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ENCOOING BLOCKS IN VIDEO FRAMES 
CONTAINING TEXT USING HISTOGRAMIS 

OF GRADENTS 

BACKGROUND 

1. Technical Field 
This disclosure relates generally to video or image process 

ing, and more specifically to methods and apparatus for pro 
cessing digital video frames in block processing pipelines. 

2. Description of the Related Art 
Various devices including but not limited to personal com 

puter systems, desktop computer systems, laptop and note 
book computers, tablet or paddevices, digital cameras, digital 
Video recorders, and mobile phones or Smart phones may 
include Software and/or hardware that may implement a 
Video processing method. For example, a device may include 
an apparatus (e.g., an integrated circuit (IC). Such as a system 
on-a-chip (SOC), or a subsystem of an IC), that may receive 
and process digital video input from one or more sources and 
output the processed video frames according to one or more 
Video processing methods. As another example, a Software 
program may be implemented on a device that may receive 
and process digital video input from one or more sources and 
output the processed video frames according to one or more 
Video processing methods. As an example, a video encoder 
110 as shown in FIG. 1 represents an apparatus, or alterna 
tively a software program, in which digital video input (input 
frames 120) is encoded or converted into another format 
(output frames 130), for example a compressed video format 
such as H.264/Advanced Video Coding (AVC) format (also 
referred to as MPEG 4 Part 10), or H.265 High Efficiency 
Video Encoding (HEVC) format, according to a video encod 
ing method. An apparatus or Software program Such as a 
video encoder 110 may include multiple functional compo 
nents or units, as well as external interfaces to, for example, 
Video input sources and external memory. 

In some video processing methods, to perform the process 
ing, each input video frame 120 is divided into rows and 
columns of blocks of pixels (e.g., 16x16 pixel blocks), for 
example as illustrated in FIG. 2 which shows an example 
192x192 pixel frame 120 divided into 144 16x16 pixel blocks 
(illustrated in FIG. 2 as blocks 220). Each block of an input 
video frame 120 is processed separately, and when done the 
processed blocks are combined to form the output video 
frame 130. This may be referred to as a block processing 
method. Conventionally, the blocks are processed by the 
block processing method in scan order as shown in FIG. 2, 
beginning at the first block of the first row of the frame (shown 
as block 0), sequentially processing the blocks across the row, 
and continuing at the first block of the next row when a row is 
complete. 
A block processing method may include multiple process 

ing steps or operations that are applied sequentially to each 
block in a video frame. To implement Such a block processing 
method, an apparatus or software program Such as a video 
encoder 110 may include or implement a block processing 
pipeline 140. A block processing pipeline 140 may include 
two or more stages, with each stage implementing one or 
more of the steps or operations of the block processing 
method. FIG. 1 shows an example video encoder 110 that 
implements an example block processing pipeline 140 that 
includes at least stages 142A through 142C. A block is input 
to a stage 142A of the pipeline 140, processed according to 
the operation(s) implemented by the stage 142A, and results 
are output to the next stage 142B (or as final output by the last 
stage 142). The next stage 142B processes the block, while a 
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2 
next block is input to the previous stage 142A for processing. 
Thus, blocks move down the pipeline from stage to stage, 
with each stage processing one block at a time and multiple 
stages concurrently processing different blocks. Convention 
ally, the blocks are input to and processed by the block pro 
cessing pipeline 140 in scan order as shown in FIG. 2. For 
example, in FIG. 1, the first block of the first row of the frame 
shown in FIG. 2 (block 0) is at stage 142C, the second block 
(block 1) is at stage 142B, and the third block (block 2) is at 
stage 142A. The next block to be input to the block processing 
pipeline 140 will be the fourth block in the first row. 
H.264/Advanced Video Coding (AVC) 
H.264/AVC (formally referred to as ITU-T Recommenda 

tion H.264, and also referred to as MPEG-4 Part 10) is a 
block-oriented motion-compensation-based codec standard 
developed by the ITU-T (International Telecommunications 
Union-Telecommunication Standardization Sector) Video 
Coding Experts Group (VCEG) together with the ISO/IEC 
JTC1 Moving Picture Experts Group (MPEG). The H.264/ 
AVC standard is published by ITU-T in a document titled 
“ITU-T Recommendation H.264: Advanced video coding for 
generic audiovisual services'. This document may also be 
referred to as the H.264 Recommendation. The H.264 recom 
mendation includes a definition for context-adaptive binary 
arithmetic coding (CABAC) entropy encoding. 

Generally, context-adaptive coding components must read 
from and write to a context lookup table, which is typically 
implemented in external memory. The context lookup table is 
Sometimes implemented as a dual-port memory (including a 
read port and a separate write port) to increase performance, 
but this approach can be prohibitively expensive. 

SUMMARY OF EMBODIMENTS 

Embodiments of block processing methods and apparatus 
are described in which a block processing pipeline includes 
multiple pipeline components. A blockinput component of a 
block processing pipeline (e.g., a video encoding pipeline) 
may, for a block of pixels in a video frame, compute gradients 
in two or more directions, and may compute one or more 
histograms representing statistics derived from the gradient 
values for the block of pixels (e.g., by accumulating counts of 
the directions or magnitudes of horizontal and Vertical gradi 
ents in one or more histograms). For example, computing the 
histograms for the block of pixels may first include comput 
ing unsigned values representing the magnitudes of the gra 
dients for the block of pixels in two or more directions, and 
then deriving statistics from those unsigned gradient values 
for the block of pixels in those directions. 

In another example, computing histograms representing 
statistics derived from gradient values for a block of pixels 
may include computing horizontal gradient values and verti 
cal gradient values for the block of pixels, and computing one 
histogram of the horizontal gradient values and a separate 
histogram of the vertical gradient values. In this example, the 
height of each bin of the histogram of the horizontal gradient 
values and each bin of the histogram of the vertical gradient 
values may represent a count of the computed gradient values 
having a magnitude in a respective range of gradient magni 
tude values. In some embodiments, an angle representing a 
gradient direction at each of multiple points within a block of 
pixels may be computed based on horizontal gradient values 
and vertical gradient values computed at that point. In Such 
embodiments, computing histograms representing statistics 
derived from the gradient values for the block of pixels may 
include computing a histogram of the angles representing the 
gradient directions at each of the multiple points within the 
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block of pixels, where the height of each bin of the histogram 
represents a count of the computed angles that fall within in a 
respective range of angles. 

In some embodiments, the block input component may 
(e.g., through software executing on a CPU in the blockinput 
component) analyze the histogram(s) to compute block-level 
statistics and/or to determine the presence or absence of a 
dominant gradient direction in the block of pixels, dependent 
on the computed histograms. If a dominant gradient direction 
exists in the block of pixels, this may indicate (or be used to 
determine) the presence of text in the block of pixels (or the 
likelihood that the block of pixels represents a portion of a 
Video frame that contains text). In some embodiments, the 
block input component may be configured to determine (or 
select) one or more parameter values for encoding the block 
of pixels, dependent on the likelihood that the block of pixels 
represents a portion of the video frame that contains text. For 
example, if text is detected (e.g., if it is determined that a given 
block of pixels is likely to represent a portion of a video frame 
that contains text), various encoding parameter values may be 
selected, computed, or modified in Such a way as to improve 
the quality of encoding for the given block of pixels. For 
example, the block input component (or another component 
of the video encoding pipeline) may be configured to com 
pute a quantization parameter value for encoding the block of 
pixels that is lower than a quantization parameter value used 
for encoding blocks of pixels that do not represent portions of 
a video frame that contains text (including blocks of pixels 
within the same video frame). 

In various embodiments, the computed gradient values, 
histogram information, computed block-level statistics, 
quantization parameter values and/or other encoding param 
eter values that are computed based on the gradient values or 
histogram information described herein may be passed to 
other stages of a video encoding pipeline (e.g., an intra 
estimation stage, a mode decision stage, or a motion estima 
tion stage), where they may be used to bias or control the 
selection of a prediction mode, an encoding mode, or a 
motion vector. For example, such information may be passed 
from a hardware pipeline component or Software pipeline 
component in one stage of the video encoding pipeline to a 
hardware or software pipeline component in another stage of 
the video encoding pipeline (e.g., a stage that Succeeds the 
stage in which the information was generated) in order to 
affect the encoding of the block of pixels from which the 
information was generated. In another example, such infor 
mation may be passed from a hardware or Software pipeline 
component in one stage of the video encoding pipeline to a 
Software or hardware pipeline component in a stage that 
precedes the stage in which the information was generated in 
order to affect the encoding of a block of pixels that was 
received subsequent to receiving the block of pixels from 
which the information was generated. 

In some embodiments, slice-level or frame-level parameter 
values may be generated from the gradient histograms of 
multiple blocks (e.g., by accumulating the histogram infor 
mation and/or block-level statistics derived therefrom), and 
one or more slice-level or frame-level parameter values may 
be computed for use in encoding the video frame or a Subse 
quent video frame, dependent on the accumulated histogram 
information and/or slice/frame-level statistics. In some 
embodiments, a block input component of a video encoding 
pipeline may be configured to determine the likelihood that a 
given block of pixels represents a portion of a video frame that 
contains text using a decision function that was previously 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
determined by a classifier component based on training data 
(e.g., blocks of pixels for which the presence or absence of 
text is known). 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates an example video encoder including a 
conventional block processing pipeline that processes blocks 
from input frames in scan order. 

FIG. 2 illustrates conventional scan order processing of 
blocks from a video frame. 

FIG. 3 is a high-level block diagram of an example block 
processing pipeline that implements a Software pipeline and a 
hardware pipeline, according to at least some embodiments. 

FIGS. 4A through 4C illustrate processing blocks at a stage 
in an example block processing pipeline that implements a 
Software pipeline and a hardware pipeline, according to at 
least Some embodiments. 

FIG.5 illustrates an example block processing pipeline that 
implements a Software pipeline and a hardware pipeline in 
which at least one stage is skipped by the Software pipeline, 
according to at least Some embodiments. 

FIG. 6 illustrates an example block processing pipeline that 
implements a Software pipeline and a hardware pipeline in 
which at least one stage includes multiple pipeline units, 
according to at least Some embodiments. 

FIG. 7 illustrates components of an example pipeline unit 
that may be used at a stage of a block processing pipeline that 
implements a software pipeline and a hardware pipeline, 
according to at least Some embodiments. 

FIGS. 8A and 8B are flow diagrams illustrating methods of 
operation of a software pipeline and a hardware pipeline that 
operate in parallel in a block processing pipeline, according to 
at least some embodiments. 

FIG. 9 illustrates neighbor blocks of a current block in a 
frame, and further illustrates a knights order processing 
method for the blocks, according to at least Some embodi 
mentS. 

FIGS. 10A and 10B graphically illustrate the knights 
order processing method including the algorithm for deter 
mining a next block, according to at least Some embodiments. 

FIGS. 11A and 11B are high-level flow diagrams illustrat 
ing a knights order processing method for a block processing 
pipeline, according to at least Some embodiments. 

FIG. 12 illustrates a portion of a quadrow as processed in a 
pipeline according to the knights order processing method 
that may be cached in the current quadrow buffer, according 
to at least Some embodiments 

FIG. 13 graphically illustrates blocks in a current quadrow 
being processed according to the knights order processing 
method, as well as neighbor blocks in the last row of the 
previous quadrow that may be cached in a previous quadrow 
buffer, according to at least Some embodiments. 

FIG.14 is a flow diagram illustrating a method for process 
ing blocks in a block processing pipeline in which neighbor 
data is cached in local buffers at the stages of the pipeline, 
according to at least Some embodiments. 

FIGS. 15A and 15B are block diagrams of example pipe 
line processing units that may be used at the stages of a block 
processing pipeline that implements one or more of the block 
processing methods and apparatus as described herein, 
according to at least Some embodiments. 

FIG. 15C illustrates that a single processor may be associ 
ated with a group of two or more pipeline units, according to 
at least some embodiments. 

FIG.16 is a high-level block diagram of general operations 
in an example block processing method that may be imple 
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mented by a block processing pipeline that implements one or 
more of the block processing methods and apparatus 
described herein, according to at least Some embodiments. 

FIG. 17 is a flow diagram illustrating one embodiment of a 
method for performing an encoding operation on a macrob 
lock dependent on one or more histograms of gradient values. 

FIGS. 18A and 18B illustrate the application of different 
filters incomputing gradient values for a macroblock, accord 
ing to Some embodiments. 

FIG. 19A and FIG. 19B illustrate example histograms of 
gradient direction values, according to some embodiments. 

FIGS. 20A and 20B illustrate a histogram of horizontal 
gradients and a histogram of vertical gradients for a macrob 
lock, respectively, according to some embodiments. 

FIG. 21 is a flow diagram illustrating one embodiment of a 
method for passing encoding parameter values generated at a 
macroblock input component, dependent on one or more 
gradient histograms, to different stages of a video encoding 
pipeline. 

FIG.22 is a block diagram illustrating a portion of a video 
encoding pipeline that computes gradient values for use in 
determining encoding parameters and macroblock statistics, 
according to one embodiment. 

FIG. 23 is a flow diagram illustrating one embodiment of a 
method for computing slice-level or frame-level statistics 
and/or encoding parameters by accumulating histograms of 
gradients that were computed formultiple macroblocks of the 
slice or frame. 

FIG. 24 is a flow diagram illustrating one embodiment of a 
method for training a macroblock classifier of a video encod 
ing pipeline to classify macroblocks in terms of the likelihood 
that they represent portions of a video frame containing text. 

FIG. 25 illustrates a trade-off between the number of bins 
in a histogram of gradients and the precision and/or recall 
percentage of the histograms, according to different embodi 
mentS. 

FIG. 26 is a block diagram illustrating an example video 
encoder apparatus, according to at least some embodiments. 

FIG. 27 is a block diagram illustrating one embodiment of 
a system on a chip (SOC) that includes a video encoder. 

FIG. 28 is a block diagram illustrating one embodiment of 
a system that includes at least one instance of an SOC. 

While embodiments of systems, apparatus, and methods 
described herein are susceptible to various modifications and 
alternative forms, specific embodiments thereofare shown by 
way of example in the drawings and will herein be described 
in detail. It should be understood, however, that the drawings 
and detailed description thereto are not intended to limit the 
embodiments to the particular form disclosed, but on the 
contrary, the intention is to cover all modifications, equiva 
lents and alternatives falling within the spirit and scope of the 
present disclosure as defined by the appended claims. As used 
throughout this application, the word “may is used in a 
permissive sense (i.e., meaning having the potential to), 
rather than the mandatory sense (i.e., meaning must). Simi 
larly, the words “include “including, and “includes” mean 
including, but not limited to. 

Various units, circuits, or other components may be 
described as "configured to perform a task or tasks. In Such 
contexts, “configured to' is a broad recitation of structure 
generally meaning "having circuitry that performs the task 
or tasks during operation. As such, the unit/circuit/component 
can be configured to perform the task even when the unit/ 
circuit/component is not currently on. In general, the circuitry 
that forms the structure corresponding to “configured to may 
include hardware circuits. Similarly, various units/circuits/ 
components may be described as performing a task or tasks, 
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for convenience in the description. Such descriptions should 
be interpreted as including the phrase “configured to.” Recit 
ing a unit/circuit/component that is configured to perform one 
or more tasks is expressly intended not to invoke 35 U.S.C. 
S112(f) interpretation for that unit/circuit/component. 

DETAILED DESCRIPTION 

In the following description, numerous specific details are 
set forth to provide a thorough understanding of the disclosed 
systems, apparatus, and methods. However, one having ordi 
nary skill in the art should recognize that the disclosed tech 
niques might be practiced without these specific details. In 
Some instances, well-known circuits, structures, and tech 
niques have not been shown in detail to avoid obscuring this 
disclosure. 

Various embodiments of methods and apparatus for pro 
cessing digital video frames in block processing pipelines are 
described. Embodiments of block processing methods and 
apparatus are generally described herein in the context of 
Video processing in which input video frames are Subdivided 
into and processed according to blocks of elements (e.g., 
16x16, 32x32, or 64x64 pixel blocks). Embodiments of an 
example H.264 video encoder that includes a block process 
ing pipeline and that may implement one or more of the block 
processing methods and apparatus are described herein. The 
H.264 video encoder converts input video frames from an 
input format into H.264/Advanced Video Coding (AVC) for 
mat as described in the H.264/AVC standard (the H.264 Rec 
ommendation). FIG.16 illustrates an example block process 
ing pipeline of an example H.264 video encoder, and FIG. 26 
illustrates an example H.264 video encoder that includes a 
block processing pipeline. However, embodiments of the 
block processing methods and apparatus may be used in 
encoders for other video encoding formats, for example in 
block processing pipelines of HEVC (High Efficiency Video 
Encoding) video encoders that convert input video frames 
from an input format into HEVC format as described in the 
HEVC standard. The HEVC standard is published by ITU-T 
in a document titled “ITU-T Recommendation H.265: High 
Efficiency Video Encoding. Other video encoders that may 
use embodiments of the block processing methods and appa 
ratus may include, but are not limited to, H.263, MPEG-2, 
MPEG-4, and JPEG-2000 video encoders. However, it is to 
be noted that embodiments of the block processing methods 
and apparatus may be used in any block processing pipeline, 
including but not limited to block processing pipelines imple 
mented in various other video encoders and/or decoders 
(which may be referred to as codecs) in which digital video 
frames input in one format are encoded or converted into 
another format. Further note that the block processing meth 
ods and apparatus may be used in Software and/or hardware 
implementations of video encoders. In addition to video 
encoders/decoders, the block processing methods and appa 
ratus described herein may be used in various other applica 
tions in which blocks from a video frame or still digital image 
are processed, for example in pipelines that process still digi 
tal images in various image processing applications (e.g., 
using JPEG encoding, HEVC Still Image coding, or other 
Suitable encoding standards or formats). Thus, it is to be 
understood that the term frame or video frame as used herein 
may also be taken to refer to any digital image. 

Embodiments of the block processing methods and appa 
ratus as described herein may be implemented in two or more 
parallel block processing pipelines. For example, 2, 4, 8, or 
more pipelines may be configured to run in parallel, with each 
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pipeline processing a quadrow from an input video frame, for 
example with blocks input according to knight's order. 

Embodiments of the block processing methods and appa 
ratus are generally described herein in the context of video 
processing in which input frames are Subdivided into and 
processed according to blocks of picture elements (referred to 
as pixels, or pels), specifically 16x16 pixel blocks referred to 
as macroblocks that are used, for example, in H.264 encod 
ing. However, embodiments may be applied in pipelines in 
which blocks of other sizes and geometries, or of other ele 
ments, are processed. For example, HEVC encoding uses 
blocks referred to as Coding Tree Units (CTUs) or Coding 
Units (CUs) that may vary within the range of 16x16 pixel to 
64x64 pixel. In some implementations such as H.264 encod 
ers, the blocks input to the pipeline may be referred to as 
macroblocks, each macroblock including two or more blocks 
or partitions that may be processed separately at stages of the 
pipeline. For example, for input video frames encoded in 
YUV (e.g., YUV420 format) or YCbCr (e.g., YCbCr 4:2:0, 
4:2:2 or 4:4:4 formats) color space, a macroblock may be 
composed of separate blocks of chroma and luma elements 
that may be processed separately at stages in a pipeline. In 
addition to applications that process frames in a pipeline 
according to blocks of elements (e.g., blocks of pixels), the 
block processing methods and apparatus may be applied in 
applications in which digital images (e.g., video frames or 
still images) are processed by single elements (e.g., single 
pixels). 
Parallel Hardware and Software Block Processing Pipelines 

Embodiments of block processing methods and apparatus 
are described in which a block processing pipeline includes a 
Software pipeline and a hardware pipeline that run in parallel. 
However, the software pipeline runs one block ahead of the 
hardware pipeline. The stages of the pipeline may each 
include a hardware pipeline component (e.g., a circuit) that 
performs one or more operations on a current block at the 
stage. At least one stage of the pipeline may also include a 
Software pipeline component that determines a configuration 
for the hardware component at the stage of the pipeline for 
processing a next block while the hardware component is 
processing the current block. The Software pipeline compo 
nent may include at least a processor. In at least Some embodi 
ments, the Software pipeline component at a stage may deter 
mine the configuration for processing the next block at the 
stage according to information related to the next block 
obtained from an upstream stage of the pipeline. In at least 
Some embodiments, the Software pipeline component may 
also obtain and use information related to a block that was 
previously processed at the stage in determining the configu 
ration for processing the next block. In at least some embodi 
ments, the Software pipeline may also “look ahead' (up 
stream) one or more blocks to obtain information from 
upcoming blocks that may be used in determining the con 
figurations for processing the next blocks at the stages. The 
Software pipeline components may generate statistics on one 
or more blocks that are used in determining the configura 
tions. 

