
(12) United States Patent
Krig et al.

US009389794B2

(10) Patent No.: US 9,389,794 B2
(45) Date of Patent: Jul. 12, 2016

(54)
(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

MANAGING CONSISTENT DATA OBJECTS

Inventors: Scott A. Krig, Santa Clara, CA (US);
Stewart N. Taylor, Los Altos, CA (US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 557 days.

Appl. No.: 13/566,421

Filed: Aug. 3, 2012

Prior Publication Data

US 2014/OO36317 A1 Feb. 6, 2014

Int. C.
G06F 3/06 (2006.01)
G06F 7/30 (2006.01)
G06F 2/08 (2016.01)
H04N L/32 (2006.01)
HO4N I/OO (2006.01)
U.S. C.
CPC G06F 3/0638 (2013.01); G06F 12/08

(2013.01); G06F 17/30076 (2013.01); G06F
17/30179 (2013.01); G06F 17/30569 (2013.01);

H04N 1/32101 (2013.01); H04N I/00204
(2013.01); H04N 220 1/325 (2013.01); H04N

220 1/3225 (2013.01); H04N2201/3274
(2013.01); H04N 220 1/33378 (2013.01)

Field of Classification Search
CPC G06F 3/0638; G06F 17/30076; G06F

17/30179; G06F 17/30569; G06F 17/30005;
G06F 12/08; H04N 1/32101; H04N1/00204;
H04N2201/325; H04N 2201/33378; H04N

220 1/3225; H04N2201/32774
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,566,315 A * 10/1996 Milillo G06F 12,0866
T10,56

5,911,776 A * 6/1999 Guck 709/217
6,085,199 A * 7/2000 Rose GO6F 17,30179

707/823
6,393,442 B1* 5/2002 Cromarty GO6F 17,2247

715/205
6,549,918 B1 * 4/2003 Probert et al.

2003/0061439 A1 3/2003 Shau G06F 9,3824
T11 105

2008.0024834 A1 1/2008 Matsui 358/474
2010/0042868 A1* 2/2010 Apelbaum et al. T14/2
2010/0165032 A1* 7, 2010 Yoshida 347.15
2011/0296399 A1* 12/2011 Tugnawat et al. 717,174
2012/00753 19 A1* 3/2012 Dally 345,537
2012/0128241 A1* 5/2012 Jung 382,165
2012/0304.178 A1* 11/2012 Grove et al. 718, 102
2013/0335756 A1* 12/2013 Bhaskaran et al. 358/19

OTHER PUBLICATIONS

“YUV.” by Wikipedia (Jul. 28, 2011 revision). Available at: https://
en.wikipedia.org/w/index.php?title=YUV&oldid=441795719.*

(Continued)

Primary Examiner — Daniel Kinsaul
(74) Attorney, Agent, or Firm — International IP Law
Group, P.L.L.C.

(57) ABSTRACT
A method and system for managing consistent data objects
are included herein. The method includes detecting an opera
tion to store a consistent data object. Additionally, the method
includes detecting an attribute for the consistent data object.
Furthermore, the method includes storing the consistent data
object based on the attribute. In addition, the method includes
determining an additional format of the consistent data object
is to be stored. The method also includes generating a second
consistent data object based on the additional format and
storing the second consistent data object.

24 Claims, 6 Drawing Sheets

28

Application

2 ata Object
Wies

2 y
Data Management Module

Consiseraia
Object 1

2.

2. firs Coversioiodie

Corsister late
Object 2

208

US 9,389,794 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“How to convert 16-bit 565 rgb value to 32 bit.” by anuragkhanna8.
IN: Bytes IT Community (Oct. 20, 2006). Available at: http://bytes.
com/topic/c/answers/552128-how-convert-16-bit-565-rgb-value
32-bit.
“Texture tiling and Swizzling.” by The Ryg Blog (Jan. 17, 2011).
Available at: https://fgiesen.wordpress.com/2011/01/17/texture-til
ing-and-Swizzling?.

“Image file formats.” by Wikipedia (Jul. 23, 2011 revision). Available
at: https://en.wikipedia.org/w/index.php?title=Image file formats
&oldid=440938301n.
“Online Compression Caching.” by Plaxton et al. IN: SWAT 2008 pp.
414-425 (2008). Available at: Springer.*
“Managing Persistent Objects in a Multi-Level Store.” by
Stonebraker, Michael. IN: Proc. 1991 ACM SIGMOD Int’l Conf.
Management of Data (1991). Available at: ACM.*

* cited by examiner

U.S. Patent Jul. 12, 2016 Sheet 1 of 6 US 9,389,794 B2

C iO evice O. it evice -
ocess; orfor s Mor ii. 8wices ineface

to to Display
isitesiaGe.

is:Siste
lata

Object

ata
viaageties

iods:

ero - Frint Engine

FG.

U.S. Patent Jul. 12, 2016 Sheet 2 of 6 US 9,389,794 B2

Applicatio:

aia Object
view

Data iainagement iodie

intine Conversion Module

Consistent Data Rosiset Raia
Object Otject 2

& O

FG. 2

U.S. Patent Jul. 12, 2016 Sheet 3 of 6 US 9,389,794 B2

Detect Stose Operator

3:4:
Detect Attributes for Consistentata Object

&ietie if Af

Coasistes haia Object r Y
has 8een previously ex

cate 1 ar 8 38

Update Consistent
ata Object Create Consisteriata Object

Determine if
Assio:333 Offiats

of Consistent DataObject are
to be Stoed?

Object for Each Format
to the Sie

32

U.S. Patent Jul. 12, 2016 Sheet 4 of 6 US 9,389,794 B2

etect a Cassistestata Object to
Retrieve Operatios

4 & -Determine if
r -15ata Format of Corsistent NY

Daia Object is Stated?
A. 408 Return consistent

N DataObject
Gesheate Cogy of Corsistest $8

Raia Object

Reijin Generated Copy of 4.
Consistent Data Object

U.S. Patent Jul. 12, 2016 Sheet 5 of 6 US 9,389,794 B2

ata \ianagement
iodie

U.S. Patent Jul. 12, 2016 Sheet 6 of 6 US 9,389,794 B2

Detect a Consistentiaia Object

Detect an Attribute of the Consistentiaia Objeti.

print Consistent Data Object Based or Attribuie

US 9,389,794 B2
1.

