
(12) United States Patent
Cote et al.

USOO9380312B2

(10) Patent No.: US 9,380,312 B2
(45) Date of Patent: Jun. 28, 2016

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

ENCOOING BLOCKS IN VIDEO FRAMES
CONTAINING TEXT USING HISTOGRAMIS
OF GRADENTS

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Guy Cote, San Jose, CA (US); Xiaojin
Shi, Cupertino, CA (US)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 11 days.

Appl. No.: 14/331,091

Filed: Jul. 14, 2014

Prior Publication Data

US 2016/001.4421 A1 Jan. 14, 2016

Int. C.
G06K 9/00 (2006.01)
G06K 9/36 (2006.01)
H04N 9/196 (2014.01)
G06K 9/46 (2006.01)
G06T L/20 (2006.01)
H04N 9/24 (2014.01)
H04N 9/39 (2014.01)
H04N 9/76 (2014.01)
U.S. C.
CPC H04N 19/196 (2014.11); G06K9/4642

(2013.01); G06T 1/20 (2013.01); H04N 19/124
(2014.11); H04N 19/139 (2014.11); H04N

19/176 (2014. 11)
Field of Classification Search
CPC. H04N 19/196; H04N 19/124; H04N 19/139;

H04N 19/176; G06K9/4642; G06T 1/20
USPC 382/168, 170,232, 303
See application file for complete search history.

biock processing
pipeline
300

ilock
infoiliation
igiSt
Stags

Softwareharitaic
pipelirrel pipeline
302 304

(56) References Cited

U.S. PATENT DOCUMENTS

7,519,201 B2 4/2009 Yang et al.
7,672,022 B1* 3/2010 Fan GO6T 7,0083

348.20799
7.995,649 B2 * 8/2011 Zuo HO4N 19, 176

375,240.01

(Continued)
OTHER PUBLICATIONS

Dalal. N. and Triggs, B., "Histograms of Oriented Gradients for
Human Detection.” Proceedings of IEEE Computer Society Confer
ence on Computer Vision and Pattern Recognition, pp. 886-893,
2005, San Diego, CA, USA.

(Continued)

Primary Examiner — Kanjibhai Patel
(74) Attorney, Agent, or Firm — Robert C. Kowert:
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT
A block input component of a video encoding pipeline may,
for a block of pixels in a video frame, compute gradients in
multiple directions, and may accumulate counts of the com
puted gradients in one or more histograms. The block input
component may analyze the histogram(s) to compute block
level statistics and determine whether a dominant gradient
direction exists in the block, indicating the likelihood that it
represents an image containing text. If text is likely, various
encoding parameter values may be selected to improve the
quality of encoding for the block (e.g., by lowering a quanti
Zation parameter value). The computed Statistics or selected
encoding parameter values may be passed to other stages of
the pipeline, and used to bias or control selection of a predic
tion mode, an encoding mode, or a motion vector. Frame
level or slice-level parameter values may be generated from
gradient histograms of multiple blocks.

20 Claims, 28 Drawing Sheets

blockinput

lock Eller initial stage
cGnipotent 3f G

312

: block to
Firsi stage

Softwar
pipelie

copponent configue for ---
a block it2 - - - -

pipeline - biock :
unit 33A iifolitation :

20:8:
tagg

aidyar&
pipeline

corporten Stage
328A 32A

: block to
Enext stage

Software
piloeline

componeni
322B

configure for
lock + i - - - -i

black
ifoitiation to
do Isaari

stage

pipeline
tuli 333B

-

83488
pipeline

carrigent
326B

Stage
32.3

US 9,380,312 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,064,517 B1 1 1/2011 Viscito et al.
8437,547 B2 5, 2013 Meiers
8,763,908 B1* 7/2014 Feldman GO6K 7,1443

235,462,09
2007. O165025 A1* 7, 2007 Shen GO6T 17.20

345/423
2013,0058535 A1 3/2013 OthmeZouri et al.
2014/O112526 A1 4/2014 Kim et al.

OTHER PUBLICATIONS

David G. Lowe. “Distinctive image features from scale-invariant
keypoints.” International Journal of Computer Vision, 60, 2 (2004),
pp. 91-1 10.

V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, B.
Girod, “CHOG: Compressed histogram of gradients a low bit-rate
feature descriptor.” CVPR, pp. 2504-2511, 2009 IEEE Conference
on Computer Vision and Pattern Recognition.
U.S. Appl. No. 14/322,720, filed Jul. 2, 2014, Jim C. Chou.
U.S. Appl. No. 14/037,316, filed Sep. 25, 2013, Craig M. Okruhlica.
U.S. Appl. No. 14/039,820, filed Sep. 27, 2013, Guy Cote.
U.S. Appl. No. 14/039,764, filed Sep. 27, 2013, Timothy John Millet.
U.S. Appl. No. 14/037,313, filed Sep. 25, 2013, Joseph J. Cheng.
U.S. Appl. No. 14/039,729, filed Sep. 27, 2013, James E. Orr.
U.S. Appl. No. 14/037,310, filed Sep. 25, 2013, Guy Cote.
U.S. Appl. No. 14/039,880, filed Sep. 27, 2013, Weichun Ku.
U.S. Appl. No. 14/039,900, filed Sep. 27, 2013, Guy Cote.

* cited by examiner

U.S. Patent Jun. 28, 2016 Sheet 1 of 28 US 9,380,312 B2

Video
i enCOder

block
110 proCeSSing block input

pipeline
140 Stage

142A

pipeline Output Or
next Stage

U.S. Patent Jun. 28, 2016 Sheet 2 of 28 US 9,380,312 B2

Columns
0

SCan Order
- > -s,

Video
- - frame

81 82 83 | 120

96 97 98.99 100101 102 103 104 105 106 107
108 109 110111112113 11415 1re 117118 119
120 121 122 123124 125 12s. 127128 129 130 131
132 133 || 134 || 35 136 137 138 139 140 141 142 143

U.S. Patent Jun. 28, 2016 Sheet 3 of 28 US 9,380,312 B2

block processing
pipeline
300

block input

block analysis
Component

block buffer initial Stage
Component 310

314

rian Software|hardware
| inelina | nineli " || P: Pe Stage l l

hardware Software
pipeline fidure f pipeline t

Component g or Componen Stage
322A Ock jh2 . 326A 320A

pipeline block
unit 330A information

to next

Software s^ hardware

pipeline pipeline
Component cy i? Component Stage

322B OCK A. 326B 320B

pipeline / block block to
unit 330B information to

downstream
Stage

FIG 3

U.S. Patent

Software pipeline 302
blocki information

pipeline unit
330

Software pipeline
Component

322

block i

Jun. 28, 2016 Sheet 4 of 28

block processing pipeline 300

from upstream
Stage

US 9,380,312 B2

hardware pipeline 304

hardware pipeline
component

326

Software pipeline 302
block if information

pipeline unit
330

Software pipeline
Component

322

block - 1

sy

blocki information

to downStream
Stage

from upstream
Stage

config
memory
324B

(block i+1)

to downStream
Stage

FIG. 4A

hardware pipeline 304
block i

hardware pipeline
Component

326

block i

FIG. 4B

U.S. Patent Jun. 28, 2016 Sheet 5 of 28 US 9,380,312 B2

block processing pipeline 300

from upStream
p : hardware pipeline 304 Stage

block i+2 information : block i-1

:
pipeline unit
330 \ ^

Software pipeline COnfig : hardware pipeline
Component memory COmponent

322 324A : 326
(block it-2) :

block i-2 Config blockih 1
memory
324B /

(block i-1)
:

:

: :
block information

... ---.......................

. c. N - 5 *

block #1 information to downstream block i | Stage

FIG. 4C

U.S. Patent

block processing
pipeline
300

pipeline
unit 330A

pipeline - block
unit 330C information to

downstream :
Stage

^
/

block to
next stage

Jun. 28, 2016 Sheet 6 of 28 US 9,380,312 B2

Software hardware
pipeline pipeline

-- 302 304

block :
inition blocks from

from upstream | tea Stage Stage

Software & hardware

pipeline r pipeline

component configure for City block 2 "E" Stage
block i-3 “. OCK it 320A 322A 326A

; :

block
downstream pipeline

stage component Stage
bOCk if 326B 320B

| pipeline - | block to
unit 330B next stage

Software hardware
pipeline pipeline

component configure for r Componen Stage

FIG. 5

U.S. Patent

Stage
320A

Stage
320B

Stage
320C

Jun. 28, 2016 Sheet 7 of 28

Software hardware
pipeline pipeline
302 304

block
a X blocks
information

Software pipeline hardware pipeline
Component Component

322A 326A

pipeline -
unit 330A

Software pipeline hardware pipeline
Component Component

322B 326B

pipeline /
unit 330B

Software pipeline
COmponent

322C

hardware pipeline
Component

326D

- pipeline -
Unit 330D

FIG. 6

hardware pipeline
Component

pipeline -
unit 330C

US 9,380,312 B2

326C

U.S. Patent Jun. 28, 2016 Sheet 8 of 28 US 9,380,312 B2

pipeline unit 700

Software hardware
a peline block pipeline r pipe block input

COmponent interface 706 COmponent r;

nomionin "," 704

memory

next block
information

proceSSOr
710

unit Core
730

memory
712

memory
720B

block block Output
information out

FIG. 7

U.S. Patent Jun. 28, 2016

receive block information
800

block info
ready

determine configuration for a
block according to received

: information for the block
802

write the configuration for the
block to Configuration

push block information to a
downstream stage

808

more \
blockS2 -

- 810 -
Y. -

Y.

Sheet 9 of 28

receive block from previous
Stage

set configuration for the block
from configuration memory

854

Clear go

process the block according
to the configuration

858

Write processed block to next
Stage

US 9,380,312 B2

U.S. Patent Jun. 28, 2016 Sheet 10 of 28 US 9,380,312 B2

Column->

FOW m-2 m-1 ; n+1 m+2
ra - top-ridht

top-left top top-right I '9" | r-1 : right neighbor neighbor neighbor neighbor
----- ------

next, scan

reo block (m,n Order
8 s :

- - (m+1,n) quadroW
next, knights : 900

Order
f7+ 1

(m-2n+1)

f+2

-------- - - - - - -------' -------- - - -------- (-------' ----------------- - - - - --------. ------& -------, ---------, --------- - - - - - - - - - - - - - - y

FIG. 9

U.S. Patent Jun. 28, 2016 Sheet 12 of 28

y

E start frame

1100

input block to pipeline

get next block according to knight's Order

1102

process block in pipeline
1106

1108
Output processed block

--

- - Start s 8. NO

of frame?
1150 -

s
YES - last N. w

- row of NO
quadrow? -
1154

US 9,380,312 B2

- more blocks? s

1.
w \ -

NO

i end frame

FIG. 1 1A

get block at Seven Columns
right, three roWS up

1156

get initial block
1152

get block at two Columns left,
One row down

1158

FIG. 1 1B

U.S. Patent Jun. 28, 2016 Sheet 13 of 28 US 9,380,312 B2

top right
top left top top right right

/

quadroW
1200

left Current block

FIG. 12

top right
top left top top right right

previous
quadrow ““Frr;
1310

Current
quadrow
1320

Current block

FIG. 13

U.S. Patent Jun. 28, 2016 Sheet 14 of 28 US 9,380,312 B2

< on top row of quadrow? s
is 1400 -

read neighbor data from external
memory into previous quadrow buifer

1402 :

NO

proceSS block at Stage -- ---
1404 Send neighbor data from previous

quadrow buffer to next stage

---| 1412
Write block data to Current quadrow buffer

1406
Send block to next Stage

1410

more stages? -

--- block is- YES
s on bottom row of quadrow? s

write block data to external memory
NO

(end FIG. 14

U.S. Patent Jun. 28, 2016 Sheet 15 of 28 US 9,380,312 B2

paSS pass
from previous forward back

stage . . .

. /

unit COre
1520 to/from DMA

stage Y s l FIG. 15A

pass paSS
forward bac

; / \,

memory 1510

proceSSOr s is ,
1530 N /

"gG to/from DMA

one stage FIG. 15B pass
paSS

forward back

to/fron DMA

FIG. 15C

U.S. Patent Jun. 28, 2016 Sheet 16 of 28 US 9,380,312 B2

block
proCeSSing f. maCrOblock

method input
1600 1602

intra-frame and inter-frame estimation
1610

|
mOde decision

1620 block

pipeline

-------------- motion compensation and reconstruction
feedback 1630

|
CAWLC encoding and deblocking filter

1640

enCOced Strean
(knight's Order)

|
tranSCOder

1650

CABAC
enCOded Stream
(scan Order) FIG. 16

U.S. Patent Jun. 28, 2016 Sheet 17 of 28 US 9,380,312 B2

a macroblock input Component receives input data
representing a block of pixels from a Video frame

1710

---!
the macroblock input Component Computes

gradient values for the block of pixels in multiple directions
1720

the macroblock input Component Computes one or more
histograms of the gradient values for the block of pixels,

Or Of maCrObloCk-level Statistics derived from them
1730

the macroblock input Component (or another Component)
determines the likelihood that the block of pixels represents an

image Containing text, dependent on the histogram(s)
1740

the macroblock input component (or another component)
determines parameter value(s) for encoding the block of pixels in

; a block processing pipeline, dependent on the likelihood
1750

U.S. Patent Jun. 28, 2016 Sheet 19 Of 28 US 9,380,312 B2

{-22.5 45-67.5 67.5-90 90. 12.5° if 25-135° 135-1575° 1575-180

FIG. 19A

225-45° 45-67.5° 67.5-90°

FIG. 19B

U.S. Patent Jun. 28, 2016 Sheet 20 of 28 US 9,380,312 B2

111 1 1 0 1 0 1 100 0 1 1 010 001 000

FIG. 20A

Y.A. X: XX:

111 110 101 100 0 1 010 001 000

FIG. 20B

U.S. Patent Jun. 28, 2016 Sheet 21 of 28 US 9,380,312 B2

a macroblock input Component Computes
One or more histograms of gradients for an input

macroblock, Stores histogram(s)

the macroblock input Component determines whether
there is a dominant gradient direction in the macroblock

2120

------- no additional parameter
- dominant is No values Computed by
gradient direction exists? --- macroblock input component
- 2125 - based on histogram(s)

YES ! 2130
macroblock input Component Stores parameter value
indicating dominant gradient direction and/or passes

value to intra-estimation or mode decision component to
bias the predication mode and/or encoding mode

2140

macroblock input Component stores a parameter
value indicating the dominant gradient direction

and/or passes value to motion estimation
Component to bias motion vector Selection

2150

- dominants
YES st gradient direction is horizontal? --

macroblock input component maCrOblock input Component aSSumes
aSSumes macroblock COntainS text, maCrOblock does not COntain text,
sets quantization parameter value sets quantization parameter value
QP lower than for a non-text block QP higher than for a text block

2160 2470

U.S. Patent Jun. 28, 2016 Sheet 22 of 28 US 9,380,312 B2

2200 y

binarized
MB data di
input(s) gradient encoding MB Statistics parameters

2210 computation Computation buffer
22O2 22O6

additional inputs 2218

other pipeline
Stage(s)
2208

Output(s)
2212

FIG. 22

U.S. Patent Jun. 28, 2016 Sheet 23 of 28 US 9,380,312 B2

a macroblock input Component computes histogram(s)
of gradients for an input macroblock, stores

histogram data in slice-level or frame-level buffer
2310

st macroblocks in this slice/frame? Is

the macroblock input Component Computes slice-level
or frame-level statistics from the stored histogram data

2330

s

the macroblock input Component makes Slice-level
or frame-level statistics available to Other pipeline stage(s)

2340

- it is no changes to deblocking
lots of --- NO filter or rate control for

< text in this Slice/frame? i-e- a :
- 2350 -- low-text Slice/frame

- - -- 2370

turn of or reduce strength of deblocking filter
(e.g., if using intracoding) for this high-text slice/frame

2360

adjust frame-level rate Control for better quality
in this high-text slice/frame

2370

FIG. 23

U.S. Patent Jun. 28, 2016 Sheet 24 of 28 US 9,380,312 B2

during training, present frames (or macroblocks thereof)
Containing text and frames (macroblocks) that do not contain text
to a macroblock input Component of a video encoding pipeline

2410

the macroblock input Component Computes histograms of
gradients for each of the macroblocks and stores them

2420

feed Computed histograms of gradients and/or gradient
statistics or descriptors derived therefrom to a classifier

2430

classifier determines decision function for a binary
classification of macroblocks (e.g., "text" or "not text") or for

Computing the likelihood that a given macroblock contains text
2440

Configure macroblock input Component to classify each
macroblock it receives as "text" or "not text", or to compute the

likelihood that it contains text, using the decision function
2450

U.S. Patent Jun. 28, 2016 Sheet 25 of 28 US 9,380,312 B2

number of bins

FIG. 25

U.S. Patent Jun. 28, 2016 Sheet 26 of 28 US 9,380,312 B2

to memory
Config

Video enCOder 2600

DMA
2630 interCOnnect 2650

block processing pipeline
2640

proCeSSOr
2610

FIG. 26

U.S. Patent Jun. 28, 2016 Sheet 27 Of 28 US 9,380,312 B2

CPU Complex 2720

Communication Fabric 2710

Peripheral
2740B

Video EnCOder
2600

Peripheral
2740A

external
interface(s)

2760

FIG. 27

U.S. Patent Jun. 28, 2016 Sheet 28 of 28 US 9,380,312 B2

Peripherals
2820

External Memory
2750

2800 N u1

FIG. 28

US 9,380,312 B2
1.

ENCOOING BLOCKS IN VIDEO FRAMES
CONTAINING TEXT USING HISTOGRAMIS

OF GRADENTS

BACKGROUND

1. Technical Field
This disclosure relates generally to video or image process

ing, and more specifically to methods and apparatus for pro
cessing digital video frames in block processing pipelines.

2. Description of the Related Art
Various devices including but not limited to personal com

puter systems, desktop computer systems, laptop and note
book computers, tablet or paddevices, digital cameras, digital
Video recorders, and mobile phones or Smart phones may
include Software and/or hardware that may implement a
Video processing method. For example, a device may include
an apparatus (e.g., an integrated circuit (IC). Such as a system
on-a-chip (SOC), or a subsystem of an IC), that may receive
and process digital video input from one or more sources and
output the processed video frames according to one or more
Video processing methods. As another example, a Software
program may be implemented on a device that may receive
and process digital video input from one or more sources and
output the processed video frames according to one or more
Video processing methods. As an example, a video encoder
110 as shown in FIG. 1 represents an apparatus, or alterna
tively a software program, in which digital video input (input
frames 120) is encoded or converted into another format
(output frames 130), for example a compressed video format
such as H.264/Advanced Video Coding (AVC) format (also
referred to as MPEG 4 Part 10), or H.265 High Efficiency
Video Encoding (HEVC) format, according to a video encod
ing method. An apparatus or Software program Such as a
video encoder 110 may include multiple functional compo
nents or units, as well as external interfaces to, for example,
Video input sources and external memory.

In some video processing methods, to perform the process
ing, each input video frame 120 is divided into rows and
columns of blocks of pixels (e.g., 16x16 pixel blocks), for
example as illustrated in FIG. 2 which shows an example
192x192 pixel frame 120 divided into 144 16x16 pixel blocks
(illustrated in FIG. 2 as blocks 220). Each block of an input
video frame 120 is processed separately, and when done the
processed blocks are combined to form the output video
frame 130. This may be referred to as a block processing
method. Conventionally, the blocks are processed by the
block processing method in scan order as shown in FIG. 2,
beginning at the first block of the first row of the frame (shown
as block 0), sequentially processing the blocks across the row,
and continuing at the first block of the next row when a row is
complete.
A block processing method may include multiple process

ing steps or operations that are applied sequentially to each
block in a video frame. To implement Such a block processing
method, an apparatus or software program Such as a video
encoder 110 may include or implement a block processing
pipeline 140. A block processing pipeline 140 may include
two or more stages, with each stage implementing one or
more of the steps or operations of the block processing
method. FIG. 1 shows an example video encoder 110 that
implements an example block processing pipeline 140 that
includes at least stages 142A through 142C. A block is input
to a stage 142A of the pipeline 140, processed according to
the operation(s) implemented by the stage 142A, and results
are output to the next stage 142B (or as final output by the last
stage 142). The next stage 142B processes the block, while a

10

15

25

30

35

40

45

50

55

60

65

2
next block is input to the previous stage 142A for processing.
Thus, blocks move down the pipeline from stage to stage,
with each stage processing one block at a time and multiple
stages concurrently processing different blocks. Convention
ally, the blocks are input to and processed by the block pro
cessing pipeline 140 in scan order as shown in FIG. 2. For
example, in FIG. 1, the first block of the first row of the frame
shown in FIG. 2 (block 0) is at stage 142C, the second block
(block 1) is at stage 142B, and the third block (block 2) is at
stage 142A. The next block to be input to the block processing
pipeline 140 will be the fourth block in the first row.
H.264/Advanced Video Coding (AVC)
H.264/AVC (formally referred to as ITU-T Recommenda

tion H.264, and also referred to as MPEG-4 Part 10) is a
block-oriented motion-compensation-based codec standard
developed by the ITU-T (International Telecommunications
Union-Telecommunication Standardization Sector) Video
Coding Experts Group (VCEG) together with the ISO/IEC
JTC1 Moving Picture Experts Group (MPEG). The H.264/
AVC standard is published by ITU-T in a document titled
“ITU-T Recommendation H.264: Advanced video coding for
generic audiovisual services'. This document may also be
referred to as the H.264 Recommendation. The H.264 recom
mendation includes a definition for context-adaptive binary
arithmetic coding (CABAC) entropy encoding.

Generally, context-adaptive coding components must read
from and write to a context lookup table, which is typically
implemented in external memory. The context lookup table is
Sometimes implemented as a dual-port memory (including a
read port and a separate write port) to increase performance,
but this approach can be prohibitively expensive.

SUMMARY OF EMBODIMENTS

Embodiments of block processing methods and apparatus
are described in which a block processing pipeline includes
multiple pipeline components. A blockinput component of a
block processing pipeline (e.g., a video encoding pipeline)
may, for a block of pixels in a video frame, compute gradients
in two or more directions, and may compute one or more
histograms representing statistics derived from the gradient
values for the block of pixels (e.g., by accumulating counts of
the directions or magnitudes of horizontal and Vertical gradi
ents in one or more histograms). For example, computing the
histograms for the block of pixels may first include comput
ing unsigned values representing the magnitudes of the gra
dients for the block of pixels in two or more directions, and
then deriving statistics from those unsigned gradient values
for the block of pixels in those directions.