The block information obtained by a software pipeline 
component at a stage and used to determine a configuration 
for processing a next block at the stage may, for example, 
include various statistics related to the block and/or to one or 
more other blocks. The following provides some examples of 
block statistics that may be used in some embodiments, and is 
not intended to be limiting: 
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8 
Sum of pixels (s). 
Sum of pixels squared (S2). 
Block variance (may be estimated from S and S2, e.g. 

var-S2-(s)2). 
Horizontal and vertical gradients (Gx and Gy). 
Gradient histograms for Gx and Gy. 
The operations performed by the hardware pipeline com 

ponents at the various stages may vary, and thus the configu 
ration for the hardware pipeline components at the stages may 
vary. Thus, the Software pipeline components at the stages 
may determine and set particular configuration parameters 
according to the respective hardware pipeline components at 
the stages. However, a general example of configuration 
parameters that may be determined and set at a stage by the 
Software pipeline component based on an analysis of the 
information is given below, and is not intended to be limiting. 
One or more stages of a pipeline may perform operations to 

determine a best mode for processing pixels in a given block. 
At a particular stage, the hardware pipeline component may 
receive information from one or more upstream stages (and 
possibly feedback from one or more downstream stages) and 
use this information to select a particular one of multiple 
modes. The Software pipeline component at the stage may 
receive, generate, and analyze statistics related to the block 
(e.g., block variance) and set one or more configuration 
parameters according to the analysis to, for example, cause 
the hardware pipeline component to try multiple modes if the 
block variance is high, or to bias the hardware component 
towards a particular mode or modes if the block variance is 
low. 

In at least some embodiments, a block processing pipeline 
that implements parallel software and hardware pipelines 
may input blocks to and process blocks in the pipelines 
according to knight's order, as described in the section titled 
Knight's order processing. However, other block input and 
processing orders may be used in some embodiments. In at 
least Some embodiments, at least one stage of a block pro 
cessing pipeline that implements parallel software and hard 
ware pipelines may implement one or more local buffers for 
caching data for neighbor blocks at the stage, as described in 
the section titled Caching neighbor data. 

FIG. 3 is a high-level block diagram of an example block 
processing pipeline 300 that implements a software pipeline 
302 and a hardware pipeline 304, according to at least some 
embodiments. The software pipeline 302 and the hardware 
pipeline 304 process blocks from a frame in parallel, with the 
software pipeline 302 one block ahead of the hardware pipe 
line 304. The pipeline 300 may include multiple stages 320, 
each stage configured to perform one or more operations on a 
block of pixels from a frame (e.g., a video frame). At least 
some of the stages (stages 320A and 320B in FIG. 3) may 
each include at least one pipeline unit 330 that includes a 
Software pipeline component 322 and a hardware pipeline 
component 326. The hardware pipeline component 326 of 
each pipeline unit 330 may perform one or more particular 
operations of a block processing method on a block currently 
at the stage 320 in the hardware pipeline 304. While the 
hardware pipeline component 326 of a given pipeline unit 330 
is working on the current block at the stage 320, the software 
pipeline component 322 of the pipeline unit 330 at the stage 
320 may preconfigure the hardware pipeline component 326 
for processing a next block. Thus, the software pipeline 302 
operates one block ahead of the hardware pipeline 304. 

For example, as shown in FIG. 3, at stage 320B hardware 
pipeline component 326B is currently processing block i 
while software pipeline component 326B is configuring the 
hardware pipeline component 326B to process block i+1, and 
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at stage 320A hardware pipeline component 326A is cur 
rently processing block i+1 while software pipeline compo 
nent 326A is configuring the hardware pipeline component 
326A to process block i+2. 
The software pipeline component 322 of a pipeline unit 

330 at a stage 320 may determine a configuration for process 
ing a next block at the hardware pipeline component 326 of 
the respective pipeline unit 330 according to information for 
the block. The information for the block may include at least 
block information received from an upstream stage. In at least 
Some embodiments, the information may also include feed 
back information from one or more blocks previously pro 
cessed at the stage 320. The software pipeline component 322 
may preconfigure the hardware pipeline component 326 of 
the pipeline unit 330 at the stage 320 for processing the block 
according to the determined configuration, for example by 
setting one or more configuration values in a set of registers or 
other memory coupled to the hardware pipeline component 
326. Once the configuration for processing the block at the 
hardware pipeline component 326 of the pipeline unit 330 is 
ready, the Software pipeline component 322 may signal the 
hardware pipeline component 326 of the pipeline unit 330. 
Assuming that the hardware pipeline component 326 has 
completed the processing of a previous block and that the next 
block is available to the hardware pipeline component 326 
(e.g., ready to be read from its input buffer), the hardware 
pipeline component 326 of the pipeline unit 330 may then 
begin processing the next block according to the configura 
tion for the block that was determined and preconfigured by 
the software pipeline component 322 of the pipeline unit 330. 

In at least some embodiments, an initial stage 310 of the 
pipeline may input block information to the software pipeline 
302 and blocks to the hardware pipeline 304. The initial stage 
310 may obtain block input, for example from an external 
memory via direct memory access (DMA), and buffer the 
blocks in a block buffer component 312. Block buffer com 
ponent 312 may have the capacity to hold one, two, or more 
blocks. For example, in some embodiments, block buffer 
component 312 may be able to buffer 16 blocks. In at least 
some embodiments, block buffer component 312 may buffer 
one, two or more blocks for input to the hardware pipeline 304 
before initial stage 310 begins input of blocks to the hardware 
pipeline 304. In at least some embodiments, once the initial 
stage 310 begins input of blocks to the hardware pipeline 304, 
the initial stage 310 may write a next block from blockbuffer 
component 312 to a buffer memory of the hardware pipeline 
component 326A of pipeline unit 330A at stage 320A when 
the pipeline unit 330A is ready to receive the next block. The 
initial stage 310 may continue to obtain block input for a 
frame, buffer the blocks to block buffer component 312, and 
input blocks to the hardware pipeline 304 until all the blocks 
in the frame are processed. 
A block analysis component 314 at initial stage 310 may 

perform one or more analysis functions on one or more blocks 
that are currently buffered in block buffer component 312 
including a next block to be input to the hardware pipeline 
304 to generate block information for the next block. The 
block information may, for example, include one or more 
block statistics. Some non-limiting examples of block statis 
tics that may be generated were previously provided. Once 
the block information is generated for the next block, the 
initial stage 310 may send the block information to the soft 
ware pipeline component 322A of the pipeline unit 330A at 
stage 320A of the pipeline 300. The block analysis compo 
nent 314 may continue to generate block information and 
input the block information to the software pipeline 304 until 
all the blocks in the frame are processed. 
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In at least some embodiments, the Software pipeline com 

ponent 322 of each pipeline unit 330 may include a memory 
for buffering block information for one, two, or more upcom 
ing blocks. In at least Some embodiments, the hardware pipe 
line component 326 of each pipeline unit 330 may include a 
memory for storing one or more blocks to be processed at the 
stage 320. In at least Some embodiments, the memory may be 
a double buffer so that a previous stage can write a next block 
to the memory while the hardware pipeline component 326 is 
reading a current block from the memory. 

In at least some embodiments, the Software pipeline com 
ponent 322 of a pipeline unit 330 may push block information 
for each block to the software pipeline component 322 of a 
pipeline unit 330 at a downstream stage 320 so that the soft 
ware pipeline component 322 at the downstream stage 320 
can configure the respective hardware pipeline component 
326 at the stage. In at least some embodiments, the software 
pipeline component 322 of a pipeline unit 330 at a stage 320 
does not push block information for a block to a downstream 
stage 320 until after completing the preconfiguration for pro 
cessing the block at the stage 320. In at least some embodi 
ments, the block information for a block may be updated 
according to information that is available at a stage 320 before 
pushing the block information to the downstream stage 320. 
Once a hardware pipeline component 326 at a stage 320 has 

completed processing of a block, the processed block may be 
sent to a hardware pipeline component 326 at the next stage 
320 for processing. The hardware pipeline component 326 at 
the next stage 320 may hold the block in its memory until the 
hardware pipeline component 326 has completed processing 
of a current block and has received a signal from the software 
pipeline component 322 of the pipeline unit 330 at the stage 
320 that the configuration for processing the block is ready. 
Note that a processed block may instead be written to a 
memory external to the pipeline 300 by a last stage 320 of the 
pipeline 300. 

FIGS. 4A through 4C illustrate processing blocks at a 
pipeline unit of a stage in an example block processing pipe 
line that implements a Software pipeline and a hardware pipe 
line, according to at least Some embodiments. FIGS. 4A 
through 4C show a pipeline unit 330 that may be used at a 
stage in a block processing pipeline that includes a Software 
pipeline component 322 and a hardware pipeline component 
326. The hardware pipeline component 326 of the pipeline 
unit 330 may perform one or more particular operations of a 
block processing method on a block currently at the stage in 
the hardware pipeline 304. While the hardware pipeline com 
ponent 326 is working on the current block, the software 
pipeline component 322 of pipeline unit 330 may preconfig 
ure the hardware pipeline component 326 for processing a 
next block. Thus, the software pipeline component 322 of a 
pipeline unit 330 operates one block ahead of the hardware 
pipeline component 326 of the pipeline unit 330. 
The pipeline unit 330 may also include a configuration 

memory (shown as config memory 324A and 324B in FIGS. 
4A through 4C). The configuration memory may, for 
example, be a set of hardware registers. As shown in FIGS. 4A 
through 4C, in at least some embodiments, the configuration 
memory may be partitioned into two memories (config 
memory 324A and 324B) so that the software pipeline com 
ponent 322 of pipeline unit 330 can write to one memory 
while the hardware pipeline component 326 is reading from 
the other memory. The configuration memory may, for 
example, be a set of registers that are partitioned into a Subset 
of active registers to which the software pipeline component 
322 writes the configuration for a next block and a subset of 
shadow registers from which the hardware pipeline compo 
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nent 326 reads the configuration for a current block. In at least 
Some embodiments, the Software pipeline component 322 
may write to either of the config memories 324A and 324B, 
and the hardware pipeline component 326 may read from 
either of the config memories 324A and 324B; the two com 
ponents may both toggle between the memories 324, with the 
software pipeline component 322 writing to one while the 
hardware pipeline component 326 is reading from the other. 
Alternatively, in some embodiments, the Software pipeline 
component 322 may write to only one of the config memories 
324 (e.g., config memory 324A), and the hardware pipeline 
component 326 may read from only the other config memory 
324 (e.g., config memory 324B); when the hardware pipeline 
component 326 is ready for a new configuration and the 
configuration is ready, the configuration may be copied from 
the config memory 324A to the config memory 324B. Note 
that embodiments may also be implemented in which only a 
single configuration memory is used, or in which more than 
two configuration memories are used. 

FIG. 4A show a pipeline unit 330 of a stage at an initial 
state. Software pipeline component 322 receives, from an 
upstream stage, block information for a first block (blocki) 
from a frame to be processed at the stage. Hardware pipeline 
component 326 is not currently processing a block. Software 
pipeline component 322 determines a configuration for pro 
cessing blocki according to the received block information 
and writes the configuration to config memory 324A. Soft 
ware pipeline component 322 signals hardware pipeline com 
ponent 326 of pipeline unit 330 that the configuration for 
blocki is ready, for example by setting a go bit or flag. 

FIG. 4B show the pipeline unit 330 at the next cycle. 
Software pipeline component 322 pushes block information 
for block i to a downstream stage. Hardware pipeline com 
ponent 326 receives blocki and processes blocki according to 
the configuration in config memory 324A. Software pipeline 
component 322 receives block information for a next block 
(block i+1) to be processed at the stage. Software pipeline 
component 322 determines a configuration for processing 
block i+1 according to the received block information and 
writes the configuration to config memory 324B. Software 
pipeline component 322 signals hardware pipeline compo 
nent 326 that the configuration for block i-1 is ready, for 
example by setting a go bit or flag. 

FIG. 4C shows the pipeline unit 330 at the next cycle. 
Software pipeline component 322 pushes block information 
for block i+1 to a downstream stage. Hardware pipeline com 
ponent 326 receives block i+1 and processes block i-1 
according to the configuration in config memory 324B. Soft 
ware pipeline component 322 receives block information for 
a next block (blocki--2) to be processed at the stage. Software 
pipeline component 322 determines a configuration for pro 
cessing blocki--2 according to the received block information 
and writes the configuration to config memory 324A. Soft 
ware pipeline component 322 signals hardware pipeline com 
ponent 326 that the configuration for block i--2 is ready, for 
example by setting a go bit or flag. 

FIG. 4C also shows that information from a previously 
processed block at a stage may be obtained by the Software 
pipeline component 322 at the stage and used in determining 
a configuration for a next block to be processed by the hard 
ware pipeline component 326 at the stage. Hardware pipeline 
component 326 finished processing block i at a previous 
cycle, as shown in FIG. 4B, and is now processing block i+1 
at FIG. 4C. Thus, information from the processing of block i 
at the stage is available, and may be fed back to the software 
pipeline component 322 of the pipeline unit 330 at the stage. 
This information from the processing of block i at the stage 
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12 
may be used in combination with the block information for 
block i+2 received from an upstream stage to determine the 
configuration for block i+2. Thus, feedback of information 
from the processing of blocks at a stage may be for a block 
that is two ahead of the block for which a configuration is 
being generated. 

Alternatively, in Some implementations, the Software pipe 
line component 322 may wait for completion of the process 
ing of a current block by the hardware pipeline component 
326 at the stage, and use this information to determine a 
configuration for the next block. In this case, feedback of 
information from the processing of blocks at a stage may be 
for a block that is only one ahead of the block for which a 
configuration is being generated 

FIG.5 illustrates an example block processing pipeline 300 
that implements a software pipeline and a hardware pipeline 
in which at least one stage is skipped by the Software pipeline, 
according to at least Some embodiments. In some pipeline 
implementations, one or more pipeline units 330 of the pipe 
line 300 may include a hardware pipeline component 326 that 
does not require dynamic configuration. FIG. 5 shows three 
stages 320A, 320B, and 320C. Stage 320A includes pipeline 
unit 330A that includes both a software pipeline component 
322A and a hardware pipeline component 326A, and stage 
320C includes a pipeline unit 330C that includes both a soft 
ware pipeline component 322B and a hardware pipeline com 
ponent 326C. However, stage 320B includes a pipeline unit 
330B that includes a hardware pipeline component 326B that 
does not require dynamic configuration, as the operation(s) 
the component 326 performs on a block are the same for all 
blocks. Thus, pipeline unit 330B does not utilize a software 
pipeline component 322. 
As shown in FIG. 5, hardware pipeline component 326A at 

stage 320A is currently processing block i+2, while software 
pipeline component 322A at Stage 320A is determining and 
setting the configuration for processing the nextblock (i+3)at 
stage 320A. Hardware pipeline component 326B at stage 
320B is currently processing block i-1. Hardware pipeline 
component 326C at stage 320C is currently processing block 
i, while software pipeline component 322B at stage 320C is 
determining and setting the configuration for processing the 
next block (i+1) at stage 320A. In at least some embodiments, 
the block information for block i-2 may be pushed down 
stream from software pipeline component 322A to software 
pipeline component 322B once stage 320A completes the 
configuration for processing block i+2 and buffered at Soft 
ware pipeline component 322B until software pipeline com 
ponent 322B is ready to configure hardware pipeline compo 
nent 322C to process block i-2. Alternatively, stage 320B 
may include buffers to which block information is pushed 
from stage 320A and from which block information is pushed 
to stage 320C. As another alternative, stage 320A may buffer 
block information that it is done with until stage 320C is ready 
for the information. 

FIG. 6 illustrates an example block processing pipeline 300 
that implements a software pipeline and a hardware pipeline 
in which at least one stage includes multiple pipeline units, 
according to at least some embodiments. As shown in FIG. 6. 
stage 320A includes a single pipeline unit 330A that includes 
a software pipeline component 322A and a hardware pipeline 
component 326A, and stage 320C includes a single pipeline 
unit 330C that includes a software pipeline component 322C 
and a hardware pipeline component 326D. However, stage 
320B include two pipeline units 320Band 320C. Pipeline unit 
330B includes a software pipeline component 322B and a 
hardware pipeline component 326B. Pipeline unit 330C 
includes only a hardware pipeline component 326C. In hard 
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ware pipeline 304, blocks or portions of blocks from pipeline 
unit 330A at stage 320A pass through both hardware pipeline 
component 326B and hardware pipeline component 326C of 
stage 320B, which output processed blocks or portions of 
blocks to hardware pipeline component 326D of pipeline unit 
330D in stage 320C. In software pipeline 302, block infor 
mation is passed from Software pipeline unit 322A at stage 
320A to software pipeline unit 322B at stage 320B, and from 
software pipeline unit 322B at stage 320B to software pipe 
line unit 322C at stage 320C. 

While not shown, in some implementations, a stage may 
include two or more pipeline units 330 that include both a 
Software pipeline component 322 and a hardware pipeline 
component 336. In this case, an upstream stage may feed 
block information to the software pipeline component 322 of 
each pipeline unit at the stage 320. However, in at least some 
embodiments, only one of the Software pipeline components 
322 may push the block information to a software pipeline 
component 322 of a pipeline unit 330 at a downstream stage 
32O. 

FIG. 7 illustrates components of an example pipeline unit 
that may be used at a stage of a block processing pipeline that 
implements a software pipeline and a hardware pipeline, 
according to at least some embodiments. As shown in FIG. 7. 
the hardware pipeline component 704 of a pipeline unit 700 
may include at least a memory 732 and a unit core 730. Unit 
core 730 may be a component (e.g., a circuit) that is config 
ured to perform a particular operation on or for a block, or a 
portion of a block, at a particular stage of the block processing 
pipeline. Memory 732 may, for example, be a double-buff 
ered memory that allows the unit core 730 to read and process 
data for a block from the memory 732 while data for a next 
block is being written to the memory 732 from a previous 
pipeline unit. 
As shown in FIG. 7, a pipeline unit 700, in addition to a 

hardware pipeline component 704 that includes memory 732 
and unit core 730, may also include a software pipeline com 
ponent 702 that includes at least a processor 710 and a 
memory 712. Processor 710 may, for example, be a mobile or 
M-class processor. The processors 710 may, for example, be 
configured to determine and set configurations for a next 
block to be processed at the hardware pipeline unit 704 
according to block information received at the Software pipe 
line component 702. In at least some embodiments, the pro 
cessor 710 may also be configurable, for example with low 
level firmware microcode, to allow flexibility in algorithms 
that are implemented by the block processing pipeline for 
various applications. 

In at least some embodiments, the Software pipeline com 
ponent 702 may be configured to receive block information 
from a previous (upstream) stage of the pipeline and send 
block information to a Subsequent (downstream) stage of the 
pipeline. In addition, a software pipeline component 702 at a 
last stage of the pipeline may be configured to send feedback 
data to an upstream stage (e.g. the first stage) of the pipeline. 
In at least some embodiments, the Software pipeline compo 
nent 702 may also receive information for a block that was 
previously processed by the hardware pipeline component 
704 of the pipeline unit 700. 

Software pipeline component 702 may buffer block infor 
mation received from an upstream stage of the pipeline in 
memory 712, and push block information from memory 712 
to a downstream stage of the pipeline. In at least some 
embodiments, memory 712 may be a double buffer memory 
so that an upstream stage can push block information for a 
next block to the software pipeline component 702 while the 
processor 710 is accessing block information for a previous 
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14 
block from the memory 712. In some embodiments, memory 
712 may be able to buffer more than two sets of block infor 
mation, for example in cases where the previous stage does 
not include a Software pipeline component as shown by stage 
32OB in FIG.S. 
The processors 710 may read block information for a next 

block from memory 712 and determine a configuration for the 
next block according to the block information. In at least 
some embodiments, the processor 710 may also receive infor 
mation for a block that was previously processed by the 
hardware pipeline component 704 of the pipeline unit 700 and 
use that information in determining the configuration for the 
next block. 
As shown in FIG.7, a pipeline unit 700 may also includean 

interface 706 between software pipeline component 702 and 
hardware pipeline component 704. In at least some embodi 
ments, the interface 706 may be a set of registers. Note, 
however, that the interface 706 may be otherwise imple 
mented. In the pipeline unit 700 as shown in FIG. 7, interface 
706 includes at least config memory 720A, config memory 
720B, and go 722. In at least some embodiments, the proces 
sor 710 may write to either of the config memories 720A and 
720B, and the unit core 730 may read from either of the config 
memories 720A and 720B; the processor 710 and unit core 
730 may toggle between the two memories 720, with the 
processor 710 writing to one while the unit core 730 is reading 
from the other. Alternatively, in some embodiments, the pro 
cessor 710 may write to only one of the config memories 720 
(e.g., config memory 720A), and the unit core 730 may read 
from only the other config memory 720 (e.g., config memory 
720B); when the unit core 730 is ready for a new configura 
tion and the configuration is ready, the configuration may be 
copied from config memory 720A to config memory 720B. 
Note that embodiments may also be implemented in which 
only a single configuration memory is used, or in which more 
than two configuration memories are used. 
Go 722 may, for example, be implemented as one or more 

bits in a register or other memory, or may be otherwise imple 
mented. In at least some embodiments, when processor 710 
completes a configuration for a next block and has set the 
config memory 720 (e.g., config memory 720A) with the 
configuration, processor 710 may set go 722 to signal to the 
unit core 730 that the configuration for the next block is ready 
in the config memory 720 (e.g., config memory 720A). Unit 
core 730 may begin to process the next block once go 722 is 
set for the next block if processing of the current block is 
complete and the next block is ready in memory 732. Other 
wise, unit core 730 may wait until completion of processing 
of the current block and/or the next block is ready in memory 
732. Note that initially (for a first block in the pipeline) no 
block is being processed at the stage when the processor 710 
configures the stage for the first block, and thus unit core 730 
may begin to process the first block once go 722 is set for the 
first block and the first block is ready in memory 732. Once 
unit core 730 is done with the configuration in a config 
memory 720, the unit core 730 may clear go 722 to signal to 
processor 710 that the config memory 720 is available to 
receive the configuration for a next block. 

