
(12) United States Patent
Guarnieri et al.

USOO9396.336 B2

(10) Patent No.: US 9,396,336 B2
(45) Date of Patent: *Jul. 19, 2016

(54) AUTOMATIC CORRECTION OF SECURITY
DOWNGRADERS

(71) Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(72) Salvatore A. Guarnieri, New York, NY
(US); Marco Pistoia, Amawalk, NY
(US); Omer Tripp, Har-Adar (IL)

Inventors:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(73) Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21)

(22)

Appl. No.: 14/824,892

Filed: Aug. 12, 2015

Prior Publication Data

US 2015/O347761 A1 Dec. 3, 2015
(65)

Related U.S. Application Data
Continuation of application No. 14/029,065, filed on
Sep. 17, 2013, now Pat. No. 9,166,996, which is a
continuation of application No. 13/768,645, filed on
Feb. 15, 2013, now Pat. No. 8,990,949.

(63)

Int. C.
G06F2L/00
G06F 2/57
H04L 29/06
U.S. C.
CPC G06F2I/577 (2013.01); H04L 63/1433

(2013.01); G06F 222 1/034 (2013.01)

(51)
(2013.01)
(2013.01)
(2006.01)

(52)

Perform security analysis,
disregarding downgraders

12

For each witness flow, locate
candidate downgraders

104.

For each candidate downgrader,
check whether the downgrader

protects againstall attacks

14

remove flow from report
110

Transform downgrader
112

Output allows where no
downgrader was found -

Output all downgrader
transformations

16

(58) Field of Classification Search
USPC .. 726/25
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,560,722 B2 * 10/2013 Gates HO4N 21,41407
707,631

2002fOO73313 A1 6/2002 Brown et al.
2011 OO88O23 A1 4/2011 Haviv et al.
2011/0302566 A1 12/2011 Abadi et al.
2012fOO23486 A1 1/2012 Haviv et al.
2012. O1596.19 A1 6/2012 Berg et al.

OTHER PUBLICATIONS

“Dynamic Cascade Vulnerability Checks in Real-World Networks”;
Craddock et al; partial of 6th layered assurance workshop proceed
ings, 70p; applied computer security associates; 2012.

(Continued)

Primary Examiner — Jason Lee
(74) Attorney, Agent, or Firm — Tutunjian & Bitetto, P.C.;
Daniel P. Morris

(57) ABSTRACT

Systems for automatic correction of security downgraders
include a security analysis module configured to perform a
security analysis that disregards existing user-provided
downgraders to detect flows that are vulnerable; and an
enhancer module configured to locate candidate downgraders
on the flows, to determine whether each of the candidate
downgraders protects against all Vulnerabilities associated
with each downgrader's respective flow, and to transform
candidate downgraders that do not protect against all of the
associated Vulnerabilities such that the transformed down
graders do protect againstall of the associated Vulnerabilities.

9 Claims, 3 Drawing Sheets

US 9,396,336 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Anonymous. “Verifying the Correctness of Multistep Downgrading
Operations' IP.com Prior Art Database. Nov. 2011. (3 Pages).
International Business Machines Corporation. "Message Control
Mechanisms for Performance and Convenience' IP.com Prior Art
Database. Apr. 2009, (5 Pages).

Klensin, J., et al., “Overview and Framework for Internationalized
Email (RFC4952)” IP.com Prior Art Database. Jul. 2007. (22 Pages).
Tateishi, T., et al. “Path- and Index-Sensitive String Analysis Based
on Monadic Second-Order Logic' 2011 International Symposium on
Software Testing and Analysis (ISSTA). Jul. 2011. pp. 166-176.

* cited by examiner

U.S. Patent Jul. 19, 2016 Sheet 1 of 3 US 9,396,336 B2

Perform security analysis,
disregarding downgraders

102

For each witness flow, locate
candidate downgraders

104

For each candidate downgrader,
check whether the downgrader

protects against all attacks
106

Protected?
108

Remove flow from report
110

Transform downgrader
112

Output all flows where no
downgrader was found

114

Output all downgrader
transformations

116

FIG. 1

U.S. Patent Jul. 19, 2016 Sheet 2 of 3 US 9,396,336 B2

Security
PrOCeSSOr Memory analysis

202 204 module
206

Enhancer
module
208

Downgrader Correction system
200

FIG. 2

User input
302

Incomplete
downgrader

304

Database
306

FIG. 3

U.S. Patent Jul. 19, 2016

User input
302

Incomplete
downgrader

304

Additional
downgrader

402

Additional
downgrader

402

Database
306

FIG. 4

Sheet 3 of 3 US 9,396,336 B2

US 9,396,336 B2
1.

