
(12) United States Patent
Hjul

USOO9367441B2

US 9,367,441 B2
Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FORMANAGING PHYSICAL
MEMORY OF ADATA STORAGE AND DATA
STORAGE MANAGEMENT SYSTEM

(75) Inventor: Ivan Schultz Hjul, Varde (DK)

(73) Assignee: SIEMENS
AKTIENGESELLSCHAFT, München
(DE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 531 days.

(21) Appl. No.: 13/399,010

(22) Filed: Feb. 17, 2012

(65) Prior Publication Data

US 2012/O221805 A1 Aug. 30, 2012

(30) Foreign Application Priority Data

Feb. 25, 2011 (EP) 11155942

(51) Int. Cl.
G06F 12/00
G06F 12/02
G06F 9/50

(52) U.S. Cl.
CPC G06F 12/023 (2013.01); G06F 9/5016

(2013.01)

(2006.01)
(2006.01)
(2006.01)

(58) Field of Classification Search
CPC G06F 12/023; G06F 9/5016
USPC .. 711/154
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7/2002 McGowen et al. T11 153
8/2002 Dreszer

6.427,195 B1*
6,442,661 B1* 8/2002 Dreszer 711/17O

ai1 all ai2 a2 ai a3

WW-------WWYH-----wo-rarr-W---/WW

2 m m2 1 m3 Oma i

7,039,774 B1* 5/2006 Cruz-Rios et al. 711/159
7,603.529 B1 * 10/2009 MacHardy et al. T11 162

2002fOO69338 A1 6/2002 OZdemir et al.
2002fO144073 A1* 10, 2002 Traininet al. 711/17O
2003/0145185 A1 7/2003 Lawton et al.
2006/0282644 A1* 12/2006 Wong T11 206
2009/0006502 A1* 1/2009 Leung et al. ... 707?2O5
2009, 0216988 A1* 8, 2009 Palladino T11 171
2010.0312984 A1* 12/2010 Robin et al. ... T11 171
2011/O125958 A1* 5, 2011 Maeda et al. 711,103
2011/0246742 A1* 10/2011 Kogen et al. 711/17O

FOREIGN PATENT DOCUMENTS

CN 101.414281 A 4/2009
CN 101702138 A 5, 2010
CN 101763308 A 6, 2010

OTHER PUBLICATIONS

ONX Software Systems; QNX Neutrino RTOS: http://www.qnx.
com/products/neutrino-rtos/neutrino-rtos.html, Mar. 23, 2010.

* cited by examiner

Primary Examiner — Charles Rones
Assistant Examiner — Nanci Wong

(57) ABSTRACT

A method is provided managing physical memory of a data
storage, for example, aheap. The method includes requesting
a memory portion having a memory portion size and identi
fying a pool. The pool is provided for storing at least one
access information indicative of an address of a memory
block of the data storage. The memory block has a memory
block size equal to or larger than the memory portion size.
The method further includes determining whether the access
information is stored in the pool. If the access information is
stored in the pool, address data of the memory block is
returned, wherein the address data are based on the access
information, and access information is removed from the
pool. If the access information is not stored in the pool, the
access information is created, and address data of the memory
block is returned.

16 Claims, 1 Drawing Sheet

100

5 i2 1 m/ 20

--
107

US 9,367,441 B2

| ||

60||

Jun. 14, 2016

||

—
U.S. Patent

US 9,367,441 B2
1.

METHOD FOR MANAGING PHYSICAL
MEMORY OF ADATA STORAGE AND DATA

STORAGE MANAGEMENT SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

According to a heap management system, part of an oper
ating system which is offered by the company QNX Software
Systems the physical memory of the heap is split in 4 kbyte
sized memory portions. The physical memory is mapped to a
virtual memory, wherein every operation, process or applica
tion may allocate or access the virtual memory. The virtual
memory may simulate a continuous section of a memory
which however may be mapped to a large number of 4 kbyte
memory (separated) portions in the physical memory, which
may be distributed across the physical memory, such that they
may be interspersed with not allocated memory portions. For
every access to the memory a mapping from the virtual
memory to the physical memory needs to be performed which
slows the operation down.

FIELD OF INVENTION

The present invention relates to a method for managing
physical memory of a data storage and to a data storage
management system. In particular, the present invention
relates to a method for managing physical memory of a data
storage and to a data storage management system, wherein a
reliability and/or availability and/or determinism and/or a
speed of allocation and/or access of the physical memory is
improved compared to conventional methods or systems.

ART BACKGROUND

In particular for real-time requirements for which it is
required that the result is correct and the result is obtained
within a predetermined time, memory management may be of
a particular concern.

In particular, the real-time application may comprise mea
Suring a physical quantity, Such as a wind speed, a tempera
ture, a vibration, an amount of electric power, an electric
Voltage, an electric current or the like. In particular, the real
time application may run to control and/or monitor a power
plant, such as a power generation system, in particular a wind
turbine system. In particular, the wind turbine may be
required to be controlled depending on one or more measur
ing data measuring physical quantities, such as the wind
speed, the temperature, the amount of electric energy pro
duced, a frequency of a utility grid connected to the wind
turbine and the like.

Herein, it may be required that access to and/or allocation
of a requested memory portion is gained or granted within a
predetermined time, to ensure that the result is obtained
within the predetermined time of the real-time system or
application. In particular, the application may access or allo
cate a portion of the heap, which may be a memory area
reserved for dynamic memory allocation and memory de
allocation.

According to a heap management system, part of an oper
ating system which is offered by the company QNX Software
Systems (http://www.qnx.com/download/feature.html?pro
gramid=19524) the physical memory of the heap is split in 4
kbyte sized memory portions. The physical memory is
mapped to a virtual memory, wherein every operation, pro
cess or application may allocate or access the virtual memory.
The virtual memory may simulate a continuous section of a

10

15

25

30

35

40

45

50

55

60

65

2
memory which however may be mapped to a large number of
4kbyte memory (separated) portions in the physical memory,
which may be distributed across the physical memory. Such
that they may be interspersed with not allocated memory
portions. For every access to the memory a mapping from the
virtual memory to the physical memory needs to be per
formed which slows the operation down.