FIGS. 8A and 8B are flowcharts of methods of operation of 
a software pipeline and a hardware pipeline that operate in 
parallel in a block processing pipeline to process the blocks 
from a frame, according to at least Some embodiments. FIG. 
8A shows operations at a stage for the Software pipeline, and 
FIG.8B shows operations at the stage for the hardware pipe 
line. Note that the software pipeline runs one block ahead of 
the hardware pipeline. 
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Referring to FIG. 8A, as indicated at 800, a software pipe 
line component at a stage receives block information. The 
block information may include block information received 
from an upstream stage. In at least some embodiments, the 
Software pipeline component may also receive information 
from a block of the frame that was previously processed at the 
stage. The block information for one, two, or more blocks 
may be buffered in a local memory of the software pipeline 
component. As indicated by the arrow that returns to element 
800, element 800 may be iteratively performed as long as 
there are blocks in the frame to be processed. 
As indicated at 802, once the block information for a next 

block is ready at the stage, the Software pipeline component 
may determine a configuration for the block according to the 
received information for the block. As indicated at 804, the 
Software pipeline component may write the configuration for 
the block to a configuration memory of the stage. As indicated 
at 806, the software pipeline component may set a go bit or 
otherwise signal to the hardware pipeline component at the 
stage that the configuration for the next block is ready in the 
configuration memory. As indicated at 806, the software pipe 
line component may then push the block information for the 
block to a downstream stage. At 810, if there are more blocks 
from the frame to be processed at the stage, the software 
pipeline method may return to element 802 to begin config 
uring the hardware pipeline component for a next block. 
Otherwise, processing of the frame at this stage is done, and 
the method completes. 

Referring to FIG. 8B, a hardware pipeline component at a 
stage receives blocks to be processed from a previous stage. 
The block information may be buffered in a local memory of 
the hardware pipeline component. In at least some embodi 
ments, the local memory may be a double buffer memory so 
that the previous stage can write a next block to the stage 
while the hardware pipeline component is processing a cur 
rent block from the memory. As indicated by the arrow that 
returns to element 850, element 850 may be iteratively per 
formed as long as there are blocks in the frame to be pro 
cessed. 
At 852, if the hardware pipeline component is not currently 

processing a block, a next block is ready in the memory, and 
the Software pipeline component has signaled to the hardware 
pipeline component that a configuration for the next block is 
ready in the configuration memory (e.g., by setting a go bit or 
flag), then the hardware pipeline component may begin to 
process the next block. In at least Some embodiments, if any 
of these three conditions is not met, the hardware pipeline 
component waits until all three are met. Note, however, that 
for a first block in the frame to be processed, there will not be 
a current block being processed at the hardware pipeline 
component when the first block is received for processing at 
the hardware pipeline component. 

If all necessary conditions are met, then as indicated 854 
the hardware pipeline component sets the configuration for 
processing the next block according to the configuration in 
the configuration memory. As indicated at 856, the hardware 
pipeline component clears the go bit or otherwise signals to 
the Software pipeline component that the configuration 
memory is available. As indicated at 858, the hardware pipe 
line component processes the block according to the configu 
ration for the block. As indicated at 860, the hardware pipe 
line component writes the processed block to the next stage. 
Alternatively, at a last stage, the processed block may be 
written to a memory, for example to an external memory via 
direct memory access (DMA). At 862, if there are more 
blocks from the frame to be processed at the stage, the hard 
ware pipeline method may return to element 852 to begin 
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processing a next block when all conditions are met. Other 
wise, processing of the frame at this stage is done, and the 
method completes. 
Note that elements 802 through 808 of FIG. 8A are per 

formed by the Software pipeline component at a stage for an 
initial block in the frame before elements 854 through 860 of 
FIG. 8B are performed by the hardware pipeline component 
at the stage. After that, elements 802 through 808 of FIG. 8A 
may be performed by the software pipeline component at the 
stage to configure the hardware pipeline component for a next 
block while elements 854 through 860 of FIG. 8B are per 
formed by the hardware pipeline component to process a 
current block. 
Knight's Order Processing 
Embodiments of block processing methods and apparatus 

are described in which, rather than processing blocks in a 
pipeline according to scan order as in conventional methods, 
the blocks are input to and processed in the pipeline according 
to an order referred to herein as “knights order.” Knights 
order is in reference to a move of a chess knight piece in which 
the knight moves one row down and two columns to the left. 
Note, however, that “knight's order as used herein more 
generally encompasses movements of one row down and p 
columns to the left, where p may be but is not necessarily 2. 
The knights order processing method may provide spac 

ing (one or more stages) between adjacent blocks in the 
pipeline, which, for example, facilitates feedback of data 
from a downstream stage of the pipeline processing a first 
block to an upstream stage of the pipeline processing a second 
block that depends on the data from the first block. One or 
more stages of a block processing pipeline may require infor 
mation from one or more other neighbor blocks when pro 
cessing a given block. FIG. 9 shows neighbors of a current 
block (m,n) from which information may be required left 
(m-1..n); top (m,n-1); top-left (m-1,n-1); top-right (m+1,n- 
1); and top-right-right (m+2,n-1). These requirements for 
information from neighbor block(s) may be referred to as 
dependencies. For example, referring to FIG. 9, information 
from the left neighbor of block (m,n) may be required to 
perform a particular operation on the block. In the knights 
order processing method, rather than inputting block (m+1, n) 
into the pipeline immediately after block (m,n), the next block 
input to the pipeline is block (m-2.n+1). Inputting the blocks 
into the pipeline in knight's order rather than scan order 
provides spacing (e.g., one or more stages) between adjacent 
blocks on a row in the pipeline. 

In at least Some embodiments of the knight's order pro 
cessing method, the rows of blocks in the input frame may be 
divided into sets of four rows, referred to herein as quadrows, 
with the knight's order processing method constrained by the 
quadrow boundaries. Referring to FIG. 9 and quadrow 900, 
when using quadrow boundaries with knights order process 
ing block (m-1..n) will be four stages downstream when block 
(m,n) is input to the pipeline, and block (m,n) will be four 
stages downstream when block (m+1,n) is input to the pipe 
line. Thus, blocks that are adjacent on a row will be spaced 
four stages apart in the pipeline. Thus, at stages in which 
operations are performed on a block that depend on left neigh 
bor information, the information for the left neighbor is more 
likely to be readily available with less latency than it would be 
if processing the blocks in scan order. In addition to depen 
dencies on the left neighbor, one or more operations of a block 
processing method may depend on neighbor blocks from the 
previous (or above) row Such as the top neighbor, top-left 
neighbor, top-right neighbor, and top-right-right neighbor 
blocks as shown in FIG. 9. The knights order processing 
method with quadrow constraints provides locality of neigh 
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bor information that may be leveraged to provide local cach 
ing of this neighbor data at each stage in relatively small 
buffers. 

In at least some embodiments, a basic algorithm for deter 
mining a next block to input to the pipeline according to the 
knight's order processing method using quadrow constraints 
is as follows: 

If not on the bottom row of a quadrow: 
The next block is two columns left, one row down (-2,+1). 
Otherwise, at the bottom row of a quadrow: 
The next block is seven columns right, three rows up (+7.- 

3). 
However, the knight's order processing method may also 

be implemented with other spacing than two blocks left, one 
block down (-2,+1). For example, instead of two blocks left 
and one block down, the method may be implemented to go 
three blocks left and one block down to get the next block. As 
another example, the method may be implemented to go one 
block left and one block down (-1,+1) to get the next block. 
In addition, the knight's order processing method may be 
implemented with other row constraints than quadrow (four 
row) constraints. In other words, row groups of at least two 
rows may be used in embodiments to constrain the knights 
order processing method. Assuming r as the number of rows 
used to constrain the knights order processing method, the 
algorithm may be generalized as: 

If not on the bottom row of a row group: 
The next block is p columns left, one row down (-p.+1). 
Otherwise, at the bottom row of a row group: 
The next block is q columns right, (r-1) rows up (+q-(r- 

1)). 
Changing the value of p would affect the value of q, would 

not affect spacing between adjacent blocks from a row in the 
pipeline, but would affect spacing between a given block and 
its other neighbor blocks (e.g., its top-left, top, and top-right 
neighbors). In particular, note that using the spacing (-1,+1) 
would result in a block and its diagonal (top-right) neighbor 
block being concurrently processed at adjacent stages of the 
pipeline. Thus, a spacing of at least two blocks left may be 
used so that diagonally adjacent blocks are not concurrently 
processed at adjacent stages of the block processing pipeline. 
Changing the value of r would affect the value of q, would 
affect spacing between adjacent blocks from a row in the 
pipeline, and would affect spacing between the block and its 
other neighbor blocks (e.g., its top-left, top, and top-right 
neighbors). 
The above algorithm for determining a next block may 

begin at an initial block. Upon reaching the end of a quadrow 
that is followed by another quadrow, the algorithm jumps to 
the first block of the next quadrow and then crosses over 
between the quadrow and the next quadrow for a few cycles, 
resulting in the interleaving of some blocks from the end of 
the quadrow with some blocks from the beginning of the next 
quadrow. In other words, the knight's order processing 
method treats the quadrows as if they were arranged end to 
end. To avoid complications in the algorithm and to maintain 
consistent spacing of blocks in the pipeline, at least some 
embodiments may pad the beginning of the first quadrow and 
the end of the last quadrow with invalid blocks. An invalid 
block may be defined as a block that is outside the boundary 
of the frame and that is input to the pipeline but that does not 
contain valid frame data, and thus is not processed at the 
stages. The algorithm for determining a next block may thus 
beginatan initial block, which may be either the first block in 
the top row of the first quadrow or an invalid block to the left 
of the first block in the top row of the first quadrow, proceed 
through all of the quadrows, and at the end of the last quadrow 
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continue until the last block of the last quadrow has been input 
to the pipeline. There will be bubbles in the pipeline at the 
beginning and end of the frame, but the spacing of the valid 
blocks from the frame in the pipeline will remain consistent 
throughout. In some embodiments, as an alternative to pad 
ding the end of the last quadrow of a video frame with invalid 
blocks, the last quadrow of a video frame may be overlapped 
with the first row of the next video frame to be processed in 
the block processing pipeline. 

FIGS. 10A and 10B graphically illustrate the knights 
order processing method, according to at least Some embodi 
ments. For simplicity, these Figures use an example 192x192 
pixel frame 1000 divided into 144 16x16 pixel blocks, with 
12 rows and 12 columns of blocks. However, it is to be noted 
that the knights order processing method can be applied to 
input video frames of any dimensions. In FIG. 10A, an 
example frame is divided into rows and columns of blocks. 
The rows of blocks are partitioned into three quadrows (1010, 
1020, and 1030) including four rows each. The last three rows 
of the first quadrow (1010) are padded on the left with invalid 
blocks, and the first three rows of the last (third) quadrow 
(1030) are padded on the right with invalid blocks. In this 
example, the numbers in the blocks represent the order in 
which the blocks are input to the block processing pipeline 
according to the knights order processing method, beginning 
with block 0 (the first block in the top row of the first quad 
row). Block 0 is input to the first stage of the pipeline, and 
when the first stage is ready for another block, the method 
proceeds by going two columns left, one row down to get the 
next block for input (block 1, in FIG. 10A). This pattern is 
repeated until reaching the bottom of the quadrow. At the 
bottom of the quadrow, the method goes seven columns right, 
three rows up to get the next block. This continues until all of 
the blocks in the frame (as well as all of the invalid blocks 
shown in FIG. 10A) are input into the pipeline. When the end 
of a quadrow is reached, if there is another quadrow after the 
quadrow the input algorithm proceeds to the beginning of the 
next quadrow. In this example, after block 47 is input, the 
method proceeds to block 48 (the first block in the top row of 
the second quadrow). As shown by the dashed arrow from 
block 47 to the dashed rectangle labeled 48 to the right of 
block 44, the first block of the top row of the second quadrow 
(block 48) is treated as being immediately to the right of the 
last block of the top row of the first quadrow (block 44), and 
thus is reached from block 47 by going seven columns right, 
three columns up. In other words, the knights order process 
ing method treats the quadrows 1010, 1020, and 1030 as if 
they were arranged end to end, with invalid blocks at each 
end, as shown in FIG. 10B. Thus, the algorithm for determin 
ing a next block remains the same across the entire frame 
1OOO. 

In some embodiments, each row of the first quadrow may 
be padded with extra invalid blocks, for example with two 
extra invalid blocks. Instead of beginning with the first block 
in the top row of the first quadrow as shown in FIG. 10A, input 
to the pipeline may begin with the first invalid block to the left 
of the first block in top row of the first quadrow. 

FIGS. 11A and 11B are high-level flowcharts of a knights 
order processing method for a block processing pipeline, 
according to at least some embodiments. In FIG. 11A, as 
indicated at 1100, a next block is determined according to the 
algorithm for determining a next input block that is imple 
mented by the knight's order processing method. As indicated 
at 1102, the block is input to the pipeline, for example from a 
memory via direct memory access (DMA). As shown by 
1104, the input process of elements 1100 and 1102 continues 
as long as there are blocks to be processed. Each block that is 



US 9,380,312 B2 
19 

input to the pipeline by elements 1100 and 1102 is processed 
in the pipeline, as indicated at 1106. Each block is initially 
input to a first stage of the pipeline, processed, output to a 
second stage, processed, and so on. When a block moves from 
a stage to a next stage of the pipeline, the stage can begin 
processing the next block in the pipeline. Thus, the input 
blocks move through the stages of the pipeline, with each 
stage processing one block at a time. As indicated at 1108, 
once a block has been processed by a last stage of the pipeline, 
the processed block is output, for example to a memory via 
direct memory access (DMA). 

FIG. 11B is a flowchart of an example algorithm for deter 
mining a next input block that that may be implemented by 
the knight's order processing method, and expands on ele 
ment 1100 of FIG. 11A. FIG. 11B assumes that the frame is 
divided into quadrows, and that the algorithm used to deter 
mine the next frame is two columns left, one row down 
(-2,+1) if not on the bottom row of a quadrow, seven columns 
right, three rows up (+7.-3) if on the bottom row. However, 
other row groupings and/or spacing algorithms may be used. 
At 1150, if at the start of the frame, the method gets an initial 
block as indicated at 1152. If this is not the start of the frame, 
then at 1154, if this is the last row of the quadrow, the next 
block is seven columns right, three rows up, as indicated at 
1156. If this is not the last row of the quadrow, the next block 
is two columns left, one row down, as indicated at 1158. 
Caching Neighbor Data 
One or more operations performed at stages of a block 

processing pipeline may depend on one or more of the neigh 
bor blocks from the previous (or above) row of blocks such as 
the top neighbor, top-left neighbor, top-right neighbor, and 
top-right-right neighbor blocks, as well as on the left neigh 
bor, as shown in FIG. 3. The knights order processing 
method with quadrow constraints provides locality of neigh 
bor information that may be leveraged to provide local cach 
ing of neighbor data at each stage of the pipeline in relatively 
small local buffers. For example, in some embodiments, the 
cached neighbor data may include source transform coeffi 
cients (e.g., DC transform coefficients), modified transform 
coefficients, previously computed quantization errors, and/or 
weighting coefficient values for one or more neighbor pixels. 
In at least some embodiments, the local buffers may be imple 
mented using SRAM (static random access memory) tech 
nology. However, the local buffers may be implemented using 
other memory technologies in some embodiments. 

Note that blocks in the first column of a frame do not have 
a left or top-left neighbor, blocks in the last column do not 
have a top-right or top-right-right neighbor, and blocks in the 
next-to-last column do not have a top-right-right neighbor. 
Thus, for block processing methods that use information from 
these neighbor positions, the information in the local buffers 
for these neighbor positions relative to blocks in those col 
umns is not valid and is not used in processing the blocks in 
those columns in the stages of the pipeline. In addition, there 
are no rows above the top row of the first quadrow, so the 
blocks in this row do not have top, top-left, top-right, and 
top-right-right neighbors. 

In at least Some embodiments of a block processing pipe 
line that implements the knights order processing method, a 
first buffer of sufficient size to cache the C most recently 
processed blocks on the current quadrow may be imple 
mented at each of one or more stages of the pipeline. This 
buffer may be referred to as the current quadrow buffer, and 
may, for example, be implemented as a circular FIFO buffer. 
In at least some embodiments, C may be determined such that 
the buffer includes an entry corresponding to the top-left 
neighbor of the current block at the stage according to the 
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algorithm for determining a next block and the row group size 
used to constrain the knight's order method. The buffer may 
also include entries corresponding the top-right-right, left, 
top-right, and top neighbors for the current block according to 
the algorithm. When processing a block, a stage may access 
the current quadrow buffer to obtain neighbor information for 
the block if that block's neighbor information is valid in the 
current quadrow buffer. Note that some block processing 
methods may not require top-left neighbor information, and 
the current quadrow buffer may be smaller in these imple 
mentations. 
When a stage completes processing of a block, the blocks 

information is written to the last position in the current quad 
row buffer, overwriting the entry at the position of the block's 
top-left neighbor, thus preparing the buffer for the next block 
to be processed at the stage. Note that, initially, at the begin 
ning of a frame, there is no information in the current quadrow 
buffer as no blocks in the frame have been processed, so no 
block information will be overwritten in the buffer until the 
buffer is filled. When the next block is at the stage, the pre 
vious block's information in the buffer is the block's top 
right-right neighbor information. 

For example, using quadrow boundaries and the algorithm 
for determining a next block where the next block is two 
columns left, one row down if not on the bottom row of a 
quadrow, C=13 would be sufficient to include the top-left 
neighbor of the current block, as the spacing between the 
current block and its top-left neighbor is 13. FIG. 12 shows a 
portion of a quadrow 1200 as processed in a pipeline accord 
ing to the knight's order processing method that may be 
cached in the current quadrow buffer, according to at least 
some embodiments. Block 19 represents a current block at a 
stage. The shaded blocks represent the 13 most recently pro 
cessed blocks by the stage. Note that the farthest block from 
block 19 in time is its top-left neighbor (block 6), and the 
nearest block in time is its top-right-right neighbor (block 9). 

For the blocks in the top row of a quadrow, information for 
neighbors in the row above is not in the current quadrow 
buffer. There are no rows above the top row of the first quad 
row, and for all other quadrows the row above the top row is 
the bottom row of the previous quadrow. Thus, the current 
quadrow buffer includes the left neighbor information for all 
blocks in the top row of a quadrow (except for the first block, 
which has no left neighbor), but does not include the top-left, 
top, top-right, and top-right-right neighbor information for 
the blocks in the top row of the quadrow. To provide this 
neighbor information for blocks on the top rows of the quad 
rows, a second buffer of sufficient size to hold information for 
the required neighbor blocks from the last row of the previous 
quadrow may be implemented at one or more stages of the 
pipeline. This buffer may be referred to as the previous quad 
row buffer, and may, for example, be implemented as a cir 
cular FIFO buffer. The number of entries in the previous 
quadrow buffer, as well as the particular neighbor blocks that 
are cached in the previous quadrow buffer, may be dependent 
on the requirements of the particular block processing 
method that is implemented by the block processing pipeline. 
In at least Some embodiments, when processing a quadrow 
according to the knights order processing method, informa 
tion for each block on the bottom row of the quadrow may be 
written to an external memory, for example when the block is 
at a last stage of the pipeline. For each block in the top row of 
a quadrow, neighbor (e.g., top-right-right neighbor) data may 
be read from the external memory, for example at a first stage 
of the pipeline. This neighbor information may be passed 
down the pipeline to the other stages along with the corre 
sponding block from the top row. 
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FIG. 13 graphically illustrates blocks in a current quadrow 
1320 being processed according to the knights order pro 
cessing method, as well as neighbor blocks in the last row of 
the previous quadrow 1310, according to at least some 
embodiments. Blocks A, A+4. A+8, and A+12 were pro 
cessed on the previous quadrow according to the knights 
order processing method. Block A was processed first, block 
A+4 was processed four cycles later, and so on. Block B 
represents a block on the current quadrow that is currently at 
a particular stage of the pipeline. Blocks B-1 (B minus 1) 
through B-13 (B minus 13) represent the thirteen blocks that 
were most recently processed at the stage in the current quad 
row. Information from these blocks may be presently cached 
in the stage’s current quadrow buffer, with B-1 as the most 
recent entry and B-13 as the oldest entry. B-4 is current block 
B’s left neighbor. However, block B's top-left (block A), top 
(block A+4), top-right (block A+8), and top-right-right (block 
A+12) neighbors are on the bottom row of the previous quad 
row, and are not included in the current quadrow buffer for 
block B. In at least some embodiments, to provide neighbor 
information for blocks on the top row of the current quadrow 
(e.g., top-left, top, top-right, and top-right-right neighbor 
information), a previous quadrow buffer may be implemented 
at each of one or more stages of the pipeline. When processing 
a quadrow, information for each block on the bottom row of 
the quadrow is written to a neighbor data structure in external 
memory, for example by a last stage of the pipeline. When 
processing blocks from the top row of a next quadrow, infor 
mation for neighbor blocks in the bottom row of the previous 
quadrow is read from the external memory, for example by a 
first stage of the pipeline, and passed down the pipeline to 
other stages with the top row blocks. In at least some embodi 
ments, information for the top-right-right neighbor block of a 
block in the top row is read from the external memory. In at 
least Some embodiments, the previous quadrow buffer is a 
circular buffer, and an oldest entry in the previous quadrow 
buffer is replaced with the neighbor information that is read 
from the external memory. In various embodiments, the exter 
nal memory to which blocks in the bottom row are written and 
from which neighbor block information is read may be a 
memory of the pipeline component that is external to the last 
stage, a memory of a video encoder that implements the 
pipeline, or a memory external to the video encoder. In some 
embodiments, however, the memory may be a local memory 
of the last stage of the pipeline. At least Some embodiments 
may include an interlock mechanism to control the reads and 
writes to the external memory between rows to avoid over 
writing the data in external memory. 

