
(12) United States Patent
K00 et al.

US009377842B2

(10) Patent No.: US 9,377,842 B2
(45) Date of Patent: Jun. 28, 2016

(54) METHOD AND APPARATUS FOR REALIZING
CPU POWER CONSERVATION

Applicant: Huawei Technologies Co., Ltd.,
Shenzhen (CN)

(71)

(72) Inventors: David Koo, Shenzhen (CN): Li Li,
Shenzhen (CN)

(73) Assignee: Huawei Technologies Co., Ltd.,
Shenzhen (CN)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 333 days.

(21) Appl. No.: 13/904,461

(22) Filed: May 29, 2013

(65) Prior Publication Data

US 2013/0268787 A1 Oct. 10, 2013

Related U.S. Application Data
(63) Continuation of application No.

PCT/CN2011/074866, filed on May 30, 2011.

(30) Foreign Application Priority Data

Nov. 29, 2010 (CN) 2010 1 0571667

(51) Int. Cl.
G06F L/32
G06F 9/50
U.S. C.
CPC G06F I/324 (2013.01); G06F I/3203

(2013.01); G06F I/329 (2013.01); G06F 9/505
(2013.01); G06F 9/5083 (2013.01); G06F

9/5094 (2013.01); Y02B 60/1217 (2013.01);
Y02B 60/142 (2013.01); Y02B 60/144 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(2006.01)
(2006.01)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,073,244 A
2005, 0132238 A1*

6/2000 Iwazaki
6/2005 Nanja T13,300

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1690955 A 11, 2005
CN 10.1067758 A 11, 2007

(Continued)
OTHER PUBLICATIONS

International Search Report issued in corresponding PCT Patent
Application No. PCT/CN2011/074866, mailed Sep. 8, 2011, 4 pages.

(Continued)

Primary Examiner — Paul Yanchus, III
Assistant Examiner — Joshua Neveln
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(57) ABSTRACT

A method and apparatus are disclosed for conserving CPU
power. The method includes: obtaining CPU occupation rates
ofall threads triggering frequency adjustment in each domain
and domains those threads belong to; in a domain a thread
triggering frequency adjustment belongs to, calculating a tar
get CPU frequency to be adjusted to according to the CPU
occupation rate of the thread triggering frequency adjust
ment; calculating a timer parameter according to the target
CPU frequency and setting a CPU frequency value for the
thread triggering frequency adjustment. CPU frequency val
ues of threads in each domain are synchronized according to
the CPU occupation rate of each thread trigging frequency
adjustment in this disclosure, so as to synchronize the CPU
frequency values in a multi-core system to conserve CPU
power.

24 Claims, 10 Drawing Sheets

21 - CpuFreq hardware threads are initially configured

CPU occupation rates of all threads triggering
22-1 frequency adjustment in each domain and domains

they belong to are obtained

23-1

in the domain a thread triggering frequency
adjustment belongs to, a target CPU frequency to be

adjusted to is calculated according to the CPU
occupation rate of the thread triggering frequency

adjustment

timers in a domain a thread triggering frequency
adjustment belongs to are suspended

a timer parameter is calculated based on the target
25-1CPU frequency and the CPU frequency value is set for

the thread triggering frequency adjustment

the timers are re-fired

US 9,377,842 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0271646 A1* 10, 2009 Talwar et al.
2011/0047401 A1 2/2011 Werner

FOREIGN PATENT DOCUMENTS

CN 101201689 A 6, 2008
CN 100562854 C 11, 2009
CN 1O1576768. A 11, 2009

CN 102004.543. A 4/2011

OTHER PUBLICATIONS

T13,322 Written Opinion of the International Searching Authority issued in
T13,500 corresponding PCT Patent Application No. PCT/CN2011/074866,

mailed Sep. 8, 2011, 5 pages.
Chinese Patent No. 102004543 B, issued on Aug. 7, 2013, granted in
corresponding Chinese Patent Application No. 201010571667.9, 1
page.

* cited by examiner

U.S. Patent Jun. 28, 2016 Sheet 1 of 10 US 9,377,842 B2

womes uwers worn unno -2--N

pthread pthread pthread8
2 OS X 5 OS3

pthread
7

FIG. 1

pthread
4 O

aw w w w ww.

pthread
6 / S1

Cpu

U.S. Patent Jun. 28, 2016 Sheet 2 of 10 US 9,377,842 B2

21 CpuFreq hardware threads are initially configured

CPU occupation rates of all threads triggering
22 frequency adjustment in each domain and domains

they belong to are obtained

in the domain a thread triggering frequency
adjustment belongs to, a target CPU frequency to be

adjusted to is calculated according to the CPU
occupation rate of the thread triggering frequency

adjustment

23

timers in a domain a thread triggering frequency
24 adjustment belongs to are suspended

a timer parameter is calculated based on the target
25 CPU frequency and the CPU frequency value is set for

the thread triggering frequency adjustment

26 the timers are re-fired

FIG. 2

U.S. Patent Jun. 28, 2016 Sheet 3 of 10 US 9,377,842 B2

id P2: Stop original cpu gover threads

d P4 : create cpiu. gover
instances for a domain

P5:create cpu gover
read

D P6 : initiate l4 monitoring |

P6: initiate
monitoring

FIG. 3

U.S. Patent Jun. 28, 2016 Sheet 4 of 10 US 9,377,842 B2

Spiliyer l C. Fregi

Pl: timer
is timeout:

P timer
is timeout

---------- P2: obtain its -
own epu P2: obtain its

y OW CO upation P3 report epu -Rio
: occupation rate ae P3 : report epu

occupation rate
P4: record respective
cpt occupation rates

P5:analyze respective epu occupation
rates according to a strategy and
calculate a cpu frequency

FG. 4

U.S. Patent Jun. 28, 2016 Sheet 5 of 10 US 9,377,842 B2

P1: obtain Pl: obtain Pl: obtain
w

d identity from a d identity from a d identity from a configuration configuration configuration
| P2: handshake with a
specified associated part P2: handshake with a

specified associated part

P3:receive frequehcy adjustment
-i. by CpuGover 1.1

P4:obtain a domain CpuGover 1.1
belongs to

| P5:Send suspending P5:calculate a cpu frequency
operation notification according to a strategy
of domain 1

K -

d P6:Suspend timers that are fired presently
-> P6:suspend timers that are fired presently
P7:response to suspeyse

{P9:send the epu d P8:invoke a driver to set a cpu frequency
frequency of domain 1 o
- P 10:calculate and set a local timer

parameter according to the new cpu
frequency

P10: set a timer parameter of Gover 2.1 according
to its own rules
P 11:re-fire P1 1:re-fire
timers timers

FIG. 5

U.S. Patent Jun. 28, 2016 Sheet 6 of 10 US 9,377,842 B2

Cpufreq2 CpuFreal CpuFreq3

Pl: obtain Pl: obtain Pl: obtai

> identity from a d identity from a d finition al configuration configuration y
P2: handshake with a configuration
specified associated part :
K-T-T)