MANAGING CONSISTENT DATA OBJECTS

BACKGROUND

1. Field
This disclosure relates generally to managing data in a

computing system and more specifically, but not exclusively,
to managing consistent data objects in a computing system.

2. Description
As modern computing systems process an increasing

amount of data, efficient management of the data can enhance
the speed of execution of operations. The managed data can
include data stored in a variety of formats and consistent data
objects. In some computing systems, various applications and
hardware components can generate different formats of the
same consistent data objects. For example, digital image data
can be stored in a variety of formats, such as RGB and YUV.
If an application or hardware component requests a digital
image of a new format, the digital image is then converted and
copied in memory. The conversion of consistent data objects
can be computationally expensive and maintaining multiple
copies of data in different memory devices can consume
additional memory space. Furthermore, storing multiple cop
ies of data in different memory devices can result in different
versions of the data existing in memory. A technique to man
age and store multiple formats of a consistent data object can
reduce the amount of memory used to maintain the consistent
data object and reduce the number of instructions that a pro
cess is to execute during conversion between different for
mats of the consistent data object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example of a computing
system that can manage consistent data objects.

FIG. 2 is a block diagram of an example of a data manage
ment module for managing consistent data objects.

FIG. 3 is a process flow diagram illustrating an example of
a method for storing a consistent data object.

FIG. 4 is a process flow diagram illustrating an example of
a method for accessing a consistent data object.

FIG. 5 is a block diagram depicting an example of a tan
gible, non-transitory computer-readable medium that can
manage consistent data objects.

FIG. 6 is a process flow diagram illustrating an example
method of printing a consistent data object in a printing
device.

DETAILED DESCRIPTION

Embodiments described herein relate generally to tech
niques for managing consistent data objects of multiple for
mats in various levels of memory of a computing system. A
consistent data object, as referred to herein, is any type of data
structure that can store data according to any Suitable number
of attributes. In some embodiments, the computing system
includes a data management module that can manage consis
tent data objects by Storing and modifying consistent data
objects in multiple formats. The data management module
can manage consistent data objects according to various
attributes such as a data lifetime attribute, cryptography
attribute, memory hierarchy attribute, and data format
attribute, among others.

In some embodiments, the data management module can
store and manage a consistent data object, while the consis
tent data object can be viewed and modified in multiple data
formats. For example, the consistent data object can be

10

15

25

30

35

40

45

50

55

60

65

2
viewed and modified as an integer, fixed-point, or floating
point data format of varying bit precision Such as 8, 16.32, 64.
128 or any other Suitable precision. The data management
module can automatically maintain the consistency of all the
data format views of the consistent data object, which allows
the data from the consistent data object to be openin multiple
consistent views. In some embodiments, the data from the
consistent data object can be accessed in any desired data
format without a data conversion outside the data manage
ment module. The data management module can perform the
data conversions and update the consistent data object, as well
as keep all views of the consistent data object in Sync. In other
embodiments, the data management module can provide
managed data conversions for read and write operations
between consistent copies of the same data under different
data format views.

Reference in the specification to “one embodiment” or “an
embodiment of the disclosed subject matter means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the disclosed subject matter. Thus, the phrase
“in one embodiment may appear in various places through
out the specification, but the phrase may not necessarily refer
to the same embodiment.

FIG. 1 is a block diagram of an example of a computing
system that can manage consistent data objects. The comput
ing system 100 may be, for example, a mobile phone, laptop
computer, desktop computer, Scanning device, camera, imag
ing device, or tablet computer, among others. The computing
system 100 may include a processor 102 that is adapted to
execute stored instructions, as well as a memory device 104
that stores instructions that are executable by the processor
102. The processor 102 can be a single core processor, a
multi-core processor, a computing cluster, or any number of
other configurations. The memory device 104 can include
random access memory (e.g., SRAM, DRAM, Zero capacitor
RAM, SONOS, eDRAM, EDO RAM, DDR RAM, RRAM,
PRAM, etc.), read only memory (e.g., Mask ROM, PROM,
EPROM, EEPROM, etc.), flash memory, or any other suitable
memory systems. The memory device 104 can store consis
tent data objects 106 Such as digital images or portions of
digital images. The instructions that are executed by the pro
cessor 102 may be used to implement a method that includes
manage consistent data objects.
The processor 102 may be connected through a system bus

108 (e.g., PCI, ISA, PCI-Express, HyperTransport(R), NuBus,
etc.) to an input/output (I/O) device interface 110 adapted to
connect the computing system 100 to one or more I/O devices
112. The I/O devices 112 may include, for example, a key
board and a pointing device, wherein the pointing device may
include a touchpad or a touchscreen, among others. The I/O
devices 112 may be built-in components of the computing
system 100, or may be devices that are externally connected
to the computing system 100.
The processor 102 may also be linked through the system

bus 108 to a display interface 114 adapted to connect the
computing system 100 to a display device 116. The display
device 116 may include a display screen that is a built-in
component of the computing system 100. The display device
116 may also include a computer monitor, television, or pro
jector, among others, that is externally connected to the com
puting system 100.
A network interface card (NIC) 118 may be adapted to

connect the computing system 100 through the system bus
108 to a network (not depicted). The network (not depicted)
may be a wide area network (WAN), local area network
(LAN), or the Internet, among others. A storage device 120

US 9,389,794 B2
3

may also be connected to the processor 102 through a system
bus 108. The storage device 122 can include a hard drive, an
optical drive, a USB flash drive, an array of drives, or any
combinations thereof. The storage device 122 may store
applications that access consistent data objects 106.
The computer system 100 can also include a data manage

ment module 122 that manages the consistent data objects
106. The data management module 122 can be connected to
the processor 102 through a system bus 108. In some embodi
ments, the data management module 122 can manage consis
tent data objects 106 by maintaining multiple copies of con
sistent data objects 106 in different formats. In other
embodiments, the data management module 122 can manage
consistent data objects 106 by converting the consistent data
objects 106 to a format requested by the processor 102. In
Some embodiments, the data management module 122 can
send the consistent data objects 106 to a print engine 124 that
can send the consistent data objects 106 to a printing device
126. The printing device 126 can include printers, fax
machines, and other printing devices that can print the con
sistent data objects 106 using a print object module 128. The
print object module is discussed in greater detail in relation to
FIG. 6.

