a2 United States Patent

Kasorla et al.

US009412465B2

US 9,412,465 B2
Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

RELIABLE READOUT OF FUSE DATA IN AN
INTEGRATED CIRCUIT

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Yoav Kasorla, Kfar Netar (IL); Shai
Ojalve, Moshav Olesh (IL); Eyal Gurgi,
Petah-Tikva (IL)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/821,254

Filed: Aug. 7, 2015
Prior Publication Data
US 2015/0348645 Al Dec. 3, 2015

Related U.S. Application Data

Continuation of application No. 14/269,833, filed on
May 5, 2014, now Pat. No. 9,136,012.

Int. Cl1.

G1iC 17/18 (2006.01)

G1iC 17/16 (2006.01)

GO6F 11/10 (2006.01)

G11C 29/00 (2006.01)

U.S. CL

CPC G11C 17/18 (2013.01); GOGF 11/1044

(2013.01); GIIC 17/16 (2013.01); G11C 29/74
(2013.01); GIIC 29/787 (2013.01)

(58) Field of Classification Search
CPC ... G11C 17/18; G11C 17/16; G11C 29/785
USPC oottt 365/225.7, 200

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,915,476 B2 7/2005 Morino et al.
7,116,590 B2* 10/2006 Blodgett G11C 29/787
365/200
7,266,025 B2 9/2007 Nagai et al.
7,330,383 B2 2/2008 Takai
7411,845 B2 8/2008 Kodama
7,796,441 B2 9/2010 Kang et al.
8,339,830 B2 12/2012 Yamauchi et al.
2008/0298128 Al 12/2008 Kang et al.
2010/0220517 Al 9/2010 Okayama
2012/0188830 Al 7/2012 Jeong
2013/0322149 Al 12/2013 Ryuetal.

* cited by examiner

Primary Examiner — Son Dinh
(74) Attorney, Agent, or Firm — Meyertons, Hood, Kivlin,
Kowert & Goetzel, P.C.

(57) ABSTRACT

An integrated circuit includes fuse readout logic and first and
second sets of fuses. One of the sets includes one or more
primary fuses whose burn states represent respective bit val-
ues, and the other of the sets includes one or more secondary
fuses whose burn states are indicative of the bit values stored
in the primary fuses. The fuse readout logic is configured to
read the bit values by sensing the burn states of the primary
fuses, and to conditionally correct the read bit values by
sensing the burn states of one or more of the secondary fuses.

20 Claims, 2 Drawing Sheets

32
2
MEMORY .24 MEMORY DEVICE g4
CONTROLLER 0
MEMORY
PROCESSOR > R/W ARRAY
(‘ 30 ¢
8 40
CONFIGURATION
DATA
52 A 5
e la
FUSE FUSE ARRAY F1

20/

READOUT —[
LOGIC

FUSE ARRAY F2

2

\
48B

U.S. Patent Aug. 9,2016 Sheet 1 of 2 US 9,412,465 B2

32
¢
MEMORY 24 MEMORY DEVICE 34
CONTROLLER >
MEMORY
PROCESSOR > R/W ARRAY
(‘ 30 1%
S5 40
CONFIGURATION
DATA
52 48A 434
¢ ¢
FUSE FUSE ARRAY F1
20" READOUT
LOGIC FUSE ARRAY F2
FIG. 1 5

48B

100~ READ FUSE F1 BITS

104~{READ FUSE F2 BITS ONLY FOR ZERO F1 BITS

108 ~{ DERIVE FUSE DATA FROM F1 AND F2 BITS

FIG. 2

U.S. Patent Aug. 9,2016 Sheet 2 of 2 US 9,412,465 B2

SELECT FUSE F1 OR F2 RANDOMLY [~~130

A 4

READ BITS OF SELECTED FUSE 134

A 4
READ BITS OF NON-SELECTED FUSE ONLY FOR BITS
THAT READ ZERO IN THE SELECTED FUSE

138

y

DERIVE FUSE DATA FROM F1 AND F2 BITS [\~142

FIG. 3
READ FUSE F1 DATABITS 170
|
READ FUSE F1 174
REDUNDANCY BITS 182

READ FUSE F2 BITS ONLY
FOR ZERO F1 DATA BITS

ERRORS DETECTED?