FIG. 14 is a flow diagram illustrating a method for process 
ing blocks in a block processing pipeline in which neighbor 
data is cached in local buffers at the stages of the pipeline, 
according to at least some embodiments. For example, the 
method of FIG. 14 may be used at element 1106 of FIG. 11A 
to process blocks input to the pipeline according to the 
knight's order processing method as shown at elements 1100, 
1102, and 1104 of FIG. 11A. In FIG. 14, a block is input to the 
pipeline. At 1400, at a first stage of the pipeline, if the block 
is on the top row of a quadrow, then neighbor data for the 
block may be read from external memory (for example, via 
DMA) into a previous quadrow bufferas indicated at 1402. In 
at least some embodiments, the neighbor data corresponds to 
the top-right-right neighbor of the current block on the bot 
tom row of the previous quadrow. As indicated at 1404, the 
block is then processed at the current stage. If an operation at 
the stage requires neighbor information to process the block, 
the stage may use the neighbor information in the current 
quadrow buffer and/or in the previous quadrow buffer to 
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perform the operation. If the block is on the top row of a 
quadrow, then at least some of the neighbor information is 
obtained from the previous quadrow buffer; otherwise, neigh 
bor information may be obtained from the current quadrow 
buffer. As indicated at 1406, information about the current 
block may be written to the current quadrow buffer at the 
stage for use on Subsequent blocks. The information may 
overwrite an oldest entry in the current quadrow buffer. 
At 1408, if there are more stages, then the block may be 

sent to a next stage, as indicated at 1410. At 1412, neighbor 
information from the previous quadrow buffer may also be 
sent to the next stage. In at least Some embodiments, this 
neighbor information is only sent to the next stage if the 
current block is on the top row of a quadrow. Elements 1404 
through 1412 may be repeated until the block reaches and is 
processed by a last stage of the pipeline. At 1408, if there are 
no more stages, then processing of the block in the pipeline is 
done. At 1414, if the block is on the bottom row of a quadrow, 
then information for the block is written to an external 
memory (for example, via DMA) to be read as neighbor data 
for blocks in the top row of a next quadrow. In addition, all of 
the processed valid blocks are output as shown by element 
1108 of FIG. 11A. 
Example Pipeline Units 

FIGS. 15A through 15C are block diagrams of example 
pipeline processing units that may be used at the stages of a 
block processing pipeline that implements one or more of the 
block processing methods and apparatus as described herein, 
according to at least Some embodiments. For example, one or 
more of pipeline units 1500A and/or 1500B as shown in 
FIGS. 15A and 15B may be used at each stage of the example 
block processing pipeline shown in FIG. 16. Note that FIGS. 
15A through 15C are not intended to be limiting; a pipeline 
processing unit may include more or fewer components and 
features than those shown in the Figures. 
As shown in FIG. 15A, a pipeline unit 1500A may include 

at least a memory 1510 and a unit core 1520. Unit core 1520 
may be a component (e.g., a circuit) that is configured to 
perform a particular operation on or for a block, or a portion 
of a block, at a particular stage of the block processing pipe 
line. Memory 1510 may, for example, be a double-buffered 
memory that allows the unit core 1520 to read and process 
data for a block from the memory 1510 while data for a next 
block is being written to the memory 1510 from a previous 
pipeline unit. 
As shown in FIG. 15B, a pipeline unit 1500B, in addition to 

a memory 1510 and unit core 1520 as shown in FIG. 15A, 
may also include a processor 1530. Processor 1530 may, for 
example, be a mobile or M-class processor. The processors 
1530 in pipeline units 1500B of a block processing pipeline 
may, for example, be used to control the block processing 
pipeline at block boundaries. The processors 1530 in pipeline 
units 1500B may be configurable, for example with low-level 
firmware microcode, to allow flexibility in algorithms that are 
implemented by the block processing pipeline for various 
applications. In at least some embodiments, a processor 1530 
of a pipeline unit 1500B in the pipeline may be configured to 
receive data from a processor 1530 of a previous (upstream) 
pipeline unit 1500B and send data to a processor 1530 of a 
subsequent (downstream) pipeline unit 1500B. In addition, a 
processor 1530 of a pipeline unit 1500B at a last stage of the 
pipeline may be configured to send feedback data to a pro 
cessor 1530 of a pipeline unit 1500B at a first stage of the 
pipeline. 
As shown in FIGS. 15A and 15B, a pipeline unit 1500A or 

1500B may be configured to access external memory, for 
example according to direct memory access (DMA). In addi 
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tion, a pipeline unit 1500A or 1500B may be configured to 
pass information back to one or more previous (upstream) 
stages of the pipeline and/or to receive information passed 
back from one or more Subsequent (downstream) stages of the 
pipeline. In addition, a pipeline unit 1500A or 1500B may be 
configured to pass information forward to one or more Sub 
sequent (downstream) stages of the pipeline and/or to receive 
information passed forward from one or more previous (up 
stream) stages of the pipeline. 
As shown in FIG.15C, two or more units 1500A as shown 

in FIG. 15A may be grouped together and configured to 
performan operation in the pipeline. A single processor 1530 
may be used to control and/or configure the pipeline units 
15OOA. 
Example Block Processing Pipeline 

FIG.16 is a high-level block diagram of general operations 
in an example block processing method 1600 for H.264 
encoding that may be implemented in stages by a block pro 
cessing pipeline that may implement one or more of the block 
processing methods and apparatus as described herein, 
according to at least some embodiments. A block processing 
pipeline that implements the block processing method 1600 
may, for example, be implemented as a component of an 
H.264 video encoder apparatus that is configured to convert 
input video frames from an input format into H.264/Ad 
vanced Video Coding (AVC) format as described in the 
H.264/AVC standard. The H.264/AVC standard is published 
by ITU-T in a document titled “ITU-T Recommendation 
H.264: Advanced video coding for generic audiovisual Ser 
vices’, which may be referred to as the H.264 Recommenda 
tion. An example input video format is 1080p (1920x1080 
pixels, 2.1 megapixels) encoded in YCbCr color space. How 
ever, other input video formats may be encoded into H.264 
using embodiments of the pipeline in a video encoder appa 
ratuS. 

The video encoder apparatus may, for example, be imple 
mented as an integrated circuit (IC) or as a Subsystem on an IC 
Such as a system-on-a-chip (SOC). In at least some embodi 
ments, the video encoder apparatus may include at least a 
pipeline component, a processor component (e.g., a low 
power multicore processor), and a bus Subsystem or fabric 
that interconnects the functional components of the appara 
tus. The processor component of the video encoder apparatus 
may, for example, perform frame-level control of the pipeline 
Such as rate control, perform pipeline configuration, and 
interface with application software via a driver. The pipeline 
component may implement multiple processing stages each 
configured to perform a portion or all of one or more of the 
operations as shown in FIG. 16, each stage including one or 
more processing units. At least one of the processing units in 
the pipeline may include a processor component (e.g., an 
M-class processor) that may, for example, configure param 
eters of the processing unit at the respective stage at the 
macroblock level. The video encoder apparatus may include 
other functional components or units such as memory com 
ponents, as well as external interfaces to, for example, one or 
more video input sources and external memory. Example 
Video input sources to the video encoder apparatus may 
include one or more of, but are not limited to, a video camera 
for raw video input processing, a decoder apparatus for re 
encoding/transcoding, a flash or other memory, and a JPEG 
decoder. An example video encoder apparatus is illustrated in 
FIG. 26. An example SOC that includes a video encoder 
apparatus is illustrated in FIG. 27. While embodiments are 
generally described in relation to hardware implementations 
of a block processing pipeline that implements the block 
processing method 1600 with knights order processing, note 
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that the block processing method 1600 with knight's order 
processing may be implemented by a block processing pipe 
line implemented in software. 
A pipeline that implements the method 1600 as shown in 

FIG. 16 may process 16x16 pixel macroblocks from input 
Video frames according to the H.264 standard, each macrob 
lock including two or more blocks or partitions that may be 
processed separately at Stages of the pipeline. The input video 
frames may, for example, be encoded in YCbCr color space: 
each macroblock may be composed of separate blocks of 
chroma and luma elements that may be processed separately 
at the stages of the pipeline. A pipeline that implements the 
block processing method 1600 may receive input macrob 
locks from and output processed macroblocks to a memory. 
The memory may include memory of the video encoder appa 
ratus and/or memory external to the video encoder apparatus. 
In at least Some embodiments, the memory may be accessed 
by the pipeline as necessary, for example via direct memory 
access (DMA). In at least Some embodiments, the memory 
may be implemented as a multi-level memory with a cache 
memory implemented between the pipeline and an external 
memory. For example, in some implementations, one or more 
quadrows may be read from an external memory and cached 
to the cache memory for access by the pipeline to reduce the 
number of reads to an external memory. 
The general operations of the example H.264 video 

encoder method 1600 as shown in FIG. 16 that may be per 
formed in stages by a pipeline, as well as general data flow 
through the pipeline, are briefly described below. Each of the 
general operations of the method 1600 may be implemented 
by one or more pipeline units at one or more stages of the 
pipeline. Example pipeline units are illustrated in FIGS. 9A 
through 9C. Also note that each general operation shown in 
FIG. 16 may be subdivided into two or more operations that 
may be implemented by pipeline units at one, two, or more 
stages of the pipeline. However, two or more of the operations 
shown in FIG.16 may be performed at the same stage of the 
pipeline. Each stage in the pipeline processes one macroblock 
at a time, and thus two or more of the operations may simul 
taneously operate on the same macroblock that is currently at 
the respective stage. Note that a pipeline may perform more, 
fewer, or other operations than those shown in FIG. 16 and 
described below. 
Macroblock Input 

In at least some embodiments, macroblockinput 1602 may 
be performed by an initial stage of the pipeline. In at least 
some embodiments, macroblock input 1602 receives luma 
and chroma pixels from a memory, for example via DMA, 
computes statistics on input pixels that are used by firmware 
in downstream stages of the pipeline, and buffers input mac 
roblocks to enable firmware look ahead. The input macrob 
lock pixel data and corresponding statistics are buffered and 
sent to one or more downstream stages of the pipeline that 
implement intra-frame and inter-frame estimation 1610 
operations. In at least Some embodiments, an input buffer of 
up to 16 macroblocks is maintained for input pixels and 
statistics. In at least some embodiments, the macroblock pixel 
data and corresponding statistics may be input to downstream 
stages of the pipeline according to a knight's order input 
algorithm as previously described in the section titled 
Knight's order processing. 

In at least some embodiments, macroblock input 1602 
reads neighbor data from the bottom row of a previous quad 
row from memory at quadrow boundaries and passes the 
neighbor data to at least one downstream stage. 
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Intra-frame and Inter-frame Estimation 
Intra-frame and inter-frame estimation 1610 operations 

may determine blocks of previously encoded pixels to be used 
in encoding macroblocks input to the pipeline. In H.264 video 
encoding, each macroblock can be encoded using blocks of 5 
pixels that are already encoded within the current frame. The 
process of determining these blocks may be referred to as 
intra-frame estimation, or simply intra-estimation. However, 
macroblocks may also be encoded using blocks of pixels from 
one or more previously encoded frames (referred to as refer 
ence frames). The process offinding matching pixel blocks in 
reference frames may be referred to as inter-frame estimation, 
or more generally as motion estimation. Intra-frame and 
inter-frame estimation 1610 operations may be subdivided 
into two or more sub-operations that may be performed at 
one, two, or more stages of the pipeline, with one or more 
components or pipeline units at each stage configured to 
perform a particular Sub-operation. 

In at least some embodiments, macroblock input 1602 
reads neighbor data from the bottom row of a previous quad 
row from memory at quadrow boundaries and passes the 
neighbor data to intra-frame and inter-frame estimation 1610, 
for example to an intra-frame estimation component. In addi 
tion, motion compensation and reconstruction 1630, for 
example aluma reconstruction component, may pass neigh 
bordata as feedback to intra-frame and inter-frame estimation 
1610, for example to the intra-frame estimation component. 
Motion Estimation 

In at least Some embodiments, to perform motion estima 
tion, the pipeline may include one instance of a motion esti 
mation engine for each reference frame to be searched. Each 
motion estimation engine searches only one reference frame. 
In at least some embodiments, each motion estimation engine 
may include a low resolution motion estimation component, 
a full pixel motion estimation component, and a Subpixel 
motion estimation component. In at least some embodiments, 
the three components of each of the motion estimation 
engines may be implemented at different stages of the pipe 
line. In at least some embodiments, each motion estimation 
engine may also include a memory component that reads and 
stores reference frame data from a memory as needed. In at 
least Some embodiments, a single instance of a processor 
manages all instances of the motion estimation engine. In at 
least some embodiments, the processor may determine one or 
more candidates using predicted and co-located motion vec 
tors and input the candidates to the full pixel motion estima 
tion components of the motion estimation engines. 

In at least some embodiments, the low resolution motion 
estimation component of each motion estimation engine per 
forms an exhaustive search on a scaled-down, low resolution 
version of a respective reference frame to generate candi 
dates. In at least some embodiments, the full pixel motion 
estimation component performs a search on full size pixels 
using candidates from the low resolution motion estimation 
component. In at least some embodiments, the Subpixel 
motion estimation component performs a search on half and 
quarter pixels using best candidates received from the full 
pixel motion estimation component. In some embodiments, 
full pixel motion estimation and Subpixel motion estimation 
may be disabled based on results of a direct mode estimation 
performed at an upstream stage of the pipeline. In at least 
Some embodiments, each motion estimation engine outputs 
results data to mode decision 1620. 

In at least Some embodiments, motion estimation may also 
include a direct mode estimation component that receives 
co-located and spatial motion vector data and computes a 
direct/skip mode cost, which it provides to mode decision 
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1620. Based on the results, the direct mode estimation com 
ponent may disable full pixel motion estimation and Subpixel 
motion estimation. 
Intra Estimation 

In at least some embodiments, an intra estimation compo 
nent of the pipeline performs intra mode selection to deter 
mine blocks of pixels already encoded within the current 
frame that may be used in encoding a current macroblock. In 
at least some embodiments, the intra estimation component 
performs intra mode selection only for luma. In these embodi 
ments, Chroma intra estimation is performed by a chroma 
reconstruction component at a downstream stage of the pipe 
line. In at least Some embodiments, the intra estimation com 
ponent may perform intra estimation independently for each 
of two or more blocks or partitions (e.g., 4x4, 8x8, 4x8, 8x4, 
16x8, and/or 8x16 blocks) in a macroblock. For each block, 
prediction pixels are first extracted from neighbor blocks 
(neighbor blocks can be outside the current macroblock in the 
frame or within the current macroblock). For each prediction 
mode in the current block, the cost of the current mode is 
evaluated by creating a prediction block from neighbor pix 
els, computing a mode cost, and comparing the mode cost to 
a minimum cost for that block. Once all prediction modes are 
evaluated and the best mode is determined, reconstruction 
may be performed for the best mode so that reconstructed 
pixels can be used to predict future blocks within the mac 
roblock. The intra estimation component may pass best intra 
mode information to mode decision 1620. 

In at least some embodiments, macroblock input 1602 
reads neighbor data from the bottom row of a previous quad 
row from memory at quadrow boundaries and passes the 
neighbor data to the intra estimation component. In at least 
Some embodiments, at least one downstream stage (e.g., a 
luma reconstruction component at a downstream stage) may 
pass neighbor data back to the intra estimation component. 
Mode Decision 

In at least some embodiments, mode decision 1620 may be 
implemented by a mode decision component at a stage of the 
pipeline that is downstream of the stage(s) that implement 
intra-frame and inter-frame estimation 1610 operations. 
However, in some embodiments, mode decision 1620 opera 
tions may be subdivided into two or more sub-operations that 
may be performed at one, two, or more stages of the pipeline, 
with one or more components or pipeline units at each stage 
configured to perform a particular Sub-operation. In at least 
some embodiments, the mode decision 1620 component 
receives the best intra mode from intra estimation, direct/skip 
mode cost from direct mode estimation, and motion vector 
candidates from the motion estimation engines. In at least 
Some embodiments, the mode decision component computes 
additional costs for bi-directional modes and determines the 
best macroblock type, including macroblock partitions, Sub 
partitions, prediction direction and reference frame indices. 
In at least some embodiments, the mode decision 1620 com 
ponent also performs all motion vector prediction. The 
motion vector prediction results may be used when estimat 
ing motion vector rate during mode decision. In at least some 
embodiments, the motion vector prediction results may also 
be fed back from the mode decision 1620 component to 
motion estimation, for example for use in direct mode esti 
mation and motion vector rate estimation. 
Motion Compensation and Reconstruction 

In at least Some embodiments, motion compensation and 
reconstruction 1630 operations may be subdivided into two or 
more sub-operations that may be performed at one, two, or 
more stages of the pipeline, with one or more components or 
pipeline units at each stage configured to perform a particular 
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Sub-operation. For example, in Some embodiments, motion 
compensation and reconstruction 1630 may be subdivided 
into luma motion compensation and reconstruction and 
chroma motion compensation and reconstruction. In at least 
Some embodiments, each of these Sub-operations of motion 
compensation and reconstruction 1630 may be performed by 
one or more components or pipeline units at one or more 
stages of the pipeline. 
Luma Motion Compensation and Reconstruction 

In at least some embodiments, a luma motion compensa 
tion component of the pipeline receives the best mode and 
corresponding motion vectors from mode decision 1620. As 
previously noted, each motion estimation engine may include 
a memory component that reads and stores reference frame 
data from a memory. If the best mode is inter-predicted, the 
luma motion compensation component requests reference 
frame macroblocks from the motion estimation engine cor 
responding to the motion vectors. The motion estimation 
engine returns subpixel interpolated 4x4 or 8x8 blocks 
depending on the request size. The luma motion compensa 
tion component then combines the blocks into prediction 
macroblocks. The luma motion compensation component 
then applies a weighted prediction to the prediction macrob 
locks to create the final macroblock predictor that is then 
passed to the luma reconstruction component. 

In at least some embodiments, aluma reconstruction com 
ponent of the pipeline performs macroblock reconstruction 
for luma, including intra prediction (in at least some embodi 
ments, the luma motion compensation component performs 
interprediction), forward transform and quantization (FTQ), 
and inverse transform and quantization (ITQ). 

In at least some embodiments, based on the best mode from 
mode decision 1620, either an interprediction macroblock is 
passed from the luma motion compensation component or 
intra prediction is performed by the luma reconstruction com 
ponent to generate a prediction block. In intra mode, the 
prediction is performed in block (scan) order since recon 
structed pixels from neighbor blocks are needed for predic 
tion of future blocks. The input block is subtracted from the 
prediction block to generate a residual block. This residual 
pixel data is transformed and quantized by an FTQ technique 
implemented by the luma reconstruction component (or an 
FTQ block thereof). The coefficient data is sent to an ITQ 
technique implemented by the luma reconstruction compo 
nent (or an ITQ block thereof), and may also be sent down 
stream to CAVLC encoding. The ITQ technique generates a 
reconstructed residual pixel block. The prediction block is 
added to the residual block to generate the reconstructed 
block. Reconstructed pixels may be passed downstream to a 
deblocking filter. In at least some embodiments, recon 
structed pixels may also be passed back to an intra-frame 
estimation component of intra-frame and inter-frame estima 
tion 1610 as feedback for use as neighbor data when process 
ing Subsequent macroblocks. In at least Some embodiments, 
reconstructed pixels may also be passed back to an intra 
prediction neighbor pixel memory at the stage for use as 
neighbor pixels when predicting Subsequent blocks inside the 
current macroblock at the stage. 
Chroma Motion Compensation and Reconstruction 

In at least some embodiments, chroma reconstruction is 
performed in two stages. In the first stage, chroma reference 
blocks needed for inter prediction are read from memory 
based on input macroblock type, motion vectors, and refer 
ence frame index. Subpixel interpolation and weighted pre 
diction is then applied to generate a prediction macroblock. In 
the second stage, chroma intra prediction and chroma intra/ 
inter FTQ/ITQ is performed. This allows one additional pipe 
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line stage to load chroma prediction pixel data. Since chroma 
pixels are not searched by motion estimation, the chroma 
prediction data is read from external memory and may have 
large latency. In at least Some embodiments, a chroma motion 
compensation component performs the first stage, while a 
chroma reconstruction component performs the second stage. 

