

US 20130023415A1

(19) United States

(12) Patent Application Publication Witschel et al.

(10) Pub. No.: US 2013/0023415 A1

(43) **Pub. Date: Jan. 24, 2013**

(54) SUBSTITUTED PYRIDINES HAVING HERBICIDAL ACTION

(75) Inventors: Matthias Witschel, Bad Duerkheim (DE); William Karl Moberg, Neustadt (DE); Liliana Parra Rapado, Offenburg (DE); Tao Qu, Ludwigshafen (DE); Frank Stelzer, Mannheim (DE); Andree Van Der Kloet, Heidelberg (DE); Thomas Seitz, Viernheim (DE); Thomas Ehrhardt, Speyer (DE); Klaus Kreuz, Denzlingen (DE); Klaus Grossmann, Neuhofen (DE); Anna Aleksandra Michrowska-Pianowska, Mannheim (DE); Anja Simon, Weinheim (DE); Ruediger Reingruber, Ludwigshafen (DE); Helmut Kraus, Wissembourg (FR); **Dschun Song**, Mannheim (DE); Julia Major, Freinsheim (DE); Johannes Hutzler, Waldsee (DE); Trevor William Newton, Neustadt (DE); Hans Wolfgang Hoeffken, Ludwigshafen (DE); Thomas Mietzner, Annweiler (DE)

(73) Assignee: **BASF SE**, Ludwigshafen (DE)

(21) Appl. No.: 13/636,430

(22) PCT Filed: Mar. 21, 2011

(86) PCT No.: **PCT/EP2011/054258**

§ 371 (c)(1),

(2), (4) Date: Sep. 21, 2012

Related U.S. Application Data

(60) Provisional application No. 61/316,400, filed on Mar. 23, 2010.

(30) Foreign Application Priority Data

Mar. 23, 2010 (EP) 10157312.9

Publication Classification

- (51) Int. Cl.

 A01N 43/90 (2006.01)

 A01P 13/00 (2006.01)

 C07D 491/052 (2006.01)
- (52) **U.S. Cl.** **504/225**; 544/127; 546/116; 546/15; 544/215; 544/333; 504/246; 504/230; 504/242

(57) ABSTRACT

Substituted pyridines of the formula (I) in which the variables are defined according to the description, processes and intermediates for preparing the compounds of the formula (I) and their N-oxides, their agriculturally suitable salts, compositions comprising them and their use as herbicides, and also methods for controlling unwanted vegetation.

Ι

SUBSTITUTED PYRIDINES HAVING HERBICIDAL ACTION

[0001] The present invention relates to substituted pyridines of the formula I

$$R^7$$
 R^4
 R^3
 R^6
 R^5

in which the variables have the following meaning: [0002] R is O—R⁴, S(O)_n—R⁴ or O—S(O)_n—R⁴;

[0003] R⁴ is hydrogen, C₁-C₄-alkyl, Z—C₃-C₆-cy-cloalkyl, C₁-C₄-haloalkyl, C₂-C₆-alkenyl, Z—C₃-C₆-cycloalkenyl, C₂-C₆-alkynyl, Z-(tri-C₁-C₄-alkyl)silyl, Z—C(=O)—R^a, Z—NRⁱ—C(O)—NRⁱRⁱⁱ, Z—P (=O)(R^a)₂, NRⁱRⁱⁱ, a 3- to 7-membered monocyclic or 9- or 10-membered bicyclic saturated, unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S and which may be partially or fully substituted by groups R^a and/or R^b,

[0004] R^a is hydrogen, OH, C_1 - C_8 -alkyl, C_1 - C_4 -ha-Z— C_3 - C_6 -cycloalkyl, C_2 - C_8 -alkenyl, Z—C₅-C₆-cycloalkenyl, C₂-C₈-alkynyl, Z—C₁-C₆alkoxy, Z-C₁-C₄-haloalkoxy, Z-C₃-C₈-alkenyloxy, Z— C_3 - C_8 -alkynyloxy, NR i R ii , C_1 - C_6 -alkylsulfonyl, Z-(tri-C₁-C₄-alkyl)silyl, Z-phenyl, Z-phenoxy, Z-phenylamino or a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S, where the cyclic groups are unsubstituted or substituted by 1, 2, 3 or 4 groups R^b ; [0005] R^i , R^{ii} independently of one another are Z—C₁-C₈-alkoxy, Z—C₁-C₈-haloalkoxy, Z—C (=O)-Ra, Z-phenyl, a 3- to 7-membered monocyclic or 9- or 10-membered bicyclic saturated, unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S and which is attached via Z:

[0006] Rⁱ and Rⁱⁱ together with the nitrogen atom to which they are attached may also form a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S;

[0007] Z is a covalent bond or C_1 - C_4 -alkylene; [0008] n is 0, 1 or 2;

 $\begin{array}{lll} \textbf{[0009]} & R^1 \text{ is cyano, halogen, nitro, C_1-C_6-alkyl, C_2-C_6-alkynyl, C_1-C_6-haloalkyl, Z-C_1-C_6-alkoxy, Z-C_1-C_4-alkoxy-C_1-C_4-alkoxy, Z-C_1-C_4-alkylthio, C_2-C_6-alkenyloxy, C_2-C_6-alkynyloxy, C_1-C_6-haloalkoxy, C_1-C_4-haloalkoxy. } \end{array}$

 C_1 - C_4 -alkoxy, $S(O)_n R^{bb}$, Z-phenoxy, Z-heterocyclyloxy, where heterocyclyl is a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S, where cyclic groups are unsubstituted or partially or fully substituted by R^b ; R^{bb} is C_1 - C_8 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_2 - C_6 -haloalkynyl or C_1 - C_6 -haloalkyl and n is 0, 1 or 2;

[0010] A is N or $C-R^2$;

[0011] R² is Z¹-phenyl, phenoxy or Z¹-heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S, where cyclic groups are unsubstituted or partially or fully substituted by R^b; C₁-C₈-alkyl, C₂-C₄-haloalkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₂-C₈-haloalkenyl, C₂-C₈-haloalkenyl, C₂-C₈-haloalkynyl, C₂-C₆-alkoxy, Z—C₁-C₄-alkoxy-C₁-C₄-alkoxy-C₁-C₄-alkoxy, Z—C₁-C₄-haloalkoxy-C₁-C₆-haloalkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, C₂-C₆-alkylthio, C₂-C₆-haloalkylthio, Z—C(—O)—R^a, S(O)₁-2R^{bb};

[0012] Z^1 is a covalent bond, C_1 - C_4 -alkyleneoxy, C_1 - C_4 -oxyalkylene or C_1 - C_4 -alkyleneoxy- C_1 - C_4 -alkylene;

[0013] R^b independently of one another are Z—CN, Z—OH, Z—NO₂, Z-halogen, oxo (—O), —N— R^a , C_1 - C_8 -alkyl, C_1 - C_4 -haloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkynyl, Z— C_1 - C_8 -alkoxy, Z— C_1 - C_8 -haloalkoxy, Z— C_3 - C_{10} -cycloalkyl, O—Z— C_3 - C_{10} -cycloalkyl, Z—(—O)— R^a , NR $^iR^i$, Z-(tri- C_1 - C_4 -alkyl)silyl, Z-phenyl and S(O)_n R^{bb} , two groups R^b may together form a ring which has three to six ring members and, in addition to carbon atoms, may also contain heteroatoms from the group consisting of O, N and S and may be unsubstituted or substituted by further groups R^b ;

[0014] R² together with the group attached to the adjacent carbon atom may also form a five- to ten-membered saturated or partially or fully unsaturated mono- or bicyclic ring which, in addition to carbon atoms, may contain 1, 2 or 3 heteroatoms selected from the group consisting of O, N and S and may be substituted by further groups R^b;

[0015] R³ is hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₂-C₄-alkenyloxy, C₂-C₄-alkynyloxy, S(O)_nR^{bb};

[0016] R^4 is hydrogen, halogen or C_1 - C_4 -haloalkyl;

[0017] R^5 is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkylthio;

[0018] R⁶,R⁷ independently of one another are hydrogen, halogen or C₁-C₄-alkyl;

[0019] Y is O or S;

[0020] X is O, S or N— \mathbb{R}^{x} ;

 $\begin{array}{ll} \textbf{[0021]} & R^x \text{ is hydrogen, } C_1\text{-}C_6\text{-alkyl, } C_1\text{-}C_4\text{-haloalkyl,} \\ & C_2\text{-}C_6\text{-alkenyl, } C_3\text{-}C_6\text{-alkynyl, } Z\text{--}C_3\text{-}C_{10}\text{-cycloalkyl,} \\ & C_1\text{-}C_6\text{-alkoxy-}C_1\text{-}C_6\text{-alkyl, } C_1\text{-}C_6\text{-cyanoalkyl, } Z\text{-phenyl, } Z\text{--}C(\text{--O})\text{--}R^{a^2} \text{ or tri-}C_1\text{-}C_4\text{-alkylsilyl;} \\ \end{array}$

[0022] R^{a2} is C_1 - C_6 -alkyl, C_1 - C_4 -haloalkyl, Z— C_1 - C_6 -alkoxy, Z— C_1 - C_4 -haloalkoxy or NR^iR^{ii} ;

[0023] where in the groups R^A and their subsubstituents, the carbon chains and/or the cyclic groups may be partially or fully substituted by groups R^b,

[0024] or an N-oxide or an agriculturally suitable salt thereof.

[0025] Moreover, the invention relates to processes and intermediates for preparing the pyridines of the formula I and the N-oxides thereof, the agriculturally usable salts thereof, and also to active compound combinations comprising them, to compositions comprising them and to their use as herbicides, i.e. for controlling harmful plants, and also to a method for controlling unwanted vegetation which comprises allowing a herbicidally effective amount of at least one pyridine compound of the formula I or of an agriculturally suitable salt of I to act on plants, their seed and/or their habitat.

[0026] Further embodiments of the present invention can be found in the claims, the description and the examples. It is to be understood that the features mentioned above and those still to be illustrated below of the subject matter of the invention can be applied not only in the respective given combination but also in other combinations without leaving the scope of the invention.

[0027] WO 2008/009908, WO 2008/071918, WO 2009/090401, WO 2009/090402 and WO 2010/029311 describe herbicidal pyridopyrazines; however, their herbicidal action at low application rates and/or their compatibility with crop plants leave scope for improvement.

[0028] It is an object of the present invention to provide compounds having herbicidal action. To be provided are in particular active compounds having strong herbicidal action, in particular even at low application rates, whose compatibility with crop plants is sufficient for commercial application.

[0029] These and further objects are achieved by the compounds of the formula I defined at the outset and by their N-oxides and also their agriculturally suitable salts.

[0030] The compounds according to the invention can be prepared analogously to the synthesis routes described in the abovementioned documents according to standard processes of organic chemistry, for example according to the following synthesis route:

[0031] Pyridinecarboxylic acids of the formula II can be reacted with carbonyl compounds of the formula III to give compounds of the formula IV. In the formulae II and III, the variables have the meaning given for formula I. The group Hal is a halogen atom or another suitable nucleophilic leaving group, such as alkoxy or phenoxy.

$$\mathbb{R}^7$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

-continued

R4

R3

base

Hal

$$R^7$$
 R^7
 R^6
 R^5
 R^6
 R^7
 R^6
 R^7
 R^8
 R^8
 R^8

[0032] This reaction is usually carried out at temperatures of from -78° C. to 120° C., preferably from -20° C. to 50° C., in an inert organic solvent in the presence of a base, such as, for example, triethylamine (cf. J. Agric. and Food Chem. 1994, 42(4), 1019-1025), a catalyst, such as, for example, dicyclohexylcarbodiimide (cf. Egyptian Journal of Chemistry 1994, 37(3), 273-282) or other known coupling agents.

[0033] Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, and also dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene. It is also possible to use mixtures of the solvents mentioned.

[0034] Suitable bases are, in general, inorganic compounds, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls, such as methyllithium, butyllithium and phenyllithium, alkylmagnesium halides, such as methylmagnesium chloride, and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to tertiary amines such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine and alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate. The bases are generally employed in equimolar amounts; however, they can also be used in catalytic amounts, in excess or, if appropriate, as solvents.

[0035] The starting materials are generally reacted with one another in equimolar amounts.

[0036] The compounds of the formula IV are activated by introducing a leaving group L^1 . Suitable leaving groups L^1 are, in general, groups which increase the electrophilicity of the carbonyl group, for example O-alkyl, O-aryl, halides, activated esters or aldehydes (such as, for example, Weinreb amide), in particular pentafluorophenoxy.

$$R^7$$
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R^6
 R^7
 R^7
 R^8
 R^8
 R^8

[0037] This reaction is usually carried out at temperatures of from -78° C. to 120° C., preferably from -20° C. to 50° C., in an inert organic solvent in the presence of a base, such as, for example, triethylamine (cf. J. Agric. and Food Chem. 1994, 42(4), 1019-1025), a catalyst, such as, for example, dicyclohexylcarbodiimide (cf. Egyptian Journal of Chemistry 1994, 37(3), 273-282) or other known coupling agents.

[0038] Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, and also dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably methylene chloride and toluene. It is also possible to use mixtures of the solvents mentioned.

[0039] Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides, such as lithium hydride, sodium hydride, potassium hydride and calcium hydride, alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate and calcium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls, such as methyllithium, butyllithium and phenyllithium, alkylmagnesium halides, such as methylmagnesium chloride, and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate, calcium carbonate, cesium carbonate and rubidium carbonate. The bases are generally employed in catalytic amounts; however, they can also be used in equimolar amounts, in excess or, if appropriate, as solvents.

[0040] The starting materials are generally reacted with one another in equimolar amounts.

[0041] Suitable agents H-L¹ are alcohols, optionally subst. phenols, N,O-dialkylhydroxylamine, in particular pentafluorophenol or N,O-dimethylhydroxylamine.

[0042] The compounds of the formula V are cyclized to give the compounds of the formula I.

$$R^7$$
 R^7
 R^7
 R^8
 R^8

[0043] This reaction is usually carried out at temperatures of from -78° C. to 120° C., preferably from -20° C. to 50° C., in an inert organic solvent in the presence of a base or a Lewis acid or a catalyst [cf. Silverman, Richard B. J. Am. Chem. Soc. 1981, 103(13), 3910].

[0044] Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and petroleum ether, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, halogenated hydrocarbons, such as methylene chloride, chloroform and chlorobenzene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dioxane, anisole and tetrahydrofuran, nitriles, such as acetonitrile and propionitrile, ketones, such as acetone, methyl ethyl ketone, diethyl ketone and tert-butyl methyl ketone, and also dimethyl sulfoxide, dimethylformamide and dimethylacetamide, particularly preferably acetonitrile and dimethylformamide. It is also possible to use mixtures of the solvents mentioned. [0045] Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal oxides, such as lithium oxide, sodium oxide, calcium oxide and magnesium oxide, alkali metal and alkaline earth metal hydrides,

such as lithium hydride, sodium hydride, potassium hydride

and calcium hydride, alkali metal and alkaline earth metal

carbonates, such as lithium carbonate, potassium carbonate,

calcium carbonate, cesium carbonate and rubidium carbonate, and also alkali metal bicarbonates, such as sodium bicarbonate, organometallic compounds, in particular alkali metal alkyls, such as methyllithium, butyllithium and phenyllithium, alkyl-magnesium halides, such as methylmagnesium chloride, and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide and dimethoxymagnesium, moreover organic bases, for example tertiary amines, such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminopyridine, and also bicyclic amines. Particular preference is given to alkali metal and alkaline earth metal carbonates, such as lithium carbonate, potassium carbonate, calcium carbonate, cesium carbonate and rubidium carbon-

[0046] The bases are generally employed in catalytic amounts; however, they can also be used in equimolar amounts, in excess or, if appropriate, as solvents.

[0047] The starting materials are generally reacted with one another in equimolar amounts.

[0048] Alternatively, the compounds of the formula I can also be obtained via a reverse reaction sequence, i.e. the reaction of the compounds of the formula II with compounds $H\text{-}L^1$ gives the activated derivatives of the formula VI.

[0049] Per se, this reaction is carried out under the conditions mentioned for the reaction of the formula IV with $H-L^1$.

[0050] The compounds of the formula VI can then be reacted with compounds III to give the derivatives of the formula V.

[0051] Per se, this reaction is carried out under the conditions mentioned for the reaction of the formula II with III.