It is to be understood that the block diagram of FIG. 1 is not
intended to indicate that the computing system 100 is to
include all of the components shown in FIG. 1. Rather, the
computing system 100 can include fewer or additional com
ponents not illustrated in FIG. 1 (e.g., additional memory
devices, memory management modules, additional network
interfaces, etc.). Furthermore, any of the functionalities of the
data management module 122 may be partially, or entirely,
implemented in hardware and/or in the processor 102. For
example, the functionality may be implemented with an
application specific integrated circuit, in logic implemented
in the processor 102, in logic implemented in a memory
management unit, in logic implemented in the print engine
124 or in logic implemented in the printing device 126,
among others.

FIG. 2 is an example block diagram of a data management
module managing consistent data objects. In some embodi
ments, the data management module 122 can be a hardware
component of a computing system, such as the computing
system 100 of FIG. 1. In other embodiments, the data man
agement module can be a software component stored in Stor
age 120 of FIG. 1.
A data management module 122 can store consistent data

objects 204 and 206 based on instructions received from an
application 208. In some embodiments, the data management
module 122 can store data sets in multiple formats in consis
tent data objects 204 and 206. For example, the data manage
ment module 122 can store a 16-bit integerformat of a digital
image in a consistent data object 204. The data management
module 122 can also store a 32-bit unsigned integerformat of
the same digital image in a consistent data object 206. The
application 208 can access the consistent data objects 204 and
206 through data object views 210. The data object views 210
allow the application 208 to view any format of a data set. For
example, the application 208 can request a data object view
210 from the data management module 122 of a 16-bit integer
format of a data set. The data management module 122 can
identify and retrieve a consistent data object 204 or 206 that
contains a 16-bit integer format of the requested data set. If
the data management module 122 cannot identify a consistent
data object 204 or 206 that contains the requested data set in
a 16-bit integer format, the data management module 122 can
select a consistent data object 204 or 206 for conversion.

10

15

25

30

35

40

45

50

55

60

65

4
In some embodiments, the data management module 122

can include an inline conversion module 212. The inline
conversion module 212 can convert a consistent data object
206 to a requested format when the requested format is not
stored in a consistent data object 204 or 206. For example, the
inline conversion module 212 can convert portions of a con
sistent data object 204 or 206 into the requested format as the
data management module 122 retrieves the consistent data
object 204 or 206. The inline conversion module 212 can
execute conversion operations in parallel with the data man
agement module 122 retrieving data from a consistent data
object 204 or 206.

In some embodiments, the data management module 122
can return a consistent data object 204 or 206 based on
attributes specified by the application 208. For example, the
application 208 may instruct the data management module
122 to store consistent data objects 204 and 206 in a particular
data format. The attributes for consistent data objects 204 and
206 are discussed in greater detail below in relation to FIG.3.

It is to be understood that the block diagram of FIG. 2 is not
intended to indicate that the data management module 122 is
to include all of the components shown in FIG. 2. Rather, the
data management module 122 can include fewer or additional
components not illustrated in FIG. 1. For example, the data
management module 122 may not include an inline conver
sion module 212. In this example, the data management mod
ule 122 can send instructions to a processor to convert a
consistent data object 204 or 206 to a requested format. Addi
tionally, some embodiments may allow multiple processors
to access the data management module 122. In some embodi
ments, the data management module 122 can retrieve and
send consistent data objects 204 and 206 to any number of
different processors.

FIG. 3 is a process flow diagram illustrating an example of
a method for storing a consistent data object. The method 300
for storing a consistent data object may be implemented with
a computing system 100, in which a data management mod
ule 122 manages consistent data objects. In some embodi
ments, the consistent data objects can be stored in memory
106.
At block 302 a data management module 122 detects an

operation to store a data object. In some embodiments, the
operation to store a data object (also referred to herein as a
store operation) is generated by an application. For example,
an application may send a store operation to the data man
agement module 122 to store a digital image in a 32bit integer
format. In other embodiments, other hardware devices may
send a store operation to the data management module 122.
For example, a graphics processing unit may send a store
operation to the data management module 122 to store a 64-bit
digital image in a float format.
At block 304, the data management module 122 detects an

attribute of the consistent data object. In some embodiments,
a consistent data object can have any Suitable number of
attributes. For example, consistent data object attributes can
include a local identifier attribute, a global identifier attribute,
a data format attribute, memory hierarchy attribute, data life
time attribute, cryptography attribute, object dimension
attribute, object data layout attribute, object metadata
attribute, and a public key attribute, among others. The local
identifier attribute can identify a consistent data object within
a common memory address space of a particular computing
system or system on a chip. In one embodiment, the local
identifier attribute can be a unique random number of a pre
determined size. For example, a local identifier attribute can
be a 64-bit number that identifies a particular consistent data
object stored in a memory device of a computing system.

US 9,389,794 B2
5

The attribute detected by the data management module 122
can also include a global identifier for the consistent data
object. The global identifier attribute can allow a consistent
data object to be identified remotely across a network or
within an interconnected computing system with a different
memory address space. For example, a global identifier may
be a random number of a predetermined size that is unique to
a particular consistent data object. In some embodiments, the
global identifier may be generated based on a generating
function that combines the system clock time with a random
number. For example, a generating function may combine the
system clock with a 32-bit random number to generate a
40-bit global identifier. In some embodiments, the data man
agement module 122 may access a consistent data object with
a global identifier attribute by negotiating a data transfer with
a remote computing system through a communication
method, such as serial data transmission, parallel data trans
mission, or through a networking protocol. For example, the
data management module 122 may use a networking protocol
to access a consistent data object that resides in a memory
device of a remote computing system. In this example, the
data management module 122 may identify the requested
consistent data object in the remote computing system based
on a global identifier that is unique to the requested consistent
data object.
The attribute detected by the data management module 122

can also include a data format attribute which determines one
or more canonical data formats of the consistent data object.
A canonical data format, as defined herein, is a format of a
data object expected to be frequently requested by an appli
cation or hardware component. The canonical format may be
selected to minimize the number of data format conversions
performed by the data management module 122. For
example, if consistent data objects are frequently requested
by an application as unsigned 16-bit integers, the canonical
format for the consistent data object may be a 16-bit signed
integer. The data management module 122 can detect the
canonical data format or the canonical data format can be
provided to the data management module 122 by an applica
tion or hardware component. In some embodiments, the data
management module 122 can detect the format of a consistent
data object that is most frequently requested. The data man
agement module 122 can also set the most frequently
requested data format as the canonical data format. The
canonical data formats can include any number of different
consistent data object formats such as 32-bit integer, 32-bit
unsigned integer, 64-bit float, or a color format, among oth
ers. The color format allows the data management module
122 to perform color conversions at a speed equal to a direct
memory access (DMA) rate. For example, an application may
instruct the data management module 122 to extract the lumi
nance channel from an RGB color image. After the luminance
channel is modified by the application, the data management
module 122 can store the luminance channel in the RGB color
image.

