al., U.S. Pat. No. 4,740,112 to Muehlberger, et al., U.S. Pat. No. 4,726,715 to Steen, et al., U.S. Pat. No. 4,561.808 to Spaulding, et al., or U.S. Pat. No. 3,565,296 to Brush, et al.) which have been modified for high pressure operation.

The carrier gas in the preferred embodiment of the invention is compressed air at approximately ambient temperature and inlet pressures sufficiently high to induce supersonic two-phase flow (shock-free) within the inner supersonic nozzle. In other embodiments of this invention, the carrier helium, hydrogen, oxygen, steam (water vapor), gases specifically selected to enhance triboelectric charging (e.g. sulfur hexaflouride), or mixtures thereof. The properties of the carrier gas selected for accelerating the projectile parspeeds, the triboelectric charging capability, as well as the chemical stability of the substrate surface after deposition or removal. In some applications, a chemically active carrier gas may be desirable to treat the surface of the substrate

The length of the inner supersonic nozzle is dependent on the minimum length required to accelerate and triboelectrically charge a specific type and size of projectile particle in a selected carrier gas to the required speed and particle charge for coating or ablating. Thus, the inner supersonic nozzle of the present invention comprises a telescoping barrel having the capability of accommodating a change in the nozzle length, as well as providing the means to fluid dynamically couple the inner supersonic nozzle exit to the substrate. Other longitudinal and lateral adjustments of the inner supersonic nozzle coaxially mounted within the outer evacuator nozzle provide the means of adjusting the impingement angle of the two-phase jet on the substrate, and provide the means of changing the fluid dynamic coupling and electrostatic discharge gap between the inner supersonic nozzle exit and the substrate.

The materials of construction for the inner supersonic nozzle are selected to enhance the triboelectric charging of the powder particles and accommodate the high pressure carrier gas. These basic materials include metals, ceramics, polymers, and composites. In some embodiments, the nozzle is constructed with electrostatic electrode pads or coatings

electrically connected via feedthroughs to the inner wall of the supersonic nozzle for inducing triboelectric charging by charge transfer or induction from a charging voltage source to the projectile particles. In still other embodiments of the present invention, a sacrificial ablative nozzle is used to deposit alloy coatings in combination with the primary powder particles.

The outer evacuator nozzle comprises a subsonic nozzle encapsulating the inner supersonic nozzle having a contour designed to fluid dynamically coupled with the inner supersonic nozzle, and to achieve the required fluid dynamic air bearing coupling between the exit of the outer evacuator nozzle and substrate. The influx of air through the air bearing channel of the outer evacuator nozzle prevents environmentally hazardous materials from escaping into the air. The effluent from the inner supersonic nozzle and the influx of air 15 through the air bearing channel of the outer evacuator nozzle provides the means for conveying the excess particles or ablated material from the substrate to a particle precipitating and filter unit. The particle filter unit in series with the effluent and gas stream is used for removing powder par- 20 ticles or environmentally hazardous materials prior to releasing or recompressing and recycling the air or gas mixture.

The outer evacuator nozzle is offset from the substrate by a set of adjustable spherical roller bearings (e.g. as disclosed by U.S. Pat. No. 4,203,177 to Kegg, et al.). The offset 25 dimension of the outer evacuator nozzle is determined by the fluid dynamics required to achieve air-bearing coupling between the edges of the outer evacuator nozzle. This air bearing ensures a smooth gliding interface between the applicator nozzle and the substrate. In alternative embodiments of this invention, the outer evacuator nozzle is mounted in direct contact (sealed with a gasket or o-ring) with the substrate so as to prevent environmentally hazardous gases from escaping into the air or to capture excess particles or ablated substrate powder within the inert environment of the selected carrier gas.

The salient feature of this invention is the fluid dynamic coupling maintained between the inner supersonic nozzle, the outer evacuator nozzle, and the substrate which enables the acceleration of projectile particles to supersonic speeds, 40 the electrostatic discharge of the triboelectrically-charged substrate, and the reduction of convective heat losses at the substrate. First, this coupling provides the means for attaching the application nozzle to the substrate by the generation of sub-ambient pressure created by the aspiration efficacy of 45 the Mach turning angle associated with the supersonic flow at the substrate. Secondly, the fluid dynamic coupling insures the entrainment and evacuation of the carrier gas mixture, air, and ablated materials through the outer evacuator nozzle. Thirdly, the fluid coupling provided by the 50 aspiration efficacy of the Mach turning angle at the exit of the inner supersonic nozzle also creates a sub-ambient pressure within the central core of the supersonic two-phase flow. Finally, the sub-ambient pressure at the impact zone of the substrate reduces the convective heat losses which 55 enhances the local melting and fusing of projectile particles to the substrate. Two-phase flow theory of supersonic nozzles teaches that this design also allows a lower inlet carrier gas pressure for the supersonic nozzle to achieve shock-free flow within a central core region for a given 60 expansion area ratio. The lower inlet carrier gas pressure provides a lower cost for the compressed gas requirements and the associated pressure vessel certifications of the applicator. Finally, the fluid coupling between the supersonic nozzle outlet and the substrate provides the means of con- 65 veying the triboelectrically-charged projectile particles to the substrate.

The materials of construction for both the inner supersonic nozzle and the outer evacuator nozzle are light weight metal, polymer or composite materials which provide for a light weight applicator with sufficient structural strength for a pressure vessel containment and mechanical use. The applicator nozzle for this invention can be use in any orientation because its fluid dynamic operation is not sensitive to gravitational forces. The applicator nozzle also consists of a trigger switch for operating the electromechanical valves which controls the two-phase flow of the supersonic nozzle.