[0052] The phenylacetic acid derivatives of the formula III are known or can be prepared from correspondingly substituted benzoic acids or halobenzenes on the basis of syntheses known in the literature [cf. Journal of Medicinal Chemistry 49(12), 3563-3580 (2006); Journal of Medicinal Chemistry 28(10), 1533-6 (1985); US 2004/077901; US 2004/068141; Chemistry-A European Journal 14(26), 7969-7977 (2008); Journal of Enzyme Inhibition and Medicinal Chemistry 17(3), 187-196 (2002)]. Suitably substituted benzoic acids and halobenzenes are known, for example from: WO 2002/006211, WO 2009/058237, WO 98/52926, WO 96/26193, EP-A 352 543, WO 98/52926, WO 97/30986, WO 98/12180.

[0053] The reaction mixtures are worked up in a customary manner, for example by mixing with water, separating the phases and, if appropriate, chromatographic purification of the crude products. Some of the intermediates and end products are obtained in the form of colorless or slightly brownish viscous oils which are purified or freed from volatile components under reduced pressure and at moderately elevated temperature. If the intermediates and end products are obtained as solids, the purification can also be carried out by recrystallization or digestion.

[0054] If individual compounds I cannot be obtained by the routes described above, they can be prepared by derivatization of other compounds I.

[0055] If the synthesis yields mixtures of isomers, a separation is generally however not necessarily required since in some cases the individual isomers can be interconverted during work-up for use or during application (for example under the action of light, acids or bases). Such conversions may also take place after application, for example in the case of the treatment of plants in the treated plant or in the harmful plant to be controlled.

[0056] The organic moieties mentioned for the substituents of the compounds according to the invention are collective terms for individual enumerations of the individual group members. All hydrocarbon chains, such as alkyl, haloalkyl, alkenyl, alkynyl, and the alkyl moieties and alkenyl moieties in alkoxy, haloalkoxy, alkylamino, dialkylamino, N-alkylsulfonylamino, alkenyloxy, alkynyloxy, alkoxyamino, alkylamidialkylaminosulfonylamino, nosulfonylamino, alkenylamino, alkynylamino, N-(alkenyl)-N-(alkyl)amino, N-(alkynyl)-N-(alkyl)amino, N-(alkoxy)-N-(alkyl)amino, N-(alkenyl)-N-(alkoxy)amino or N-(alkynyl)-N-(alkoxy) amino can be straight-chain or branched.

[0057] The prefix C_n - C_m —indicates the respective number of carbons of the hydrocarbon unit. Unless indicated otherwise, halogenated substituents preferably carry one to five identical or different halogen atoms, in particular fluorine atoms or chlorine atoms.

[0058] The meaning halogen denotes in each case fluorine, chlorine, bromine or iodine.

[0059] Examples of other meanings are:

[0060] alkyl and the alkyl moieties for example in alkoxy, alkylamino, dialkylamino: saturated straight-chain or branched hydrocarbon radicals having one or more carbon atoms, for example 1 or 2, 1 to 4 or 1 to 6 carbon atoms, for example C₁-C₆-alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbu-2-ethylbutyl, 1,1,2-trimethylpropyl, trimethylpropyl, 1-ethyl-1-methylpropyl, 1-ethyl-2methylpropyl. In one embodiment according to the invention, alkyl denotes small alkyl groups, such as C1-C4-alkyl. In another embodiment according to the invention, alkyl denotes relatively large alkyl groups, such as C₅-C₆-alkyl.

[0061] Haloalkyl: an alkyl radical as mentioned above, some or all of whose hydrogen atoms are substituted by halogen atoms, such as fluorine, chlorine, bromine and/or iodine, for example chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluo-2-chloro-2,2-difluoroethyl, 2,2-dichloro-2roethyl, pentafluoroethyl. fluoroethyl. 2,2,2-trichloroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl and nonafluo-

[0062] Cycloalkyl and the cycloalkyl moieties for example in cycloalkoxy or cycloalkylcarbonyl: monocyclic saturated hydrocarbon groups having three or more carbon atoms, for example 3 to 6 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

[0063] Alkenyl and the alkenyl moieties for example in alkenyloxy: monounsaturated straight-chain or branched hydrocarbon radicals having two or more carbon atoms, for example 2 to 4, 2 to 6 or 3 to 6 carbon atoms, and a double bond in any position, for example C2-C6-alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2propenyl, 1-ethyl-1-propenyl, 1-ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1-pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1,1dimethyl-2-butenyl, 1,1-dimethyl-3-butenyl, 1,2-dimethyl1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1,3-dimethyl-1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-2-propenyl.

[0064] Cycloalkenyl: monocyclic monounsaturated hydrocarbon groups having 3 to 6, preferably 5 or 6, carbon ring members, such as cyclopenten-1-yl, cyclopenten-3-yl, cyclohexen-1-yl, cyclohexen-4-yl.

[0065] Alkynyl and the alkynyl moieties for example in alkynyloxy, alkynylamino: straight-chain or branched hydrocarbon groups having two or more carbon atoms, for example 2 to 4, 2 to 6 or 3 to 6 carbon atoms, and a triple bond in any position, for example C₂-C₆-alkynyl, such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3butynyl, 3-methyl-1-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3pentynyl, 1-methyl-4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 3-methyl-1-pentynyl, 3-methyl-4-pentynyl, 4-methyl-1-pentynyl, 4-methyl-2-pentynyl, 1,1-d imethyl-2butynyl, 1,1-d imethyl-3-butynyl, 1,2-d imethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl, 1-ethyl-1-methyl-2-propynyl.

[0066] Alkoxy: alkyl as defined above which is attached via an oxygen atom, for example methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy or 1,1-dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpentoxy, 4-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or 1-ethyl-2-methylpropoxy.

[0067] 3- to 7-membered monocyclic or 9- or 10-membered bicyclic saturated, unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S and may be attached via carbon or nitrogen. From among these, preference is given to 5- or 6-membered heterocycles.

[0068] Saturated or unsaturated heterocyclic groups which are attached via nitrogen or carbon, such as: pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, isoxazolin-3-yl, isoxazolin-4-yl, isoxazolin-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-2-yl, oxazolin-2-yl, thiazolin-2-yl and morpholinyl.

[0069] Heteroaromatic groups which are attached via nitrogen or carbon, such as: pyrazol-3-yl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-5-yl, pyridazin-4-yl, pyrazin-2-yl, [1N-tetrazol-5-yl and [2N-tetrazol-5-yl.

[0070] The compounds of the formula I may, depending on the substitution pattern, contain one or more further centers of chirality. Accordingly, the compounds according to the invention can be present as pure enantiomers or diastereomers or as enantiomer or diastereomer mixtures. The invention provides both the pure enantiomers or diastereomers and their mixtures.

[0071] The compounds of the formula I may also be present in the form of the N-oxides and/or of their agriculturally useful salts, the type of salt generally not being important. Suitable salts are generally the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the herbicidal activity of the compounds I.

[0072] Suitable cations are in particular ions of the alkali metals, preferably lithium, sodium or potassium, of the alkaline earth metals, preferably calcium or magnesium, and of the transition metals, preferably manganese, copper, zinc or iron. Another cation that may be used is ammonium, where, if desired, one to four hydrogen atoms may be replaced by C_1 - C_4 -alkyl, hydroxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 alkyl, hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, phenyl or benzyl, preferably ammonium, dimethylammonium, diisopropylammonium, tetramethylammonium, tetrabutylammonium, 2-(2-hydroxyeth-1-oxy)eth-1-ylammonium, di(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium. Another suitable ammonium cation is the pyridine nitrogen atom of the formula I quaternized by alkylation or arylation. Also suitable are phosphonium ions, sulfonium ions, preferably tri(C₁-C₄-alkyl)sulfonium, or sulfoxonium ions, preferably $tri(C_1-C_4-alkyl)$ sulfoxonium.

[0073] Anions of suitable acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and also the anions of $\rm C_1\text{-}C_4\text{--}alkanoic}$ acids, preferably formate, acetate, propionate, butyrate or trifluoroacetate.

[0074] With respect to the variables, the particularly preferred embodiments of the intermediates correspond to those of the groups of the formula I.

[0075] In a particular embodiment, the variables of the compounds of the formula I have the following meanings, these meanings, both on their own and in combination with one another, being particular embodiments of the compounds of the formula I:

[0076] In one preferred embodiment of the compounds of the formula I, R is $O-R^A$, in which R^A is H, C_3-C_8 -alkenyl, C_3 - C_8 -haloalkenyl, C_3 - C_8 -alkynyl, C_3 - C_8 -haloalkynyl, C_1 - C_6 -alkylcarbonyl, such as $C(O)CH_3$, $C(O)CH_2CH_3$, C(O)CH(CH₃)₂ or C(O)C(CH₃)₃; C₁-C₆-cycloalkylcarbonyl, such as cyclopropylcarbonyl, cyclopentylcarbonyl or cyclohexylcarbonyl; C₂-C₆-alkenylcarbonyl, such as C(O)CH=CH₂ or C(O)CH₂CH=CH₂, optionally subst. benzoyl, such as C(O) C_6H_5 , $C(O)[2-CH_3-C_6H_4]$, $C(O)[4-CH_3-C_6H_4]$, $C(O)[2-CH_3-C_6H_4]$ $F - C_6H_4$, $C(O)[4-F - C_6H_4]$, or optionally subst. heteroaryl, such as pyridyl, which is attached via a carbonyl group. Particularly preferably, R^A is H, C₃-C₄-alkenyl, C₃-C₄-alkynyl or C₁-C₆-alkylcarbonyl. Especially preferably, R^A is selected from the group consisting of H, $CH_2CH = CH_2, CH_2C = CH, CH_3, C(O)CH_3, C(O)CH_2CH_3,$ $C(O)CH(CH_3)_2, C(O)C(CH_3)_3, C(O)-c-C_3H_5, C(O)-C_6H_5,$ C(O)— $CH_2C_6H_5$, $C(O)CH_2Cl$, $C(O)CF_3$, $C(O)CH_2OCH_3$, C(O)N(CH₃)₂ and C(O)OCH₂CH₃.

[0077] In a further preferred embodiment of the compounds of the formula I, R is $OS(O)_n$ — R^4 where n is preferably 0 or 2, in particular 2, such as, for example, $OS(O)_2$ — CH_3 , $OS(O)_2$ — C_2H_5 , $OS(O)_2$ — C_3H_7 , $OS(O)_2$ — C_6H_5 or $OS(O)_2$ -(4- CH_3 - C_6H_4).

[0078] In a further preferred embodiment, R is O—S(O) $_n$ —NR i R ii , in particular with the groups NR i R ii mentioned below as preferred.

[0079] R^i and R^{ii} are preferably C_1 - C_8 -alkyl, C_1 - C_4 -haloalkyl, Z— C_3 - C_6 -cycloalkyl, Z— C_1 - C_8 -alkoxy, Z— C_1 - C_8 -haloalkoxy, Z-phenyl, Z—C(=O)— R^a or Z-hetaryl. Preference is given here to CH_3 , C_2H_5 , n-propyl, $CH(CH_3)2$, butyl, 2-choroethyl, cyclopentyl, cyclohexyl, 2-ethoxymethyl, 2-chloroethoxy, phenyl, pyrimidines or triazines, which rings are unsubstituted or substituted. Preferred substituents are C_1 - C_4 -alkylcarbonyl or C_1C_4 -haloalkylcarbonyl, in particular C(=O)— CH_3 , C(=O)— C_2H_5 , C(=O)— C_3H_7 , C(=O)— $CH(CH_3)_2$, butylcarbonyl and C(=O)— CH_2Cl . Particularly preferred aspects of group NR^iR^i are N(di- C_1 - C_4 -alkyl), in particular $N(CH_3)$ — C_1 - C_4 -alkyl, such as $N(CH_3)_2$, $N(CH_3)CH_2CH_3$, $N(CH_3)C_3H_7$ and $N(CH_3)CH$ $CH_3)_2$.

[0080] Further particularly preferred aspects of NR^tR^{tt} are NH-aryl, where aryl is preferably phenyl which is substituted—in particular in the 2- and 6-position—by one to three identical or different groups from the group consisting of halogen, CH₃, halo-C₁-C₂-alkyl, halo-C₁-C₂-alkoxy and carboxyl, such as 2-Cl,6-COOH—C₆H₃, 2,6-Cl₂—C₆H₃, 2,6-Cl₂—3-C₆H₂, 2-CF_{3,6}-CH₂CHF₂—C₆H₃, 2-CF_{3,6}-OCF₃—C₆H₃ and 2-CF₃,6-CH₂CHF₂—C₆H₃.

[0081] In a further preferred embodiment of the invention, R^A is a 5- or 6-membered heterocycle optionally substituted by R^b as defined above, which preferably has either 1, 2, 3 or 4 N or 1 O or 1 S atom and if appropriate 1 or 2 N atoms as ring members and which is unsubstituted or may have 1 or 2 substituents selected from R^b . Preference is given to saturated or unsaturated groups attached via nitrogen, such as, for example:

[0082] Heteroaromatic groups: pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-4-yl, isothiazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, thiazol-2-yl, thiazol-4-yl and thiazol-5-yl.

[0083] In another aspect, R^4 is a heteroaromatic group attached via carbon, such as pyrazol-3-yl, imidazol-5-yl, oxazol-2-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyridazin-4-yl, pyrazin-2-yl, [1N-tetrazol-5-yl and [2N-tetrazol-5-yl, where each of the heterocycles mentioned here in an exemplary manner may have 1 or 2 substituents selected from R^b . Preferred groups R^b are in this case in particular F, Cl, CN, NO₂, CH₃, C₂H₅, OCH₃, OC₂H₅, OCHF₂, OCF₃ and CF₃.

[0084] In particularly preferred embodiments of the compounds of the formula I, R is selected from the group consisting of OH, OCH $_2$ CH=CH $_2$, OCH $_2$ C=CH, OCH $_3$, OC(O)CH $_3$, OC(O)CH $_2$ CH $_3$, OC(O)CH(CH $_3$) $_2$, OC(O)C(CH $_3$) $_3$, OC(O)-c-C $_3$ H $_5$, OC(O)—C $_6$ H $_5$, OC(O)—CH $_2$ C $_6$ H $_5$, OC(O)—CH $_2$ CO, OC(O)—CH $_2$ CI, OC(O)—CF $_3$, OC(O)—CH $_2$ OCH $_3$, OC(O)—N (CH $_3$) $_2$ and OC(O)—OCH $_2$ CH $_3$.

[0085] Groups R^a preferred for the compounds of the formula I are selected from the group consisting of OH, C_1 - C_8 -alkyl, C_1 - C_4 -haloalkyl, C_3 - C_8 -alkenyl, C_3 - C_8 -alkenyl, C_3 - C_8 -alkenyloxy, Z— C_3 - C_8 -alkynyloxy and NR^iR^i .

[0087] Particularly preferably, R^b is a group selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 - $C_$

[0088] Two groups R^b together may form a ring which preferably has three to seven ring members and, in addition to carbon atoms, may also contain heteroatoms from the group consisting of O, N and S and which may be unsubstituted or substituted by further groups R^b . These substituents R^b are preferably selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and C_1 - C_4 -haloalkyl.

[0089] Groups R^a and R^b are selected independently of one another if a plurality of such groups is present.

[0090] In a preferred embodiment of the compounds of the formula I, R¹ is halogen, CN, NO₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 $alkoxy \hbox{-} C_1 \hbox{-} C_4 \hbox{-} alkyl, \quad C_1 \hbox{-} C_4 \hbox{-} alkyl thio \hbox{-} C_1 \hbox{-} C_4 \hbox{-} alkyl, \quad C_1 \hbox{-} C_4 \hbox{-}$ alkylthio-C₁-C₄-alkylthio-C₁-C₄-alkyl, C_1 - C_4 -alkoxy, C₁-C₄-haloalkoxy, C₃-C₄-alkenyloxy, C₃-C₄-alkynyloxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy- C_1 - C_4 alkoxy, $S(O)_n$ — C_1 - C_4 -alkyl and $S(O)_n$ — C_1 - C_4 -haloalkyl. Particularly preferably, R¹ is selected from the group consisting of F, Cl, Br, NO₂, CH₃, CF₃, OCH₃, OCF₃, SCF₃, SO₂CH₃, OCH₂CH₂OCH₃, CH₂OCH₂CH₂OCH₃, CH2OCH2CF3.

[0091] In a further preferred embodiment of the compounds of the formula I, A is C—R². These compounds correspond to the formula I.1

[0092] where the variables have the meanings defined at the outset and preferably the meanings mentioned as preferred.

