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An integrated circuit includes fuse readout logic and first and 
second sets of fuses. One of the sets includes one or more 
primary fuses whose burn states represent respective bit val 
ues, and the other of the sets includes one or more secondary 
fuses whose burn states are indicative of the bit values stored 
in the primary fuses. The fuse readout logic is configured to 
read the bit values by sensing the burn states of the primary 
fuses, and to conditionally correct the read bit values by 
sensing the burn states of one or more of the secondary fuses. 
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1. 

RELIABLE READOUT OF FUSE DATA IN AN 
INTEGRATED CIRCUIT 

PRIORITY INFORMATION 

This application claims priority to U.S. patent application 
Ser. No. 14/269,833, entitled “Reliable Readout of Fuse Data 
in an Integrated Circuit filed May 5, 2014, which is hereby 
incorporated by reference in its entirety as though fully and 
completely set forth herein. 

TECHNICAL FIELD 

The embodiments described herein relate generally to inte 
grated circuits, and particularly to methods and systems for 
reading data stored in fuses. 

BACKGROUND 

Some integrated circuits (ICs) comprise one or more fuses 
for storing unchanging data. Fuses can store data bits whose 
values correspond to whether the fuses are burned or not. 
Various methods for storing data in fuses within Integrated 
Circuits (ICs) are known in the art. For example, U.S. Patent 
Application Publication 2013/0322149, whose disclosure is 
incorporated herein by reference, describes a memory device 
that includes a memory cell array and a fuse device. The fuse 
device includes a fuse cell array and a fuse control circuit. The 
fuse cell array includes a first fuse cell sub-array which stores 
first data associated with operation of the fuse control circuit, 
and a second fuse cell sub-array which stores second data 
associated with operation of the memory device. The fuse 
control circuit is electrically coupled to the first and second 
fuse cell Sub-arrays, and is configured to read the first and 
second data from the first and second fuse cell Sub-arrays, 
respectively. 

U.S. Patent Application Publication 2012/0188830, whose 
disclosure is incorporated herein by reference, describes a 
semiconductor memory device and a method for operating 
the memory device. The semiconductor memory device 
includes a first anti-fuse array having a plurality of first anti 
fuse elements that store first fuse data, a second anti-fuse 
array having a plurality of second anti-fuse elements that 
store error correction code (ECC) data associated with the 
first fuse data. An ECC decoder is configured to generate 
second fuse data by correcting the first fuse data using the 
ECC data. 

U.S. Pat. No. 7.266,025, whose disclosure is incorporated 
herein by reference, describes a semiconductor integrated 
circuit, in which fuse data is Supplied to each of a plurality of 
function blocks through a transfer path using shift registers. A 
decoder is arranged in the transfer path of the fuse data, and 
encoded data is stored in the fuse elements. 

SUMMARY OF THE EMBODIMENTS 

An embodiment provides an integrated circuit that 
includes fuse readout logic and first and second sets of fuses. 
One of the sets includes one or more primary fuses whose 
burn states represent respective bit values, and the other of the 
sets includes one or more secondary fuses whose burn states 
are indicative of the bit values stored in the primary fuses. The 
fuse readout logic is configured to read the bit values by 
sensing the burn states of the primary fuses, and to condition 
ally correct the read bit values by sensing the burn states of 
one or more of the secondary fuses. 
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2 
In some embodiments, the burn states of the secondary 

fuses duplicate the respective burn states of the primary fuses. 
In other embodiments, the fuse readout logic is configured to 
randomly select one of the first and second sets of fuses to 
serve as the primary fuses, and to select the other set of fuses 
to serve as the secondary fuses. In yet other embodiments, the 
fuse readout logic is configured to conditionally correct the 
read bit values by identifying one or more of the primary fuses 
that are in a non-burned State, and sensing only the secondary 
fuses whose burn states duplicate the burn states of the iden 
tified primary fuses. 