There may be a need for a method for managing physical
memory of a data storage, in particular aheap, and for a data
storage management system, wherein allocating and/or de
allocating and/or accessing a memory portion may be
improved, in particular more efficient compared to conven
tionally known methods or systems. In particular, there may
be a need for a method for managing physical memory of a
data storage, in particular a heap, and for a data storage
management System, in particular comprising a heap,
wherein allocation and/or access of a memory portion may be
performed in a predictable time span.

SUMMARY OF INVENTION

This need may be met by the Subject matter according to
the independent claims. Advantageous embodiments of the
present invention are described by the dependent claims.

According to an embodiment, a method (which may for
example be implemented in Software, such as using a high
level computer language. Such as C++, JAVA, C, or which
may be implemented by a low level computer language. Such
as assembler, or wherein the method is implemented in hard
ware, Such as for example by providing an application spe
cific integrated circuit (ASIC)) for managing (in particular for
allocating, accessing, de-allocating and/or assigning) physi
cal memory (in particular comprising a plurality of memory
cells which may be addressed or referred to by associated
unambiguous addresses) of a data storage (for example a
portion of a RAM, in particular aheap, or a harddisk, or a flash
memory, or any other device which is adapted to store data in
an electronic form), in particular a heap (in particular repre
senting an electronic memory area reserved for dynamic
memory allocation and/or de-allocation), wherein the method
comprises requesting (in particular by a requester, Such as a
computer process, a computer application, a thread running
on the computer, or the like) a memory portion (in particular
for using this memory portion for writing data into the
memory portion by the application or by the process, such as
for example when a variable, a data object or any other data
structure is instantiated within the application or within the
process) having a memory portion size (which may be repre
sented by a particular number of bytes that are requested by
the requester for storing variables, data structures or data
objects being used in the application or the process running on
the computer or processor).
The method for managing physical memory of the data

storage further comprises identifying (in particular compris
ing determining, calculating or/and deriving) a pool (in par
ticular a data pool, in particular a data container being pro
vided for storing electronic data, in particular provided for
storing addresses of the data storage, wherein each address
points to a particular memory element or memory cell of the
data storage), wherein the pool is provided for storing a num
ber of instances of access information (in particular addresses
of the physical memory of the data storage, wherein the
access information is indicative of an address to an index
portion of the data storage, wherein the length of the index
portion may for example be 1 or more bytes, e.g. 4 bytes or 8
bytes), wherein the access information is indicative of an
address (in the physical memory of the data storage) of a

US 9,367,441 B2
3

memory block of the data storage (the address of the memory
block in particular being a start address of the memory block,
wherein at this start address the memory block starts, wherein
the memory block may span a plurality of addresses starting
from the start address and extending up to an end address,
wherein the extent of the memory block (the difference
between the end address and the start address) may corre
spond to the memory block size, such as a memory block size
of a particular number of bytes), wherein the memory block
has a memory block size equal to or larger than the memory
portion size (such that the requester, requesting memory hav
ing the memory portion size is able to use the memory block
to hold or store data the application needs to store). In par
ticular, the memory block may be allocated to the requester
and may be reserved by the data storage management system
performing the method for managing physical memory of the
data storage such that no other application or no other process
may access the reserved memory block. Thereby, data integ
rity may be ensured.

In particular, the access information may be or comprise
the address (in the physical memory of the data storage) of the
extended memory block of the data storage or the address of
the memory block of the data storage. In any case the address
of the memory block of the data storage may be derivable
from the access information.

Further, the method for managing physical memory of the
data storage comprises determining whether access informa
tion is stored in a pool. Further, the method comprises, if the
access information is stored in a pool (which may indicate
that this particular memory block has previously been allo
cated by the same or by another process or application but
which has been released again, since the memory block was
not used any more by this process or by this application),
returning address data of the memory block (in particular
returning the address data to the requester requesting the
memory portion, in particular returning the address data to the
process or the application requesting the memory portion),
wherein the address data are based on the access information
(such that using the access information the address data are
derivable or obtainable, for example the address data may
represent an address of the physical memory of the data
storage, which address is spaced apart from the access infor
mation (in particular also an address of the physical memory
of the data storage) by a predetermined, fixed value. Such as 1
byte, 2 bytes or more bytes) and removing the access infor
mation from the pool (in particular the access information
may be deleted from the pool), thereby indicating that this
memory block is not available any more for any other appli
cation or for any other process or for any other requester.

Further, the method comprises, if the access information is
not stored in the pool (indicating that the memory block has
not yet been allocated or accessed by any application or any
process or any request before), creating the access informa
tion (which may comprise searching within the physical
memory of the data storage for a portion which is still avail
able, i.e. which has not been accessed by any requester), and
returning address data of the memory block (in particular to
the requester, Such as an application or a process requesting
the memory portion), wherein the address data are based on
the access information.

In particular, in any case, upon requesting the memory
portion, address data of an available memory block are
returned to the requester, in particular an application or a
process running on a computer, wherein the available
memory block may be identified by the address data, wherein
in particular the address data may be the address, where the
memory block starts within the physical memory of the data

10

15

25

30

35

40

45

50

55

60

65

4
storage. In other embodiments, the address data may for
example be any address within the memory block but being
spaced apart from the start of the memory block or spaced
apart from the end of the memory block by a predetermined
amount of addresses.

In particular, the address data may represent the start
address of the memory block, thus simplifying the procedure
for accessing the memory block by the requester. In particu
lar, any memory block which has been allocated (in particular
by returning the address data of the memory block to the
requester) will be controlled by the method for managing
physical memory, such that this memory block will only be
assigned to any later requester in an not fragmented manner,
such that the entire memory block may be allocated later on
by any later requester. After the memory block is allocated for
the first time, the method for managing physical memory of
the data storage may ensure that the memory block will not be
allocated in fragmented portions of the memory block. In
particular, performing the method for managing physical
memory of the data storage may avoid fragmentation of the
physical memory of the data storage. Further, a time span
between the requesting the memory portion and the returning
the address data may be predictable and may in particular be
Smaller than or equal to a predetermined allocation time span.
Thereby, in particular, real-time application or processes may
be supported by performing the method for managing physi
cal memory of the data storage.