In at least Some embodiments, the chroma motion compen 
sation component generates a prediction block including Sub 
pixel interpolation for Cb and Cr chroma blocks; the size is 
based on the partition size and chroma formats. A full size 
chroma block is 8x8, 8x16, or 16x16 pixels for chroma for 
mats 4:2:0, 4:2:2 and 4:4:4, respectively. In at least some 
embodiments, the chroma motion compensation component 
may prefetch and cache chroma prediction pixels from an 
external (to the pipeline) memory. In at least Some embodi 
ments, reference data may be read based on mode decision 
1620 results. The chroma motion compensation component 
performs subpixel interpolation to generate a prediction 
block. Mode decision 1620 provides the macroblock type and 
Sub-types, reference frame index per partition, and corre 
sponding motion vectors. The prediction is output to the 
chroma reconstruction component. 

In at least some embodiments, the chroma reconstruction 
component performs chroma prediction, chroma intra esti 
mation and chroma reconstruction for inter and intra modes. 
For chroma formats 4:2:0 and 4:2:2, intra chroma estimation 
and prediction is performed. In at least Some embodiments, 
chroma intra estimation is performed at this stage rather than 
at intra-frame and inter-frame estimation 1610 so that recon 
structed pixels can be used during the estimation process. In 
at least some embodiments, if the best mode is an intra mode, 
intra chroma estimation may be performed based on the best 
intra chroma mode, and intra prediction may be performed 
using one of four intra chroma modes. For inter macroblocks, 
inter chroma prediction pixels are received from chroma 
motion compensation. For chroma format 4:4:4, the luma 
intra prediction modes are used to generate the chroma block 
prediction, and inter chroma prediction is performed in the 
same manner as for luma. Therefore, chroma reconstruction 
conceptually includes 4:2:0 and 4:2:2 chroma reconstruction 
and luma reconstruction used to reconstruct chroma in 4:4:4 
chroma format. 
CAVLC Encode and Deblocking 

In at least some embodiments, CAVLC encoding and 
deblocking may be performed by one or more components at 
a last stage of the pipeline, as shown in 1640 of FIG. 16. In at 
least some embodiments, a deblocking filter component of 
the pipeline receives reconstructed luma and chroma pixels 
from the chroma reconstruction component and performs 
deblocking filtering according to the H.264 Recommenda 
tion. Results may be output to a memory. 

In at least some embodiments, a CAVLC encode compo 
nent of the pipeline receives at least luma and chroma quan 
tized coefficients, neighbor data, and chroma reconstruction 
results from the chroma reconstruction component and gen 
erates a CAVLC (context-adaptive variable-length coding) 
encoded output stream to a memory. Note that in other 
embodiments, an encode component of the pipeline may 
generate an output stream other than a CAVLC encoded bit 
stream, for example an output stream in a proprietary format 
or in a format defined by another compression standard. Such 
as the HEVC standard. 

In at least Some embodiments, the deblocking filter com 
ponent and the CAVLC encode component write neighbor 
data for the bottom row of a quadrow to a memory at quadrow 
boundaries. Referring again to FIG. 16, for the top row of a 
next quadrow, macroblock input 1602 may then read this 
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neighbor data from the memory at quadrow boundaries and 
pass the neighbor data to at least one downstream stage of the 
pipeline. 
Transcoder 

In at least Some embodiments, a transcoding operation may 
be performed by a transcoder 1650. The transcoder may be 
implemented as a functional component of the pipeline or as 
a functional component that is external to the pipeline. In at 
least some embodiments, the transcoder 1650 may perform a 
memory-to-memory conversion of a CAVLC (context-adap 
tive variable-length coding) encoded stream output by the 
pipeline to a CABAC (context-adaptive binary arithmetic 
coding) encoded stream. Note that in other embodiments, the 
transcoder 1650 may perform a memory-to-memory conver 
sion of data in a format other than a CAVLC encoded bit 
stream (e.g., data in a proprietary formatorina format defined 
by another compression standard, such as the HEVC stan 
dard) to a CABAC encoded bit stream. 

In at least some embodiments, the pipeline may encode in 
an order other than scan order, for example knight's order as 
previously described herein. However, ultimately, the H.264 
video encoder's encoded bit stream should be transmitted in 
conventional macroblock scan order. In at least Some embodi 
ments, re-ordering the macroblock output from knights 
order to scan order is accomplished by the CAVLC encode 
component writing encoded data to four different output buff 
ers, each output buffer corresponding to a macroblock row. At 
the end of a quadrow, each row buffer will contain a scan order 
stream of encoded macroblocks for a respective row. 
Transcoder 1650 handles stitching the start and end of each 
row to generate a continuous stream at macroblock row 
boundaries. In at least some embodiments, the pipeline may 
embed metadata in the CAVLC output stream to facilitate 
stitching of the rows by the transcoder 1650. 
Computing and Using Gradient Histograms to Detect Text 
As previously noted, some embodiments of the video 

encoding pipelines described herein may compute gradient 
histograms for each macroblock to be processed in the pipe 
line, may use those histograms to determine the likelihood 
that a given macroblock represents a portion of a video frame 
that includes text, and, if it is determined that the given mac 
roblock is likely to represent a portion of a video frame that 
includes text, may adjust various encoding parameter values 
to improve the quality of the encoding of the given macrob 
locks (e.g., using different parameter values when encoding 
the given macroblock than when encoding other macroblocks 
in the same video frame or other video frames that are not 
likely to contain text). 
As noted above, in at least Some embodiments, macroblock 

input 1602 may receive luma and chroma pixels from a 
memory, compute statistics on input pixels that are used by 
firmware in downstream stages of the pipeline, and buffer 
input macroblocks to enable firmware lookahead. The statis 
tics collected on input macroblocks may include (e.g., for 
each 16x16 macroblock on luma, in Systems that implement 
the H.264 standard, or for each Coding Tree Unit, Coding 
Unit, or Transform Unit on luma and/or chroma, in Systems 
that implement the H.265 standard) horizontal and vertical 
gradients (GX and Gy) on luma and/or chroma, and/or gradi 
ent histograms for GX and Gy on luma and/or chroma, in 
different embodiments. In at least some embodiments, the 
macroblock input may also compute statistics reflecting the 
variance within macroblocks, which is, in general, a second 
order effect. The variance information may provide informa 
tion that is useful in classifying macroblocks. For example, if 
a macroblock represents a portion of an image containing a 
patch of grass, it will exhibit a relatively high variance, which 
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may indicate to the video encoding pipeline that it should be 
classified as a texture, and encoded in a manner that is appro 
priate for encoding high frequency areas. However, a mac 
roblock containing text (even when the text is on a flat back 
ground) may also exhibit a relatively high variance. 
Therefore, the variance alone may not be useful for determin 
ing whether a macroblock contains text, a texture, or a col 
lection of objects with sharp edges. In some embodiments, 
the systems and methods described herein may be used to 
determine the likelihood that a given macroblock represents a 
portion of a video frame that contains text (e.g., to distinguish 
between relatively flat areas that happen to include text and 
texture areas), based on one or more histograms of gradient 
information and/or statistics derived from those histograms. 
In Such embodiments, if the given macroblock represents (or 
is determined to be likely to represent) a portion of a video 
frame that contains text, adjustments may be made to the 
encoding operations performed on the given macroblock to 
provide high quality encoding for that macroblock, to 
improve the experience for the viewer. 
The human vision system can detect differences within flat 

areas of an image much more easily than within texture areas. 
For example, for two neighboring macroblocks (or portions 
thereof) in a flat region of a video frame (or in Successive 
Video frames), even Small differences in the final images (e.g., 
after reconstruction, etc.) may be noticeable to the viewer 
(e.g., resulting in a bending effect, a halo effect, or other 
effects due to quantization errors, in some cases). However, 
with high texture areas, human vision systems have a way to 
mask differences. In other words, when there is a dominant 
signal, even if the images are slightly different from each 
other, the viewer is unlikely to see those differences. Human 
vision systems are also highly trained for viewing text, and 
may object to an encoding result in which any text in the video 
frame is not sharp or exhibits quantization errors (e.g., bend 
ing, ringing, or halo effects). For example, in wireless display 
encoding (in which the content of a computer desktop is 
compressed and transmitted to a wireless display), it may be 
objectionable for video frames (or portions thereof) that con 
tain text to be encoded in a manner that results in the text not 
being sharp or in the image exhibiting such quantization 
artifacts. 

Given limitations on computation budgets for performing 
macroblock encoding within a video encoding pipeline 
(which may be on the order of hundreds of cycles) and, in 
Some cases, bandwidth for streaming the results over a net 
work to a device on which it will be displayed, a traditional 
encoding approach may allocate more of the computation 
budget and/or bandwidth to flat areas. For example, a tradi 
tional encoder may increase a quantization parameter (e.g., 
for QP modulation during luma reconstruction) for textured 
(high frequency) areas of a video frame, encoding it with 
lower quality than that with which flat areas are encoded, 
because it will be less objectionable to the viewer. However, 
it may not be desirable to apply encoding parameters that are 
Suitable for encoding high texture macroblocks (e.g., param 
eters that result in a lower quality result) when encoding 
macroblocks that include a mix of flat areas (e.g., a back 
ground) and text, because a higher quality result is more 
important to the viewer when the macroblock includes text. In 
some embodiments, the systems described herein may be able 
to distinguish between macroblocks that represent portions of 
a video frame containing text and those that represent por 
tions of a video frame containing other objects that include 
sharp edges, and to adjust various encoding parameters 
accordingly. 
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In some embodiments, a macroblock input component of 
the video encoding pipelines described herein may be con 
figured to determine that a given macroblock is likely to 
include text, and to make that information available to com 
ponents in other stages of the video encoding pipeline as an 
input to their operations (e.g., as a hint to treat the macroblock 
differently than it might otherwise have). For example, if a 
viewer is scrolling quickly through a screen that includes text, 
they may not actually be focused on the text, and the quality 
of the encoding for those video frames (and the macroblocks 
thereof that contain text) may not be critical. However, once 
the viewer stops scrolling and begins to read an article, it may 
be desirable to present video frames in which the macrob 
locks containing text have been encoded at a higher quality. In 
Some embodiments, by providing gradient information, his 
tograms of gradient information, macroblock-level, slice 
level, or frame-level statistics based on the gradient informa 
tion, on the histograms or on the history of the frame-level 
statistics/gradient information from one or more previous 
frames, or encoding parameters that were computed based on 
Such information, various components in different stages of 
the video encoding pipeline may recognize these situations 
(and other situations in which it may be desirable to encode a 
macroblock containing text differently than other macrob 
locks) and make appropriate adjustments. 
As described in more detail below, in some embodiments, 

a macroblock input component for a block processing pipe 
line (e.g., a video encoding pipeline) may compute gradients 
in multiple directions and may accumulate the gradient infor 
mation (in any of a variety of ways) to compute one or more 
histograms of the gradient information. In some embodi 
ments, the computation of the gradients and the histograms 
may be performed by in hardware in the macroblock input 
component. Data representing the gradients and histograms 
may be stored in a data structure from which it may be 
accessed by software running on a CPU at the macroblock 
input stage. The Software may analyze the data to determine 
whether the macroblock is likely to contain text (e.g., by 
determining whether there is a dominant gradient direction in 
the macroblock). If so, the Software may take steps to make 
this information (and/or other information, such as various 
encoding parameters that are Suitable for use in encoding the 
macroblock) available to other stages of the pipeline. For 
example, in some embodiments, the Software running on the 
CPU at the macroblock input stage may compute various 
parameters for biasing or controlling quantization, mode 
decisions, or other operations, and may push this information 
(and/or the statistics used to compute them) to components in 
other stages. Subsequently, statistics and/or additional encod 
ing parameters that are computed by these other stages may, 
in turn, be passed to stages even farther down the pipeline, in 
Some embodiments. In other embodiments, statistics and/or 
encoding parameters that are computed at the macroblock 
input stage or at any Subsequent stage of the video encoding 
pipeline may be stored in a shared data structure (e.g., a 
statistics buffer) from which they may be accessed by com 
ponents at any of the stages of the video encoding pipeline, as 
appropriate. 
One embodiment of a method for performing an encoding 

operation on a macroblock, dependent on one or more histo 
grams of gradient values, is illustrated by the flow diagram in 
FIG. 17. As illustrated at 1710, in this example, the method 
may include a macroblock input component for a block pro 
cessing pipeline (e.g., an input component that receives mac 
roblocks to be processed in a video encoding pipeline) receiv 
ing input data representing a block of pixels from a video 
frame. The method may include the macroblock input com 
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ponent computing gradient values for the block of pixels in 
multiple directions, as in 1720. For example, the macroblock 
input component may be configured to compute the gradient 
values in hardware (e.g., using circuitry) and/or using soft 
ware or firmware executing on a CPU in the macroblockinput 
component, in different embodiments. As described in more 
detail below, the gradients may be computed using any of a 
variety of filters, in different embodiments. 
As illustrated in this example, the method may include the 

macroblock input component computing one or more histo 
grams of the gradient values for the block of pixels (or of 
macroblock-level statistics derived from the gradient values), 
as in 1730. Again, the macroblock input component may be 
configured to compute the histograms inhardware (e.g., using 
circuitry) and/or using software or firmware executing on a 
CPU in the macroblock input component, in different 
embodiments. As described in more detail herein, the mac 
roblockinput component may compute the histograms based 
on a count of angles (in different ranges of angles) represent 
ing the gradient directions at each of multiple points within 
the macroblock, based on a count of gradient magnitudes (in 
different ranges of gradient magnitudes) at each of multiple 
points within the macroblock, or based on the binning of other 
statistics that can be derived using the gradient values (with or 
without other information). 
As illustrated in FIG. 17, the method may also include the 

macroblock input component (or another hardware or soft 
ware component of the block processing pipeline) determin 
ing the likelihood that the block of pixels represents an image 
containing text, dependent on the histogram(s), as in 1740. 
For example, in embodiments that implement a Software 
pipeline and a hardware pipeline, this determination may be 
performed by a software pipeline component (such as one of 
the software pipeline components 322 described above) and 
may be passed to (or made available to) a hardware pipeline 
component (Such as one of the hardware pipeline components 
326 described above) in a subsequent pipeline stage. In other 
embodiments, this determination may be made in hardware 
(e.g., using circuitry) in the macroblockinput component (or 
in another component of the block processing pipeline) and/ 
or using software or firmware executing on a CPU in the 
macroblock input component. As illustrated in this example, 
the method may include the macroblockinput component (or 
another component of the block processing pipeline) deter 
mining one or more parameter values for encoding the block 
of pixels in the block processing pipeline, dependent on the 
likelihood that the block of pixels represents an image con 
taining text, as in 1750. In some embodiments, this determi 
nation may be performed by a Software pipeline component 
(such as one of the Software pipeline components 322 
described above) and may be passed to (or made available to) 
a hardware pipeline component (Such as one of the hardware 
pipeline components 326 described above) in a Subsequent 
pipeline stage. In other embodiments, this determination may 
be made in hardware (e.g., using circuitry) in the macroblock 
input component (or in another component of the block pro 
cessing pipeline) and/or using software or firmware executing 
on a CPU in the macroblock input component. 
The macroblock input component may be configured to 

use any of a variety of filters to compute gradients for a 
macroblock based on the pixel information received for each 
macroblock (e.g., the luma and/or chroma pixels received for 
the macroblock). FIGS. 18A and 18B illustrate the applica 
tion of different filters in computing gradient values for a 
16x16 macroblock 1800, according to some embodiments. 
For example, FIG. 18A illustrates an embodiment in which a 
-1 1 filter is applied to the pixel data (e.g., the luma pixel 
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data or the chroma pixel data) for macroblock 1800. More 
specifically, FIG. 18A illustrates the neighbor pixels that are 
considered when computing horizontal and vertical gradients 
for five of the pixels of macroblock 1800 (i.e., the pixels 
labeled A, B, C, D, and E) using a -11 filter. In this example, 
to compute a horizontal gradient for each pixel that has a 
neighbor to its immediate right (e.g., the pixels labeled A, C, 
D, and E), the filter is applied to the labeled pixel and to the 
neighbor to its immediate right (a pixel that is illustrated in 
FIG. 18A using horizontal hash marks). Similarly, to compute 
a vertical gradient for each pixel that has a neighbor imme 
diately below it (e.g., the pixels labeled A, B, C, and E), the 
filter is applied to the labeled pixel and to the neighbor imme 
diately below it (e.g., a pixel that is illustrated in FIG. 18A 
using vertical hash marks). 

Note that, in Some embodiments, an input macroblock 
component that is configured to compute horizontal and Ver 
tical gradients for macroblocks may only compute gradient 
values for pixels for which the data needed to compute both 
the horizontal and vertical gradients is available (e.g., pixels 
that have both a neighbor to their immediate right and a 
neighbor immediately below them, such as the pixels labeled 
A, C, and E). In other embodiments, the input macroblock 
component may be configured to compute a horizontal gra 
dient only, a vertical gradient only, or both a horizontal gra 
dient and a vertical gradient for various pixels in the macrob 
lock, dependent on the available neighbor information. For 
example, in one such embodiment, the input macroblock 
component may be configured to compute a horizontal gra 
dient only for the pixel labeled D, a vertical gradient only for 
the pixel labeled B, and both horizontal and vertical gradients 
for the pixels labeled A, C, and E. 

FIG. 18B illustrates an embodiment in which a -1 0 1 
filter is applied to the pixel data for macroblock 1800. More 
specifically, FIG. 18B illustrates the neighbor pixels that are 
considered when computing horizontal and vertical gradients 
for the same five pixels of macroblock 1800 (i.e., the pixels 
labeled A, B, C, D, and E) using a -1 0 1 filter. In this 
example, to compute a horizontal gradient for each pixel that 
has a neighbor to its immediate right and a neighbor to its 
immediate left (i.e., interior pixels, such as the pixel labeled 
A), the filter is applied to the labeled pixel and to the neigh 
bors to its immediate right and left (i.e., pixels that are illus 
trated using horizontal hash marks). Similarly, to compute a 
Vertical gradient for each pixel that has a neighbor immedi 
ately below it and a neighbor immediately above it (i.e., 
interior pixels, such as the pixels labeled A), the filter is 
applied to the labeled pixel and to the neighbors immediately 
below and above it (i.e., pixels that are illustrated using ver 
tical hash marks). 

Again note that, in Some embodiments, an input macrob 
lock component that is configured to compute horizontal and 
Vertical gradients for macroblocks may only compute gradi 
ent values for pixels for which the data needed to compute 
both the horizontal and vertical gradients is available (e.g., 
pixels that have both neighbors to their immediate right and 
left, and neighbors immediately below and above them). In 
other embodiments, the input macroblock component may be 
configured to compute a horizontal gradient only, a vertical 
gradient only, or both a horizontal gradient and a vertical 
gradient for various pixels in the macroblock, dependent on 
the available neighbor information. For example, in one Such 
embodiment, the input macroblock component may be con 
figured to compute a horizontal gradient only for the pixels 
labeled D and E, a vertical gradient only for the pixels labeled 
B and C, and both horizontal and vertical gradients for the 
pixel labeled A. Also note that, in other embodiments, differ 
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ent weights may be applied to the pixels in the neighborhood 
of each pixel in the macroblock (e.g., using different filters) 
when computing the horizontal and Vertical gradients at the 
pixel. 
As previously noted, after computing horizontal and Ver 

tical gradients for a macroblock, the macroblock input com 
ponent may be configured to compute histograms for the 
macroblock that are based on a count of angles (in different 
ranges of angles) representing the gradient directions that 
were computed at each of multiple points within the macrob 
lock. In some embodiments, the gradientangle may represent 
the angle that the gradient forms with the horizontal axis of 
the macroblock (and the video frame of which it is a part), and 
the angles may be measured in a clock-wise direction, Such 
that an angle of 0 degrees corresponds to a horizontal vector. 
The bins of the histogram may be spread evenly over 180 
degrees (in embodiments in which they represent unsigned 
gradient angles) or over 360 degrees (in embodiments in 
which they represent signed gradient angles). 

In some embodiments (and in the example histograms 
illustrated in FIGS. 19A, 19B, 20A, and 20B), the sum of the 
bin counts for all of the bins may be equal to the size of the 
macroblock (e.g., 256 for a 16x16 macroblock). In some 
embodiments, when one direction is dominant (which may be 
the case when the macroblock includes text), most of the bin 
counts (or many more of the bin counts than in other bins) 
would be in one (or a small number) of the bins. For example, 
for a macroblock that includes text (and thus includes many 
sharp vertical, or near-vertical edges), the bin counts may be 
much larger in one or more horizontal bins (e.g., in one or 
more bins representing horizontal or near-horizontal gradient 
directions) than in other bins. Note that, in various embodi 
ments, the techniques described herein may be used to detect 
any dominant gradient direction (e.g., a horizontal, Vertical, 
diagonal, any other dominant direction). In some Such 
embodiments, the dominant direction may indicate a strong 
edge in the macroblock, but may not necessarily represent 
text (e.g., if the dominant gradient direction is something 
other than horizontal or near-horizontal). 

FIG. 19A and FIG. 19B illustrate example histograms of 
gradient direction values (or, more specifically, computed 
gradient orientation angles), according to some embodi 
ments. For example, FIGS. 19A and 19B illustrate histograms 
in which each bin on the horizontal axis represents a range of 
angles corresponding to gradient directions computed at mul 
tiple points within a macroblock (e.g., at each pixel in the 
macroblock or at each pixel for which the neighbor data 
required to compute the gradient values was available). In 
each of these figures, the vertical axis represents the number 
(or relative number) of times that a gradient direction within 
a given range of gradient directions is detected in a 16x16 
macroblock. 