NO

o

Y

DERIVE FUSE DATA FROM F1
DATA BITS AND FROM F2 BITS 184
(IF AVAILABLE)

FIG. 4

US 9,412,465 B2

1
RELIABLE READOUT OF FUSE DATA IN AN
INTEGRATED CIRCUIT

PRIORITY INFORMATION

This application claims priority to U.S. patent application
Ser. No. 14/269,833, entitled ‘“Reliable Readout of Fuse Data
in an Integrated Circuit,” filed May 5, 2014, which is hereby
incorporated by reference in its entirety as though fully and
completely set forth herein.

TECHNICAL FIELD

The embodiments described herein relate generally to inte-
grated circuits, and particularly to methods and systems for
reading data stored in fuses.

BACKGROUND

Some integrated circuits (ICs) comprise one or more fuses
for storing unchanging data. Fuses can store data bits whose
values correspond to whether the fuses are burned or not.
Various methods for storing data in fuses within Integrated
Circuits (ICs) are known in the art. For example, U.S. Patent
Application Publication 2013/0322149, whose disclosure is
incorporated herein by reference, describes a memory device
that includes a memory cell array and a fuse device. The fuse
device includes a fuse cell array and a fuse control circuit. The
fuse cell array includes a first fuse cell sub-array which stores
first data associated with operation of the fuse control circuit,
and a second fuse cell sub-array which stores second data
associated with operation of the memory device. The fuse
control circuit is electrically coupled to the first and second
fuse cell sub-arrays, and is configured to read the first and
second data from the first and second fuse cell sub-arrays,
respectively.

U.S. Patent Application Publication 2012/0188830, whose
disclosure is incorporated herein by reference, describes a
semiconductor memory device and a method for operating
the memory device. The semiconductor memory device
includes a first anti-fuse array having a plurality of first anti-
fuse elements that store first fuse data, a second anti-fuse
array having a plurality of second anti-fuse elements that
store error correction code (ECC) data associated with the
first fuse data. An ECC decoder is configured to generate
second fuse data by correcting the first fuse data using the
ECC data.

U.S. Pat. No. 7,266,025, whose disclosure is incorporated
herein by reference, describes a semiconductor integrated
circuit, in which fuse data is supplied to each of a plurality of
function blocks through a transfer path using shift registers. A
decoder is arranged in the transfer path of the fuse data, and
encoded data is stored in the fuse elements.

SUMMARY OF THE EMBODIMENTS

An embodiment provides an integrated circuit that
includes fuse readout logic and first and second sets of fuses.
One of the sets includes one or more primary fuses whose
burn states represent respective bit values, and the other of the
sets includes one or more secondary fuses whose burn states
are indicative of the bit values stored in the primary fuses. The
fuse readout logic is configured to read the bit values by
sensing the burn states of the primary fuses, and to condition-
ally correct the read bit values by sensing the burn states of
one or more of the secondary fuses.

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the burn states of the secondary
fuses duplicate the respective burn states of the primary fuses.
In other embodiments, the fuse readout logic is configured to
randomly select one of the first and second sets of fuses to
serve as the primary fuses, and to select the other set of fuses
to serve as the secondary fuses. In yet other embodiments, the
fuse readout logic is configured to conditionally correct the
read bit values by identifying one or more of the primary fuses
that are in a non-burned state, and sensing only the secondary
fuses whose burn states duplicate the burn states of the iden-
tified primary fuses.

In an embodiment, the bit values include data bits and
redundancy bits that are indicative of errors in the data bits,
and the fuse readout logic is configured to read the bit values,
including the redundancy bits, and to sense the secondary
fuses only when the redundancy bits indicate one or more
errors in the data bits. In another embodiment, the redundancy
bits include a Berger code that is calculated over the data bits.
In yet another embodiment, the fuse readout logic is config-
ured to correct the read bit values by combining sense results
of'the one or more of the secondary fuses with the bit values
read from the primary fuses.

In some embodiments, the fuse readout logic is configured
to combine the sense results with the bit values by performing
a bitwise logical OR operation.

There is additionally provided, in accordance with another
embodiment, a method including, in an integrated circuit that
includes first and second sets of fuses, one of the sets includ-
ing one or more primary fuses whose burn states represent
respective bit values and the other of the sets including one or
more secondary fuses whose burn states are indicative of the
bit values stored in the primary fuses, reading the bit values by
sensing the burn states of the primary fuses. The read bit
values are conditionally corrected by sensing the burn states
of one or more of the secondary fuses.