P2:handshake with a specified associated part

P3: receive frequency adjustment
-> triggered by CpuGover 1.2

P4:obtain Freq of a domain P5:Send a CPU SCC CpuGover 1.2 belongs to frequency parameter
-

d P6:calculate a CPU frequency in domaih 2 according to a strategy

P9:response to suspense

P7:send timer suspending operation notification of domain 2
P8:suspend timers that ared P8:suspend P8:suspend timers that
fired presently timers that are 4 are fired presently fired presently

P9:response to suspense

P10:send the cpu frequency of domain 2 Pll: adjust its own timer
parameter according to

Pll:invoke a driver to set a cpu frequency the cpu frequency
P12:set a local P1 1:calculate and set a timer parameter of

d timer parameter cpuGover 1.2 according to the new cpu frequency

d P13:re-fire d P13:re-fire timers

according to its
rules d P13:re-fire

timers timers

FIG. 6

U.S. Patent Jun. 28, 2016 Sheet 7 of 10 US 9,377,842 B2

CpuFreq2 CpuFreql Cpulfreq3

> Pl: obtain A-> R :obtain identity d R :obtain identity
from a configurati 'O a On a

configuration configuration

P2:handshake with a Specified associated part
P2:handshake with a specified associated part

d P3:receive frequency adjustment triggered by CpuCover2.1

d P4:obtain Freq of a domain CpuGover2. I belongs to
| P5:Send a CPU frequency parameter
-b

A.

P7:send timer suspending P6:calculate a CPU frequency in
| operation notification of domain l according to a strategy
domain P8: suspend timers that are fired

it is presently
d P8:suspend ti mers that are fired presently

| P9:response to suspese |
|

| P10:send the cpu frequency of domain 1
d P1 1: invoke a driver to set a cpu

frequency
d Pl2: calculate and set a timer parameter of cpuGover2.1 according to the

new cpu sen's Pl2:set a local timer parameter according
P13:re-fire to its rules

timerS d P13:re-fire timers

FIG. 7

U.S. Patent Jun. 28, 2016 Sheet 8 of 10 US 9,377,842 B2

CpuFreq2 CpuFreql CpuFreq3

P1;obtain identity Pl:obtain Pl: obtain identit
d from a > identity from a from a confi Aion configuration configuration 8.

P2:handshake with a specified asSociated part
Hor

P2:handshake with a specified associated part

d P3:receive frequency adjustment triggered by CpuGover2.1

P4:obtain Freq of a domain CpuGover2.2 belongs to

D P6:calculate a CPU frequency in domain2 according to a strategy

P7:send timer suspending operation notification of domain 2
P8:suspend timers that P8:Suspend timers P8:Suspend timers that

4 are fired presently | that are fired are fired presently
P9:response to suspense

P9:response to suspense

P10:send the epu frequency of domain 2 Pll: adjust its timer
parameter according to the

P11:invoke a driver to set a Cpu -> cpu frequency
frequency d P11 : calculate and set a timer parameter of cpuGoverl.2

according to the new cpu frequency
d P12; set a local timer parameter according to its rules

d P13:re-fire d P13:re-fire timers

presently

P13:re-fire timers
tnerS

FIG. 8

U.S. Patent Jun. 28, 2016 Sheet 9 of 10 US 9,377,842 B2

CpuFreq2 CpuFreql Cpl. Freq3

P1 obtain Pl: obtain
identity from a d identity from a configuration configuration

Pl: obtain identity from a
configuration -

| P2:handshake with a. specified associated part
l-a
P2 handshake with a specified associated part

P3:receive frequency
adjustment triggered by
CpuGover3
P4:obtain Freq of a
domain CpuGover3
belongs to P5 send a CPU frequency parameter

d P6:calculate a CPU frequency in domain;2 according to a strategy
w w w P7send timer suspending operation notification of domain 2

P8 suspend timers tha P8 suspend timers that
- C are fired presently td. are fired presently P9:response to suspense

P10:send the cpu frequency of domain 2

P1 1 adjust its timer
- = -R - parameter according to the
--> Pll:invoke a driver to set a cpu - cpu frequency.

frequency ". . .
d Pll:calculate and set a timer parameter of cpuGover 1.2 according to the new cpu frequenc | P12:set a local timer g w pu frequency

P8 suspend timers that
are fired presently

parameter according to its rules P13:re-fire
P13:re-fire P3 re-fire timers

d timers timers

FIG. 9

U.S. Patent Jun. 28, 2016 Sheet 10 of 10 US 9,377,842 B2

101 102 103

frequenc frequenc obtaining quency quency
8. calculating adjusting

unit w
unit unit

FIG. 10

US 9,377,842 B2
1.

METHOD AND APPARATUS FOR REALIZING
CPU POWER CONSERVATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of International Appli
cation No. PCT/CN2011/074866, filed on May 30, 2011,
which claims priority to Chinese Patent Application No.
201010571667.9, filed on Nov. 29, 2010, both of which are
hereby incorporated by reference in their entireties.

FIELD

The present disclosure relates to a method and apparatus
for conserving CPU power, and more specifically, to a method
and apparatus for conserving CPU power in a multi-core
system mode.

DESCRIPTION OF THE RELATED ART

Power conservation and emission reduction has become a
hot issue in international politics and economics, and power
conservation of communication devices has been paid the
closest attention due to the wide applications of communica
tion devices. In a typical telecommunication environment, a
set of monoboards are arranged in a set of frames, each
monoboard has a plurality of executing entities thereon, those
entities may be CPUs, cores, VCPUs or Hyperthreads (logical
cores). One CPU may have multiple cores, each core may
have one or more hardware threads. An OS (Operation Sys
tem) instance may be deployed on one or more executing
entities, wherein CPU power conservation can be realized by
adjusting a frequency to a lower frequency step by step to
reduce power consumption.

Existing OS instances mainly include SMP (Symmetric
multiprocessing) and AMP (asymmetric multiprocessing).
For SMP, because there is only one OS instance, the OS
instance may simultaneously manage all CPU cores, periodi
cally monitor the CPU occupation rate, and adjust the CPU
frequency upon finding too high or too low CPU occupation
rates So as to achieve the goal of power conservation. For a
multi-core system in an AMP deploying mode or a multi-core
system in an AMP and SMP hybrid deploying mode, a main
characteristic thereof is that there are a plurality of instances
ofan operation system executing in one domain, each of those
OS instances may independently control its own CPU main
frequency, and all hardware threads share a same CPU fre
quency in one domain. However, ifa plurality of OS instances
run on a domain, conflicts may occur when each OS instance
attempts to control its CPU frequency separately.

During making the present disclosure, the inventors have
found the following problems present in the prior art: in
existing CPU power conservation techniques, for multi-core
systems, it is impossible to realize power conservation
through CPU frequency adjustment.