According to an embodiment, the memory block com
prises a continuous physical memory section of the data Stor
age (such that the memory block may be formed by a number
of adjacent memory segments or memory elements), wherein
the physical memory section has the memory block size,
wherein in particular the memory block is formed by physi
cally consecutive memory cells (in particular by memory
cells which are being addressed by consecutive addresses).
Thereby accessing portions of the memory block or the entire
memory block may be accelerated and/or simplified.
Thereby, not only the memory allocation time span but also
the memory access time span may in particular be reduced.

According to an embodiment, the creating the access infor
mation is based on a start address (a physical start address) of
an available portion (which portion has not been allocated
before, which may therefore representa free memory portion)
of the data storage and wherein the creating the access infor
mation further comprises changing the start address of the
available portion based on the memory block size.

In particular, the start address of an available portion of the
data storage may be considered as a pointer pointing to a
particular address of the data storage, wherein for addresses
larger (or Smaller) than the start address the memory may be
free, i.e. available for the requester. Whenever the address
data of the memory block are returned to the requester, the
pointer pointing to the start address from which on there is
available memory will be shifted, since the available portion
of the data storage has been diminished due to the allocation
of the memory block to the requester. In particular, the start
address of the available portion of the data storage may be
stored in a data structure which may be accessed. In particu
lar, the start address may be read out, whenever a further
request for a memory portion is received and wherein there is
no access information in the corresponding pool which may
be returned to the requester. A start address for the free area
may be maintained Such that it may not be necessary to search
for a memory block large enough. If there is not enough free
memory at the start address, then there may not be enough
free memory to fulfill the request. If there is enough memory
to fulfill the request then the start address may be changed

US 9,367,441 B2
5

according to the size necessary to fulfill the request Such that
the free area is shortened. The number of and/or the combi
nation of earlier requests to get and/or release memory may
therefore not affect the time it takes to determine if and where
in the heap there is enough memory to fulfill the request. In
particular, this can be determined fast and in constant time.
Thereby this may accelerate returning the address data of the
memory block to the requester.

According to an embodiment, the creating the access infor
mation further comprises writing (in particular electronically
modifying one or more memory cells) a pool index (which
may enable to identify the pool) relating to the pool into the
physical memory of the data storage at an index portion (in
particular spanning one or more addresses) of the data Stor
age, wherein an address of the index portion is based on the
access information (wherein in particular a start address of
the index portion may be the access information), wherein in
particular the changing the start address of the available por
tion of the data storage is further based on a size of the index
portion.

In particular, the memory block size may be entirely avail
able for the requester, while the index portion may represent
a management overhead for performing the method for man
aging physical memory of the data storage. In particular, the
index portion may be a small portion compared to the
memory block size, in particular the index portion may
require 1 byte, while the memory block size may be any size
larger than Zero. In particular, a sum of the index portion and
the memory block size may, according to an embodiment,
correspond to a number of bytes, wherein the number is a
power of two. In particular, one or more further pools may be
adapted to store addresses (access information) which relate
to different memory block sizes, as will be explained in detail
further below.

According to an embodiment, the method for managing
physical memory of the data storage further comprises releas
ing (in particular releasing by the requester or the application
or the process), in particular by a requester having requested
the memory portion, the memory portion (thereby in particu
lar comprising receiving an information relating to the
address of the released memory portion); and storing the
access information in the pool. Thereby, the access informa
tion may be derived from the memory portion, in particular
from the address of the memory portion. In particular, the
releasing the memory portion may represent that the
requester does not require the memory portion any more,
since for example variables or data objects accessing the
memory portion have been deleted, in particular destructed,
within the running application or the running process.

According to an embodiment, the method for managing
physical memory of the data storage further comprises deter
mining the access information based on the address of the
memory block (in particular, if the address of the memory
block represents the start address of the memory block, the
access information may be an address before or after the start
address of the memory block, in particular the address imme
diately before the address of the memory block), wherein the
storing the access information in the pool is based on the
determined access information. In particular, a particular
amount may be subtracted from the address of the memory
block, to obtain the access information (in particular an
address). Thereby, the method may be simplified.

According to an embodiment, the method further com
prises, upon releasing the memory portion, maintaining (in
particular keeping, thus not deleting) the pool index relating
to the pool in the physical memory of the data storage at the
index portion of the data storage (such that in particular the

10

15

25

30

35

40

45

50

55

60

65

6
pool index is kept in the physical memory of the data storage,
although the requester has released the memory portion).

This may be in profound contrast to conventional methods
for heap management, wherein upon releasing the memory
portion any information (which is stored in a data container
apart from the memory reserved to be assigned to a requester)
indicating that this memory portion or the corresponding
memory block has been allocated before is erased from the
physical memory of the data storage, such that in the conven
tional system there is no information, whether a memory
portion has been assigned to and used by a requester before.

According to an embodiment, a pattern of differently sized
memory portions being Subsequently requested by one or
more requesters may lead to a pattern of plural pool indices
stored at addresses that are spaced apart corresponding to the
plural memory blocks which may have different memory
block sizes depending on the size of the memory portions
being Subsequently requested. This pattern of plural pool
indices written at plural instances of access information may
be maintained during performing the method, even if one or
more memory portions are being released by the one or more
requesters.

According to an embodiment of the method for managing
physical memory of the data storage, the indeX portion, in the
data storage, is physically located adjacent (in particular
immediately adjacent) to the memory block, in particular in a
byte before or in a byte after the memory block. Thereby, the
index portion may be found based on the address of the
memory block in a simple manner. Further, also the memory
block, in particular the address of the memory block, further
in particular the start address of the memory block, may be
found based on the address of the index portion, in particular
based on the access information, in a simple manner. Thereby,
a performance, in particular a speed of the method, may be
increased.

According to an embodiment of the method for managing
physical memory of the data storage, the identifying the pool
comprises determining the pool index based on the access
information. In particular, when the access information rep
resents an address in the data storage, the pool index may be
determined by accessing and reading the data stored at the
access information (and spanning a number of addresses cor
responding to the index portion).

According to an embodiment of the method for managing
physical memory of the data storage, another access informa
tion (in particular also being an address within the physical
memory of the data storage) is stored in the pool, wherein the
other access information is indicative of another address of
another physical memory block of the data storage, wherein
the other memory block has the same memory block size as
the memory block.