In some embodiments, the data format attribute can also
indicate a shadow copy format that stores two copies of the
consistent data object. One copy of the consistent data object
can include a tile-access set of data. A tile-access set of data
can include a set of data that is partitioned into Smaller seg
ments. For example, a large digital image located in a storage
device may have Smaller segments of the digital image stored
in memory. In this example, the data management module
122 may determine the frequently requested Smaller seg
ments of the digital image and store the frequently requested
Smaller segments in consistent data objects. The data man
agement module 122 may also determine the size of the

10

15

25

30

35

40

45

50

55

60

65

6
Smaller segments based on the amount of data that can be
stored in a cache line. For example, a set of data may include
2 MB of data for a digital image. However, a cache line may
store 64 KB of data. In this example, the 2 MB set of data may
be split into tiles of 64KB, so each tile can be stored in a cache
line. The second copy of the consistent data object can include
a shadow copy of the tiled data kept in a buffer. The shadow
copy can be a consistent data object that represents the larger
set of data.

Continuing at block 304, the data management module 122
can also detect an attribute that can include a memory hier
archy attribute, which manages the location of the consistent
data object within the memory hierarchy. In some embodi
ments, the memory hierarchy can include an L1 cache, L2
cache, GPU memory, DSP memory, Camera pipeline
memory, media bus memory, shared virtual memory (SVM)
memory, system memory, and network cache, among others.
The memory hierarchy attribute can restrict the consistent
data objects to reside in one particular level of memory. For
example, the memory hierarchy attribute may indicate that
the data management module 122 is to store a consistent data
object in the L1 cache and the consistent data object is not to
be stored in any other level of memory such as the L2 cache.
In other embodiments, the memory hierarchy attribute may
indicate that the data management module 122 can store the
consistent data object in any level of memory. For example,
the memory hierarchy attribute may indicate that the consis
tent data object may be migrated throughout various levels of
memory based on the virtual memory policy of a computing
system.

In other embodiments, the memory hierarchy attribute can
also indicate that the data management module 122 is to
implement a shadow copy format. For example, the data
management module 122 may rearrange the data layout in
memory if the data is to be accessed in tiled portions. The data
management module 122 can rearrange the data layout in
memory to accommodate tiled access of consistent data
objects based on the size of the tiled portions. For example, a
Small portion of a consistent data object may represent a
rectangular area of a digital image that is used in multiple
operations. The data management module 122 can store the
rectangular area of the digital image in cache to increase the
execution speed of operations requesting the rectangular area
of the digital image. In this example, additional portions of
the digital image that are not requested for an operation can
remain in storage and may not be stored in memory.

In some embodiments, the data management module 122
may keep a shadow copy of the data in an alternative address
ing arrangement to allow for scatter/gather operations to
access chosen memory regions. In some examples, the chosen
memory regions can include image processing kernel pat
terns or Sub-regions across an entire image. Such as 3x3
regions. 5x5 regions, 10x20 regions, and other convenient
region sizes. For example, the canonical data format may be
arranged to optimize data access patterns for memory
regions, where said re-arrangement may take the form of
linear sets of regions stored together. The data management
module 122 may also detect commands to optimize data
access for chosen region sizes via attributes set for each
consistent data object. In some examples, the attribute may
indicate how to enforce the chosen optimized memory access
for the selected region sizes, where said optimizations are
performed for both read and write operations.

Continuing at block 304, the data management module 122
can also detect the consistent data object lifetime attribute,
which determines when to send a consistent data object to
another level of memory in the memory hierarchy. In some

US 9,389,794 B2
7

embodiments, the consistent data object lifetime attribute
(also referred to herein as a lifetime attribute) can include a
good until canceled option, cache only option, a local
memory and higher option, and a system memory and higher
option, among others. Each of the lifetime attribute options
can indicate when the data management module 122 is to
move a consistent data object from one level of memory to a
second level of memory. For example, the good until canceled
option can indicate that a data management module 122 is to
store a consistent data object in memory until the data man
agement module 122 deletes the consistent data object. The
cache only option can indicate that a data management mod
ule 122 is to store a consistent data object in cache. Such as L1
or L2, but the consistent data object is not to be stored in other
levels of memory.
The attribute detected by the data management module 122

can also include a cryptography attribute. The cryptography
attribute allows the data management module 122 to store a
consistent data object in an encrypted format as part of the
consistent data object's canonical format. In some embodi
ments, the cryptography attribute can allow the data manage
ment module 122 to store consistent data objects in a local
computing system or a remote computing system. For
example, a data management module 122 can store a consis
tent data object on a local computing system with an encryp
tion attribute such as AER 256 encryption. The AER 256
encryption indicates the encryption method used by the data
management module 122 to encrypt the consistent data
objects. In other examples, a Network secure socket layer
(SSL) can be used by the data management module 122 to
encrypt consistent data objects accessed in remote computing
Systems.

Additionally, the attribute detected by the data manage
ment module 122 can include a dimensions attribute, which
defines the size of the consistent data object. In some embodi
ments, the number of dimensions stored for the consistent
data object can be indicated by the consistent data object
dimensions attribute. For example, a data management mod
ule 122 may store a consistent data object with three dimen
sions in which 1024 data points are stored for the X and Y
dimensions and Zero data points are stored for the Z dimen
Sion. In other examples, fewer or additional dimensions may
be stored for a consistent data object.

Continuing at block304, the data management module 122
can detect a layout attribute, which allows for efficient access
to the consistent data objects. In some embodiments, a variety
of object data layouts may be supported. For example, the
data management module 122 may store data according to
data object layouts such as YUV 444, HSV 161616, LAB
161616, X Lines Y Columns, or 4 kb tiled access, among
others. The YUV 444 data object layout can refer to a color
space in which 4 KB of luminance and two separate 4 KB
blocks of chrominance are stored for each consistent data
object. The HSV 161616 data object layout can refer to a
cylindrical-coordinate system in which the data management
module 122 stores 16 KB of the hue, 16 KB of the saturation
and 16 KB for the value of each consistent data object.