[0093] Particularly preferably, in the compounds of the formula I.1, the group

[0094] R¹ is halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio or C₁-C₄-alkylsulfonyl, in particular F, Cl, Br, NO₂, CH₃, CF₃, OCH₃, OCF₃, OCHF₂, SCF₃, SCHF₂, SO₂CH₃, CH₂OCH₂CH₂OCH₃;

[0095] R³ is H, halogen, CN, NO₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfonyl, in particular H, F, Cl, Br, CN, NO₂, CH₃, CH₂CH₃, CF₃, CHF₂, OCH₃, OCF₃, OCHF₂, SCH₃, SO₂CH₃ or SO₂CH₂CH₃;

[0096] R⁴ is H or halogen, in particular H, F or Cl.

[0097] R^2 is preferably phenyl or a 3- to 7-membered monocyclic or 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle which is attached via Z^1 and contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S, where the cyclic groups are unsubstituted or partially or fully substituted by groups R^b .

[0098] In a preferred aspect of the compounds of the formula I.1, R^2 is a 3- to 7-membered monocyclic or 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle which is attached directly or via C_1 - C_4 -alkyleneoxy, C_1 - C_4 -oxyalkylene or C_1 - C_4 -alkylene, which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S and which may be substituted as defined at the outset.

[0099] A preferred aspect of group R² relates to five- or six-membered saturated or partially unsatured heterocycles, such as, for example, isoxazoline, tetrazolone, 1,2-dihydrotetrazolone, 1,4-dihydrotetrazolone, tetrahydrofuran, dioxolane, piperidine, morpholine and piperazine. Particular preference is given to 3-isoxazoline, 5-isoxazoline, 1-tetrazolone, 2-tetrazolone, [1,3]dioxolane-2 and N-morpholine. Especially preferred are: 4,5-dihydroisoxazole-3, unsubstituted or substituted by 5-CH₃, 5-CH₂F or 5-CH F₂; 4,5-dihydroisoxazole-5, unsubstituted or substituted by 3-CH₃, 3-OCH₃, 3-CH₂OCH₃, 3-CH₂SCH₃; 1-methyl-5-oxo-1,5-dihydrotetrazole-2; 4-methyl-5-oxo-4,5-dihydrotetrazole-1 and N-morpholine.

[0100] A further preferred aspect of group R² relates to five- or six-membered aromatic heterocycles, such as, for example, isoxazole, pyrazole, thiazole, furyl, pyridine, pyrimidine and pyrazine. Particular preference is given to 3-isoxazole, 5-isoxazole, 3-pyrazole, 5-pyrazole, 2-thiazole, 2-oxazole, 2-furyl. Especially preferred are: 3-isoxazole, 5-methyl-3-isoxazole, 5-isoxazole, 3-methyl-5-isoxazole, 1-methyl-1H-pyrazole-3, 2-methyl-2H-pyrazole-3 and thiazole-2.

[0101] In a preferred aspect of heterocyclic groups R^2 , the groups R^b are preferably C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio or C_1 - C_4 -alkylsulfonyl. Especially preferred are CH_3 , C_2H_5 , CH_2F , CF_2H , CF_3 , OCH_3 , CH_2OCH_3 , CH_2SCH_3 , SCH_3 and SO_2CH_3 .

[0102] In a preferred aspect, the group Z^1 is a covalent bond

[0103] In a further preferred aspect, the group Z^1 is C_1 - C_4 -alkyleneoxy, in particular OCH $_2$ or OCH $_2$ CH $_2$.

[0104] In a further preferred aspect, the group Z^1 is C_1 - C_4 -oxyalkylene, in particular CH_2O or CH_2CH_2O .

[0105] In a further preferred aspect, the group Z^1 is C_1 - C_4 -alkyleneoxy- C_1 - C_4 -alkylene, in particular OCH₂OCH₂ or OCH₂CH₂OCH₂.

[0106] Particularly preferred aspects of heterocycles attached via Z^1 include tetrahydrofuran-2-ylmethoxymethyl and [1,3]dioxolan-2-ylmethoxy.

[0107] In a further preferred aspect of the compounds of the formula I.1, R^2 is phenyl which may be partially or fully substituted—preferably mono-, di- or trisubstituted, in particular monosubstituted—by groups R^b . Groups R^b preferred for this aspect include: halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -a

[0108] in which # denotes the bond via which the group R^2 is attached and the substituents are selected from R^b and are in particular:

[0109] $R^{P2} H \text{ or } F$;

[0110] R^{P3} H, F, Cl or OCH₃; and

[0111] \mathbb{R}^{P4} H, F, Cl, \mathbb{CH}_3 , \mathbb{CF}_3 , \mathbb{OCH}_3 , $\mathbb{OCH}_2\mathbb{OCH}_3$ or $\mathbb{OCH}_2\mathbb{CH}_2\mathbb{OCH}_3$.

[0112] In a further preferred aspect of the compounds of the formula I.1, R^2 is an aliphatic group selected from the group consisting of C_1 - C_6 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkenyloxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkenyloxy, C_3 - C_6 -haloalkenyloxy, C_3 - C_6 -haloalkynyloxy, C_1 - C_4 -alkoxycarbonyl, $S(O)_2$ - C_1 - C_4 -alkyl and $S(O)_2$ - C_1 - C_8 -haloalkyl.

[0113] Particularly preferred aliphatic groups R^2 include C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyl, C_1 - C_2 -halo-alkoxy- C_1 - C_2 -alkyl, C_3 - C_4 -alkenyloxy, C_3 - C_4 -alkynyloxy, C_1 - C_4 -alkylsulfonyl, C_2 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl and $S(O)_2$ — C_1 - C_4 -alkyl. Special preference is given to CH= CH_2 , CH= $CHCH_3$, $CH_2OCH_2CF_3$, OC_2H_5 , OCH_2CH = CH_2 , OCH_2C =CH, $OCH_2CH_2OCH_3$, $COOCH_3$, $COOC_2H_5$ and SO_2CH_3 , $SO_2C_2H_5$ and $SO_2CH(CH_3)_2$.

[0114] In a further preferred aspect, R^2 together with R^1 or R^3 forms a five- to ten-membered mono- or bicyclic, saturated or partially unsaturated ring which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S and which may be partially or fully substituted by groups R^b . Together with the phenyl group which carries the groups R^1 to R^5 , a nine- to fifteen-membered bi- or tricyclic, optionally heterocyclic, ring system results. Suitable are, for example, the following: 2,3-dihydrobenzo[b]thiophene 1,1-dioxide, thiochroman 1,1-dioxide, 2,3-dihydrobenzo[1,4]dithiin 1,1, 4,4-tetraoxide, 3H-benzothiazol-2-one, quinoline and saccharin.

[0115] Preferably, R^2 together with R^1 or R^3 forms a five- or six-membered monocyclic, saturated or partially unsaturated ring.

[0116] Preferred bicyclic ring systems comprising the phenyl group attached to the naphthyridinone skeleton and R¹ and R² are, for example, groups A to D:

[0117] # denotes the bond to the skeleton.

[0118] Preferred bi- and tricyclic ring systems comprising the phenyl group attached to the naphthyridinone skeleton and R² and R³ contain one or two sulfur atoms and optionally one nitrogen atom. Preferred are groups E to L:

$$\mathbb{R}^{4} \longrightarrow \mathbb{R}^{b}_{0.4}$$

$$\mathbb{R}^{4} \longrightarrow \mathbb{R}^{b}_{0.5}$$

$$\mathbb{R}^{4} \longrightarrow \mathbb{R}^{b}_{0.5}$$

Η

Ι

K

L

-continued

$$\mathbb{R}^4$$

$$\mathbb{R}^1 \longrightarrow \mathbb{R}^b)_{0-6}$$

$$\begin{array}{c|c}
R^4 & & \\
 & & \\
R^1 & O & O
\end{array}$$

$$\# \underbrace{ \begin{array}{c} \mathbb{R}^4 & \mathbb{Q} \\ \mathbb{R}^1 & \mathbb{Q} \\ \mathbb{R}^5 & \mathbb{Q} \end{array}}_{\mathbb{R}^b)_{0\cdot 4}}$$

$$\mathbb{R}^4 \xrightarrow{\mathrm{O}} \mathbb{R}^b_{0.6}$$

$$\mathbb{R}^4$$
 \mathbb{S}
 \mathbb{N}
 \mathbb{H}/\mathbb{R}^b

$$\underset{\mathbb{R}^1}{ \longrightarrow} \overset{\mathbb{R}^4}{ \longrightarrow} \overset{\mathbb{N}}{ \longrightarrow} \overset{\mathbb{N}} \overset{\mathbb{N}}{ \longrightarrow} \overset{\mathbb{N}}{ \longrightarrow} \overset{\mathbb{N}}{ \longrightarrow} \overset{\mathbb$$

[0119] In groups A to L, the groups R^b independently of one another are preferably halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylthio, C_3 - C_4 -alkenyl, C_3 - C_4 -alkynyl, =N— C_1 - C_4 -alkoxy.

[0120] The compounds of the formula I in which R^2 is one of groups A to L correspond to the formulae I.A to I.L.

[0121] In the formulae I.A to I.L, \mathbb{R}^b is preferably halogen, $\mathbb{C}_1\text{-}\mathbb{C}_4\text{-}$ alkyl, $\mathbb{C}_1\text{-}\mathbb{C}_4\text{-}$ alkoxy or $\mathbb{C}_1\text{-}\mathbb{C}_4\text{-}$ haloalkyl.

[0122] The following examples represent particularly preferred groups A to L:

$$\mathbb{R}^{3B}$$

$$\mathbb{R}^{3C}$$

$$\mathbb{R}^{3D}$$

$$\# \underbrace{ \begin{array}{c} O \\ O \\ R^1 \end{array} }_{R^{bE1}} R^{bE2}$$

$$\# \underbrace{ \begin{array}{c} O \\ N \\ N \end{array} }_{N} \underbrace{ \begin{array}{c} O \\ CH_{3} \end{array} }_{CH_{3}}$$

$$H_3C$$
 CH_3 H_3C CH_3

$$\mathbb{R}^{bl1}$$

-continued

R1 N Rb2 K1

$$R^1$$
 N CH3

 R^1 N R^{bL} L1

[0123] R^{3,4}, R^{3,8}, R^{3,C} and R^{3,D} are preferably halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, in particular F, Cl, Br, CH₃, CF₃ or OCH₃.

F, Cl, Br, CH₃, CF₃ or OCH₃. [0124] R^{bE1} , R^{bE2} are preferably H, C₁-C₄-alkyl or C₁-C₄-alkoxy, in particular R^{bE1} is H or CH₃; R^{bE2} is H, CH₃ or OCH₃.

[0125] \mathbb{R}^{bJ1} is preferably \mathbb{C}_1 - \mathbb{C}_4 -haloalkoxy, in particular OCH₂CH₃F.

[0126] $\mathbb{R}^{b/2}$ is preferably \mathbb{C}_1 - \mathbb{C}_4 -alkoxy, in particular OCH₃ or OCH₂CH₃.

[0127] \mathbb{R}^{bL} is preferably \mathbb{C}_1 - \mathbb{C}_4 -Alkyl or \mathbb{C}_3 - \mathbb{C}_4 -Alkenyl, in particular \mathbb{CH}_3 , $\mathbb{CH}_2\mathbb{CH}_3$, $\mathbb{CH}_2\mathbb{CH}_3$, $\mathbb{CH}(\mathbb{CH}_3)2$ or $\mathbb{CH}_1\mathbb{CH}_2\mathbb{CH}_3$.

[0128] In a further preferred embodiment of the compounds of the formula I, A is N. These compounds correspond to formula I.2,

[0129] in which the variables have the meanings defined at the outset and preferably those mentioned above. Especially preferably, in compounds of the formula I.2 the group [0130] R¹ is nitro, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylthio or C₁-C₄-alkylsulfonyl, in particular NO₂, CH₃, CF₃, CH₂OCH₂CH₂OCH₃, OCH₃, OCF₃, OCHF₂, SCF₃, SCHF₂, SO₂CH₃;

 $\begin{array}{lll} \textbf{[0131]} & R^3 \text{ is H, CN, NO}_2, C_1\text{-}C_4\text{-alkyl, C}_1\text{-}C_4\text{-haloalkyl,} \\ & C_1\text{-}C_4\text{-alkoxy, C}_1\text{-}C_4\text{-alkylthio, C}_1\text{-}C_4\text{-alkylsulfonyl, in} \\ & \text{particular H, CN, NO}_2, \text{CH}_3, \text{CH}_2\text{CH}_3, \text{CF}_3, \text{CH F}_2, \text{OCH}_3,} \\ & \text{OCF}_3, \text{OCHF}_2, \text{SCH}_3, \text{SO}_2\text{CH}_3 \text{ or SO}_2\text{CH}_2\text{CH}_3.} \end{array}$

[0132] In a further preferred embodiment of the compounds of the formula I, in particular of the formula I.1, R³ is hydrogen, halogen, CN, NO₂, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkyl, C₁-C₄-haloalkyl, where n is preferably 0 or 2. Particularly preferably, R³ is selected from the group consisting of H, F, Cl, Br, CN, NO₂, CH₃, CF₃, CHF₂, OCH₃, OCF₃, OCHF₂, SCH₃, SCF₃, SCHF₂, SO₂CH₃, SO₂CH₂CH₃. [0133] In a further preferred embodiment of the com-

[0133] In a further preferred embodiment of the compounds of the formula I, R⁴ is hydrogen or halogen, particularly preferably H, F or Cl, in particular H.

[0134] In a further preferred embodiment of the compounds of the formula I, R^5 is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkylthio, particularly preferably H, CH_3 , CF_3 , CHF_2 , OCH_3 , OCF_3 , $OCHF_2$, SCH_3 , SCF_3 , $SCHF_2$, in particular H.

[0135] In a further preferred embodiment of the compounds of the formula I, at least one of the groups R⁶ and R⁷, preferably both groups, is/are hydrogen.

[0136] In a preferred embodiment, X is O. [0137] In a further embodiment, X is S.

[0138] In a further embodiment, X is NR^x .

[0139] In a preferred embodiment, Y is O.

[0140] In a further embodiment, Y is S.

[0141] R^x is preferably H, C_1 - C_6 -alkyl, such as CH_3 , C_2H_5 , n- C_3H_7 , $CH(CH_3)_2$, n- C_3H_9 , or $C(CH_3)_3$; C_3 - C_6 -cycloalkyl- C_1 - C_4 -alkyl, such as cyclopropylmethyl, C_3 - C_6 -alkenyl, such as $CH_2CH=CH_2$, $CH_2C(CH_3)=CH_2$, $CH_2CH_2H=CH_2$, $CH_2CH_2CH_2CH_3=CH_2$, or optionally subst. phenyl, such as C_6H_5 , 4- CH_3 - C_6H_4 , 4-F- C_6H_4 or $S(O)_m$ - R^N , where R^N is C_1 - C_6 -haloalkyl, such as CH_2CF_3 , CH_2CH_2 - $CH_2CH_2CH_2CH_3$ - C_6 -haloalkyl, such as C_6F_3 , CH_2CH_2 - CH_3 - C_6 -haloalkyl, such as C_6F_3 , CH_2CH_2 - CH_3 - C_6 -haloalkyl, such as C_6 - C_7 -

[0142] A further embodiment relates to the \vec{N} -oxides of the compounds of the formula I.

[0143] A further embodiment relates to salts of the compounds of the formula I, in particular those which are obtainable by quaternization of the pyridine nitrogen atom, which may preferably take place by alkylation or arylation of the compounds of the formula I. Preferred salts of the compounds are thus the N-alkyl salts, in particular the N-methyl salts, and the N-phenyl salts.

[0144] In particular with a view to their use, preference is given to the compounds of the formula I compiled in the tables below, which compounds correspond to the formulae I.1A and I.2A. The groups mentioned for a substituent in the tables are furthermore per se, independently of the combination in which they are mentioned, a particularly preferred aspect of the substituent in question.