SUMMARY

A method and apparatus for conserving CPU power are
provided in embodiments of this disclosure, capable of syn
chronizing CPU frequency values in a multi-core system to
realize CPU power conservation.
A method for conserving CPU power, comprising:
obtaining CPU occupation rates of all threads triggering

frequency adjustment in each domain and domains those
threads belong to:

10

15

25

30

35

40

45

50

55

60

65

2
in a domain a thread triggering frequency adjustment

belongs to, calculating a target CPU frequency to be adjusted
to according to the CPU occupation rate of the thread trigger
ing frequency adjustment;

calculating a timer parameter according to the target CPU
frequency and setting a CPU frequency value for the thread
triggering frequency adjustment.
An apparatus for conserving CPU power, comprising:
a domain obtaining unit, configured to obtain CPU occu

pation rates of all threads triggering frequency adjustment in
each domain and domains those threads belong to:

a frequency calculating unit, configured to calculate, in a
domain a thread triggering frequency adjustment belongs to,
a target CPU frequency to be adjusted to according to the CPU
occupation rate of the thread triggering frequency adjustment
obtained by the domain obtaining unit;

a frequency adjusting unit, configured to calculate a timer
parameter according to the target CPU frequency obtained by
the frequency calculating unit and set a CPU frequency value
for the thread triggering frequency adjustment.

It can be seen from the above solutions provided in
embodiments of this disclosure that CPU frequency values of
threads in each domain are synchronized according to the
CPU occupation rate of each thread trigging frequency
adjustment, so as to synchronize the CPU frequency values in
a multi-core system, thus CPU power conservation can be
realized.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more explicit description of solutions of embodi
ments of this disclosure, a brief introduction of accompany
ing drawings to be used in the description of these embodi
ments will be given below. Obviously, accompanying
drawings described below are merely some embodiments of
this disclosure, for those skilled in the art, other accompany
ing drawings can be derived from these ones without any
creative efforts.

FIG. 1 is a schematic structure diagram of a AMP and SMP
hybrid deploying mode provided in an embodiment of this
embodiment;

FIG. 2 is a schematic diagram of a flowchart of a method
for conserving CPU power in a multi-core system mode pro
vided in an embodiment of this embodiment;

FIG. 3 is a sequential diagram of initially configuring Cpu
Freq 1 thread provided in an embodiment of this embodiment;

FIG. 4 is a sequential diagram of calculating a target CPU
frequency by the CpuFreq 1 thread provided in an embodi
ment of this embodiment;

FIG. 5 is a sequential diagram of CPU frequency adjust
ment in a frequency adjustment flow triggered by CpuGover
1.1 provided in an embodiment of this embodiment;

FIG. 6 is a sequential diagram of CPU frequency adjust
ment in a frequency adjustment flow triggered by CpuGover
1.2 provided in an embodiment of this embodiment;

FIG. 7 is a sequential diagram of CPU frequency adjust
ment in a frequency adjustment flow triggered by CpuGover
2.1 provided in an embodiment of this embodiment;

FIG. 8 is a sequential diagram of CPU frequency adjust
ment in a frequency adjustment flow triggered by CpuGover
2.2 provided in an embodiment of this embodiment;

FIG. 9 is a sequential diagram of adjusting the CPU fre
quency in a frequency adjustment flow triggered by
CpuGover 3 provided in an embodiment of this embodiment;

US 9,377,842 B2
3

FIG. 10 is a schematic structural diagram of an apparatus
for conserving CPU power provided in an embodiment of this
embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

A clear and complete description of Solutions of embodi
ments of this disclosure will be given in connection with
accompanying drawings of those embodiments. Obviously,
the embodiments described herein are merely some of the
embodiments of this disclosure, but not all of them. Based on
the embodiments in this specification, other embodiments
can occur to those skilled in the art without any creative
efforts, all of which fall within the scope of this disclosure.
A method for realizing CPU power conservation is pro

vided in an embodiment of this disclosure, comprising:
obtaining CPU occupation rates of all threads triggering fre
quency adjustment in each domain and domains those threads
belong to; in a domain a thread triggering frequency adjust
ment belongs to, calculating a target CPU frequency to be
adjusted to according to the CPU occupation rate of the thread
triggering frequency adjustment; calculating a timer param
eter according to the target CPU frequency and setting a CPU
frequency value for the thread triggering frequency adjust
ment. FIG. 1 shows a multi-core system in an AMP and SMP
hybrid deploying mode, wherein domain 1 includes pthread
1,2,3 and 4; and domain 2 includes pthread5, 6, 7 and 8. Each
circle represents a cores with identical physical properties.
All hardware threads in a domain share the same CPU pri
mary frequency. There is a hardware thread in each domain
(pthread 1 and pthread 5 in FIG. 1), representing a primary
hardware thread in the domain, and other hardware threads
are secondary hardware threads. Particularly, according to the
deploying mode of FIG. 1, each OS instance has a hardware
thread CpuFreq and the CpuEreq creates CpuGover threads
according to the number of domains that the instance spans,
and thus we have the following relationships:
OS1 comprises CpuFreq1, and CpuFreq 1 comprises
CpuGover 1.1 (comprising pthread 1,3 and 4, which belong to
domain 1) and CpuGover1.2 (comprising pthread 6 and 7.
which belong to domain 2);
OS2 comprises CpuFreq2, and CpuFreq2 comprises
CpuGover2.1 (comprising pthread 2, which belongs to
domain 1) and CpuGover2.2 (comprising pthread 5, which
belongs to domain 2);
OS3 comprises CpuFreq3, and CpuFreq3 comprises
CpuGover3 (comprising pthread 8, which belongs to domain
2).
ACpuGover thread mainly takes charge of monitoring and

obtaining CPU occupation rates, and then reports to its Super
visor CpuFreq. The CpuGover is not distributed in concept,
namely, it can only 'see' itselfin an OS instance, and can see
neither other interior Govers within the OS instance, nor
Govers in other OS instances.
A CpuFreq takes charge of collecting CPU occupation

rates, analyzes and processes the CPU occupation rates, and
then synchronizes its analysis result to a primary CpuFreq.
Each CpuFreq adjusts a timer parameter by itself, and it is the
primary CpuFreq that performs frequency setting finally.

Because CpuFreqs are presented in a distributed manner, it
is necessary to synchronize information therebetween,
wherein the processing of CPU occupation rates comprises
selecting an appropriate CPU occupation rate according to a
configuration strategy from multiple CPU occupation rate
values, and then a hardware-supported feature setting a fre

10

15

25

30

35

40

45

50

55

60

65

4
quency and updating a timer parameter to guarantee the con
sistency between time and frequency.