In addition, the data management module 122 can detect a
metadata attribute. In some embodiments, the metadata
attribute can include descriptive text that relates to a consis
tent data object. For example, the metadata for a consistent
data object may include a description identifying the origin of
a digital image. In this example, the metadata may include the
text “This is an HG image from a VCR model XYZ at RGB at
6-bits per channel. In other examples, the data management
module 122 can store multiple metadata texts that relate to a
consistent data object.

10

15

25

30

35

40

45

50

55

60

65

8
The data management module 122 can also detect a public

key for a consistent data object. In some embodiments, the
public key allows the data management module 122 to store a
consistent data object in secure storage in an encrypted for
mat. If the data management module 122 detects a public key,
the data management module 122 can implement a public
key/private key encryption. For example, a data management
module 122 can use a public key combined with a private key
embedded in a computing system and only visible to the data
management module 122 to encrypt consistent data objects.
At block 306 the data management module 122 determines

if the consistent data object to be stored in memory has
previously been created. The data management module 122
can determine if a consistent data object has been previously
created by comparing attributes of the data object to be stored
with attributes of the previously created consistent data
objects. For example, the local identifier or global identifier of
the data object to be created may correspond with a local
identifier or global identifier of a previously created consis
tent data object. In other embodiments, the data management
module 122 can detect the memory hierarchy attribute of the
data object to be created and search particular levels of
memory for a corresponding previously created consistent
data object.

In some embodiments, the data management module 122
stores multiple canonical data formats of consistent data
objects. For example, a consistent data object may be stored
as a 32-bit unsigned integer and a 16-bit integer. In some
embodiments, the data management module 122 can com
pare the consistent data object to be stored in memory with
previously created consistent data objects. In some examples,
the data management module 122 may convert the consistent
data object to be stored in memory to additional formats for
comparison with previously created consistent data objects.
For example, the data management module 122 may store
consistent data objects in two formats. The data management
module 122 in this example may convert the consistent data
object to be stored into each of the two stored formats to
determine if the consistent data object to be stored in memory
has previously been created.

If the consistent data object to be stored in memory has not
been previously created, the process continues at block 308.
At block 308, the data management module 122 creates the
consistent data object. The data management module 122
creates the consistent data object according to the previously
detected attributes. For example, a local identifier may be
stored with the consistent data object. Additional attributes
can identify how the data management module 122 is to store
the consistent data object. For example, the data format of the
consistent data object can determine if the consistent data
object is to be stored in a 16-bit integer format or a 32-bit
floating data type, among others. The memory hierarchy
attribute may determine if the consistent data object is to be
stored within a particular memory level. For example, the
memory hierarchy may indicate that the data management
module 122 is to store the consistent data object in L1 cache.
In some embodiments, any number of attributes may be
detected and stored with each consistent data object.
At block 310, the data management module 122 deter

mines if additional data formats of the consistent data objects
are to be stored. In some embodiments, the data management
module 122 can determine if the consistent data object is to be
stored in additional data formats based on the previously
detected data format attribute. The data management module
122 may store multiple formats of each consistent data object.
For example, two canonical formats of a consistent data
object may be stored, so that the consistent data object is

US 9,389,794 B2

stored as a 32-bit unsigned integer and a 64-bit floating-point.
If additional data formats of the consistent data object are not
to be stored, the process ends at block 312. If additional data
formats of the consistent data objects are to be stored, the
process continues at block 314. 5
At block 314, the data management module 122 stores a

copy of the consistent data object for each data format to be
stored. In some embodiments, each copy of the consistent
data object may include common attributes. For example,
multiple copies of a consistent data object may share a com
mon local identifier, global identifier, memory policy, data
lifetime policy, public encryption key and cryptography
policy. The multiple copies of a consistent data object may
also contain attributes that are not shared. For example, the
canonical data format may differ between consistent data
objects, so that the consistent data object is stored as both a
16-bit integer and a 32-bit floating-point data type. The pro
cess ends after the data management module 122 stores a
copy of the consistent data object in memory for each data
format that is to be stored in memory.
As discussed above at block 306, the data management

module 122 determines if the consistent data object to be
created has been previously stored in memory. If the consis
tent data object exists in memory, the process continues at
block 316. At block 316, the data management module 122
updates the consistent data object in memory. In some
embodiments, the data management module 122 can update
the data stored in a consistent data object or the attributes of
the consistent data object. For example, the data management
module 122 can update the memory hierarchy attribute of a
consistent data object. In this example, the consistent data
object may be stored in any level of memory instead of storing
the consistent data object in a cache. The process continues at
block 310.

The process flow diagram of FIG. 3 is not intended to
indicate that the steps of the method 300 are to be executed in
any particular order, or that all of the steps of the method 300
are to be included in every case. For example, any number of
attributes can be detected for a consistent data object. In some
examples, the consistent data objects may not include a public
encryption key or cryptography policy. Further, any number
of additional steps may be included within the method 300,
depending on the specific application.

FIG. 4 is a process flow diagram illustrating an example of
a method for accessing a consistent data object. The method 45
400 for accessing a consistent data object may be imple
mented with a computing system 100, in which a data man
agement module 122 manages consistent data objects. In
Some embodiments, the consistent data objects can be stored
in memory 106.

At block 402, the data management module 122 detects a
consistent data object retrieve operation. The consistent data
object retrieve operation may include any operation that
attempts to retrieve data stored in a consistent data object
managed by the data management module 122. In some 55
embodiments, the data management module 122 can detect
the format of the consistent data object to retrieve based on the
parameters of the consistent data object retrieve operation.
For example, a data read operation may indicate that the data
management module 122 is to retrieve a 32-bit integer format 60
of a consistent data object from memory.