These and other embodiments will be more fully under-
stood from the following detailed description, taken together
with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
storage system in which data is stored in fuses, in accordance
with an embodiment; and

FIGS. 2-4 are flow charts that schematically illustrate
methods for reading data stored in fuses, in accordance with
three embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS
Overview

Some Integrated Circuits (ICs) store data that does not
change during the lifetime of the IC. Such unchanging data
may comprise identification data, configuration data, and the
like. ICs can store constant data, for example, using one or
more fuse elements. A fuse element can typically be config-
ured or programmed to one of two states according to its burn
state. A fuse typically starts in a non-burned state, and can be
selectively programmed to a burned state during production
of the IC. A fuse is capable of storing a single data bit that
represents its burn state (or simply state for brevity), and thus,
a set of N fuses can store N data bits. The data stored in fuses
is referred to herein as “fuse data™.

The datato be stored in fuses is typically determined during
production. For example, during the production of some
memory devices, configuration data, such as calibration data

US 9,412,465 B2

3

regarding timing optimization of the input/output bus of the
memory device, is determined and stored in one or more fuses
on the memory device, and/or on a memory controller that
manages the device. The memory device may read the con-
figuration data from the fuses when needed, such as, for
example, on power-up, and apply the configuration accord-
ingly.

Some fuses comprise a passive element, (e.g., a resistive
element), whose state relates to its impedance. Prior to burn-
ing, the fuses typically comprise low impedance, and when
burned, the impedance of the fuse typically increases signifi-
cantly or the fuse becomes non-conductive.

To read the data bit value stored in a fuse, the IC typically
senses the state of the fuse, for example, by evaluating some
physical quantity that is related to the impedance of the fuse
(e.g., the level of the electrical current that flows through the
fuse). In the description that follows we assume that the IC
assigns a ‘1’ bit to the non-burned (low impedance) state and
a ‘0’ bit to the burned (high impedance) state. In alternative
embodiments, however, the IC can assign a ‘1’ bit to the
burned state and a ‘0’ bit to the non-burned state.

The reliability of reading the fuse data typically depends on
the state to which the fuse is programmed. In contrast to
burned fuses that retain their high impedance value through-
out the lifetime of the IC, the impedance (and therefore the
sensed state) of non-burned fuses may change over time and
usage. For example, although at first sensing the low imped-
ance of the non-burned fuse is reliable, after reading the fuse
a certain number of times (e.g., on the order of 1-2 million),
the reading reliability typically degrades, as the impedance of
the fuse increases to a level that can be erroneously inter-
preted as the high impedance state. This degradation in read-
ing reliability is referred to herein as an “aging effect.”.

Note that since the aging effect refers mainly to non-burned
fuses, errors in the read fuse data are typically asymmetrical
and largely unidirectional. In other words, reading a “1” bit
indicates a non-burned state with high reliability, whereas
reading a ‘0’ bit may erroneously indicate that the fuse is
burned even though the fuse was never burned, but after
applying a large number of read operation its impedance has
increased and is now sensed as the high impedance state. The
extent of asymmetry typically increases over the lifetime of
the IC.

In principle, to increase the reliability of reading fuse data,
the IC can be configured to store duplicate copies of the fuse
data in two or more fuse arrays, and upon reading, to derive
the fuse data by combining the data read from the duplicate
copies. Since, however, reading each of the fuses involves a
separate sensing operation, the overall reading time and
power consumption increases linearly with the number of
fuses and duplicates. Moreover, since in each reading opera-
tion of the fuse data the IC reads the fuses of all the duplicates,
all the fuse arrays undergo a similar number of reading opera-
tions and therefore suffer a similar aging effect.

Embodiments that are described herein provide improved
methods and systems for reading fuse data. In the disclosed
techniques the fuse data is stored in a fuse array denoted F1
and is duplicated in another fuse array denoted F2. Thus, each
fuse in F2 has a corresponding fuse in F1, programmed to the
same burn state.