AUTOMATIC CORRECTION OF SECURITY
DOWNGRADERS

RELATED APPLICATION INFORMATION

This application is a Continuation application of co-pend
ing U.S. patent application Ser. No. 14/029,065, filed on Sep.
17, 2013, which in turn is a Continuation application of U.S.
patent application Ser. No. 13/768,645, filedon Feb. 15, 2013,
now U.S. Pat. No. 8,990,949, issued on Mar. 24, 2015, incor
porated herein by reference in its entirety.

BACKGROUND

1. Technical Field
The present invention relates to security analysis and, more

particularly, to automatic correction and enhancement of
user-implemented security downgraders.

2. Description of the Related Art
Static security analysis typically takes the form of taint

analysis, where the analysis is parameterized by a set of
security rules, each rule being a triple <Src, San,Snks, where
Src denotes source statements that read untrusted user inputs,
San denotes downgrader Statements that endorse untrusted
data by validating and/or sanitizing it, and Snk denotes sink
statements which perform security-sensitive operations.
Given a security rule R, any flow from a source in SrcR to a
sink in SnkR that doesn't pass through a downgrader from
San R comprises a potential vulnerability. This reduces secu
rity analysis to a graph reachability problem.

Traditionally, the goal of security analysis has been to
detect potential vulnerabilities in software applications
(mostly web applications) and to inform the user of these
problems. The user would then apply a fix, typically by intro
ducing a downgrader (Such as a sanitizer or validator func
tion) into the flow of the computation. For example, if an
analysis tool were to discover that an application is able to
read user-provided data (e.g., an HTTP parameter) and then
use this data in a security-critical operation (e.g., writing it to
a database or to a log file), then one of the flows extending
between these two endpoints would be reported to the user.
Such a flow is a security risk, as it potentially allows users to
corrupt or Subvert the security-critical operation.

To remedy the problem, the user would install one or more
security checks covering all flows between the endpoints to
ensure that data reaching the security-sensitive operation is
benign by, e.g., transforming it through sanitization, or to
reject the data through validation. This solution is limited,
however, in that the tool assumes, rather than verifies, that the
security checks inserted by the user are correct. Implementing
and using downgraders correctly is highly nontrivial, and
users are prone to making errors. In particular, there are many
end-cases to account for, the correctness of a check often
depends on the deployment configuration of the Software
system (e.g., the type of backend database), and the context
where the Vulnerability occurs also partially determines what
needs to be check. A user may err either in tool configuration,
e.g., by defining incorrect downgraders, or in the remediation
of reported Vulnerabilities.

SUMMARY

A method for automatic correction of security downgrad
ers is shown that includes performing a security analysis that
disregards existing user-provided downgraders to detect
flows that are Vulnerable; locating candidate downgraders on
said flows; determining whether each of the candidate down

10

15

25

30

35

40

45

50

55

60

65

2
graders protects against all Vulnerabilities associated with
each downgrader's respective flow; and transforming with a
processor candidate downgraders that do not protect against
all of the associated Vulnerabilities, such that the transformed
downgraders do protect against all of the associated Vulner
abilities.
A method for automatic correction of security downgrad

ers is shown that includes performing a security analysis that
disregards existing user-provided downgraders to detect
flows that are Vulnerable; generating a set of test inputs for
each Vulnerable flow that includes at least one test input that
exploits each Vulnerability associated with the Vulnerable
flow; locating candidate downgraders on said flows; deter
mining whether each of the candidate downgraders protects
against all Vulnerabilities associated with each downgraders
respective flow by providing the set of test inputs for each
flow to each of the respective candidate downgraders to deter
mine whether said candidate downgraders correctly down
grade the input; and transforming with a processor candidate
downgraders that do not protect against all of the associated
Vulnerabilities by adding a validating or sanitizing step to the
candidate downgraders that checks for a known Vulnerability,
Such that the transformed downgraders do protect against all
of the associated Vulnerabilities.
A system for automatic correction of security downgraders

is shown that includes a security analysis module configured
to perform a security analysis that disregards existing user
provided downgraders to detect flows that are vulnerable; and
an enhancer module comprising a processor configured to
locate candidate downgraders on said flows, to determine
whether each of the candidate downgraders protects against
all vulnerabilities associated with each downgrader's respec
tive flow, and to transform candidate downgraders that do not
protect against all of the associated Vulnerabilities such that
the transformed downgraders do protect against all of the
associated Vulnerabilities.