In an embodiment, the bit values include data bits and 
redundancy bits that are indicative of errors in the data bits, 
and the fuse readout logic is configured to read the bit values, 
including the redundancy bits, and to sense the secondary 
fuses only when the redundancy bits indicate one or more 
errors in the data bits. In another embodiment, the redundancy 
bits include a Berger code that is calculated over the data bits. 
In yet another embodiment, the fuse readout logic is config 
ured to correct the read bit values by combining sense results 
of the one or more of the secondary fuses with the bit values 
read from the primary fuses. 

In some embodiments, the fuse readout logic is configured 
to combine the sense results with the bit values by performing 
a bitwise logical OR operation. 

There is additionally provided, in accordance with another 
embodiment, a method including, in an integrated circuit that 
includes first and second sets of fuses, one of the sets includ 
ing one or more primary fuses whose burn states represent 
respective bit values and the other of the sets including one or 
more secondary fuses whose burn states are indicative of the 
bit values stored in the primary fuses, reading the bit values by 
sensing the burn states of the primary fuses. The read bit 
values are conditionally corrected by sensing the burn states 
of one or more of the secondary fuses. 

These and other embodiments will be more fully under 
stood from the following detailed description, taken together 
with the drawings in which: 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram that schematically illustrates a 
storage system in which data is stored in fuses, in accordance 
with an embodiment; and 

FIGS. 2-4 are flow charts that schematically illustrate 
methods for reading data stored in fuses, in accordance with 
three embodiments. 

DETAILED DESCRIPTION OF EMBODIMENTS 

Overview 

Some Integrated Circuits (ICs) store data that does not 
change during the lifetime of the IC. Such unchanging data 
may comprise identification data, configuration data, and the 
like. ICs can store constant data, for example, using one or 
more fuse elements. A fuse element can typically be config 
ured or programmed to one of two states according to its burn 
state. A fuse typically starts in a non-burned State, and can be 
selectively programmed to a burned State during production 
of the IC. A fuse is capable of storing a single data bit that 
represents its burn state (or simply state for brevity), and thus, 
a set of N fuses can store N data bits. The data stored in fuses 
is referred to herein as “fuse data'. 
The data to be stored infuses is typically determined during 

production. For example, during the production of some 
memory devices, configuration data, Such as calibration data 
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regarding timing optimization of the input/output bus of the 
memory device, is determined and stored in one or more fuses 
on the memory device, and/or on a memory controller that 
manages the device. The memory device may read the con 
figuration data from the fuses when needed. Such as, for 5 
example, on power-up, and apply the configuration accord 
ingly. 
Some fuses comprise a passive element, (e.g., a resistive 

element), whose state relates to its impedance. Prior to burn 
ing, the fuses typically comprise low impedance, and when 
burned, the impedance of the fuse typically increases signifi 
cantly or the fuse becomes non-conductive. 

To read the data bit value stored in a fuse, the IC typically 
senses the state of the fuse, for example, by evaluating some 
physical quantity that is related to the impedance of the fuse 15 
(e.g., the level of the electrical current that flows through the 
fuse). In the description that follows we assume that the IC 
assigns a 1 bit to the non-burned (low impedance) state and 
a 0 bit to the burned (high impedance) state. In alternative 
embodiments, however, the IC can assign a 1 bit to the 
burned state and a '0' bit to the non-burned state. 

The reliability of reading the fuse data typically depends on 
the State to which the fuse is programmed. In contrast to 
burned fuses that retain their high impedance value through 
out the lifetime of the IC, the impedance (and therefore the 
sensed state) of non-burned fuses may change over time and 
usage. For example, although at first sensing the low imped 
ance of the non-burned fuse is reliable, after reading the fuse 
a certain number of times (e.g., on the order of 1-2 million), 
the reading reliability typically degrades, as the impedance of 
the fuse increases to a level that can be erroneously inter 
preted as the high impedance state. This degradation in read 
ing reliability is referred to herein as an “aging effect”. 