Below, a method for conserving CPU power will be
described in detail according to the sequence of CPU fre
quency adjustment by each thread, as shown in FIG. 2, the
method may particularly comprise the following steps.
At step 21, CpuFreq hardware threads are initially config

ured.
The identity determination of a CpuEreq and its deploy

ment are accomplished through configuration, wherein con
figuration information comprises public information and pri
vate information, the public information comprises IDs of all
domains on a monoboard, and local information of CpuFreqs
in each domain; the private information comprises domain
features in an OS in which it is located. A configured CpuFreq
may create CpuGover instances. Because dynamical creation
is Supported. CpuFreq needs to register new CpuGovers after
cleaning original ones, and then initiate thread monitoring.

Particularly, taking CpuFreq 1 as an example, in FIG. 3,
CpuFreq 1 cancels original cpu governors and stops original
cpu gover threads, and then registers new cpu gover and
creates new cpu gover instances in a domain and creates cpu
gover threads. The created threads comprise CpuGover1.1
and CpuGover 1.2, and after the creation of those threads the
monitoring of each thread is initiated.
At Step 22, CPU occupation rates of all threads triggering

frequency adjustment in each domain and domains they
belong to are obtained.

Hierarchically, CpuGover is located at a lower layer and
CpuFreq is located at an upper layer. In an OS instance, there
may be multiple instances in the lower layer, which are aggre
gated and integrated into a hardware thread in the upper layer.
Each thread is provided with a timer, the step of which has the
CPU occupation update frequency as its reference.

Particularly, taking CpuFreq 1 as an example, as shown in
FIG. 4, if the timer is timeout, CpuGover1.1 and
CpuGover 1.2 obtain their own CPU occupation rates and
report them to CpuEreq1, CpuFreq 1 records the CPU occu
pation rate of each thread, and determine which domain a
corresponding thread belongs to according to configuration
information of each thread.
A threshold may be set for determining when CpuGover

reports its CPU occupation rate, CpuGover reports its CPU
occupation rate to CpuFreq when a variance in the CPU
occupation rate is larger than the threshold; otherwise,
CpuGover does not report its CPU occupation rate when a
variance in the CPU occupation rate is less than the threshold
to reduce unnecessary message flow.
At step 23, in the domain a thread triggering frequency

adjustment belongs to, a target CPU frequency to be adjusted
to is calculated according to the CPU occupation rate of the
thread triggering frequency adjustment.

In the process of calculating the target CPU frequency, a
thread having the highest CPU occupation rate is first selected
for processing, to calculate a timer parameter of an OS
instance in which the thread is located. If Cpufreq cannot
obtain information of a primary CpuFreq of the domain, the
process will be carried out with the highest frequency.

Particularly, taking CpuFreq 1 as an example, as shown in
FIG.4, depending on a strategy, CpuFreq 1 calculates a target
CPU frequency to be adjusted to according to the CPU occu
pation rates of CpuGover1.1 and CpuGover1.2. The strategy
may be configured in configuration information during ini
tialization. A corresponding strategy may be: screening CPU
occupation rates and obtain nominal CPU frequency corre
sponding to those CPU occupation rates.

US 9,377,842 B2
5

At step 24, timers in a domain a thread triggering frequency
adjustment belongs to are Suspended.

Particularly, Cpufreq1 first notifies CpuEreqs in other
domains to suspend their timers, when the CpuFreqs in other
domains have Suspend their timers and return Suspense
responses to CpuFreq1, CpuFreq 1 Suspends timers in its own
domain, keeping the timing of all timers consistent as much as
possible, also improving the reliability of CPU frequency
adjustment.

At step 25, a timer parameter is calculated based on the
target CPU frequency and the CPU frequency value is set for
the thread triggering frequency adjustment.

Since a key timer parameter may be adjusted in the adjust
ment of the timer (for example, for a tick value, if the timer is
set to be triggered for timer checking at every 100 ticks, it is
possible to trigger the timer checking at every 200 ticks after
the adjustment), therefore, before the CPU frequency adjust
ment, a corresponding timer parameter may be selected as an
updated time parameter according to the correspondence
relationship between CPU frequencies and time parameters
in a configuration table of an OS instance.

Particularly, CpuEreq1 sends the target CPU frequency to
CpuFreqs in other domains, each CpuFreq may calculate its
appropriate timer parameter according to the target CPU fre
quency. After the calculation of the timer parameter, the CPU
frequency value is adjusted by invoking a CPU driving pro
gram. Dynamic loading is also supported for a multi-core
system in an AMP and SMP hybrid deploying mode.
At step 26, the timers are re-fired.
In order to ensure the reliability of a multi-core system in

an AMP and SMP hybrid deploying mode, after each CPU
frequency setting, it is also needed to re-fire the timers. So
that, when the CPU frequency adjustment has failed, the
present operation can be given up, and the CPU frequency
will be adjusted again at a next time when a timer is timeout.

Furthermore, at step 25, for the case as shown in FIG. 1,
there are different cases of CPU frequency adjustment by
threads in the same domain of the same OS instance, CPU
frequency adjustment by threads in different domains in the
same OS instance, and CPU frequency adjustment by threads
in different domains in different OS instances, which will be
described in detail below.

Embodiment 1 of CPU Frequency Adjustment
As shown in FIG. 5, when CpuGover1.1 triggers the fre

quency adjustment flow, a primary hardware thread Cpu
Freq 1 (corresponding to pthread 1 in FIG. 1) of an OS
instance it belongs to is first reported, after CpuFreq 1 has
calculated a target CPU frequency to be adjusted to, a sus
pending operation notification is sent to a primary hardware
thread CpuFreq2 in domain 2 (corresponding to pthread 5 in
FIG. 1) (because the domain 1 where the thread triggering
frequency adjustment is located only comprises two instances
of OS1 and OS2, the CPU frequency adjustment is only
performed by the primary hardware threads of OS1 and OS2).
When Cpufreq1 and CpuFreq2 have suspended timers that
have been fired presently, CpuFreq 1 invokes a CPU driving
program to set the CPU frequency, and sends the CPU fre
quency to CpuFreq2. CpuFreq 1 calculates and sets a local
timer parameter according to the new CPU frequency, while
CpuEreq2 also sets the timer parameter of CpuGover2.1
according to its rules (CpuGover2.1 is a thread of OS1 which
is located in domain 2, thus it is required to be synchronized
when OS1 sets the CPU frequency, and the synchronization
operation is accomplished by the primary hardware thread
CpuEreq2 in domain 2). After the timer parameter is set,
CpuEreq1 and CpuEreq2 re-fire the timers, and the present
frequency adjustment is finished.