At block 404, the data management module 122 deter
mines if the data format of the consistent data object to be
retrieved is stored in memory. In some embodiments, the data
management module 122 can determine if the data format of 65
a consistent data object is stored in memory by comparing the
local identifiers or global identifiers. The data management

10

15

25

30

35

40

50

10
module 122 can also identify a specific memory device to
search for the consistent data object to be retrieved based on
the memory hierarchy attribute. For example, the data man
agement module 122 may detect a memory hierarchy
attribute that indicates the consistent data object to be
retrieved may be stored in L1 cache. If the data format of the
requested consistent data object is not stored in memory, the
process continues at block 406. If the data format of the
requested consistent data object is stored in memory, the
process continues at block 408.
At block 406, the data management module 122 generates

a copy of the consistent data object in the requested format. In
Some embodiments, the data management module 122 may
locate a format of the consistent data object to be retrieved
that was not requested. As discussed above, the consistent
data object can be viewed and modified as any suitable data
format of varying bit precision such as 8, 16, 32, 64, 128 or
any other Suitable precision. For example, the data manage
ment module 122 may detect a request for a consistent data
object in a 16-bit integer format. The canonical data formats
of the consistent data object stored by the data management
module 122 may be a 32-bit integer format and a 64-bit
integer format. In some embodiments, the data management
module 122 may include an inline conversion unit that con
verts the stored data format of the consistent data object to the
requested data format. In other embodiments, the data man
agement module 122 may detect the number of requests of a
consistent data object in a particular data format. If a data
format is frequently requested but not stored, the data man
agement module 122 may add the requested data format as a
canonical format. In other embodiments, the data manage
ment module 122 may replace a data format that is infre
quently used.
At block 410, the data management module 122 returns the

generated copy of the consistent data object in the requested
format. In some embodiments, the data management module
may return only a requested portion of the consistent data
object based on the parameters of the consistent data object
access operation. The process ends after the data management
module 122 returns the requested format of the consistent
data object.

If the data management module 122 determines that the
data format of the requested consistent data object is stored in
memory, the process continues at block 408. At block 408, the
data management module returns the requested data format of
the consistent data object. The process ends after the data
format of the requested consistent data object is returned.
The process flow diagram of FIG. 4 is not intended to

indicate that the steps of the method 400 are to be executed in
any particular order, or that all of the steps of the method 400
are to be included in every case. Further, any number of
additional steps may be included within the method 400,
depending on the specific application. For example, in some
embodiments the requested data format of the consistent data
object can be sent to an application or a display engine. A
display engine, as defined herein, can include any Software or
hardware components that can display data. In some
examples, the display engine can include display devices or
other devices capable of displaying data.

FIG. 5 is a block diagram depicting an example of a tan
gible, non-transitory computer-readable medium that can
manage consistent data objects. The tangible, non-transitory,
computer-readable medium 500 may be accessed by a pro
cessor 502 over a computer bus 504. Furthermore, the tan
gible, non-transitory, computer-readable medium 500 may
include code to direct the processor 502 to perform the steps
of the current method.

US 9,389,794 B2
11

The various Software components discussed herein may be
stored on the tangible, non-transitory, computer-readable
medium 500, as indicated in FIG. 5. For example, a data
management module 506 may be adapted to direct the pro
cessor 502 to manage consistent data objects. It is to be
understood that any number of additional Software compo
nents not shown in FIG. 5 may be included within the tan
gible, non-transitory, computer-readable medium 500,
depending on the specific application.

FIG. 6 is a process flow diagram illustrating an example
method of printing a consistent data object in a printing
device. The method 600 can be implemented with a printing
device, such as the printing device 126 of FIG.1. The printing
device 126 may include a print object module 128 that can
execute operations based on the consistent data objects.

At block 602, the print object module 128 can detect a
consistent data object. In some embodiments, the print object
module 128 can receive a consistent data object from a data
management module 122. For example, the data management
module 122 may receive an operation from an application to
send a consistent data object to the printing device. In other
embodiments, the data management module 122 may send
each stored canonical data format of a consistent data object
to a printing device. For example, a data management module
122 may send two separate canonical data formats of a con
sistent data object to the printing device.
At block 604, the print object module 128 can detect an

attribute of the consistent data object. In some embodiments,
the print object module 128 can detect any number of
attributes of the consistent data object. For example, the print
object module 128 may detect the data format attribute of a
consistent data object.

At block 606, the print object module 128 can print the
consistent data object based on the detected attribute. For
example, the print object module 128 may print a consistent
data object based on one of several canonical data formats. In
some embodiments, the print object module 128 may identify
the canonical data format to print based on the frequently
printed canonical data formats of other consistent data
objects. For example, the print object module 128 may print
several consistent data objects in a particular canonical data
format. The print object module 128 may then select the
frequently printed canonical data format as a format to use for
printing additional consistent data objects.

In some embodiments, the print object module 128 may
also print the consistent data object by creating multiple
views of the same consistent data object or image. For
example, a first image view may be a colorimetrical accurate
view of an image stored in a colorimetric space Such as JAB
or JCH. In this example, the first image view may be repre
sented as a triplet of 32-bit floating point numbers (J. C. H).
The print object module 128 may also create a second image
view of the consistent data object that is a color intensity
component J of the first image. The print object module 128
may store the second image view as a single plane 8-bit
integer image. The second image view can be processed to
reveal the outlines of objects. The first image view and the
second image view can then be composed together into a final
image for printing. The final image may include the first
image view as the background and second image view as the
foreground overlay outlining particular objects.
The process flow diagram of FIG. 6 is not intended to

indicate that the steps of the method 600 are to be executed in
any particular order, or that all of the steps of the method 600
are to be included in every case. Further, any number of
additional steps may be included within the method 300,
depending on the specific application. For example, the print

10

15

25

30

35

40

45

50

55

60

65

12
object module 128 may also detect a print format for a con
sistent data object and convert the consistent data object to a
print format. Additionally, the print object module 128 may
also store scanned documents and documents received by fax
as consistent data objects based on various attributes.

Furthermore, in some embodiments, the print object mod
ule 128 may also process the color intensity of an RGB color
image, such as the YIQ Y intensity component. The data
management module can allow the print object module 128 to
read the Y intensity component, process the Y component,
and then write the Y component back into the YIQ data view.
In some embodiments, the color conversion may be per
formed within the data management module, which can
reduce the size of the Software code since the data manage
ment module performs the color conversion.

EXAMPLE 1.

A method for managing consistent data objects is included
herein. The method includes detecting an operation to store a
consistent data object and detecting an attribute for the con
sistent data object. The method also includes storing the con
sistent data object based on the attribute. Furthermore, the
method includes determining an additional format of the con
sistent data object to be stored. In addition, the method
includes generating a second consistent data object based on
the additional format. The method also includes storing the
second consistent data object.

In some embodiments, the method for managing consistent
data objects can also detect a retrieval request for the consis
tent data object from an application, determinea format of the
consistent data object to retrieve, and retrieve the format of
the consistent data object. The method can also store the
consistent data object based on any number of attributes
including a local identifier attribute, a global identifier
attribute, a data format attribute, a memory hierarchy
attribute, a data object layout attribute, a data object layout
attribute, a data lifetime attribute, a data object metadata
attribute, or a cryptography attribute. The method can also
send a retrieved consistent data object to a print engine. Such
as a printing device.