Note that since the aging effect refers mainly to non-burned 
fuses, errors in the read fuse data are typically asymmetrical 
and largely unidirectional. In other words, reading a 1 bit 
indicates a non-burned state with high reliability, whereas 
reading a 0 bit may erroneously indicate that the fuse is 
burned even though the fuse was never burned, but after 
applying a large number of read operation its impedance has 
increased and is now sensed as the high impedance state. The 
extent of asymmetry typically increases over the lifetime of 
the IC. 

In principle, to increase the reliability of reading fuse data, 
the IC can be configured to store duplicate copies of the fuse 
data in two or more fuse arrays, and upon reading, to derive 
the fuse data by combining the data read from the duplicate 
copies. Since, however, reading each of the fuses involves a 
separate sensing operation, the overall reading time and 
power consumption increases linearly with the number of 50 
fuses and duplicates. Moreover, since in each reading opera 
tion of the fuse data the IC reads the fuses of all the duplicates, 
all the fuse arrays undergo a similar number of reading opera 
tions and therefore Suffer a similar aging effect. 

Embodiments that are described herein provide improved 
methods and systems for reading fuse data. In the disclosed 
techniques the fuse data is stored in a fuse array denoted F1 
and is duplicated in another fuse array denoted F2. Thus, each 
fuse in F2 has a corresponding fuse in F1, programmed to the 
same burn state. 

Since (as explained above) reading 1 is assumed reliable 
and only 0 bits may be erroneous, in some embodiments the 
IC first reads the fuses in F1 and identifies F1 fuses that are in 
the burned state (a 0 bit in the convention used herein). The 
IC then reads only the fuses in F2 that correspond to the fuses 
identified as burned in F1. For the fuses read from both F1 and 
F2, the IC derives the final fuse data by performing a bitwise 
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4 
logical OR operation between the data bits read from F1 and 
from F2. For the other fuses, the data bits read from F1 (which 
are all '1's) serve as the final fuse data. 

In another embodiment, instead of consistently starting 
with reading the fuses of F1, the IC randomly selects (typi 
cally with equal probabilities) which of the fuse arrays F1 or 
F2 to start with. Then, similarly to the previous embodiment, 
the IC derives the fuse data by reading the fuses of the selected 
fuse array, and a subset of the fuses of the other array that 
correspond to fuses in the selected array that read a 0 bit. 
Since in this scheme the IC starts with each of the fuse arrays 
about half of the times, the number of reading operations 
before the aging effect becomes significant approximately 
doubles. 

In yet another embodiment, in addition to storing the data 
bits, fuse array F1 comprises one or more additional fuses that 
store redundancy bits of an Error Correction Code (ECC) or 
Error Detection Code (EDC) computed over the data bits. In 
Some embodiments, the code comprises a Berger code, which 
can detect any number of unidirectional errors in the data bits. 
The IC first reads the F1 fuses including the redundancy bits 
and checks for errors. If the code detects no errors, the data 
read from F1 is assumed reliable and output as the read fuse 
data. Otherwise, the IC identifies F1 fuses that read a 0 bit, 
and reads the corresponding F2 fuses. 

In the disclosed techniques, instead of reading both fuse 
arrays per each reading operation of the fuse data, the IC reads 
one of the fuse arrays or part thereof only conditionally, to 
correct the data read from the other array as needed. As a 
result, the average number of sense operations per fuse data 
bit, and therefore the duration of reading the fuse data and the 
power consumption, reduces. Additionally, the number of 
reading operations that can be applied before the reading 
reliability degrades increases considerably. The embodi 
ments described herein refer to two fuse arrays, but the dis 
closed techniques are applicable to any Suitable number of 
fuse arrays. 