In another example, computing histograms representing
statistics derived from gradient values for a block of pixels
may include computing horizontal gradient values and verti
cal gradient values for the block of pixels, and computing one
histogram of the horizontal gradient values and a separate
histogram of the vertical gradient values. In this example, the
height of each bin of the histogram of the horizontal gradient
values and each bin of the histogram of the vertical gradient
values may represent a count of the computed gradient values
having a magnitude in a respective range of gradient magni
tude values. In some embodiments, an angle representing a
gradient direction at each of multiple points within a block of
pixels may be computed based on horizontal gradient values
and vertical gradient values computed at that point. In Such
embodiments, computing histograms representing statistics
derived from the gradient values for the block of pixels may
include computing a histogram of the angles representing the
gradient directions at each of the multiple points within the

US 9,380,312 B2
3

block of pixels, where the height of each bin of the histogram
represents a count of the computed angles that fall within in a
respective range of angles.

In some embodiments, the block input component may
(e.g., through software executing on a CPU in the blockinput
component) analyze the histogram(s) to compute block-level
statistics and/or to determine the presence or absence of a
dominant gradient direction in the block of pixels, dependent
on the computed histograms. If a dominant gradient direction
exists in the block of pixels, this may indicate (or be used to
determine) the presence of text in the block of pixels (or the
likelihood that the block of pixels represents a portion of a
Video frame that contains text). In some embodiments, the
block input component may be configured to determine (or
select) one or more parameter values for encoding the block
of pixels, dependent on the likelihood that the block of pixels
represents a portion of the video frame that contains text. For
example, if text is detected (e.g., if it is determined that a given
block of pixels is likely to represent a portion of a video frame
that contains text), various encoding parameter values may be
selected, computed, or modified in Such a way as to improve
the quality of encoding for the given block of pixels. For
example, the block input component (or another component
of the video encoding pipeline) may be configured to com
pute a quantization parameter value for encoding the block of
pixels that is lower than a quantization parameter value used
for encoding blocks of pixels that do not represent portions of
a video frame that contains text (including blocks of pixels
within the same video frame).

In various embodiments, the computed gradient values,
histogram information, computed block-level statistics,
quantization parameter values and/or other encoding param
eter values that are computed based on the gradient values or
histogram information described herein may be passed to
other stages of a video encoding pipeline (e.g., an intra
estimation stage, a mode decision stage, or a motion estima
tion stage), where they may be used to bias or control the
selection of a prediction mode, an encoding mode, or a
motion vector. For example, such information may be passed
from a hardware pipeline component or Software pipeline
component in one stage of the video encoding pipeline to a
hardware or software pipeline component in another stage of
the video encoding pipeline (e.g., a stage that Succeeds the
stage in which the information was generated) in order to
affect the encoding of the block of pixels from which the
information was generated. In another example, such infor
mation may be passed from a hardware or Software pipeline
component in one stage of the video encoding pipeline to a
Software or hardware pipeline component in a stage that
precedes the stage in which the information was generated in
order to affect the encoding of a block of pixels that was
received subsequent to receiving the block of pixels from
which the information was generated.

In some embodiments, slice-level or frame-level parameter
values may be generated from the gradient histograms of
multiple blocks (e.g., by accumulating the histogram infor
mation and/or block-level statistics derived therefrom), and
one or more slice-level or frame-level parameter values may
be computed for use in encoding the video frame or a Subse
quent video frame, dependent on the accumulated histogram
information and/or slice/frame-level statistics. In some
embodiments, a block input component of a video encoding
pipeline may be configured to determine the likelihood that a
given block of pixels represents a portion of a video frame that
contains text using a decision function that was previously

10

15

25

30

35

40

45

50

55

60

65

4
determined by a classifier component based on training data
(e.g., blocks of pixels for which the presence or absence of
text is known).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example video encoder including a
conventional block processing pipeline that processes blocks
from input frames in scan order.

FIG. 2 illustrates conventional scan order processing of
blocks from a video frame.

FIG. 3 is a high-level block diagram of an example block
processing pipeline that implements a Software pipeline and a
hardware pipeline, according to at least some embodiments.

FIGS. 4A through 4C illustrate processing blocks at a stage
in an example block processing pipeline that implements a
Software pipeline and a hardware pipeline, according to at
least Some embodiments.

FIG.5 illustrates an example block processing pipeline that
implements a Software pipeline and a hardware pipeline in
which at least one stage is skipped by the Software pipeline,
according to at least Some embodiments.

FIG. 6 illustrates an example block processing pipeline that
implements a Software pipeline and a hardware pipeline in
which at least one stage includes multiple pipeline units,
according to at least Some embodiments.

FIG. 7 illustrates components of an example pipeline unit
that may be used at a stage of a block processing pipeline that
implements a software pipeline and a hardware pipeline,
according to at least Some embodiments.

FIGS. 8A and 8B are flow diagrams illustrating methods of
operation of a software pipeline and a hardware pipeline that
operate in parallel in a block processing pipeline, according to
at least some embodiments.

FIG. 9 illustrates neighbor blocks of a current block in a
frame, and further illustrates a knights order processing
method for the blocks, according to at least Some embodi
mentS.

FIGS. 10A and 10B graphically illustrate the knights
order processing method including the algorithm for deter
mining a next block, according to at least Some embodiments.

FIGS. 11A and 11B are high-level flow diagrams illustrat
ing a knights order processing method for a block processing
pipeline, according to at least Some embodiments.

FIG. 12 illustrates a portion of a quadrow as processed in a
pipeline according to the knights order processing method
that may be cached in the current quadrow buffer, according
to at least Some embodiments

FIG. 13 graphically illustrates blocks in a current quadrow
being processed according to the knights order processing
method, as well as neighbor blocks in the last row of the
previous quadrow that may be cached in a previous quadrow
buffer, according to at least Some embodiments.

FIG.14 is a flow diagram illustrating a method for process
ing blocks in a block processing pipeline in which neighbor
data is cached in local buffers at the stages of the pipeline,
according to at least Some embodiments.

FIGS. 15A and 15B are block diagrams of example pipe
line processing units that may be used at the stages of a block
processing pipeline that implements one or more of the block
processing methods and apparatus as described herein,
according to at least Some embodiments.

FIG. 15C illustrates that a single processor may be associ
ated with a group of two or more pipeline units, according to
at least some embodiments.

FIG.16 is a high-level block diagram of general operations
in an example block processing method that may be imple

US 9,380,312 B2
5

mented by a block processing pipeline that implements one or
more of the block processing methods and apparatus
described herein, according to at least Some embodiments.

FIG. 17 is a flow diagram illustrating one embodiment of a
method for performing an encoding operation on a macrob
lock dependent on one or more histograms of gradient values.

FIGS. 18A and 18B illustrate the application of different
filters incomputing gradient values for a macroblock, accord
ing to Some embodiments.

FIG. 19A and FIG. 19B illustrate example histograms of
gradient direction values, according to some embodiments.

FIGS. 20A and 20B illustrate a histogram of horizontal
gradients and a histogram of vertical gradients for a macrob
lock, respectively, according to some embodiments.

FIG. 21 is a flow diagram illustrating one embodiment of a
method for passing encoding parameter values generated at a
macroblock input component, dependent on one or more
gradient histograms, to different stages of a video encoding
pipeline.

FIG.22 is a block diagram illustrating a portion of a video
encoding pipeline that computes gradient values for use in
determining encoding parameters and macroblock statistics,
according to one embodiment.

FIG. 23 is a flow diagram illustrating one embodiment of a
method for computing slice-level or frame-level statistics
and/or encoding parameters by accumulating histograms of
gradients that were computed formultiple macroblocks of the
slice or frame.

FIG. 24 is a flow diagram illustrating one embodiment of a
method for training a macroblock classifier of a video encod
ing pipeline to classify macroblocks in terms of the likelihood
that they represent portions of a video frame containing text.

FIG. 25 illustrates a trade-off between the number of bins
in a histogram of gradients and the precision and/or recall
percentage of the histograms, according to different embodi
mentS.

FIG. 26 is a block diagram illustrating an example video
encoder apparatus, according to at least some embodiments.

FIG. 27 is a block diagram illustrating one embodiment of
a system on a chip (SOC) that includes a video encoder.

FIG. 28 is a block diagram illustrating one embodiment of
a system that includes at least one instance of an SOC.

While embodiments of systems, apparatus, and methods
described herein are susceptible to various modifications and
alternative forms, specific embodiments thereofare shown by
way of example in the drawings and will herein be described
in detail. It should be understood, however, that the drawings
and detailed description thereto are not intended to limit the
embodiments to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva
lents and alternatives falling within the spirit and scope of the
present disclosure as defined by the appended claims. As used
throughout this application, the word “may is used in a
permissive sense (i.e., meaning having the potential to),
rather than the mandatory sense (i.e., meaning must). Simi
larly, the words “include “including, and “includes” mean
including, but not limited to.

Various units, circuits, or other components may be
described as "configured to perform a task or tasks. In Such
contexts, “configured to' is a broad recitation of structure
generally meaning "having circuitry that performs the task
or tasks during operation. As such, the unit/circuit/component
can be configured to perform the task even when the unit/
circuit/component is not currently on. In general, the circuitry
that forms the structure corresponding to “configured to may
include hardware circuits. Similarly, various units/circuits/
components may be described as performing a task or tasks,

5

10

15

25

30

35

40

45

50

55

60

65

6
for convenience in the description. Such descriptions should
be interpreted as including the phrase “configured to.” Recit
ing a unit/circuit/component that is configured to perform one
or more tasks is expressly intended not to invoke 35 U.S.C.
S112(f) interpretation for that unit/circuit/component.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the disclosed
systems, apparatus, and methods. However, one having ordi
nary skill in the art should recognize that the disclosed tech
niques might be practiced without these specific details. In
Some instances, well-known circuits, structures, and tech
niques have not been shown in detail to avoid obscuring this
disclosure.

Various embodiments of methods and apparatus for pro
cessing digital video frames in block processing pipelines are
described. Embodiments of block processing methods and
apparatus are generally described herein in the context of
Video processing in which input video frames are Subdivided
into and processed according to blocks of elements (e.g.,
16x16, 32x32, or 64x64 pixel blocks). Embodiments of an
example H.264 video encoder that includes a block process
ing pipeline and that may implement one or more of the block
processing methods and apparatus are described herein. The
H.264 video encoder converts input video frames from an
input format into H.264/Advanced Video Coding (AVC) for
mat as described in the H.264/AVC standard (the H.264 Rec
ommendation). FIG.16 illustrates an example block process
ing pipeline of an example H.264 video encoder, and FIG. 26
illustrates an example H.264 video encoder that includes a
block processing pipeline. However, embodiments of the
block processing methods and apparatus may be used in
encoders for other video encoding formats, for example in
block processing pipelines of HEVC (High Efficiency Video
Encoding) video encoders that convert input video frames
from an input format into HEVC format as described in the
HEVC standard. The HEVC standard is published by ITU-T
in a document titled “ITU-T Recommendation H.265: High
Efficiency Video Encoding. Other video encoders that may
use embodiments of the block processing methods and appa
ratus may include, but are not limited to, H.263, MPEG-2,
MPEG-4, and JPEG-2000 video encoders. However, it is to
be noted that embodiments of the block processing methods
and apparatus may be used in any block processing pipeline,
including but not limited to block processing pipelines imple
mented in various other video encoders and/or decoders
(which may be referred to as codecs) in which digital video
frames input in one format are encoded or converted into
another format. Further note that the block processing meth
ods and apparatus may be used in Software and/or hardware
implementations of video encoders. In addition to video
encoders/decoders, the block processing methods and appa
ratus described herein may be used in various other applica
tions in which blocks from a video frame or still digital image
are processed, for example in pipelines that process still digi
tal images in various image processing applications (e.g.,
using JPEG encoding, HEVC Still Image coding, or other
Suitable encoding standards or formats). Thus, it is to be
understood that the term frame or video frame as used herein
may also be taken to refer to any digital image.

Embodiments of the block processing methods and appa
ratus as described herein may be implemented in two or more
parallel block processing pipelines. For example, 2, 4, 8, or
more pipelines may be configured to run in parallel, with each

US 9,380,312 B2
7

pipeline processing a quadrow from an input video frame, for
example with blocks input according to knight's order.

Embodiments of the block processing methods and appa
ratus are generally described herein in the context of video
processing in which input frames are Subdivided into and
processed according to blocks of picture elements (referred to
as pixels, or pels), specifically 16x16 pixel blocks referred to
as macroblocks that are used, for example, in H.264 encod
ing. However, embodiments may be applied in pipelines in
which blocks of other sizes and geometries, or of other ele
ments, are processed. For example, HEVC encoding uses
blocks referred to as Coding Tree Units (CTUs) or Coding
Units (CUs) that may vary within the range of 16x16 pixel to
64x64 pixel. In some implementations such as H.264 encod
ers, the blocks input to the pipeline may be referred to as
macroblocks, each macroblock including two or more blocks
or partitions that may be processed separately at stages of the
pipeline. For example, for input video frames encoded in
YUV (e.g., YUV420 format) or YCbCr (e.g., YCbCr 4:2:0,
4:2:2 or 4:4:4 formats) color space, a macroblock may be
composed of separate blocks of chroma and luma elements
that may be processed separately at stages in a pipeline. In
addition to applications that process frames in a pipeline
according to blocks of elements (e.g., blocks of pixels), the
block processing methods and apparatus may be applied in
applications in which digital images (e.g., video frames or
still images) are processed by single elements (e.g., single
pixels).
Parallel Hardware and Software Block Processing Pipelines

Embodiments of block processing methods and apparatus
are described in which a block processing pipeline includes a
Software pipeline and a hardware pipeline that run in parallel.
However, the software pipeline runs one block ahead of the
hardware pipeline. The stages of the pipeline may each
include a hardware pipeline component (e.g., a circuit) that
performs one or more operations on a current block at the
stage. At least one stage of the pipeline may also include a
Software pipeline component that determines a configuration
for the hardware component at the stage of the pipeline for
processing a next block while the hardware component is
processing the current block. The Software pipeline compo
nent may include at least a processor. In at least Some embodi
ments, the Software pipeline component at a stage may deter
mine the configuration for processing the next block at the
stage according to information related to the next block
obtained from an upstream stage of the pipeline. In at least
Some embodiments, the Software pipeline component may
also obtain and use information related to a block that was
previously processed at the stage in determining the configu
ration for processing the next block. In at least some embodi
ments, the Software pipeline may also “look ahead' (up
stream) one or more blocks to obtain information from
upcoming blocks that may be used in determining the con
figurations for processing the next blocks at the stages. The
Software pipeline components may generate statistics on one
or more blocks that are used in determining the configura
tions.

The block information obtained by a software pipeline
component at a stage and used to determine a configuration
for processing a next block at the stage may, for example,
include various statistics related to the block and/or to one or
more other blocks. The following provides some examples of
block statistics that may be used in some embodiments, and is
not intended to be limiting:

5

15

25

30

40

45

50

60

65

8
Sum of pixels (s).
Sum of pixels squared (S2).
Block variance (may be estimated from S and S2, e.g.

var-S2-(s)2).
Horizontal and vertical gradients (Gx and Gy).
Gradient histograms for Gx and Gy.
The operations performed by the hardware pipeline com

ponents at the various stages may vary, and thus the configu
ration for the hardware pipeline components at the stages may
vary. Thus, the Software pipeline components at the stages
may determine and set particular configuration parameters
according to the respective hardware pipeline components at
the stages. However, a general example of configuration
parameters that may be determined and set at a stage by the
Software pipeline component based on an analysis of the
information is given below, and is not intended to be limiting.
One or more stages of a pipeline may perform operations to

determine a best mode for processing pixels in a given block.
At a particular stage, the hardware pipeline component may
receive information from one or more upstream stages (and
possibly feedback from one or more downstream stages) and
use this information to select a particular one of multiple
modes. The Software pipeline component at the stage may
receive, generate, and analyze statistics related to the block
(e.g., block variance) and set one or more configuration
parameters according to the analysis to, for example, cause
the hardware pipeline component to try multiple modes if the
block variance is high, or to bias the hardware component
towards a particular mode or modes if the block variance is
low.

In at least some embodiments, a block processing pipeline
that implements parallel software and hardware pipelines
may input blocks to and process blocks in the pipelines
according to knight's order, as described in the section titled
Knight's order processing. However, other block input and
processing orders may be used in some embodiments. In at
least Some embodiments, at least one stage of a block pro
cessing pipeline that implements parallel software and hard
ware pipelines may implement one or more local buffers for
caching data for neighbor blocks at the stage, as described in
the section titled Caching neighbor data.

FIG. 3 is a high-level block diagram of an example block
processing pipeline 300 that implements a software pipeline
302 and a hardware pipeline 304, according to at least some
embodiments. The software pipeline 302 and the hardware
pipeline 304 process blocks from a frame in parallel, with the
software pipeline 302 one block ahead of the hardware pipe
line 304. The pipeline 300 may include multiple stages 320,
each stage configured to perform one or more operations on a
block of pixels from a frame (e.g., a video frame). At least
some of the stages (stages 320A and 320B in FIG. 3) may
each include at least one pipeline unit 330 that includes a
Software pipeline component 322 and a hardware pipeline
component 326. The hardware pipeline component 326 of
each pipeline unit 330 may perform one or more particular
operations of a block processing method on a block currently
at the stage 320 in the hardware pipeline 304. While the
hardware pipeline component 326 of a given pipeline unit 330
is working on the current block at the stage 320, the software
pipeline component 322 of the pipeline unit 330 at the stage
320 may preconfigure the hardware pipeline component 326
for processing a next block. Thus, the software pipeline 302
operates one block ahead of the hardware pipeline 304.

For example, as shown in FIG. 3, at stage 320B hardware
pipeline component 326B is currently processing block i
while software pipeline component 326B is configuring the
hardware pipeline component 326B to process block i+1, and

US 9,380,312 B2

at stage 320A hardware pipeline component 326A is cur
rently processing block i+1 while software pipeline compo
nent 326A is configuring the hardware pipeline component
326A to process block i+2.
The software pipeline component 322 of a pipeline unit

330 at a stage 320 may determine a configuration for process
ing a next block at the hardware pipeline component 326 of
the respective pipeline unit 330 according to information for
the block. The information for the block may include at least
block information received from an upstream stage. In at least
Some embodiments, the information may also include feed
back information from one or more blocks previously pro
cessed at the stage 320. The software pipeline component 322
may preconfigure the hardware pipeline component 326 of
the pipeline unit 330 at the stage 320 for processing the block
according to the determined configuration, for example by
setting one or more configuration values in a set of registers or
other memory coupled to the hardware pipeline component
326. Once the configuration for processing the block at the
hardware pipeline component 326 of the pipeline unit 330 is
ready, the Software pipeline component 322 may signal the
hardware pipeline component 326 of the pipeline unit 330.
Assuming that the hardware pipeline component 326 has
completed the processing of a previous block and that the next
block is available to the hardware pipeline component 326
(e.g., ready to be read from its input buffer), the hardware
pipeline component 326 of the pipeline unit 330 may then
begin processing the next block according to the configura
tion for the block that was determined and preconfigured by
the software pipeline component 322 of the pipeline unit 330.

In at least some embodiments, an initial stage 310 of the
pipeline may input block information to the software pipeline
302 and blocks to the hardware pipeline 304. The initial stage
310 may obtain block input, for example from an external
memory via direct memory access (DMA), and buffer the
blocks in a block buffer component 312. Block buffer com
ponent 312 may have the capacity to hold one, two, or more
blocks. For example, in some embodiments, block buffer
component 312 may be able to buffer 16 blocks. In at least
some embodiments, block buffer component 312 may buffer
one, two or more blocks for input to the hardware pipeline 304
before initial stage 310 begins input of blocks to the hardware
pipeline 304. In at least some embodiments, once the initial
stage 310 begins input of blocks to the hardware pipeline 304,
the initial stage 310 may write a next block from blockbuffer
component 312 to a buffer memory of the hardware pipeline
component 326A of pipeline unit 330A at stage 320A when
the pipeline unit 330A is ready to receive the next block. The
initial stage 310 may continue to obtain block input for a
frame, buffer the blocks to block buffer component 312, and
input blocks to the hardware pipeline 304 until all the blocks
in the frame are processed.
A block analysis component 314 at initial stage 310 may

perform one or more analysis functions on one or more blocks
that are currently buffered in block buffer component 312
including a next block to be input to the hardware pipeline
304 to generate block information for the next block. The
block information may, for example, include one or more
block statistics. Some non-limiting examples of block statis
tics that may be generated were previously provided. Once
the block information is generated for the next block, the
initial stage 310 may send the block information to the soft
ware pipeline component 322A of the pipeline unit 330A at
stage 320A of the pipeline 300. The block analysis compo
nent 314 may continue to generate block information and
input the block information to the software pipeline 304 until
all the blocks in the frame are processed.

5

10

15

25

30

35

40

45

50

55

60

65

10
In at least some embodiments, the Software pipeline com

ponent 322 of each pipeline unit 330 may include a memory
for buffering block information for one, two, or more upcom
ing blocks. In at least Some embodiments, the hardware pipe
line component 326 of each pipeline unit 330 may include a
memory for storing one or more blocks to be processed at the
stage 320. In at least Some embodiments, the memory may be
a double buffer so that a previous stage can write a next block
to the memory while the hardware pipeline component 326 is
reading a current block from the memory.

In at least some embodiments, the Software pipeline com
ponent 322 of a pipeline unit 330 may push block information
for each block to the software pipeline component 322 of a
pipeline unit 330 at a downstream stage 320 so that the soft
ware pipeline component 322 at the downstream stage 320
can configure the respective hardware pipeline component
326 at the stage. In at least some embodiments, the software
pipeline component 322 of a pipeline unit 330 at a stage 320
does not push block information for a block to a downstream
stage 320 until after completing the preconfiguration for pro
cessing the block at the stage 320. In at least some embodi
ments, the block information for a block may be updated
according to information that is available at a stage 320 before
pushing the block information to the downstream stage 320.
Once a hardware pipeline component 326 at a stage 320 has

completed processing of a block, the processed block may be
sent to a hardware pipeline component 326 at the next stage
320 for processing. The hardware pipeline component 326 at
the next stage 320 may hold the block in its memory until the
hardware pipeline component 326 has completed processing
of a current block and has received a signal from the software
pipeline component 322 of the pipeline unit 330 at the stage
320 that the configuration for processing the block is ready.
Note that a processed block may instead be written to a
memory external to the pipeline 300 by a last stage 320 of the
pipeline 300.