10

15

25

30

35

40

45

50

55

60

65

6
Embodiment 2 of CPU Frequency Adjustment
As shown in FIG. 6, when CpuGover1.2 triggers the fre

quency adjustment flow, a primary hardware thread CpuFreq
1 of an OS instance it belongs to is first reported, CpuFreq 1
sends a CPU frequency parameter to a primary hardware
thread CpuFreq2 of domain 2, after CpuEreq2 has calculated
a target CPU frequency to be adjusted to, a Suspending opera
tion notification is sent to a primary hardware thread Cpu
Freq2 and a secondary hardware thread CpuFreq3 of domain
2 (because domain 2 where the thread triggering frequency
adjustment is located comprises three instances of OS1, OS2
and OS3, it is necessary to perform the CPU frequency adjust
ment by the primary hardware threads of OS1, OS2 and the
secondary thread of OS3). When CpuFreq1 CpuFreq2 and
CpuEreq3 have suspended timers that have been fired pres
ently, CpuFreq2 invokes a CPU driving program to set the
CPU frequency, and sends the CPU frequency to CpuFreq1
and CpuFreq3. CpuFreq2 sets a local timer parameter accord
ing to its rules, while CpuFreq 1 sets the timer parameter of
CpuGover 1.2 according to its rules, and CpuFreq3 adjusts its
timer parameter according to the new CPU frequency. After
the timer parameter has been set, CpuFreq 1. CpuFreq2 and
CpuFreq3 re-fire the timers, and the present frequency adjust
ment is finished.
Embodiment 3 of CPU Frequency Adjustment
As shown in FIG. 7, when CpuGover2.1 triggers the fre

quency adjustment flow, a primary hardware thread Cpu
Freq2 of an OS instance it belongs to is first reported. Cpu
Freq2 sends a CPU frequency to a primary hardware thread
CpuFreq 1 of domain1, after CpuFreq 1 has calculated a target
CPU frequency to be adjusted to, it sends a Suspending opera
tion notification to the primary hardware thread CpuFreq2 of
domain 2. When CpuFreq 1 and CpuFreq2 have suspended
timers that have been fired presently, CpuFreq 1 invokes a
CPU driving program to set the CPU frequency and sends the
CPU frequency to CpuFreq2. Cpufreq1 sets a local timer
parameter according to its rules, while CpuFreq2 calculates
and sets the timer parameter of CpuGover2.1 according to the
new CPU frequency. After the timer parameter has been set,
CpuEreq1 and CpuEreq2 re-fire the timers, and the present
frequency adjustment is finished.
Embodiment 4 of CPU Frequency Adjustment
As shown in FIG. 8, when CpuGover2.2 triggers the fre

quency adjustment flow, a primary hardware thread Cpu
Freq2 of an OS instance it belongs to is first reported, after
CpuEreq2 has calculated a target CPU frequency to be
adjusted to, it sends a Suspending operation notification to the
primary hardware thread CpuFreq2 of domain 1 and a sec
ondary hardware thread CpuFreq3 of domain 2. When Cpu
Freq1, CpuEreq2 and CpuFreq3 have suspended timers that
have been fired presently, CpuFreq2 invokes a CPU driving
program to set the CPU frequency and sends the CPU fre
quency to CpuFreq2 and CpuFreq3. CpuFreq 1 sets a local
timer parameter according to its rules, while CpuFreq2 cal
culates and sets the timer parameter of CpuGover2.2 accord
ing to the new CPU frequency, and CpuEreq3 calculates and
sets its timer parameter according to the new CPU frequency.
After the timer parameter has been set, CpuFreq1, CpuFreq2
and CpuFreq3 re-fire the timers, and the present frequency
adjustment is finished.
Embodiment 5 of CPU Frequency Adjustment
As shown in FIG. 9, when CpuGover3 triggers the fre

quency adjustment flow, a secondary hardware thread Cpu
Freq3 of an OS instance it belongs to is first reported (because
OS3 does not have a primary hardware thread in domain 2,
only a secondary hardware thread can be reported), CpuFreq3
sends a CPU frequency parameter to a primary hardware

US 9,377,842 B2
7

thread CpuFreq2 of a domain it belongs to, after CpuFreq2
has calculated a target CPU frequency to be adjusted to, it
sends a Suspending operation notification to CpuFreq2 and
CpuEreq3. When CpuFreq1, CpuEreq2 and CpuFreq3 have
suspended timers that have been fired presently, CpuFreq2
invokes a CPU driving program to set the CPU frequency and
sends the CPU frequency to CpuFreq 1 and CpuFreq3. Cpu
Freq 1 and CpuFreq2 set a local timer parameter according to
their own rules, while CpuEreq3 calculates and sets the timer
parameter of CpuGover3 according to the new CPU fre
quency. After the timer parameter has been set, CpuFreq1,
CpuEreq2 and CpuEreq3 re-fire the timers, and the present
frequency adjustment is finished.
The embodiment provided in this disclosure synchronizes

the CPU frequency value of threads in each domain according
to the CPU occupation rate of each thread triggering fre
quency adjustment to achieve the synchronization of CPU
frequency values in a multi-core system in an AMP deploying
mode or a multi-core system in an AMP and SMP hybrid
deploying mode, so as to realize CPU power conservation.

Those ordinary skilled in the art may understand that all or
part steps of the above method embodiments can be imple
mented by a computer program that instructs relevant hard
wares, the program described above can be stored in a com
puter readable storage medium, which when executed may
perform steps contained in the above method embodiments.
Wherein, the storage medium may comprise: magnetic discs,
optical discs, read-only memory (ROM) or random access
memory (RAM) or the like.
An apparatus for conserving CPU power is also provided in

an embodiment of this disclosure, as shown in FIG. 10, the
apparatus may particularly comprise an obtaining unit 101, a
frequency calculating unit 102 and a frequency adjusting unit
103.
The obtaining unit 101 is configured to obtain the CPU

occupation rates of all threads triggering frequency adjust
ment in each domain and domains those threads belong to;

the frequency calculating unit 102 is configured to in a
domain a thread triggering frequency adjustment belongs to,
calculate a target CPU frequency to be adjusted to according
to the CPU occupation rate of the thread triggering frequency
adjustment;

the frequency adjusting unit 103 is configured to calculate
a timer parameter according to the target CPU frequency
obtained by the frequency calculating unit 102 and set a CPU
frequency value for the thread triggering frequency adjust
ment.

Further, the obtaining unit may comprise a monitoring and
sending Sub-unit, configured to monitor the CPU occupation
rates of all secondary threads in each domain, and if the CPU
occupation rates of one or more of the secondary threads have
variances larger than a threshold, send their CPU occupation
rates;

the frequency calculating unit comprises a frequency
obtaining Sub-unit, configured to select a maximum CPU
occupation rate value from the CPU occupation rates of all
threads triggering frequency adjustment in each domain, and
select a CPU frequency value that corresponds to the maxi
mum CPU occupation rate value as a target CPU frequency
according to a correspondence relationship between CPU
occupation rates and CPU frequencies in a configuration table
of an OS instance; the frequency adjusting unit comprises a
timer Suspending Sub-unit, configured to suspend timers in
domains those threads triggering frequency adjustment
belong to.

10

15

25

30

35

40

45

50

55

60

65

8
Further, when frequency adjustment is triggered by differ

ent threads in different domains, the frequency adjusting-unit
103 may comprise the following cases.