[0145] Table 1

[0146] Compounds of the formula I in which X and Y are O, R is OH, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0147] Table 2

[0148] Compounds of the formula I in which X and Y are O, R is OCH₂CH=CH₂, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0149]Table 3

Compounds of the formula I in which X and Y are O, [0150] R is $OCH_2\hat{C} = CH$, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0151] Table 4

[0152] Compounds of the formula I in which X and Y are O, R is OH, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0153] Table 5

[0154] Compounds of the formula I in which X and Y are O, R is OCH₂CH=CH₂, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0155]

[0156] Compounds of the formula I in which X and Y are O, R is $OCH_2C = CH$, R⁵ is CH_3 and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2 [0157]

Table 7

[0158] Compounds of the formula I in which X and Y are O, R is OH, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0159] Table 8

[0160] Compounds of the formula I in which X and Y are O, R is OCH₂CH=CH₂, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0161] Table 9 [0162] Compounds of the formula I in which X and Y are O, R is OCH₂ \hat{C} =CH, R⁵ is CH₂CH₃ and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0163] Table 10 [0164] Compounds of the formula I in which X and Y are O, R is OH, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[**0165**] Table 11

[0166] Compounds of the formula I in which X and Y are O, R is OCH₂CH=CH₂, R⁵ is OCH₃ and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[**0167**] Table 12

[0168]Compounds of the formula I in which X and Y are O, R is OCH_2 C=CH, R^5 is OCH_3 and the combination of R^1 R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0169] Table 13 [0170] Compounds of the formula I in which X and Y are O, R is OH, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0171] Table 14

[0172] Compounds of the formula I in which X and Y are O, R is OCH_2CH — CH_2 , R^5 is SCH_3 and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2 [**0173**] Table 15

[0174] Compounds of the formula I in which X and Y are O, R is $OCH_2\hat{C} = CH$, R^5 is SCH_3 and the combination of R^1 R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0175] Table 16

[0176] Compounds of the formula I in which X is O and Y is S, R is OH and R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0178] Compounds of the formula I in which X is O and Y is S, R is OCH₂CH=CH₂, R⁵ is H and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0179] Table 18

[0180] Compounds of the formula I in which X is O and Y is S, R is OCH₂C \equiv CH, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[**0181**] Table 19

[0182] Compounds of the formula I in which X is O and Y is S, R is OH, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0183] Table 20

[0184] Compounds of the formula I in which X is O and Y is S, R is OCH₂CH=CH₂, R⁵ is CH₃ and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0185] Table 21

[0186] Compounds of the formula I in which X is O and Y is S, R is OCH₂C=CH, R^5 is CH₃ and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0187] Table 22

[0188] Compounds of the formula I in which X is O and Y is S, R is OH, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0189] Table 23

[0190] Compounds of the formula I in which X is O and Y is S, R is OCH₂CH=CH₂, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0191] Table 24

[0192] Compounds of the formula I in which X is O and Y is S, R is OCH₂C=CH, R^5 is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0193] Table 25

[0194] Compounds of the formula I in which X is O and Y is S, R is OH, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0195] Table 26

[0196] Compounds of the formula I in which X is O and Y is S, R is OCH₂CH=CH₂, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0197] Table 27

[0198] Compounds of the formula I in which X is O and Y is S, R is OCH²C=CH, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0199] Table 28

[0200] Compounds of the formula I in which X is O and Y is S, R is OH, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0201] Table 29

[0202] Compounds of the formula I in which X is O and Y is S, R is $OCH_2CH = CH_2$, R^5 is SCH_3 and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0203] Table 30

[0204] Compounds of the formula I in which X is O and Y is S, R is OCH₂C=CH, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0205] Table 31

[0206] Compounds of the formula I in which X is S and Y is O, R is OH, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0207] Table 32

[0208] Compounds of the formula I in which X is S and Y is O, R is OCH₂CH=CH₂, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[**0209**] Table 33

[0210] Compounds of the formula I in which X is S and Y is O, R is OCH₂C=CH, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0211] Table 34

[0212] Compounds of the formula I in which X is S and Y is O, R is OH, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0213] Table 35

[0214] Compounds of the formula I in which X is S and Y is O, R is OCH₂CH=CH₂, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[**0215**] Table 36

[0216] Compounds of the formula I in which X is S and Y is O, R is OCH₂C=CH, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[**0217**] Table 37

[0218] Compounds of the formula I in which X is S and Y is O, R is OH, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2 [0219] Table 38

[0220] Compounds of the formula I in which X is S and Y is O, R is OCH₂CH—CH₂, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0221] Table 39

[0222] Compounds of the formula I in which X is S and Y is O, R is OCH₂C=CH, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate. R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0223] Table 40

[0224] Compounds of the formula I in which X is S and Y is O, R is OH, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0225] Table 41

[0226] Compounds of the formula I in which X is S and Y is O, R is OCH₂CH—CH₂, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0227] Table 42

[0228] Compounds of the formula I in which X is S and Y is O, R is OCH₂C≡CH, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0229] Table 43

[0230] Compounds of the formula I in which X is S and Y is O, R is OH, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0231] Table 44

[0232] Compounds of the formula I in which X is S and Y is O, R is OCH₂CH—CH₂, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0233] Table 45

[0234] Compounds of the formula I in which X is S and Y is O, R is OCH₂C=CH, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0235] Table 46

[0236] Compounds of the formula I in which X and Y are S, R is OH, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0237] Table 47

[0238] Compounds of the formula I in which X and Y are S, R is OCH₂CH—CH₂, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0239] Table 48

[0240] Compounds of the formula I in which X and Y are S, R is OCH₂C=CH, R⁵ is H and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0241] Table 49

[0242] Compounds of the formula I in which X and Y are S, R is OH, R^5 is CH_3 and the combination of R^1 , R^3 and if appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[**0243**] Table 50

[0244] Compounds of the formula I in which X and Y are S, R is OCH₂CH=CH₂, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0245] Table 51

[0246] Compounds of the formula I in which X and Y are S, R is OCH₂C=CH, R⁵ is CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0247] Table 52

[0248] Compounds of the formula I in which X and Y are S, R is OH, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0249] Table 53

[0250] Compounds of the formula I in which X and Y are S, R is OCH₂CH=CH₂, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0251] Table 54

[0252] Compounds of the formula I in which X and Y are S, R is OCH₂C=CH, R⁵ is CH₂CH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0253] Table 55

[0254] Compounds of the formula I in which X and Y are S, R is OH, R⁵ is OCH₃ and the combination of R¹, R³ and if

appropriate R^2 for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0255] Table 56

[0256] Compounds of the formula I in which X and Y are S, R is OCH₂CH=CH₂, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0257] Table 57

[0258] Compounds of the formula I in which X and Y are S, R is OCH₂C=CH, R⁵ is OCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0259] Table 58

[0260] Compounds of the formula I in which X and Y are S, R is OH, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0261] Table 59

[0262] Compounds of the formula I in which X and Y are S, R is OCH₂CH=CH₂, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

[0263] Table 60

[0264] Compounds of the formula I in which X and Y are S, R is OCH₂C≡CH, R⁵ is SCH₃ and the combination of R¹, R³ and if appropriate R² for a compound corresponds in each case to one row of table A or is specified in table A.1 or A.2

TABLE A

Compounds of the formula I which correspond to the formulae I.1A and I.2A

I.1A

 $\begin{array}{c}
R \\
N \\
N \\
R^{5}
\end{array}$ I.2A

No. Formula R^1 R^2 R^3 A-1 I.1A Cl # N H

TABLE A-continued

	Compounds o	f the formula I whi	ich correspond to the formulae I.1	A and I.2A
		\mathbb{R}^{5}	R^3 R^2 R^3	I.1A I.2A
		N	N R ¹	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-2	I.1A	CI	#N	CH ₃
A-3	I.1A	Cl	# NO	CF ₃
A-4	I.1A	Cl	# NO	CHF ₂
A-5	I.1A	CI	# NO	OCH ₃
A-6	I.1A	Cl	# NO	OCHF ₂
A-7	I.1A	Cl	#N_O	SCH ₃
A-8	I.1A	Cl	#CH ₃	Н
A- 9	I.1A	Cl	#CH ₃	СН3
A-10	I.1A	Cl	#CH ₃	CF ₃
A-11	I.1A	Cl	#CH ₃	CHF ₂

TABLE A-continued

С	ompounds o	f the formula I w	hich correspond to the formulae I.14	A and I.2A
		\mathbb{R}^{5}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I.1A
		 R ⁵		
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-12	I.1A	Cl	#CH ₃	OCH ₃
A-13	I.1A	Cl	#CH ₃	OCHF ₂
A-14	I.1A	Cl	#CH ₃	SCH ₃
A-15	I.1A	Cl	# NO	Н
A-16	I.1A	Cl	# NO	CH ₃
A-17	I.1A	Cl	# NO	CF ₃
A-18	I.1A	Cl	# NO	CHF ₂
A-19	I.1A	Cl	# NO	OCH ₃
A-20	I.1A	Cl	# NO	OCHF ₂
A-21	I.1A	Cl	#N	SCH ₃

TABLE A-continued

C	compounds o	f the formula I whic	ch correspond to the formulae I.1	A and I.2A
		$\mathbb{Z}_{\mathbb{R}^5}^{\mathbb{N}}$	\mathbb{R}^{1} \mathbb{R}^{2}	I.1A I.2A
		\mathbb{R}^{N} \mathbb{R}^{5}	\mathbb{R}^{1}	1.2A
No.	Formula	R ¹	R ²	R ³
A-22	I.1A	Cl	# CH ₃	Н
A-23	I.1A	Cl	# CH ₃	CH ₃
A-24	I.1A	Cl	# CH ₃	CF ₃
A-25	I.1A	Cl	#CH ₃	CHF ₂
A-26	I.1A	Cl	#CH ₃	OCH ₃
A-27	I.1A	Cl	#CH ₃	OCHF ₂
A-28	I.1A	Cl	$^{\#}$ $^{\text{CH}_3}$	SCH ₃
A-29	I.1A	Cl	#CH ₃	Н
A-30	I.1A	Cl	#CH ₃	СН3
A-31	I.1A	Cl	#CH ₃	CF ₃

TABLE A-continued

C	ompounds o	f the formula I wh	nich correspond to the formulae I.14	and I.2A
		\mathbb{R}^{5}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I.1A I.2A
			X R^1	
No.	Formula	$ m R^5$ $ m R^1$	\mathbb{R}^2	\mathbb{R}^3
			# CH ₃	
A-32	I.1A	Cl	"—————————————————————————————————————	CHF ₂
A-33	I.1A	Cl	#CH ₃	OCH ₃
A-34	I.1A	Cl	# CH ₃	OCHF ₂
A-35	I.1A	Cl	$\text{"} \underbrace{\text{CH}_3}_{\text{O-N}}$	SCH ₃
A-36	I.1A	Cl	# CH ₃	Н
A-37	I.1A	CI	# CH ₃	$\mathrm{CH_3}$
A-38	I.1A	Cl	# CH ₃	CF ₃
A-39	I.1 A	Cl	$^{\#} \underbrace{\hspace{1cm}^{\text{CH}_{3}}}_{\text{O-N}}$	CHF ₂
A-4 0	I.1A	CI	$^{\#} \underbrace{\hspace{1cm}^{\text{CH}_{3}}}_{\text{O-N}}$	OCH ₃
A-41	I.1A	CI	$^{\#} \underbrace{\hspace{1cm}^{CH_{3}}}_{O-N}$	OCHF ₂

TABLE A-continued

C	ompounds o	f the formula I whi	ich correspond to the formulae I.12	A and I.2A
		\mathbb{R}^{N}	R R^3 R^2 R^2	I.1A
		\bigcap^{N}	R N N N N N N	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-42	I.1A	CI	# CH ₃	SCH ₃
A-43	I.1A	CI	# N N S	Н
A-44	I.1A	Cl	# N N S	CH ₃
A-45	I.1A	Cl	# N N S	CF ₃
A-46	I.1A	CI	# N N S	CHF ₂
A-47	I.1A	Cl	#N	OCH ₃
A-48	I.1A	Cl	# N	OCHF ₂
A -49	I.1A	Cl	# N	SCH ₃
A-50	I.1A	Cl	H_{3C} N N N N N	Н

TABLE A-continued

		IADI	LE A-continued	
C	compounds o	f the formula I whi	ich correspond to the formulae I.1	A and I.2A
		$\bigcap_{\mathbb{R}^5}^{\mathbb{N}}$	R R^3 R^2 R^2	I.1A
		\mathbb{R}^{5}	R N N N N	I.2A
No.	Formula	R ¹	R ²	R ³
A-51	I.1A	Cl	H ₃ C O	СН3
A-52	I.1A	Cl	H ₃ C O	CF ₃
A-53	I.1A	Cl	H ₃ C O	CHF ₂
A-54	I.1A	Cl	H ₃ C O	OCH ₃
A-55	I.1A	Cl	H ₃ C O	OCHF ₂
A-56	I.1A	Cl	$H_{3}C$	SCH_3
A-57	I.1A	Cl	# N N N CH3	Н

TABLE A-continued

C	ompounds o	f the formula I which	ch correspond to the formulae I.1	A and I.2A
		R R R R	R^2	I.1A I.2A
		\mathbb{R}^5	$X = X \times \mathbb{R}^{1}$	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-58	I.1A	Cl	W N N N CH3	СН3
A-59	I.1A	Cl	W N N N CH3	CF ₃
A -60	I.1A	Cl	W N N N N CH3	CHF_2
A-61	I.1A	Cl	W N N N CH3	OCH ₃
A-62	I.1A	Cl	W N N N CH3	OCHF ₂
A-63	I.1A	Cl	W N N N CH3	SCH₃
A-64	I.1A	Cl	#NO	Н

TABLE A-continued

	ompounds o	f the formula I whic	ch correspond to the formulae I.1A	and I.2A
		N R^5	\mathbb{R}^3 \mathbb{R}^2	I.1A
		\mathbb{R}^{N} \mathbb{R}^{5}	\mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-65	I.1A	Cl	#NOO	CH ₃
A-66	I.1A	CI	#_NO	CF ₃
A-67	I.1A	CI	#_NO	CHF ₂
A-68	I.1A	Cl	#_NO	OCH ₃
A -69	I.1A	Cl	#_NO	OCHF ₂
A-7 0	I.1A	Cl	#NOO	SCH ₃
A-71 A-72 A-73 A-74 A-75 A-76 A-77 A-78 A-80 A-81 A-82 A-83 A-84	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	CI CI CI CI CI CI CI CI CI CI CI	$\begin{array}{c} C_6H_5 \\ 4-F-C_6H_4 \\ 4-F-C_6H_5 \\ 4-F-C_6H$	H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃

TABLE A-continued

Compounds of the	formula I which c	orrespond to the	formulae I.1A and I.2A	

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-85	I.1A	Cl	4-Cl—C ₆ H ₄	Н
A-86	I.1A	Cl	4-Cl—C ₆ H ₄	CH_3
A-87	I.1A	Cl	4-Cl—C ₆ H ₄	CF ₃
A-88	I.1A	Cl	4-Cl—C ₆ H ₄	CHF_2
A-89	I.1A	Cl	$4-Cl-C_6H_4$	OCH_3
A-90	I.1A	Cl	4-Cl—C ₆ H ₄	$OCHF_2$
A-91	I.1A	C1	4-Cl—C ₆ H ₄	SCH ₃
A-92	I.1A	Cl	4-OCH ₃ —C ₆ H ₄	H
A-93	I.1A	Cl	4 -OCH $_3$ —C $_6$ H $_4$	CH_3
A-94	I.1A	C1	4-OCH_3 — C_6 H ₄	CF ₃
A-95	I.1A	C1	4 -OCH $_3$ —C $_6$ H $_4$	CHF_2
A-96	I.1A	Cl	4 -OCH $_3$ —C $_6$ H $_4$	OCH_3
A-97	I.1A	C1	4 -OCH $_3$ —C $_6$ H $_4$	$OCHF_2$
A-98	I.1A	C1	4 -OCH $_3$ —C $_6$ H $_4$	SCH_3
A-99	I.1A	C1	$CH = CH_2$	H
A-100	I.1A	C1	$CH = CH_2$	CH_3
A-101	I.1A	C1	$CH = CH_2$	CF ₃
A-102	I.1A	C1	$CH = CH_2$	CHF_2
A-103	I.1A	C1	$CH = CH_2$	OCH_3
A-104	I.1A	C1	$CH = CH_2$	$OCHF_2$
A-105	I.1A	C1	$CH = CH_2$	SCH_3
A-106	I.1A	C1	CH — CH — CH_3	H
A-107	I.1A	C1	CH — CH — CH_3	CH_3
A-108	I.1A	C1	CH — CH — CH_3	CF ₃
A-109	I.1A	C1	CH — CH — CH_3	CHF_2
A-110	I.1A	Cl	CH — CH — CH_3	OCH_3
A-111	I.1A	C1	CH — CH — CH_3	$OCHF_2$
A-112	I.1A	C1	CH — CH — CH_3	SCH_3
A-113	I.1A	Cl	CH_2CH — CH_2	H
A-114	I.1A	Cl	CH_2CH — CH_2	CH_3
A-115	I.1A	C1	CH_2CH — CH_2	CF ₃
A-116	I.1A	Cl	CH_2CH — CH_2	CHF_2
A-117	I.1A	Cl	CH₂CH≔CH₂	OCH_3
A-118	I.1A	Cl	CH₂CH≔CH₂	OCHF ₂
A-119	I.1A	Cl	$CH_2CH = CH_2$	SCH_3
A-120	I.1A	C1	$CH_2C = CH$	H
A-121	I.1A	Cl	$CH_2C = CH$	CH_3
A-122	I.1A	Cl	$CH_2C = CH$	CF ₃
A-123	I.1A	C1	$CH_2C = CH$	CHF_2
A-124	I.1A	C1	$CH_2C = CH$	OCH ₃
A-125	I.1A	Cl	CH ₂ C≡ CH	OCHF ₂
A-126	I.1A	Cl	$CH_2C = CH$	SCH ₃
A-127	I.1A	Cl	CH ₂ OCH ₂ CF ₃	Н
A-128	I.1A	Cl	CH ₂ OCH ₂ CF ₃	CH ₃
A-129	I.1A	CI	CH ₂ OCH ₂ CF ₃	CF ₃
A-130	I.1A	Cl	CH ₂ OCH ₂ CF ₃	CHF ₂
A-131	I.1A	Cl	CH ₂ OCH ₂ CF ₃	OCH ₃
A-131 A-132	I.1A I.1A	Cl	CH ₂ OCH ₂ CF ₃ CH ₂ OCH ₂ CF ₃	OCH ₂
A-132	1.1 <i>A</i>	CI	CII2OCII2CI 3	OCIII ²