In some embodiments, to produce the histogram illustrated 
in FIG. 19A, a macroblock input component may be config 
ured to compute horizontal and Vertical gradient values at 
multiple points within the macroblock, and to derive from 
those gradient values, an angle representing the gradient 
direction at that point. For example, Such an angle may be 
computed as follows: 

In this example, GX represents the horizontal gradient 
value and Gy represents the vertical gradient value at a par 
ticular point in the macroblock (e.g., at the pixel labeled A in 
FIGS. 18A and 18B). In some embodiments (and in the 
examples illustrated in FIGS. 19A and 19B), the macroblock 
may be configured to compute an unsigned gradient direction 
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angle (as above), while in other embodiments, the macrob 
lock may be configured to compute a signed gradient direc 
tion angle, as follows: 

In either case, the macroblock input component may be 
configured to count the number of times that the computed 
angles fall into different ranges of angles, each of which 
corresponds to a respective bin of the histogram. The mac 
roblock input component (or another component) may be 
configured to analyze the histogram data to determine 
whether there is a dominant gradient direction for the mac 
roblock and/or to determine the likelihood that the macrob 
lock represents a portion of a video frame that contains text. 

In the example histogram illustrated in FIG. 19A, there is 
no dominant gradient direction for the macroblock. There 
fore, the macroblock input component (or other component) 
may assume that the macroblock represents a portion of a 
Video frame that does not contain text, and may be configured 
to compute one or more encoding parameter values Suitable 
for non-text macroblocks. However, in the example histo 
gram illustrated in FIG. 19B, there is a dominant gradient 
direction for the macroblock (i.e., the direction correspond 
ing to angles in the range of 0-22.5° and in the range of 
157.5-180°). In this example, because there is a dominant 
gradient direction for the macroblock (shown as a large num 
ber of bins counts in bins representing horizontal or near 
horizontal angles in the histogram), and because the dominant 
direction indicates a large number of vertical or near-vertical 
edges in the macroblock image, the macroblock input com 
ponent (or other component) may assume that the macrob 
lock represents a portion of a video frame that contains text, 
and may be configured to compute one or more encoding 
parameter values suitable for Such macroblocks. 
As described above, a filter may be applied to a small 

number of pixels in the neighbor of each pixel within the 
macroblock to apply a weighting when computing the gradi 
ent values, in Some embodiments. Similarly, in some embodi 
ments, the computation of a histogram of gradients may 
include a weighting (rather than being dependent only on 
unweighted bin counts). In some embodiments, in order to 
compute a histogram of oriented gradients (sometimes 
referred to as a HOG descriptor), each pixel within the mac 
roblock may vote for an orientation-based histogram bin 
based on the values found in the gradient computation. For 
example, the pixel may Vote for the bin representing an angle 
(or range of angles that is closest to the gradient angle com 
puted at the pixel. The weight of each vote (e.g., the weight of 
the contribution from each pixel) may be based on the gradi 
ent magnitude, or may be based on a function of the magni 
tude (e.g., the square root of the gradient magnitude, the 
square of the gradient magnitude, or a truncated version of the 
magnitude that includes a Subset of the bits of the magnitude), 
in different embodiments. In such embodiments, the HOG 
descriptor comprises the combination of the bins in the his 
togram. 
As noted above, in some embodiments, the macroblock 

input component may be configured to compute separate 
horizontal and vertical histograms, based on the horizontal 
and Vertical gradient values computed at multiple points 
within the macroblock. In some such embodiments, the hori 
Zontal and vertical gradient values (which may include a 
value representing a direction and a magnitude value) may be 
calculated by hardware within the macroblock input compo 
nent, and the histograms may be computed by program 
instructions executing on a CPU within the macroblock input 
component (or a component of another stage within the video 
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encoding pipeline). In some embodiments, the magnitude 
value of each of the gradients may determine the bin index of 
the histogram in which the gradient will be represented by a 
count. In some embodiments (and in the example histograms 
illustrated in FIGS. 20A and 20B), each histogram includes 
eight bins, and the upper three bits of the scaled and unsigned 
gradient values (e.g., the upper three bits of Abs(Gx) or Abs 
(Gy)) may be used as the bin index for the histogram. In Such 
embodiments, a given bin count may be incremented for each 
gradient value (i.e., gradient magnitude value) of the macrob 
lock that falls within the range defined for the bin by its index 
(e.g., defined by particular values for the upper three bits of 
the gradient magnitude). 

FIGS. 20A and 20B illustrate a histogram of horizontal 
gradients and a histogram of vertical gradients for a macrob 
lock, respectively, according to Some embodiments. In these 
histograms, the bin index for each bin is shown (on the X axis) 
as a binary representation of the upper three bits of an 8-bit 
gradient magnitude value for a gradient in that direction, and 
the height of each bin (shown on the y axis) indicates the 
number of times that a gradient magnitude value for a gradi 
ent in that direction was detected within each particular range 
of values (as determined by the upper three bits) in the mac 
roblock. 
More specifically, FIG. 20A illustrates histogram of verti 

cal gradients for a macroblock in which none of the bins is 
dominant. In this example, the differences between the 
heights of the bins is relatively small, and there is no indica 
tion that there are a large number of horizontal edges. Taken 
alone, this may indicate the macroblock is unlikely to repre 
sent a portion of a video frame that contains text. However, 
FIG. 20B illustrates a histogram of horizontal gradients for 
the same macroblock in which one of the bins is dominant. In 
this example, the bin indexed as 111 (i.e., the bin correspond 
ing to the largest gradient magnitude values) is much taller 
than any of the other bins, indicating that a large number of 
horizontal gradients have large magnitudes. Since this would 
be the case if the macroblock represents a portion of the video 
frame that includes many vertical edges, this may indicate 
that the macroblock is likely to represent a portion of a video 
frame that contains text. 
As described above, in some embodiments, once a domi 

nant gradient direction foragiven macroblock has been deter 
mined and/or a likelihood that the given macroblock contains 
text has been determined, various hardware and software 
components in the video encoding pipeline may use this 
information to bias, control, or otherwise influence the opera 
tions performed by those components or by components in 
stages that follow them. For example, in response to deter 
mining that a given macroblock represents a portion of a 
Video frame that contains text, various encoding parameters 
may be computed and/or modified in order to perform a 
higher quality encoding than might otherwise have been per 
formed for that macroblock (e.g., based on the variance or 
other information about the macroblock). In various embodi 
ments, this may include reducing the quantization parameter 
for the macroblock, biasing or controlling the selection of a 
prediction mode, or biasing or controlling the selection of an 
encoding mode for the macroblock. 

In some embodiments, based on the statistics computed at 
the macroblock input stage (including the determination that 
a given macroblock is likely to represent a portion of a video 
frame that contains text), the quantization parameter value 
QP (i.e., the quantization step to be used in the encoder, which 
may also affect the quantization error) may be computed or 
modified such that it is lower than it would have otherwise 
been for the macroblock based on information other than the 
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determination that the macroblock is likely to contain text. 
The selection of the quantization parameter value may change 
how the luma and/or chroma information is quantized in the 
pipeline. For example, it may affect the quantization step used 
in the luma reconstruction component when performing luma 
reconstruction and quantization. In some embodiments, it 
may also affect chroma reconstruction. Note that in some 
embodiments, the same quantizer may be used by both the 
luma and chroma reconstruction components. However, in 
other embodiments, there may be a delta between the quan 
tization parameter used in the luma reconstruction compo 
nent and the quantization parameter used in the chroma 
reconstruction, but the quantization parameter used in the 
luma reconstruction component may also affect, per macrob 
lock, how the chroma quantization parameter value is 
changed. 
As previously noted, in high texture areas, using a higher 

QP (i.e., a larger step size) may mean that less data is retained 
following quantization, which may increase distortion (when 
compared with quantization using a lower QP). However, 
since human vision systems may not notice Small distortions, 
the higher QP may be suitable for texture areas and may allow 
other areas (those in which such distortions would be more 
noticeable. Such as text areas) to be encoded using a lower QP 
(i.e., to retain more data following quantization) while still 
meeting network bandwidth constraints when streaming the 
results. Note that by selecting a lower QP only for those 
macroblocks that are likely to contain text (rather than select 
ing a lower frame-level QP) may prevent unnecessary peaks 
in the bandwidth required to stream the results of the encod 
ing that are unlikely to improve the quality of the results, as 
perceived by the viewer. In other words, the techniques 
described herein may allow for fine-grained control over the 
encoding of macroblocks that are likely to contain text and 
those that are not likely to contain text. Such that computation 
and network bandwidth constraints do not prevent the video 
encoding pipeline from improving the quality of the results in 
areas in which the quality will be most noticeable. The use of 
these techniques may, in some embodiments, result in better 
quality encoding, with fewer artifacts (or at least fewer 
noticeable artifacts), for video frames that include text (e.g., 
images of web pages and other text-based information on a 
computer Screen). 

Another stage of a video encoding pipeline that may make 
use of a determination that a given macroblock is likely to 
represent a portion of a video frame that contains text (or that 
there is a dominant gradient direction in the macroblock) is an 
intra-estimation stage. Such as that described above. In some 
embodiments, an indication of the result of Such a determi 
nation may be used as an input to bias the selection of a 
prediction mode in the intra-estimation stage (e.g., to bias 
certain directions based on the presence of a dominant gradi 
ent direction). As noted above, in intra-estimation, for each 
prediction mode in the current block, the cost of the current 
mode is evaluated by creating a prediction block from neigh 
bor pixels, computing a mode cost, and comparing the mode 
cost to a minimum cost for that block. Once all prediction 
modes are evaluated and the best mode is determined, recon 
struction may be performed for the best mode so that recon 
structed pixels can be used to predict future blocks within the 
macroblock. The intra estimation component may then pass 
best intra mode information to a mode decision stage (such as 
mode decision 1620 illustrated in FIG. 16). 

In some embodiments, if it is known that there is dominant 
gradient direction (e.g., a specific diagonal direction that is 
dominant) in a given macroblock, then during intra-estima 
tion, a prediction mode corresponding to that dominant direc 
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tion may be given a bias that makes it more likely to be 
selected. For example, in some embodiments, the video 
encoding pipeline may employ a typical rate distortion opti 
mization when computing the cost of each mode. In addition, 
the pipeline may support the use of programmable offsets per 
mode that can be added to the rate term to weight it during 
mode selection. In some embodiments, there may be different 
offsets for each mode, and they may be positive or negative. 
For example, an offset A may be added if the mode is hori 
Zontal, and an offset B may be added if the mode is vertical. 
In this example, if the dominant mode is horizontal, a negative 
offset may be added so that the cost of that mode would be 
lower when compared to the other modes. In some embodi 
ments, choosing the dominant mode (i.e., the mode corre 
sponding to the dominant gradient direction), Such that the 
prediction is in the direction of the dominant edge, may result 
in fewer visual artifacts than if the prediction is done in 
another direction. In some cases, the intra-estimation may 
have chosen that direction naturally. However, in cases in 
which, for Some reason (e.g., in terms of rate distortion, but 
without taking into account the determined dominant direc 
tion) the intra-estimation would have chosen a different direc 
tion (which could have potentially introduced more visual 
artifacts), having the information about the dominant direc 
tion may allow the video encoding pipeline to bias the mode 
to achieve better results. 

In Some embodiments, the gradient information (or the fact 
that there is a dominant gradient direction) may be used to 
modify, select, or bias the terms of a rate distortion optimiza 
tion used in mode decision, intra-estimation, or motion esti 
mation. In various embodiments, a rate distortion optimiza 
tion used to minimize a cost function for a given mode may 
include a linear combination of a distortion metric that mea 
sures differences between two modes, and the rate cost of 
encoding the macroblock due to those difference times a 
parameter (lambda) that converts the units of rate into units of 
distortion. For example, in some embodiments, the cost func 
tion to be optimized in order to find the optimal motion vector 
may be as follows: 

cost=SATD+(mvd rate) 

In this example, the cost function includes a linear combi 
nation of a distortion metric between the source frame and the 
reference frame (e.g., a sum of absolute differences, SAD, or 
a sum of absolute transform differences, SATD) and the rate 
cost of encoding the macroblock, which will include the rate 
cost of the motion vector difference (e.g., the mVd rate), 
where the motion vector difference is equal to the difference 
between the motion vector being evaluating and the motion 
vector predictor. In this example, lambda represents a motion 
regulation parameter that is used to convert the units of rate 
into units of distortion. In some embodiments, lambda may be 
dependent on the gradient information (or the fact that there is 
a dominant gradient direction). 
As noted above, the mode decision 1620 component may 

receive the best intra mode from intra estimation, direct/skip 
mode cost from direct mode estimation, and motion vector 
candidates from the motion estimation engines, may compute 
additional costs for bi-directional modes, and may determine 
the best macroblock type, including macroblock partitions, 
Sub-partitions, prediction direction and reference frame indi 
ces. In at least some embodiments, the mode decision 1620 
component may also perform motion vector prediction, the 
results of which may be used when estimating motion vector 
rate during mode decision. In at least some embodiments, the 
motion vector prediction results may also be fed back from 
the mode decision 1620 component to motion estimation, for 
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example for use in direct mode estimation and motion vector 
rate estimation. In some embodiments, the systems described 
herein may be used to bias or control the motion estimation. 
As noted above, in the motion estimation stage, the pro 

cessor may determine one or more candidates using predicted 
and co-located motion vectors and may input the candidates 
to the full pixel motion estimation components of the motion 
estimation engines. In some embodiments, the system may 
employ biases for choosing motion vectors, for partitioning, 
and/or for choosing the additional candidates that are being 
searched. For example, performing a low-resolution search 
may provide candidates for a Subsequent full pixel motion 
estimation search. In some embodiments, Software candi 
dates may be provided in addition to the candidates provided 
by the low-resolution search results. For example, these soft 
ware candidates may come from within the encoder (e.g., 
from a feedback loop of what the predicted vector is, which 
could become a candidate), or may be hard-coded as 0, 0 or as 
an external vector that is based on what the camera that 
originally captured the video frame measured as a global 
vector. In some embodiments, the gradient values, histograms 
of gradients, or statistics based on this information may be 
used to determine which, if any, of these additional vectors 
should be candidates in the motion estimation stage (and 
when). In other words, this information may be used to select 
better candidates. For example, if it is known that there is a lot 
of texture in a given macroblock (or that the macroblock 
contains text), it may be assumed that the predicted vector is 
not reliable. In such cases, a 0.0 vector (or some other vector 
that may be more reliable) may be chosen as a candidate, 
rather than the predicted vector. 
One embodiment of a method for passing encoding param 

eter values generated at a macroblock input component, 
dependent on one or more gradient histograms, to different 
stages of a block processing pipeline (e.g., a video encoding 
pipeline) is illustrated by the flow diagram in FIG. 21. As 
illustrated at 2110, in this example, the method may include a 
macroblock input component computing one or more histo 
grams of gradients for an input macroblock (e.g., using any of 
a variety offiltering and binning mechanisms, including those 
described herein), and storing the histogram(s), e.g., in a 
statistics buffer that is accessible to hardware and/or software 
components in multiple stages of the video encoding pipeline. 
The method may also include the macroblock input compo 
nent determining whether there is a dominant gradient direc 
tion in the macroblock, as in 2120. If no dominant gradient 
direction exists in the macroblock (shown as the negative exit 
from 2125), no additional parameter values may be computed 
by the macroblock input component based on the 
histogram(s), as in 2130. 

In some embodiments, an intra-estimation operation com 
ponent and/or a mode decision component may be configured 
to take the dominant gradient direction (if one exists) into 
consideration when performing a portion of the overall video 
encoding operation. In some such embodiments, if a domi 
nant gradient direction exists in the macroblock (shown as the 
positive exit from 2125), the method may include the mac 
roblockinput component storing aparameter value indicating 
the dominant gradient direction in the statistics buffer (from 
which the intra-estimation operation component and/or the 
mode decision component can retrieve it) and/or passing the 
parameter value indicating the dominant gradient direction to 
the intra-estimation component (e.g., to be used to bias or 
control the selection of a predication mode) and/or to the 
mode decision component (e.g., to bias or control the selec 
tion of an encoding mode), as in 2140. Similarly, in some 
embodiments, a motion estimation component may be con 
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figured to take a dominant gradient direction into consider 
ation when performing a portion of the overall video encod 
ing operation. In some such embodiments, if a dominant 
gradient direction exists in the macroblock, the method may 
include the macroblockinput component storing a parameter 
value indicating the dominant gradient direction in the statis 
tics buffer (if it has not already done so) and/or passing the 
parameter value indicating the dominant gradient direction to 
the motion estimation component to be used to bias or control 
the selection of a motion vector, as in 2150. 
As illustrated in this example, if the dominant gradient 

direction is horizontal (shown as the positive exit from 2155), 
this may indicate a high likelihood that the macroblock rep 
resents a portion of a video frame containing text. In this case, 
the method may include the macroblock input component 
assuming that the macroblock contains text, and setting the 
quantization parameter value (QP) for this macroblock to a 
lower value than would otherwise have been computed for the 
macroblock if it did not contain text (e.g., if it were a non-text 
block), as in 2160. However, if the dominant gradient direc 
tion is not horizontal (shown as the negative exit from 2155), 
the method may include the macroblock input component 
assuming that the macroblock does not contain text, and 
setting a quantization parameter value (QP) for this macrob 
lock to a value that is higher than would otherwise have been 
computed for the macroblock if it did contain text (e.g., if it 
were a text block), as in 2170. 

Embodiments of block processing pipelines that include 
both a Software pipeline and a hardware pipeline (such as the 
video encoding pipelines illustrated in FIGS. 3-7 and 
described herein) may be configured in a variety of ways in 
order to compute gradient values for a macroblock, gradient 
histograms, macroblock-level statistics and/or encoding 
parameters, slice-level statistics and/or encoding parameters, 
or frame-level statistics and/or encoding parameters using 
different combinations of Software pipeline components and 
hardware pipeline components. For example, in some 
embodiments, one or more hardware pipeline components 
may be configured to compute and collect gradient values for 
macroblocks that are received for processing in the video 
encoding pipeline (e.g., at a macroblock input stage). Subse 
quently, a hardware or Software pipeline component in the 
same stage or in another stage may be configured to analyze 
the gradient information and act on the results of the analysis. 
For example, in some embodiments a Software pipeline com 
ponent at the macroblock input stage may be configured to 
determine whether it is likely that a given macroblock repre 
sents a portion of a video frame containing text, and to use this 
information to select, modify, or bias the selection of various 
encoding parameters so that the macroblock will be encoded 
appropriately (e.g., at an appropriately high quality). 

In some embodiments, Software pipeline components in 
the macroblockinput stage and/or in other stages (e.g., stages 
that succeed the macroblock input stage) may be configured 
to compute additional statistics or encoding parameters for 
use in the video encoding pipeline based on the gradient 
values that were computed by the hardware component at the 
macroblock input stage and/or on information derived from 
the gradient values by Software pipeline components in Vari 
ous preceding pipeline stages. For example, rather than com 
puting all of the statistics and/or encoding parameters needed 
to process a macroblock through all stages of the video encod 
ing pipeline at the macroblockinput stage, at least some of the 
computations may be performed in later stages of the pipe 
line. In some embodiments, as additional information is com 
puted and analyzed for a macroblock, slice, or frame, the 
encoding parameters used in Subsequent stages to encode the 
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macroblock, slice, or frame (or used to encode Subsequent 
macroblocks, slices, or frames) may be modified according to 
the particular circumstances. In this manner, the computa 
tional load (e.g., the set of calculations to perform in order to 
compute all of the statistics and/or encoding parameters 
needed to process a macroblock in the video encoding pipe 
line) may be distributed between the CPUs in multiple pipe 
line stages. In some Such embodiments, the raw statistics 
generated at the macroblock input stage (e.g., the gradient 
values and/or gradient histogram information) may be passed 
to other stages that will perform respective ones of the calcu 
lations (e.g., stages that will use the results of the calculations 
they perform, or stages that will perform the calculations and 
pass the results to still other stages that will use them). In other 
embodiments, the raw statistics generated at the macroblock 
input stage (e.g., the gradient values and/or gradient histo 
gram information) may be written to a statistics buffer, from 
which components at other stages of the pipeline may retrieve 
them in order to perform other ones of the calculations (after 
which the results of these other calculations may also be 
written to the statistics buffer). 

In one example, if a software pipeline component in the 
intra-estimation stage has enough computational cycles to 
compute a quantization parameter value QP for a given mac 
roblock (e.g., in response to receiving gradient values or 
gradient histogram information for the macroblock), it may 
compute the QP and pass it to a luma reconstruction stage to 
be used in a quantization operation for the macroblock. In 
another example, rather than determining whether a given 
macroblock should be classified as containing text at the 
macroblock input stage, in Some embodiments, this decision 
may be made at the mode decision stage, based on gradient 
values or histogram information passed to the mode decision 
stage from the macroblock input stage. As described herein, 
in Some embodiments, rather than passing the raw statistics 
generated at the macroblock input stage (e.g., the gradient 
values and/or gradient histogram information) or any statis 
tical information or encoding parameters derived from the 
raw statistics directly to particular pipeline stages, this infor 
mation may be stored in a data structure (e.g., a statistics 
buffer) by the hardware or software pipeline components that 
compute the information, and the Software pipeline compo 
nents in any or all of the other stages of the video encoding 
pipeline may access the data structure to obtain the informa 
tion they need to compute additional statistics or encoding 
parameter values and/or to perform respective operations of 
the overall encoding process. 