The present invention is directed to an environmentally compliant applicator and process for coating and ablating substrates while retrieving excess powder particles or liberated material from a substrate. The applications for this applicator nozzle range from coating a variety of substrates with various powders to removing substrate material. oxides, and prior coatings. One application which is particularly enhanced over the art is the non-chemical methods of etching and milling substrates. Milling of Si wafers using the triboelectrically enhanced ablation process is particularly applicable to the semiconductor industry for producing thinned substrates with enhanced heat conduction to a heat sink. Deposition of metal and semiconductor films on semiconductor substrates after milling is an obvious extension of the duality of this invention for both ablation and coating applications.

The process of generating projectile particles by using a sacrificial ablative nozzles constructed from a group consisting of metallic materials, metallic alloy materials, nonmetallic materials and mixtures thereof is an unique application of the this invention for creating alloyed coatings.

Generation of nanoscale particles from impact and triboelectric discharge evaporation of substrate bulk materials followed by heterogeneous nucleation of the vapors in the low pressure zone of the two-phase flow jet is yet another application of the invention. Recovery of the powder and debris within a particle filter and classifier system as disclosed by U.S. Pat. No. 5.035.089 Tillman, et al., and U.S. Pat. No. 4.723,378 VanKuiken, Jr., et al. is also provided by the present invention.

A primary object of the present invention is to provide an efficient and improved apparatus and method for coating or ablating a substrate which allows for retrieving excess or ejected material from the substrate.

Primary advantages of the present invention are to reduce the outlet pressure and inlet pressure and reduce convective heat losses at the substrate.

A secondary object of the present invention is to provide an unique nozzle applicator for coating and ablating the internal surface of a cylinder bore substrate.

Other objects, advantages and novel features, and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into and form a part of the specification, illustrate several embodiments of the present invention and, together with the

description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating a preferred embodiment of the invention and are not to be construed as limiting the invention. In the drawings:

FIG. 1. is a side elevation view of the coating and ablation 5 applicator with a debris recovery attachment showing the outer evacuator nozzle positioned in front of the substrate.

FIG. 2. is a top plain view of the coating and ablation applicator with a debris recovery attachment showing the outer evacuator nozzle positioned in front of the substrate.

FIG. 3. is a side sectional view of the coating and ablation applicator with a debris recovery attachment depicting the inner supersonic nozzle mounted coaxially within the outer trolling the two-phase flow.

FIG. 4. is a top sectional view of the coating and ablation applicator with a debris recovery attachment illustrating the non-axisymmetric embodiment of the inner supersonic

FIG. 5. is diagram comparing the two-phase particle distribution patterns for an axisymmetric versus a nonaxisymmetric cross sectional shape of the inner supersonic

applicator with a debris recovery attachment viewed from the exit ports of both the inner supersonic nozzle and the outer evacuator nozzle showing a gasket or o-ring seal embodiment on the lip of the outer evacuator nozzle.

FIG. 7. depicts a flow chart of the salient features and flow 30 processes of the two-phase flow through the coating and ablation applicator with a debris recovery attachment.

FIG. 8. depicts a side and top sectional view of the axisymmetric cylindrical nozzle used for coating and ablating the internal surface of a cylinder bore substrate.

DESCRIPTION OF THE PREFERRED EMBODIMENTS (BEST MODES FOR CARRYING OUT THE INVENTION)

In the preferred embodiment of the invention (see FIGS. 1-4), the coating and ablation applicator with a debris recovery attachment comprises an inner supersonic nozzle 1 for accelerating and triboelectrically charging projectile triboelectrically-charged projectile particle 2 coupled with the simultaneous electrostatic discharge 4 at the substrate 5 provides sufficient interaction energy to allow coating or ablation of the substrate 5 when the two-phase flow jet 6 impacts the substrate 5. The coating or ablation process is 50 determined by the material properties of the triboelectrically-charged projectile particles 2 and the substrate 5, as well as the combined interaction energy of the collision coupled with the electrostatic discharge 4. As used throughout this specification and claims, the term "coating" means not only a configuration or a substrate but also the build up of deposited material in a freestanding form sometimes referred to as spray forming.

Referring to FIGS. 1-5, the supersonic expansion contour 7 of the inner supersonic nozzle 1 is non-axisymmetric in 60 cross-sectional shape. The noise reduction advantages of a non-axisymmetric elliptical design have been disclosed in U.S. Pat. Pending Ser. No. 08/095563 to Seiner et. al. For this embodiment, the non-axisymmetric shape provides the means for focusing the two-phase flow jet 6 into a fan- 65 shaped particle distribution 8 centered about the central axis 9 of the inner supersonic nozzle 1 which provides a more

effective means for reducing the carrier gas 3 pressure within the fan-shaped particle distribution 8 below ambient pressure as the gaseous supersonic boundary layer 10 rotates through the Mach turning angle 11 at the substrate 5. In alternative embodiments, the inner supersonic nozzle 1 may be axisymmetric in cross sectional shape to provide a Gaussian axisymmetric particle distribution of the twophase flow jet 6. The Gaussian axisymmetric particle distribution 12 in the non-focused two-phase flow jet 6 provided by an axisymmetric supersonic expansion contour 7 is compared to the fan-shaped particle distribution 8 provided by a non-axisymmetric supersonic expansion contour 7.

10

The materials of construction for the supersonic nozzle 1 are designed to enhance the triboelectric charging of the evacuator nozzle, and showing the trigger switch for con- 15 projectile particles 2. These materials include metals, ceramics, plastics, or composites. In other embodiments of this invention, electrode pads 13 are installed on the inner surface of the supersonic nozzle 1 at various locations for inducing triboelectric charging or for applying a voltage source via electrical feedthrough 14 for charging the particles 2 via electrical induction, ion mobility or triboelectric