These and other features and advantages will become
apparent from the following detailed description of illustra
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a block/flow diagram of a method for enhancing
a downgrader in accordance with an embodiment of the
present invention;

FIG. 2 is a diagram of a downgrader correction system in
accordance with an embodiment of the present invention;

FIG. 3 is an exemplary vulnerable data flow prior to cor
rection/enhancement in accordance with an embodiment of
the present invention; and

FIG. 4 is an exemplary data flow having an enhanced
downgrader in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Embodiments of the present invention provide for the
remediation of security issues in Software systems by first
detecting an existing downgrader along a path between a
Source and a sink, and second attempting to fix or enhance
that downgrader. Developers often apply checks to user input
to verify its validity but, as noted above, often do so incor

US 9,396,336 B2
3

rectly or incompletely. However, there is often at least some
existing check along a path that is available to be “boosted.”
Developers further prefer to make organic changes, such that
modifying existing checks is preferable to introducing new
checks. Furthermore, introducing new downgrader code
might cause problems or redundancy errors if overlapping
code already exists along the flow. For example, repeating a
downgrader that performs an encoding would result in a
double-encoding, which could corrupt the input. As such,
embodiments of the present invention use instances of exist
ing downgrader code and enhance it.

Referring now to the drawings in which like numerals
represent the same or similar elements and initially to FIG. 1,
a method for automatic correction of security downgraders is
shown. Block 102 performs a security analysis, disregarding
any pre-existing, user-provided downgraders in the tool con
figuration. For each witness flow W of type T. block 104 finds
candidate downgraders along the flow W. A witness flow W is
a representative Vulnerable flow (e.g., a shortest flow). A flow
“type' refers to a class of potential security vulnerabilities.
For example, some flows will be vulnerable to cross-site
scripting (XSS) attacks, others will be vulnerable to struc
tured query language (SQL) injection (SQLi) attacks, etc. A
single flow may be vulnerable to multiple types of attack and
so may have multiple types. The following shows an example
of Vulnerable flows:

String name = request.getParameter(name); Source
String nameEntry = “entry: + name:
response.getWriter().println(nameEntry); // XSS sink
Statement.execute(makeSq(nameEntry)); // SQLi sink

This shows two Vulnerable flows. The first is from the
source to the first sink, and is of type XSS, and the second is
to the second sink, and is of type SQLi. In both cases,
untrusted information coming from the user (the source)
flows into a security-sensitive operation (the sink), without
first being sanitized/validated. This makes it possible for a
user to provide an input to either of the sinks that may disrupt
functionality or lead to an elevation of the user's rights in the
system.

Detecting candidate downgraders in block 104 can be per
formed in several ways. One way is to apply the analysis of a
security tool where syntactic properties of called methods are
used to highlight candidate downgraders. Another heuristic is
to utilize the ignored parts of the user configuration, which
indicate the methods that the user considers to act as down
graders. Additional techniques for finding downgraders may
include searching for data-flow bottlenecks and by scanning
user configuration files.

For each candidate downgrader found, block 106 checks
whether the downgrader protects all attack types correspond
ing to the flows that the downgrader participates in. This may
be accomplished by providing a set of test inputs to the
candidate downgrader. Block 106 generates a list of vulner
abilities that the candidate downgrader fails to protect again.
Block 108 then considers whether each of the checked can
didate downgraders are fully protected.