According to an embodiment of the method for managing
physical memory of the data storage, the pool is adapted to
store plural instances of access information (Such as in par
ticular addresses) including the access information and the
other access information, wherein the pool is adapted Such
that the access information and the other access information
are accessible in a time span which is independent of the
number of the plural instances of access information stored in
the pool. Thereby, in particular, the pool may store the plural
instances of access information in anarray-like data structure,
in a queue, in another Suitable data container or in any other
data structure that enables storing a number of elements and
accessing the elements in constant time independent of the
number of elements. Thereby, the performance, in particular
the speed, of the managing method may be increased.

US 9,367,441 B2
7

According to an embodiment of the method for managing
physical memory of the data storage, the method further
comprises Support for handling a request of a further memory
portion having a further memory portion size; identifying a
further pool, wherein the further pool is provided for storing
at least one further access information indicative of a further
address of a further memory block of the data storage, the
further memory block having a further memory block size
which is equal to or larger than the further memory portion
size and different from the memory block size; determining
whether the further access information is stored in the further
pool; if the further access information is stored in the further
pool, returning further address data of the further memory
block, wherein the further address data are based on the
further access information and removing the further access
information from the further pool; if the further access infor
mation is not stored in the further pool, creating the further
access information, and returning further address data of the
further memory block, wherein the further address data are
based on the further access information.

According to an embodiment of the managing method
providing the pool and the further pool, another further access
information may be stored in the further pool, wherein the
other further access information is indicative of another fur
ther address of another further memory block of the data
storage, wherein the other further memory block has the
further memory block size. Thus, in particular, in a particular
pool access information, in particular several instances of
access information, may be stored, wherein each instance of
the access information relates of a memory block having the
same memory block size.

According to an embodiment of the managing method, the
method further comprises defining a data container, in par
ticular in the data storage or e.g. in a further data storage
separate form the data storage, for storing plural pools, in
particular a predetermined number of pools, wherein the pool
and the further pool are stored in the data container, wherein
the data container is adapted such that the pool and the further
pool (and/or elements comprised in the pool and the further
pool) may be accessed within a time span which is constant
independent of the number of the plural pools stored in the
container. In particular, the data container may be an array
like data structure or any other data container which allows
access to any of its elements in a constant time independent of
the number of elements stored within the data container. The
pools can be of any type that can remove at least one of its
element in constant time, and may be able to add an element
in constant time.

It should be understood that any features (individually or in
any combination) disclosed with respect to explanations or
descriptions of one or more embodiments of a method for
managing physical memory of a data storage may also be
applied (individually or in any combination), used for,
employed or adapted for a data storage management system
according to embodiments of the present invention and vice
WSa.

According to an embodiment of the present invention, a
data storage management system is provided, wherein the
system comprises a data storage for storing data; and a con
troller for controlling an access to the data storage, wherein
the controller is adapted such that the controller performs the
following method steps: receiving a request, the request
requesting a memory portion having a memory portion size;
identifying a pool, wherein the pool is provided for storing at
least one access information indicative of an address of a
memory block of the data storage, the memory block having
the smallest possible fixed memory block size equal to or

10

15

25

30

35

40

45

50

55

60

65

8
larger than the memory portion size; determining whether the
access information is stored in the pool; if the access infor
mation is stored in the pool, returning address data of the
memory block, wherein the address data are based on the
access information and removing the access information
from the pool; if the access information is not stored in the
pool, creating the access information, and returning address
data of the memory block, wherein the address data are based
on the access information.

In particular, the data storage may be at least a portion of a
RAM, in particular a heap, a harddisk, a hard drive, a flash
storage, a magneto-optical data storage or any other data
storage for storing data, in particular electric and/or electronic
data. In particular, the controller may be configured as an
application specific integrated circuit, as (a part of) an oper
ating system for operating a processor, in particular operating
a computer. Further in particular, the controller may be an
additional component or external device interfacing to the
data storage and providing an access layer for accessing the
data storage. Further in particular, the controller comprises a
general purpose processor and a Software element which may
be executed by the processor.

According to an embodiment of the present invention, a
power production system, in particular a wind turbine system,
is provided which comprises the data storage management
system, wherein the controller in particular controls access to
the data storage, wherein access to the data storage is
requested by an application for controlling and/or monitoring
the wind turbine system, in particular for measuring a physi
cal quantity, such as a wind speed, a temperature, a vibration
and/or for controlling at least one component of the energy
production system, Such as a rotor blade, in particular a rotor
blade pitch angle, an amount of energy produced or released
by a converter of the wind turbine system or the like.

According to an embodiment of the present invention, the
method for managing physical memory of a data structure is
performed in a real-time application, wherein in particular the
real-time application requires that a result is correct and that
the result is obtained within a predetermined time span.

According to an embodiment of the present invention, a
program element and/or an electronically readable storage
medium are provided, in particular harbouring the program
element, wherein the program element, when executed by a
processor, Such as a computer, is adapted to carry out or
control an embodiment of a method for managing physical
memory of a data storage, as described above.

According to embodiments of this invention, pools of the
needed sizes are build by the needs of the system it selves.
This may be at a cost of a higher memory usage and intro
duction of a similar but smaller issue. In a situation where the
system needs more memory blocks of a given size than it has
used since start-up and the unused heap has become too small
to allocate a block of the proper size, then the total sum of
unused memory blocks in pools and heap not in pools
together may be enough for the request without being pos
sible to return as a contiguous memory block. This could only
happen, if the total amount of heap is not enough to create the
number of different memory blocks that the system has been
needed during its execution. If this happens, then it could
degrade availability. For systems that has similar memory
usage from time to time and where availability is degraded
because of denied request for heap, then more memory would
increase availability. If the buffers require no more than the
provided heap, then the system would be able to continue use
all its memory block sizes and the number of each size equal

US 9,367,441 B2
9

to the highest number of those sizes that the system at any
time earlier has used. Running the system for long time does
not change that fact.
One of the advantages of embodiments of this invention is

that the number of large memory blocks (needed by the sys
tem) can not be reduced as time goes by, it can only increase.
The number of allocated blocks of any given size is at any
time equal to the highest number of blocks (of that size) that
the system has been used since the system started. Compared
to the common heap management strategies this solution can
only grow in the number of allocated blocks of any given size.
The fact that the number of large memory blocks of differ

ent sizes can not decrease over time, makes testing for needed
amount of heap easier and more reliable. If a system has a
similar memory usage from time to time, then installing more
memory will reduce downtime caused by insufficient heap.