Since (as explained above) reading ‘1” is assumed reliable
and only ‘0’ bits may be erroneous, in some embodiments the
IC first reads the fuses in F1 and identifies F1 fuses that are in
the burned state (a 0’ bit in the convention used herein). The
IC then reads only the fuses in F2 that correspond to the fuses
identified as burned in F1. For the fuses read from both F1 and
F2, the IC derives the final fuse data by performing a bitwise

20

25

30

35

40

45

50

55

60

65

4

logical OR operation between the data bits read from F1 and
from F2. For the other fuses, the data bits read from F1 (which
are all “1’s) serve as the final fuse data.

In another embodiment, instead of consistently starting
with reading the fuses of F1, the IC randomly selects (typi-
cally with equal probabilities) which of the fuse arrays F1 or
F2 to start with. Then, similarly to the previous embodiment,
the IC derives the fuse data by reading the fuses of the selected
fuse array, and a subset of the fuses of the other array that
correspond to fuses in the selected array that read a ‘0’ bit.
Since in this scheme the IC starts with each of the fuse arrays
about half of the times, the number of reading operations
before the aging effect becomes significant approximately
doubles.

In yet another embodiment, in addition to storing the data
bits, fuse array F1 comprises one or more additional fuses that
store redundancy bits of an Error Correction Code (ECC) or
Error Detection Code (EDC) computed over the data bits. In
some embodiments, the code comprises a Berger code, which
can detect any number of unidirectional errors in the data bits.
The IC first reads the F1 fuses including the redundancy bits
and checks for errors. If the code detects no errors, the data
read from F1 is assumed reliable and output as the read fuse
data. Otherwise, the IC identifies F1 fuses that read a ‘0’ bit,
and reads the corresponding F2 fuses.

In the disclosed techniques, instead of reading both fuse
arrays per each reading operation of the fuse data, the IC reads
one of the fuse arrays or part thereof only conditionally, to
correct the data read from the other array as needed. As a
result, the average number of sense operations per fuse data
bit, and therefore the duration of reading the fuse data and the
power consumption, reduces. Additionally, the number of
reading operations that can be applied before the reading
reliability degrades increases considerably. The embodi-
ments described herein refer to two fuse arrays, but the dis-
closed techniques are applicable to any suitable number of
fuse arrays.

System Description

FIG. 1 is a block diagram that schematically illustrates a
storage system 20 in which constant data is stored in fuses, in
accordance with an embodiment. System 20 can be used in
various host systems and devices, such as in computing
devices, cellular phones or other communication terminals,
removable memory modules, Solid State Drives (SSD), digi-
tal cameras, music and other media players and/or any other
system or device in which data is stored and retrieved. In
alternative embodiments, system 20 may comprise any other
suitable Integrated Circuit (IC), or multiple ICs, that store at
least some constant data in fuses.

In the example of FIG. 1, system 20 comprises a memory
controller 24, which stores data in a memory device 32 and
retrieves data stored in the memory device. The memory
controller comprises a processor 28 that carries out the vari-
ous tasks of the controller. Memory device 32 stores the data
received from the memory controller in a memory cell array
36. The memory array comprises multiple memory cells,
such as, for example, analog memory cells of any suitable
type. The memory controller communicates with the memory
device over a bus 30.

In the example of FIG. 1, memory device 32 comprises a
reading/writing (R/W) unit 40, which converts data for stor-
age in the memory device to storage values and writes them
into the memory cells. When reading data out of array 36,
R/W unit 40 converts the storage values of the memory cells

US 9,412,465 B2

5

into digital samples (also referred to as alphabet symbols)
having a resolution of one or more bits.

In some embodiments, memory device 32 operates accord-
ing to certain configuration data stored in a configuration data
unit 44. In some embodiments, the configuration data com-
prises calibration data that may be determined during produc-
tion. For example, the configuration data may comprise a
configuration that optimally calibrates the timing skew
among data, address, and control signals delivered over bus
30. Alternatively or additionally, the configuration data may
comprise any other suitable data that is part of the device
configuration.

Memory device 32 further comprises two fuse arrays 48A
and 48B, denoted F1 and F2, respectively, and fuse readout
logic 52. Each of the fuse arrays 48A and 48B comprises one
or more fuses for storing constant data. Typical data that can
be stored in fuses may comprise, for example, boot configu-
ration data, information regarding faulty memory locations in
SRAM that have been substituted with functional memory
locations, and/or various production related data.