System Description 

FIG. 1 is a block diagram that schematically illustrates a 
storage system 20 in which constant data is stored in fuses, in 
accordance with an embodiment. System 20 can be used in 
various host systems and devices, such as in computing 
devices, cellular phones or other communication terminals, 
removable memory modules, Solid State Drives (SSD), digi 
tal cameras, music and other media players and/or any other 
system or device in which data is stored and retrieved. In 
alternative embodiments, system 20 may comprise any other 
suitable Integrated Circuit (IC), or multiple ICs, that store at 
least Some constant data in fuses. 

In the example of FIG. 1, system 20 comprises a memory 
controller 24, which stores data in a memory device 32 and 
retrieves data stored in the memory device. The memory 
controller comprises a processor 28 that carries out the vari 
ous tasks of the controller. Memory device 32 stores the data 
received from the memory controller in a memory cell array 
36. The memory array comprises multiple memory cells, 
Such as, for example, analog memory cells of any Suitable 
type. The memory controller communicates with the memory 
device over a bus 30. 

In the example of FIG. 1, memory device 32 comprises a 
reading/writing (R/W) unit 40, which converts data for stor 
age in the memory device to storage values and writes them 
into the memory cells. When reading data out of array 36, 
R/W unit 40 converts the storage values of the memory cells 
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into digital samples (also referred to as alphabet symbols) 
having a resolution of one or more bits. 

In some embodiments, memory device 32 operates accord 
ing to certain configuration data stored in a configuration data 
unit 44. In some embodiments, the configuration data com 
prises calibration data that may be determined during produc 
tion. For example, the configuration data may comprise a 
configuration that optimally calibrates the timing skew 
among data, address, and control signals delivered over bus 
30. Alternatively or additionally, the configuration data may 
comprise any other suitable data that is part of the device 
configuration. 
Memory device 32 further comprises two fuse arrays 48A 

and 48B, denoted F1 and F2, respectively, and fuse readout 
logic 52. Each of the fuse arrays 48A and 48B comprises one 
or more fuses for storing constant data. Typical data that can 
be stored in fuses may comprise, for example, boot configu 
ration data, information regarding faulty memory locations in 
SRAM that have been substituted with functional memory 
locations, and/or various production related data. 

In the description that follows, fuse readout logic is also 
referred to as logic 52 for brevity. When requested (e.g., at 
power-up), logic 52 is configured to read fuse data that was 
programmed (e.g., at production) in the fuse arrays. 

Fuse programming is typically done during the production 
of the IC. In some embodiments, prior to programming, the 
fuses in F1 and F2 comprise low impedance values, which 
represent the storage of a 1 bit. While programming the 
fuses in F1 and F2, fuses that should store a 1 data bit are 
retained in the non-burned (low impedance) state, and the 
fuses that should store a '0' data bit are programmed to the 
burned (high impedance) state. 
When reading data stored in one of the fuse arrays F1 or F2, 

fuse logic 52 evaluates the states to which the respective fuses 
were programmed. For example, logic 52 can sense the 
impedance values of the fuses, or some other Suitable physi 
cal quantities that relate to the impedance, Such as, for 
example, the levels of the electrical currents that flow through 
the fuses. Logic 52 transforms the value of the sensed imped 
ance or current into a respective binary value 0 or 1. 

Logic 52 further comprises logic that combines the data 
read from F1 and from F2 to derive the final read fuse data. 
The combining logic may perform a bitwise logical OR 
operation, a majority Vote operation, or any other Suitable 
operation between the bits read from the corresponding fuses 
in F1 and F2. 