1. When a thread triggering frequency adjustment and a
primary hardware thread of an OS instance it belongs to are in
the same domain, the frequency adjusting unit 103 comprises
a first timer Suspending Sub-unit, a first frequency setting and
sending Sub-unit, a first timer parameter setting Sub-unit, and
a first timer firing Sub-unit. The first timer Suspending Sub
unit is configured to, when a thread triggering frequency
adjustment and a primary hardware thread of an OS instance
it belongs to are in the same domain, simultaneously suspend
a timer that is fired presently and timers in domains in which
other threads of the OS instance are located; the first fre
quency setting and sending Sub-unit is configured to cause the
primary hardware thread which is in the same domain with
the thread triggering frequency adjustment to invoke a CPU
driving program to set a CPU frequency, and send the CPU
frequency to the domains in which other threads of the OS
instance are located; the first timer parameter setting Sub-unit
is configured to cause the primary hardware thread which is in
the same domain with the thread triggering frequency adjust
ment to calculate and set a local timer parameter, to cause
primary hardware threads of domains in which other threads
of the OS instance are located to set a timer parameter for the
other threads of the OS instance according to their own rules:
the first timer firing sub-unit is configured to re-fire the timers
of the domainin which the thread triggering frequency adjust
ment is located and the timers of the domains in which other
threads of the OS instance are located.

2. When a thread triggering frequency adjustment and a
primary hardware thread of an OS instance it belongs to are
not in the same domain, the frequency adjusting unit 103
comprises a second CPU frequency parameter sending Sub
unit, a second timer Suspending Sub-unit, a second frequency
setting and sending Sub-unit, a second timer parameter setting
sub-unit, and a second timer firing sub-unit. The second CPU
frequency parameter sending Sub-unit is configured to, when
a thread triggering frequency adjustment and a primary hard
ware thread of an OS instance it belongs to are not in the same
domain, cause a primary hardware thread of an OS instance
the thread triggering frequency adjustment belongs to send
the CPU frequency parameter of the thread triggering fre
quency adjustment to a primary hardware thread of a domain
the thread triggering frequency adjustment belongs to; the
second timer Suspending Sub-unit is configured to simulta
neously suspend timers that are fired presently and timers of
domains in which other threads of the OS instance are
located; the second frequency setting and sending Sub-unit is
configured to cause the primary hardware thread which is in
the same domain with the thread triggering frequency adjust
ment to invoke a CPU driving program to set a CPU fre
quency, and send the CPU frequency to the domain in which
thread triggering frequency adjustment is located; the second
timer parameter setting Sub-unit is configured to cause the
primary hardware thread which is in the same domain with
the thread triggering frequency adjustment to calculate and
set a local timer parameter according to its own rules, to cause
the primary hardware thread of an OS instance the thread
triggering frequency adjustment belongs to, to set a timer
parameter triggering frequency adjustment; the second timer
firing Sub-unit is configured to re-fire the timers of the domain
in which the thread triggering frequency adjustment is
located and the timers of the domains in which other threads
of the OS instance are located.

3. When there is not a primary hardware thread of an OS
instance in the domain a thread triggering frequency adjust

US 9,377,842 B2
9

ment belongs to, the frequency adjusting unit 103 comprises
a third CPU frequency parameter sending sub-unit, a third
timer Suspending Sub-unit, a third frequency setting and send
ing Sub-unit, a third timer parameter setting Sub-unit, and a
third timer firing sub-unit. The third CPU frequency param
eter sending Sub-unit is configured to, when there is no pri
mary hardware thread in the domain a thread triggering fre
quency adjustment belongs to being a thread triggering
frequency adjustment to, send a CPU frequency parameter to
a primary hardware thread of an OS instance the thread trig
gering frequency adjustment belongs to; the third timer Sus
pending Sub-unit is configured to simultaneously suspend
timers that are fired presently and timers of threads of other
OS instances in the domain the thread triggering frequency
adjustment belongs to; the third frequency setting and send
ing Sub-unit is configured to cause the primary hardware
thread which is in the same domain with the thread triggering
frequency adjustment to invoke a CPU driving program to set
a CPU frequency, and send the CPU frequency to hardware
threads of other OS instances in the domain in which the
thread triggering frequency adjustment is located; the third
timer parameter setting Sub-unit is configured to cause the
primary hardware thread which is in the same domain with
the thread triggering frequency adjustment to calculate and
set a local timer parameter according to the new CPU fre
quency, cause the primary hardware threads of other OS
instances in the domain in which the thread triggering fre
quency adjustment is located to set a local timer parameter
according to its own rules; the third timer firing Sub-unit is
configured to re-fire the timers of the domain in which the
thread triggering frequency adjustment is located and the
timers of the hardware threads of other OS instances in the
domain in which the thread triggering frequency adjustment
is located.
The functions of various unit and sub-unit comprised in the

above apparatus have been described in detail in the preced
ing method embodiment, which will not be described in detail
in this embodiment.
The embodiment provided in this disclosure synchronizes

the CPU frequency value of threads in each domain according
to the CPU occupation rate of each thread triggering fre
quency adjustment to achieve the synchronization of CPU
frequency values in a multi-core system in an AMP deploying
mode or a multi-core system in an AMP and SMP hybrid
deploying mode, so as to realize CPU power conservation.
The description above is merely some preferable embodi

ments of this disclosure, however, the scope of this disclosure
is not limited thereto, and any skilled in the art may easily
conceive variations or Substitutions within the scope dis
closed in this disclosure, which should be covered in the
scope of this disclosure. Therefore, the scope of this disclo
sure should be consistent with the scope of the claims
appended below.
What is claimed is:
1. A method for conserving CPU power, comprising:
obtaining CPU occupation rates of all threads triggering

frequency adjustment in each domain and domains to
which those threads belong to:

in a domain a thread triggering frequency adjustment
belongs to, calculating a target CPU frequency to be
adjusted to according to the CPU occupation rate of the
thread triggering frequency adjustment;

calculating a timer parameter according to the target CPU
frequency and setting a CPU frequency value for the
thread triggering frequency adjustment, wherein setting
a CPU frequency value for the thread triggering fre
quency adjustment comprises:

10

15

25

30

35

40

45

50

55

60

65

10
when a thread triggering frequency adjustment and a pri

mary hardware thread of an OS instance are in the same
domain, simultaneously Suspending a timer that is fired
presently and timers in domains in which other threads
of the OS instance are located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to invoke a CPU driving program to set a CPU fre
quency, and send the CPU frequency to the domains in
which other threads of the OS instance are located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to calculate and set a local timer parameter, and causing
primary hardware threads of domains in which other
threads of the OS instance are located to set a timer
parameter for the other threads of the OS instance
according to their own rules;

re-firing the timers of the domain in which the thread
triggering frequency adjustment is located and the tim
ers of the domains in which other threads of the OS
instance are located.

2. The method according to claim 1, wherein triggering
frequency adjustment comprises:

monitoring CPU occupation rates of all secondary threads
in each domain, and if the CPU occupation rates of one
or more of the secondary threads have variances larger
than a threshold, sending the CPU occupation rates.