TABLE A-continued

С	ompounds of	f the formula I whi	ich correspond to the formulae I.1A	and I.2A
		\mathbb{R}^{N}	$ \begin{array}{c} R \\ R^{2} \\ X \end{array} $	I.1A
		N R^5	R N N R^3 N N N	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-133	I.1A	Cl	CH ₂ OCH ₂ CF ₃	SCH ₃
A-134	I.1A	Cl	# O O	Н
A-135	I.1A	Cl	# O O	СН3
A-136	I.1A	Cl	# O O	CF ₃
A-137	I.1A	Cl	# O O	CHF ₂
A-138	I.1A	Cl	# O	OCH ₃
A-139	I.1A	Cl	# O	OCHF ₂
A-140	I.1A	Cl	# O	SCH_3
A-141 A-142 A-143 A-144 A-145 A-146 A-147 A-148 A-149 A-150 A-151	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	C1 C1 C1 C1 C1 C1 C1 C1 C1	OCH ₂ CH ₃ OCH ₂ CH ₂ OCH ₃ OCH ₂ CH ₂ OCH ₃ OCH ₂ CH ₂ OCH ₃	H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂

TABLE A-continued

Compounds of the formula	I which correspond to the	formulae I 1 A and I 2 A

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R \\ Y \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-152	I.1A	Cl	OCH ₂ CH ₂ OCH ₃	OCH ₃
A-153	I.1A	CI	OCH ₂ CH ₂ OCH ₃	OCHF ₂
A-154	I.1A	Cl	OCH ₂ CH ₂ OCH ₃	SCH ₃
A-155	I.1A	Cl	SO_2CH_3	Н
A-156	I.1A	Cl	SO ₂ CH ₃	CH_3
A-157	I.1A	Cl	SO_2CH_3	CF ₃
A-158	I.1A	C1	SO ₂ CH ₃	CHF ₂
A-159	I.1A	CI	SO_2CH_3	OCH_3
A-160	I.1A	Cl	SO_2CH_3	$OCHF_2$
A-161	I.1A	C1	SO_2CH_3	SCH ₃
A-162	I.1A	C1	SO ₂ CH ₂ CH ₃	H
A-163	I.1A	Cl	$SO_2CH_2CH_3$	CH_3
A-164	I.1A	C1	SO ₂ CH ₂ CH ₃	CF_3
A-165	I.1A	C1	$SO_2CH_2CH_3$	CHF_2
A-166	I.1A	C1	$SO_2CH_2CH_3$	OCH_3
A-167	I.1A	C1	SO ₂ CH ₂ CH ₃	$OCHF_2$
A-168	I.1A	C1	$SO_2CH_2CH_3$	SCH ₃
A-169	I.1A	C1	$SO_2CH(CH_3)_2$	H
A-170	I.1A	C1	$SO_2CH(CH_3)_2$	CH_3
A-171	I.1A	C1	$SO_2CH(CH_3)_2$	CF ₃
A-172	I.1A	C1	$SO_2CH(CH_3)_2$	CHF_2
A-173	I.1A	C1	$SO_2CH(CH_3)_2$	OCH_3
A-174	I.1A	C1	$SO_2CH(CH_3)_2$	$OCHF_2$
A-175	I.1A	C1	$SO_2CH(CH_3)_2$	SCH ₃
A-176	I.1A	C1	COOCH ₃	H
A-177	I.1A	C1	COOCH ₃	CH ₃
A-178	I.1A	C1	COOCH ₃	CF ₃
A-179	I.1A	C1	COOCH ₃	CHF_2
A-180	I.1A	C1	COOCH ₃	OCH_3
A-181	I.1A	Cl	COOCH ₃	$OCHF_2$
A-182	I.1A	C1	COOCH ₃	SCH ₃
A-183	I.1A	C1	COOCH ₂ CH ₃	H
A-184	I.1A	Cl	COOCH ₂ CH ₃	CH_3
A-185	I.1A	Cl	COOCH ₂ CH ₃	CF ₃
A-186	I.1A	CI	COOCH ₂ CH ₃	CHF_2
A-187	I.1A	C1	COOCH ₂ CH ₃	OCH_3
A-188	I.1A	Cl	COOCH ₂ CH ₃	$OCHF_2$
A-189	I.1A	Cl	COOCH ₂ CH ₃	SCH ₃
A-190	I.1A	Cl	# ² —CH ₂ CH ₂ SO ₂	_# ³
A-191	I.1A	Cl	#2—CH(CH ₃)CH ₂ So	$O_2 = \#^3$
A-192	I.1A	Cl	$\#^2$ —C(CH ₃) ₂ CH ₂ SC)2—#3
A-193	I.1A	Cl	# ² —SO ₂ CH ₂ CH ₂ SO	
A-194	I.1A	Cl	#2—CH(OCH ₂ CH ₂ F)CH ₂	
A-194 A-195	I.1A I.1A	Cl	$\#^2$ —C(=NOCH ₃)CH ₂ C	
A-193 A-196	I.1A I.1A	Cl	# $-C(\equiv NOCH_3)CH_2C$ # 2 — $SO_2CH_2CH_2C(C)$	
			$\#^2$ — $SO_2CH_2CH_2C(C)$ $\#^2$ — $N(CH_3)C(=O)$	
A-197	I.1A	Cl		
A-198	I.1A	Cl	$\#^2$ —C(\Longrightarrow O)N(CH ₃)S	O ₂ —#~

TABLE A-continued

С	ompounds o	of the formula I which	ch correspond to the formulae I.12	A and I.2A
		R^{5} R^{5}	R^2 R^3 R^3	I.1A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-199	I.1A	Br	#N	Н
A-200	I.1A	Br	# N	СН3
A-201	I.1A	Br	#N_O	CF ₃
A-202	I.1A	Br	#N	CHF ₂
A-203	I.1A	Br	#N	OCH ₃
A-204	I.1A	Br	#N	OCHF ₂
A-205	I.1A	Br	#N	SCH ₃
A-206	I.1A	Br	#CH ₃	Н
A-207	I.1A	Br	#CH ₃	CH ₃
A-208	I.1A	Br	#CH ₃	CF ₃

TABLE A-continued

		17 101	EE A-continued	
C	ompounds o	of the formula I wh	ich correspond to the formulae I.14	A and I.2A
		\mathbb{R}^{5}	R R^3 R^2 R^3	I.1A
		N	X X X X	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-209	I.1A	Br	#CH ₃	CHF ₂
A-210	I.1A	Br	#CH ₃	OCH ₃
A-211	I.1A	Br	#CH ₃	OCHF ₂
A-212	I.1A	Br	#CH ₃	SCH ₃
A-213	I.1A	Br	#N_O	Н
A-214	I.1A	Br	# NO	CH ₃
A-215	I.1A	Br	#N	CF ₃
A-216	I.1A	Br	#N	CHF ₂
A-217	I.1A	Br	#	OCH ₃
A-218	I.1A	Br	# NO	OCHF ₂

TABLE A-continued

С	ompounds o	of the formula I which	correspond to the formulae I.1	A and I.2A
		N R R	\mathbb{R}^{3} \mathbb{R}^{2} \mathbb{R}^{3}	I.1A I.2A
		Y.	X \mathbb{R}^1	
No.	Formula	$ m R^5$	\mathbb{R}^2	\mathbb{R}^3
A-219	I.1A	Br	#N	SCH ₃
A-220	I.1A	Br	# CH ₃	Н
A-221	I.1A	Br	N—O # CH ₃	СН3
A-222	I.1A	Br	#CH ₃	CF ₃
A-223	I.1A	Br	# CH ₃	CHF_2
A-224	I.1A	Br	# CH ₃	OCH ₃
A-225	I.1A	Br	#CH ₃	OCHF ₂
A-226	I.1A	Br	# CH ₃	SCH ₃
A-227	I.1A	Br	# CH ₃	Н
A-228	I.1A	Br	#CH ₃	$\mathrm{CH_3}$

TABLE A-continued

С	ompounds o	of the formula I which	ch correspond to the formulae I.1	A and I.2A
		\mathbb{R}^{N} \mathbb{R}^{5}	\mathbb{R}^2	I.1A I.2A
		\mathbb{R}^{5}	X	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-229	I.1A	Br	#CH ₃	CF ₃
A-230	I.1A	Br	#CH ₃	CHF ₂
A-231	I.1A	Br	#CH ₃	OCH ₃
A-232	I.1A	Br	$^{\#}$ $_{\mathrm{O-N}}^{\mathrm{CH_{3}}}$	OCHF ₂
A-233	I.1A	Br	$^{\#}$ $_{\mathrm{O-N}}^{\mathrm{CH_{3}}}$	SCH ₃
A-234	I.1A	Br	#CH ₃	Н
A-235	I.1A	Br	#CH ₃	CH ₃
A-236	I.1 A	Br	#CH ₃	CF ₃
A-237	I.1A	Br	#CH ₃	CHF ₂
A-238	I.1A	Br	#CH ₃	OCH ₃

	TABLE A-continued				
С	ompounds c	of the formula I whic	h correspond to the formulae I.1.A	and I.2A	
		R^{S}	\mathbb{R}^3 \mathbb{R}^2	I.1A	
		\mathbb{R}^{N}	\mathbb{R}^{1}	L2A	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	
A-239	I.1A	Br	#CH ₃	OCHF ₂	
A-240	I.1A	Br	#CH ₃	SCH ₃	
A-241	I.1A	Br	# \	Н	
A-242	I.1A	Br	# N	CH ₃	
A-243	I.1A	Br	# \	CF ₃	
A-244	I.1A	Br	# N	CHF ₂	
A-245	I.1A	Br	# N	OCH ₃	
A-246	I.1A	Br	# N	OCHF ₂	
A-247	I.1A	Br	#N	SCH_3	

TABLE A-continued

		IADL	A-continued	
C	ompounds o	f the formula I whi	ch correspond to the formulae I.1	A and I.2A
		N R ⁵	\mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^2	I.1A
		\mathbb{R}^{5}	X	I.2A
No.	Formula	R^1	R ²	R ³
A-248	I.1A	Br	H ₃ C O	Н
A-249	I.1 A	Br	H ₃ C O	СН3
A-250	I.1A	Br	H ₃ C O	CF ₃
A-251	I.1A	Br	H ₃ C O	CHF ₂
A-252	I.1A	Br	H ₃ C O	OCH ₃
A-253	I.1 A	Br	H ₃ C O	OCHF ₂
A-254	I.1A	Br	H ₃ C O	SCH_3

TABLE A-continued

Compounds of the formula l	which correspond to the	formulae I 1 A and I 2 A
Compounds of the formula i	which correspond to the	HORITHIAE L.I.A. and I.Z.A.

		N R^5	\mathbb{R}^{1}	I.1A
		\mathbb{R}^{N}	\mathbb{R}^1	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-255	I.1A	Br	"NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Н
A-256	I.1A	Br	W N N CH3	$\mathrm{CH_3}$
A-257	I.1A	Br	$\bigcup_{O}^{H} \bigcup_{CH_3}^{N}$	CF ₃
A-258	I.1A	Br	W N N N CH3	CHF_2
A-259	I.1A	Br	#NNN	OCH ₃
A-260	I.1A	Br	W N N CH3	OCHF ₂

TABLE A-continued

C	ompounds c	of the formula I which	h correspond to the formulae I.1.	A and I.2A
		\mathbb{R}^{N} \mathbb{R}^{5}	R^3 R^2	I.1A
		\mathbb{R}^{N}	$\mathbb{Z}_{\mathbb{Z}_{\mathbb{Z}}}^{\mathbb{Z}^3}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-261	I.1A	Br	W N N CH3	SCH ₃
A-262 A-263	I.1A I.1A	Br Br	#_N_O	Н
A-264	I.1A	Br	# NOO	CF ₃
A-265	I.1A	$_{ m Br}$	#NOO	CHF_2
A-266	I.1A	Br	#_N_O	OCH ₃
A-267	I.1 A	Br	#NOO	OCHF ₂
A-268	I.1A	Br	#NOO	SCH ₃
A-269 A-270	I.1A I.1A	Br Br	C ₆ H ₅ C ₆ H ₅	$_{\mathrm{CH_{3}}}^{\mathrm{H}}$

TABLE A-continued

Compounds of the	formula I which c	orrespond to the	formulae I.1A and I.2A	

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R \\ Y \\ X \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-271	I.1A	Br	C_6H_5	CF ₃
A-272	I.1A	$_{\mathrm{Br}}$	C_6H_5	CHF_2
A-273	I.1A	$_{\mathrm{Br}}$	C_6H_5	OCH_3
A-274	I.1A	Br	C_6H_5	$OCHF_2$
A-275	I.1A	Br	C_6H_5	SCH_3
A-276	I.1A	$_{ m Br}$	4-F—C ₆ H ₄	Н
A-277	I.1A	$_{\mathrm{Br}}$	4-F—C ₆ H ₄	CH_3
A-278	I.1A	$_{ m Br}$	$4-F-C_6H_4$	CF_3
A-279	I.1A	$_{\mathrm{Br}}$	$4-F$ — C_6H_4	CHF_2
A-280	I.1A	$_{ m Br}$	$4-F-C_6H_4$	OCH_3
A-281	I.1A	Br	$4-F$ — C_6H_4	OCHF ₂
A-282	I.1A	Br	$4-F-C_6H_4$	SCH ₃
A-283	I.1A	Br	4 -Cl— C_6H_4	H
A-284	I.1A	Br	4-Cl—C ₆ H ₄	CH ₃
A-285	I.1A	Br	4-Cl—C ₆ H ₄	CF ₃
A-286	I.1A	Br	4-Cl—C ₆ H ₄	CHF ₂
A-287	I.1A	Br	4-Cl—C ₆ H ₄	OCH ₃
A-288	I.1A	Br	4-Cl—C ₆ H ₄	OCHF ₂
A-289	I.1A	Br	4-Cl—C ₆ H ₄	SCH ₃
A-290	I.1A	$_{ m Br}$	4-OCH ₃ —C ₆ H ₄	Н
A-291 A-292	I.1 A I.1 A	Br	4-OCH ₃ —C ₆ H ₄ 4-OCH ₃ —C ₆ H ₄	CH ₃
A-292 A-293	I.1A I.1A	Br		CF ₃
A-293 A-294	I.1A I.1A	Br	4-OCH ₃ —C ₆ H ₄ 4-OCH ₃ —C ₆ H ₄	CHF ₂ OCH ₃
A-294 A-295	I.1A I.1A	Br	$4-OCH_3-C_6H_4$ $4-OCH_3-C_6H_4$	OCH ₂
A-296	I.1A	Br	$4-OCH_3-C_6H_4$ $4-OCH_3-C_6H_4$	SCH ₃
A-297	I.1A	Br	$CH=CH_2$	H
A-298	I.1A	Br	CH=CH ₂	CH ₃
A-299	I.1A	Br	CH=CH ₂	CF ₃
A-300	I.1A	Br	CH=CH ₂	CHF ₂
A-301	I.1A	Br	CH=CH ₂	OCH ₃
A-302	I.1A	Br	CH=CH ₂	OCHF ₂
A-303	I.1A	Br	CH=CH ₂	SCH ₃
A-304	I.1A	$_{\mathrm{Br}}$	СН≕СН—С́Н₃	н
A-305	I.1A	$_{\mathrm{Br}}$	СН=СН-СН3	CH ₃
A-306	I.1A	$_{\mathrm{Br}}$	СН=СН-СН3	CF ₃
A-307	I.1A	$_{ m Br}$	СН—СН—СН3	CHF ₂
A-308	I.1A	Br	СН—СН—СН3	OCH ₃
A-309	I.1A	Br	CH=CH-CH ₃	OCHF ₂
A-310	I.1A	Br	CH=CH-CH ₃	SCH ₃
A-311	I.1A	Br	CH ₂ CH=CH ₂	Н
A-311	I.1A	Br	CH ₂ CH=CH ₂	CH ₃
A-312	I.1A	Br	CH ₂ CH=CH ₂	CF ₃
A-313	I.1A I.1A	Br	CH ₂ CH=CH ₂ CH ₂ CH=CH ₂	
		Br Br		CHF ₂
A-315	I.1A	Br Br	CH_CH=CH_	OCH ₃
A-316	I.1A		CH ₂ CH=CH ₂	OCHF ₂
A-317	I.1A	Br	CH ₂ CH=CH ₂	SCH ₃
A-318	I.1A	Br	$CH_2C = CH$	Н