The inner supersonic nozzle 1 is further characterized by an axisymmetric converging shape along the length of the FIG. 6. is a front side view of the coating and ablation 25 nozzle at the inlet 15 which first provides a transition of the two-phase flow jet 6 to sonic velocities (speed of sound) within the throat 16 of the inner supersonic nozzle 1. Subsequently, the two phase flow jet 6 is expanded by the supersonic expansion contour 7 (along the length of the nozzle) at the outlet 17 to velocities in excess of the speed of sound in the two-phase flow jet 6. In addition, the supersonic expansion contour 7 (along the length of the nozzle) is also shaped to provide approximately parallel and shock-free flow of the two-phase jet 6 at the nozzle outlet 17. Fluid dynamic flow theory teaches that the set of hyperbolic differential equations defined by the conservation of mass, momentum, and energy can be integrated using a spacemarching procedure to determine the equations of motion for both the particle 2 and the carrier gas 3 in the inner supersonic nozzle 1. By performing such computational fluid dynamic calculations (three dimensional grid) and accounting for the thermal equilibrium exchange between the particle 2 and the carrier gas 3, the shape of the supersonic expansion contour 7 is optimized to achieve the particles 2 entrained in a carrier gas 3. The speed of the 45 approximately parallel and shock-free flow of the particles 2 at velocities well in excess of the speed of sound in the two-phase flow jet 6.

The inner supersonic nozzle 1 also consists of a telescoping nozzle extender 18 to provide the means for adjusting the spacing between the nozzle outlet 17 and the substrate 5. This spacing is critical for achieving the proper fluid dynamic coupling for reducing the carrier gas 3 pressure below ambient within the fan-shaped particle distribution 8. The pressure reduction is achieved via the aspiration efficacy of the gaseous supersonic boundary layer 10 rotating through the Mach turning angle 11 at the substrate 5. With a large spacing, the gaseous supersonic boundary layer 10 rotates through small incremental acute angles without establishing a significantly lower pressure in the central core 19 of the two-phase flow jet 6. Conversely, with too small of a spacing, the gaseous supersonic boundary layer 10 is sufficiently impeded at the nozzle outlet 17 so as to break down the approximately parallel and shock-free flow of the two-phase flow jet 6. This spacing is also critical for successfully directing the triboelectrically-charged projectile particles 2 to the substrate 5 so as to increase the electrostatic discharge interaction energy at the substrate 5

and for reducing the convective heat losses at the substrate 5 which in turn affects the efficiency and properties of the coating or ablation process.

11

The projectile particles 2 are entrained into the carrier gas 3 of the inner supersonic nozzle 1 using conventional powder feeders 20 designed to operate at high pressures (e.g. similar to the powder feed units disclosed by: U.S. Pat. No. 4,808,042 to Muehlberger, et al., U.S. Pat. No. 4,740,112 to Muehlberger, et al., U.S. Pat. No. 4,726,715 to Steen, et al., U.S. Pat. No. 4,561,808 to Spaulding, et al., or U.S. Pat. No. 10 3,565,296 to Brush, et al.). The carrier gas 3 in this embodiment of the invention is compressed air at approximately ambient temperature and inlet 15 pressures sufficiently high to induce supersonic two-phase (approximately parallel and shock-free) flow with the inner supersonic nozzle 1. In alternative embodiments of this invention, the carrier gas 3 may comprise, but not be limited to, nitrogen, argon, helium, hydrogen, oxygen, steam, gases specifically selected to enhance triboelectric charging (e.g. sulfur hexaflouride). or mixtures thereof. The properties of the carrier gas 3 selected 20 for accelerating the projectile particles 2 depends on drag coefficient, gas density and supersonic speeds, the triboelectric charging efficacy, as well as the chemical stability of the substrate 5 after removal of the uppermost layer. In some applications, a chemically active carrier gas 3 may be desirable to treat the surface of the substrate 5 immediately following the removal of an uppermost layer.

The projectile particles 2 entrained within the carrier gas 3 are conveyed to the inner supersonic nozzle 1 through a conventional electromechanical valve (associated with the 30 powder feeder 20) and the high pressure hose 21. The electrical trigger switch 22 mounted within the pistol grip 23 of the outer evacuator nozzle 24 is used to control the flow of the two-phase flow jet 6 via the actuation of the electrofeeder 20 and the carrier gas 3 regulated source.

The inner supersonic nozzle 1 is coaxially mounted within the outer evacuator nozzle 24 using struts 25 which provide the means for adjusting and aligning the impingement angle of the two-phase flow jet 6 on the substrate 5. The struts 25 40 are removably mounted or bonded to the inner supersonic nozzle 1 and the outer evacuator nozzle 24 to maintain the desired alignment.

The outer evacuator nozzle 24 comprises a subsonic nozzle coaxially surrounding the inner supersonic nozzle 1 45 having its contour designed to accommodate the two-phase fluid dynamic recovery of the carrier gas 3, excess projectile particles 2, and the ablated substrate 5 material. In addition, this embodiment of the outer evacuator nozzle 24 provides for an air-bearing channel 26 between the outlet of the outer 50 evacuator nozzle 24 and the substrate 5. The influx of air or ambient gas through the air-bearing channel 26 provides a fluid dynamic air bearing and prevents environmentally hazardous materials from escaping into the air. The carrier gas 3 discharged from the inner supersonic nozzle 1 and the 55 influx of air or ambient gas evacuated through the airbearing channel 26 provide the means for conveying the excess projectile particles 2 and the ejected substrate 5 material through the outer evacuator nozzle 24 to a conventional particle precipitating and filter unit 27 via a low 60 pressure discharge hose 28. The conventional particle and precipitating and filter unit 27 (similar to U.S. Pat. No. 5,035,089 Tillman, et al., or U.S. Pat. No. 4,723,378 VanKuiken, Jr., et al.) uses an exhaust suction blower to evacuate and filter the carrier gas 3, air, or ambient gases 65 entrained with excess projectile particles 2 and ejected substrate 5 materials. The carrier gas 3, air, or other gases

may be recompressed and recycled to provide a new supply of high pressure carrier gas 3 to the inner supersonic nozzle

12

The outer evacuator nozzle 24 is offset from the substrate 5 by a plurality of spherical roller bearings 28 (e.g. as disclosed by U.S. Pat. No. 4,203,177 to Kegg, et al.). The offset provided by the spherical roller bearing 28 is adjusted by the screw bolt 29 mounted on the lip 30 of the outer evacuator nozzle 24. A locking nut 31 provides the means for locking the screw bolt 29. This offset is also adjusted in combination with the supersonic nozzle 1 to achieve the optimum spacing required for promoting the electrostatic discharge 4 of the triboelectrically-charged projectile particles 2 at the substrate 5.