EXAMPLE 2

A system for managing consistent data objects is included
herein. The system includes a memory device to store a con
sistent data object, a display device to display the consistent
data object, and a processor. The processor can detect an
operation to store the consistent data object and determine the
consistent data object is not stored in the memory device. The
processor can also detect an attribute for the consistent data
object. Furthermore, the processor can also store the consis
tent data object based on the attribute. In addition, the pro
cessor can determine an additional format of the consistent
data object is to be stored. The processor can also generate a
second consistent data object based on the additional format
and store the second consistent data object in the memory
device.

In some embodiments, the system for managing consistent
data objects can also generate a second consistent data object
with an inline conversion module. In some embodiments, the
inline conversion module can convert a consistent data object
of one format to a consistent data object of a second format
while a data management module retrieves the data in paral
lel. Alternatively, the system for managing consistent data
objects can store multiple formats of a consistent data object
in memory.

US 9,389,794 B2
13

EXAMPLE 3

At least one machine readable medium that includes
instructions is also included herein. The instructions can
detect an operation to store the consistent data object and
determine the consistent data object is not stored in the
memory device. The instructions can also detect an attribute
for the consistent data object. Furthermore, the instructions
can store the consistent data object based on the attribute. In
addition, the instructions can determine an additional format
of the consistent data object is to be stored. The instructions
can also generate a second consistent data object based on the
additional format and store the second consistent data object
in the memory device.

In some embodiments, the instructions can also cause the
computing device to detect a retrieval request for the consis
tent data object from an application, determine aformat of the
consistent data object to retrieve, and retrieve the format of
the consistent data object. Additionally the instructions can
also store the consistent data object based on any number of
attributes such as a local identifier attribute, a global identifier
attribute, a data format attribute, a memory hierarchy
attribute, a data object layout attribute, a data object layout
attribute, a data lifetime attribute, a data object metadata
attribute, or a cryptography attribute.

EXAMPLE 4

A printing device for printing consistent data objects com
prising a print object module is included herein. The print
object module can detect a consistent data object and detect
an attribute of the consistent data object. The print object
module can also print the consistent data object based on the
attribute of the consistent data object.

In some embodiments, the printing device can also detect a
print format and convert the consistent data object from a first
data format to the print format. The printing device may also
store a scanned document as a consistent data object. In other
embodiments, the printing device can also store a document
received from a facsimile operation as a consistent data
object.

In the preceding description, various aspects of the dis
closed subject matter have been described. For purposes of
explanation, specific numbers, systems and configurations
were set forth in order to provide a thorough understanding of
the subject matter. However, it is apparent to one skilled in the
art having the benefit of this disclosure that the subject matter
may be practiced without the specific details. In other
instances, well-known features, components, or modules
were omitted, simplified, combined, or split in order not to
obscure the disclosed subject matter.

Various embodiments of the disclosed subject matter may
be implemented in hardware, firmware, software, or combi
nation thereof, and may be described by reference to or in
conjunction with program code, such as instructions, func
tions, procedures, data structures, logic, application pro
grams, design representations or formats for simulation, emu
lation, and fabrication of a design, which when accessed by a
machine results in the machine performing tasks, defining
abstract data types or low-level hardware contexts, or produc
ing a result.

For simulations, program code may represent hardware
using a hardware description language or another functional
description language which essentially provides a model of
how designed hardware is expected to perform. Program code
may be assembly or machine language, or data that may be
compiled and/or interpreted. Furthermore, it is common in

5

10

15

25

30

35

40

45

50

55

60

65

14
the art to speak of Software, in one form or another as taking
an action or causing a result. Such expressions are merely a
shorthand way of stating execution of program code by a
processing system which causes a processor to perform an
action or produce a result.

Program code may be stored in, for example, Volatile and/
or non-volatile memory, such as storage devices and/or an
associated machine readable or machine accessible medium
including solid-state memory, hard-drives, floppy-disks, opti
cal storage, tapes, flash memory, memory Sticks, digital video
disks, digital versatile discs (DVDs), etc., as well as more
exotic mediums such as machine-accessible biological state
preserving storage. A machine readable medium may include
any tangible mechanism for storing, transmitting, or receiv
ing information in a form readable by a machine, such as
antennas, optical fibers, communication interfaces, etc. Pro
gram code may be transmitted in the form of packets, serial
data, parallel data, etc., and may be used in a compressed or
encrypted format.

Program code may be implemented in programs executing
on programmable machines Such as mobile or stationary
computers, personal digital assistants, set top boxes, cellular
telephones and pagers, and other electronic devices, each
including a processor, Volatile and/or non-volatile memory
readable by the processor, at least one input device and/or one
or more output devices. Program code may be applied to the
data entered using the input device to perform the described
embodiments and to generate output information. The output
information may be applied to one or more output devices.
One of ordinary skill in the art may appreciate that embodi
ments of the disclosed subject matter can be practiced with
various computer system configurations, including multipro
cessor or multiple-core processor Systems, minicomputers,
mainframe computers, as well as pervasive or miniature com
puters or processors that may be embedded into virtually any
device. Embodiments of the disclosed subject matter can also
be practiced in distributed computing environments where
tasks may be performed by remote processing devices that are
linked through a communications network.

Although operations may be described as a sequential pro
cess, some of the operations may in fact be performed in
parallel, concurrently, and/or in a distributed environment,
and with program code stored locally and/or remotely for
access by single or multi-processor machines. In addition, in
Some embodiments the order of operations may be rearranged
without departing from the spirit of the disclosed subject
matter. Program code may be used by or in conjunction with
embedded controllers.

While the disclosed subject matter has been described with
reference to illustrative embodiments, this description is not
intended to be construed in a limiting sense. Various modifi
cations of the illustrative embodiments, as well as other
embodiments of the Subject matter, which are apparent to
persons skilled in the art to which the disclosed subject matter
pertains are deemed to lie within the scope of the disclosed
Subject matter.