3. The method according to claim 1, wherein after calcu
lating a target CPU frequency to be adjusted to according to
the CPU occupation rate of the thread triggering frequency
adjustment, the method further comprises:

Suspending timers in the domain the thread triggering fre
quency adjustment belongs to.

4. The method according to claim 1, wherein calculating a
target CPU frequency to be adjusted to according to the CPU
occupation rate of the thread triggering frequency adjustment
comprises:

selecting a maximum CPU occupation rate value from the
CPU occupation rates of all threads triggering frequency
adjustment in each domain, and selecting a CPU fre
quency value that corresponds to the maximum CPU
occupation rate value as a target CPU frequency accord
ing to a correspondence relationship between CPU
occupation rates and CPU frequencies in a configuration
table of an OS instance.

5. A method for conserving CPU power, comprising:
obtaining CPU occupation rates of all threads triggering

frequency adjustment in each domain and domains to
which those threads belong to

in a domain a thread triggering frequency adjustment
belongs to, calculating a target CPU frequency to be
adjusted to according to the CPU occupation rate of the
thread triggering frequency adjustment;

calculating a timer parameter according to the target CPU
frequency and setting a CPU frequency value for the
thread triggering frequency adjustment, wherein setting
a CPU frequency value for the thread triggering fre
quency adjustment comprises:

when a thread triggering frequency adjustment and a pri
mary hardware thread of an OS instance it belongs to are
not in the same domain, causing, a primary hardware
thread of an OS instance the thread triggering frequency
adjustment belongs to, to send the CPU frequency
parameter of the thread triggering frequency adjustment
to a primary hardware thread of a domain the thread
triggering frequency adjustment belongs to:

US 9,377,842 B2
11

simultaneously Suspending timers that are fired presently
and timers of domains in which other threads of the OS
instance are located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to invoke a CPU driving program to set a CPU fre
quency, and send the CPU frequency to the domain in
which thread triggering frequency adjustment is located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to calculate and set a local timer parameter according to
its own rules, and causing, the primary hardware thread
ofan OS instance the thread triggering frequency adjust
ment belongs to, to calculate and set a timer parameter
triggering frequency adjustment;

re-firing the timers of the domain in which the thread
triggering frequency adjustment is located and the tim
ers of the domains in which other threads of the OS
instance are located.

6. The method according to claim 5, wherein triggering
frequency adjustment comprises:

monitoring CPU occupation rates of all secondary threads
in each domain, and if the CPU occupation rates of one
or more of the secondary threads have variances larger
than a threshold, sending the CPU occupation rates.

7. The method according to claim 5, wherein calculating a
target CPU frequency to be adjusted to according to the CPU
occupation rate of the thread triggering frequency adjustment
comprises:

Selecting a maximum CPU occupation rate value from the
CPU occupation rates of all threads triggering frequency
adjustment in each domain, and selecting a CPU fre
quency value that corresponds to the maximum CPU
occupation rate value as a target CPU frequency accord
ing to a correspondence relationship between CPU
occupation rates and CPU frequencies in a configuration
table of an OS instance.

8. The method according to claim 5, wherein after calcu
lating a target CPU frequency to be adjusted to according to
the CPU occupation rate of the thread triggering frequency
adjustment, the method further comprises:

Suspending timers in the domain the thread triggering fre
quency adjustment belongs to.

9. A method for conserving CPU power, comprising:
obtaining CPU occupation rates of all threads triggering

frequency adjustment in each domain and domains to
which those threads belong to

in a domain a thread triggering frequency adjustment
belongs to, calculating a target CPU frequency to be
adjusted to according to the CPU occupation rate of the
thread triggering frequency adjustment;

calculating a timer parameter according to the target CPU
frequency and setting a CPU frequency value for the
thread triggering frequency adjustment, wherein setting
a CPU frequency value for the thread triggering fre
quency adjustment comprises:

when there is no primary hardware thread in the domain a
thread triggering frequency adjustment belongs to being
a thread triggering frequency adjustment, sending a
CPU frequency parameter to a primary hardware thread
ofan OS instance the thread triggering frequency adjust
ment belongs to:

simultaneously Suspending timers that are fired presently
and timers of threads of other OS instances in the domain
the thread triggering frequency adjustment belongs to:

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment

10

15

25

30

35

40

45

50

55

60

65

12
to invoke a CPU driving program to set a CPU fre
quency, and send the CPU frequency to hardware
threads of other OS instances in the domain in which the
thread triggering frequency adjustment is located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to calculate and set a local timer parameter according to
the new CPU frequency, and causing the primary hard
ware threads of other OS instances in the domain in
which the thread triggering frequency adjustment is
located to set a local timer parameter according to its
own rules;

re-firing the timers of the domain in which the thread
triggering frequency adjustment is located and the tim
ers of the hardware threads of other OS instances in the
domain in which the thread triggering frequency adjust
ment is located.

10. The method according to claim 9, wherein triggering
frequency adjustment comprises:

monitoring CPU occupation rates of all secondary threads
in each domain, and if the CPU occupation rates of one
or more of the secondary threads have variances larger
than a threshold, sending the CPU occupation rates.

11. The method according to claim 9, wherein calculating
a target CPU frequency to be adjusted to according to the CPU
occupation rate of the thread triggering frequency adjustment
comprises:

selecting a maximum CPU occupation rate value from the
CPU occupation rates of all threads triggering frequency
adjustment in each domain, and selecting a CPU fre
quency value that corresponds to the maximum CPU
occupation rate value as a target CPU frequency accord
ing to a correspondence relationship between CPU
occupation rates and CPU frequencies in a configuration
table of an OS instance.

12. The method according to claim 9, wherein after calcu
lating a target CPU frequency to be adjusted to according to
the CPU occupation rate of the thread triggering frequency
adjustment, the method further comprises:

Suspending timers in the domain the thread triggering fre
quency adjustment belongs to.

13. A non-transitory computer readable storage medium
configured to store executable instructions for performing a
method comprising:

obtaining CPU occupation rates of all threads triggering
frequency adjustment in each domain and domains to
which those threads belong to:

in a domain a thread triggering frequency adjustment
belongs to, calculating a target CPU frequency to be
adjusted to according to the CPU occupation rate of the
thread triggering frequency adjustment;

calculating a timer parameter according to the target CPU
frequency and setting a CPU frequency value for the
thread triggering frequency adjustment, wherein setting
a CPU frequency value for the thread triggering fre
quency adjustment comprises:

when a thread triggering frequency adjustment and a pri
mary hardware thread of an OS instance are in the same
domain, simultaneously Suspending a timer that is fired
presently and timers in domains in which other threads
of the OS instance are located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to invoke a CPU driving program to set a CPU fre
quency, and send the CPU frequency to the domains in
which other threads of the OS instance are located;

US 9,377,842 B2
13

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to calculate and set a local timer parameter, and causing
primary hardware threads of domains in which other
threads of the OS instance are located to set a timer
parameter for the other threads of the OS instance
according to their own rules:

re-firing the timers of the domain in which the thread
triggering frequency adjustment is located and the tim
ers of the domains in which other threads of the OS
instance are located.