In alternative embodiments of the present invention. referring now to FIG. 6, the lip 30 of the outer evacuator nozzle 24 is mounted in direct contact with the substrate 5. A gasket or o-ring seal 32 installed in a groove 33 of the lip 30 prevents the carrier gas 3 or environmentally hazardous materials from escaping into the air. In applications used to mill the substrate 5 or produce special nanoscale particles. this same gasket or o-ring seal 32 is used to prevent chemical attack or oxidation of the captured substrate materials 5 within the inert gaseous environment provided by the carrier 25 gas 3.

The materials of construction for both the inner supersonic nozzle 1 and the outer evacuator nozzle 24 are light weight metal, polymer, or composite materials which provide a light weight applicator capable of operating in any orientation and enhancing the triboelectric charging of the projectile particles 2. The inlet 15 of the inner supersonic nozzle 1 requires materials of construction with sufficient strength to safely contain the high pressure carrier gas 3.

FIG. 7. is a flow chart of the salient features and processes mechanical valves associated with the conventional powder 35 of the two-phase flow through the coating and ablation applicator with a debris recovery attachment. The process starts by injecting a carrier gas 3 at ambient temperature and at a sufficiently high regulated pressure into a conventional powder feeder 20. The carrier gas 3 with entrained projectile particles 2 are combined with an additional flow of carrier gas 3. Next, the high pressure carrier gas 3 with a sufficiently loaded concentration of projectile particles 2 are conveyed to the inlet 15 of the inner supersonic nozzle 1 via the high pressure hose 21. Triboelectric charging of the projectile particles 2 begins at this stage via particle rubbing in contact with the inner walls of the inner supersonic nozzle 1, the rubbing of particles on the triboelectric charging pads 13. and the charge induction provided by the a charging voltage source connected via feedthrough electrodes 14. The carrier gas 3 flows through the throat 16 of the inner supersonic nozzle 1 at the sonic speeds of the carrier gas 3 and begins to accelerate the entrained projectile particles 2 to the sonic speed of the carrier gas 3. At the same time, as the particles 2 rub against the inner walls of the supersonic nozzle 1 throat 16 or other triboelectric charging electrode pads, and the particles 2 are triboelectrically charged by rubbing contact and charge induction. Further expansion of the carrier gas 3 provided by the contour 7 of the inner supersonic nozzle 1 drives the carrier gas 3 to supersonic speeds and continues to accelerate the entrained triboelectricallycharged projectile particles 2 to speeds comparable to the supersonic speed of the carrier gas 3 over the length of the nozzle. This process forms a two-phase flow jet 6 which eventually impinges on the substrate 5 near outlet 17 of the inner supersonic nozzle 1. Electrostatic (triboelectric) discharges 4 occur at the substrate 5 which increases the total interaction energy of the collisional event and affects the

coating or ablation of the substrate 5. A portion of the carrier gas 3 in the boundary layer 10 of the inner supersonic nozzle 1 separates from the two phase flow jet 6, and is used to evacuate carrier gas 3 from the central core 19 of the two-phase flow jet 6 near the substrate 5. This evacuation is induced by the aspiration efficacy associated with rotating the boundary layer 10 of the carrier gas 3 through the Mach turning angle 11 at the outlet 17 of the inner supersonic nozzle 1. This aspiration provides the means for reducing the pressure of the carrier gas 3 near the central core 19 below ambient pressure which allows the projectile particles 2 to proceed unimpeded toward the substrate 5, and reduces the inlet 15 pressure levels required to achieve approximately parallel and shock-free flow, and reduces the convective heat losses at the substrate 5. Finally, the carrier gas 3 with excess projectile particles 2 and materials ablated from the substrate 15 5, is combined with additional ambient air evacuated through the air-bearing channel 26 and conveyed with a conventional suction blower associated with a conventional particle precipitator and filter unit 27 via the outer evacuator nozzle 24 and the low pressure discharge hose 28. The 20 evacuated carrier gas 3 is also recompressed and recycled within specific embodiments of this invention.

A nozzle applicator 34 (referring now to FIG. 8) for coating and ablating the internal surface of a cylinder bore substrate 35 is also disclosed as a special embodiment of this 25 invention. The nozzle applicator 34 is configured as an axisymmetric supersonic nozzle with a circumferential converging and diverging throat section 36 formed by connecting the lower plate 38 to the upper plate and tube 39 using mounting pins 40. The two-phase flow jet 6 containing the 30 triboelectrically-charged projectile particles 2 is injected into the inlet 41 of the nozzle applicator 34 to allow coating or ablation of the substrate 5 associated with the internal surface of the cylinder bore substrate 35. The materials of enhance the triboelectric charging of the projectile particles 2. These materials include metals, ceramics, plastics, or composites. In other embodiments of this invention, electrode pads 13 are installed on the inner surface of the nozzle applicator 34 at various locations for inducing triboelectric 40 charging or for applying a voltage source via electrical feedthrough 14 for charging the particles 2 via electrical induction, ion mobility or triboelectric mechanisms. The inlet 41 of the nozzle applicator 34 requires materials of high pressure carrier gas 3.

The length of the nozzle applicator 34 beyond the circumferential converging and diverging throat section 36 is adjusted and sized to achieve the proper spacing between the nozzle outlet 42 and the internal surface of the cylinder bore 50 substrate 35. This spacing is critical; 1) for achieving the proper fluid dynamic coupling, 2) for reducing the carrier gas 3 pressure below ambient, 3) for reducing the convective heat loss, and 4) for directing the triboelectrically-charged projectile particles 2 to the internal surface of a cylinder bore 55 substrate 35 so as to increase the electrostatic discharge interaction energy at the internal surface of a cylinder bore substrate 35.