TABLE A-continued							
С	ompounds of	f the formula I wh	nich correspond to the formulae I.1A	and I.2A			
		\mathbb{R}^{5}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L1A			
		\mathbb{R}^{5}	$ \begin{array}{c} \mathbb{R} \\ \mathbb{R}^{1} \end{array} $ $ \mathbb{R}^{3}$	I.2A			
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3			
A-319 A-320 A-321 A-322 A-323 A-324 A-325 A-326 A-327 A-328 A-330 A-331 A-332	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	Br Br Br Br Br Br Br Br Br Br	CH ₂ C= CH CH ₂ C+ CF ₃ CH ₂ OCH ₂ CF ₃	CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₅ SCH ₇ H CH ₃ CF ₄ CHF ₂ OCH ₃ OCHF ₂ SCH ₃			
A-334	I.1A	Br	# O O	CF ₃			
A-335	I.1A	Br	# O O	CHF ₂			
A-336	I.1A	Br	# O O	OCH ₃			
A-337	I.1A	Br	# O O	OCHF ₂			
A-338	I.1A	Br		SCH_3			

TABLE A-continued

Compounds of the	formula I which c	orrespond to the	formulae I.1A and I.2A	

$$\begin{array}{c} R \\ R^{3} \\ R^{5} \end{array}$$

A-339 I.1A Br OCH ₂ CH ₃ H A-340 I.1A Br OCH ₂ CH ₃ CH ₃ A-341 I.1A Br OCH ₂ CH ₃ CH ₃ A-341 I.1A Br OCH ₂ CH ₃ CH ₅ A-342 I.1A Br OCH ₂ CH ₃ CH ₇ A-343 I.1A Br OCH ₂ CH ₃ OCH ₂ CH ₃ A-344 I.1A Br OCH ₂ CH ₃ OCH ₂ CH ₃ A-344 I.1A Br OCH ₂ CH ₃ OCH ₂ CH ₃ A-345 I.1A Br OCH ₂ CH ₃ OCH ₂ CH ₃ A-346 I.1A Br OCH ₂ CH ₂ OCH ₃ H A-347 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₃ A-348 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₃ A-349 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₇ A-350 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₂ A-351 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₂ A-351 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₂ A-352 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₃ A-353 I.1A Br SO ₂ CH ₃ H A-354 I.1A Br SO ₂ CH ₃ H A-355 I.1A Br SO ₂ CH ₃ CH ₃ A-356 I.1A Br SO ₂ CH ₃ CH ₃ A-357 I.1A Br SO ₂ CH ₃ CH ₃ A-358 I.1A Br SO ₂ CH ₃ CH ₃ A-359 I.1A Br SO ₂ CH ₃ CH ₃ A-359 I.1A Br SO ₂ CH ₃ CH ₃ A-359 I.1A Br SO ₂ CH ₃ CH ₃ A-360 I.1A Br SO ₂ CH ₃ OCH ₃ A-361 I.1A Br SO ₂ CH ₃ OCH ₃ A-361 I.1A Br SO ₂ CH ₃ OCH ₃ A-361 I.1A Br SO ₂ CH ₃ OCH ₃ A-361 I.1A Br SO ₂ CH ₃ OCH ₃ A-361 I.1A Br SO ₂ CH ₃ OCH ₃ A-361 I.1A Br SO ₂ CH ₃ OCH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-364 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-364 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₃ A-371 I.1A Br COOCH ₃ CH ₃ A-371 I.1A Br CO	No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-341 I.1A Br OCH ₂ CH ₃ CF ₃ A-342 I.1A Br OCH ₂ CH ₃ CHF ₂ A-343 I.1A Br OCH ₂ CH ₃ OCH ₃ A-344 I.1A Br OCH ₂ CH ₃ OCH ₅ A-344 I.1A Br OCH ₂ CH ₃ OCH ₅ A-345 I.1A Br OCH ₂ CH ₃ SCH ₃ A-346 I.1A Br OCH ₂ CH ₂ OCH ₃ SCH ₃ A-346 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₃ A-347 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₃ A-348 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₃ A-349 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₅ A-350 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₅ A-351 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₅ A-352 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₅ A-353 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₅ A-353 I.1A Br SO ₂ CH ₃ CH ₃ A-354 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CH ₅ A-356 I.1A Br SO ₂ CH ₃ CH ₅ A-357 I.1A Br SO ₂ CH ₃ CH ₅ A-358 I.1A Br SO ₂ CH ₃ CH ₅ A-359 I.1A Br SO ₂ CH ₃ CH ₅ A-359 I.1A Br SO ₂ CH ₃ CH ₅ A-360 I.1A Br SO ₂ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-364 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-370 I.1A Br COOCH ₃ CH ₅ A-371 I.1A Br COOCH ₃ CH ₅ A-372 I	A-339	I.1A	Br	OCH ₂ CH ₃	H
A-342 I.1A Br OCH2CH3 CHF2 A-343 I.1A Br OCH2CH3 OCH5 A-344 I.1A Br OCH2CH3 OCH5 A-345 I.1A Br OCH2CH3 OCH5 A-345 I.1A Br OCH2CH3 SCH3 A-346 I.1A Br OCH2CH3 SCH3 A-346 I.1A Br OCH2CH3OCH3 H A-347 I.1A Br OCH2CH3OCH3 CH3 A-348 I.1A Br OCH2CH3OCH3 CH3 A-349 I.1A Br OCH2CH3OCH3 CH5 A-350 I.1A Br OCH2CH3OCH3 OCH5 A-351 I.1A Br OCH2CH3OCH3 OCH5 A-352 I.1A Br OCH2CH3OCH3 SCH3 A-351 I.1A Br SO2CH3 H A-354 I.1A Br SO2CH3 H A-355 I.1A Br SO2CH3 CH5 A-355 I.1A Br SO2CH3 CH3 A-355 I.1A Br SO2CH3 CH3 A-356 I.1A Br SO2CH3 CH5 A-357 I.1A Br SO2CH3 CH5 A-358 I.1A Br SO2CH3 CH5 A-359 I.1A Br SO2CH3 OCH5 A-360 I.1A Br SO2CH3 CH5 A-361 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-361 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-361 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH5 A-361 I.1A Br SO2CH3 CH5 A-361 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-364 I.1A Br SO2CH3 CH3 A-365 I.1A Br SO2CH3 CH5 A-366 I.1A Br SO2CH3 CH3 A-367 I.1A Br SO2CH3 CH5 A-368 I.1A Br SO2CH3 CH3 A-369 I.1A Br SO2CH3 CH3 A-361 I.1A Br SO2CH3 CH3 A-361 I.1A Br SO2CH3 CH3 A-361 I.1A Br SO2CH3 CH3 A-363 I.1A Br SO2CH3 CH3 A-364 I.1A Br SO2CH3 CH3 A-365 I.1A Br SO2CH3 CH3 A-366 I.1A Br SO2CH3 CH3 A-367 I.1A Br SO2CH3 CH3 A-368 I.1A Br SO2CH3 CH3 A-369 I.1A Br SO2CH3 CH3 A-361 I.1A Br SO2CH3 CH3 A	A-340	I.1A	$_{\mathrm{Br}}$	OCH ₂ CH ₃	CH ₃
A-343 I.1A Br OCH_2CH_3 OCH_5 A-3444 I.1A Br OCH_2CH_3 OCHF_2 A-345 I.1A Br OCH_2CH_3 OCHF_2 A-346 I.1A Br OCH_2CH_3 SCH_3 A-346 I.1A Br OCH_2CH_3OCH_3 CH_3 A-347 I.1A Br OCH_2CH_9OCH_3 CH_3 A-348 I.1A Br OCH_2CH_9OCH_3 CH_3 A-349 I.1A Br OCH_2CH_9OCH_3 CH_5 A-350 I.1A Br OCH_2CH_9OCH_3 OCH_5 A-351 I.1A Br OCH_2CH_9OCH_3 OCH_5 A-352 I.1A Br OCH_2CH_9OCH_3 SCH_3 A-353 I.1A Br SO_2CH_3 CH_3 A-353 I.1A Br SO_2CH_3 CH_3 A-355 I.1A Br SO_2CH_3 CH_3 A-355 I.1A Br SO_2CH_3 CH_3 A-355 I.1A Br SO_2CH_3 CH_5 A-356 I.1A Br SO_2CH_3 CH_5 A-357 I.1A Br SO_2CH_3 CH_5 A-359 I.1A Br SO_2CH_3 CH_5 A-359 I.1A Br SO_2CH_3 CH_5 A-360 I.1A Br SO_2CH_3 CH_5 A-360 I.1A Br SO_2CH_3 CH_5 A-361 I.1A Br SO_2CH_3 CH_5 A-362 I.1A Br SO_2CH_3 CH_5 A-363 I.1A Br SO_2CH_2CH_3 CH_5 A-364 I.1A Br SO_2CH_2CH_3 CH_5 A-365 I.1A Br SO_2CH_2CH_3 CH_5 A-366 I.1A Br SO_2CH_CCH_3 A-367 I.1A Br SO_2CH_CCH_3 A-368 I.1A Br SO_2CH_CCH_3 A-369 I.1A Br SO_2CH_CCH_3 A-360 I.1A Br SO_2CH_CCH_3 A-361 I.1A Br SO_2CH_CCH_3 A-362 I.1A Br SO_2CH_CCH_3 A-363 I.1A Br SO_2CH_CCH_3 A-364 I.1A Br SO_2CH_CCH_3 A-365 I.1A Br SO_2CH_CCH_3 A-366 I.1A Br SO_2CH_CCH_3 A-367 I.1A Br SO_2CH_CCH_3 A-368 I.1A Br SO_2CH_CCH_3 A-369 I.1A Br SO_2CH_CCH_3 A-370 I.1A Br SO_2CH_CCH_3 A-371 I.1A Br SO_2CH_CCH_3 A-371 I.1A Br SO_2CH_CCH_3 A-372 I.1A Br SO_2CH_CCH_3 A-373 I.1A Br SO_2CH_CCH_3 A-374 I.1A Br SO_2CH_CCH_3 A-375 I.1A Br SO_2CH_CCH_3 A-376 I.1A Br SO_2CH_CCH_3 A-377 I.1A Br COOCH_3 A-378 I.1A Br COOCH_3 A-378 I.1A Br COOCH_2CH_3 A-381 I.1A Br COOCH_2CH_3 A-381 I.1A Br COOCH_2CH_3 A-382 I.1A Br COOCH_2CH_3 CHF_2 A-385 I.1A Br COOCH_2CH_3 CH_5 A-386 I.1A Br COOCH_2CH_3 CH_5 A-386 I.1A Br COOCH_2CH_3 CH_5 A-388 I.1A Br COOCH_2CH_3 CH_5 A-388 I.1A Br COOCH_2CH_3 CH_5 A-388 I.1A Br COOCH_2CH_3 CH_5	A-341	I.1A	$_{\mathrm{Br}}$	OCH ₂ CH ₃	CF ₃
A-344 I.1A Br OCH_2CH_3 OCHF_2 A-345 I.1A Br OCH_2CH_3 SCH_3 A-346 I.1A Br OCH_2CH_3OCH_3 H A-347 I.1A Br OCH_2CH_2OCH_3 CH_3 A-348 I.1A Br OCH_2CH_2OCH_3 CH_3 A-349 I.1A Br OCH_2CH_2OCH_3 CH_5 A-350 I.1A Br OCH_2CH_2OCH_3 CHF_2 A-350 I.1A Br OCH_2CH_2OCH_3 OCHF_3 A-351 I.1A Br OCH_2CH_2OCH_3 OCHF_3 A-352 I.1A Br OCH_2CH_2OCH_3 OCHF_2 A-353 I.1A Br SO_2CH_3 CH_3 A-354 I.1A Br SO_2CH_3 CH_3 A-355 I.1A Br SO_2CH_3 CH_3 A-355 I.1A Br SO_2CH_3 CH_3 A-356 I.1A Br SO_2CH_3 CH_3 A-357 I.1A Br SO_2CH_3 OCHF_2 A-359 I.1A Br SO_2CH_3 OCHF_2 A-359 I.1A Br SO_2CH_3 OCHF_2 A-359 I.1A Br SO_2CH_3 OCHF_2 A-360 I.1A Br SO_2CH_3 CH_3 A-361 I.1A Br SO_2CH_3 CH_3 A-361 I.1A Br SO_2CH_2CH_3 CH_3 A-361 I.1A Br SO_2CH_2CH_3 CH_3 A-361 I.1A Br SO_2CH_2CH_3 CH_3 A-364 I.1A Br SO_2CH_2CH_3 CH_3 A-364 I.1A Br SO_2CH_2CH_3 OCHF_2 A-364 I.1A Br SO_2CH_2CH_3 OCHF_2 A-365 I.1A Br SO_2CH_2CH_3 OCHF_2 A-366 I.1A Br SO_2CH_2CH_3 OCHF_2 A-367 I.1A Br SO_2CH_2CH_3 OCHF_2 A-368 I.1A Br SO_2CH_2CH_3 OCHF_2 A-369 I.1A Br SO_2CH_CCH_3 OCHF_2 A-360 I.1A Br SO_2CH_CCH_3 OCHF_2 A-361 I.1A Br SO_2CH_CCH_3 OCHF_2 A-362 I.1A Br SO_2CH_CCH_3 OCHF_2 A-363 I.1A Br SO_2CH_CCH_3 OCHF_2 A-364 I.1A Br SO_2CH_CCH_3 OCHF_2 A-365 I.1A Br SO_2CH_CCH_3 OCHF_2 A-366 I.1A Br SO_2CH_CCH_3 OCHF_2 A-367 I.1A Br SO_2CH_CCH_3)_2 CH_3 A-368 I.1A Br SO_2CH_CCH_3)_2 CH_3 A-369 I.1A Br SO_2CH_CCH_3)_2 CH_3 A-361 I.1A Br SO_2CH_CCH_3)_2 CH_3 A-361 I.1A Br SO_2CH_CCH_3)_2 CH_3 A-361 I.1A Br SO_2CH_CCH_3)_2 CH_3 A-370 I.1A Br SO_2CH_CCH_3)_2 CH_3 A-371 I.1A Br SO_2CH_CCH_3)_2 CH_5 A-371 I.1A Br SO_2CH_CCH_3)_2 CH_5 A-373 I.1A Br SO_2CH_CCH_3)_2 CH_5 A-374 I.1A Br SO_2CH_CCH_3)_2 CH_5 A-375 I.1A Br SO_2CH_CCH_3)_2 CH_5 A-376 I.1A Br COOCH_3 CH_5 A-378 I.1A Br COOCH_3 CH_5 A-381 I.1A Br COOCH_5 A-381 I	A-342	I.1A	Br	OCH ₂ CH ₃	CHF_2
A-345 I.1A Br OCH ₂ CH ₃ SCH ₃ A-346 I.1A Br OCH ₂ CH ₉ OCH ₃ H A-347 I.1A Br OCH ₂ CH ₉ OCH ₃ CH ₃ A-348 I.1A Br OCH ₂ CH ₉ OCH ₃ CF ₃ A-349 I.1A Br OCH ₂ CH ₉ OCH ₃ CH ₅ A-350 I.1A Br OCH ₂ CH ₉ OCH ₃ OCH ₅ A-351 I.1A Br OCH ₂ CH ₉ OCH ₃ OCH ₅ A-352 I.1A Br OCH ₂ CH ₉ OCH ₃ SCH ₃ A-353 I.1A Br SO ₂ CH ₃ H A-354 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CH ₃ A-356 I.1A Br SO ₂ CH ₃ CH ₅ A-357 I.1A Br SO ₂ CH ₃ OCH ₅ A-359 I.1A Br SO ₂ CH ₃ OCH ₅ A-359 I.1A Br SO ₂ CH ₃ OCH ₅ A-360 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₃ CH ₃ A-364 I.1A Br SO ₂ CH ₃ CH ₅ A-365 I.1A Br SO ₂ CH ₃ CH ₅ A-366 I.1A Br SO ₂ CH ₃ CH ₃ A-367 I.1A Br SO ₂ CH ₃ CH ₃ A-368 I.1A Br SO ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₃ CH ₃ A-360 I.1A Br SO ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₃ CH ₃ A-364 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-365 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-366 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-367 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-368 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-369 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-360 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-361 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-371 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-371 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-371 I.1A Br SO ₂ CH ₃ CH ₃ CH ₅ A-372 I.1A Br COOCH ₃ CH ₅ A-373 I.1A Br COOCH ₃ CH ₅ A-381 I.1A Br COOCH ₂ CH ₃ CH ₅ A-381 I.1A Br COOCH ₂ CH ₃ CH ₅ A-382 I.1A Br COOCH ₂ CH ₃ CH ₅ A-381 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.	A-343	I.1A	Br	OCH ₂ CH ₃	OCH_3
A-346 I.1A Br OCH ₂ CH ₂ OCH ₃ H A-347 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₃ CH ₃ A-348 I.1A Br OCH ₂ CH ₂ OCH ₃ CF ₃ A-349 I.1A Br OCH ₂ CH ₂ OCH ₃ CH ₅ CH ₂ A-350 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₅ A-351 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₅ A-351 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₅ A-352 I.1A Br OCH ₂ CH ₂ OCH ₃ SCH ₃ A-353 I.1A Br SO ₂ CH ₃ CH ₅ CH ₂ OCH ₃ SCH ₃ A-353 I.1A Br SO ₂ CH ₃ CH ₅ CH ₃ CH ₅ A-355 I.1A Br SO ₂ CH ₃ CH ₅ CH ₅ CH ₅ A-355 I.1A Br SO ₂ CH ₃ CH ₅ CH ₅ A-356 I.1A Br SO ₂ CH ₃ CH ₅ CH ₅ A-357 I.1A Br SO ₂ CH ₃ OCH ₅ A-357 I.1A Br SO ₂ CH ₃ OCH ₅ A-359 I.1A Br SO ₂ CH ₃ OCH ₅ A-359 I.1A Br SO ₂ CH ₃ OCH ₅ A-360 I.1A Br SO ₂ CH ₃ CH ₆ CH ₃ CH ₅ A-360 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₅ A-364 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ CH ₃ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ CH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₅ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ SCH ₃ A-370 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ SCH ₃ A-371 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-371 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-371 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃ A-371 I.1A Br SO ₂ CH ₂ CH ₃ COCH ₃ CH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ CH ₃ COCH ₃ COCH ₃ CH ₃	A-344	I.1A	$_{\mathrm{Br}}$	OCH ₂ CH ₃	$OCHF_2$
A-347 I.1A Br OCH2CH2OCH3 CH3 A-348 I.1A Br OCH2CH2OCH3 CF3 A-349 I.1A Br OCH2CH2OCH3 CF5 A-349 I.1A Br OCH2CH2OCH3 CH52 A-350 I.1A Br OCH2CH2OCH3 OCH3 A-351 I.1A Br OCH2CH2OCH3 OCH5 A-352 I.1A Br OCH2CH2OCH3 OCH52 A-353 I.1A Br OCH2CH2OCH3 OCH52 A-353 I.1A Br OCH2CH2OCH3 OCH52 A-353 I.1A Br SO2CH3 H A-354 I.1A Br SO2CH3 CH3 A-355 I.1A Br SO2CH3 CH3 A-355 I.1A Br SO2CH3 CH3 A-356 I.1A Br SO2CH3 CH3 A-357 I.1A Br SO2CH3 CH3 A-358 I.1A Br SO2CH3 OCH52 A-359 I.1A Br SO2CH3 SCH3 A-360 I.1A Br SO2CH2CH3 H A-361 I.1A Br SO2CH2CH3 CH3 A-362 I.1A Br SO2CH2CH3 CH3 A-362 I.1A Br SO2CH2CH3 CH3 A-363 I.1A Br SO2CH2CH3 CH3 A-364 I.1A Br SO2CH2CH3 CH3 A-365 I.1A Br SO2CH2CH3 CH52 A-366 I.1A Br SO2CH2CH3 CH52 A-366 I.1A Br SO2CH2CH3 OCH52 A-366 I.1A Br SO2CH2CH3 CH52 A-366 I.1A Br SO2CH2CH3 CH53 A-367 I.1A Br SO2CH2CH3 CH53 A-368 I.1A Br SO2CH2CH3 CH53 A-369 I.1A Br SO2CH2CH3 CH53 A-369 I.1A Br SO2CH2CH3 CH3 A-369 I.1A Br SO2CH2CH3 CH3 A-370 I.1A Br SO2CH2CH3 CH3 A-371 I.1A Br SO2CH2CH3 A-371 I.1A Br SO2CH2CH3 A-372 I.1A Br SO2CH2CH3 A-373 I.1A Br SO2CH2CH3 A-374 I.1A Br SO2CH2CH3 A-375 I.1A Br SO2CH2CH3 A-376 I.1A Br SO2CH2CH3 A-377 I.1A Br SO2CH2CH3 A-378 I.1A Br COOCH3 CH52 A-379 I.1A Br COOCH3 CH3 A-378 I.1A Br COOCH3 CH3 A-378 I.1A Br COOCH3 CH3 A-381 I.1A Br COOCH3 CH52 A-381 I.1A Br COOCH3 CH3 A-382 I.1A Br COOCH2CH3 CH52 A-383 I.1A Br COOCH2CH3 CH52 A-384 I.1A Br COOCH2CH3 CH52 A-384 I.1A Br COOCH2CH3 CH52 A-385 I.1A Br COOCH2CH3 CH52 A-386 I.1A Br COOCH2CH3 CH52 A-388 I.1A Br COOCH2CH3 CH53	A-345	I.1A	$_{\mathrm{Br}}$	OCH ₂ CH ₃	SCH_3
A-348 I.1A Br OCH2CH2OCH3 CF3 A-349 I.1A Br OCH3CH2OCH3 CHF2 A-350 I.1A Br OCH3CH2OCH3 OCH3 A-351 I.1A Br OCH3CH2OCH3 OCH5 A-352 I.1A Br OCH3CH2OCH3 OCH5 A-353 I.1A Br SO3CH3 H A-353 I.1A Br SO3CH3 H A-354 I.1A Br SO3CH3 CF3 A-355 I.1A Br SO3CH3 CF3 A-356 I.1A Br SO3CH3 CF3 A-357 I.1A Br SO3CH3 CH5 A-357 I.1A Br SO3CH3 CH5 A-358 I.1A Br SO3CH3 CH5 A-359 I.1A Br SO3CH3 CCH3 A-360 I.1A Br SO3CH3 CCH3 A-360 I.1A Br SO3CH3 CCH3 A-361 I.1A Br SO3CH3 CCH3 A-361 I.1A Br SO3CH2CH3 CH3 A-362 I.1A Br SO3CH2CH3 CH5 A-364 I.1A Br SO3CH2CH3 CH5 A-365 I.1A Br SO3CH2CH3 CH5 A-366 I.1A Br SO3CH2CH3 CH5 A-366 I.1A Br SO3CH2CH3 CH5 A-367 I.1A Br SO3CH2CH3 CH5 A-368 I.1A Br SO3CH2CH3 CCH3 A-369 I.1A Br SO3CH3CH3 CCH3 A-369 I.1A Br SO3CH3CH3 A-369 I.1A Br SO3CH3CH3 A-370 I.1A Br SO3CH3CH3 A-371 I.1A Br SO3CH3CH3 A-372 I.1A Br SO3CH3CH3 A-373 I.1A Br SO3CH3CH3 A-374 I.1A Br SO3CH3CH3 A-375 I.1A Br SO3CH3CH3 A-376 I.1A Br SO3CH3CH3 A-377 I.1A Br COOCH3 CH5 A-378 I.1A Br COOCH3 CH5 A-379 I.1A Br COOCH3 CH3 A-370 I.1A Br COOCH3 CH3 A-371 I.1A Br COOCH3 CH5 A-371 I.1A Br COOCH4 CH3 A-381 I.1A Br COOCH4 CH3 A-381 I.1A Br COOCH4 CH3 A-381 I.1A Br COOCH4 CH3 A-385 I.1A Br COOCH4 CH3 A-385 I.1A Br COOCH4 CH3 A-385 I.1A Br COOCH4 CH3	A-346	I.1A	Br	OCH ₂ CH ₂ OCH ₃	
A-349 I.1A Br OCH2CH2OCH3 CHF2 A-350 I.1A Br OCH2CH2OCH3 OCH3 A-351 I.1A Br OCH2CH2OCH3 OCH5 A-352 I.1A Br OCH2CH2OCH3 OCH5 A-353 I.1A Br OCH2CH2OCH3 SCH3 A-353 I.1A Br SO2CH3 H A-354 I.1A Br SO2CH3 CH5 A-355 I.1A Br SO2CH3 CH5 A-355 I.1A Br SO2CH3 CH5 A-357 I.1A Br SO2CH3 CH5 A-357 I.1A Br SO2CH3 CH5 A-358 I.1A Br SO2CH3 OCH5 A-359 I.1A Br SO2CH3 OCH5 A-360 I.1A Br SO2CH3 OCH5 A-361 I.1A Br SO2CH2CH3 H A-361 I.1A Br SO2CH2CH3 CH5 A-362 I.1A Br SO2CH2CH3 CH5 A-363 I.1A Br SO2CH2CH3 CH5 A-364 I.1A Br SO2CH2CH3 CH5 A-365 I.1A Br SO2CH2CH3 OCH3 A-365 I.1A Br SO2CH2CH3 OCH3 A-366 I.1A Br SO2CH2CH3 OCH3 A-367 I.1A Br SO2CH2CH3 OCH3 A-368 I.1A Br SO2CH2CH3 CH5 A-368 I.1A Br SO2CH2CH3 CH5 A-369 I.1A Br SO2CHCH3) CH5 A-369 I.1A Br SO2CHCH3) CH5 A-370 I.1A Br SO2CH(CH3) A-371 I.1A Br SO2CH(CH3) A-372 I.1A Br SO2CH(CH3) A-373 I.1A Br SO2CH(CH3) A-374 I.1A Br SO2CH(CH3) A-375 I.1A Br SO2CH(CH3) A-376 I.1A Br SO2CH(CH3) A-377 I.1A Br SO2CH(CH3) A-378 I.1A Br COOCH3 A-379 I.1A Br COOCH3 A-379 I.1A Br COOCH3 A-379 I.1A Br COOCH3 A-381 I.1A Br COOCH3 A-381 I.1A Br COOCH3 A-381 I.1A Br COOCH3 A-382 I.1A Br COOCH2CH3 A-383 I.1A Br COOCH2CH3 A-384 I.1A Br COOCH2CH3 A-384 I.1A Br COOCH2CH3 A-384 I.1A Br COOCH2CH3 A-384 I.1A Br COOCH2CH3 A-385 I.1A Br COOCH2CH3 A-386 I.1A Br COOCH2CH3 A-388 I.1A Br COOCH2CH3	A-347			OCH ₂ CH ₂ OCH ₃	CH_3