Fuse readout logic 52 can deliver the read fuse data to 
memory controller 24, to memory array 36, or to configura 
tion data unit 44. In some embodiments, the fuse data com 
prises configuration data that logic 52 reads from the fuse 
arrays on power-up, and stores in configuration data unit 44. 
As explained above, repetitive operations of sensing the 

states of the fuses degrades the reading reliability and may 
result in erroneous fuse data. Various techniques for reading 
the fuse data with reduced error rate are described further 
below. In the disclosed techniques, one of the fuse arrays 
stores certain fuse data, and the other fuse array stores redun 
dancy data, Such as, for example, a copy or duplicate of the 
fuse data. To read the fuse data back, logic 52 does not read 
the entire data stored in F1 and F2, but senses the states of a 
subset of the fuses in one fuse array based on the readout 
result of the other fuse array. Example embodiments for read 
ing the fuse data are described below with reference to FIGS. 
2-4. 
Some or all of the elements of memory controller 24, may 

be implemented in hardware. Alternatively, the memory con 
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6 
troller may comprise a microprocessor that runs Suitable soft 
ware, or a combination of hardware and software elements. 
The configuration of FIG. 1 is an example memory system 

configuration, which is shown purely for the sake of concep 
tual clarity. Any other Suitable memory (or other) system 
configuration can also be used. Elements that are not neces 
sary for understanding the principles, such as various inter 
faces, addressing circuits, timing and sequencing circuits and 
debugging circuits, have been omitted from the figure for 
clarity. Although FIG. 1 shows a single memory device 32 for 
the sake of clarity, in alternative embodiments a single 
memory controller may control multiple memory devices 32. 

Further alternatively, system 20 may comprise any other 
suitable IC other than memory device 32, or multiple ICs, that 
store constant data infuses. The ICS may be controlled, or not, 
by some suitable controller other than memory controller 24. 

In the exemplary system configuration shown in FIG. 1, 
memory controller 24 and memory device 32 are imple 
mented as two separate Integrated Circuits (ICs). In alterna 
tive embodiments, however, the memory device and the 
memory controller may be integrated on separate semicon 
ductor dies in a single Multi-Chip Package (MCP) or System 
on Chip (SoC), and may be interconnected by an internal bus. 
Further alternatively, some or all of the memory controller 
circuitry may reside on the same die on which the memory 
array is disposed. Further alternatively, some or all of the 
functionality of memory controller 24 can be implemented in 
software and carried out by a processor or other element of the 
host system (not shown). 

In some embodiments, memory controller 24 comprises a 
general-purpose processor, which is programmed in software 
to carry out the functions described herein. The software may 
be downloaded to the processor in electronic form, over a 
network, for example, or it may, alternatively or additionally, 
be provided and/or stored on tangible media, such as mag 
netic, optical, or electronic memory. 

In an embodiment, memory device 32 does not comprise a 
separate configuration data unit 44. In such an embodiment, 
the configuration data read by logic 52 from the fuse arrays 
can be stored in memory array 36, or used directly to config 
ure the memory device. 

In some embodiments, some of the elements that in the 
system of FIG. 1 reside within memory device 32, are imple 
mented as part of memory controller 24. For example, con 
figuration data unit 44, fuse arrays 48A and 48B, and/or fuse 
readout logic 52 may reside on memory controller 24. In Such 
embodiments, implementing the functionality of fuse readout 
logic 52 can be done inhardware, Software, or in combination 
of hardware and software. 

Although system 20 stores fuse data in two fuse arrays F1 
and F2, in alternative embodiments, any other number of fuse 
arrays, can also be used. The fuse arrays (or a Subset thereof) 
may store duplicate or different fuse data. In an example 
embodiment comprising multiple fuse arrays, one or more of 
the fuse arrays store the fuse data, and one or more other fuse 
arrays store any Suitable redundancy data, Such as, for 
example, a bitwise inverse version of the fuse data. 

Methods for Reading Fuse Data 

FIGS. 2-4 are flow charts that schematically illustrate 
methods for reading data stored in fuses, in accordance with 
three embodiments. The methods of FIGS. 2-4, are described 
as carried out by fuse readout logic 52. In alternative embodi 
ments, these methods can be carried out by other elements 
within memory device 32, and/or by memory controller 24. 
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In the description that follows, we assume an N-bit fuse 
data with similar prevalence of 0 and 1 bits. The fuse data 
is stored duplicated in two N-fuse arrays (i.e., 2-N fuses in 
total). We additionally assume a reference reading scheme in 
which reading the fuse data involves reading all the 2-N fuses. 
We further assume that the reliability of fuse reading degrades 
significantly only after applying NR or more fuse sense 
operations. Thus, for the reference reading scheme, the num 
ber of fuse data read operations that can be applied before the 
reading reliability degrades equals NR, and the average num 
ber of fuse sense equals two operations per fuse data bit. 