14. The non-transitory computer readable storage medium
according to claim 13, wherein triggering frequency adjust
ment comprises:

monitoring CPU occupation rates of all secondary threads
in each domain, and if the CPU occupation rates of one
or more of the secondary threads have variances larger
than a threshold, sending the CPU occupation rates.

15. The non-transitory computer readable storage medium
according to claim 13, wherein calculating a target CPU
frequency to be adjusted to according to the CPU occupation
rate of the thread triggering frequency adjustment comprises:

Selecting a maximum CPU occupation rate value from the
CPU occupation rates of all threads triggering frequency
adjustment in each domain, and selecting a CPU fre
quency value that corresponds to the maximum CPU
occupation rate value as a target CPU frequency accord
ing to a correspondence relationship between CPU
occupation rates and CPU frequencies in a configuration
table of an OS instance.

16. The non-transitory computer readable storage medium
according to claim 13, wherein after calculating a target CPU
frequency to be adjusted to according to the CPU occupation
rate of the thread triggering frequency adjustment, further
comprises:

Suspending timers in the domain the thread triggering fre
quency adjustment belongs to.

17. A non-transitory computer readable storage medium
configured to store executable instructions for performing a
method comprising:

obtaining CPU occupation rates of all threads triggering
frequency adjustment in each domain and domains to
which those threads belong to:

in a domain a thread triggering frequency adjustment
belongs to, calculating a target CPU frequency to be
adjusted to according to the CPU occupation rate of the
thread triggering frequency adjustment;

calculating a timer parameter according to the target CPU
frequency and setting a CPU frequency value for the
thread triggering frequency adjustment, wherein setting
a CPU frequency value for the thread triggering fre
quency adjustment comprises:

when a thread triggering frequency adjustment and a pri
mary hardware thread of an OS instance it belongs to are
not in the same domain, causing, a primary hardware
thread of an OS instance the thread triggering frequency
adjustment belongs to, to send the CPU frequency
parameter of the thread triggering frequency adjustment
to a primary hardware thread of a domain the thread
triggering frequency adjustment belongs to:

simultaneously Suspending timers that are fired presently
and timers of domains in which other threads of the OS
instance are located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to invoke a CPU driving program to set a CPU fre

10

15

25

30

35

40

45

50

55

60

65

14
quency, and send the CPU frequency to the domain in
which thread triggering frequency adjustment is located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to calculate and set a local timer parameter according to
its own rules, and causing, the primary hardware thread
ofan OS instance the thread triggering frequency adjust
ment belongs to, to calculate and set a timer parameter
triggering frequency adjustment;

re-firing the timers of the domain in which the thread
triggering frequency adjustment is located and the tim
ers of the domains in which other threads of the OS
instance are located.

18. The non-transitory computer readable storage medium
according to claim 17, wherein triggering frequency adjust
ment comprises:

monitoring CPU occupation rates of all secondary threads
in each domain, and if the CPU occupation rates of one
or more of the secondary threads have variances larger
than a threshold, sending the CPU occupation rates.

19. The non-transitory computer readable storage medium
according to claim 17, wherein calculating a target CPU
frequency to be adjusted to according to the CPU occupation
rate of the thread triggering frequency adjustment comprises:

selecting a maximum CPU occupation rate value from the
CPU occupation rates of all threads triggering frequency
adjustment in each domain, and selecting a CPU fre
quency value that corresponds to the maximum CPU
occupation rate value as a target CPU frequency accord
ing to a correspondence relationship between CPU
occupation rates and CPU frequencies in a configuration
table of an OS instance.

20. The non-transitory computer readable storage medium
according to claim 17, wherein after calculating a target CPU
frequency to be adjusted to according to the CPU occupation
rate of the thread triggering frequency adjustment, further
comprises:

Suspending timers in the domain the thread triggering fre
quency adjustment belongs to.

21. A non-transitory computer readable storage medium
configured to store executable instructions for performing a
method comprising:

obtaining CPU occupation rates of all threads triggering
frequency adjustment in each domain and domains to
which those threads belong to:

in a domain a thread triggering frequency adjustment
belongs to, calculating a target CPU frequency to be
adjusted to according to the CPU occupation rate of the
thread triggering frequency adjustment;

calculating a timer parameter according to the target CPU
frequency and setting a CPU frequency value for the
thread triggering frequency adjustment, wherein setting
a CPU frequency value for the thread triggering fre
quency adjustment comprises:

when there is no primary hardware thread in the domain a
thread triggering frequency adjustment belongs to being
a thread triggering frequency adjustment, sending a
CPU frequency parameter to a primary hardware thread
ofan OS instance the thread triggering frequency adjust
ment belongs to:

simultaneously Suspending timers that are fired presently
and timers of threads of other OS instances in the domain
the thread triggering frequency adjustment belongs to:

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to invoke a CPU driving program to set a CPU fre
quency, and send the CPU frequency to hardware

US 9,377,842 B2
15

threads of other OS instances in the domain in which the
thread triggering frequency adjustment is located;

causing the primary hardware thread which is in the same
domain with the thread triggering frequency adjustment
to calculate and set a local timer parameter according to
the new CPU frequency, and causing the primary hard
ware threads of other OS instances in the domain in
which the thread triggering frequency adjustment is
located to set a local timer parameter according to its
own rules;

re-firing the timers of the domain in which the thread
triggering frequency adjustment is located and the tim
ers of the hardware threads of other OS instances in the
domain in which the thread triggering frequency adjust
ment is located.

22. The non-transitory computer readable storage medium
according to claim 21, wherein triggering frequency adjust
ment comprises:

monitoring CPU occupation rates of all secondary threads
in each domain, and if the CPU occupation rates of one
or more of the secondary threads have variances larger
than a threshold, sending the CPU occupation rates.

10

15

16
23. The non-transitory computer readable storage medium

according to claim 21, wherein calculating a target CPU
frequency to be adjusted to according to the CPU occupation
rate of the thread triggering frequency adjustment comprises:

selecting a maximum CPU occupation rate value from the
CPU occupation rates of all threads triggering frequency
adjustment in each domain, and selecting a CPU fre
quency value that corresponds to the maximum CPU
occupation rate value as a target CPU frequency accord
ing to a correspondence relationship between CPU
occupation rates and CPU frequencies in a configuration
table of an OS instance.

24. The non-transitory computer readable storage medium
according to claim 21, wherein after calculating a target CPU
frequency to be adjusted to according to the CPU occupation
rate of the thread triggering frequency adjustment, further
comprises:

Suspending timers in the domain the thread triggering fre
quency adjustment belongs to.

k k k k k