A-350 I.1A Br OCH ₂ CH ₂ OCH ₃ OCH ₃ A-351 I.1A Br OCH ₂ CH ₂ OCH ₃ OCHF ₂ A-352 I.1A Br OCH ₂ CH ₂ OCH ₃ SCH ₃ A-353 I.1A Br SO ₂ CH ₃ H A-354 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CH ₃ A-356 I.1A Br SO ₂ CH ₃ CHF ₂ A-357 I.1A Br SO ₂ CH ₃ CHF ₂ A-358 I.1A Br SO ₂ CH ₃ OCHF ₂ A-359 I.1A Br SO ₂ CH ₃ OCHF ₂ A-359 I.1A Br SO ₂ CH ₃ CHF ₂ A-360 I.1A Br SO ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-364 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₃ A-368 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₃ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-370 I.1A Br COOCH ₃ A-371 I.1A Br COOCH ₃ A-372 I.1A Br COOCH ₃ A-373 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-370 I.1A Br COOCH ₃ A-371 I.1A Br COOCH ₃ A-372 I.1A Br COOCH ₃ A-373 I.1A Br COOCH ₃ A-374 I.1A Br COOCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-380 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅	A-348	I.1A	$_{\mathrm{Br}}$	OCH ₂ CH ₂ OCH ₃	
A-351 I.1A Br OCH ₂ CH ₂ OCH ₃ OCHF ₂ A-352 I.1A Br OCH ₂ CH ₂ OCH ₃ SCH ₃ A-353 I.1A Br SO ₂ CH ₃ H A-354 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CH ₃ A-356 I.1A Br SO ₂ CH ₃ CH ₂ A-357 I.1A Br SO ₂ CH ₃ OCH ₂ A-358 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCHF ₂ A-359 I.1A Br SO ₂ CH ₃ OCHF ₂ A-350 I.1A Br SO ₂ CH ₃ OCHF ₂ A-360 I.1A Br SO ₂ CH ₂ CH ₃ H A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-375 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃	A-349			OCH ₂ CH ₂ OCH ₃	CHF_2
A-352 I.1A Br OCH ₂ CH ₂ OCH ₃ SCH ₃ A-353 I.1A Br SO ₂ CH ₃ H A-354 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CH ₅ A-356 I.1A Br SO ₂ CH ₃ CH ₇ A-357 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCH ₅ A-359 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₃ CH ₇ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-364 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-367 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₇ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-370 I.1A Br COOCH ₃ A-371 I.1A Br COOCH ₃ A-371 I.1A Br COOCH ₃ A-372 I.1A Br COOCH ₃ A-374 I.1A Br COOCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-370 I.1A Br COOCH ₃ A-371 I.1A Br COOCH ₃ A-372 I.1A Br COOCH ₃ A-374 I.1A Br COOCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-384 I.1A Br COOCH ₂ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃				OCH ₂ CH ₂ OCH ₃	
A-353 I.1A Br SO ₂ CH ₃ CH ₃ A-354 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CH ₅ A-355 I.1A Br SO ₂ CH ₃ CH ₅ A-356 I.1A Br SO ₂ CH ₃ CH ₇ A-357 I.1A Br SO ₂ CH ₃ OCH ₇ A-358 I.1A Br SO ₂ CH ₃ OCH ₇ A-359 I.1A Br SO ₂ CH ₃ CH ₇ A-360 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-360 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₇ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₇ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₇ A-380 I.1A Br COOCH ₃ CH ₇ A-381 I.1A Br COOCH ₃ CH ₇ A-381 I.1A Br COOCH ₂ CH ₃ CH ₇ A-382 I.1A Br COOCH ₂ CH ₃ CH ₇ A-384 I.1A Br COOCH ₂ CH ₃ CH ₇ A-384 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇				OCH ₂ CH ₂ OCH ₃	$OCHF_2$
A-354 I.1A Br SO ₂ CH ₃ CH ₃ A-355 I.1A Br SO ₂ CH ₃ CF ₃ A-356 I.1A Br SO ₂ CH ₃ OCH ₃ A-357 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCH ₅ A-359 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₂ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₂ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-370 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-371 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-372 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-373 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-374 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-375 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₃ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃				2 2 3	
A-355 I.1A Br SO ₂ CH ₃ CF ₃ A-356 I.1A Br SO ₂ CH ₃ CHF ₂ A-357 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCH ₅ A-359 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₂ CH ₃ H A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-368 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₅ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₅ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-374 I.1A Br COOCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ A-382 I.1A Br COOCH ₂ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ A-386 I.1A Br COOCH ₂ CH ₃ A-388 I.1A Br COOCH ₂ CH ₃ A-3					
A-356 I.1A Br SO ₂ CH ₃ CHF ₂ A-357 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCHF ₂ A-359 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₂ CH ₃ H A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₂ A-364 I.1A Br SO ₂ CH ₂ CH ₃ CHF ₂ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-368 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CF ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-375 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₅ A-377 I.1A Br COOCH ₃ CH ₅ A-378 I.1A Br COOCH ₃ CH ₅ A-379 I.1A Br COOCH ₃ CH ₅ A-379 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₃ CH ₅ A-382 I.1A Br COOCH ₂ CH ₃ CH ₅ A-384 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅					
A-357 I.1A Br SO ₂ CH ₃ OCH ₃ A-358 I.1A Br SO ₂ CH ₃ OCHF ₂ A-359 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₂ CH ₃ H SO ₂ CH ₂ CH ₃ A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₇ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH(CH ₃) A-368 I.1A Br SO ₂ CH(CH ₃) CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) CCF ₃ A-371 I.1A Br SO ₂ CH(CH ₃) CCF ₃ A-372 I.1A Br SO ₂ CH(CH ₃) COH ₇ A-374 I.1A Br SO ₂ CH(CH ₃) COH ₇ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-370 I.1A Br COOCH ₃ A-371 I.1A Br COOCH ₃ A-374 I.1A Br COOCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-380 I.1A Br COOCH ₂ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ A-386 I.1A Br COOCH ₂ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ A-386 I.1A Br COOCH ₂ CH					
A-358 I.1A Br SO ₂ CH ₃ OCHF ₂ A-359 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₂ CH ₃ H A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₂ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-368 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₅ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-374 I.1A Br COOCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₂ A-381 I.1A Br COOCH ₂ A-381 I.1A Br COOCH ₂ CH ₃ A-382 I.1A Br COOCH ₂ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ COOCH ₃ CH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ COOCH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ COOCH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ COOCH ₃ CH ₃ C					
A-359 I.1A Br SO ₂ CH ₃ SCH ₃ A-360 I.1A Br SO ₂ CH ₂ CH ₃ H A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CH ₅ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-366 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-366 I.1A Br SO ₂ CH ₂ CH ₃ CH ₇ A-368 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₅ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₇ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-377 I.1A Br COOCH ₃ A-378 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-379 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₂ A-381 I.1A Br COOCH ₃ A-381 I.1A Br COOCH ₂ A-383 I.1A Br COOCH ₂ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ COOCH ₃ CH ₃ COCH ₂ CH ₃ CH ₃ COCH ₃ CH ₅ COCH ₂ CH ₃ CH ₅ COCH ₅ CH ₅ COCH ₂ CH ₃ CH ₅ COCH ₅ CH ₅ COCH ₅ CH ₅ COCH ₅ CH ₅ COCH ₅ CH ₅ C					
A-360 I.1A Br SO ₂ CH ₂ CH ₃ H A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CF ₃ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ SCH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ SCH ₃ A-366 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ CH ₃ A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ CH ₃ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₂ CH ₃ CH ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₂ CH ₃ CH ₃ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ CH ₂ A-378 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₃ CH ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₃ CH ₃ CH ₂ A-380 I.1A Br COOCH ₃ CH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ COOCH ₃ COCH ₂ CH ₃ COCH ₃ COCH ₃ COCH ₃ COCH ₃ COCH ₂ CH ₃ CH ₃ COOCH ₂ CH ₃ CH ₃ COCH ₂ CH ₃ COCH ₃ COCH ₃ COCH ₃ COCH ₃ COCH ₂ CH ₃ CH ₃ COCH ₂ CH ₃ COCH ₃ COCH ₂ CH ₃ COCH ₃					-
A-361 I.1A Br SO ₂ CH ₂ CH ₃ CH ₃ A-362 I.1A Br SO ₂ CH ₂ CH ₃ CF ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CHF ₂ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CF ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-375 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₅ A-380 I.1A Br COOCH ₃ CH ₅ A-381 I.1A Br COOCH ₃ CH ₅ A-381 I.1A Br COOCH ₂ CH ₃ CH ₅ A-382 I.1A Br COOCH ₂ CH ₃ CH ₅ A-384 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅					
A-362 I.1A Br SO ₂ CH ₂ CH ₃ CF ₃ A-363 I.1A Br SO ₂ CH ₂ CH ₃ CHF ₂ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-375 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-376 I.1A Br COOCH ₃ H A-377 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₃ A-379 I.1A Br COOCH ₃ CH ₅ A-378 I.1A Br COOCH ₃ CH ₅ A-381 I.1A Br COOCH ₃ CH ₅ A-381 I.1A Br COOCH ₃ CH ₅ A-381 I.1A Br COOCH ₂ CH ₃ CH ₅ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅					
A-363 I.1A Br SO ₂ CH ₂ CH ₃ CHF ₂ A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₅ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃ A-368 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₅ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-375 I.1A Br COOCH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₂ A-378 I.1A Br COOCH ₃ OCH ₅ A-379 I.1A Br COOCH ₃ OCH ₅ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃				2 2 2	
A-364 I.1A Br SO ₂ CH ₂ CH ₃ OCH ₃ A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃) A-368 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₂ A-378 I.1A Br COOCH ₃ CH ₂ A-378 I.1A Br COOCH ₃ CH ₂ A-379 I.1A Br COOCH ₃ OCH ₂ A-379 I.1A Br COOCH ₃ OCH ₃ A-380 I.1A Br COOCH ₃ CH ₂ A-381 I.1A Br COOCH ₃ CH ₂ A-381 I.1A Br COOCH ₂ CH ₃ CH ₃ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅					
A-365 I.1A Br SO ₂ CH ₂ CH ₃ OCHF ₂ A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH ₂ CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CF ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-374 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-375 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CH ₂ A-378 I.1A Br COOCH ₃ CH ₂ A-379 I.1A Br COOCH ₃ OCHF ₂ A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₃ CH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃					
A-366 I.1A Br SO ₂ CH ₂ CH ₃ SCH ₃ A-367 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₇ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₇ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CH ₇ A-378 I.1A Br COOCH ₃ OCH ₇ A-378 I.1A Br COOCH ₃ OCH ₇ A-380 I.1A Br COOCH ₃ OCH ₇ A-381 I.1A Br COOCH ₃ CH ₇ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅					
A-367 I.1A Br SO ₂ CH(CH ₃) ₂ H A-368 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CH ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br COOCH ₃ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₃ A-378 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ CHF ₂ A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ CHF ₂ A-381 I.1A Br COOCH ₃ CHF ₂ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃				2 2 3	
A-368 I.1A Br SO2CH(CH ₃) ₂ CH ₃ A-369 I.1A Br SO2CH(CH ₃) ₂ CF ₃ A-370 I.1A Br SO2CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO2CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO2CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO2CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br COOCH ₃ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CH ₂ A-378 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCHF ₂ A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃					
A-369 I.1A Br SO ₂ CH(CH ₃) ₂ CF ₃ A-370 I.1A Br SO ₂ CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO ₂ CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ CHF ₂ A-379 I.1A Br COOCH ₃ OCH ₂ A-379 I.1A Br COOCH ₃ SCH ₃ A-379 I.1A Br COOCH ₃ SCH ₃ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CF ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₂ A-385 I.1A Br COOCH ₂ CH ₃ CH ₂					
A-370 I.1A Br SO2CH(CH ₃) ₂ CHF ₂ A-371 I.1A Br SO2CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO2CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO2CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br COOCH ₃ H A-374 I.1A Br COOCH ₃ CH ₃ A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₃ A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₅ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅					
A-371 I.1A Br SO2CH(CH ₃) ₂ OCH ₃ A-372 I.1A Br SO2CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO2CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₃ A-377 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₃ CHF ₂ A-382 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂					
A-372 I.1A Br SO ₂ CH(CH ₃) ₂ OCHF ₂ A-373 I.1A Br SO ₂ CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CH ₅ A-377 I.1A Br COOCH ₃ CH ₇ A-378 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCH ₇ A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ CH ₇ A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇ A-385 I.1A Br COOCH ₂ CH ₃ CH ₇					
A-373 I.1A Br SO2CH(CH ₃) ₂ SCH ₃ A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CH ₂ A-378 I.1A Br COOCH ₃ OCH ₂ A-378 I.1A Br COOCH ₃ OCH ₂ A-379 I.1A Br COOCH ₃ OCH ₅ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CF ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅ A-385 I.1A Br COOCH ₂ CH ₃ CH ₅					
A-374 I.1A Br COOCH ₃ H A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₅ A-379 I.1A Br COOCH ₃ OCH ₇ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CH ₃ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂					
A-375 I.1A Br COOCH ₃ CH ₃ A-376 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₅ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CF ₃ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂					2
A-376 I.1A Br COOCH ₃ CF ₃ A-377 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂					
A-377 I.1A Br COOCH ₃ CHF ₂ A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCH ₅ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CH ₃ A-384 I.1A Br COOCH ₂ CH ₃ CF ₃ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃					
A-378 I.1A Br COOCH ₃ OCH ₃ A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CF ₃ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃					
A-379 I.1A Br COOCH ₃ OCHF ₂ A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CF ₃ A-385 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃				5	_
A-380 I.1A Br COOCH ₃ SCH ₃ A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃				5	
A-381 I.1A Br COOCH ₂ CH ₃ H A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃					
A-382 I.1A Br COOCH ₂ CH ₃ CH ₃ A-383 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃				5	
A-383 I.1A Br COOCH ₂ CH ₃ CF ₃ A-384 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃					
A-384 I.1A Br COOCH ₂ CH ₃ CHF ₂ A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃					
A-385 I.1A Br COOCH ₂ CH ₃ OCH ₃	A-383	I.1A			
	A-384	I.1A	Br	COOCH ₂ CH ₃	
A-386 I.1A Br COOCH ₂ CH ₃ OCHF ₂	A-385	I.1A	Br		
	A-386	I.1A	Br	COOCH ₂ CH ₃	OCHF ₂