The method of FIG. 2 begins with logic 52 reading the data 
bits stored in the fuses of the F1 fuse array, at an F1 reading 
step 100. At an F2 reading step 104, logic 52 reads only the 
fuses in F2 that correspond to fuses in F1 that read a 0 bit at 
step 100. At a fuse data determination step 108, logic 52 
combines the data bits read at steps 100 and 104, to derive the 
final read fuse data. 

In some embodiments, logic 52 derives the final fuse data 
by outputting the 1 bits read at step 100, and the bits result 
from applying a bitwise logical OR operation between the 
data bits read from F2 at step 104 and the corresponding bits 
read from F1 at step 100. For this embodiment, since the 
prevalence of 0 and 1 is similar and as a result logic 52 
reads only about half of the F2 fuses, the average number of 
fuse sense operations per fuse data bit equals 1.5. In addition, 
the number of fuse data read operations that can logic 52 can 
apply before the reading reliability degrades equals NR. 

Alternatively, the memory device comprises multiple fuse 
arrays F1 . . . FM that store MD-2 duplicates of the N-bit fuse 
data. In such embodiments, logic 52 reads at step 104 only a 
subset of the fuses in F2 ... FN that correspond to fuses in F1 
that read a “0” bit at step 100. Then, at step 108, logic 52 
performs bitwise logical OR or a majority vote decision 
among the respective bits read from F1 ... FM. 
The method of FIG.3 is similar to the method of FIG.2, but 

instead of consistently starting with reading F1, logic 52 
randomly selects the first fuse array to read from. The method 
begins with logic 52 selecting F1 or F2 randomly, e.g., with 
equal probabilities, at a selection step 130. Logic 52 may use 
any suitable method to randomize the selection, e.g., by using 
a pseudo-random binary sequence generator. In alternative 
embodiments, at step 130, instead of selecting randomly, 
logic 52 selects F1 and F2 alternately, or according to a 
predefined sequence in which F1 and F2 appear an equal (or 
similar) number of times. 
At a first fuse array reading step 134, logic 52 reads the data 

bits from the fuse array that was selected at step 130. At a 
second fuse array reading step 138, logic 52 reads only the 
fuses of the array that was not selected at step 130, and that 
correspond to those fuses that read 0 at step 134. At a 
combining step 142, logic derives the final read fuse data, 
similarly to step 108 in the method of FIG. 2 above. 

In the embodiment of FIG. 3, (similarly to the embodiment 
in FIG. 2) the average number of fuse sense operations per 
fuse data bit equals 1.5. The number of fuse data read opera 
tions that can be applied before the reading reliability 
degrades increases, however, from NR in the embodiment of 
FIG. 2, to 2-NR. 

In the method of FIG. 4, we assume that the F1 fuse array 
comprises two Sub-arrays. One Sub-array stores the fuse data, 
and the other sub-array stores redundancy bits, to be used for 
detecting and/or correcting errors in the fuse data upon read 
ing. The redundancy bits may comprise an Error Correction 
Code (ECC) or an Error Detection Code (EDC) calculated 
over the fuse data. In the example of FIG. 4, F2 stores a copy 
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8 
of the fuse data. Alternatively, F2 can store any other suitable 
redundancy data for correcting the fuse data read from F1. 