Segmented sections of the nozzle applicator 34 in which the circumferential converging and diverging throat section 60 36 is periodically closed by deforming and attaching (e.g. by spot welding) the lower plate 38 to the upper plate and tube 39 at the narrowest part of the throat section 43 is also disclosed as an alternative embodiment of the nozzle applicator 34.

The process for coating or ablating the internal surface of the cylinder bore substrate 35 using the nozzle applicator 34

comprises translation and rotation of the nozzle applicator 34 up and down and circumferentially around the internal surface of a cylinder bore substrate 35. Techniques for depositing ribbed profiles or lubrication cavities on the internal surface of a cylinder bore substrate 35 is envisioned with appropriate control of the translation and rotation movements of the nozzle applicator 34. The simultaneous use of various types of triboelectrically-charged projectile particles 2 fed by a plurality of conventional powder feeders 20 is also disclosed as a method for creating functionally graded coatings by overlapping and interleaving the various layers to form coatings with unique material and physical properties. This functionally graded process is applicable to both the inner supersonic nozzle 1 and the nozzle applicator 34 of the disclosed coating and ablation applicators.

Techniques for cleaning or ablating the internal surface of a cylinder bore 35 is disclosed with suitable selection of the projectile particles 2, the carrier gas 3, and the appropriate control of the translation and rotation movements of the nozzle applicator 34. For example, in one particular embodiment, the carrier gas 3 may be selected as steam which when adiabatically expanded cools the steam to a sufficiently low temperature that ice crystals formed in the nozzle applicator 34 and are accelerated to speeds sufficiently high to impact and ablate the internal surface of the cylinder bore 35.

Examples of reducing this invention to practice are disclosed below wherein a brass supersonic nozzle and a plastic debris recovery attachment was fabricated into a laboratory version of the coating and ablation applicator with a debris recovery attachment. The brass supersonic nozzle for these experimental investigations was fabricated with a rectangular cross section having a throat dimension of approximately 1/16 inch×1/16 inch square with a rectangular outlet dimension of approximately 1/16 inch×5/15 inch. The converging section construction for the nozzle applicator 34 are designed to 35 of the brass nozzle was transitioned from a 1/4-inch NPT brass tube to the square throat section. The contour of the rectangular diverging section was shaped to yield a MACH 2-3 supersonic nozzle based on the area expansion for the isentropic flow process and the type of gas driven through the nozzle. This laboratory version of the coating and ablation applicator with a debris recovery attachment was tested using a variety of gases (e.g. argon, helium, and nitrogen), a broad class of metallic powder particles (e.g. aluminum, chromium, copper, nickel, tungsten, and zinc), a construction with sufficient strength to safely contain the 45 representative selection of nonmetallic powder particles (e.g. diamond powder, low density polyethylene, silicon carbide, teflon), and an assortment of substrates (e.g. aluminum, alumina ceramic, aluminum nitride ceramic, brass, copper, high density polyethylene, silicon, stainless spring steel, teflon, and tin). This research work demonstrated four fundamental applications of the coating and ablation applicator with a debris recovery attachment. 1) The metallization of metal, semiconductor, ceramic, polymer, and composite substrates referred to as kinetic energy metallization. 2) The deposition of polymers and nonmetallic powder particles onto metals, semiconductors, polymers, ceramics, and composites called kinetic energy polymerization. 3) The implantation of metal and nonmetal powder particles into polymers and composites referred to as kinetic energy implantation. 4) The ablation of metals, semiconductor wafers, polymers, ceramics, and composites with hard metallic and nonmetallic powder particles cited as kinetic energy ablation.

> Examples of kinetic energy metallization are outlined 65 below.

A zinc coating was deposited on brass by loading approximately 250 ml of zinc powder particles (7 micron diameter)

into a conventional Venturi powder feeder modified for high pressure operation. A compressed gas source of commercial grade nitrogen regulated down to a pressure of 150-200 psig was used to drive a conventional Venturi powder feeder and the inner supersonic nozzle. The inner supersonic nozzle was adjusted within the mounting struts of the debris recovery nozzle to a provide a nozzle exit-to-substrate gap of approximately 1/16 to 1/8 inch which was experimentally determined to be the optimum fluid dynamic coupling to reduce the exit pressure and to reduce the convective heat 10 losses at the substrate. The debris recovery attachment was connected to a conventional shop vacuum unit to recover the excess powder particles. A spot deposition of zinc onto a brass sheet was permitted to build up to a thickness of approximately 1/16 of an inch. During the deposition, electrostatic discharges occurring at the substrate were visually observed. In subsequent testing, an amplitude modulated conventional radio was use to qualitatively monitor the frequency of electrostatic discharges occurring during the deposition process. The zinc on brass sample was analyzed 20 with an scanning electron microscope, and the deposited zinc layer showed excellent bonding of the zinc powder to the brass with a distinct diffusional interface. Furthermore, the micrograph showed fine to ultra-fine microstructure within the zinc coating which was attributed to the combination of the triboelectric discharges occurring during deposition and the degree of powder particle melting which occurs during the impact collisions of the small diameter

A substrate rotational fixture, driven by a flexible driv- 30 eline powered by a variable speed electric drill, was interfaced to the coating and ablation applicator with a debris recovery attachment. This rotational fixture allowed thinner (e.g. on the order of a few hundred microns thick) zinc coatings to be deposited onto the brass substrate sheet over 35 a larger of area of approximately 0.5 to 1.0 square inches. Investigations of the zinc coating quality as a function of the rotation speed eventually led to the discovery that the coating material properties are influenced by the dwell time of the impacted region undergoing triboelectric discharge 40 and collisional impact. Stationary spot coatings with dwell times on the order of 10-20 seconds produced thick coatings (i.e. 1/16 inch thick) with a dark metallic color, while the rotation coatings with dwell times on the order of a milliseconds deposit a light metallic colored zinc coating (i.e. a 45 few hundred microns thick).