According to an embodiment memory is allocated from
one end of the heap and memory is only allocated in continu
ation hereof (similar to next fit where memory is not
released), and any memory is never returned to the free heap
that has not yet been made into memory blocks. A memory
block that is returned to the heap manager is stored in a pool
instead. This ensures that external fragmentation of the heap
(not made into memory blocks) is avoided. Memory may
always be allocated in one of more possible fixed sizes. A pool
may be created for each possible fixed block size.

Each pool may only be used for addresses of one specific
block size, and no two pools have addresses to blocks of the
same size. When a memory block address is returned to the
heap manager, then it may be stored in the pool for that
memory block size.

Embodiments of the invention may provide a heap man
ager that is a piece of Software (and/or hardware) that is used
to manage heap.

It has to be noted that embodiments of the invention have
been described with reference to different subject matters. In
particular, some embodiments have been described with ref
erence to method type claims whereas other embodiments
have been described with reference to apparatus type claims.
However, a person skilled in the art will gather from the above
and the following description that, unless other notified, in
addition to any combination of features belonging to one type
of Subject matter also any combination between features
relating to different subject matters, in particular between
features of the method type claims and features of the appa
ratus type claims is considered as to be disclosed with this
document.
The aspects defined above and further aspects of the

present invention are apparent from the examples of embodi
ment to be described hereinafter and are explained with ref
erence to the examples of embodiment. The invention will be
described in more detail hereinafter with reference to
examples of embodiment but to which the invention is not
limited.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are now described
with reference to the accompanying FIGURE.

The FIGURE schematically illustrates a data storage man
agement system according to an embodiment of the present
invention, wherein the data storage management system is
adapted to perform a method for managing physical memory
of the data storage according to an embodiment of the present
invention.

DETAILED DESCRIPTION

The illustration in the drawings is in schematic form. It is
noted that in different figures, similar or identical elements

10

15

25

30

35

40

45

50

55

60

65

10
are provided with the same reference signs or with reference
signs, which are different from the corresponding reference
signs only within the first digit.
The data storage management system 100 comprises a data

storage 101 for storing data, wherein the data storage may in
particular be a heap. The data storage 101 comprises plural
memory cells which may be accessed using unambiguous
memory cell addresses, wherein the memory cells are
arranged in a consecutive manner and the plurality of memory
cells is depicted as a line 103.
The data storage 101 comprises an accessing component

105 which may access any of the memory cells by referring to
each of the memory cells using an address in the data storage
101. The addresses are numbers arranged in an increasing
order, for accessing particular memory cells by the accessing
device 105. Thereby, the accessing device 105 may move
along the plural memory cells 103 as indicated by the double
arrow 107. The accessing device 105 may be a purely elec
tronic device having no mechanical components. For
example, in particular when the data storage comprises a
heap, the accessing device 105 may be a control circuit
adapted for accessing different memory cells of a memory
chip. In other embodiment, in particular when the data Stor
age comprises a hard-disk or hard-drive or any other storage
comprising mechanical elements, the accessing device 105
may comprise mechanical and/or electronic components.
The data storage management system 100 further com

prises a controller 109 for controlling an access and/or allo
cation of portions of the data storage 101. In particular, in the
illustrated example, a process or an application 111 may
request a memory portion (having a particular memory por
tion size) from the controller 109. Thereby, the application
111 may transmit a request 113 for this memory portion to the
controller 109.
The controller 109 will be adapted to maintain a data con

tainer of plural pools, wherein each of the pools is provided
for storing access information relating to a memory block
having a particular memory block size. In particular, the
controller 109 may keep a data container 115, wherein an
array index i0, i1, i2. i3, ... identifies a pool, wherein in each
pool has a number of instances of access information, such as
ai1, ai2, ai3, ai4, ai5, ai6, and ai7 may be stored.

In particular, the pool identified by the index i0 stores
instances of access informationai4, wherein this access infor
mation ai4 relates to memory block ma having a memory
block size of 2 bytes. The index i1 identifies a pool which
stores or may store instances of access information ai2, ai3.
ai5, and ait, wherein these instances of access information
relate to memory blocks m2, m3, m5 and m7, respectively,
which all have the same memory block size of 4 bytes. Fur
ther, the index i2 identifies a pool in which instances of access
information ai1, ai6 may be stored, wherein these access
information instances relate to memory blocks m1, and m6.
respectively, which both have a memory block size of 8 bytes.

Further, the controller 109 may comprise in the data con
tainer 115 further pools having indices i3, i4, ... identifying
the further pools relating to memory blocks within the data
storage 101 which have even larger memory block sizes.

After starting up the data storage management system 100.
the application 111 may first request a memory portion hav
ing a memory portion size of for example 6 bytes. Upon
receipt of the request 113 from the application 111 the con
troller 109 will identify a pool which is provided for storing
access information all indicative of an address a1 of a
memory block m1 of the data storage 101, wherein the

US 9,367,441 B2
11

memory block m1 has a memory block size of 7 bytes which
is larger than the requested memory portion size having a size
of 6 bytes.
Upon receiving the request 113 for a memory portion hav

ing a memory portion size of 6 bytes the controller 109 will
allocate memory cells 103 in the data storage 101 from one of
the ends of the memory cells 103 in the data storage 101, since
at one of the ends the start pointer 118 (described in detail
below) will be positioned. Alternatively, allocation could be
from the end and going backwards instead.
The controller 109 will then write, into the data storage

101, starting at the address ai1 at an index portion i2 (the
index i2 of the pool which is provided for storing access
information relating to memory blocks having a size of 7
bytes). The start address a1 of the memory block m1 may be
obtained from the access information ai1 by adding the length
of the index portion i2 to the address ai1. The thus determined
start address a1 of the memory block m1 is then returned via
the response 117 to the requesting application 111. Further,
the index i2 is written into the index portion. In particular, the
access information ai1 is not added to the pool identified by
the index i2.