Logic 52 can use any suitable ECC or EDC, such as, for 
example, a Hamming code or a Cyclic Redundancy Code 
(CRC). In some embodiments, the code comprises a Berger 
code, which can detect any number of unidirectional errors 
(e.g., Such as in fuses in which a non-burned state can be 
erroneously indicate a burned State, but an error of the oppo 
site direction is unlikely) in the fuse data. For N bits of data, 
the Berger code comprises log(N) bits. In general, codes that 
can correct up to tunidirectional errors and detect any number 
of unidirectional errors are also referred to as t-UEC/AUED 
codes. 
The method of FIG.4 begins with logic 52 reading the fuse 

data from the F1 at a data reading step 170. Logic 52 addi 
tionally reads the respective ECC/EDC bits from F1, at an 
ECC/EDC reading step 174. In some embodiments, steps 170 
and 174 comprise a unified step. At an error detection step 
178, logic 52 checks whether the data read at step 170 con 
tains any errors. Ifat step 178 logic 52 detects one or more 
errors, logic 52 reads only the fuses in F2 that correspond to 
F1 fuses that read 0 at step 170, at a selective reading step 
182. 
At a combining step 184, logic 52 derives the final readfuse 

data from the F1 bits read at step 174, and from F2 bits if read 
at step 182. The combining operation at step 184 is similar to 
the one described at step 108 above. 

Note that as long as reading the fuses in the F1 array is 
reliable, logic 52 detects no errors at step 178 and therefore 
skips step 182. This is in contrast to the methods of FIGS. 2 
and 3. in which logic 52 typically reads fuses from both F1 
and F2. In the method of FIG.4, when the fuse data comprises 
N bits and the EDC comprises a Berger code, the average 
number of sense operations per bit equals 1+log2(N)/N, 
which approaches unity as N increases. 

Table 1 summarizes the performances of the reference 
scheme and the three embodiments described in FIGS. 2-4 
according to two performance metrics. Metric 1 refers to the 
average required number of fuse sense operations per fuse 
data bit (when reading the fuse data is still reliable). Metric 2 
refers to the number of fuse data read operations that can be 
applied before the reading reliability starts to degrade. 

TABLE 1 

Embodiment 
Performance metric Reference FIG. 2 FIG. 3 FIG. 4 

Metric 1 2 1.5 1.5 1 + logo (N)/N 
Metric 2 NR NR 2. NR NR 

The configurations described in the embodiments above 
are exemplary, and any other Suitable configurations can also 
be used. For example, although in the disclosed embodiments 
fuse data is stored duplicated in two fuse arrays, the disclosed 
techniques are applicable to any suitable number of fuse 
arrays. For example, in an embodiment, configuration data 
whose reliability is critical for proper configuration of the IC 
may be duplicated in more than two fuse arrays. 
As another example, in the method of FIG. 4, instead of 

using an error detection code, logic 52 can use an error cor 
rection code. Logic 52 skips step 182 when the data read from 
F1 contains no errors, or when all the errors are correctable by 
the ECC. 

Although the embodiments in FIGS. 2-4 above are pre 
sented separately, various elements of one or more of the 
embodiments can be combined. For example, in the embodi 
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ment of FIG.4, instead of reading F1 at step 170, logic 52 can 
randomly select to read F1 or F2 data bits similarly to step 130 
in the embodiment of FIG. 3. At the subsequent steps, the 
selected array replaces F1, and the non-selected array 
replaces F2. 
The techniques disclosed above refer to reading fuse data 

stored in fuse elements. Alternatively or additionally, the 
disclosed techniques can be used, mutatis mutandis, with 
anti-fuse elements, which in contrast to fuses start in a high 
impedance state and can be selectively programed to a low 
impedance state. 

It will be appreciated that the embodiments described 
above are cited by way of example, and that the embodiments 
are not limited to what has been particularly shown and 
described hereinabove. Rather, the scope of the present dis 
closure includes both combinations and Sub-combinations of 
the various features described hereinabove, as well as varia 
tions and modifications thereof which would occur to persons 
skilled in the art upon reading the foregoing description and 
which are not disclosed in the prior art. Documents incorpo 
rated by reference in the present patent application are to be 
considered an integral part of the application except that to the 
extent any terms are defined in these incorporated documents 
in a manner that conflicts with the definitions made explicitly 
or implicitly in the present specification, only the definitions 
in the present specification should be considered. 