In the description that follows, fuse readout logic is also
referred to as logic 52 for brevity. When requested (e.g., at
power-up), logic 52 is configured to read fuse data that was
programmed (e.g., at production) in the fuse arrays.

Fuse programming is typically done during the production
of the IC. In some embodiments, prior to programming, the
fuses in F1 and F2 comprise low impedance values, which
represent the storage of a ‘1” bit. While programming the
fuses in F1 and F2, fuses that should store a ‘1’ data bit are
retained in the non-burned (low impedance) state, and the
fuses that should store a ‘0’ data bit are programmed to the
burned (high impedance) state.

When reading data stored in one of the fuse arrays F1 or F2,
fuse logic 52 evaluates the states to which the respective fuses
were programmed. For example, logic 52 can sense the
impedance values of the fuses, or some other suitable physi-
cal quantities that relate to the impedance, such as, for
example, the levels of the electrical currents that flow through
the fuses. Logic 52 transforms the value of the sensed imped-
ance or current into a respective binary value ‘0’ or 1°.

Logic 52 further comprises logic that combines the data
read from F1 and from F2 to derive the final read fuse data.
The combining logic may perform a bitwise logical OR
operation, a majority vote operation, or any other suitable
operation between the bits read from the corresponding fuses
in F1 and F2.

Fuse readout logic 52 can deliver the read fuse data to
memory controller 24, to memory array 36, or to configura-
tion data unit 44. In some embodiments, the fuse data com-
prises configuration data that logic 52 reads from the fuse
arrays on power-up, and stores in configuration data unit 44.

As explained above, repetitive operations of sensing the
states of the fuses degrades the reading reliability and may
result in erroneous fuse data. Various techniques for reading
the fuse data with reduced error rate are described further
below. In the disclosed techniques, one of the fuse arrays
stores certain fuse data, and the other fuse array stores redun-
dancy data, such as, for example, a copy or duplicate of the
fuse data. To read the fuse data back, logic 52 does not read
the entire data stored in F1 and F2, but senses the states of a
subset of the fuses in one fuse array based on the readout
result of the other fuse array. Example embodiments for read-
ing the fuse data are described below with reference to FIGS.
2-4.

Some or all of the elements of memory controller 24, may
be implemented in hardware. Alternatively, the memory con-

20

25

30

35

40

45

50

55

60

65

6

troller may comprise a microprocessor that runs suitable soft-
ware, or a combination of hardware and software elements.

The configuration of FIG. 1 is an example memory system
configuration, which is shown purely for the sake of concep-
tual clarity. Any other suitable memory (or other) system
configuration can also be used. Elements that are not neces-
sary for understanding the principles, such as various inter-
faces, addressing circuits, timing and sequencing circuits and
debugging circuits, have been omitted from the figure for
clarity. Although FIG. 1 shows a single memory device 32 for
the sake of clarity, in alternative embodiments a single
memory controller may control multiple memory devices 32.

Further alternatively, system 20 may comprise any other
suitable IC other than memory device 32, or multiple ICs, that
store constant data in fuses. The ICs may be controlled, ornot,
by some suitable controller other than memory controller 24.

In the exemplary system configuration shown in FIG. 1,
memory controller 24 and memory device 32 are imple-
mented as two separate Integrated Circuits (ICs). In alterna-
tive embodiments, however, the memory device and the
memory controller may be integrated on separate semicon-
ductor dies in a single Multi-Chip Package (MCP) or System
on Chip (SoC), and may be interconnected by an internal bus.
Further alternatively, some or all of the memory controller
circuitry may reside on the same die on which the memory
array is disposed. Further alternatively, some or all of the
functionality of memory controller 24 can be implemented in
software and carried out by a processor or other element of the
host system (not shown).

In some embodiments, memory controller 24 comprises a
general-purpose processor, which is programmed in software
to carry out the functions described herein. The software may
be downloaded to the processor in electronic form, over a
network, for example, or it may, alternatively or additionally,
be provided and/or stored on tangible media, such as mag-
netic, optical, or electronic memory.

In an embodiment, memory device 32 does not comprise a
separate configuration data unit 44. In such an embodiment,
the configuration data read by logic 52 from the fuse arrays
can be stored in memory array 36, or used directly to config-
ure the memory device.