Aluminum coatings onto brass, tin, and steel were likewise produced by loading approximately 250 ml of 20 micron diameter aluminum powder particles in the conventional Venturi powder feeder modified for high pressure 50 operation. Spot coatings of aluminum were produced by driving the inner supersonic nozzle and powder feeder with a compressed gas source of commercial grade nitrogen regulated down to pressures of 450 psig.

Higher melting point coatings (e.g. chromium, copper, 55 nickel and tungsten) were deposited on aluminum (0.030 inch thick) and stainless spring steel (0.030 inch thick) by loading the conventional Venturi powder feeder modified for high pressure operation with approximately 250 ml of the respective powders. Generally the powders selected were in 60 the 1-3 micron diameter size, however the chromium and copper powders were also selected as large as 325 mesh powder. Tungsten (12 micron diameter) was also used for these experimental demonstrations of the invention. The velocities for depositing powders with high melting points and high specific heats were calculated (i.e. based on theoretical conversion of triboelectric and kinetic energy to heat

and inelastic particle deformation) to be in the range from 1000-1500 meters/second in order to achieve good coating efficiency. Ultra-thin coating depositions at velocities greater than 300 meters/second, but less than 1000 meters/ second performed by using compressed nitrogen at regulated pressures up to 500 psig were achieved, provided the dwell time of the nozzle over the collisionally impacted and triboelectrically discharged area was increased to compensate for the lower kinetic energy per particle. Obviously, the latter case resulted in a much lower deposition efficiency. and ultimately became an ablation process when the impact kinetic energy resulted solely in elastic collisions at the substrate. The best coatings of these high melting point and high specific heat materials (e.g. chromium, copper, nickel and tungsten) were achieved when compressed helium gas (commercial grade) regulated down to pressures in the range of 100-500 psig was used to drive both the inner supersonic nozzle and the conventional Venturi powder feeder modified for high pressure operation. This experimental investigation verified that the higher particle velocities (i.e. particle velocities accelerated in the helium gas having a speed of sound at least 2.8 times higher than that of nitrogen or air at a comparable temperature) were responsible for the improved coating efficiency. Once again, during the deposition of the chromium, copper, nickel and tungsten powders, electrostatic discharges occurring at the substrate were visually observed and monitored with an amplitude modulated conventional radio. Chromium, copper, nickel, and tungsten coating with thickness estimated to be in the range of 50-100 microns were deposited onto stainless spring steel using the rotation fixture described earlier. Finally, chromium, nickel, and tungsten coatings with estimated thickness up to 1500 microns were deposited onto stainless spring steel over areas of approximately 0.5 to 1.0 square inches.

While the initial depositions of the higher melting point powder materials onto stainless spring steel were quite pure, it was visually observed that later coatings of chromium, nickel, and tungsten onto stainless spring steel had a yellowish like color which when burnished showed an alloying of brass mixed with the higher melting point materials. Subsequent analysis of the tungsten coating deposited onto stainless spring steel with a fluorescence X-ray analyzer yield constituents of brass as well as tungsten. This experimental work led to the discovery disclosed in this invention, that an ablative nozzle could be use to generate alloy coatings. Stainless steel nozzles were designed and fabricated to reduce or eliminate the ablative process associated with brass nozzles.

Kinetic energy metallization of ceramics was also reduced to practice for the deposition of chromium onto alumina and aluminum nitride ceramic coupons (approximately 1/16 inch thick). For these tests, approximately 250 ml of 325 mesh chromium powder was loaded into the conventional Venturi powder feeder modified for high pressure operation. Compressed helium gas (commercial grade) regulated down to a pressure of 300 psig was used to drive both the powder feeder and the inner supersonic nozzle. Although some difficulties were encountered with uniformly feeding the chromium powder, thin (estimated to be less than 100 micron thick) chromium coatings were deposited on these ceramics over a 0.5-1.0 square inch area using the rotation fixture. Attempts to deposit aluminum, nickel, and tungsten onto the alumina and aluminum nitride ceramic coupons were only marginally successful, because the oxidation potential and multi-valent bonding chemistry between these elements and ceramics was not as favorable. More research

work will be required with ceramic coatings to match the particle velocities and the interface bonding properties. Deposition of functionally graded coatings using the coating and ablation applicator with a debris recovery attachment is expected to improve the quality of the metal-to-ceramic coatings and enable production of semiconductor substrates.

An example of kinetic energy implantation of polymers was also demonstrated with the coating and ablation applicator with a debris recovery attachment. In this case, approximately 250 ml of nickel powder (1-3 micron 10 diameter) was loaded into the conventional Venturi powder feeder modified for high pressure operation, and the nickel powder was implanted into a high density polyethylene substrate using compressed gas source of commercial grade nitrogen regulated down to a pressure of 100-125 psig. The 15 deposition over a 0.5-1.0 square inch area was achieved by rotating the high density polyethylene substrate sheet (approximately 3/16 inch thick) under the exit of the inner supersonic nozzle. Again, the excess particles were collected in the shop vacuum dust collector via the debris recovery attachment. Subsequently, the nickel samples implanted into the high density polyethylene sheet had 22-24 gauge multistrand electrical wires soldered to the nickel implants. Pull testing of the soldered wires demonstrated good adhesion of the nickel implanted samples. Electrical resistivity tests of the implanted nickel powders indicated qualitatively high resistance compared to metallic nickel. It is anticipated that more conductive coatings can be deposited onto these metalto-polymer foundation strips to achieve an environmentally compliant method for producing printed circuit boards. Other samples of copper powder (325 mesh) implanted into high density polyethylene were produced to demonstrate the broader applications of the kinetic energy implantation methods. Attempts to implant the nickel powders into telfon and PEEK plastic was not as successful, as these polymers 35 have some tendency to pyrolyze under the impact conditions. More research work will be required to select the appropriate particle size and velocity to enable implantation of a broad class of polymers.