If block 108 determines that a given downgrader fully
protects a flow W (i.e., if block 106 determines that the
downgrader provides a correctly sanitized/validated output
for every test input), the flow W is removed from the list at
block 110. Otherwise, block 112 transforms the downgrader
to make it sufficient to prevent attacks of the relevant types.
One possibility for augmenting the logic of an incomplete
downgrader is to equip the analysis tool with a set of security

10

15

25

30

35

40

45

50

55

60

65

4
checks that, together, form a correct downgrader. When an
incomplete downgrader is detected, the analysis tool attempts
to add to it individual missing checks. After each conjunction,
an analysis tool can determine whether the result is a correct
downgrader. If not, then the process continues and additional
checks are added. This process is guaranteed to terminate
with a correct downgrader, because the checks are designed
such that the conjunction of all the individual checks is a
correct downgrader.
Adding checks to a downgrader may be performed directly,

if access to the downgrader code is available. In some cases,
however, security analysis may be performed on flows that
use precompiled libraries or executables, where a down
grader may be opaque to the user. In such a case, a down
grader may be injected into the existing downgrader binary
code. Alternatively, a downgrader may be enhanced by add
ing checks to the downgrader's flow output, essentially con
catenating the enhancing checks with the existing down
grader.

Block112, as described above, “transforms” a downgrader
by Supplementing it with additional validators and/or sani
tizers. A given flow may be vulnerable to a wide variety of
attack types, and each Such attack type should be accounted
for. In the example of a string-processing flow, where user
inputs are passed to a security-critical resource, each potential
sanitizer/validator may simply be concatenated, as each step
will simply produce a sanitized/validated string for the next
step. In the case of a validator, where an input that fails is
simply rejected, concatenation of individual validators is
intuitive regardless of flow type.

Block 114 outputs to the user all of the flows where no
candidate downgrader was found at all, allowing the user to
institute an appropriate downgrader for the flow, while block
116 reports all of the downgrader transformations that were
performed in block112. In this way, the user is made aware of
all Substantive changes to the program, and is furthermore
shown the places where the security of the program could be
further improved. In an alternative embodiment, block 112
may introduce new downgraders invulnerable flows that have
no downgrader at all. In such an embodiment, block 116 also
provides information regarding new downgraders that were
added.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit.” “module' or “system.” Furthermore, aspects of
the present invention may take the form of a computer pro
gram product embodied in one or more computer readable
medium(s) having computer readable program code embod
ied thereon.
Any combination of one or more computer readable medi

um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any Suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only

US 9,396,336 B2
5

memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for aspects of the
present invention may be written in any combination of one or
more programming languages, including an object oriented
programming language such as Java, Smalltalk, C++ or the
like and conventional procedural programming languages,
Such as the “C” programming language or similar program
ming languages. The program code may execute entirely on
the user's computer, partly on the user's computer, as a stand
alone software package, partly on the user's computer and
partly on a remote computer or entirely on the remote com
puter or server. In the latter scenario, the remote computer
may be connected to the user's computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, Such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks. The computer program instructions may also
be loaded onto a computer, other programmable data process
ingapparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which execute on
the computer or other programmable apparatus provide pro

10

15

25

30

35

40

45

50

55

60

65

6
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the blocks may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.

Reference in the specification to “one embodiment” or “an
embodiment of the present invention, as well as other varia
tions thereof, means that a particular feature, structure, char
acteristic, and so forth described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrase “in one
embodiment' or “in an embodiment, as well any other varia
tions, appearing in various places throughout the specifica
tion are not necessarily all referring to the same embodiment.

It is to be appreciated that the use of any of the following
“7”, “and/or”, and “at least one of, for example, in the cases
of “A/B”, “A and/or B.’ and “at least one of A and B, is
intended to encompass the selection of the first listed option
(A) only, or the selection of the second listed option (B) only,
or the selection of both options (A and B). As a further
example, in the cases of A, B, and/or Cand “at least one of
A, B, and C. Such phrasing is intended to encompass the
selection of the first listed option (A) only, or the selection of
the second listed option (B) only, or the selection of the third
listed option (C) only, or the selection of the first and the
second listed options (A and B) only, or the selection of the
first and third listed options (A and C) only, or the selection of
the second and third listed options (B and C) only, or the
selection of all three options (A and B and C). This may be
extended, as readily apparent by one of ordinary skill in this
and related arts, for as many items listed.