In one example, after determining that a macroblock is 
likely to include text, a quantization parameter value that is 
initially selected for use with the macroblock may be further 
modified depending on the size of the text or on other char 
acteristics of the text that may be determined as a result of an 
analysis performed by a software pipeline component in a 
later stage of the pipeline. In this example, if a particular 
statistical signature is recognized in a portion of a macrob 
lock, slice, or frame (e.g., a signature associated with a par 
ticular text size or with particular text characteristics), a soft 
ware pipeline component may be configured to map a 
different set of encoding parameter values to this portion of 
the macroblock, slice, or frame and/or to the same portion of 
other macroblocks, slices, and frames in a sequence. In yet 
another example, a software pipeline component may be con 
figured to apply different thresholds or other criteria to the 
available gradient values, gradient histogram information, or 
computed statistics for macroblocks that are received from 
different sources (e.g., from different applications or users), 
according to source-specific policies or preferences. 
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FIG.22 is a block diagram illustrating a portion of a video 

encoding pipeline 2200 (including, e.g., a portion of a mac 
roblock input component for the video encoding pipeline) 
that computes gradient values for use in determining encod 
ing parameters and various macroblock-level statistics, 
according to one embodiment. As illustrated in this example, 
the macroblock input stage of the video encoding pipeline 
2200 may include a gradient computation component 2202, 
that is configured to receive binarized macroblock data 
input(s) 2210 (e.g., binarized syntax elements representing a 
particular block of pixels from a video frame) and compute 
gradient values for the macroblock in two or more directions, 
based on those inputs. In various embodiments, gradient com 
putation component 2202 may be implemented in hardware, 
firmware, or Software, or using a mix of hardware, firmware, 
and/or software. 
As illustrated in this example, the macroblock input stage 

of the video encoding pipeline 2200 may include an encoding 
parameters computation component 2204, which may receive 
the gradient information computed in gradient computation 
component 2202, along with one or more additional inputs 
2218, and may compute macroblock-level statistics and/or 
various encoding parameters to be used in encoding the mac 
roblock in the video encoding pipeline. In various embodi 
ments, encoding parameters computation component 2204 
may be implemented in hardware, firmware, or software, or 
using a mix of hardware, firmware, and/or Software. As illus 
trated in FIG. 22, the macroblock input stage of the video 
encoding pipeline 2200 may also include a macroblock sta 
tistics buffer 2206 that is configured to store the computed 
gradient values and any macroblock-level statistics and/or 
various encoding parameters that are computed in gradient 
computation component 2202 and/or encoding parameters 
computation component 2204. In other embodiments, such 
information may be stored (along with slice-level or frame 
level statistics or parameter values, and/or statistics or encod 
ing parameters computed at other stages in the pipeline) in 
another type of shared data structure within the macroblock 
input stage or within another stage of the pipeline. In Such 
embodiments, the stored information may be retrieved by 
various components in multiple stages of the pipeline, and 
may be used to modify, select, bias, control, or otherwise 
influence the operations performed by those components. 
As illustrated in FIG. 22, the encoding parameters that are 

computed in encoding parameters computation component 
2204 may be written to macroblock statistics buffer 2206 by 
encoding parameters computation component 2204. Simi 
larly, the gradient values computed by gradient computation 
component 2202 may be written to macroblock statistics 
buffer 2206 by gradient computation component 2202 (e.g., 
as shown by the dashed line from the output of 2202 to 2206 
in FIG. 22). As illustrated in this example, various compo 
nents of one or more other pipeline stages 2208 may access 
macroblock statistics buffer 2206 to obtain various ones of the 
computed gradient values, macroblock-level statistics and/or 
encoding parameters stored therein to be used in performing 
a portion of the overall video encoding process, e.g., param 
eter values and/or other information that may affect the out 
puts 2212 of those pipeline stages 2208. 

In some embodiments, various ones of the other pipeline 
stages 2208 may also write information (e.g., additional mac 
roblock-level statistics and/or encoding parameters that are 
computed or determined by those other pipeline stages) to 
macroblock statistics buffer 2206, which may then be 
accessed by other ones of the pipeline stages 2208. This is 
illustrated in FIG.22 by the bi-directional path between pipe 
line stages 2208 and macroblock statistics buffer 2206. In 
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Some embodiments, at least some of the encoding parameters 
that are computed in encoding parameters computation com 
ponent 2204 may be provided directly to one or more com 
ponents in various ones of the other pipeline stages 2208 (e.g., 
instead of or in addition to being stored in macroblock statis 
tics buffer 2206). This is illustrated in FIG.22 by the dashed 
line from encoding parameters computation component 2204 
and other pipeline stages 2208. In some embodiments, at least 
Some of the gradient information, histogram information, 
encoding parameters, or statistics computed by components 
2202 or 2204 at the macroblock input stage may be written to 
a shared data structure in a different pipeline stage instead or, 
or in addition to, being written to a macroblock statistics 
buffer 2206 that is implemented at the macroblock input 
Stage. 

In many of the examples herein, macroblock-level statis 
tics may be computed based on gradient values, gradient 
histogram information, and other information. In some 
embodiments, some orall of these macroblock-level statistics 
may be accumulated over an entire video frame or over a slice 
of the video frame. In such embodiments, these slice-level or 
frame-level statistics may be used to compute slice-level or 
frame-level encoding parameters or to otherwise affect 
encoding decisions made at the slice or frame level. In some 
embodiments, a Software pipeline component may be config 
ured to accumulate the histogram information for all of the 
macroblocks in a slice or frame in order to perform some 
region-based processing or frame-based processing. For 
example, in a typical video encoding pipeline, the strength of 
a deblocking filtering operation (e.g., a frame-level filtering 
operation for reducing blocking and ringing) may be deter 
mined by the macroblock type, such that the filtering is stron 
gest for an intra-coded macroblock. However, if an analysis 
of the information in a slice-level or frame-level histogram 
indicates that there is a lot of text in an image (e.g., as evi 
denced by the presence of a dominant gradient direction), the 
Software pipeline component may determine that it would be 
unsuitable to perform heavy filtering, which would reduce the 
quality of the text. In this example, the software pipeline 
component may be configured to turn off deblocking filtering 
for this video frame (and/or for subsequent frames in a 
sequence), to reduce the deblocking filtering strength (e.g., by 
programming various offsets of the filter at a slice or frame 
boundary) for the video frame (and/or for subsequent frames 
in a sequence), to pass to the deblocking filter component 
(e.g., in a Subsequent pipeline stage) a frame-level parameter 
value indicating that deblocking filtering should be turned off 
or its strength reduced, or to indicate that inter-coding should 
be used rather than intra-coding for this video frame (and/or 
for Subsequent frames in a sequence). 

In various embodiments in which slice-level and/or frame 
level statistics and/or encoding parameters are computed, 
they may be stored in the same data structure as the macrob 
lock-level information, or in one or more other data struc 
tures. For example, the slice-level and/or frame-level statis 
tics and/or encoding parameters may be written to a statistics 
buffer (e.g., accumulated in the statistics buffer) as they are 
computed. Note that in some embodiments, a history of these 
slice-level and frame-level statistics may be maintained in the 
buffer or in elsewhere memory and may be analyzed to deter 
mine trends or patterns in the received video frames. In addi 
tion, they may be mapped to the behaviors exhibited by video 
frames in different contexts (e.g., different camera exposures, 
different content types, etc.), which may facilitate better pre 
dictions of future behavior. In some embodiments, macrob 
lock-level, slice-level, and/or frame-level statistics may be 
used to determine the appropriate frame-level rate control 
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parameter for use when encoding particular sequences of 
macroblocks (e.g., adjusting the frame-level rate control in 
order to achieve better quality results for high-text slices or 
frames). 
One embodiment of a method for computing slice-level or 

frame-level statistics and/or encoding parameters by accumu 
lating histograms of gradients that were computed for mul 
tiple macroblocks of the slice or frame is illustrated by the 
flow diagram in FIG. 23. As illustrated at 2310, in this 
example, the method may include a macroblock input com 
ponent of a block processing pipeline (e.g., a video encoding 
pipeline) computing one or more histograms of gradients for 
an input macroblock, and storing the histogram data in a 
slice-level or frame-level statistics buffer or other data struc 
ture configured to store such information. For example, the 
histogram data stored by the macroblock input component 
may include raw histogram data that was computed for each 
macroblock, a histogram descriptor that was generated for 
each macroblock (e.g., a HOG descriptor), cumulative histo 
gram data that was computed for multiple macroblocks, mac 
roblock-level statistics that were derived from raw gradient 
values or from the histograms, and/or other information about 
the macroblock, in different embodiments. While there are 
more macroblocks in the slice or frame being processes for 
which histograms of gradients should be computed (shown as 
the positive exit from 2320), the method may include repeat 
ing the operations illustrated in 2310 for all of the macrob 
locks in this slice or frame (shown as the feedback from the 
positive exit of 2320 to 2310). 
As illustrated in this example, once there are no additional 

macroblocks in this slice or frame for which histograms of 
gradients should be computed (shown as the negative exit 
from 2320), the method may include the macroblock input 
component (or, in some embodiments, another component of 
the video encoding pipeline) computing slice-level and/or 
frame-level statistics from the stored histogram data, as in 
2330. For example, slice-level or frame-level statistics may 
be computed to determine whether there is a lot of text in a 
given slice or frame (i.e., whether there are a large number of 
macroblocks within the frame that are likely to contain text), 
which may indicate that one or more slice-level or frame-level 
parameters should be adjusted when encoding this slice/ 
frame, or a Subsequent slide/frame. The method may also 
include the macroblock input component (or, in some 
embodiments, another component of the video encoding 
pipeline) making the slice-level or frame-level statistics avail 
able to one or more other pipeline stages, as in 2340. For 
example, the macroblock input component (or other compo 
nent of the video encoding pipeline) may write the statistics 
out to a shared Statistics buffer or other data structure config 
ured to store such information (from which hardware or soft 
ware components in other stages of the video encoding pipe 
line may access them) or may pass them directly to hardware 
or software components in other stages of the video encoding 
pipeline. As previously noted. Such information may be 
passed from a hardware pipeline component or software pipe 
line component in one stage of the video encoding pipeline to 
a hardware or Software pipeline component in another stage 
of the video encoding pipeline (e.g., a stage that Succeeds the 
stage in which the information was generated) in order to 
affect the encoding of the block of pixels from which the 
information was generated, or it may be passed from a hard 
ware or software pipeline component in one stage of the video 
encoding pipeline to a software or hardware pipeline compo 
nent in a stage that precedes the stage in which the informa 
tion was generated in order to affect the encoding of a block 
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of pixels that was received Subsequent to receiving the block 
of pixels from which the information was generated, in dif 
ferent embodiments. 
As illustrated in this example, if the slice-level and/or 

frame-level statistics indicate that there is a lot of text in the 
slice or frame (shown as the positive exit from 2350), the 
method may include turning off or reducing the strength of a 
deblocking filter (e.g., if using intra-estimation) for this high 
text slice/frame, as in 2360. In this case, the method may also 
include adjusting the frame-level rate control in order to 
achieve better quality results for this high-text slice/frame, as 
in 2370. On the other hand, if the slice-level statistics or 
frame-level statistics do not indicate that there is a lot of text 
in the slice or frame (shown as the negative exit from 2350), 
there may be no changes made to the deblocking filter or 
frame-level rate control for this low-text slice/frame, as in 
2370. 

In some embodiments, the systems described herein may 
use a training phase to determine how to configure the video 
encoding pipeline for detecting a dominant gradient direction 
in the macroblocks it receives and/or for determining the 
likelihood that the macroblocks represent portions of a video 
frame that include text. For example, in some embodiments, 
training data (e.g., macroblocks representing portions of 
video frames that are known to include text and macroblocks 
representing portions of video frames that are known not to 
include text) may be input to the video encoding pipeline, 
which may compute gradient values, gradient histograms, 
and/or various macroblock-level, slice-level, or frame-level 
statistics from the input macroblock data (e.g., luma and 
chroma information for the pixels of the macroblock). Sub 
sequently, machine learning techniques or other classification 
techniques may be applied to the computed Statistical infor 
mation to identify certain statistical signatures, and use that to 
alter the behavior of the encoder (e.g., at the macroblock, 
slice, and/or frame level). In some embodiments, such a train 
ing exercise may be performed offline (e.g., by another sys 
tem or while the system is not being used to process video 
frames). 

In one example, the training may be performed using 
SVMs (Support vector machines) that can encode the training 
data, take the computed Statistical information, and feed this 
into classifier. The training exercise may produce a set of 
coefficients for use in relatively simple calculations for per 
forming a binary classification for macroblocks (e.g., classi 
fying them as being "text' or “non-text macroblocks, with 
non-text macroblocks including both flat areas and texture 
areas) based on the computed Statistical information. In some 
embodiments, a software or hardware pipeline component 
may be programmed or otherwise configured to perform this 
decision function. In some embodiments, by being able to 
distinguish between text and non-text macroblocks at the 
macroblockinput stage (or at another early stage in the video 
encoding pipeline), when a text macroblock is detected, the 
Video encoding pipeline may prepare other stages in the pipe 
line to apply appropriate encoding parameters to improve the 
quality of the result for that text area (only). 

Note that while some embodiments implement only a 
binary classification for macroblocks (e.g., classifying them 
as being “text' or “non-text macroblocks), in other embodi 
ments, the training exercise (and resulting decision function) 
may be used to configure a software or hardware pipeline 
component to take various actions based on a determination 
of the likelihood that the macroblock represents a portion of 
a video frame that contains text. For example, it may be 
difficult to determine whether a given macroblock actually 
includes text, since in many cases the bin counts for all of bins 
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of the gradient histograms may be very similar, and since a 
texture area may yield statistics that are similar to text areas. 
However, if there is a small number of bins for which the bin 
counts are very high, and other bins for which the bin counts 
are very low, the macroblock may be very likely to include 
text, since the histogram data indicates that there are a few 
dominant gradient directions (end corresponding edges) and 
other gradient directions that are rarely if ever, observed in the 
macroblock. In some embodiments, a software or hardware 
pipeline component may be configured to detect this statisti 
cal signature and to compute a particular encoding parameter 
value or other indictor of the likelihood that the macroblock 
contains text, and may provide that indicator to one or more 
other pipeline stages. 
One embodiment of a method for training a macroblock 

classifier of a video encoding pipeline to classify macrob 
locks in terms of the likelihood that they represent portions of 
a video frame containing text is illustrated by the flow dia 
gram in FIG. 24. As illustrated at 2410, in this example, the 
method may include, during training, presenting multiple 
frames (or macroblocks thereof) that are known to represent 
images containing text and multiple frames (macroblocks) 
that are known to represent images that do not contain text to 
a macroblockinput component of a block processing pipeline 
(e.g., a video encoding pipeline). The method may also 
include the macroblock input component computing one or 
more histograms of gradients for each of the macroblocks and 
storing them for Subsequent analysis (e.g., in a statistics 
buffer or other data structure configured to store such infor 
mation), as in 2420. 
As illustrated in this example, the method may include 

feeding the computed histograms of gradients (and/or gradi 
ent statistics or descriptors derived therefrom) to a classifier 
(e.g., a Support vector machine, or SVM, classifier, or a Baye 
sian classifier), as in 2430. The method may include the 
classifier determining a decision function for a binary classi 
fication of macroblocks (e.g., "text or “non-text) or a deci 
sion function usable to compute the likelihood that a given 
macroblock contains text, as in 2440. In some embodiments, 
the decision function may be based, for example, on a thresh 
old value for an individual histogram bin count, the detection 
of bin counts in multiple ranges of histogram bin counts (e.g., 
each corresponding to a respective likelihood that the mac 
roblock contains text), a threshold ratio between various his 
togram bin counts or between various Sums of histogram bin 
counts, or any computed Statistical indicator(s) that are found 
to be well correlated with the presence or absence of text in 
the training macroblocks. The method may include configur 
ing the macroblock input component of the video encoding 
pipeline (or the macroblock input component of another 
Video encoding pipeline, e.g., one in a production setting 
rather than in a training setting) to classify each macroblock 
it receives as "text' or “non-text', or to compute the likeli 
hood that it contains text, dependent on the determined deci 
sion function, as in 2450. 
Note that in some embodiments, the classification of “text' 

or “non-text may be adaptable by the classifier based on 
regional or language information and/or the content or view 
ing preferences of the user. For example, the classifier may 
operate in two stages. In the first stage, it may be configured 
to perform offline training (e.g. SVM or Bayesian training) 
based on each language or alphabet (e.g., Arabic and English 
will use different classifiers since the characters look very 
different). In the second stage, the classifier may be config 
ured to carry out online adaptations based on the content and 
viewing preferences of the user. Examples of the viewing 
preferences of the user that may be taken into account by the 
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classifier include: the display resolution, the text size, the 
scrolling speed, the color, transparency or brightness of the 
image background (e.g., on a browser, terminal, or other 
reading device), or other device or display configuration 
information that may be determined during operation. 
As previously noted, the systems described herein may 

implement different filtering techniques for computing gra 
dient values and may compute different types of gradient 
histograms from those gradient values, in different embodi 
ments. In addition, the systems described herein may employ 
different numbers of bins in the histograms that they compute. 
These choices may affect the quality of the classification 
results, the quality of the final encoding, and the cost perfor 
mance of various computations. For example, in Some experi 
ments, the performance was worse when computing a single 
gradient orientation histogram than when computing separate 
histograms for horizontal and Vertical gradients, and the hard 
ware required to compute a single gradient orientation histo 
gram was more complex than the hardware required to com 
pute separate histograms for horizontal and Vertical gradients. 
In another example, if a Software pipeline component must 
operate on a large number of statistical values (e.g., bin 
counts) for each macroblock, it may not be able to perform the 
necessary calculations within the allotted computational bud 
get. Therefore, for a given system, a trade-off may be made 
between the number of bins used in each of the computed 
histograms, and the quality of the classification results (e.g., 
the rate at which text macroblocks are correctly detected). 

FIG. 25 illustrates an example analysis of the trade-off 
between the number of bins in a histogram of gradients and 
the precision and/or recall percentage of the histograms, 
according to different embodiments. These metrics may be 
used to make a tradeoff between the quality of the result of a 
macroblock encoding operation and its cost (e.g., in terms of 
memory usage, computation time, and/or other cost factors). 
In this example, the X axis represents the number of bins used 
for each histogram (e.g., the number of bins in a histogram of 
horizontal gradient magnitudes or gradient directions and/or 
the number of bins in a histogram of Vertical gradient mag 
nitudes or gradient directions), with the highest number of 
bins that was considered on the left and the lowest number of 
bins that was considered on the right. In this example, they 
axis represents the precision and recall experienced in each 
case in terms of percentages. Here, the “recall percentage 
(shown as the solid line in FIG. 25) may represent the ratio 
true positives/(true positives+false negatives). In this 
example, the “precision’ percentage (shown as the dashed 
line in FIG. 25) may represent the ratio true positives/(true 
positives+false positives). As illustrated in this example, 
after a certain point (e.g., after the number of bins drops below 
a particular value), the precision and recall percentages may 
tend to fall off relatively quickly. In some embodiments, the 
'Sweet spot' may be eight or sixteen bins per histogram. 