Depositions of low density polyethylene powder particles 40 (estimated to be in the 50–100 micron range) onto aluminum and brass substrates were performed using the coating and ablation applicator with a debris recovery attachment to demonstrate the kinetic energy polymerization technique. In these experiments, approximately 250 ml of low density 45 polyethylene powder was loaded in the conventional Venturi powder feeder modified for high pressure operation, and deposits (estimated to be 100-200 microns thick) onto aluminum and brass substrates over areas ranging from 0.5-5 square inches were made. The gas used for these 50 deposits was compressed nitrogen (commercial grade) regulated down to 100 psig. Tape adhesion tests of the low density polyethylene depositions demonstrated excellent adhesion with no coating removal. Once again, the excess powders were collected with a conventional shop vacuum 55 cleaner via the debris recovery attachment.

Successful experiments were also performed to demonstrate nonmetallic depositions onto aluminum using 20 nanometer diamond powder in 3 micron agglomerations. In these tests, compressed helium gas (commercial grade) 60 regulated down to 250–450 psig range and, independently, compressed argon gas (commercial grade) regulated down to 250 psig was used to drive both the Venturi powder feeder and the inner supersonic nozzle of the coating and ablation applicator with a debris recovery attachment. In this case, 65 only approximately 100 ml of the diamond powder was available. Excellent diamond coatings (estimated to be 100

microns thick) were deposited onto the aluminum substrate (0.030 inch thick), as verified by passing the tape adhesion tests. These diamond coatings are expected to enable new methods of producing diamond film capacitors as well as abrasion resistance substrate surfaces.

Finally, the coating and ablation applicator with a debris recovery attachment was used to ablate the surface of a silicon wafer to demonstrate an improved technique for milling silicon wafers. For this ablation application, silicon carbide (400 mesh) powder was loaded into the Venturi powder feeder. Compressed nitrogen gas (commercial grade) regulated down to a pressure of 50 psig was used to drive both powder feeder and the inner supersonic nozzle. Initially, spot areas (approximately 1/8×1/4 inch) were ablated into the silicon wafers (20 mils thick) down to thickness of 3-5 mils. Scanning electron micrographs of the ablation regions showed no cracking of the substrate, although some smoothed pits were observed. Subsequently, the rotation fixture described above was used to rotate the silicon wafer under the inner supersonic nozzle at a gap spacing of approximately 1/16 to 1/8 inch. A ring approximately 1/8 inch wide and diameter of 34 inch was ablated down to a depth of approximately 10 mils out of the total thickness of 20 mils for the wafer. No cracking or fracture of the wafer occurred in the process. During all these tests, the silicon carbide powder particles and the ablated silicon particles were collected within the filter and debris recovery system of the conventional shop vacuum cleaner via the debris recovery nozzle. It is anticipated that this ablation method will enable an environmentally compliant technique for milling silicon wafers after installation of large scale integration circuits on the opposite side. This thin wafer technology is expected to enable faster computer electronic chips by improving the heat transfer from the chip to a coolant substrate.

The examples described above can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover in the appended claims all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above, and of the corresponding application(s), are hereby incorporated by reference.

What is claimed is:

- 1. An applicator for a substrate comprising:
- an inner nozzle for conveying, accelerating, and triboelectrically charging projectile particles entrained in a supersonic carrier gas to speeds sufficiently high to apply a treatment from the group consisting of coating and ablation to a surface of the substrate when impacted by a triboelectrically charged jet comprising a central core;
- an outer evacuator nozzle surrounding said inner nozzle, said outer evacuator nozzle forming a fluid dynamic coupling with said inner nozzle and the substrate to entrain and retrieve excess projectile particles and ablated substrate materials out through said evacuator nozzle; and
- a Mach turning angle between an exit of said inner nozzle and said substrate for aspiration of said central core when said carrier gas turns through said Mach turning angle; and

- wherein said fluid dynamic coupling aspirates said central core of said triboelectrically charged jet to gas pressures below a back-pressure of ambient gas pressure; and
- wherein said fluid dynamic coupling suspends said applicator on a gas bearing channel formed between said outer evacuator nozzle and said substrate by influx of carrier gas through said gas bearing channel.
- 2. The applicator of claim 1 wherein said outer evacuator nozzle comprises a mount in intimate contact with said 10 substrate.
- 3. The applicator of claim 2 wherein said mount comprises a gasket seal mounted in a lip of said outer evacuator nozzle.
- 4. The applicator of claim 1 wherein said inner nozzle $_{15}$ comprises means for adjusting spacing between an inner nozzle exit and said substrate.
- The applicator of claim 4 wherein said adjusting means comprises a telescoping barrel of said inner nozzle.
- 6. The applicator of claim 1 wherein said inner nozzle 20 comprises a contoured shape that provides approximately parallel and shock-free supersonic flow of said triboelectrically charged jet within said central core of said inner nozzle to projectile particle speeds sufficiently high to affect a treatment from the group consisting of coating or ablation of said substrate when coupled with an electrostatic discharge occurring at said substrate.
- 7. The applicator of claim 6 wherein said contoured shape is non-axisymmetric about an axis of a plane defined by a lip of said contoured shape.
- 8. The applicator of claim 1 wherein said projectile particles are at a supersonic speed when said projectile particles impact said substrate.
- 9. The applicator of claim 1 further comprising electrostatic electrode pads mounted on inner walls of said inner 35 nozzle wherein said electrostatic electrode pads are connected to an external voltage source.
- 10. An applicator for a cylinder bore substrate comprising:
 - an axisymmetric cylindrical nozzle configured to convey. 40 accelerate, and triboelectrically charge projectile particles entrained in a supersonic carrier gas to speeds sufficiently high to apply a treatment from the group consisting of coating and ablation to an internal surface of the cylinder bore substrate when impacted by a 45 evacuator nozzle. triboelectrically charged jet comprising a central core;
 - a tube comprising a circumferential converging and diverging throat section, said tube coupled to said nozzle and feeding said nozzle; and
 - wherein said axisymmetric cylindrical nozzle forms a Mach turning angle between an exit of said axisymmetric cylindrical nozzle and said internal surface of the cylinder bore substrate for aspiration of said central turning angle.
- 11. The applicator of claim 10 further comprising a fluid dynamic coupling to aspirate said central core of said triboelectrically charged jet to gas pressures below a backpressure of ambient gas pressure.
- 12. The applicator of claim 10 wherein said axisymmetric cylindrical nozzle comprises means for adjusting spacing between said axisymmetric cylindrical nozzle exit and said internal surface of the cylinder bore substrate.
- 13. The applicator of claim 10 wherein said axisymmetric 65 cylindrical nozzle comprises a contoured shape that provides approximately parallel and shock-free supersonic flow of