In some embodiments, some of the elements that in the
system of FIG. 1 reside within memory device 32, are imple-
mented as part of memory controller 24. For example, con-
figuration data unit 44, fuse arrays 48 A and 48B, and/or fuse
readout logic 52 may reside on memory controller 24. In such
embodiments, implementing the functionality of fuse readout
logic 52 can be done in hardware, software, or in combination
of hardware and software.

Although system 20 stores fuse data in two fuse arrays F1
and F2, in alternative embodiments, any other number of fuse
arrays, can also be used. The fuse arrays (or a subset thereof)
may store duplicate or different fuse data. In an example
embodiment comprising multiple fuse arrays, one or more of
the fuse arrays store the fuse data, and one or more other fuse
arrays store any suitable redundancy data, such as, for
example, a bitwise inverse version of the fuse data.

Methods for Reading Fuse Data

FIGS. 2-4 are flow charts that schematically illustrate
methods for reading data stored in fuses, in accordance with
three embodiments. The methods of FIGS. 2-4, are described
as carried out by fuse readout logic 52. In alternative embodi-
ments, these methods can be carried out by other elements
within memory device 32, and/or by memory controller 24.

US 9,412,465 B2

7

In the description that follows, we assume an N-bit fuse
data with similar prevalence of ‘0” and ‘1° bits. The fuse data
is stored duplicated in two N-fuse arrays (i.e., 2'N fuses in
total). We additionally assume a reference reading scheme in
which reading the fuse data involves reading all the 2-N fuses.
We further assume that the reliability of fuse reading degrades
significantly only after applying NR or more fuse sense
operations. Thus, for the reference reading scheme, the num-
ber of fuse data read operations that can be applied before the
reading reliability degrades equals NR, and the average num-
ber of fuse sense equals two operations per fuse data bit.

The method of FIG. 2 begins with logic 52 reading the data
bits stored in the fuses of the F1 fuse array, at an F1 reading
step 100. At an F2 reading step 104, logic 52 reads only the
fuses in F2 that correspond to fuses in F1 that read a ‘0’ bit at
step 100. At a fuse data determination step 108, logic 52
combines the data bits read at steps 100 and 104, to derive the
final read fuse data.

In some embodiments, logic 52 derives the final fuse data
by outputting the ‘1’ bits read at step 100, and the bits result
from applying a bitwise logical OR operation between the
data bits read from F2 at step 104 and the corresponding bits
read from F1 at step 100. For this embodiment, since the
prevalence of ‘0’ and 1’ is similar and as a result logic 52
reads only about half of the F2 fuses, the average number of
fuse sense operations per fuse data bit equals 1.5. In addition,
the number of fuse data read operations that can logic 52 can
apply before the reading reliability degrades equals NR.

Alternatively, the memory device comprises multiple fuse
arrays F1 . . . FM that store M>2 duplicates of the N-bit fuse
data. In such embodiments, logic 52 reads at step 104 only a
subset of the fuses in F2 . . . FN that correspond to fuses in F1
that read a ‘0’ bit at step 100. Then, at step 108, logic 52
performs bitwise logical OR or a majority vote decision
among the respective bits read from F1 ... FM.

The method of FIG. 3 is similar to the method of FIG. 2, but
instead of consistently starting with reading F1, logic 52
randomly selects the first fuse array to read from. The method
begins with logic 52 selecting F1 or F2 randomly, e.g., with
equal probabilities, at a selection step 130. Logic 52 may use
any suitable method to randomize the selection, e.g., by using
a pseudo-random binary sequence generator. In alternative
embodiments, at step 130, instead of selecting randomly,
logic 52 selects F1 and F2 alternately, or according to a
predefined sequence in which F1 and F2 appear an equal (or
similar) number of times.

Ata first fuse array reading step 134, logic 52 reads the data
bits from the fuse array that was selected at step 130. At a
second fuse array reading step 138, logic 52 reads only the
fuses of the array that was not selected at step 130, and that
correspond to those fuses that read ‘0’ at step 134. At a
combining step 142, logic derives the final read fuse data,
similarly to step 108 in the method of FIG. 2 above.