FIGS. 4A through 4C illustrate processing blocks at a
pipeline unit of a stage in an example block processing pipe
line that implements a Software pipeline and a hardware pipe
line, according to at least Some embodiments. FIGS. 4A
through 4C show a pipeline unit 330 that may be used at a
stage in a block processing pipeline that includes a Software
pipeline component 322 and a hardware pipeline component
326. The hardware pipeline component 326 of the pipeline
unit 330 may perform one or more particular operations of a
block processing method on a block currently at the stage in
the hardware pipeline 304. While the hardware pipeline com
ponent 326 is working on the current block, the software
pipeline component 322 of pipeline unit 330 may preconfig
ure the hardware pipeline component 326 for processing a
next block. Thus, the software pipeline component 322 of a
pipeline unit 330 operates one block ahead of the hardware
pipeline component 326 of the pipeline unit 330.
The pipeline unit 330 may also include a configuration

memory (shown as config memory 324A and 324B in FIGS.
4A through 4C). The configuration memory may, for
example, be a set of hardware registers. As shown in FIGS. 4A
through 4C, in at least some embodiments, the configuration
memory may be partitioned into two memories (config
memory 324A and 324B) so that the software pipeline com
ponent 322 of pipeline unit 330 can write to one memory
while the hardware pipeline component 326 is reading from
the other memory. The configuration memory may, for
example, be a set of registers that are partitioned into a Subset
of active registers to which the software pipeline component
322 writes the configuration for a next block and a subset of
shadow registers from which the hardware pipeline compo

US 9,380,312 B2
11

nent 326 reads the configuration for a current block. In at least
Some embodiments, the Software pipeline component 322
may write to either of the config memories 324A and 324B,
and the hardware pipeline component 326 may read from
either of the config memories 324A and 324B; the two com
ponents may both toggle between the memories 324, with the
software pipeline component 322 writing to one while the
hardware pipeline component 326 is reading from the other.
Alternatively, in some embodiments, the Software pipeline
component 322 may write to only one of the config memories
324 (e.g., config memory 324A), and the hardware pipeline
component 326 may read from only the other config memory
324 (e.g., config memory 324B); when the hardware pipeline
component 326 is ready for a new configuration and the
configuration is ready, the configuration may be copied from
the config memory 324A to the config memory 324B. Note
that embodiments may also be implemented in which only a
single configuration memory is used, or in which more than
two configuration memories are used.

FIG. 4A show a pipeline unit 330 of a stage at an initial
state. Software pipeline component 322 receives, from an
upstream stage, block information for a first block (blocki)
from a frame to be processed at the stage. Hardware pipeline
component 326 is not currently processing a block. Software
pipeline component 322 determines a configuration for pro
cessing blocki according to the received block information
and writes the configuration to config memory 324A. Soft
ware pipeline component 322 signals hardware pipeline com
ponent 326 of pipeline unit 330 that the configuration for
blocki is ready, for example by setting a go bit or flag.

FIG. 4B show the pipeline unit 330 at the next cycle.
Software pipeline component 322 pushes block information
for block i to a downstream stage. Hardware pipeline com
ponent 326 receives blocki and processes blocki according to
the configuration in config memory 324A. Software pipeline
component 322 receives block information for a next block
(block i+1) to be processed at the stage. Software pipeline
component 322 determines a configuration for processing
block i+1 according to the received block information and
writes the configuration to config memory 324B. Software
pipeline component 322 signals hardware pipeline compo
nent 326 that the configuration for block i-1 is ready, for
example by setting a go bit or flag.

FIG. 4C shows the pipeline unit 330 at the next cycle.
Software pipeline component 322 pushes block information
for block i+1 to a downstream stage. Hardware pipeline com
ponent 326 receives block i+1 and processes block i-1
according to the configuration in config memory 324B. Soft
ware pipeline component 322 receives block information for
a next block (blocki--2) to be processed at the stage. Software
pipeline component 322 determines a configuration for pro
cessing blocki--2 according to the received block information
and writes the configuration to config memory 324A. Soft
ware pipeline component 322 signals hardware pipeline com
ponent 326 that the configuration for block i--2 is ready, for
example by setting a go bit or flag.

FIG. 4C also shows that information from a previously
processed block at a stage may be obtained by the Software
pipeline component 322 at the stage and used in determining
a configuration for a next block to be processed by the hard
ware pipeline component 326 at the stage. Hardware pipeline
component 326 finished processing block i at a previous
cycle, as shown in FIG. 4B, and is now processing block i+1
at FIG. 4C. Thus, information from the processing of block i
at the stage is available, and may be fed back to the software
pipeline component 322 of the pipeline unit 330 at the stage.
This information from the processing of block i at the stage

10

15

25

30

35

40

45

50

55

60

65

12
may be used in combination with the block information for
block i+2 received from an upstream stage to determine the
configuration for block i+2. Thus, feedback of information
from the processing of blocks at a stage may be for a block
that is two ahead of the block for which a configuration is
being generated.

Alternatively, in Some implementations, the Software pipe
line component 322 may wait for completion of the process
ing of a current block by the hardware pipeline component
326 at the stage, and use this information to determine a
configuration for the next block. In this case, feedback of
information from the processing of blocks at a stage may be
for a block that is only one ahead of the block for which a
configuration is being generated

FIG.5 illustrates an example block processing pipeline 300
that implements a software pipeline and a hardware pipeline
in which at least one stage is skipped by the Software pipeline,
according to at least Some embodiments. In some pipeline
implementations, one or more pipeline units 330 of the pipe
line 300 may include a hardware pipeline component 326 that
does not require dynamic configuration. FIG. 5 shows three
stages 320A, 320B, and 320C. Stage 320A includes pipeline
unit 330A that includes both a software pipeline component
322A and a hardware pipeline component 326A, and stage
320C includes a pipeline unit 330C that includes both a soft
ware pipeline component 322B and a hardware pipeline com
ponent 326C. However, stage 320B includes a pipeline unit
330B that includes a hardware pipeline component 326B that
does not require dynamic configuration, as the operation(s)
the component 326 performs on a block are the same for all
blocks. Thus, pipeline unit 330B does not utilize a software
pipeline component 322.
As shown in FIG. 5, hardware pipeline component 326A at

stage 320A is currently processing block i+2, while software
pipeline component 322A at Stage 320A is determining and
setting the configuration for processing the nextblock (i+3)at
stage 320A. Hardware pipeline component 326B at stage
320B is currently processing block i-1. Hardware pipeline
component 326C at stage 320C is currently processing block
i, while software pipeline component 322B at stage 320C is
determining and setting the configuration for processing the
next block (i+1) at stage 320A. In at least some embodiments,
the block information for block i-2 may be pushed down
stream from software pipeline component 322A to software
pipeline component 322B once stage 320A completes the
configuration for processing block i+2 and buffered at Soft
ware pipeline component 322B until software pipeline com
ponent 322B is ready to configure hardware pipeline compo
nent 322C to process block i-2. Alternatively, stage 320B
may include buffers to which block information is pushed
from stage 320A and from which block information is pushed
to stage 320C. As another alternative, stage 320A may buffer
block information that it is done with until stage 320C is ready
for the information.

FIG. 6 illustrates an example block processing pipeline 300
that implements a software pipeline and a hardware pipeline
in which at least one stage includes multiple pipeline units,
according to at least some embodiments. As shown in FIG. 6.
stage 320A includes a single pipeline unit 330A that includes
a software pipeline component 322A and a hardware pipeline
component 326A, and stage 320C includes a single pipeline
unit 330C that includes a software pipeline component 322C
and a hardware pipeline component 326D. However, stage
320B include two pipeline units 320Band 320C. Pipeline unit
330B includes a software pipeline component 322B and a
hardware pipeline component 326B. Pipeline unit 330C
includes only a hardware pipeline component 326C. In hard

US 9,380,312 B2
13

ware pipeline 304, blocks or portions of blocks from pipeline
unit 330A at stage 320A pass through both hardware pipeline
component 326B and hardware pipeline component 326C of
stage 320B, which output processed blocks or portions of
blocks to hardware pipeline component 326D of pipeline unit
330D in stage 320C. In software pipeline 302, block infor
mation is passed from Software pipeline unit 322A at stage
320A to software pipeline unit 322B at stage 320B, and from
software pipeline unit 322B at stage 320B to software pipe
line unit 322C at stage 320C.

While not shown, in some implementations, a stage may
include two or more pipeline units 330 that include both a
Software pipeline component 322 and a hardware pipeline
component 336. In this case, an upstream stage may feed
block information to the software pipeline component 322 of
each pipeline unit at the stage 320. However, in at least some
embodiments, only one of the Software pipeline components
322 may push the block information to a software pipeline
component 322 of a pipeline unit 330 at a downstream stage
32O.

FIG. 7 illustrates components of an example pipeline unit
that may be used at a stage of a block processing pipeline that
implements a software pipeline and a hardware pipeline,
according to at least some embodiments. As shown in FIG. 7.
the hardware pipeline component 704 of a pipeline unit 700
may include at least a memory 732 and a unit core 730. Unit
core 730 may be a component (e.g., a circuit) that is config
ured to perform a particular operation on or for a block, or a
portion of a block, at a particular stage of the block processing
pipeline. Memory 732 may, for example, be a double-buff
ered memory that allows the unit core 730 to read and process
data for a block from the memory 732 while data for a next
block is being written to the memory 732 from a previous
pipeline unit.
As shown in FIG. 7, a pipeline unit 700, in addition to a

hardware pipeline component 704 that includes memory 732
and unit core 730, may also include a software pipeline com
ponent 702 that includes at least a processor 710 and a
memory 712. Processor 710 may, for example, be a mobile or
M-class processor. The processors 710 may, for example, be
configured to determine and set configurations for a next
block to be processed at the hardware pipeline unit 704
according to block information received at the Software pipe
line component 702. In at least some embodiments, the pro
cessor 710 may also be configurable, for example with low
level firmware microcode, to allow flexibility in algorithms
that are implemented by the block processing pipeline for
various applications.

In at least some embodiments, the Software pipeline com
ponent 702 may be configured to receive block information
from a previous (upstream) stage of the pipeline and send
block information to a Subsequent (downstream) stage of the
pipeline. In addition, a software pipeline component 702 at a
last stage of the pipeline may be configured to send feedback
data to an upstream stage (e.g. the first stage) of the pipeline.
In at least some embodiments, the Software pipeline compo
nent 702 may also receive information for a block that was
previously processed by the hardware pipeline component
704 of the pipeline unit 700.

Software pipeline component 702 may buffer block infor
mation received from an upstream stage of the pipeline in
memory 712, and push block information from memory 712
to a downstream stage of the pipeline. In at least some
embodiments, memory 712 may be a double buffer memory
so that an upstream stage can push block information for a
next block to the software pipeline component 702 while the
processor 710 is accessing block information for a previous

5

10

15

25

30

35

40

45

50

55

60

65

14
block from the memory 712. In some embodiments, memory
712 may be able to buffer more than two sets of block infor
mation, for example in cases where the previous stage does
not include a Software pipeline component as shown by stage
32OB in FIG.S.
The processors 710 may read block information for a next

block from memory 712 and determine a configuration for the
next block according to the block information. In at least
some embodiments, the processor 710 may also receive infor
mation for a block that was previously processed by the
hardware pipeline component 704 of the pipeline unit 700 and
use that information in determining the configuration for the
next block.
As shown in FIG.7, a pipeline unit 700 may also includean

interface 706 between software pipeline component 702 and
hardware pipeline component 704. In at least some embodi
ments, the interface 706 may be a set of registers. Note,
however, that the interface 706 may be otherwise imple
mented. In the pipeline unit 700 as shown in FIG. 7, interface
706 includes at least config memory 720A, config memory
720B, and go 722. In at least some embodiments, the proces
sor 710 may write to either of the config memories 720A and
720B, and the unit core 730 may read from either of the config
memories 720A and 720B; the processor 710 and unit core
730 may toggle between the two memories 720, with the
processor 710 writing to one while the unit core 730 is reading
from the other. Alternatively, in some embodiments, the pro
cessor 710 may write to only one of the config memories 720
(e.g., config memory 720A), and the unit core 730 may read
from only the other config memory 720 (e.g., config memory
720B); when the unit core 730 is ready for a new configura
tion and the configuration is ready, the configuration may be
copied from config memory 720A to config memory 720B.
Note that embodiments may also be implemented in which
only a single configuration memory is used, or in which more
than two configuration memories are used.
Go 722 may, for example, be implemented as one or more

bits in a register or other memory, or may be otherwise imple
mented. In at least some embodiments, when processor 710
completes a configuration for a next block and has set the
config memory 720 (e.g., config memory 720A) with the
configuration, processor 710 may set go 722 to signal to the
unit core 730 that the configuration for the next block is ready
in the config memory 720 (e.g., config memory 720A). Unit
core 730 may begin to process the next block once go 722 is
set for the next block if processing of the current block is
complete and the next block is ready in memory 732. Other
wise, unit core 730 may wait until completion of processing
of the current block and/or the next block is ready in memory
732. Note that initially (for a first block in the pipeline) no
block is being processed at the stage when the processor 710
configures the stage for the first block, and thus unit core 730
may begin to process the first block once go 722 is set for the
first block and the first block is ready in memory 732. Once
unit core 730 is done with the configuration in a config
memory 720, the unit core 730 may clear go 722 to signal to
processor 710 that the config memory 720 is available to
receive the configuration for a next block.

FIGS. 8A and 8B are flowcharts of methods of operation of
a software pipeline and a hardware pipeline that operate in
parallel in a block processing pipeline to process the blocks
from a frame, according to at least Some embodiments. FIG.
8A shows operations at a stage for the Software pipeline, and
FIG.8B shows operations at the stage for the hardware pipe
line. Note that the software pipeline runs one block ahead of
the hardware pipeline.

US 9,380,312 B2
15

Referring to FIG. 8A, as indicated at 800, a software pipe
line component at a stage receives block information. The
block information may include block information received
from an upstream stage. In at least some embodiments, the
Software pipeline component may also receive information
from a block of the frame that was previously processed at the
stage. The block information for one, two, or more blocks
may be buffered in a local memory of the software pipeline
component. As indicated by the arrow that returns to element
800, element 800 may be iteratively performed as long as
there are blocks in the frame to be processed.
As indicated at 802, once the block information for a next

block is ready at the stage, the Software pipeline component
may determine a configuration for the block according to the
received information for the block. As indicated at 804, the
Software pipeline component may write the configuration for
the block to a configuration memory of the stage. As indicated
at 806, the software pipeline component may set a go bit or
otherwise signal to the hardware pipeline component at the
stage that the configuration for the next block is ready in the
configuration memory. As indicated at 806, the software pipe
line component may then push the block information for the
block to a downstream stage. At 810, if there are more blocks
from the frame to be processed at the stage, the software
pipeline method may return to element 802 to begin config
uring the hardware pipeline component for a next block.
Otherwise, processing of the frame at this stage is done, and
the method completes.

Referring to FIG. 8B, a hardware pipeline component at a
stage receives blocks to be processed from a previous stage.
The block information may be buffered in a local memory of
the hardware pipeline component. In at least some embodi
ments, the local memory may be a double buffer memory so
that the previous stage can write a next block to the stage
while the hardware pipeline component is processing a cur
rent block from the memory. As indicated by the arrow that
returns to element 850, element 850 may be iteratively per
formed as long as there are blocks in the frame to be pro
cessed.
At 852, if the hardware pipeline component is not currently

processing a block, a next block is ready in the memory, and
the Software pipeline component has signaled to the hardware
pipeline component that a configuration for the next block is
ready in the configuration memory (e.g., by setting a go bit or
flag), then the hardware pipeline component may begin to
process the next block. In at least Some embodiments, if any
of these three conditions is not met, the hardware pipeline
component waits until all three are met. Note, however, that
for a first block in the frame to be processed, there will not be
a current block being processed at the hardware pipeline
component when the first block is received for processing at
the hardware pipeline component.

If all necessary conditions are met, then as indicated 854
the hardware pipeline component sets the configuration for
processing the next block according to the configuration in
the configuration memory. As indicated at 856, the hardware
pipeline component clears the go bit or otherwise signals to
the Software pipeline component that the configuration
memory is available. As indicated at 858, the hardware pipe
line component processes the block according to the configu
ration for the block. As indicated at 860, the hardware pipe
line component writes the processed block to the next stage.
Alternatively, at a last stage, the processed block may be
written to a memory, for example to an external memory via
direct memory access (DMA). At 862, if there are more
blocks from the frame to be processed at the stage, the hard
ware pipeline method may return to element 852 to begin

5

10

15

25

30

35

40

45

50

55

60

65

16
processing a next block when all conditions are met. Other
wise, processing of the frame at this stage is done, and the
method completes.
Note that elements 802 through 808 of FIG. 8A are per

formed by the Software pipeline component at a stage for an
initial block in the frame before elements 854 through 860 of
FIG. 8B are performed by the hardware pipeline component
at the stage. After that, elements 802 through 808 of FIG. 8A
may be performed by the software pipeline component at the
stage to configure the hardware pipeline component for a next
block while elements 854 through 860 of FIG. 8B are per
formed by the hardware pipeline component to process a
current block.
Knight's Order Processing
Embodiments of block processing methods and apparatus

are described in which, rather than processing blocks in a
pipeline according to scan order as in conventional methods,
the blocks are input to and processed in the pipeline according
to an order referred to herein as “knights order.” Knights
order is in reference to a move of a chess knight piece in which
the knight moves one row down and two columns to the left.
Note, however, that “knight's order as used herein more
generally encompasses movements of one row down and p
columns to the left, where p may be but is not necessarily 2.
The knights order processing method may provide spac

ing (one or more stages) between adjacent blocks in the
pipeline, which, for example, facilitates feedback of data
from a downstream stage of the pipeline processing a first
block to an upstream stage of the pipeline processing a second
block that depends on the data from the first block. One or
more stages of a block processing pipeline may require infor
mation from one or more other neighbor blocks when pro
cessing a given block. FIG. 9 shows neighbors of a current
block (m,n) from which information may be required left
(m-1..n); top (m,n-1); top-left (m-1,n-1); top-right (m+1,n-
1); and top-right-right (m+2,n-1). These requirements for
information from neighbor block(s) may be referred to as
dependencies. For example, referring to FIG. 9, information
from the left neighbor of block (m,n) may be required to
perform a particular operation on the block. In the knights
order processing method, rather than inputting block (m+1, n)
into the pipeline immediately after block (m,n), the next block
input to the pipeline is block (m-2.n+1). Inputting the blocks
into the pipeline in knight's order rather than scan order
provides spacing (e.g., one or more stages) between adjacent
blocks on a row in the pipeline.

In at least Some embodiments of the knight's order pro
cessing method, the rows of blocks in the input frame may be
divided into sets of four rows, referred to herein as quadrows,
with the knight's order processing method constrained by the
quadrow boundaries. Referring to FIG. 9 and quadrow 900,
when using quadrow boundaries with knights order process
ing block (m-1..n) will be four stages downstream when block
(m,n) is input to the pipeline, and block (m,n) will be four
stages downstream when block (m+1,n) is input to the pipe
line. Thus, blocks that are adjacent on a row will be spaced
four stages apart in the pipeline. Thus, at stages in which
operations are performed on a block that depend on left neigh
bor information, the information for the left neighbor is more
likely to be readily available with less latency than it would be
if processing the blocks in scan order. In addition to depen
dencies on the left neighbor, one or more operations of a block
processing method may depend on neighbor blocks from the
previous (or above) row Such as the top neighbor, top-left
neighbor, top-right neighbor, and top-right-right neighbor
blocks as shown in FIG. 9. The knights order processing
method with quadrow constraints provides locality of neigh

US 9,380,312 B2
17

bor information that may be leveraged to provide local cach
ing of this neighbor data at each stage in relatively small
buffers.

In at least some embodiments, a basic algorithm for deter
mining a next block to input to the pipeline according to the
knight's order processing method using quadrow constraints
is as follows:

If not on the bottom row of a quadrow:
The next block is two columns left, one row down (-2,+1).
Otherwise, at the bottom row of a quadrow:
The next block is seven columns right, three rows up (+7.-

3).
However, the knight's order processing method may also

be implemented with other spacing than two blocks left, one
block down (-2,+1). For example, instead of two blocks left
and one block down, the method may be implemented to go
three blocks left and one block down to get the next block. As
another example, the method may be implemented to go one
block left and one block down (-1,+1) to get the next block.
In addition, the knight's order processing method may be
implemented with other row constraints than quadrow (four
row) constraints. In other words, row groups of at least two
rows may be used in embodiments to constrain the knights
order processing method. Assuming r as the number of rows
used to constrain the knights order processing method, the
algorithm may be generalized as:

If not on the bottom row of a row group:
The next block is p columns left, one row down (-p.+1).
Otherwise, at the bottom row of a row group:
The next block is q columns right, (r-1) rows up (+q-(r-

1)).
Changing the value of p would affect the value of q, would

not affect spacing between adjacent blocks from a row in the
pipeline, but would affect spacing between a given block and
its other neighbor blocks (e.g., its top-left, top, and top-right
neighbors). In particular, note that using the spacing (-1,+1)
would result in a block and its diagonal (top-right) neighbor
block being concurrently processed at adjacent stages of the
pipeline. Thus, a spacing of at least two blocks left may be
used so that diagonally adjacent blocks are not concurrently
processed at adjacent stages of the block processing pipeline.
Changing the value of r would affect the value of q, would
affect spacing between adjacent blocks from a row in the
pipeline, and would affect spacing between the block and its
other neighbor blocks (e.g., its top-left, top, and top-right
neighbors).
The above algorithm for determining a next block may

begin at an initial block. Upon reaching the end of a quadrow
that is followed by another quadrow, the algorithm jumps to
the first block of the next quadrow and then crosses over
between the quadrow and the next quadrow for a few cycles,
resulting in the interleaving of some blocks from the end of
the quadrow with some blocks from the beginning of the next
quadrow. In other words, the knight's order processing
method treats the quadrows as if they were arranged end to
end. To avoid complications in the algorithm and to maintain
consistent spacing of blocks in the pipeline, at least some
embodiments may pad the beginning of the first quadrow and
the end of the last quadrow with invalid blocks. An invalid
block may be defined as a block that is outside the boundary
of the frame and that is input to the pipeline but that does not
contain valid frame data, and thus is not processed at the
stages. The algorithm for determining a next block may thus
beginatan initial block, which may be either the first block in
the top row of the first quadrow or an invalid block to the left
of the first block in the top row of the first quadrow, proceed
through all of the quadrows, and at the end of the last quadrow

10

15

25

30

35

40

45

50

55

60

65

18
continue until the last block of the last quadrow has been input
to the pipeline. There will be bubbles in the pipeline at the
beginning and end of the frame, but the spacing of the valid
blocks from the frame in the pipeline will remain consistent
throughout. In some embodiments, as an alternative to pad
ding the end of the last quadrow of a video frame with invalid
blocks, the last quadrow of a video frame may be overlapped
with the first row of the next video frame to be processed in
the block processing pipeline.