Further, in particular later on, the application 111 may
request a memory portion having a memory portion size of 2
bytes. Upon receiving the request from the application 111
the controller 109 will identify the pool labelled or indexed by
the index i1, wherein this pool is provided for storing
instances of access information relating to memory blocks
having a memory block size of 3 bytes. Further, the index i1
is written in the index portion starting at the access informa
tion ai2. Further, the address a2 is returned to the application
101 using the response 117.

Additionally, the controller 109 may receive further
requests for memory portions from the application 111 or
from several other applications or processes running on a
computer. In particular, when a new request for a memory
portion is received by the controller 109 the controller 109
first look in the appropriate pool identified by one of the
indices i0, i1, i2, ... for an access information which is related
to a memory block having a Sufficient memory block size to
satisfy the request for memory.

If the appropriate pool in the data container 115 has no such
access information, the controller 109 determines if the data
storage starting at a start address 118 of available memory
indicating a start of an available section of the data storage
101 is large enough. In particular, the start address 118 of
available memory is dynamically adapted (shifted in the
direction of the unused end, in this case to the right in the
FIGURE), whenever the controller 109 returns an address or
address data a1, a2, a3, a4, as, a6, a7 to the application 111.
Thus, determining the location for an available or free
memory portion may be performed in a predictable time span,
in particular it may be done in constant time.

While executing the application 111 the application may
from time to time release a memory portions which have
previously been used by the application 111. For example, the
application may release a memory portion stored in the
memory block m2.Thereby, the application 101 may transmit
the address data a2 to the controller109. Based on the address
data a2, the controller 109 may determine the access infor
mation ai2 and the controller 109 may look into the data
storage at the address ai2 to retrieve the index i1. Thereupon,
the access informationai2 will be stored in the pool identified
by the index i1.

5

10

15

25

30

35

40

45

50

55

60

65

12
Further, the application 111 may release a memory portion

which is stored in the memory block m6 which starts at the
address aé. Thus, the application 111 may transmit the
address a6 to the controller 109. From the address a6 the

controller 109 may calculate the access information ai6, for
example by Subtracting 1 byte from the address aé, in par
ticular by subtracting from the address a6 the width or size of
the index portion i2. Then, the controller 109 will access the
data storage 101 at the address ai6 and will read the index i2
being stored at this address. Thereupon, the access informa
tion or address ai6 will be stored in the pool identified by the
index i2, as is illustrated in the FIGURE.

Later on, the application 111 or any other application or
process may send a request 113 to the controller 109 request
ing a memory portion having a size of 4 to 7 bytes. The
controller109 will first identify the pool which is designed for
storing access information relating to memory blocks having
the least size that is sufficient and will identify the pool
indexed by the index i2. The controller 109 will then look,
whether the pool indexed by index i2 contains an access
information. The controller 109 will find the access informa
tion ai6. From the access information or address ai6 the
controller 109 will determine or calculate the address a6
being the start address of the memory block m6 having the
memory block size 7. Thus, the memory block mé is suffi
ciently large to satisfy the request 113 requesting a memory
portion having a size of4 to 7 bytes. Thereupon, the controller
109 will return the address a6 to the application 111 and will
also remove the access information ai6 from the pool identi
fied by the index i2.

Depending on requesting a memory portion and/or releas
ing a memory portion the data container 115 and in particular
the different pools indexed by the indices i0, i1, i2. i3, ... will
contain dynamically changing access information instances,
wherein only a particular situation is depicted in the FIGURE.
The pools may be stored in an array like structure 115 (or

other structure with constant time access). The possible
memory block sizes (and their matching pools) may be
ordered by an algorithm so that the array index i1, 12, i3, ...
to a pool of a certain memory block size may be calculated in
constant time. This invention may not require any specific
algorithm to be used; it only requires that the algorithm can be
executed in constant time. The implementation could even
allow for configuration of algorithm. An array index to the
matching pool may be stored in the first byte(s) of each
extended memory block (could have been the last byte(s)
instead). An extended memory block may be the memory
block extended (at the start or the end) with the index portion.
For the requester to be able to store data in the memory block,
the size has to be at least index-size--1, but a larger Smallest
memory block size could be chosen, to reduce overhead.
Other considerations that could be taken into account (but not
limited to):

Higher minimum size may reduce overhead, and increase
waste (on average for used memory blocks)

Higher minimum size may also reduce the number of pools
and therefore may make the pool with the smallest size
more flexible as more different sizes fall within this pool.
Minimum size could also be configurable.

US 9,367,441 B2
13

When a memory block address is returned to the heap
manager 109, then the size of the index portion i1, i2. i3, i4, i5.
i6, it is subtracted to get the address (or access information)
ai1, ai2, ai3, ai4, ai5, ai6, ai7 of the index to the entrance of the
array that has the matching pool. The address of the index
represents the address of the extended memory block. The
extended memory block address, i.e. the access information
ai1, ai2, ai3, ai4, ai5, ai6, ait, is then stored in the matching
pool. The pool is stored or maintained in a container 115 that
is able to access its elements in constant time. The pool is a
container that is able to add an element in constant time and
remove at least one of its elements in constant time.

Because the index i1, i2. i3, . . . of the array entrance is
stored in the start of each memory block, no searching is
necessary, and choosing the right pool can be done in constant
time.

When a request 113 for memory is received, the pool for
the Smallest block size that is big enough for the request--the
size of the index is checked for emptiness. If the pool is empty,
then a new memory block of that size is created from available
heap 120. In the first byte(s) (according to the size of the
chosen index) the array index is written, and the address a1,
a2, a3, a4, as, a6. a7 of the first byte after the index is returned
to the requester.

If the pool was not empty, then any of the memory
addresses ai1, ai2, ai3, ai4, ai5, ai6, ai7 is removed from the

10

15

25

30

Array index

exended Mem. block size 2 4 8
Overhead for index
Available storage 1 3 7

f(x) 0 1 1 2 2 2 2

X 1OOO

40

45

9 10 11

14
corresponding pool and the address a1, a2, a3, a4, as, a6. a7
of the first byte after the index in the block is returned to the
requester.
An example of the invention uses an algorithm where the

first pool contains extended memory blocks of size 2 and each
subsequent pool is for extended memory blocks of twice the
size of the previous pool. But other algorithm could be used as
well. It is important that the algorithm can calculate the index
to the appropriate pool based on the size of the memory
request in constant time. Other considerations that could be
taken into account (but not limited to):

Algorithm with fewer different sizes results in
Increased waste of blocks in use.