In the embodiment of FIG. 3, (similarly to the embodiment
in FIG. 2) the average number of fuse sense operations per
fuse data bit equals 1.5. The number of fuse data read opera-
tions that can be applied before the reading reliability
degrades increases, however, from NR in the embodiment of
FIG. 2, to 2'NR.

In the method of FIG. 4, we assume that the F1 fuse array
comprises two sub-arrays. One sub-array stores the fuse data,
and the other sub-array stores redundancy bits, to be used for
detecting and/or correcting errors in the fuse data upon read-
ing. The redundancy bits may comprise an Error Correction
Code (ECC) or an Error Detection Code (EDC) calculated
over the fuse data. In the example of FIG. 4, F2 stores a copy

20

25

30

35

40

45

50

55

60

65

8

of'the fuse data. Alternatively, F2 can store any other suitable
redundancy data for correcting the fuse data read from F1.

Logic 52 can use any suitable ECC or EDC, such as, for
example, a Hamming code or a Cyclic Redundancy Code
(CRC). In some embodiments, the code comprises a Berger
code, which can detect any number of unidirectional errors
(e.g., such as in fuses in which a non-burned state can be
erroneously indicate a burned state, but an error of the oppo-
site direction is unlikely) in the fuse data. For N bits of data,
the Berger code comprises log, (N) bits. In general, codes that
can correct up to tunidirectional errors and detect any number
of unidirectional errors are also referred to as t-UEC/AUED
codes.

The method of FIG. 4 begins with logic 52 reading the fuse
data from the F1 at a data reading step 170. Logic 52 addi-
tionally reads the respective ECC/EDC bits from F1, at an
ECC/EDC reading step 174. In some embodiments, steps 170
and 174 comprise a unified step. At an error detection step
178, logic 52 checks whether the data read at step 170 con-
tains any errors. If at step 178 logic 52 detects one or more
errors, logic 52 reads only the fuses in F2 that correspond to
F1 fuses that read ‘0’ at step 170, at a selective reading step
182.

At acombining step 184, logic 52 derives the final read fuse
data from the F1 bits read at step 174, and from F2 bits if read
at step 182. The combining operation at step 184 is similar to
the one described at step 108 above.

Note that as long as reading the fuses in the F1 array is
reliable, logic 52 detects no errors at step 178 and therefore
skips step 182. This is in contrast to the methods of FIGS. 2
and 3. in which logic 52 typically reads fuses from both F1
and F2. In the method of FIG. 4, when the fuse data comprises
N bits and the EDC comprises a Berger code, the average
number of sense operations per bit equals 1+log2(N)/N,
which approaches unity as N increases.

Table 1 summarizes the performances of the reference
scheme and the three embodiments described in FIGS. 2-4
according to two performance metrics. Metric_1 refers to the
average required number of fuse sense operations per fuse
data bit (when reading the fuse data is still reliable). Metric_2
refers to the number of fuse data read operations that can be
applied before the reading reliability starts to degrade.

TABLE 1
Embodiment/
Performance metric ~ Reference FIG. 2 FIG. 3 FIG. 4
Metric_1 2 1.5 1.5 1+ log, (N)/N
Metric_ 2 NR NR 2-NR NR

The configurations described in the embodiments above
are exemplary, and any other suitable configurations can also
be used. For example, although in the disclosed embodiments
fuse data is stored duplicated in two fuse arrays, the disclosed
techniques are applicable to any suitable number of fuse
arrays. For example, in an embodiment, configuration data
whose reliability is critical for proper configuration of the IC
may be duplicated in more than two fuse arrays.

As another example, in the method of FIG. 4, instead of
using an error detection code, logic 52 can use an error cor-
rection code. Logic 52 skips step 182 when the data read from
F1 contains no errors, or when all the errors are correctable by
the ECC.

Although the embodiments in FIGS. 2-4 above are pre-
sented separately, various elements of one or more of the
embodiments can be combined. For example, in the embodi-

US 9,412,465 B2

9

ment of FIG. 4, instead of reading F1 at step 170, logic 52 can
randomly select to read F1 or F2 data bits similarly to step 130
in the embodiment of FIG. 3. At the subsequent steps, the
selected array replaces F1, and the non-selected array
replaces F2.