FIGS. 10A and 10B graphically illustrate the knights
order processing method, according to at least Some embodi
ments. For simplicity, these Figures use an example 192x192
pixel frame 1000 divided into 144 16x16 pixel blocks, with
12 rows and 12 columns of blocks. However, it is to be noted
that the knights order processing method can be applied to
input video frames of any dimensions. In FIG. 10A, an
example frame is divided into rows and columns of blocks.
The rows of blocks are partitioned into three quadrows (1010,
1020, and 1030) including four rows each. The last three rows
of the first quadrow (1010) are padded on the left with invalid
blocks, and the first three rows of the last (third) quadrow
(1030) are padded on the right with invalid blocks. In this
example, the numbers in the blocks represent the order in
which the blocks are input to the block processing pipeline
according to the knights order processing method, beginning
with block 0 (the first block in the top row of the first quad
row). Block 0 is input to the first stage of the pipeline, and
when the first stage is ready for another block, the method
proceeds by going two columns left, one row down to get the
next block for input (block 1, in FIG. 10A). This pattern is
repeated until reaching the bottom of the quadrow. At the
bottom of the quadrow, the method goes seven columns right,
three rows up to get the next block. This continues until all of
the blocks in the frame (as well as all of the invalid blocks
shown in FIG. 10A) are input into the pipeline. When the end
of a quadrow is reached, if there is another quadrow after the
quadrow the input algorithm proceeds to the beginning of the
next quadrow. In this example, after block 47 is input, the
method proceeds to block 48 (the first block in the top row of
the second quadrow). As shown by the dashed arrow from
block 47 to the dashed rectangle labeled 48 to the right of
block 44, the first block of the top row of the second quadrow
(block 48) is treated as being immediately to the right of the
last block of the top row of the first quadrow (block 44), and
thus is reached from block 47 by going seven columns right,
three columns up. In other words, the knights order process
ing method treats the quadrows 1010, 1020, and 1030 as if
they were arranged end to end, with invalid blocks at each
end, as shown in FIG. 10B. Thus, the algorithm for determin
ing a next block remains the same across the entire frame
1OOO.

In some embodiments, each row of the first quadrow may
be padded with extra invalid blocks, for example with two
extra invalid blocks. Instead of beginning with the first block
in the top row of the first quadrow as shown in FIG. 10A, input
to the pipeline may begin with the first invalid block to the left
of the first block in top row of the first quadrow.

FIGS. 11A and 11B are high-level flowcharts of a knights
order processing method for a block processing pipeline,
according to at least some embodiments. In FIG. 11A, as
indicated at 1100, a next block is determined according to the
algorithm for determining a next input block that is imple
mented by the knight's order processing method. As indicated
at 1102, the block is input to the pipeline, for example from a
memory via direct memory access (DMA). As shown by
1104, the input process of elements 1100 and 1102 continues
as long as there are blocks to be processed. Each block that is

US 9,380,312 B2
19

input to the pipeline by elements 1100 and 1102 is processed
in the pipeline, as indicated at 1106. Each block is initially
input to a first stage of the pipeline, processed, output to a
second stage, processed, and so on. When a block moves from
a stage to a next stage of the pipeline, the stage can begin
processing the next block in the pipeline. Thus, the input
blocks move through the stages of the pipeline, with each
stage processing one block at a time. As indicated at 1108,
once a block has been processed by a last stage of the pipeline,
the processed block is output, for example to a memory via
direct memory access (DMA).

FIG. 11B is a flowchart of an example algorithm for deter
mining a next input block that that may be implemented by
the knight's order processing method, and expands on ele
ment 1100 of FIG. 11A. FIG. 11B assumes that the frame is
divided into quadrows, and that the algorithm used to deter
mine the next frame is two columns left, one row down
(-2,+1) if not on the bottom row of a quadrow, seven columns
right, three rows up (+7.-3) if on the bottom row. However,
other row groupings and/or spacing algorithms may be used.
At 1150, if at the start of the frame, the method gets an initial
block as indicated at 1152. If this is not the start of the frame,
then at 1154, if this is the last row of the quadrow, the next
block is seven columns right, three rows up, as indicated at
1156. If this is not the last row of the quadrow, the next block
is two columns left, one row down, as indicated at 1158.
Caching Neighbor Data
One or more operations performed at stages of a block

processing pipeline may depend on one or more of the neigh
bor blocks from the previous (or above) row of blocks such as
the top neighbor, top-left neighbor, top-right neighbor, and
top-right-right neighbor blocks, as well as on the left neigh
bor, as shown in FIG. 3. The knights order processing
method with quadrow constraints provides locality of neigh
bor information that may be leveraged to provide local cach
ing of neighbor data at each stage of the pipeline in relatively
small local buffers. For example, in some embodiments, the
cached neighbor data may include source transform coeffi
cients (e.g., DC transform coefficients), modified transform
coefficients, previously computed quantization errors, and/or
weighting coefficient values for one or more neighbor pixels.
In at least some embodiments, the local buffers may be imple
mented using SRAM (static random access memory) tech
nology. However, the local buffers may be implemented using
other memory technologies in some embodiments.

Note that blocks in the first column of a frame do not have
a left or top-left neighbor, blocks in the last column do not
have a top-right or top-right-right neighbor, and blocks in the
next-to-last column do not have a top-right-right neighbor.
Thus, for block processing methods that use information from
these neighbor positions, the information in the local buffers
for these neighbor positions relative to blocks in those col
umns is not valid and is not used in processing the blocks in
those columns in the stages of the pipeline. In addition, there
are no rows above the top row of the first quadrow, so the
blocks in this row do not have top, top-left, top-right, and
top-right-right neighbors.

In at least Some embodiments of a block processing pipe
line that implements the knights order processing method, a
first buffer of sufficient size to cache the C most recently
processed blocks on the current quadrow may be imple
mented at each of one or more stages of the pipeline. This
buffer may be referred to as the current quadrow buffer, and
may, for example, be implemented as a circular FIFO buffer.
In at least some embodiments, C may be determined such that
the buffer includes an entry corresponding to the top-left
neighbor of the current block at the stage according to the

10

15

25

30

35

40

45

50

55

60

65

20
algorithm for determining a next block and the row group size
used to constrain the knight's order method. The buffer may
also include entries corresponding the top-right-right, left,
top-right, and top neighbors for the current block according to
the algorithm. When processing a block, a stage may access
the current quadrow buffer to obtain neighbor information for
the block if that block's neighbor information is valid in the
current quadrow buffer. Note that some block processing
methods may not require top-left neighbor information, and
the current quadrow buffer may be smaller in these imple
mentations.
When a stage completes processing of a block, the blocks

information is written to the last position in the current quad
row buffer, overwriting the entry at the position of the block's
top-left neighbor, thus preparing the buffer for the next block
to be processed at the stage. Note that, initially, at the begin
ning of a frame, there is no information in the current quadrow
buffer as no blocks in the frame have been processed, so no
block information will be overwritten in the buffer until the
buffer is filled. When the next block is at the stage, the pre
vious block's information in the buffer is the block's top
right-right neighbor information.

For example, using quadrow boundaries and the algorithm
for determining a next block where the next block is two
columns left, one row down if not on the bottom row of a
quadrow, C=13 would be sufficient to include the top-left
neighbor of the current block, as the spacing between the
current block and its top-left neighbor is 13. FIG. 12 shows a
portion of a quadrow 1200 as processed in a pipeline accord
ing to the knight's order processing method that may be
cached in the current quadrow buffer, according to at least
some embodiments. Block 19 represents a current block at a
stage. The shaded blocks represent the 13 most recently pro
cessed blocks by the stage. Note that the farthest block from
block 19 in time is its top-left neighbor (block 6), and the
nearest block in time is its top-right-right neighbor (block 9).

For the blocks in the top row of a quadrow, information for
neighbors in the row above is not in the current quadrow
buffer. There are no rows above the top row of the first quad
row, and for all other quadrows the row above the top row is
the bottom row of the previous quadrow. Thus, the current
quadrow buffer includes the left neighbor information for all
blocks in the top row of a quadrow (except for the first block,
which has no left neighbor), but does not include the top-left,
top, top-right, and top-right-right neighbor information for
the blocks in the top row of the quadrow. To provide this
neighbor information for blocks on the top rows of the quad
rows, a second buffer of sufficient size to hold information for
the required neighbor blocks from the last row of the previous
quadrow may be implemented at one or more stages of the
pipeline. This buffer may be referred to as the previous quad
row buffer, and may, for example, be implemented as a cir
cular FIFO buffer. The number of entries in the previous
quadrow buffer, as well as the particular neighbor blocks that
are cached in the previous quadrow buffer, may be dependent
on the requirements of the particular block processing
method that is implemented by the block processing pipeline.
In at least Some embodiments, when processing a quadrow
according to the knights order processing method, informa
tion for each block on the bottom row of the quadrow may be
written to an external memory, for example when the block is
at a last stage of the pipeline. For each block in the top row of
a quadrow, neighbor (e.g., top-right-right neighbor) data may
be read from the external memory, for example at a first stage
of the pipeline. This neighbor information may be passed
down the pipeline to the other stages along with the corre
sponding block from the top row.

US 9,380,312 B2
21

FIG. 13 graphically illustrates blocks in a current quadrow
1320 being processed according to the knights order pro
cessing method, as well as neighbor blocks in the last row of
the previous quadrow 1310, according to at least some
embodiments. Blocks A, A+4. A+8, and A+12 were pro
cessed on the previous quadrow according to the knights
order processing method. Block A was processed first, block
A+4 was processed four cycles later, and so on. Block B
represents a block on the current quadrow that is currently at
a particular stage of the pipeline. Blocks B-1 (B minus 1)
through B-13 (B minus 13) represent the thirteen blocks that
were most recently processed at the stage in the current quad
row. Information from these blocks may be presently cached
in the stage’s current quadrow buffer, with B-1 as the most
recent entry and B-13 as the oldest entry. B-4 is current block
B’s left neighbor. However, block B's top-left (block A), top
(block A+4), top-right (block A+8), and top-right-right (block
A+12) neighbors are on the bottom row of the previous quad
row, and are not included in the current quadrow buffer for
block B. In at least some embodiments, to provide neighbor
information for blocks on the top row of the current quadrow
(e.g., top-left, top, top-right, and top-right-right neighbor
information), a previous quadrow buffer may be implemented
at each of one or more stages of the pipeline. When processing
a quadrow, information for each block on the bottom row of
the quadrow is written to a neighbor data structure in external
memory, for example by a last stage of the pipeline. When
processing blocks from the top row of a next quadrow, infor
mation for neighbor blocks in the bottom row of the previous
quadrow is read from the external memory, for example by a
first stage of the pipeline, and passed down the pipeline to
other stages with the top row blocks. In at least some embodi
ments, information for the top-right-right neighbor block of a
block in the top row is read from the external memory. In at
least Some embodiments, the previous quadrow buffer is a
circular buffer, and an oldest entry in the previous quadrow
buffer is replaced with the neighbor information that is read
from the external memory. In various embodiments, the exter
nal memory to which blocks in the bottom row are written and
from which neighbor block information is read may be a
memory of the pipeline component that is external to the last
stage, a memory of a video encoder that implements the
pipeline, or a memory external to the video encoder. In some
embodiments, however, the memory may be a local memory
of the last stage of the pipeline. At least Some embodiments
may include an interlock mechanism to control the reads and
writes to the external memory between rows to avoid over
writing the data in external memory.

FIG. 14 is a flow diagram illustrating a method for process
ing blocks in a block processing pipeline in which neighbor
data is cached in local buffers at the stages of the pipeline,
according to at least some embodiments. For example, the
method of FIG. 14 may be used at element 1106 of FIG. 11A
to process blocks input to the pipeline according to the
knight's order processing method as shown at elements 1100,
1102, and 1104 of FIG. 11A. In FIG. 14, a block is input to the
pipeline. At 1400, at a first stage of the pipeline, if the block
is on the top row of a quadrow, then neighbor data for the
block may be read from external memory (for example, via
DMA) into a previous quadrow bufferas indicated at 1402. In
at least some embodiments, the neighbor data corresponds to
the top-right-right neighbor of the current block on the bot
tom row of the previous quadrow. As indicated at 1404, the
block is then processed at the current stage. If an operation at
the stage requires neighbor information to process the block,
the stage may use the neighbor information in the current
quadrow buffer and/or in the previous quadrow buffer to

10

15

25

30

35

40

45

50

55

60

65

22
perform the operation. If the block is on the top row of a
quadrow, then at least some of the neighbor information is
obtained from the previous quadrow buffer; otherwise, neigh
bor information may be obtained from the current quadrow
buffer. As indicated at 1406, information about the current
block may be written to the current quadrow buffer at the
stage for use on Subsequent blocks. The information may
overwrite an oldest entry in the current quadrow buffer.
At 1408, if there are more stages, then the block may be

sent to a next stage, as indicated at 1410. At 1412, neighbor
information from the previous quadrow buffer may also be
sent to the next stage. In at least Some embodiments, this
neighbor information is only sent to the next stage if the
current block is on the top row of a quadrow. Elements 1404
through 1412 may be repeated until the block reaches and is
processed by a last stage of the pipeline. At 1408, if there are
no more stages, then processing of the block in the pipeline is
done. At 1414, if the block is on the bottom row of a quadrow,
then information for the block is written to an external
memory (for example, via DMA) to be read as neighbor data
for blocks in the top row of a next quadrow. In addition, all of
the processed valid blocks are output as shown by element
1108 of FIG. 11A.
Example Pipeline Units

FIGS. 15A through 15C are block diagrams of example
pipeline processing units that may be used at the stages of a
block processing pipeline that implements one or more of the
block processing methods and apparatus as described herein,
according to at least Some embodiments. For example, one or
more of pipeline units 1500A and/or 1500B as shown in
FIGS. 15A and 15B may be used at each stage of the example
block processing pipeline shown in FIG. 16. Note that FIGS.
15A through 15C are not intended to be limiting; a pipeline
processing unit may include more or fewer components and
features than those shown in the Figures.
As shown in FIG. 15A, a pipeline unit 1500A may include

at least a memory 1510 and a unit core 1520. Unit core 1520
may be a component (e.g., a circuit) that is configured to
perform a particular operation on or for a block, or a portion
of a block, at a particular stage of the block processing pipe
line. Memory 1510 may, for example, be a double-buffered
memory that allows the unit core 1520 to read and process
data for a block from the memory 1510 while data for a next
block is being written to the memory 1510 from a previous
pipeline unit.
As shown in FIG. 15B, a pipeline unit 1500B, in addition to

a memory 1510 and unit core 1520 as shown in FIG. 15A,
may also include a processor 1530. Processor 1530 may, for
example, be a mobile or M-class processor. The processors
1530 in pipeline units 1500B of a block processing pipeline
may, for example, be used to control the block processing
pipeline at block boundaries. The processors 1530 in pipeline
units 1500B may be configurable, for example with low-level
firmware microcode, to allow flexibility in algorithms that are
implemented by the block processing pipeline for various
applications. In at least some embodiments, a processor 1530
of a pipeline unit 1500B in the pipeline may be configured to
receive data from a processor 1530 of a previous (upstream)
pipeline unit 1500B and send data to a processor 1530 of a
subsequent (downstream) pipeline unit 1500B. In addition, a
processor 1530 of a pipeline unit 1500B at a last stage of the
pipeline may be configured to send feedback data to a pro
cessor 1530 of a pipeline unit 1500B at a first stage of the
pipeline.
As shown in FIGS. 15A and 15B, a pipeline unit 1500A or

1500B may be configured to access external memory, for
example according to direct memory access (DMA). In addi

US 9,380,312 B2
23

tion, a pipeline unit 1500A or 1500B may be configured to
pass information back to one or more previous (upstream)
stages of the pipeline and/or to receive information passed
back from one or more Subsequent (downstream) stages of the
pipeline. In addition, a pipeline unit 1500A or 1500B may be
configured to pass information forward to one or more Sub
sequent (downstream) stages of the pipeline and/or to receive
information passed forward from one or more previous (up
stream) stages of the pipeline.
As shown in FIG.15C, two or more units 1500A as shown

in FIG. 15A may be grouped together and configured to
performan operation in the pipeline. A single processor 1530
may be used to control and/or configure the pipeline units
15OOA.
Example Block Processing Pipeline

FIG.16 is a high-level block diagram of general operations
in an example block processing method 1600 for H.264
encoding that may be implemented in stages by a block pro
cessing pipeline that may implement one or more of the block
processing methods and apparatus as described herein,
according to at least some embodiments. A block processing
pipeline that implements the block processing method 1600
may, for example, be implemented as a component of an
H.264 video encoder apparatus that is configured to convert
input video frames from an input format into H.264/Ad
vanced Video Coding (AVC) format as described in the
H.264/AVC standard. The H.264/AVC standard is published
by ITU-T in a document titled “ITU-T Recommendation
H.264: Advanced video coding for generic audiovisual Ser
vices’, which may be referred to as the H.264 Recommenda
tion. An example input video format is 1080p (1920x1080
pixels, 2.1 megapixels) encoded in YCbCr color space. How
ever, other input video formats may be encoded into H.264
using embodiments of the pipeline in a video encoder appa
ratuS.

The video encoder apparatus may, for example, be imple
mented as an integrated circuit (IC) or as a Subsystem on an IC
Such as a system-on-a-chip (SOC). In at least some embodi
ments, the video encoder apparatus may include at least a
pipeline component, a processor component (e.g., a low
power multicore processor), and a bus Subsystem or fabric
that interconnects the functional components of the appara
tus. The processor component of the video encoder apparatus
may, for example, perform frame-level control of the pipeline
Such as rate control, perform pipeline configuration, and
interface with application software via a driver. The pipeline
component may implement multiple processing stages each
configured to perform a portion or all of one or more of the
operations as shown in FIG. 16, each stage including one or
more processing units. At least one of the processing units in
the pipeline may include a processor component (e.g., an
M-class processor) that may, for example, configure param
eters of the processing unit at the respective stage at the
macroblock level. The video encoder apparatus may include
other functional components or units such as memory com
ponents, as well as external interfaces to, for example, one or
more video input sources and external memory. Example
Video input sources to the video encoder apparatus may
include one or more of, but are not limited to, a video camera
for raw video input processing, a decoder apparatus for re
encoding/transcoding, a flash or other memory, and a JPEG
decoder. An example video encoder apparatus is illustrated in
FIG. 26. An example SOC that includes a video encoder
apparatus is illustrated in FIG. 27. While embodiments are
generally described in relation to hardware implementations
of a block processing pipeline that implements the block
processing method 1600 with knights order processing, note

10

15

25

30

35

40

45

50

55

60

65

24
that the block processing method 1600 with knight's order
processing may be implemented by a block processing pipe
line implemented in software.
A pipeline that implements the method 1600 as shown in

FIG. 16 may process 16x16 pixel macroblocks from input
Video frames according to the H.264 standard, each macrob
lock including two or more blocks or partitions that may be
processed separately at Stages of the pipeline. The input video
frames may, for example, be encoded in YCbCr color space:
each macroblock may be composed of separate blocks of
chroma and luma elements that may be processed separately
at the stages of the pipeline. A pipeline that implements the
block processing method 1600 may receive input macrob
locks from and output processed macroblocks to a memory.
The memory may include memory of the video encoder appa
ratus and/or memory external to the video encoder apparatus.
In at least Some embodiments, the memory may be accessed
by the pipeline as necessary, for example via direct memory
access (DMA). In at least Some embodiments, the memory
may be implemented as a multi-level memory with a cache
memory implemented between the pipeline and an external
memory. For example, in some implementations, one or more
quadrows may be read from an external memory and cached
to the cache memory for access by the pipeline to reduce the
number of reads to an external memory.
The general operations of the example H.264 video

encoder method 1600 as shown in FIG. 16 that may be per
formed in stages by a pipeline, as well as general data flow
through the pipeline, are briefly described below. Each of the
general operations of the method 1600 may be implemented
by one or more pipeline units at one or more stages of the
pipeline. Example pipeline units are illustrated in FIGS. 9A
through 9C. Also note that each general operation shown in
FIG. 16 may be subdivided into two or more operations that
may be implemented by pipeline units at one, two, or more
stages of the pipeline. However, two or more of the operations
shown in FIG.16 may be performed at the same stage of the
pipeline. Each stage in the pipeline processes one macroblock
at a time, and thus two or more of the operations may simul
taneously operate on the same macroblock that is currently at
the respective stage. Note that a pipeline may perform more,
fewer, or other operations than those shown in FIG. 16 and
described below.
Macroblock Input

In at least some embodiments, macroblockinput 1602 may
be performed by an initial stage of the pipeline. In at least
some embodiments, macroblock input 1602 receives luma
and chroma pixels from a memory, for example via DMA,
computes statistics on input pixels that are used by firmware
in downstream stages of the pipeline, and buffers input mac
roblocks to enable firmware look ahead. The input macrob
lock pixel data and corresponding statistics are buffered and
sent to one or more downstream stages of the pipeline that
implement intra-frame and inter-frame estimation 1610
operations. In at least Some embodiments, an input buffer of
up to 16 macroblocks is maintained for input pixels and
statistics. In at least some embodiments, the macroblock pixel
data and corresponding statistics may be input to downstream
stages of the pipeline according to a knight's order input
algorithm as previously described in the section titled
Knight's order processing.

In at least some embodiments, macroblock input 1602
reads neighbor data from the bottom row of a previous quad
row from memory at quadrow boundaries and passes the
neighbor data to at least one downstream stage.

US 9,380,312 B2
25

Intra-frame and Inter-frame Estimation
Intra-frame and inter-frame estimation 1610 operations

may determine blocks of previously encoded pixels to be used
in encoding macroblocks input to the pipeline. In H.264 video
encoding, each macroblock can be encoded using blocks of 5
pixels that are already encoded within the current frame. The
process of determining these blocks may be referred to as
intra-frame estimation, or simply intra-estimation. However,
macroblocks may also be encoded using blocks of pixels from
one or more previously encoded frames (referred to as refer
ence frames). The process offinding matching pixel blocks in
reference frames may be referred to as inter-frame estimation,
or more generally as motion estimation. Intra-frame and
inter-frame estimation 1610 operations may be subdivided
into two or more sub-operations that may be performed at
one, two, or more stages of the pipeline, with one or more
components or pipeline units at each stage configured to
perform a particular Sub-operation.