Higher chance for an unused block to be usable again.
Fewer unused memory blocks on average.
The intended block size of a pool can be calculated based

on its index in the array (where the first index is zero) as:

Where x is the index into the array, and f(x) returns the
memory block size that the pool is used for.
The following example use one byte for the index portion

(thus for storing the index i0, i1, i2. . . .) and one byte for
storage (two bytes in total) for the smallest memory block in
the pool (with index 0). Index 1 is for extended memory
blocks of size 4, and so on:

O 1 2 3 4 S 6 7 8

16 32 64 1.28 2S6 S12
1 1 1 1 1 1

15 31 63 127 255 511
1 1 1

An algorithm to find the correct index to the array based on
a requested memory size for this example could be:

f(x)=round floor(log2(x))

Where x is the number of bytes (the memory portion size) that
the requester needs and f(x) returns the index to the array that
has a pool for the Smallest block size that is big enough.
round floor() truncates any digits after the decimal point.
Examples:

12 13 14 15 16 17 18. 19 20 21 22 23 24

3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4

55
A request for 1 byte should look for a free memory block

address in the pool that is in the array entrance 0.2 ... 3 byte
request in entrance 1. 4. .. 7 byte request in entrance 2 and
SO. O.

Examples of f(x) with large numbers of x:

1E--O6 1E--09 1E-12 1E-15 1E-18 1E-21 1E-24 1E-27

19 29 39 49 59 69 79 89

US 9,367,441 B2
15

Entrance 255 would contain addresses to memory blocks
of 1,15792E+77 bytes which should be sufficient for the near
future. When it is not sufficient or if an algorithm with a less
steep curve is used, then an index of 2 bytes with an array of
up to 65536 entrances could be used. If still more is needed 4
bytes with index up to 42949.67296 entrances could be used
(and so on).
At initializing of the heap manager 109 the array 115 of

pools could be limited to only contain sizes that are possible
with the given amount of heap.
As no extended memory blocks are created when the heap

manager 109 starts, only extended memory blocks of the size
that the system use is created. When memory blocks are
released, they would be ready in a pool for the next use and not
be made available for other allocation sizes. Often the system
(such as application or process 111) may use the same block
sizes again. Memory blocks that are X bytes larger than the
previous pools memory block size, are able fulfil X different
memory request sizes, it is therefore not necessary that the
system require the exact same block sizes again for the free
memory blocks to usable again.
Any pool will at maximum contain the number of memory

blocks that the system at any time simultaneous has been
used.

Waste of memory blocks in use will on average be below
25% for the example algorithm, but the solution is not limited
to the example algorithm. Waste/internal fragmentation could
easily be reduced to below 1% on average using a less steep
curve for increase in block sizes, but at the cost of narrowing
the average different request sizes, memory blocks can fulfil.
It is therefore a sub optimization that could be adjusted for the
purpose of the specific systems need.

Advantages of embodiment of the invention that arise from
the technical features may be:

Availability is not lowered caused by external fragmenta
tion of heap. This issue has been handled in away where pools
of the needed sizes are build by the needs of the system it
selves and avoid the size and number of large memory blocks
to be lowered by external fragmentation of the heap. Running
the system for longer periods of time does not change that
fact.

Fast memory allocation in O(1), but not completely deter
ministic. The first period after the system has started, pools of
different memory block sizes are Small, and requesting a
memory block would sometimes be fulfilled by allocation
from heap and sometimes from a ready block in a pool, and
therefore not completely deterministic (but still O(1)). After a
while, when (and if) the pools has grown to a size that can
continue to fulfil the needs of the system, then memory blocks
are always taken from the pools, and will therefore seam
deterministic.
The Solution does not have to search, and memory alloca

tion is fast and handled in O(1).
Fast and deterministic memory deallocation in O(1).
The solution does not introduce non-determinism as a bad

side effect on the use of memory given to the system as
memory mapping (used by QNX and others) does.

1 byte of overhead per memory block regardless of block
size is possible. Low internal fragmentation/waste are also
possible. Waste is below 25% on average for the example
algorithm, but could easily be reduced to below 1% by using
an algorithm that has a less steep increase in block size.
Narrowing the average different request sizes memory blocks
can fulfil equals to more blocks in pools and may therefore in
the end require equally as much heap. Need for more heap up
front to ensure that the number of (especially) large memory
blocks continue to be available is acceptable as this helps on

5

10

15

25

30

35

40

45

50

55

60

65

16
1) availability 2) testability (for RAM need) and 3) ensure that
a sufficient RAM upgrade will continue to suffice at leas until
new needs require more RAM.

This solution only use CPU and RAM when allocation and
deallocation requests are handled, but it does not use CPU or
RAM in between requests and therefore does not lower the
possible utilization of the CPU (in between requests).
The solution provides an easier and more reliable way of

testability for RAM need. As external fragmentation of heap
has been eliminated, a specific set of needed memory blocks
can not be unavailable caused by the system being running for
longer period of time (changed fragmentation). Only if the
system needs more memory blocks of a size than it has been
used earlier and if the free heap (that is guaranteed to be
contiguous) is not large enough for the new request, then the
solution will not be able to fulfil the request. If the needed
extra memory is installed in the system, the same situation is
guaranteed not to happen again, and running the system for
longer periods of time will still not change that fact (as frag
mentation is eliminated).

This solution has some similarities with the static memory
allocation as pools of different memory block sizes are cre
ated but at the same time avoids the bad properties of this
approach: If a test fail or availability is too low then a suffi
cient RAM upgrade avoids the same situation to happen
again. Even if the system has different RAM needs from time
to time, then more RAM will reduce unavailability caused by
insufficient RAM. This is without recompilation or recon
figuration as this solution automatically scales with the
amount of RAM.
An embodiment of the invention automatically scales with

the changes that are made to the software, as the size of the
pools are built by the needs of the software when it executes.
The developer does not have to use time for creation or
maintenance of pools. The developer does not have to con
sideration the sizes of the pools when the Software is changed.
The solution automatically scales to the different needs

that are at the different installations, within the possibility of
the, at any time available, RAM installed.