What is claimed is:
1. A method for a computing system managing consistent

data objects, comprising:
managing, via a data management module of the comput

ing system, multiple copies of a consistent data object in
multiple levels of memory of the computing system, the
multiple levels comprising cache and system memory,
the managing comprising:
detecting an operation to store the consistent data object

in the memory;

US 9,389,794 B2
15

detecting an attribute for the consistent data object,
wherein the attribute comprises a memory hierarchy
attribute that restricts the consistent data object to
reside in one particular level of the memory;

storing the consistent data object in the memory based
on the attribute as a first consistent data object;

determining an additional format of the consistent data
object to be stored in the memory;

generating a second consistent data object comprising a
copy of the consistent data object based on the addi
tional format;

storing the second consistent data object in the memory;
and

determining whether to retrieve the first consistent data
object or the second consistent data object based on a
requested format of the consistent data object.

2. The method of claim 1, wherein the managing further
comprises:

detecting a retrieval request for the consistent data object
from an application executing on the computer system;
and

determining the requested format of the consistent data
object, wherein data from the consistent data object are
accessible in multiple formats to applications executing
on the computing system without data conversion out
side the data management module.

3. The method of claim 2, wherein determining a format of
the consistent data object to retrieve comprises detecting the
format of the consistent data object to retrieve from a data
object view.

4. The method of claim 1, wherein the attribute comprises
a local identifier attribute comprising a common memory
address space of the computing system.

5. The method of claim 1, wherein the first consistent data
object comprises data having a first bit-precision format, and
wherein the second consistent data object comprises the data
having the additional format comprising a second bit-preci
sion format different than the first bit-precision format, and
wherein the first consistent data object and the second con
sistent data object are accessible by multiple processors of the
computing system via the data management module.

6. The method of claim 1, wherein the attribute comprises
a shadow copy format that indicates a set of data is to be
formatted based on a size of a cache line.

7. The method of claim 1, wherein the attribute comprises
a memory hierarchy attribute to manage location of the con
sistent data object within a memory hierarchy comprising L1
cache, L2 cache, and the system memory, and wherein the
additional format is a format requested by a processor of the
computing System.

8. The method of claim 1, comprising the data management
module sending the first consistent data object to a print
engine, wherein the multiple copies have different respective
formats.

9. The method of claim 1, wherein generating the second
consistent data object based on the additional format com
prises updating an existing copy of the consistent data object.

10. The method of claim 1, wherein the first consistent data
object comprises a first format, and the second consistent data
object comprises the additional format comprising a second
format different than the first format.

11. The method of claim 1, comprising a hardware device
of the computing system sending a store operation to the data
management module to store the consistent data object in the
additional format, wherein the first consistent data object
comprises a digital image having a first format, and wherein

10

15

25

30

35

40

45

50

55

60

65

16
the second consistent data object comprises the digital image
having the additional format comprising a second format
different than the first format.

12. The method of claim 1, wherein the additional format
comprises a canonical data format comprising a format
requested by a hardware component of the computing system.

13. The method of claim 12, wherein the canonical format
comprises a color format that facilitates computing system
via the data management module to perform color conver
sions at a speed substantially equal to a direct memory access
(DMA) rate of the computing system.

14. A computing system for managing consistent data
objects comprising:
memory comprising cache and system memory, the
memory to store a consistent data object comprising a
data structure; and

a data management module executable by the computing
system to manage copies of the consistent data object in
multiple levels of the memory, comprising to:
detect an operation to store the consistent data object;
determine the consistent data object is not stored in the
memory;

detect an attribute for the consistent data object, wherein
the attribute comprises a data lifetime attribute indi
cating when the computing system via the data man
agement module is to move a consistent data object
from one level of memory to a second level of
memory;

store the consistent data object based on the attribute as
a first consistent data object comprising the data struc
ture;

determine an additional format of the consistent data
object to be stored;

generate a second consistent data object comprising the
data structure based on the additional format;

store the second consistent data object in the memory;
and

determine whether to retrieve the first consistent data
object or the second consistent data object based on a
requested format of the consistent data object.

15. The system of claim 14, wherein the data management
module executed by the computing system to:

detect a retrieval request for the consistent data object from
an application; and

determine the requested format of the consistent data
object, wherein the data management module, via the
processor, to maintain multiple copies of the consistent
data object in different respective formats.

16. The system of claim 15, wherein the data management
module executed by the computing system to detect the
requested format of the consistent data object to retrieve from
a data object view.

17. The system of claim 14, wherein the first consistent
data object and the second consistent data object are acces
sible by multiple processors via the data management mod
ule.

18. The system of claim 14, wherein to generate a second
consistent data object comprises the computing system to
create the second consistent data object by an inline conver
sion module.

19. The system of claim 14, wherein the data management
module executed by the computing system to send the first
consistent data object and the second consistent data object to
a print engine, and wherein the first consistent data object
comprises the data structure having a first bit-precision for
mat, and wherein the second consistent data object comprises

US 9,389,794 B2
17

the data structure having the additional format comprising a
second bit-precision format different than the first bit-preci
sion format.

20. The system of claim 14, wherein generating a second
consistent data object based on the additional format com
prises updating an existing consistent data object.

21. The system of claim 14, wherein the data management
module via the processor to provide data conversions for read
and write operations between copies of the consistent data
object comprising the data structure and having same data
under different data format views.

22. At least one non-transitory machine readable medium
comprising a plurality of instructions that, in response to
being executed on a computing device, cause the computing
device to:
manage copies of consistent data objects of multiple for

mats in levels of memory of the computing device, the
levels comprising cache and system memory, whereinto
manage comprises to:
detect an operation to store a consistent data object hav

ing a first format in the memory;
detect an attribute for the consistent data object, wherein

the attribute comprises a memory hierarchy attribute

5

10

15

that restricts the consistent data object to reside in one 25
particular level of the memory;

store a first copy of the consistent data object in the
memory as a first consistent data object based on the
attribute;

18
determine a second format of the consistent data object

to be stored in the memory;
generate a second copy of the consistent data object as a

second consistent data object based on the second
format; and

store the second consistent data object in the memory;
and

determine whether to retrieve from the memory the first
consistent data object or the second consistent data
object based on a requested format of the consistent
data object.

23. The machine readable medium of claim 22, wherein the
instructions cause the computing device to:

detect a retrieval request for the consistent data object from
an application; and

determine the requested format of the consistent data
object, wherein the first consistent data object comprises
first data having the first format, wherein the second
consistent data object comprises the first data having the
second format, and wherein the second format com
prises a canonical data format comprising a format
requested by a hardware component of the computing
system.

24. The machine readable medium of claim 22, wherein the
attribute comprises a data lifetime attribute, and wherein the
first consistent data object comprises a digital image having
the first format, and the second consistent data object com
prises the digital image having the second format.

k k k k k