In at least some embodiments, macroblock input 1602
reads neighbor data from the bottom row of a previous quad
row from memory at quadrow boundaries and passes the
neighbor data to intra-frame and inter-frame estimation 1610,
for example to an intra-frame estimation component. In addi
tion, motion compensation and reconstruction 1630, for
example aluma reconstruction component, may pass neigh
bordata as feedback to intra-frame and inter-frame estimation
1610, for example to the intra-frame estimation component.
Motion Estimation

In at least Some embodiments, to perform motion estima
tion, the pipeline may include one instance of a motion esti
mation engine for each reference frame to be searched. Each
motion estimation engine searches only one reference frame.
In at least some embodiments, each motion estimation engine
may include a low resolution motion estimation component,
a full pixel motion estimation component, and a Subpixel
motion estimation component. In at least some embodiments,
the three components of each of the motion estimation
engines may be implemented at different stages of the pipe
line. In at least some embodiments, each motion estimation
engine may also include a memory component that reads and
stores reference frame data from a memory as needed. In at
least Some embodiments, a single instance of a processor
manages all instances of the motion estimation engine. In at
least some embodiments, the processor may determine one or
more candidates using predicted and co-located motion vec
tors and input the candidates to the full pixel motion estima
tion components of the motion estimation engines.

In at least some embodiments, the low resolution motion
estimation component of each motion estimation engine per
forms an exhaustive search on a scaled-down, low resolution
version of a respective reference frame to generate candi
dates. In at least some embodiments, the full pixel motion
estimation component performs a search on full size pixels
using candidates from the low resolution motion estimation
component. In at least some embodiments, the Subpixel
motion estimation component performs a search on half and
quarter pixels using best candidates received from the full
pixel motion estimation component. In some embodiments,
full pixel motion estimation and Subpixel motion estimation
may be disabled based on results of a direct mode estimation
performed at an upstream stage of the pipeline. In at least
Some embodiments, each motion estimation engine outputs
results data to mode decision 1620.

In at least Some embodiments, motion estimation may also
include a direct mode estimation component that receives
co-located and spatial motion vector data and computes a
direct/skip mode cost, which it provides to mode decision

10

15

25

30

35

40

45

50

55

60

65

26
1620. Based on the results, the direct mode estimation com
ponent may disable full pixel motion estimation and Subpixel
motion estimation.
Intra Estimation

In at least some embodiments, an intra estimation compo
nent of the pipeline performs intra mode selection to deter
mine blocks of pixels already encoded within the current
frame that may be used in encoding a current macroblock. In
at least some embodiments, the intra estimation component
performs intra mode selection only for luma. In these embodi
ments, Chroma intra estimation is performed by a chroma
reconstruction component at a downstream stage of the pipe
line. In at least Some embodiments, the intra estimation com
ponent may perform intra estimation independently for each
of two or more blocks or partitions (e.g., 4x4, 8x8, 4x8, 8x4,
16x8, and/or 8x16 blocks) in a macroblock. For each block,
prediction pixels are first extracted from neighbor blocks
(neighbor blocks can be outside the current macroblock in the
frame or within the current macroblock). For each prediction
mode in the current block, the cost of the current mode is
evaluated by creating a prediction block from neighbor pix
els, computing a mode cost, and comparing the mode cost to
a minimum cost for that block. Once all prediction modes are
evaluated and the best mode is determined, reconstruction
may be performed for the best mode so that reconstructed
pixels can be used to predict future blocks within the mac
roblock. The intra estimation component may pass best intra
mode information to mode decision 1620.

In at least some embodiments, macroblock input 1602
reads neighbor data from the bottom row of a previous quad
row from memory at quadrow boundaries and passes the
neighbor data to the intra estimation component. In at least
Some embodiments, at least one downstream stage (e.g., a
luma reconstruction component at a downstream stage) may
pass neighbor data back to the intra estimation component.
Mode Decision

In at least some embodiments, mode decision 1620 may be
implemented by a mode decision component at a stage of the
pipeline that is downstream of the stage(s) that implement
intra-frame and inter-frame estimation 1610 operations.
However, in some embodiments, mode decision 1620 opera
tions may be subdivided into two or more sub-operations that
may be performed at one, two, or more stages of the pipeline,
with one or more components or pipeline units at each stage
configured to perform a particular Sub-operation. In at least
some embodiments, the mode decision 1620 component
receives the best intra mode from intra estimation, direct/skip
mode cost from direct mode estimation, and motion vector
candidates from the motion estimation engines. In at least
Some embodiments, the mode decision component computes
additional costs for bi-directional modes and determines the
best macroblock type, including macroblock partitions, Sub
partitions, prediction direction and reference frame indices.
In at least some embodiments, the mode decision 1620 com
ponent also performs all motion vector prediction. The
motion vector prediction results may be used when estimat
ing motion vector rate during mode decision. In at least some
embodiments, the motion vector prediction results may also
be fed back from the mode decision 1620 component to
motion estimation, for example for use in direct mode esti
mation and motion vector rate estimation.
Motion Compensation and Reconstruction

In at least Some embodiments, motion compensation and
reconstruction 1630 operations may be subdivided into two or
more sub-operations that may be performed at one, two, or
more stages of the pipeline, with one or more components or
pipeline units at each stage configured to perform a particular

US 9,380,312 B2
27

Sub-operation. For example, in Some embodiments, motion
compensation and reconstruction 1630 may be subdivided
into luma motion compensation and reconstruction and
chroma motion compensation and reconstruction. In at least
Some embodiments, each of these Sub-operations of motion
compensation and reconstruction 1630 may be performed by
one or more components or pipeline units at one or more
stages of the pipeline.
Luma Motion Compensation and Reconstruction

In at least some embodiments, a luma motion compensa
tion component of the pipeline receives the best mode and
corresponding motion vectors from mode decision 1620. As
previously noted, each motion estimation engine may include
a memory component that reads and stores reference frame
data from a memory. If the best mode is inter-predicted, the
luma motion compensation component requests reference
frame macroblocks from the motion estimation engine cor
responding to the motion vectors. The motion estimation
engine returns subpixel interpolated 4x4 or 8x8 blocks
depending on the request size. The luma motion compensa
tion component then combines the blocks into prediction
macroblocks. The luma motion compensation component
then applies a weighted prediction to the prediction macrob
locks to create the final macroblock predictor that is then
passed to the luma reconstruction component.

In at least some embodiments, aluma reconstruction com
ponent of the pipeline performs macroblock reconstruction
for luma, including intra prediction (in at least some embodi
ments, the luma motion compensation component performs
interprediction), forward transform and quantization (FTQ),
and inverse transform and quantization (ITQ).

In at least some embodiments, based on the best mode from
mode decision 1620, either an interprediction macroblock is
passed from the luma motion compensation component or
intra prediction is performed by the luma reconstruction com
ponent to generate a prediction block. In intra mode, the
prediction is performed in block (scan) order since recon
structed pixels from neighbor blocks are needed for predic
tion of future blocks. The input block is subtracted from the
prediction block to generate a residual block. This residual
pixel data is transformed and quantized by an FTQ technique
implemented by the luma reconstruction component (or an
FTQ block thereof). The coefficient data is sent to an ITQ
technique implemented by the luma reconstruction compo
nent (or an ITQ block thereof), and may also be sent down
stream to CAVLC encoding. The ITQ technique generates a
reconstructed residual pixel block. The prediction block is
added to the residual block to generate the reconstructed
block. Reconstructed pixels may be passed downstream to a
deblocking filter. In at least some embodiments, recon
structed pixels may also be passed back to an intra-frame
estimation component of intra-frame and inter-frame estima
tion 1610 as feedback for use as neighbor data when process
ing Subsequent macroblocks. In at least Some embodiments,
reconstructed pixels may also be passed back to an intra
prediction neighbor pixel memory at the stage for use as
neighbor pixels when predicting Subsequent blocks inside the
current macroblock at the stage.
Chroma Motion Compensation and Reconstruction

In at least some embodiments, chroma reconstruction is
performed in two stages. In the first stage, chroma reference
blocks needed for inter prediction are read from memory
based on input macroblock type, motion vectors, and refer
ence frame index. Subpixel interpolation and weighted pre
diction is then applied to generate a prediction macroblock. In
the second stage, chroma intra prediction and chroma intra/
inter FTQ/ITQ is performed. This allows one additional pipe

10

15

25

30

35

40

45

50

55

60

65

28
line stage to load chroma prediction pixel data. Since chroma
pixels are not searched by motion estimation, the chroma
prediction data is read from external memory and may have
large latency. In at least Some embodiments, a chroma motion
compensation component performs the first stage, while a
chroma reconstruction component performs the second stage.

In at least Some embodiments, the chroma motion compen
sation component generates a prediction block including Sub
pixel interpolation for Cb and Cr chroma blocks; the size is
based on the partition size and chroma formats. A full size
chroma block is 8x8, 8x16, or 16x16 pixels for chroma for
mats 4:2:0, 4:2:2 and 4:4:4, respectively. In at least some
embodiments, the chroma motion compensation component
may prefetch and cache chroma prediction pixels from an
external (to the pipeline) memory. In at least Some embodi
ments, reference data may be read based on mode decision
1620 results. The chroma motion compensation component
performs subpixel interpolation to generate a prediction
block. Mode decision 1620 provides the macroblock type and
Sub-types, reference frame index per partition, and corre
sponding motion vectors. The prediction is output to the
chroma reconstruction component.

In at least some embodiments, the chroma reconstruction
component performs chroma prediction, chroma intra esti
mation and chroma reconstruction for inter and intra modes.
For chroma formats 4:2:0 and 4:2:2, intra chroma estimation
and prediction is performed. In at least Some embodiments,
chroma intra estimation is performed at this stage rather than
at intra-frame and inter-frame estimation 1610 so that recon
structed pixels can be used during the estimation process. In
at least some embodiments, if the best mode is an intra mode,
intra chroma estimation may be performed based on the best
intra chroma mode, and intra prediction may be performed
using one of four intra chroma modes. For inter macroblocks,
inter chroma prediction pixels are received from chroma
motion compensation. For chroma format 4:4:4, the luma
intra prediction modes are used to generate the chroma block
prediction, and inter chroma prediction is performed in the
same manner as for luma. Therefore, chroma reconstruction
conceptually includes 4:2:0 and 4:2:2 chroma reconstruction
and luma reconstruction used to reconstruct chroma in 4:4:4
chroma format.
CAVLC Encode and Deblocking

In at least some embodiments, CAVLC encoding and
deblocking may be performed by one or more components at
a last stage of the pipeline, as shown in 1640 of FIG. 16. In at
least some embodiments, a deblocking filter component of
the pipeline receives reconstructed luma and chroma pixels
from the chroma reconstruction component and performs
deblocking filtering according to the H.264 Recommenda
tion. Results may be output to a memory.

In at least some embodiments, a CAVLC encode compo
nent of the pipeline receives at least luma and chroma quan
tized coefficients, neighbor data, and chroma reconstruction
results from the chroma reconstruction component and gen
erates a CAVLC (context-adaptive variable-length coding)
encoded output stream to a memory. Note that in other
embodiments, an encode component of the pipeline may
generate an output stream other than a CAVLC encoded bit
stream, for example an output stream in a proprietary format
or in a format defined by another compression standard. Such
as the HEVC standard.

In at least Some embodiments, the deblocking filter com
ponent and the CAVLC encode component write neighbor
data for the bottom row of a quadrow to a memory at quadrow
boundaries. Referring again to FIG. 16, for the top row of a
next quadrow, macroblock input 1602 may then read this

US 9,380,312 B2
29

neighbor data from the memory at quadrow boundaries and
pass the neighbor data to at least one downstream stage of the
pipeline.
Transcoder

In at least Some embodiments, a transcoding operation may
be performed by a transcoder 1650. The transcoder may be
implemented as a functional component of the pipeline or as
a functional component that is external to the pipeline. In at
least some embodiments, the transcoder 1650 may perform a
memory-to-memory conversion of a CAVLC (context-adap
tive variable-length coding) encoded stream output by the
pipeline to a CABAC (context-adaptive binary arithmetic
coding) encoded stream. Note that in other embodiments, the
transcoder 1650 may perform a memory-to-memory conver
sion of data in a format other than a CAVLC encoded bit
stream (e.g., data in a proprietary formatorina format defined
by another compression standard, such as the HEVC stan
dard) to a CABAC encoded bit stream.

In at least some embodiments, the pipeline may encode in
an order other than scan order, for example knight's order as
previously described herein. However, ultimately, the H.264
video encoder's encoded bit stream should be transmitted in
conventional macroblock scan order. In at least Some embodi
ments, re-ordering the macroblock output from knights
order to scan order is accomplished by the CAVLC encode
component writing encoded data to four different output buff
ers, each output buffer corresponding to a macroblock row. At
the end of a quadrow, each row buffer will contain a scan order
stream of encoded macroblocks for a respective row.
Transcoder 1650 handles stitching the start and end of each
row to generate a continuous stream at macroblock row
boundaries. In at least some embodiments, the pipeline may
embed metadata in the CAVLC output stream to facilitate
stitching of the rows by the transcoder 1650.
Computing and Using Gradient Histograms to Detect Text
As previously noted, some embodiments of the video

encoding pipelines described herein may compute gradient
histograms for each macroblock to be processed in the pipe
line, may use those histograms to determine the likelihood
that a given macroblock represents a portion of a video frame
that includes text, and, if it is determined that the given mac
roblock is likely to represent a portion of a video frame that
includes text, may adjust various encoding parameter values
to improve the quality of the encoding of the given macrob
locks (e.g., using different parameter values when encoding
the given macroblock than when encoding other macroblocks
in the same video frame or other video frames that are not
likely to contain text).
As noted above, in at least Some embodiments, macroblock

input 1602 may receive luma and chroma pixels from a
memory, compute statistics on input pixels that are used by
firmware in downstream stages of the pipeline, and buffer
input macroblocks to enable firmware lookahead. The statis
tics collected on input macroblocks may include (e.g., for
each 16x16 macroblock on luma, in Systems that implement
the H.264 standard, or for each Coding Tree Unit, Coding
Unit, or Transform Unit on luma and/or chroma, in Systems
that implement the H.265 standard) horizontal and vertical
gradients (GX and Gy) on luma and/or chroma, and/or gradi
ent histograms for GX and Gy on luma and/or chroma, in
different embodiments. In at least some embodiments, the
macroblock input may also compute statistics reflecting the
variance within macroblocks, which is, in general, a second
order effect. The variance information may provide informa
tion that is useful in classifying macroblocks. For example, if
a macroblock represents a portion of an image containing a
patch of grass, it will exhibit a relatively high variance, which

5

10

15

25

30

35

40

45

50

55

60

65

30
may indicate to the video encoding pipeline that it should be
classified as a texture, and encoded in a manner that is appro
priate for encoding high frequency areas. However, a mac
roblock containing text (even when the text is on a flat back
ground) may also exhibit a relatively high variance.
Therefore, the variance alone may not be useful for determin
ing whether a macroblock contains text, a texture, or a col
lection of objects with sharp edges. In some embodiments,
the systems and methods described herein may be used to
determine the likelihood that a given macroblock represents a
portion of a video frame that contains text (e.g., to distinguish
between relatively flat areas that happen to include text and
texture areas), based on one or more histograms of gradient
information and/or statistics derived from those histograms.
In Such embodiments, if the given macroblock represents (or
is determined to be likely to represent) a portion of a video
frame that contains text, adjustments may be made to the
encoding operations performed on the given macroblock to
provide high quality encoding for that macroblock, to
improve the experience for the viewer.
The human vision system can detect differences within flat

areas of an image much more easily than within texture areas.
For example, for two neighboring macroblocks (or portions
thereof) in a flat region of a video frame (or in Successive
Video frames), even Small differences in the final images (e.g.,
after reconstruction, etc.) may be noticeable to the viewer
(e.g., resulting in a bending effect, a halo effect, or other
effects due to quantization errors, in some cases). However,
with high texture areas, human vision systems have a way to
mask differences. In other words, when there is a dominant
signal, even if the images are slightly different from each
other, the viewer is unlikely to see those differences. Human
vision systems are also highly trained for viewing text, and
may object to an encoding result in which any text in the video
frame is not sharp or exhibits quantization errors (e.g., bend
ing, ringing, or halo effects). For example, in wireless display
encoding (in which the content of a computer desktop is
compressed and transmitted to a wireless display), it may be
objectionable for video frames (or portions thereof) that con
tain text to be encoded in a manner that results in the text not
being sharp or in the image exhibiting such quantization
artifacts.

Given limitations on computation budgets for performing
macroblock encoding within a video encoding pipeline
(which may be on the order of hundreds of cycles) and, in
Some cases, bandwidth for streaming the results over a net
work to a device on which it will be displayed, a traditional
encoding approach may allocate more of the computation
budget and/or bandwidth to flat areas. For example, a tradi
tional encoder may increase a quantization parameter (e.g.,
for QP modulation during luma reconstruction) for textured
(high frequency) areas of a video frame, encoding it with
lower quality than that with which flat areas are encoded,
because it will be less objectionable to the viewer. However,
it may not be desirable to apply encoding parameters that are
Suitable for encoding high texture macroblocks (e.g., param
eters that result in a lower quality result) when encoding
macroblocks that include a mix of flat areas (e.g., a back
ground) and text, because a higher quality result is more
important to the viewer when the macroblock includes text. In
some embodiments, the systems described herein may be able
to distinguish between macroblocks that represent portions of
a video frame containing text and those that represent por
tions of a video frame containing other objects that include
sharp edges, and to adjust various encoding parameters
accordingly.

US 9,380,312 B2
31

In some embodiments, a macroblock input component of
the video encoding pipelines described herein may be con
figured to determine that a given macroblock is likely to
include text, and to make that information available to com
ponents in other stages of the video encoding pipeline as an
input to their operations (e.g., as a hint to treat the macroblock
differently than it might otherwise have). For example, if a
viewer is scrolling quickly through a screen that includes text,
they may not actually be focused on the text, and the quality
of the encoding for those video frames (and the macroblocks
thereof that contain text) may not be critical. However, once
the viewer stops scrolling and begins to read an article, it may
be desirable to present video frames in which the macrob
locks containing text have been encoded at a higher quality. In
Some embodiments, by providing gradient information, his
tograms of gradient information, macroblock-level, slice
level, or frame-level statistics based on the gradient informa
tion, on the histograms or on the history of the frame-level
statistics/gradient information from one or more previous
frames, or encoding parameters that were computed based on
Such information, various components in different stages of
the video encoding pipeline may recognize these situations
(and other situations in which it may be desirable to encode a
macroblock containing text differently than other macrob
locks) and make appropriate adjustments.
As described in more detail below, in some embodiments,

a macroblock input component for a block processing pipe
line (e.g., a video encoding pipeline) may compute gradients
in multiple directions and may accumulate the gradient infor
mation (in any of a variety of ways) to compute one or more
histograms of the gradient information. In some embodi
ments, the computation of the gradients and the histograms
may be performed by in hardware in the macroblock input
component. Data representing the gradients and histograms
may be stored in a data structure from which it may be
accessed by software running on a CPU at the macroblock
input stage. The Software may analyze the data to determine
whether the macroblock is likely to contain text (e.g., by
determining whether there is a dominant gradient direction in
the macroblock). If so, the Software may take steps to make
this information (and/or other information, such as various
encoding parameters that are Suitable for use in encoding the
macroblock) available to other stages of the pipeline. For
example, in some embodiments, the Software running on the
CPU at the macroblock input stage may compute various
parameters for biasing or controlling quantization, mode
decisions, or other operations, and may push this information
(and/or the statistics used to compute them) to components in
other stages. Subsequently, statistics and/or additional encod
ing parameters that are computed by these other stages may,
in turn, be passed to stages even farther down the pipeline, in
Some embodiments. In other embodiments, statistics and/or
encoding parameters that are computed at the macroblock
input stage or at any Subsequent stage of the video encoding
pipeline may be stored in a shared data structure (e.g., a
statistics buffer) from which they may be accessed by com
ponents at any of the stages of the video encoding pipeline, as
appropriate.
One embodiment of a method for performing an encoding

operation on a macroblock, dependent on one or more histo
grams of gradient values, is illustrated by the flow diagram in
FIG. 17. As illustrated at 1710, in this example, the method
may include a macroblock input component for a block pro
cessing pipeline (e.g., an input component that receives mac
roblocks to be processed in a video encoding pipeline) receiv
ing input data representing a block of pixels from a video
frame. The method may include the macroblock input com

10

15

25

30

35

40

45

50

55

60

65

32
ponent computing gradient values for the block of pixels in
multiple directions, as in 1720. For example, the macroblock
input component may be configured to compute the gradient
values in hardware (e.g., using circuitry) and/or using soft
ware or firmware executing on a CPU in the macroblockinput
component, in different embodiments. As described in more
detail below, the gradients may be computed using any of a
variety of filters, in different embodiments.
As illustrated in this example, the method may include the

macroblock input component computing one or more histo
grams of the gradient values for the block of pixels (or of
macroblock-level statistics derived from the gradient values),
as in 1730. Again, the macroblock input component may be
configured to compute the histograms inhardware (e.g., using
circuitry) and/or using software or firmware executing on a
CPU in the macroblock input component, in different
embodiments. As described in more detail herein, the mac
roblockinput component may compute the histograms based
on a count of angles (in different ranges of angles) represent
ing the gradient directions at each of multiple points within
the macroblock, based on a count of gradient magnitudes (in
different ranges of gradient magnitudes) at each of multiple
points within the macroblock, or based on the binning of other
statistics that can be derived using the gradient values (with or
without other information).
As illustrated in FIG. 17, the method may also include the

macroblock input component (or another hardware or soft
ware component of the block processing pipeline) determin
ing the likelihood that the block of pixels represents an image
containing text, dependent on the histogram(s), as in 1740.
For example, in embodiments that implement a Software
pipeline and a hardware pipeline, this determination may be
performed by a software pipeline component (such as one of
the software pipeline components 322 described above) and
may be passed to (or made available to) a hardware pipeline
component (Such as one of the hardware pipeline components
326 described above) in a subsequent pipeline stage. In other
embodiments, this determination may be made in hardware
(e.g., using circuitry) in the macroblockinput component (or
in another component of the block processing pipeline) and/
or using software or firmware executing on a CPU in the
macroblock input component. As illustrated in this example,
the method may include the macroblockinput component (or
another component of the block processing pipeline) deter
mining one or more parameter values for encoding the block
of pixels in the block processing pipeline, dependent on the
likelihood that the block of pixels represents an image con
taining text, as in 1750. In some embodiments, this determi
nation may be performed by a Software pipeline component
(such as one of the Software pipeline components 322
described above) and may be passed to (or made available to)
a hardware pipeline component (Such as one of the hardware
pipeline components 326 described above) in a Subsequent
pipeline stage. In other embodiments, this determination may
be made in hardware (e.g., using circuitry) in the macroblock
input component (or in another component of the block pro
cessing pipeline) and/or using software or firmware executing
on a CPU in the macroblock input component.
The macroblock input component may be configured to

use any of a variety of filters to compute gradients for a
macroblock based on the pixel information received for each
macroblock (e.g., the luma and/or chroma pixels received for
the macroblock). FIGS. 18A and 18B illustrate the applica
tion of different filters in computing gradient values for a
16x16 macroblock 1800, according to some embodiments.
For example, FIG. 18A illustrates an embodiment in which a
-1 1 filter is applied to the pixel data (e.g., the luma pixel

US 9,380,312 B2
33

data or the chroma pixel data) for macroblock 1800. More
specifically, FIG. 18A illustrates the neighbor pixels that are
considered when computing horizontal and vertical gradients
for five of the pixels of macroblock 1800 (i.e., the pixels
labeled A, B, C, D, and E) using a -11 filter. In this example,
to compute a horizontal gradient for each pixel that has a
neighbor to its immediate right (e.g., the pixels labeled A, C,
D, and E), the filter is applied to the labeled pixel and to the
neighbor to its immediate right (a pixel that is illustrated in
FIG. 18A using horizontal hash marks). Similarly, to compute
a vertical gradient for each pixel that has a neighbor imme
diately below it (e.g., the pixels labeled A, B, C, and E), the
filter is applied to the labeled pixel and to the neighbor imme
diately below it (e.g., a pixel that is illustrated in FIG. 18A
using vertical hash marks).