Provided that the system (heap manager) is restarted when
the needed memory blocks fundamentally change, then the
heap manager will adapt and Scale to the different needs that
may evolve overtime at any installation. Normally this would
only happen if the problem domain that the system Super
vises/controls also fundamentally change, and in Such situa
tions it is likely that the system is restarted anyway.

It is therefore a more efficient solution that is less error
prone and less expensive compared to the static memory
allocation approach.
An embodiment of the invention could be a one time imple

mentation that could be used for many systems.
It should be noted that the term “comprising does not

exclude other elements or steps and “a” or “an does not
exclude a plurality. Also elements described in association
with different embodiments may be combined. It should also
be noted that reference signs in the claims should not be
construed as limiting the scope of the claims.
The invention claimed is:
1. A method for managing physical memory of a data

storage, the method comprising:
requesting a memory portion having a memory portion

S1ze.
identifying a pool from a plurality of pools, each of which

being provided for storing at least one access informa
tion relating to a memory block having a particular
memory size, wherein the identified pool is provided for
storing plural instances of access information including

US 9,367,441 B2
17

a first access information and a second access informa
tion, where the first access information is indicative of an
address of a first memory block of the data storage, the
first memory block having a memory block size equal to
or larger than the memory portion size, wherein the
second access information is indicative of an address of
a second memory block of the data storage, the second
memory block having the memory block size, wherein
the pool is configured such that at least one of the first
access information and the second access information is
accessible in a time span which is independent of the
number of the plural instances of access information
stored in the identified pool;

determining whether the first access information is stored
in the identified pool;
wherein if the first access information is stored in the

identified pool, then
returning address data of the first memory block,

wherein the address data is based on the first access
information, and

removing the first access information from the iden
tified pool;

wherein if the first access information is not stored in the
identified pool, then
creating the first access information based on a start

address of an available portion of the data storage,
changing the start address of the available portion

based on the memory block size, and
returning address data of the memory block, wherein

the address data is based on the first access infor
mation,

wherein the creating the first access information fur
ther comprises writing a pool index relating to the
identified pool into the physical memory of the data
storage at an index portion of the data storage,
wherein an address of the index portion is based on
the first access information.

2. The method according to claim 1, further comprising:
providing the first memory block so as to comprise a continu
ous physical memory section of the data storage, and Such
that the physical memory section has the memory block size,
forming the memory block by physically consecutive
memory cells.

3. The method according to claim 1, wherein the changing
the start address of the available portion of the data storage is
further based on a size of an extend memory block.

4. The method according to claim 3, further comprising:
releasing the memory portion; and
storing the first access information in the identified pool.
5. The method according to claim 4, wherein releasing the

memory portion is carried out by a requester having requested
the memory portion.

6. The method according to claim 4, further comprising:
determining the first access information based on the

address of the first memory block,
wherein the storing the first access information in the iden

tified pool is based on the pool index located in the index
portion, wherein an address of the index portion is deriv
able from the first access information.

7. The method according to claim 3, further comprising,
upon releasing the memory portion, maintaining the pool
index relating to the pool in the physical memory of the data
storage at the index portion of the data storage.

8. The method according to claim 3, wherein, in the data
storage, the index portion is physically located adjacent to the
first memory block.

10

15

25

30

35

40

45

50

55

60

65

18
9. The method according to claim 1, wherein the identify

ing the pool comprises determining the pool index based on
the first access information.

10. The method according to claim 1, further comprising:
requesting a further memory portion having a further
memory portion size;

identifying a further pool, wherein the further pool is pro
vided for storing at least one first further access infor
mation indicative of a further address of a first further
memory block of the data storage, the first further
memory block having a further memory block size
which is equal to or larger than the further memory
portion size and different from the memory block size;

determining whether the first further access information is
stored in the further pool;

if the first further access information is stored in the further
pool, then
returning further address data of the first further memory

block, wherein the further address data are based on
the first further access information and

removing the first further access information from the
further pool;

if the first further access information is not stored in the
further pool, then
creating the first further access information, and
returning further address data of the first further memory

block, wherein the further address data are based on
the first further access information.

11. The method according to claim 10, wherein a second
further access information is stored in the further pool,
wherein the second further access information is indicative of
a further address of a second further memory block of the data
storage, the second further memory block having the further
memory block size.

12. The method according to claim 10, further comprising
defining a data container, for storing plural pools, wherein the
pool and the further pool are stored in the data container,
wherein the data container is configured such that the pool
and the further pool may be accessed within a time span
which is constant for an increasing number of the plural pools
stored in the container.

13. The method according to claim 12, wherein the data
container is defined in the data storage.

14. The method according to claim 1, wherein the data
storage is a heap.

15. A data storage management system, comprising:
a data storage for storing data; and
a controller for controlling an access to the data storage,

wherein in operation:
the controller receives a request, the request requesting a
memory portion having a memory portion size;

the controller identifies a pool from a plurality of pools,
each of which being provided for storing at least one
access information relating to a memory block having
a particular memory size, wherein the pool is pro
vided for storing plural instances of access informa
tion including a first access information and a second
access information, wherein the first access informa
tion is indicative of an address of a first memory block
of the data storage, the first memory block having a
memory block size equal to or larger than the memory
portion size, wherein the second access information is
indicative of an address of a second memory block of
the data storage, the second memory block having the
memory block size, wherein the pool is configured
Such that at least one of the first access information
and the second access information is accessible in a

US 9,367,441 B2
19

time span which is independent of the number of the
plural instances of access information stored in the
identified pool;

the controller determines whether the first access informa
tion is stored in the pool. Such that; 5
if the first access information is stored in the pool, then

the controller returns address data of the memory
block, wherein the address data is based on the first
access information, and

the controller removes the first access information 10
from the pool;

if the first access information is not stored in the pool,
then
the controller creates the first access information

based on a start address of an available portion of 15
the data storage,

the controller changes the start address of the avail
able portion based on the memory block size, and

the controller returns address data of the memory
block, wherein the address data is based on the first 20
access information,

wherein the controller writes a pool index relating to
the identified pool into the physical memory of the
data storage at an index portion of the data storage,
wherein an address of the index portion is based on 25
the first access information.

16. The method according to claim 8, wherein the index
portion is physically located in a byte before or in a byte after
the memory block.

30

20