The invention claimed is: 
1. An apparatus, comprising: 
a first fuse array; 
a second fuse array; 
circuitry configured to: 

read a first set bit values from the first fuse array: 
read a set of redundancy bit values from the first fuse 

array; 
check the first set of bit values for errors dependent upon 

the set of redundancy bit values; and 
read at least one bit value from the second fuse array in 

response to a determination that at least one error is 
present in the first set of bit values. 

2. The apparatus of claim 1, wherein the circuitry is further 
configured to generate a final set of data bits dependent upon 
the first set of bit values and the at least one bit value from the 
second fuse array. 

3. The apparatus of claim 2, wherein to generate the final 
set of data bits dependent upon the first set of bit values and 
the at least one bit values from the second fuse array, the 
circuitry is further configured to perform a bitwise logical 
OR operation. 

4. The apparatus of claim 1, wherein the set of redundancy 
bit values include an Error Correction Code (ECC). 

5. The apparatus of claim 1, wherein the set of redundancy 
bit values include an Error Detection Code (EDC). 

6. The apparatus of claim 1, wherein to read the at least one 
bit value from the second fuse array, the circuitry is further 
configured to read the at least one bit value from the second 
fuse array in response to a determination that a corresponding 
bit value from the first set of bit values has a value of 0. 
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7. A method, comprising: 
reading a first set bit values from a first fuse array; 
reading a set of redundancy bit values from the first fuse 

array; 
checking the first set of bit values for errors dependent 
upon the set of redundancy bit values; and 

reading at least one bit value from a second fuse array in 
response to a determination that at least one error is 
present in the first set of bit values. 

8. The method of claim 7, further comprising generating a 
final set of data bits dependent upon the first set of bit values 
and the at least one bit value from the second fuse array. 

9. The method of claim 8, wherein generating the final set 
of data bits dependent upon the first set of bit values and the 
at least one bit value from the second fuse array includes 
performing a bitwise logical-OR operation. 

10. The method of claim 7, wherein the set of redundancy 
bit values include an Error Correction Code (ECC). 

11. The method of claim 7, wherein the set of redundancy 
bit values include an Error Detection Code (EDC). 

12. The method of claim 7, wherein reading the at least one 
bit value from the second fuse array includes reading the at 
least one bit value from the second fuse array in response to a 
determination that a corresponding bit value from the first set 
of bit values has a value of 0. 

13. The method of claim 7, wherein the first set of bit values 
includes information indicative of faulty locations in a 
memory. 

14. A system, comprising: 
a controller; and 
a memory, wherein the memory is configured to: 

read a first set bit values from the first fuse array: 
read a set of redundancy bit values from the first fuse 

array; 
check the first set of bit values for errors dependent upon 

the set of redundancy bit values; and 
read at least one bit value from the second fuse array in 

response to a determination that at least one error is 
present in the first set of bit values. 

15. The system of claim 14, wherein the memory is further 
configured to generate a final set of data bits dependent upon 
the first set of bit values and the at least one bit value from the 
second fuse array. 

16. The system of claim 15, wherein the memory is further 
configured to send the final set of data bits to the controller. 

17. The system of claim 14, wherein to generate the final 
set of data bits dependent upon the first set of bit values and 
the at least one bit values from the second fuse array, the 
memory is further configured to perform a bitwise logical-OR 
operation. 

18. The system of claim 14, wherein the set of redundancy 
bit values include an Error Correction Code (ECC). 

19. The system of claim 14, The method of claim 7. 
wherein the set of redundancy bit values include an Error 
Detection Code (EDC). 

20. The system of claim 14, wherein the first set of bit 
values includes information indicative of faulty locations in 
the memory. 