Note that, in Some embodiments, an input macroblock
component that is configured to compute horizontal and Ver
tical gradients for macroblocks may only compute gradient
values for pixels for which the data needed to compute both
the horizontal and vertical gradients is available (e.g., pixels
that have both a neighbor to their immediate right and a
neighbor immediately below them, such as the pixels labeled
A, C, and E). In other embodiments, the input macroblock
component may be configured to compute a horizontal gra
dient only, a vertical gradient only, or both a horizontal gra
dient and a vertical gradient for various pixels in the macrob
lock, dependent on the available neighbor information. For
example, in one such embodiment, the input macroblock
component may be configured to compute a horizontal gra
dient only for the pixel labeled D, a vertical gradient only for
the pixel labeled B, and both horizontal and vertical gradients
for the pixels labeled A, C, and E.

FIG. 18B illustrates an embodiment in which a -1 0 1
filter is applied to the pixel data for macroblock 1800. More
specifically, FIG. 18B illustrates the neighbor pixels that are
considered when computing horizontal and vertical gradients
for the same five pixels of macroblock 1800 (i.e., the pixels
labeled A, B, C, D, and E) using a -1 0 1 filter. In this
example, to compute a horizontal gradient for each pixel that
has a neighbor to its immediate right and a neighbor to its
immediate left (i.e., interior pixels, such as the pixel labeled
A), the filter is applied to the labeled pixel and to the neigh
bors to its immediate right and left (i.e., pixels that are illus
trated using horizontal hash marks). Similarly, to compute a
Vertical gradient for each pixel that has a neighbor immedi
ately below it and a neighbor immediately above it (i.e.,
interior pixels, such as the pixels labeled A), the filter is
applied to the labeled pixel and to the neighbors immediately
below and above it (i.e., pixels that are illustrated using ver
tical hash marks).

Again note that, in Some embodiments, an input macrob
lock component that is configured to compute horizontal and
Vertical gradients for macroblocks may only compute gradi
ent values for pixels for which the data needed to compute
both the horizontal and vertical gradients is available (e.g.,
pixels that have both neighbors to their immediate right and
left, and neighbors immediately below and above them). In
other embodiments, the input macroblock component may be
configured to compute a horizontal gradient only, a vertical
gradient only, or both a horizontal gradient and a vertical
gradient for various pixels in the macroblock, dependent on
the available neighbor information. For example, in one Such
embodiment, the input macroblock component may be con
figured to compute a horizontal gradient only for the pixels
labeled D and E, a vertical gradient only for the pixels labeled
B and C, and both horizontal and vertical gradients for the
pixel labeled A. Also note that, in other embodiments, differ

10

15

25

30

35

40

45

50

55

60

65

34
ent weights may be applied to the pixels in the neighborhood
of each pixel in the macroblock (e.g., using different filters)
when computing the horizontal and Vertical gradients at the
pixel.
As previously noted, after computing horizontal and Ver

tical gradients for a macroblock, the macroblock input com
ponent may be configured to compute histograms for the
macroblock that are based on a count of angles (in different
ranges of angles) representing the gradient directions that
were computed at each of multiple points within the macrob
lock. In some embodiments, the gradientangle may represent
the angle that the gradient forms with the horizontal axis of
the macroblock (and the video frame of which it is a part), and
the angles may be measured in a clock-wise direction, Such
that an angle of 0 degrees corresponds to a horizontal vector.
The bins of the histogram may be spread evenly over 180
degrees (in embodiments in which they represent unsigned
gradient angles) or over 360 degrees (in embodiments in
which they represent signed gradient angles).

In some embodiments (and in the example histograms
illustrated in FIGS. 19A, 19B, 20A, and 20B), the sum of the
bin counts for all of the bins may be equal to the size of the
macroblock (e.g., 256 for a 16x16 macroblock). In some
embodiments, when one direction is dominant (which may be
the case when the macroblock includes text), most of the bin
counts (or many more of the bin counts than in other bins)
would be in one (or a small number) of the bins. For example,
for a macroblock that includes text (and thus includes many
sharp vertical, or near-vertical edges), the bin counts may be
much larger in one or more horizontal bins (e.g., in one or
more bins representing horizontal or near-horizontal gradient
directions) than in other bins. Note that, in various embodi
ments, the techniques described herein may be used to detect
any dominant gradient direction (e.g., a horizontal, Vertical,
diagonal, any other dominant direction). In some Such
embodiments, the dominant direction may indicate a strong
edge in the macroblock, but may not necessarily represent
text (e.g., if the dominant gradient direction is something
other than horizontal or near-horizontal).

FIG. 19A and FIG. 19B illustrate example histograms of
gradient direction values (or, more specifically, computed
gradient orientation angles), according to some embodi
ments. For example, FIGS. 19A and 19B illustrate histograms
in which each bin on the horizontal axis represents a range of
angles corresponding to gradient directions computed at mul
tiple points within a macroblock (e.g., at each pixel in the
macroblock or at each pixel for which the neighbor data
required to compute the gradient values was available). In
each of these figures, the vertical axis represents the number
(or relative number) of times that a gradient direction within
a given range of gradient directions is detected in a 16x16
macroblock.

In some embodiments, to produce the histogram illustrated
in FIG. 19A, a macroblock input component may be config
ured to compute horizontal and Vertical gradient values at
multiple points within the macroblock, and to derive from
those gradient values, an angle representing the gradient
direction at that point. For example, Such an angle may be
computed as follows:

In this example, GX represents the horizontal gradient
value and Gy represents the vertical gradient value at a par
ticular point in the macroblock (e.g., at the pixel labeled A in
FIGS. 18A and 18B). In some embodiments (and in the
examples illustrated in FIGS. 19A and 19B), the macroblock
may be configured to compute an unsigned gradient direction

US 9,380,312 B2
35

angle (as above), while in other embodiments, the macrob
lock may be configured to compute a signed gradient direc
tion angle, as follows:

In either case, the macroblock input component may be
configured to count the number of times that the computed
angles fall into different ranges of angles, each of which
corresponds to a respective bin of the histogram. The mac
roblock input component (or another component) may be
configured to analyze the histogram data to determine
whether there is a dominant gradient direction for the mac
roblock and/or to determine the likelihood that the macrob
lock represents a portion of a video frame that contains text.

In the example histogram illustrated in FIG. 19A, there is
no dominant gradient direction for the macroblock. There
fore, the macroblock input component (or other component)
may assume that the macroblock represents a portion of a
Video frame that does not contain text, and may be configured
to compute one or more encoding parameter values Suitable
for non-text macroblocks. However, in the example histo
gram illustrated in FIG. 19B, there is a dominant gradient
direction for the macroblock (i.e., the direction correspond
ing to angles in the range of 0-22.5° and in the range of
157.5-180°). In this example, because there is a dominant
gradient direction for the macroblock (shown as a large num
ber of bins counts in bins representing horizontal or near
horizontal angles in the histogram), and because the dominant
direction indicates a large number of vertical or near-vertical
edges in the macroblock image, the macroblock input com
ponent (or other component) may assume that the macrob
lock represents a portion of a video frame that contains text,
and may be configured to compute one or more encoding
parameter values suitable for Such macroblocks.
As described above, a filter may be applied to a small

number of pixels in the neighbor of each pixel within the
macroblock to apply a weighting when computing the gradi
ent values, in Some embodiments. Similarly, in some embodi
ments, the computation of a histogram of gradients may
include a weighting (rather than being dependent only on
unweighted bin counts). In some embodiments, in order to
compute a histogram of oriented gradients (sometimes
referred to as a HOG descriptor), each pixel within the mac
roblock may vote for an orientation-based histogram bin
based on the values found in the gradient computation. For
example, the pixel may Vote for the bin representing an angle
(or range of angles that is closest to the gradient angle com
puted at the pixel. The weight of each vote (e.g., the weight of
the contribution from each pixel) may be based on the gradi
ent magnitude, or may be based on a function of the magni
tude (e.g., the square root of the gradient magnitude, the
square of the gradient magnitude, or a truncated version of the
magnitude that includes a Subset of the bits of the magnitude),
in different embodiments. In such embodiments, the HOG
descriptor comprises the combination of the bins in the his
togram.
As noted above, in some embodiments, the macroblock

input component may be configured to compute separate
horizontal and vertical histograms, based on the horizontal
and Vertical gradient values computed at multiple points
within the macroblock. In some such embodiments, the hori
Zontal and vertical gradient values (which may include a
value representing a direction and a magnitude value) may be
calculated by hardware within the macroblock input compo
nent, and the histograms may be computed by program
instructions executing on a CPU within the macroblock input
component (or a component of another stage within the video

10

15

25

30

35

40

45

50

55

60

65

36
encoding pipeline). In some embodiments, the magnitude
value of each of the gradients may determine the bin index of
the histogram in which the gradient will be represented by a
count. In some embodiments (and in the example histograms
illustrated in FIGS. 20A and 20B), each histogram includes
eight bins, and the upper three bits of the scaled and unsigned
gradient values (e.g., the upper three bits of Abs(Gx) or Abs
(Gy)) may be used as the bin index for the histogram. In Such
embodiments, a given bin count may be incremented for each
gradient value (i.e., gradient magnitude value) of the macrob
lock that falls within the range defined for the bin by its index
(e.g., defined by particular values for the upper three bits of
the gradient magnitude).

FIGS. 20A and 20B illustrate a histogram of horizontal
gradients and a histogram of vertical gradients for a macrob
lock, respectively, according to Some embodiments. In these
histograms, the bin index for each bin is shown (on the X axis)
as a binary representation of the upper three bits of an 8-bit
gradient magnitude value for a gradient in that direction, and
the height of each bin (shown on the y axis) indicates the
number of times that a gradient magnitude value for a gradi
ent in that direction was detected within each particular range
of values (as determined by the upper three bits) in the mac
roblock.
More specifically, FIG. 20A illustrates histogram of verti

cal gradients for a macroblock in which none of the bins is
dominant. In this example, the differences between the
heights of the bins is relatively small, and there is no indica
tion that there are a large number of horizontal edges. Taken
alone, this may indicate the macroblock is unlikely to repre
sent a portion of a video frame that contains text. However,
FIG. 20B illustrates a histogram of horizontal gradients for
the same macroblock in which one of the bins is dominant. In
this example, the bin indexed as 111 (i.e., the bin correspond
ing to the largest gradient magnitude values) is much taller
than any of the other bins, indicating that a large number of
horizontal gradients have large magnitudes. Since this would
be the case if the macroblock represents a portion of the video
frame that includes many vertical edges, this may indicate
that the macroblock is likely to represent a portion of a video
frame that contains text.
As described above, in some embodiments, once a domi

nant gradient direction foragiven macroblock has been deter
mined and/or a likelihood that the given macroblock contains
text has been determined, various hardware and software
components in the video encoding pipeline may use this
information to bias, control, or otherwise influence the opera
tions performed by those components or by components in
stages that follow them. For example, in response to deter
mining that a given macroblock represents a portion of a
Video frame that contains text, various encoding parameters
may be computed and/or modified in order to perform a
higher quality encoding than might otherwise have been per
formed for that macroblock (e.g., based on the variance or
other information about the macroblock). In various embodi
ments, this may include reducing the quantization parameter
for the macroblock, biasing or controlling the selection of a
prediction mode, or biasing or controlling the selection of an
encoding mode for the macroblock.

In some embodiments, based on the statistics computed at
the macroblock input stage (including the determination that
a given macroblock is likely to represent a portion of a video
frame that contains text), the quantization parameter value
QP (i.e., the quantization step to be used in the encoder, which
may also affect the quantization error) may be computed or
modified such that it is lower than it would have otherwise
been for the macroblock based on information other than the

US 9,380,312 B2
37

determination that the macroblock is likely to contain text.
The selection of the quantization parameter value may change
how the luma and/or chroma information is quantized in the
pipeline. For example, it may affect the quantization step used
in the luma reconstruction component when performing luma
reconstruction and quantization. In some embodiments, it
may also affect chroma reconstruction. Note that in some
embodiments, the same quantizer may be used by both the
luma and chroma reconstruction components. However, in
other embodiments, there may be a delta between the quan
tization parameter used in the luma reconstruction compo
nent and the quantization parameter used in the chroma
reconstruction, but the quantization parameter used in the
luma reconstruction component may also affect, per macrob
lock, how the chroma quantization parameter value is
changed.
As previously noted, in high texture areas, using a higher

QP (i.e., a larger step size) may mean that less data is retained
following quantization, which may increase distortion (when
compared with quantization using a lower QP). However,
since human vision systems may not notice Small distortions,
the higher QP may be suitable for texture areas and may allow
other areas (those in which such distortions would be more
noticeable. Such as text areas) to be encoded using a lower QP
(i.e., to retain more data following quantization) while still
meeting network bandwidth constraints when streaming the
results. Note that by selecting a lower QP only for those
macroblocks that are likely to contain text (rather than select
ing a lower frame-level QP) may prevent unnecessary peaks
in the bandwidth required to stream the results of the encod
ing that are unlikely to improve the quality of the results, as
perceived by the viewer. In other words, the techniques
described herein may allow for fine-grained control over the
encoding of macroblocks that are likely to contain text and
those that are not likely to contain text. Such that computation
and network bandwidth constraints do not prevent the video
encoding pipeline from improving the quality of the results in
areas in which the quality will be most noticeable. The use of
these techniques may, in some embodiments, result in better
quality encoding, with fewer artifacts (or at least fewer
noticeable artifacts), for video frames that include text (e.g.,
images of web pages and other text-based information on a
computer Screen).

Another stage of a video encoding pipeline that may make
use of a determination that a given macroblock is likely to
represent a portion of a video frame that contains text (or that
there is a dominant gradient direction in the macroblock) is an
intra-estimation stage. Such as that described above. In some
embodiments, an indication of the result of Such a determi
nation may be used as an input to bias the selection of a
prediction mode in the intra-estimation stage (e.g., to bias
certain directions based on the presence of a dominant gradi
ent direction). As noted above, in intra-estimation, for each
prediction mode in the current block, the cost of the current
mode is evaluated by creating a prediction block from neigh
bor pixels, computing a mode cost, and comparing the mode
cost to a minimum cost for that block. Once all prediction
modes are evaluated and the best mode is determined, recon
struction may be performed for the best mode so that recon
structed pixels can be used to predict future blocks within the
macroblock. The intra estimation component may then pass
best intra mode information to a mode decision stage (such as
mode decision 1620 illustrated in FIG. 16).

In some embodiments, if it is known that there is dominant
gradient direction (e.g., a specific diagonal direction that is
dominant) in a given macroblock, then during intra-estima
tion, a prediction mode corresponding to that dominant direc

10

15

25

30

35

40

45

50

55

60

65

38
tion may be given a bias that makes it more likely to be
selected. For example, in some embodiments, the video
encoding pipeline may employ a typical rate distortion opti
mization when computing the cost of each mode. In addition,
the pipeline may support the use of programmable offsets per
mode that can be added to the rate term to weight it during
mode selection. In some embodiments, there may be different
offsets for each mode, and they may be positive or negative.
For example, an offset A may be added if the mode is hori
Zontal, and an offset B may be added if the mode is vertical.
In this example, if the dominant mode is horizontal, a negative
offset may be added so that the cost of that mode would be
lower when compared to the other modes. In some embodi
ments, choosing the dominant mode (i.e., the mode corre
sponding to the dominant gradient direction), Such that the
prediction is in the direction of the dominant edge, may result
in fewer visual artifacts than if the prediction is done in
another direction. In some cases, the intra-estimation may
have chosen that direction naturally. However, in cases in
which, for Some reason (e.g., in terms of rate distortion, but
without taking into account the determined dominant direc
tion) the intra-estimation would have chosen a different direc
tion (which could have potentially introduced more visual
artifacts), having the information about the dominant direc
tion may allow the video encoding pipeline to bias the mode
to achieve better results.

In Some embodiments, the gradient information (or the fact
that there is a dominant gradient direction) may be used to
modify, select, or bias the terms of a rate distortion optimiza
tion used in mode decision, intra-estimation, or motion esti
mation. In various embodiments, a rate distortion optimiza
tion used to minimize a cost function for a given mode may
include a linear combination of a distortion metric that mea
sures differences between two modes, and the rate cost of
encoding the macroblock due to those difference times a
parameter (lambda) that converts the units of rate into units of
distortion. For example, in some embodiments, the cost func
tion to be optimized in order to find the optimal motion vector
may be as follows:

cost=SATD+(mvd rate)

In this example, the cost function includes a linear combi
nation of a distortion metric between the source frame and the
reference frame (e.g., a sum of absolute differences, SAD, or
a sum of absolute transform differences, SATD) and the rate
cost of encoding the macroblock, which will include the rate
cost of the motion vector difference (e.g., the mVd rate),
where the motion vector difference is equal to the difference
between the motion vector being evaluating and the motion
vector predictor. In this example, lambda represents a motion
regulation parameter that is used to convert the units of rate
into units of distortion. In some embodiments, lambda may be
dependent on the gradient information (or the fact that there is
a dominant gradient direction).
As noted above, the mode decision 1620 component may

receive the best intra mode from intra estimation, direct/skip
mode cost from direct mode estimation, and motion vector
candidates from the motion estimation engines, may compute
additional costs for bi-directional modes, and may determine
the best macroblock type, including macroblock partitions,
Sub-partitions, prediction direction and reference frame indi
ces. In at least some embodiments, the mode decision 1620
component may also perform motion vector prediction, the
results of which may be used when estimating motion vector
rate during mode decision. In at least some embodiments, the
motion vector prediction results may also be fed back from
the mode decision 1620 component to motion estimation, for

US 9,380,312 B2
39

example for use in direct mode estimation and motion vector
rate estimation. In some embodiments, the systems described
herein may be used to bias or control the motion estimation.
As noted above, in the motion estimation stage, the pro

cessor may determine one or more candidates using predicted
and co-located motion vectors and may input the candidates
to the full pixel motion estimation components of the motion
estimation engines. In some embodiments, the system may
employ biases for choosing motion vectors, for partitioning,
and/or for choosing the additional candidates that are being
searched. For example, performing a low-resolution search
may provide candidates for a Subsequent full pixel motion
estimation search. In some embodiments, Software candi
dates may be provided in addition to the candidates provided
by the low-resolution search results. For example, these soft
ware candidates may come from within the encoder (e.g.,
from a feedback loop of what the predicted vector is, which
could become a candidate), or may be hard-coded as 0, 0 or as
an external vector that is based on what the camera that
originally captured the video frame measured as a global
vector. In some embodiments, the gradient values, histograms
of gradients, or statistics based on this information may be
used to determine which, if any, of these additional vectors
should be candidates in the motion estimation stage (and
when). In other words, this information may be used to select
better candidates. For example, if it is known that there is a lot
of texture in a given macroblock (or that the macroblock
contains text), it may be assumed that the predicted vector is
not reliable. In such cases, a 0.0 vector (or some other vector
that may be more reliable) may be chosen as a candidate,
rather than the predicted vector.
One embodiment of a method for passing encoding param

eter values generated at a macroblock input component,
dependent on one or more gradient histograms, to different
stages of a block processing pipeline (e.g., a video encoding
pipeline) is illustrated by the flow diagram in FIG. 21. As
illustrated at 2110, in this example, the method may include a
macroblock input component computing one or more histo
grams of gradients for an input macroblock (e.g., using any of
a variety offiltering and binning mechanisms, including those
described herein), and storing the histogram(s), e.g., in a
statistics buffer that is accessible to hardware and/or software
components in multiple stages of the video encoding pipeline.
The method may also include the macroblock input compo
nent determining whether there is a dominant gradient direc
tion in the macroblock, as in 2120. If no dominant gradient
direction exists in the macroblock (shown as the negative exit
from 2125), no additional parameter values may be computed
by the macroblock input component based on the
histogram(s), as in 2130.

In some embodiments, an intra-estimation operation com
ponent and/or a mode decision component may be configured
to take the dominant gradient direction (if one exists) into
consideration when performing a portion of the overall video
encoding operation. In some such embodiments, if a domi
nant gradient direction exists in the macroblock (shown as the
positive exit from 2125), the method may include the mac
roblockinput component storing aparameter value indicating
the dominant gradient direction in the statistics buffer (from
which the intra-estimation operation component and/or the
mode decision component can retrieve it) and/or passing the
parameter value indicating the dominant gradient direction to
the intra-estimation component (e.g., to be used to bias or
control the selection of a predication mode) and/or to the
mode decision component (e.g., to bias or control the selec
tion of an encoding mode), as in 2140. Similarly, in some
embodiments, a motion estimation component may be con

10

15

25

30

35

40

45

50

55

60

65

40
figured to take a dominant gradient direction into consider
ation when performing a portion of the overall video encod
ing operation. In some such embodiments, if a dominant
gradient direction exists in the macroblock, the method may
include the macroblockinput component storing a parameter
value indicating the dominant gradient direction in the statis
tics buffer (if it has not already done so) and/or passing the
parameter value indicating the dominant gradient direction to
the motion estimation component to be used to bias or control
the selection of a motion vector, as in 2150.
As illustrated in this example, if the dominant gradient

direction is horizontal (shown as the positive exit from 2155),
this may indicate a high likelihood that the macroblock rep
resents a portion of a video frame containing text. In this case,
the method may include the macroblock input component
assuming that the macroblock contains text, and setting the
quantization parameter value (QP) for this macroblock to a
lower value than would otherwise have been computed for the
macroblock if it did not contain text (e.g., if it were a non-text
block), as in 2160. However, if the dominant gradient direc
tion is not horizontal (shown as the negative exit from 2155),
the method may include the macroblock input component
assuming that the macroblock does not contain text, and
setting a quantization parameter value (QP) for this macrob
lock to a value that is higher than would otherwise have been
computed for the macroblock if it did contain text (e.g., if it
were a text block), as in 2170.