Referring now to FIG. 2, a downgrader correction system
200 is shown. The downgrader correction system 200
includes a processor 202 and memory 204. A security analy
sis module 206 uses processor 202 to perform a security
analysis on a program stored in memory 204. An enhancer
module 208 reviews the analysis provided by security analy
sis module 206 to locate candidate downgraders in the pro
gram's flows and determines whether any of those downgrad
ers fail to provide for all of the potential vulnerabilities in the
flows. For each downgrader that provides insufficient protec
tion, the enhancer module 208 adds additional checks until
the downgrader is able to fully protect the flow. The report
module 210 then generates a report to the user that includes,
e.g., a description of all Vulnerable flows that lack a down
grader and a description of all enhancements made to the
existing downgraders.

Referring now to FIG. 3, an exemplary data flow is shown.
At block 302 a user provides some input. For example, the
user desires to perform a search and enters the search terms as

US 9,396,336 B2
7

a string. Block 304 receives the input and performs some
elementary validation. For example, block 304 may check to
determine whether the string is a null string and whether it has
the correct format for a search query. If the input fails these
tests, then block 304 may reject the query and provide an error
message. If the downgrader concludes that the string meets its
requirements, then the string is passed to database 306 and
executed.

However, in the present example, the downgrader 304 is
incomplete and does not protect against potential attacks. As
an example, consideran incomplete downgrader 304 that fails
to sanitize user inputs to protect against SQL injection
attacks. Such an attack allows the malicious user to provide
direct commands to database 306, allowing the user to have
access to sensitive information, such as credit cards and pass
words. If the downgrader 304 does not provide, for example,
filtering of escape characters or strong typing of the input 302,
then there is nothing to prevent such attacks.

Referring now to FIG. 4, the exemplary flow described
above is shown again, after having had its downgrader 304
enhanced according to an embodiment of the present inven
tion. Rather than replacing the incomplete downgrader 304,
individual sanitization/validation downgraders 402 are
placed in the data flow. For example, each additional down
grader 402 may check for a particular control or escape char
acter or sequence which should be removed from the input.
The additional downgraders 402 may simply be added into
the flow after the incomplete downgrader 304, performing
whatever additional processing is needed to fully protect the
flow from any detected vulnerabilities. Any number of addi
tional downgraders 402 may be added in this way.

Having described preferred embodiments of a system and
method for automatic correction of security downgraders
(which are intended to be illustrative and not limiting), it is
noted that modifications and variations can be made by per
sons skilled in the art in light of the above teachings. It is
therefore to be understood that changes may be made in the
particular embodiments disclosed which are within the scope
of the invention as outlined by the appended claims. Having
thus described aspects of the invention, with the details and
particularity required by the patent laws, what is claimed and
desired protected by Letters Patentis set forthin the appended
claims.

5

10

15

25

30

35

40

8
What is claimed is:
1. A system for automatic correction of security downgrad

ers, comprising: an enhancer module comprising a hardware
processor configured to determine, for one or more flows
having one or more candidate downgraders, whether each of
the candidate downgraders protects againstall vulnerabilities
associated with said candidate downgrader's respective flow,
and to transform candidate downgraders that do not protect
againstall of the associated Vulnerabilities such that the trans
formed downgraders do protect against all of the associated
Vulnerabilities.

2. The system of claim 1, wherein the enhancer module is
further configured to add a validating or sanitizing step to the
candidate downgraders that checks for a known vulnerability.

3. The system of claim 2, wherein the enhancer module is
further configured to concatenate the added validating or
Sanitizing step with an existing candidate downgrader in a
respective flow.

4. The system of claim 2, wherein the enhancer module is
further configured to inject the added validating or sanitizing
step into an existing precompiled candidate downgrader in a
respective flow.

5. The system of claim 2, wherein the enhancer module is
further configured to repeat the determination and transfor
mation until each candidate downgrader has been enhanced to
address all known vulnerabilities associated with candidate
downgrader's respective flow.

6. The system of claim 1, further comprising a report mod
ule configured to generate a report that includes information
regarding flows that have no downgrader and a list of trans
formations made to the candidate downgraders.

7. The system of claim 1, wherein the enhancer module is
further configured to provide a set of test inputs to each of the
candidate downgraders to determine whether said candidate
downgraders correctly downgrade the input.

8. The system of claim 7, wherein the enhancer module is
further configured to generate a set of test inputs for each
Vulnerable flow that includes at least one test input that
exploits each vulnerability associated with the vulnerable
flow.

9. The system of claim 1, wherein the enhancer module is
further configured to add a complete downgrader to any each
flow that has no downgrader.