Note that while many of the example embodiments 
described herein illustrate the use of gradient histograms in 
detecting text within a macroblock of a video frame (e.g., a 
macroblock of pixels as defined by the H.264 standard) and in 
coding those macroblocks in a manner that improves the 
results, the techniques described herein may also be applied 
in block processing pipelines that operate on blocks of pixels 
according to other formats and standards. For example, in 
embodiments in which the block processing pipeline operates 
according to the H.265 standard, the fundamental blocks on 
which the pipeline operates may be Coded Tree Units (CTUs) 
or Coding Units (CUs), rather than macroblock. In such 
embodiments, a respective quantization parameter (QP) may 
be transmitted perTransform Unit (TU), rather than per mac 
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roblock. In such embodiments, each Transform Unit may be 
32x32, 16x16 or 8x8. This, the QP may be changed based on 
an 8x8, 16x16 or 32x32 histogram of gradients. In various 
embodiments, these histograms may be calculated directly 
for each block size, or they may be accumulated from smaller 
blocks sizes for the larger block sizes. Note also that in 
embodiments that operate in accordance with the H.265 stan 
dard, the quantization parameter for chroma and the quanti 
zation parameter for luma for a given CTU or CU may be 
different from each other and they may be generated based on 
different gradient histograms (e.g., a gradient histogram for 
chroma and a gradient histogram for luma, respectively). In 
Some embodiments, a combination of these luma and chroma 
statistics (and/or the respective luma and chroma QPs gener 
ated from them) may be used to detect text in a block of pixels. 
Example Video Encoder Apparatus 

FIG. 26 is a block diagram of an example video encoder 
apparatus 2600, according to at least some embodiments. The 
video encoder apparatus 2600 may, for example, be imple 
mented as an integrated circuit (IC) or as a Subsystem on an IC 
Such as a system-on-a-chip (SOC). In at least some embodi 
ments, the video encoder apparatus 2600 may include a pipe 
line 2640 component, a processor 2610 component (e.g., a 
low-power multicore processor), a memory management unit 
(MMU) 2620, DMA. 2630, and an interconnect 2650 such as 
a bus subsystem or fabric that interconnects the functional 
components of the apparatus. The processor 2610 component 
of the video encoder apparatus 2600 may, for example, per 
form frame-level control of the pipeline 2640 such as rate 
control, perform pipeline 2640 configuration including con 
figuration of individual pipeline units within the pipeline 
2640, and interface with application software via a driver, for 
example for video encoder 2600 configuration. The MMU 
2620 may serve as an interface to external memory, for 
example for streaming video input and/or output. Pipeline 
2640 component may access memory through MMU 2620 
via DMA. 2630. In some embodiments, the video encoder 
apparatus 2600 may include other functional components or 
units not shown in FIG. 26, or fewer functional components 
than those shown in FIG. 26. An example block processing 
method that may be implemented by pipeline 2640 compo 
nent is shown in FIG. 16. An example a system-on-a-chip 
(SOC) that may include at least one video encoder apparatus 
2600 is illustrated in FIG. 27. 
Example System on a Chip (SOC) 

Turning now to FIG. 27, a block diagram of one embodi 
ment of a system-on-a-chip (SOC) 2700 that may include at 
least one instance of a video encoder apparatus including a 
block processing pipeline that may implement one or more of 
the block processing methods and apparatus as illustrated in 
the preceding figures. SOC 2700 is shown coupled to a 
memory 2750. As implied by the name, the components of the 
SOC 2700 may be integrated onto a single semiconductor 
Substrate as an integrated circuit “chip. In some embodi 
ments, the components may be implemented on two or more 
discrete chips in a system. However, the SOC 2700 will be 
used as an example herein. In the illustrated embodiment, the 
components of the SOC 2700 include a central processing 
unit (CPU) complex 2720, on-chip peripheral components 
2740A-2740B (more briefly, “peripherals'), a memory con 
troller (MC) 2730, a video encoder 2700 (which may itselfbe 
considered a peripheral component), and a communication 
fabric 2710. The components 2720,2730,2740A-2740B, and 
2700 may all be coupled to the communication fabric 2710. 
The memory controller 2730 may be coupled to the memory 
2750 during use, and the peripheral 2740B may be coupled to 
an external interface 2760 during use. In the illustrated 
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embodiment, the CPU complex 2720 includes one or more 
processors (P) 2724 and a level two (L2) cache 2722. In some 
embodiments, the CPU complex may be configured to cache 
neighbor data, which may include Source transform coeffi 
cients (e.g., DC transform coefficients), modified transform 
coefficients, previously computed quantization errors, and/or 
weighting coefficient values for one or more neighbor pixels, 
among other information used in the video encoding opera 
tions described herein. 

The peripherals 2740A-2740B may be any set of additional 
hardware functionality included in the SOC 2700. For 
example, the peripherals 2740A-2740B may include video 
peripherals such as an image signal processor configured to 
process image capture data from a camera or other image 
sensor, display controllers configured to display video data on 
one or more display devices, graphics processing units 
(GPUs), video encoder/decoders, scalers, rotators, blenders, 
etc. The peripherals may include audio peripherals such as 
microphones, speakers, interfaces to microphones and speak 
ers, audio processors, digital signal processors, mixers, etc. 
The peripherals may include peripheral interface controllers 
for various interfaces 2760 external to the SOC 2700 (e.g. the 
peripheral 2740B) including interfaces such as Universal 
Serial Bus (USB), peripheral component interconnect (PCI) 
including PCI Express (PCIe), serial and parallel ports, etc. 
The peripherals may include networking peripherals such as 
media access controllers (MACs). Any set of hardware may 
be included. 
More particularly in FIG. 27, SOC 2700 may include at 

least one instance of a video encoder 2700 component, for 
example a video encoder 2700 as illustrated in FIG. 27 that 
includes a block processing pipeline 2740 component that 
implements a block processing method 1600 as illustrated in 
FIG. 16. Video encoder 2700 may be an H.264 video encoder 
apparatus that may be configured to convert input video 
frames from an input format into H.264/Advanced Video 
Coding (AVC) format as described in the H.264/AVC stan 
dard. The block processing pipeline 2740 may implement one 
or more of the block processing methods and apparatus as 
described herein in relation to FIGS. 3 through 16. 

The CPU complex 2720 may include one or more CPU 
processors 2724 that serve as the CPU of the SOC 2700. The 
CPU of the system includes the processor(s) that execute the 
main control software of the system, such as an operating 
system. Generally, software executed by the CPU during use 
may control the other components of the system to realize the 
desired functionality of the system. The processors 2724 may 
also execute other software. Such as application programs. 
The application programs may provide user functionality, and 
may rely on the operating system for lower level device 
control. Accordingly, the processors 2724 may also be 
referred to as application processors. The CPU complex 2720 
may further include otherhardware such as the L2 cache 2722 
and/or and interface to the other components of the system 
(e.g. an interface to the communication fabric 2710). Gener 
ally, a processor may include any circuitry and/or microcode 
configured to execute instructions defined in an instruction set 
architecture implemented by the processor. The instructions 
and data operated on by the processors in response to execut 
ing the instructions may generally be stored in the memory 
2750, although certain instructions may be defined for direct 
processor access to peripherals as well. In some embodi 
ments, the data stored in memory 2750 may include weight 
ing coefficient values to be applied for one or more neighbor 
pixels in a neighbor-data-based dithering operation. Proces 
sors may encompass processor cores implemented on an inte 
grated circuit with other components as a system on a chip 
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(SOC 2700) or other levels of integration. Processors may 
further encompass discrete microprocessors, processor cores 
and/or microprocessors integrated into multichip module 
implementations, processors implemented as multiple inte 
grated circuits, etc. 
The memory controller 2730 may generally include the 

circuitry for receiving memory operations from the other 
components of the SOC 2700 and for accessing the memory 
2750 to complete the memory operations. The memory con 
troller 2730 may be configured to access any type of memory 
2750. For example, the memory 2750 may be static random 
access memory (SRAM), dynamic RAM (DRAM) such as 
synchronous DRAM (SDRAM) including double data rate 
(DDR, DDR2, DDR3, etc.) DRAM. Low power/mobile ver 
sions of the DDR DRAM may be supported (e.g. LPDDR, 
mDDR, etc.). The memory controller 2730 may include 
queues for memory operations, for ordering (and potentially 
reordering) the operations and presenting the operations to 
the memory 2750. The memory controller 2730 may further 
include data buffers to store write data awaiting write to 
memory and read data awaiting return to the source of the 
memory operation. In some embodiments, the memory con 
troller 2730 may include a memory cache to store recently 
accessed memory data. In SOC implementations, for 
example, the memory cache may reduce power consumption 
in the SOC by avoiding reaccess of data from the memory 
2750 if it is expected to be accessed again soon. In some cases, 
the memory cache may also be referred to as a system cache, 
as opposed to private caches such as the L2 cache 2722 or 
caches in the processors 2724, which serve only certain com 
ponents. Additionally, in Some embodiments, a system cache 
need not be located within the memory controller 2730. 

In an embodiment, the memory 2750 may be packaged 
with the SOC 2700 in a chip-on-chip or package-on-package 
configuration. A multichip module configuration of the SOC 
2700 and the memory 2750 may be used as well. Such con 
figurations may be relatively more secure (in terms of data 
observability) than transmissions to other components in the 
system (e.g. to various endpoints). Accordingly, protected 
data may reside in the memory 2750 unencrypted, whereas 
the protected data may be encrypted for exchange between 
the SOC 2700 and external endpoints. 
The communication fabric 2710 may be any communica 

tion interconnect and protocol for communicating among the 
components of the SOC 2700. The communication fabric 
2710 may be bus-based, including shared bus configurations, 
cross bar configurations, and hierarchical buses with bridges. 
The communication fabric 2710 may also be packet-based, 
and may be hierarchical with bridges, cross bar, point-to 
point, or other interconnects. 

It is noted that the number of components of the SOC 2700 
(and the number of subcomponents for those shown in FIG. 
27, such as within the CPU complex 2720) may vary from 
embodiment to embodiment. There may be more or fewer of 
each component/Subcomponent than the number shown in 
FIG. 27. 
Example System 

FIG. 28 a block diagram of one embodiment of a system 
2800. In the illustrated embodiment, the system 2800 
includes at least one instance of the SOC 2700 coupled to one 
or more external peripherals 2820 and the external memory 
2750. A power management unit (PMU) 2810 is provided 
which supplies the supply voltages to the SOC 2700 as well as 
one or more supply voltages to the memory 2750 and/or the 
peripherals 2820. In some embodiments, more than one 
instance of the SOC 2700 may be included (and more than 
one memory 2750 may be included as well). 
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The peripherals 2820 may include any desired circuitry, 
depending on the type of system 2800. For example, in one 
embodiment, the system 2800 may be a mobile device (e.g. 
personal digital assistant (PDA), Smart phone, etc.) and the 
peripherals 2820 may include devices for various types of 
wireless communication, Such as wifi. Bluetooth, cellular, 
global positioning system, etc. The peripherals 2820 may also 
include additional storage, including RAM storage, Solid 
state storage, or disk storage. The peripherals 2820 may 
include user interface devices such as a display screen, 
including touch display Screens or multitouch display 
screens, keyboard or other input devices, microphones, 
speakers, etc. In other embodiments, the system 2800 may be 
any type of computing system (e.g. desktop personal com 
puter, laptop, workstation, net top etc.). 
The external memory 2750 may include any type of 

memory. For example, the external memory 2750 may be 
SRAM, dynamic RAM (DRAM) such as synchronous 
DRAM (SDRAM), double data rate (DDR, DDR2, DDR3, 
etc.) SDRAM, RAMBUSDRAM, low power versions of the 
DDR DRAM (e.g. LPDDR, mDDR, etc.), etc. The external 
memory 2750 may include one or more memory modules to 
which the memory devices are mounted, such as single inline 
memory modules (SIMMs), dual inline memory modules 
(DIMMs), etc. Alternatively, the external memory 2750 may 
include one or more memory devices that are mounted on the 
SOC 2700 in a chip-on-chip or package-on-package imple 
mentation. 
The methods described herein may be implemented in 

software, hardware, or a combination thereof, in different 
embodiments. In addition, the order of the blocks of the 
methods may be changed, and various elements may be 
added, reordered, combined, omitted, modified, etc. Various 
modifications and changes may be made as would be obvious 
to a person skilled in the art having the benefit of this disclo 
sure. The various embodiments described herein are meant to 
be illustrative and not limiting. Many variations, modifica 
tions, additions, and improvements are possible. Accord 
ingly, plural instances may be provided for components 
described herein as a single instance. Boundaries between 
various components, operations and data stores are somewhat 
arbitrary, and particular operations are illustrated in the con 
text of specific illustrative configurations. Other allocations 
of functionality are envisioned and may fall within the scope 
of claims that follow. Finally, structures and functionality 
presented as discrete components in the example configura 
tions may be implemented as a combined structure or com 
ponent. These and other variations, modifications, additions, 
and improvements may fall within the scope of embodiments 
as defined in the claims that follow. 
What is claimed is: 
1. An apparatus, comprising: 
a block processing pipeline implemented in a video 

encoder circuit and configured to process blocks of pix 
els from video frames; 

wherein the block processing pipeline comprises a block 
input component; 

wherein, for each of a plurality of blocks of pixels from a 
Video frame, the blockinput component is configured to: 
receive input data representing the block of pixels; 
compute gradient values for the block of pixels in two or 
more directions; 

compute one or more histograms representing statistics 
derived from the gradient values for the block of pix 
els; 

determine alikelihood that the block of pixels represents 
a portion of the video frame that contains text, 
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wherein to determine the likelihood that the block of 
pixels represents a portion of the video frame that 
contains text, the block input component is config 
ured to determine a presence or absence of a dominant 
gradient direction in the block of pixels, dependent on 
the one or more computed histograms; and 

determine one or more parameter values for encoding 
the block of pixels, dependent on the likelihood that 
the block of pixels represents a portion of the video 
frame that contains text. 

2. The apparatus of claim 1, 
wherein the one or more parameter values comprise a 

quantization parameter value; and 
wherein, in response to a determination that it is likely that 

the block of pixels represents a portion of the video 
frame that contains text, the block input component is 
configured to compute a quantization parameter value 
for encoding the block of pixels that is lower than a 
quantization parameter value used for encoding blocks 
of pixels that do not represent portions of the video 
frame that contains text. 

3. The apparatus of claim 1, wherein the block input com 
ponent is further configured to pass data representing the 
gradient values, the one or more histograms, the determined 
likelihood, or the one or more parameter values usable in 
encoding the block of pixels to one or more components in a 
Subsequent stage of the block processing pipeline. 

4. The apparatus of claim 3, 
wherein the block processing pipeline further comprises an 

intra-estimation stage; 
wherein the data comprises a parameter value indicating a 

dominant gradient direction in the block of pixels; 
wherein to pass the data, the block input component is 

configured to pass the data to a component of the intra 
estimation stage; and 

wherein the component of the intra-estimation stage is 
configured to use the parameter value indicating the 
dominant gradient direction to bias selection of a pre 
diction mode. 

5. The apparatus of claim 4, wherein to use the parameter 
value indicating the dominant gradient direction to bias selec 
tion of a prediction mode, the component of the intra-estima 
tion stage is configured to compute a cost for each of two or 
more candidate predication modes, wherein the computed 
cost for each of the two or more candidate predication modes 
is dependent on the parameter value indicating the dominant 
gradient direction. 

6. The apparatus of claim 3, 
wherein the block processing pipeline further comprises a 
mode decision stage that is configured to determine a 
mode in which the block of pixels is to be encoded 
dependent, at least in part, on a respective cost of encod 
ing the block of pixels in each of two or more modes; 

wherein to pass the data, the block input component is 
configured to pass the data to a component of the mode 
decision stage; and 

wherein the component of the mode decision stage is con 
figured to include the data as an input to bias or control 
the determination of the mode in which the block of 
pixels is to be encoded. 

7. The apparatus of claim 3, 
wherein the block processing pipeline further comprises a 

motion estimation stage that is configured to select a 
motion vector from among two or more candidate 
motion vectors; 
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wherein to pass the data, the block input component is 
configured to pass the data to a component of the motion 
estimation stage; and 

wherein the component of the mode decision stage is con 
figured to include the data as an input to bias or control 
the selection of the motion vector from among the two or 
more candidate motion vectors. 

8. A method, comprising: 
inputting data representing a block of pixels from a video 

frame to a video encoding pipeline comprising a plural 
ity of stages, each stage configured to perform at least 
one operation on blocks of pixels passing through the 
pipeline; and 

performing, by one or more stages of the pipeline: 
computing gradient values for the block of pixels in two 

or more directions; 
computing one or more histograms representing statis 

tics derived from the gradient values for the block of 
pixels; 

determining that the block of pixels represents a portion 
of the video frame that is likely to contain text, 
wherein said determining comprises determining that 
there is a dominant gradient direction in the block of 
pixels, dependent on the one or more computed his 
tograms: 

in response to said determining that the block of pixels 
represents a portion of the video frame that is likely to 
contain text, determining a quantization parameter 
value for use in encoding the block of pixels in the 
Video encoding pipeline; and 

making the quantization parameter value available to 
one or more operations of the video encoding pipe 
line. 

9. The method of claim 8, wherein said determining a 
quantization parameter value comprises computing a quanti 
Zation parameter for use in aluma reconstruction operation of 
the video encoding pipeline that is lower than a quantization 
parameter used in aluma reconstruction operation performed 
on a block of pixels that represents a portion of the video 
frame that does not contain text. 

10. The method of claim 8, wherein said determining a 
quantization parameter value comprises computing a quanti 
Zation parameter for use in a chroma reconstruction operation 
of the video encoding pipeline. 

11. The method of claim 8, further comprising: 
determining one or more other parameter values for use in 

encoding the block of pixels in the video encoding pipe 
line, dependent on said determining that the block of 
pixels represents a portion of the video frame that is 
likely to contain text; and 

making the one or more other parameter values available to 
one or more operations of the video encoding pipeline. 

12. The method of claim 8, 
wherein said computing the gradient values for the block of 

pixels in two or more directions comprises computing 
unsigned gradient values for the block of pixels in two or 
more directions; and 

wherein said computing one or more histograms comprises 
computing statistics derived from the unsigned gradient 
values for the block of pixels in the two or more direc 
tions. 

13. The method of claim 8, 
wherein said computing gradient values for the block of 

pixels in two or more directions comprises computing 
horizontal gradient values and vertical gradient values 
for the block of pixels; 
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wherein said computing one or more histograms comprises 

computing a histogram of the horizontal gradient values 
and a histogram of the vertical gradient values; and 

wherein each bin of the histogram of the horizontal gradi 
ent values and each bin of the histogram of the vertical 
gradient values comprises a count of the computed gra 
dient values having a magnitude in a respective range of 
gradient magnitude values. 

14. The method of claim 8, 
wherein said computing gradient values for the block of 

pixels in two or more directions comprises computing 
horizontal gradient values and vertical gradient values at 
multiple points within the block of pixels; and 

wherein said computing one or more histograms comprises 
computing, dependent on the horizontal gradient values 
and vertical gradient values for the block of pixels, an 
angle representing a gradient direction at each of the 
multiple points within the block of pixels. 

15. The method of claim 8, 
wherein said computing one or more histograms further 

comprises computing a histogram of the angles repre 
senting the gradient directions at each of the multiple 
points within the block of pixels; and 

wherein each bin of the histogram of the angles comprises 
a count of the computed angles that fall within in a 
respective range of angles. 

16. The method of claim 8, further comprising: 
determining one or more other parameter values for use in 

encoding the block of pixels; 
for each of one or more other blocks of pixels in the video 

frame or in a slice of the video frame: 
computing gradient values for the other block of pixels 

in two or more directions; 
computing one or more other histograms representing 

statistics derived from the gradient values for the 
other block of pixels; 

determining a likelihood that the other block of pixels 
represents a portion of the video frame that contains 
text, dependent on the one or more other histograms; 
and 

determining one or more parameter values for use in 
encoding the other block of pixels in the video encod 
ing pipeline, dependent on the determined likelihood; 

accumulating statistics for the block of pixels and the one 
or more other blocks of pixels in the video frame or in the 
slice of the video frame, dependent on the computed 
gradient values, the computed histograms, the deter 
mined likelihood, or the determined parameter values 
for the block of pixels and the one or more other blocks 
of pixels; and 

computing one or more slice-level or frame-level param 
eter values for use in encoding the video frame or a 
Subsequent video frame, dependent on the accumulated 
statistics. 

17. The method of claim 8, 
wherein the method further comprises, prior to said receiv 

ing input data representing a block of pixels from a video 
frame: 
receiving input data representing a plurality of training 

blocks of pixels, each representing an image, wherein 
for each of the plurality of training blocks of pixels, 
the presence or absence of text in the image is known; 

for each of the plurality of training blocks of pixels: 
computing gradient values for the training block of 

pixels in two or more directions; and 
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computing one or more histograms representing sta 
tistics derived from the gradient values for the 
training block of pixels; and 

determining a decision function usable to classify other 
blocks of pixels in terms of the likelihood that they 
represent portions of a video frame that contain text, 
dependent on the computed gradient values for the 
plurality of training blocks or on the computed histo 
grams for the plurality of training blocks; and 

wherein said determining that there is a dominant gradient 
direction in the block of pixels, dependent on the one or 
more computed histograms, comprises applying the 
decision function to the one or more computed histo 
grams. 

18. The method of claim8, where said determining that the 
block of pixels represents a portion of the video frame that is 
likely to contain text is further dependent on a measure of 
variance that was computed for the block of pixels. 

19. A device, comprising: 
a memory; and 
an apparatus configured to process video frames and to 

store the processed video frames as frame data to the 
memory; 

wherein the apparatus is configured to: 
receive input data representing a block of pixels from a 

video frame; 
compute gradient values for the block of pixels in two or 
more directions; 

compute one or more histograms representing statistics 
derived from the gradient values for the block of pix 
els; 

store data representing the one or more histograms in a 
data structure in the memory; 
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56 
determine a classification parameter value for the block 

of pixels, wherein the classification parameter value 
indicates a likelihood that the block of pixels repre 
sents a portion of the video frame that contains text, 
wherein to determine the classification parameter 
value, the apparatus is configured to determine a pres 
ence or absence of a dominant gradient direction in 
the block of pixels, dependent on the one or more 
computed histograms; 

store the classification parameter value in the data struc 
ture in the memory; and 

perform an encoding operation for the block of pixels, 
dependent on the stored data representing the one or 
more histograms or the stored classification param 
eter. 

20. The device of claim 19, 
wherein the apparatus comprises a block processing pipe 

line; 
wherein the apparatus is further configured to: 

determine one or more parameter values for encoding 
the block of pixels, dependent on the determined clas 
sification parameter value; and 

store the one or more parameter values in the data struc 
ture; and 

wherein to perform the encoding operation for the block of 
pixels, the apparatus is further configured to: 
retrieve the stored data representing the one or more 

histograms, the stored classification parameter, or the 
one or more stored parameter values from the data 
structure in a stage of the block processing pipeline 
other than a stage of the block processing pipeline in 
which it was stored in the data structure. 