Embodiments of block processing pipelines that include
both a Software pipeline and a hardware pipeline (such as the
video encoding pipelines illustrated in FIGS. 3-7 and
described herein) may be configured in a variety of ways in
order to compute gradient values for a macroblock, gradient
histograms, macroblock-level statistics and/or encoding
parameters, slice-level statistics and/or encoding parameters,
or frame-level statistics and/or encoding parameters using
different combinations of Software pipeline components and
hardware pipeline components. For example, in some
embodiments, one or more hardware pipeline components
may be configured to compute and collect gradient values for
macroblocks that are received for processing in the video
encoding pipeline (e.g., at a macroblock input stage). Subse
quently, a hardware or Software pipeline component in the
same stage or in another stage may be configured to analyze
the gradient information and act on the results of the analysis.
For example, in some embodiments a Software pipeline com
ponent at the macroblock input stage may be configured to
determine whether it is likely that a given macroblock repre
sents a portion of a video frame containing text, and to use this
information to select, modify, or bias the selection of various
encoding parameters so that the macroblock will be encoded
appropriately (e.g., at an appropriately high quality).

In some embodiments, Software pipeline components in
the macroblockinput stage and/or in other stages (e.g., stages
that succeed the macroblock input stage) may be configured
to compute additional statistics or encoding parameters for
use in the video encoding pipeline based on the gradient
values that were computed by the hardware component at the
macroblock input stage and/or on information derived from
the gradient values by Software pipeline components in Vari
ous preceding pipeline stages. For example, rather than com
puting all of the statistics and/or encoding parameters needed
to process a macroblock through all stages of the video encod
ing pipeline at the macroblockinput stage, at least some of the
computations may be performed in later stages of the pipe
line. In some embodiments, as additional information is com
puted and analyzed for a macroblock, slice, or frame, the
encoding parameters used in Subsequent stages to encode the

US 9,380,312 B2
41

macroblock, slice, or frame (or used to encode Subsequent
macroblocks, slices, or frames) may be modified according to
the particular circumstances. In this manner, the computa
tional load (e.g., the set of calculations to perform in order to
compute all of the statistics and/or encoding parameters
needed to process a macroblock in the video encoding pipe
line) may be distributed between the CPUs in multiple pipe
line stages. In some Such embodiments, the raw statistics
generated at the macroblock input stage (e.g., the gradient
values and/or gradient histogram information) may be passed
to other stages that will perform respective ones of the calcu
lations (e.g., stages that will use the results of the calculations
they perform, or stages that will perform the calculations and
pass the results to still other stages that will use them). In other
embodiments, the raw statistics generated at the macroblock
input stage (e.g., the gradient values and/or gradient histo
gram information) may be written to a statistics buffer, from
which components at other stages of the pipeline may retrieve
them in order to perform other ones of the calculations (after
which the results of these other calculations may also be
written to the statistics buffer).

In one example, if a software pipeline component in the
intra-estimation stage has enough computational cycles to
compute a quantization parameter value QP for a given mac
roblock (e.g., in response to receiving gradient values or
gradient histogram information for the macroblock), it may
compute the QP and pass it to a luma reconstruction stage to
be used in a quantization operation for the macroblock. In
another example, rather than determining whether a given
macroblock should be classified as containing text at the
macroblock input stage, in Some embodiments, this decision
may be made at the mode decision stage, based on gradient
values or histogram information passed to the mode decision
stage from the macroblock input stage. As described herein,
in Some embodiments, rather than passing the raw statistics
generated at the macroblock input stage (e.g., the gradient
values and/or gradient histogram information) or any statis
tical information or encoding parameters derived from the
raw statistics directly to particular pipeline stages, this infor
mation may be stored in a data structure (e.g., a statistics
buffer) by the hardware or software pipeline components that
compute the information, and the Software pipeline compo
nents in any or all of the other stages of the video encoding
pipeline may access the data structure to obtain the informa
tion they need to compute additional statistics or encoding
parameter values and/or to perform respective operations of
the overall encoding process.

In one example, after determining that a macroblock is
likely to include text, a quantization parameter value that is
initially selected for use with the macroblock may be further
modified depending on the size of the text or on other char
acteristics of the text that may be determined as a result of an
analysis performed by a software pipeline component in a
later stage of the pipeline. In this example, if a particular
statistical signature is recognized in a portion of a macrob
lock, slice, or frame (e.g., a signature associated with a par
ticular text size or with particular text characteristics), a soft
ware pipeline component may be configured to map a
different set of encoding parameter values to this portion of
the macroblock, slice, or frame and/or to the same portion of
other macroblocks, slices, and frames in a sequence. In yet
another example, a software pipeline component may be con
figured to apply different thresholds or other criteria to the
available gradient values, gradient histogram information, or
computed statistics for macroblocks that are received from
different sources (e.g., from different applications or users),
according to source-specific policies or preferences.

10

15

25

30

35

40

45

50

55

60

65

42
FIG.22 is a block diagram illustrating a portion of a video

encoding pipeline 2200 (including, e.g., a portion of a mac
roblock input component for the video encoding pipeline)
that computes gradient values for use in determining encod
ing parameters and various macroblock-level statistics,
according to one embodiment. As illustrated in this example,
the macroblock input stage of the video encoding pipeline
2200 may include a gradient computation component 2202,
that is configured to receive binarized macroblock data
input(s) 2210 (e.g., binarized syntax elements representing a
particular block of pixels from a video frame) and compute
gradient values for the macroblock in two or more directions,
based on those inputs. In various embodiments, gradient com
putation component 2202 may be implemented in hardware,
firmware, or Software, or using a mix of hardware, firmware,
and/or software.
As illustrated in this example, the macroblock input stage

of the video encoding pipeline 2200 may include an encoding
parameters computation component 2204, which may receive
the gradient information computed in gradient computation
component 2202, along with one or more additional inputs
2218, and may compute macroblock-level statistics and/or
various encoding parameters to be used in encoding the mac
roblock in the video encoding pipeline. In various embodi
ments, encoding parameters computation component 2204
may be implemented in hardware, firmware, or software, or
using a mix of hardware, firmware, and/or Software. As illus
trated in FIG. 22, the macroblock input stage of the video
encoding pipeline 2200 may also include a macroblock sta
tistics buffer 2206 that is configured to store the computed
gradient values and any macroblock-level statistics and/or
various encoding parameters that are computed in gradient
computation component 2202 and/or encoding parameters
computation component 2204. In other embodiments, such
information may be stored (along with slice-level or frame
level statistics or parameter values, and/or statistics or encod
ing parameters computed at other stages in the pipeline) in
another type of shared data structure within the macroblock
input stage or within another stage of the pipeline. In Such
embodiments, the stored information may be retrieved by
various components in multiple stages of the pipeline, and
may be used to modify, select, bias, control, or otherwise
influence the operations performed by those components.
As illustrated in FIG. 22, the encoding parameters that are

computed in encoding parameters computation component
2204 may be written to macroblock statistics buffer 2206 by
encoding parameters computation component 2204. Simi
larly, the gradient values computed by gradient computation
component 2202 may be written to macroblock statistics
buffer 2206 by gradient computation component 2202 (e.g.,
as shown by the dashed line from the output of 2202 to 2206
in FIG. 22). As illustrated in this example, various compo
nents of one or more other pipeline stages 2208 may access
macroblock statistics buffer 2206 to obtain various ones of the
computed gradient values, macroblock-level statistics and/or
encoding parameters stored therein to be used in performing
a portion of the overall video encoding process, e.g., param
eter values and/or other information that may affect the out
puts 2212 of those pipeline stages 2208.

In some embodiments, various ones of the other pipeline
stages 2208 may also write information (e.g., additional mac
roblock-level statistics and/or encoding parameters that are
computed or determined by those other pipeline stages) to
macroblock statistics buffer 2206, which may then be
accessed by other ones of the pipeline stages 2208. This is
illustrated in FIG.22 by the bi-directional path between pipe
line stages 2208 and macroblock statistics buffer 2206. In

US 9,380,312 B2
43

Some embodiments, at least some of the encoding parameters
that are computed in encoding parameters computation com
ponent 2204 may be provided directly to one or more com
ponents in various ones of the other pipeline stages 2208 (e.g.,
instead of or in addition to being stored in macroblock statis
tics buffer 2206). This is illustrated in FIG.22 by the dashed
line from encoding parameters computation component 2204
and other pipeline stages 2208. In some embodiments, at least
Some of the gradient information, histogram information,
encoding parameters, or statistics computed by components
2202 or 2204 at the macroblock input stage may be written to
a shared data structure in a different pipeline stage instead or,
or in addition to, being written to a macroblock statistics
buffer 2206 that is implemented at the macroblock input
Stage.

In many of the examples herein, macroblock-level statis
tics may be computed based on gradient values, gradient
histogram information, and other information. In some
embodiments, some orall of these macroblock-level statistics
may be accumulated over an entire video frame or over a slice
of the video frame. In such embodiments, these slice-level or
frame-level statistics may be used to compute slice-level or
frame-level encoding parameters or to otherwise affect
encoding decisions made at the slice or frame level. In some
embodiments, a Software pipeline component may be config
ured to accumulate the histogram information for all of the
macroblocks in a slice or frame in order to perform some
region-based processing or frame-based processing. For
example, in a typical video encoding pipeline, the strength of
a deblocking filtering operation (e.g., a frame-level filtering
operation for reducing blocking and ringing) may be deter
mined by the macroblock type, such that the filtering is stron
gest for an intra-coded macroblock. However, if an analysis
of the information in a slice-level or frame-level histogram
indicates that there is a lot of text in an image (e.g., as evi
denced by the presence of a dominant gradient direction), the
Software pipeline component may determine that it would be
unsuitable to perform heavy filtering, which would reduce the
quality of the text. In this example, the software pipeline
component may be configured to turn off deblocking filtering
for this video frame (and/or for subsequent frames in a
sequence), to reduce the deblocking filtering strength (e.g., by
programming various offsets of the filter at a slice or frame
boundary) for the video frame (and/or for subsequent frames
in a sequence), to pass to the deblocking filter component
(e.g., in a Subsequent pipeline stage) a frame-level parameter
value indicating that deblocking filtering should be turned off
or its strength reduced, or to indicate that inter-coding should
be used rather than intra-coding for this video frame (and/or
for Subsequent frames in a sequence).

In various embodiments in which slice-level and/or frame
level statistics and/or encoding parameters are computed,
they may be stored in the same data structure as the macrob
lock-level information, or in one or more other data struc
tures. For example, the slice-level and/or frame-level statis
tics and/or encoding parameters may be written to a statistics
buffer (e.g., accumulated in the statistics buffer) as they are
computed. Note that in some embodiments, a history of these
slice-level and frame-level statistics may be maintained in the
buffer or in elsewhere memory and may be analyzed to deter
mine trends or patterns in the received video frames. In addi
tion, they may be mapped to the behaviors exhibited by video
frames in different contexts (e.g., different camera exposures,
different content types, etc.), which may facilitate better pre
dictions of future behavior. In some embodiments, macrob
lock-level, slice-level, and/or frame-level statistics may be
used to determine the appropriate frame-level rate control

10

15

25

30

35

40

45

50

55

60

65

44
parameter for use when encoding particular sequences of
macroblocks (e.g., adjusting the frame-level rate control in
order to achieve better quality results for high-text slices or
frames).
One embodiment of a method for computing slice-level or

frame-level statistics and/or encoding parameters by accumu
lating histograms of gradients that were computed for mul
tiple macroblocks of the slice or frame is illustrated by the
flow diagram in FIG. 23. As illustrated at 2310, in this
example, the method may include a macroblock input com
ponent of a block processing pipeline (e.g., a video encoding
pipeline) computing one or more histograms of gradients for
an input macroblock, and storing the histogram data in a
slice-level or frame-level statistics buffer or other data struc
ture configured to store such information. For example, the
histogram data stored by the macroblock input component
may include raw histogram data that was computed for each
macroblock, a histogram descriptor that was generated for
each macroblock (e.g., a HOG descriptor), cumulative histo
gram data that was computed for multiple macroblocks, mac
roblock-level statistics that were derived from raw gradient
values or from the histograms, and/or other information about
the macroblock, in different embodiments. While there are
more macroblocks in the slice or frame being processes for
which histograms of gradients should be computed (shown as
the positive exit from 2320), the method may include repeat
ing the operations illustrated in 2310 for all of the macrob
locks in this slice or frame (shown as the feedback from the
positive exit of 2320 to 2310).
As illustrated in this example, once there are no additional

macroblocks in this slice or frame for which histograms of
gradients should be computed (shown as the negative exit
from 2320), the method may include the macroblock input
component (or, in some embodiments, another component of
the video encoding pipeline) computing slice-level and/or
frame-level statistics from the stored histogram data, as in
2330. For example, slice-level or frame-level statistics may
be computed to determine whether there is a lot of text in a
given slice or frame (i.e., whether there are a large number of
macroblocks within the frame that are likely to contain text),
which may indicate that one or more slice-level or frame-level
parameters should be adjusted when encoding this slice/
frame, or a Subsequent slide/frame. The method may also
include the macroblock input component (or, in some
embodiments, another component of the video encoding
pipeline) making the slice-level or frame-level statistics avail
able to one or more other pipeline stages, as in 2340. For
example, the macroblock input component (or other compo
nent of the video encoding pipeline) may write the statistics
out to a shared Statistics buffer or other data structure config
ured to store such information (from which hardware or soft
ware components in other stages of the video encoding pipe
line may access them) or may pass them directly to hardware
or software components in other stages of the video encoding
pipeline. As previously noted. Such information may be
passed from a hardware pipeline component or software pipe
line component in one stage of the video encoding pipeline to
a hardware or Software pipeline component in another stage
of the video encoding pipeline (e.g., a stage that Succeeds the
stage in which the information was generated) in order to
affect the encoding of the block of pixels from which the
information was generated, or it may be passed from a hard
ware or software pipeline component in one stage of the video
encoding pipeline to a software or hardware pipeline compo
nent in a stage that precedes the stage in which the informa
tion was generated in order to affect the encoding of a block

US 9,380,312 B2
45

of pixels that was received Subsequent to receiving the block
of pixels from which the information was generated, in dif
ferent embodiments.
As illustrated in this example, if the slice-level and/or

frame-level statistics indicate that there is a lot of text in the
slice or frame (shown as the positive exit from 2350), the
method may include turning off or reducing the strength of a
deblocking filter (e.g., if using intra-estimation) for this high
text slice/frame, as in 2360. In this case, the method may also
include adjusting the frame-level rate control in order to
achieve better quality results for this high-text slice/frame, as
in 2370. On the other hand, if the slice-level statistics or
frame-level statistics do not indicate that there is a lot of text
in the slice or frame (shown as the negative exit from 2350),
there may be no changes made to the deblocking filter or
frame-level rate control for this low-text slice/frame, as in
2370.

In some embodiments, the systems described herein may
use a training phase to determine how to configure the video
encoding pipeline for detecting a dominant gradient direction
in the macroblocks it receives and/or for determining the
likelihood that the macroblocks represent portions of a video
frame that include text. For example, in some embodiments,
training data (e.g., macroblocks representing portions of
video frames that are known to include text and macroblocks
representing portions of video frames that are known not to
include text) may be input to the video encoding pipeline,
which may compute gradient values, gradient histograms,
and/or various macroblock-level, slice-level, or frame-level
statistics from the input macroblock data (e.g., luma and
chroma information for the pixels of the macroblock). Sub
sequently, machine learning techniques or other classification
techniques may be applied to the computed Statistical infor
mation to identify certain statistical signatures, and use that to
alter the behavior of the encoder (e.g., at the macroblock,
slice, and/or frame level). In some embodiments, such a train
ing exercise may be performed offline (e.g., by another sys
tem or while the system is not being used to process video
frames).

In one example, the training may be performed using
SVMs (Support vector machines) that can encode the training
data, take the computed Statistical information, and feed this
into classifier. The training exercise may produce a set of
coefficients for use in relatively simple calculations for per
forming a binary classification for macroblocks (e.g., classi
fying them as being "text' or “non-text macroblocks, with
non-text macroblocks including both flat areas and texture
areas) based on the computed Statistical information. In some
embodiments, a software or hardware pipeline component
may be programmed or otherwise configured to perform this
decision function. In some embodiments, by being able to
distinguish between text and non-text macroblocks at the
macroblockinput stage (or at another early stage in the video
encoding pipeline), when a text macroblock is detected, the
Video encoding pipeline may prepare other stages in the pipe
line to apply appropriate encoding parameters to improve the
quality of the result for that text area (only).

Note that while some embodiments implement only a
binary classification for macroblocks (e.g., classifying them
as being “text' or “non-text macroblocks), in other embodi
ments, the training exercise (and resulting decision function)
may be used to configure a software or hardware pipeline
component to take various actions based on a determination
of the likelihood that the macroblock represents a portion of
a video frame that contains text. For example, it may be
difficult to determine whether a given macroblock actually
includes text, since in many cases the bin counts for all of bins

10

15

25

30

35

40

45

50

55

60

65

46
of the gradient histograms may be very similar, and since a
texture area may yield statistics that are similar to text areas.
However, if there is a small number of bins for which the bin
counts are very high, and other bins for which the bin counts
are very low, the macroblock may be very likely to include
text, since the histogram data indicates that there are a few
dominant gradient directions (end corresponding edges) and
other gradient directions that are rarely if ever, observed in the
macroblock. In some embodiments, a software or hardware
pipeline component may be configured to detect this statisti
cal signature and to compute a particular encoding parameter
value or other indictor of the likelihood that the macroblock
contains text, and may provide that indicator to one or more
other pipeline stages.
One embodiment of a method for training a macroblock

classifier of a video encoding pipeline to classify macrob
locks in terms of the likelihood that they represent portions of
a video frame containing text is illustrated by the flow dia
gram in FIG. 24. As illustrated at 2410, in this example, the
method may include, during training, presenting multiple
frames (or macroblocks thereof) that are known to represent
images containing text and multiple frames (macroblocks)
that are known to represent images that do not contain text to
a macroblockinput component of a block processing pipeline
(e.g., a video encoding pipeline). The method may also
include the macroblock input component computing one or
more histograms of gradients for each of the macroblocks and
storing them for Subsequent analysis (e.g., in a statistics
buffer or other data structure configured to store such infor
mation), as in 2420.
As illustrated in this example, the method may include

feeding the computed histograms of gradients (and/or gradi
ent statistics or descriptors derived therefrom) to a classifier
(e.g., a Support vector machine, or SVM, classifier, or a Baye
sian classifier), as in 2430. The method may include the
classifier determining a decision function for a binary classi
fication of macroblocks (e.g., "text or “non-text) or a deci
sion function usable to compute the likelihood that a given
macroblock contains text, as in 2440. In some embodiments,
the decision function may be based, for example, on a thresh
old value for an individual histogram bin count, the detection
of bin counts in multiple ranges of histogram bin counts (e.g.,
each corresponding to a respective likelihood that the mac
roblock contains text), a threshold ratio between various his
togram bin counts or between various Sums of histogram bin
counts, or any computed Statistical indicator(s) that are found
to be well correlated with the presence or absence of text in
the training macroblocks. The method may include configur
ing the macroblock input component of the video encoding
pipeline (or the macroblock input component of another
Video encoding pipeline, e.g., one in a production setting
rather than in a training setting) to classify each macroblock
it receives as "text' or “non-text', or to compute the likeli
hood that it contains text, dependent on the determined deci
sion function, as in 2450.
Note that in some embodiments, the classification of “text'

or “non-text may be adaptable by the classifier based on
regional or language information and/or the content or view
ing preferences of the user. For example, the classifier may
operate in two stages. In the first stage, it may be configured
to perform offline training (e.g. SVM or Bayesian training)
based on each language or alphabet (e.g., Arabic and English
will use different classifiers since the characters look very
different). In the second stage, the classifier may be config
ured to carry out online adaptations based on the content and
viewing preferences of the user. Examples of the viewing
preferences of the user that may be taken into account by the

US 9,380,312 B2
47

classifier include: the display resolution, the text size, the
scrolling speed, the color, transparency or brightness of the
image background (e.g., on a browser, terminal, or other
reading device), or other device or display configuration
information that may be determined during operation.
As previously noted, the systems described herein may

implement different filtering techniques for computing gra
dient values and may compute different types of gradient
histograms from those gradient values, in different embodi
ments. In addition, the systems described herein may employ
different numbers of bins in the histograms that they compute.
These choices may affect the quality of the classification
results, the quality of the final encoding, and the cost perfor
mance of various computations. For example, in Some experi
ments, the performance was worse when computing a single
gradient orientation histogram than when computing separate
histograms for horizontal and Vertical gradients, and the hard
ware required to compute a single gradient orientation histo
gram was more complex than the hardware required to com
pute separate histograms for horizontal and Vertical gradients.
In another example, if a Software pipeline component must
operate on a large number of statistical values (e.g., bin
counts) for each macroblock, it may not be able to perform the
necessary calculations within the allotted computational bud
get. Therefore, for a given system, a trade-off may be made
between the number of bins used in each of the computed
histograms, and the quality of the classification results (e.g.,
the rate at which text macroblocks are correctly detected).

FIG. 25 illustrates an example analysis of the trade-off
between the number of bins in a histogram of gradients and
the precision and/or recall percentage of the histograms,
according to different embodiments. These metrics may be
used to make a tradeoff between the quality of the result of a
macroblock encoding operation and its cost (e.g., in terms of
memory usage, computation time, and/or other cost factors).
In this example, the X axis represents the number of bins used
for each histogram (e.g., the number of bins in a histogram of
horizontal gradient magnitudes or gradient directions and/or
the number of bins in a histogram of Vertical gradient mag
nitudes or gradient directions), with the highest number of
bins that was considered on the left and the lowest number of
bins that was considered on the right. In this example, they
axis represents the precision and recall experienced in each
case in terms of percentages. Here, the “recall percentage
(shown as the solid line in FIG. 25) may represent the ratio
true positives/(true positives+false negatives). In this
example, the “precision’ percentage (shown as the dashed
line in FIG. 25) may represent the ratio true positives/(true
positives+false positives). As illustrated in this example,
after a certain point (e.g., after the number of bins drops below
a particular value), the precision and recall percentages may
tend to fall off relatively quickly. In some embodiments, the
'Sweet spot' may be eight or sixteen bins per histogram.