The techniques disclosed above refer to reading fuse data
stored in fuse elements. Alternatively or additionally, the
disclosed techniques can be used, mutatis mutandis, with
anti-fuse elements, which in contrast to fuses start in a high
impedance state and can be selectively programed to a low
impedance state.

It will be appreciated that the embodiments described
above are cited by way of example, and that the embodiments
are not limited to what has been particularly shown and
described hereinabove. Rather, the scope of the present dis-
closure includes both combinations and sub-combinations of
the various features described hereinabove, as well as varia-
tions and modifications thereof which would occur to persons
skilled in the art upon reading the foregoing description and
which are not disclosed in the prior art. Documents incorpo-
rated by reference in the present patent application are to be
considered an integral part of the application except that to the
extent any terms are defined in these incorporated documents
in a manner that conflicts with the definitions made explicitly
or implicitly in the present specification, only the definitions
in the present specification should be considered.

The invention claimed is:

1. An apparatus, comprising:

a first fuse array;

a second fuse array;

circuitry configured to:

read a first set bit values from the first fuse array;

read a set of redundancy bit values from the first fuse
array;

check the first set of bit values for errors dependent upon
the set of redundancy bit values; and

read at least one bit value from the second fuse array in
response to a determination that at least one error is
present in the first set of bit values.

2. The apparatus of claim 1, wherein the circuitry is further
configured to generate a final set of data bits dependent upon
the first set of bit values and the at least one bit value from the
second fuse array.

3. The apparatus of claim 2, wherein to generate the final
set of data bits dependent upon the first set of bit values and
the at least one bit values from the second fuse array, the
circuitry is further configured to perform a bitwise logical-
OR operation.

4. The apparatus of claim 1, wherein the set of redundancy
bit values include an Error Correction Code (ECC).

5. The apparatus of claim 1, wherein the set of redundancy
bit values include an Error Detection Code (EDC).

6. The apparatus of claim 1, wherein to read the at least one
bit value from the second fuse array, the circuitry is further
configured to read the at least one bit value from the second
fuse array in response to a determination that a corresponding
bit value from the first set of bit values has a value of 0.

20

25

30

35

40

45

50

55

10

7. A method, comprising:

reading a first set bit values from a first fuse array;

reading a set of redundancy bit values from the first fuse

array;

checking the first set of bit values for errors dependent

upon the set of redundancy bit values; and

reading at least one bit value from a second fuse array in

response to a determination that at least one error is
present in the first set of bit values.

8. The method of claim 7, further comprising generating a
final set of data bits dependent upon the first set of bit values
and the at least one bit value from the second fuse array.

9. The method of claim 8, wherein generating the final set
of data bits dependent upon the first set of bit values and the
at least one bit value from the second fuse array includes
performing a bitwise logical-OR operation.

10. The method of claim 7, wherein the set of redundancy
bit values include an Error Correction Code (ECC).

11. The method of claim 7, wherein the set of redundancy
bit values include an Error Detection Code (EDC).

12. The method of claim 7, wherein reading the at least one
bit value from the second fuse array includes reading the at
least one bit value from the second fuse array in response to a
determination that a corresponding bit value from the first set
of bit values has a value of 0.

13. The method of claim 7, wherein the first set of bit values
includes information indicative of faulty locations in a
memory.

14. A system, comprising:

a controller; and

a memory, wherein the memory is configured to:

read a first set bit values from the first fuse array;

read a set of redundancy bit values from the first fuse
array;

check the first set of bit values for errors dependent upon
the set of redundancy bit values; and

read at least one bit value from the second fuse array in
response to a determination that at least one error is
present in the first set of bit values.

15. The system of claim 14, wherein the memory is further
configured to generate a final set of data bits dependent upon
the first set of bit values and the at least one bit value from the
second fuse array.

16. The system of claim 15, wherein the memory is further
configured to send the final set of data bits to the controller.

17. The system of claim 14, wherein to generate the final
set of data bits dependent upon the first set of bit values and
the at least one bit values from the second fuse array, the
memory is further configured to perform a bitwise logical-OR
operation.

18. The system of claim 14, wherein the set of redundancy
bit values include an Error Correction Code (ECC).

19. The system of claim 14, The method of claim 7,
wherein the set of redundancy bit values include an Error
Detection Code (EDC).

20. The system of claim 14, wherein the first set of bit
values includes information indicative of faulty locations in
the memory.