said triboelectrically charged jet within said central core of said axisymmetric cylindrical nozzle at projectile particle speeds sufficiently high to affect a treatment from the group consisting of coating and ablation of said internal surface of the cylinder bore substrate when coupled with an electrostatic discharge occurring at said internal surface of the cylinder bore substrate.

14. The applicator of claim 10 further comprising electrostatic electrode pads mounted on inner walls of said axisymmetric cylindrical nozzle wherein said electrostatic electrode pads are connected to an external voltage source.

15. The applicator of claim 10 wherein segmented sections are formed within said circumferential converging and diverging throat by periodically closing said throat section.

16. An applicator for a substrate comprising:

- an inner nozzle for conveying, accelerating, and triboelectrically charging projectile particles entrained in a carrier gas to supersonic speeds sufficiently high to apply a treatment from the group consisting of coating and ablation to a surface of the substrate when impacted by a triboelectrically charged jet comprising a central core; and
- an outer evacuator nozzle surrounding said inner nozzle. said outer evacuator nozzle forming a fluid dynamic coupling with said inner nozzle and the substrate to entrain and retrieve excess projectile particles and ablated substrate materials out through said evacuator
- 17. The applicator of claim 16 wherein said fluid dynamic coupling aspirates said central core of said triboelectrically charged jet to gas pressures below a back-pressure of ambient gas pressure.
- 18. The applicator of claim 16 further comprising a Mach turning angle between an exit of said inner nozzle and said substrate for aspiration of said central core when said carrier gas turns through said Mach turning angle.
- 19. The applicator of claim 16 wherein said fluid dynamic coupling suspends said applicator on a gas bearing channel formed between said outer evacuator nozzle and said substrate by influx of carrier gas through said gas bearing channel.
- 20. The applicator of claim 16 wherein said outer evacuator nozzle comprises a mount in intimate contact with said
- 21. The applicator of claim 20 wherein said mount comprises a gasket seal mounted in a lip of said outer
 - 22. The applicator of claim 16 wherein said inner nozzle comprises means for adjusting spacing between an inner nozzle exit and said substrate.
- 23. The applicator of claim 22 wherein said adjusting 50 means comprises a telescoping barrel of said inner nozzle.
- 24. The applicator of claim 16 wherein said inner nozzle comprises a contoured shape that accelerates said triboelectrically charged jet within said central core of said inner nozzle to projectile particle speeds sufficiently high to affect core when said carrier gas turns through said Mach 55 a treatment from the group consisting of coating or ablation of said substrate when coupled with an electrostatic discharge occurring at said substrate.
 - 25. The applicator of claim 24 wherein said contoured shape is no-axisymmetric about an axis of a plane defined by 60 a lip o said contoured shape.
 - 26. The applicator of claim 16 further comprising electrostatic electrode pads mounted on inner walls of said inner nozzle wherein said electrostatic electrode pads are connected to an external voltage source.
 - 27. A process for applying a treatment from the group consisting of coating and ablation to a substrate comprising the steps of:

- a. providing a substrate;
- b. providing an applicator comprising:
 - an inner nozzle for conveying, accelerating, and triboelectrically charging projectile particles entrained in a carrier gas to supersonic speeds sufficiently high to apply a treatment from the group consisting of coating and ablation to a surface of the substrate when impacted by a triboelectrically charged jet comprising a central core; and
 - an outer evacuator nozzle surrounding said inner 10 nozzle, said outer evacuator nozzle forming a fluid dynamic coupling with said inner nozzle and the substrate to entrain and retrieve excess projectile particles and ablated substrate materials out through said evacuator nozzle; and
- c. discharging projectile particles entrained in a supersonic carrier gas from said applicator and to a surface of the substrate.
- 28. The process of claim 27 wherein said projectile group consisting of metallic materials, metallic alloy materials, nonmetallic materials and mixtures thereof.
- 29. The process of claim 28 wherein said projectile particles comprise a mixture of materials applied by switching from one type of material to another type of material to create interleaved coating layers.

- 30. The process of claim 28 wherein the projectile particles are generated using a sacrificial ablative nozzle comprising a material selected from the group consisting of metallic materials, metallic alloy materials, nonmetallic materials and mixtures thereof.
- 31. The process of claim 27 wherein the carrier gas comprises at least one member selected from the group consisting of air, nitrogen, argon, helium, hydrogen, oxygen. steam, sulfur hexafluoride, and mixtures thereof.
- 32. The process of claim 27 further comprising the step of aspirating said central core of said triboelectrically charged jet to gas pressures below a back-pressure of ambient gas pressure.
- 33. The process of claim 27 further comprising the step of adjusting the spacing between said inner nozzle exit and said substrate.
- 34. The process of claim 27 further comprising the step of providing approximately parallel and shock-free supersonic particles comprise at least one member selected from the 20 flow of the triboelectrically charged jet within said central core of said inner nozzle at projectile particle speeds sufficiently high to affect coating or ablation of said substrate when coupled with simultaneous electrostatic discharge occurring at said substrate.