Note that while many of the example embodiments
described herein illustrate the use of gradient histograms in
detecting text within a macroblock of a video frame (e.g., a
macroblock of pixels as defined by the H.264 standard) and in
coding those macroblocks in a manner that improves the
results, the techniques described herein may also be applied
in block processing pipelines that operate on blocks of pixels
according to other formats and standards. For example, in
embodiments in which the block processing pipeline operates
according to the H.265 standard, the fundamental blocks on
which the pipeline operates may be Coded Tree Units (CTUs)
or Coding Units (CUs), rather than macroblock. In such
embodiments, a respective quantization parameter (QP) may
be transmitted perTransform Unit (TU), rather than per mac

10

15

25

30

35

40

45

50

55

60

65

48
roblock. In such embodiments, each Transform Unit may be
32x32, 16x16 or 8x8. This, the QP may be changed based on
an 8x8, 16x16 or 32x32 histogram of gradients. In various
embodiments, these histograms may be calculated directly
for each block size, or they may be accumulated from smaller
blocks sizes for the larger block sizes. Note also that in
embodiments that operate in accordance with the H.265 stan
dard, the quantization parameter for chroma and the quanti
zation parameter for luma for a given CTU or CU may be
different from each other and they may be generated based on
different gradient histograms (e.g., a gradient histogram for
chroma and a gradient histogram for luma, respectively). In
Some embodiments, a combination of these luma and chroma
statistics (and/or the respective luma and chroma QPs gener
ated from them) may be used to detect text in a block of pixels.
Example Video Encoder Apparatus

FIG. 26 is a block diagram of an example video encoder
apparatus 2600, according to at least some embodiments. The
video encoder apparatus 2600 may, for example, be imple
mented as an integrated circuit (IC) or as a Subsystem on an IC
Such as a system-on-a-chip (SOC). In at least some embodi
ments, the video encoder apparatus 2600 may include a pipe
line 2640 component, a processor 2610 component (e.g., a
low-power multicore processor), a memory management unit
(MMU) 2620, DMA. 2630, and an interconnect 2650 such as
a bus subsystem or fabric that interconnects the functional
components of the apparatus. The processor 2610 component
of the video encoder apparatus 2600 may, for example, per
form frame-level control of the pipeline 2640 such as rate
control, perform pipeline 2640 configuration including con
figuration of individual pipeline units within the pipeline
2640, and interface with application software via a driver, for
example for video encoder 2600 configuration. The MMU
2620 may serve as an interface to external memory, for
example for streaming video input and/or output. Pipeline
2640 component may access memory through MMU 2620
via DMA. 2630. In some embodiments, the video encoder
apparatus 2600 may include other functional components or
units not shown in FIG. 26, or fewer functional components
than those shown in FIG. 26. An example block processing
method that may be implemented by pipeline 2640 compo
nent is shown in FIG. 16. An example a system-on-a-chip
(SOC) that may include at least one video encoder apparatus
2600 is illustrated in FIG. 27.
Example System on a Chip (SOC)

Turning now to FIG. 27, a block diagram of one embodi
ment of a system-on-a-chip (SOC) 2700 that may include at
least one instance of a video encoder apparatus including a
block processing pipeline that may implement one or more of
the block processing methods and apparatus as illustrated in
the preceding figures. SOC 2700 is shown coupled to a
memory 2750. As implied by the name, the components of the
SOC 2700 may be integrated onto a single semiconductor
Substrate as an integrated circuit “chip. In some embodi
ments, the components may be implemented on two or more
discrete chips in a system. However, the SOC 2700 will be
used as an example herein. In the illustrated embodiment, the
components of the SOC 2700 include a central processing
unit (CPU) complex 2720, on-chip peripheral components
2740A-2740B (more briefly, “peripherals'), a memory con
troller (MC) 2730, a video encoder 2700 (which may itselfbe
considered a peripheral component), and a communication
fabric 2710. The components 2720,2730,2740A-2740B, and
2700 may all be coupled to the communication fabric 2710.
The memory controller 2730 may be coupled to the memory
2750 during use, and the peripheral 2740B may be coupled to
an external interface 2760 during use. In the illustrated

US 9,380,312 B2
49

embodiment, the CPU complex 2720 includes one or more
processors (P) 2724 and a level two (L2) cache 2722. In some
embodiments, the CPU complex may be configured to cache
neighbor data, which may include Source transform coeffi
cients (e.g., DC transform coefficients), modified transform
coefficients, previously computed quantization errors, and/or
weighting coefficient values for one or more neighbor pixels,
among other information used in the video encoding opera
tions described herein.

The peripherals 2740A-2740B may be any set of additional
hardware functionality included in the SOC 2700. For
example, the peripherals 2740A-2740B may include video
peripherals such as an image signal processor configured to
process image capture data from a camera or other image
sensor, display controllers configured to display video data on
one or more display devices, graphics processing units
(GPUs), video encoder/decoders, scalers, rotators, blenders,
etc. The peripherals may include audio peripherals such as
microphones, speakers, interfaces to microphones and speak
ers, audio processors, digital signal processors, mixers, etc.
The peripherals may include peripheral interface controllers
for various interfaces 2760 external to the SOC 2700 (e.g. the
peripheral 2740B) including interfaces such as Universal
Serial Bus (USB), peripheral component interconnect (PCI)
including PCI Express (PCIe), serial and parallel ports, etc.
The peripherals may include networking peripherals such as
media access controllers (MACs). Any set of hardware may
be included.
More particularly in FIG. 27, SOC 2700 may include at

least one instance of a video encoder 2700 component, for
example a video encoder 2700 as illustrated in FIG. 27 that
includes a block processing pipeline 2740 component that
implements a block processing method 1600 as illustrated in
FIG. 16. Video encoder 2700 may be an H.264 video encoder
apparatus that may be configured to convert input video
frames from an input format into H.264/Advanced Video
Coding (AVC) format as described in the H.264/AVC stan
dard. The block processing pipeline 2740 may implement one
or more of the block processing methods and apparatus as
described herein in relation to FIGS. 3 through 16.

The CPU complex 2720 may include one or more CPU
processors 2724 that serve as the CPU of the SOC 2700. The
CPU of the system includes the processor(s) that execute the
main control software of the system, such as an operating
system. Generally, software executed by the CPU during use
may control the other components of the system to realize the
desired functionality of the system. The processors 2724 may
also execute other software. Such as application programs.
The application programs may provide user functionality, and
may rely on the operating system for lower level device
control. Accordingly, the processors 2724 may also be
referred to as application processors. The CPU complex 2720
may further include otherhardware such as the L2 cache 2722
and/or and interface to the other components of the system
(e.g. an interface to the communication fabric 2710). Gener
ally, a processor may include any circuitry and/or microcode
configured to execute instructions defined in an instruction set
architecture implemented by the processor. The instructions
and data operated on by the processors in response to execut
ing the instructions may generally be stored in the memory
2750, although certain instructions may be defined for direct
processor access to peripherals as well. In some embodi
ments, the data stored in memory 2750 may include weight
ing coefficient values to be applied for one or more neighbor
pixels in a neighbor-data-based dithering operation. Proces
sors may encompass processor cores implemented on an inte
grated circuit with other components as a system on a chip

5

10

15

25

30

35

40

45

50

55

60

65

50
(SOC 2700) or other levels of integration. Processors may
further encompass discrete microprocessors, processor cores
and/or microprocessors integrated into multichip module
implementations, processors implemented as multiple inte
grated circuits, etc.
The memory controller 2730 may generally include the

circuitry for receiving memory operations from the other
components of the SOC 2700 and for accessing the memory
2750 to complete the memory operations. The memory con
troller 2730 may be configured to access any type of memory
2750. For example, the memory 2750 may be static random
access memory (SRAM), dynamic RAM (DRAM) such as
synchronous DRAM (SDRAM) including double data rate
(DDR, DDR2, DDR3, etc.) DRAM. Low power/mobile ver
sions of the DDR DRAM may be supported (e.g. LPDDR,
mDDR, etc.). The memory controller 2730 may include
queues for memory operations, for ordering (and potentially
reordering) the operations and presenting the operations to
the memory 2750. The memory controller 2730 may further
include data buffers to store write data awaiting write to
memory and read data awaiting return to the source of the
memory operation. In some embodiments, the memory con
troller 2730 may include a memory cache to store recently
accessed memory data. In SOC implementations, for
example, the memory cache may reduce power consumption
in the SOC by avoiding reaccess of data from the memory
2750 if it is expected to be accessed again soon. In some cases,
the memory cache may also be referred to as a system cache,
as opposed to private caches such as the L2 cache 2722 or
caches in the processors 2724, which serve only certain com
ponents. Additionally, in Some embodiments, a system cache
need not be located within the memory controller 2730.

In an embodiment, the memory 2750 may be packaged
with the SOC 2700 in a chip-on-chip or package-on-package
configuration. A multichip module configuration of the SOC
2700 and the memory 2750 may be used as well. Such con
figurations may be relatively more secure (in terms of data
observability) than transmissions to other components in the
system (e.g. to various endpoints). Accordingly, protected
data may reside in the memory 2750 unencrypted, whereas
the protected data may be encrypted for exchange between
the SOC 2700 and external endpoints.
The communication fabric 2710 may be any communica

tion interconnect and protocol for communicating among the
components of the SOC 2700. The communication fabric
2710 may be bus-based, including shared bus configurations,
cross bar configurations, and hierarchical buses with bridges.
The communication fabric 2710 may also be packet-based,
and may be hierarchical with bridges, cross bar, point-to
point, or other interconnects.

It is noted that the number of components of the SOC 2700
(and the number of subcomponents for those shown in FIG.
27, such as within the CPU complex 2720) may vary from
embodiment to embodiment. There may be more or fewer of
each component/Subcomponent than the number shown in
FIG. 27.
Example System

FIG. 28 a block diagram of one embodiment of a system
2800. In the illustrated embodiment, the system 2800
includes at least one instance of the SOC 2700 coupled to one
or more external peripherals 2820 and the external memory
2750. A power management unit (PMU) 2810 is provided
which supplies the supply voltages to the SOC 2700 as well as
one or more supply voltages to the memory 2750 and/or the
peripherals 2820. In some embodiments, more than one
instance of the SOC 2700 may be included (and more than
one memory 2750 may be included as well).

US 9,380,312 B2
51

The peripherals 2820 may include any desired circuitry,
depending on the type of system 2800. For example, in one
embodiment, the system 2800 may be a mobile device (e.g.
personal digital assistant (PDA), Smart phone, etc.) and the
peripherals 2820 may include devices for various types of
wireless communication, Such as wifi. Bluetooth, cellular,
global positioning system, etc. The peripherals 2820 may also
include additional storage, including RAM storage, Solid
state storage, or disk storage. The peripherals 2820 may
include user interface devices such as a display screen,
including touch display Screens or multitouch display
screens, keyboard or other input devices, microphones,
speakers, etc. In other embodiments, the system 2800 may be
any type of computing system (e.g. desktop personal com
puter, laptop, workstation, net top etc.).
The external memory 2750 may include any type of

memory. For example, the external memory 2750 may be
SRAM, dynamic RAM (DRAM) such as synchronous
DRAM (SDRAM), double data rate (DDR, DDR2, DDR3,
etc.) SDRAM, RAMBUSDRAM, low power versions of the
DDR DRAM (e.g. LPDDR, mDDR, etc.), etc. The external
memory 2750 may include one or more memory modules to
which the memory devices are mounted, such as single inline
memory modules (SIMMs), dual inline memory modules
(DIMMs), etc. Alternatively, the external memory 2750 may
include one or more memory devices that are mounted on the
SOC 2700 in a chip-on-chip or package-on-package imple
mentation.
The methods described herein may be implemented in

software, hardware, or a combination thereof, in different
embodiments. In addition, the order of the blocks of the
methods may be changed, and various elements may be
added, reordered, combined, omitted, modified, etc. Various
modifications and changes may be made as would be obvious
to a person skilled in the art having the benefit of this disclo
sure. The various embodiments described herein are meant to
be illustrative and not limiting. Many variations, modifica
tions, additions, and improvements are possible. Accord
ingly, plural instances may be provided for components
described herein as a single instance. Boundaries between
various components, operations and data stores are somewhat
arbitrary, and particular operations are illustrated in the con
text of specific illustrative configurations. Other allocations
of functionality are envisioned and may fall within the scope
of claims that follow. Finally, structures and functionality
presented as discrete components in the example configura
tions may be implemented as a combined structure or com
ponent. These and other variations, modifications, additions,
and improvements may fall within the scope of embodiments
as defined in the claims that follow.
What is claimed is:
1. An apparatus, comprising:
a block processing pipeline implemented in a video

encoder circuit and configured to process blocks of pix
els from video frames;

wherein the block processing pipeline comprises a block
input component;

wherein, for each of a plurality of blocks of pixels from a
Video frame, the blockinput component is configured to:
receive input data representing the block of pixels;
compute gradient values for the block of pixels in two or
more directions;

compute one or more histograms representing statistics
derived from the gradient values for the block of pix
els;

determine alikelihood that the block of pixels represents
a portion of the video frame that contains text,

5

10

15

25

30

35

40

45

50

55

60

65

52
wherein to determine the likelihood that the block of
pixels represents a portion of the video frame that
contains text, the block input component is config
ured to determine a presence or absence of a dominant
gradient direction in the block of pixels, dependent on
the one or more computed histograms; and

determine one or more parameter values for encoding
the block of pixels, dependent on the likelihood that
the block of pixels represents a portion of the video
frame that contains text.

2. The apparatus of claim 1,
wherein the one or more parameter values comprise a

quantization parameter value; and
wherein, in response to a determination that it is likely that

the block of pixels represents a portion of the video
frame that contains text, the block input component is
configured to compute a quantization parameter value
for encoding the block of pixels that is lower than a
quantization parameter value used for encoding blocks
of pixels that do not represent portions of the video
frame that contains text.

3. The apparatus of claim 1, wherein the block input com
ponent is further configured to pass data representing the
gradient values, the one or more histograms, the determined
likelihood, or the one or more parameter values usable in
encoding the block of pixels to one or more components in a
Subsequent stage of the block processing pipeline.

4. The apparatus of claim 3,
wherein the block processing pipeline further comprises an

intra-estimation stage;
wherein the data comprises a parameter value indicating a

dominant gradient direction in the block of pixels;
wherein to pass the data, the block input component is

configured to pass the data to a component of the intra
estimation stage; and

wherein the component of the intra-estimation stage is
configured to use the parameter value indicating the
dominant gradient direction to bias selection of a pre
diction mode.

5. The apparatus of claim 4, wherein to use the parameter
value indicating the dominant gradient direction to bias selec
tion of a prediction mode, the component of the intra-estima
tion stage is configured to compute a cost for each of two or
more candidate predication modes, wherein the computed
cost for each of the two or more candidate predication modes
is dependent on the parameter value indicating the dominant
gradient direction.

6. The apparatus of claim 3,
wherein the block processing pipeline further comprises a
mode decision stage that is configured to determine a
mode in which the block of pixels is to be encoded
dependent, at least in part, on a respective cost of encod
ing the block of pixels in each of two or more modes;

wherein to pass the data, the block input component is
configured to pass the data to a component of the mode
decision stage; and

wherein the component of the mode decision stage is con
figured to include the data as an input to bias or control
the determination of the mode in which the block of
pixels is to be encoded.

7. The apparatus of claim 3,
wherein the block processing pipeline further comprises a

motion estimation stage that is configured to select a
motion vector from among two or more candidate
motion vectors;

US 9,380,312 B2
53

wherein to pass the data, the block input component is
configured to pass the data to a component of the motion
estimation stage; and

wherein the component of the mode decision stage is con
figured to include the data as an input to bias or control
the selection of the motion vector from among the two or
more candidate motion vectors.

8. A method, comprising:
inputting data representing a block of pixels from a video

frame to a video encoding pipeline comprising a plural
ity of stages, each stage configured to perform at least
one operation on blocks of pixels passing through the
pipeline; and

performing, by one or more stages of the pipeline:
computing gradient values for the block of pixels in two

or more directions;
computing one or more histograms representing statis

tics derived from the gradient values for the block of
pixels;

determining that the block of pixels represents a portion
of the video frame that is likely to contain text,
wherein said determining comprises determining that
there is a dominant gradient direction in the block of
pixels, dependent on the one or more computed his
tograms:

in response to said determining that the block of pixels
represents a portion of the video frame that is likely to
contain text, determining a quantization parameter
value for use in encoding the block of pixels in the
Video encoding pipeline; and

making the quantization parameter value available to
one or more operations of the video encoding pipe
line.

9. The method of claim 8, wherein said determining a
quantization parameter value comprises computing a quanti
Zation parameter for use in aluma reconstruction operation of
the video encoding pipeline that is lower than a quantization
parameter used in aluma reconstruction operation performed
on a block of pixels that represents a portion of the video
frame that does not contain text.

10. The method of claim 8, wherein said determining a
quantization parameter value comprises computing a quanti
Zation parameter for use in a chroma reconstruction operation
of the video encoding pipeline.

11. The method of claim 8, further comprising:
determining one or more other parameter values for use in

encoding the block of pixels in the video encoding pipe
line, dependent on said determining that the block of
pixels represents a portion of the video frame that is
likely to contain text; and

making the one or more other parameter values available to
one or more operations of the video encoding pipeline.

12. The method of claim 8,
wherein said computing the gradient values for the block of

pixels in two or more directions comprises computing
unsigned gradient values for the block of pixels in two or
more directions; and

wherein said computing one or more histograms comprises
computing statistics derived from the unsigned gradient
values for the block of pixels in the two or more direc
tions.

13. The method of claim 8,
wherein said computing gradient values for the block of

pixels in two or more directions comprises computing
horizontal gradient values and vertical gradient values
for the block of pixels;

10

15

25

30

35

40

45

50

55

60

65

54
wherein said computing one or more histograms comprises

computing a histogram of the horizontal gradient values
and a histogram of the vertical gradient values; and

wherein each bin of the histogram of the horizontal gradi
ent values and each bin of the histogram of the vertical
gradient values comprises a count of the computed gra
dient values having a magnitude in a respective range of
gradient magnitude values.

14. The method of claim 8,
wherein said computing gradient values for the block of

pixels in two or more directions comprises computing
horizontal gradient values and vertical gradient values at
multiple points within the block of pixels; and

wherein said computing one or more histograms comprises
computing, dependent on the horizontal gradient values
and vertical gradient values for the block of pixels, an
angle representing a gradient direction at each of the
multiple points within the block of pixels.

15. The method of claim 8,
wherein said computing one or more histograms further

comprises computing a histogram of the angles repre
senting the gradient directions at each of the multiple
points within the block of pixels; and

wherein each bin of the histogram of the angles comprises
a count of the computed angles that fall within in a
respective range of angles.

16. The method of claim 8, further comprising:
determining one or more other parameter values for use in

encoding the block of pixels;
for each of one or more other blocks of pixels in the video

frame or in a slice of the video frame:
computing gradient values for the other block of pixels

in two or more directions;
computing one or more other histograms representing

statistics derived from the gradient values for the
other block of pixels;

determining a likelihood that the other block of pixels
represents a portion of the video frame that contains
text, dependent on the one or more other histograms;
and

determining one or more parameter values for use in
encoding the other block of pixels in the video encod
ing pipeline, dependent on the determined likelihood;

accumulating statistics for the block of pixels and the one
or more other blocks of pixels in the video frame or in the
slice of the video frame, dependent on the computed
gradient values, the computed histograms, the deter
mined likelihood, or the determined parameter values
for the block of pixels and the one or more other blocks
of pixels; and

computing one or more slice-level or frame-level param
eter values for use in encoding the video frame or a
Subsequent video frame, dependent on the accumulated
statistics.

17. The method of claim 8,
wherein the method further comprises, prior to said receiv

ing input data representing a block of pixels from a video
frame:
receiving input data representing a plurality of training

blocks of pixels, each representing an image, wherein
for each of the plurality of training blocks of pixels,
the presence or absence of text in the image is known;

for each of the plurality of training blocks of pixels:
computing gradient values for the training block of

pixels in two or more directions; and

US 9,380,312 B2
55

computing one or more histograms representing sta
tistics derived from the gradient values for the
training block of pixels; and

determining a decision function usable to classify other
blocks of pixels in terms of the likelihood that they
represent portions of a video frame that contain text,
dependent on the computed gradient values for the
plurality of training blocks or on the computed histo
grams for the plurality of training blocks; and

wherein said determining that there is a dominant gradient
direction in the block of pixels, dependent on the one or
more computed histograms, comprises applying the
decision function to the one or more computed histo
grams.

18. The method of claim8, where said determining that the
block of pixels represents a portion of the video frame that is
likely to contain text is further dependent on a measure of
variance that was computed for the block of pixels.

19. A device, comprising:
a memory; and
an apparatus configured to process video frames and to

store the processed video frames as frame data to the
memory;

wherein the apparatus is configured to:
receive input data representing a block of pixels from a

video frame;
compute gradient values for the block of pixels in two or
more directions;

compute one or more histograms representing statistics
derived from the gradient values for the block of pix
els;

store data representing the one or more histograms in a
data structure in the memory;

5

10

15

25

30

56
determine a classification parameter value for the block

of pixels, wherein the classification parameter value
indicates a likelihood that the block of pixels repre
sents a portion of the video frame that contains text,
wherein to determine the classification parameter
value, the apparatus is configured to determine a pres
ence or absence of a dominant gradient direction in
the block of pixels, dependent on the one or more
computed histograms;

store the classification parameter value in the data struc
ture in the memory; and

perform an encoding operation for the block of pixels,
dependent on the stored data representing the one or
more histograms or the stored classification param
eter.

20. The device of claim 19,
wherein the apparatus comprises a block processing pipe

line;
wherein the apparatus is further configured to:

determine one or more parameter values for encoding
the block of pixels, dependent on the determined clas
sification parameter value; and

store the one or more parameter values in the data struc
ture; and

wherein to perform the encoding operation for the block of
pixels, the apparatus is further configured to:
retrieve the stored data representing the one or more

histograms, the stored classification parameter, or the
one or more stored parameter values from the data
structure in a stage of the block processing pipeline
other than a stage of the block processing pipeline in
which it was stored in the data structure.