				36
		TABI	LE A-continued	
С	ompounds o	f the formula I wh	nich correspond to the formulae I.12	A and I.2A
				I.1A
			\mathbb{R}^3	
			R	
		_N		
			R^2	
			R^1	
			Y \ X	
		1 R ⁵		
		K		
			T 3	I.2A
			R R^3	
		N _N	Ñ	
		ĺ	ŢŢ	
			Ř¹	
		Ϋ́	Y X	
		R ⁵		
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-387	I.1A	Br	COOCH ₂ CH ₃	SCH ₃
A-388	I.1A I.1A	Br	# ² —CH ₂ CH ₂ SO ₂ -	# ³
A-389	I.1A	$_{\mathrm{Br}}$	# ² —CH(CH ₂)CH ₂ SO	$D_2 = \#^3$
A-390	I.1A	Br	$\#^2$ —C(CH ₃) ₂ CH ₂ SC)2—#3
A-391	I.1A	Br	#2—SO ₂ CH ₂ CH ₂ SO) ₂ —# ³
A-392 A-393	I.1A I.1A	Br Br	# 2 —CH(OCH $_2$ CH $_2$ F)CH $_2$ t # 2 —C(=NOCH $_3$)CH $_2$ C	CH ₂ SO ₂ —# ³ H ₂ SO ₂ —# ³
A-394	I.1A	Br	$\#^2$ —SO ₂ CH ₂ CH ₂ C(CI	$H_2 > - \#^3$
A-395	I.1A	Br	# ² —N(CH ₃)C(=O)	S—# ³
A-396	I.1A	$_{\mathrm{Br}}$	$\#^2$ — C ($\stackrel{\circ}{=}$ O) N (CH_3) S	O ₂ —# ³
A-397	I.1A	CH_3	44 N	Н
21-327	1.171	CH3	# \	11
			\ /	
A-398	I.1A	CH_3	#N	CH_3
			Y ?	
A 200	T 1 A	OH	N	CE.
A-399	I.1A	CH_3	# \ N_0	CF ₃
			\ \	

TABLE A-continued

С	ompounds c	of the formula I whi	ch correspond to the formulae I.1	A and I.2A
		\mathbb{R}^{N} \mathbb{R}^{5}	\mathbb{R}^{1}	I.1A I.2A
		\mathbb{R}^{N}	\mathbb{R}^{1}	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-405	I.1A	СН3	#CH ₃	СН3
A-406	I.1A	CH ₃	#CH ₃	CF ₃
A-407	I.1A	CH ₃	#CH ₃	CHF ₂
A-408	I.1A	CH ₃	#CH ₃	OCH ₃
A -409	I.1A	CH ₃	#CH ₃	OCHF ₂
A-410	I.1A	CH ₃	#CH ₃	SCH ₃
A-411	I.1A	CH ₃	#	Н
A-412	I.1A	CH ₃	# NO	CH ₃
A-413	I.1A	CH ₃	#N	CF ₃
A-414	I.1A	CH ₃	#NO	CHF ₂

TABLE A-continued

	TABLE A-Continued			
C	ompounds o	f the formula I which	ch correspond to the formulae I.1.	A and I.2A
		\mathbb{R}^{N}	\mathbb{R}^2	I.1A I.2A
		\mathbb{R}^{N}	X	
No.	Formula	R ¹	R ²	R ³
A-415	I.1A	CH ₃	#N	OCH ₃
A-416	I.1A	СН3	#N	OCHF ₂
A-417	I.1A	CH ₃	#N	SCH ₃
A-418	I.1A	СН3	#CH ₃	Н
A -419	I.1A	CH ₃	$^{\#}$ $^{\text{CH}_3}$	CH ₃
A-420	I.1A	CH ₃	$^{\#}$ $^{\text{CH}_3}$	CF ₃
A-421	I.1A	CH ₃	* $^{\text{CH}_{3}}$	CHF ₂
A-422	I.1A	CH ₃	#CH ₃	OCH ₃
A-423	I.1A	CH ₃	#CH ₃	OCHF ₂
A-424	I.1A	CH ₃	$^{\#}$ $^{\text{CH}_3}$	SCH ₃

TABLE A-continued

	TABLE A-continued				
C	ompounds o	f the formula I whi	ch correspond to the formulae I.1	A and I.2A	
		\mathbb{R}^{N}	R^2	I.1A I.2A	
		\mathbb{R}^{5}	\mathbb{R}^1		
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	
A-425	I.1A	СН3	#CH ₃	Н	
A-426	I.1A	СН3	#CH ₃	СН3	
A-427	I.1A	CH ₃	$^{\#} \underbrace{\hspace{1cm}^{CH_{3}}}_{O-N}$	CF ₃	
A-428	I.1A	CH ₃	#CH ₃	CHF ₂	
A -429	I.1A	СН3	#CH ₃	OCH ₃	
A-430	I.1A	CH ₃	#CH ₃	OCHF ₂	
A-431	I.1A	CH ₃	#CH ₃	SCH ₃	
A-432	I.1A	CH ₃	#CH ₃	Н	
A-433	I.1A	СН3	#CH ₃	СН3	
A-434	I.1A	CH ₃	#CH ₃	CF ₃	

TABLE A-continued

C	ompounds o	f the formula I whi	ch correspond to the formulae I.14	A and I.2A
		\mathbb{R}^{5}	R^3 R^2	I.1A
		\mathbb{R}^{N}	$\mathbb{I}_{\mathbb{N}}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-435	I.1 A	СН3	# CH ₃	CHF ₂
A-436	I.1A	$\mathrm{CH_3}$	#CH ₃	OCH ₃
A-437	I.1A	CH ₃	# CH ₃	OCHF ₂
A-438	I.1A	СН3	# CH ₃	SCH ₃
A-439	I.1A	СН3	# N	Н
A-44 0	I.1A	CH ₃	# N N N N N N N N N N N N N N N N N N N	CH ₃
A-441	I.1A	СН3	# N	CF ₃
A-442	I.1A	CH ₃	# N	CHF ₂
A-443	I.1A	CH ₃	# N	OCH ₃

TABLE A-continued

С	Compounds of the formula I which correspond to the formulae I.1A and I.2A				
		N	R R^3 R^2 R^1	I.1A	
		\bigcap^{N}	R N N N N N	I.2A	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³	
A-444	I.1A	CH ₃	#N	OCHF ₂	
A-445	I.1A	CH ₃	# N	SCH ₃	
A-446	I.1A	CH ₃	$H_{3}C$	Н	
A-447	I.1A	CH ₃	H_{3} C	CH ₃	
A-448	I.1A	CH ₃	H ₃ C N N	CF ₃	
A-449	I.1A	CH ₃	H ₃ C N N	CHF_2	
A-450	I.1A	CH ₃	$H_{3}C$ N N N N N N	OCH ₃	

TABLE A-continued

	TABLE A-continued				
С	ompounds o	of the formula I which	ch correspond to the formulae I.12	A and I.2A	
		\mathbb{R}^{N} \mathbb{R}^{5}	R^3 R^2	I.1A	
		\mathbb{R}^{N} \mathbb{R}^{5}	R^3 X R^1	I.2A	
No.	Formula	\mathbb{R}^1	R ²	R ³	
A-451	I.1A	CH ₃	H ₃ C O	OCHF ₂	
A-452	I.1A	СН3	H ₃ C O	SCH_3	
A-453	I.1A	СН3	#NNNNCH3	Н	
A-454	I.1A	СН3	" N N N CH3	СН3	
A-455	I.1A	CH ₃	"NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	CF ₃	
A-456	I.1A	СН,	# N N N CH3	CHF ₂	
A-457	I.1A	СН3	# N N N CH3	OCH ₃	

TABLE A-continued

	IABLE A-continued				
C	ompounds o	f the formula I whi	ich correspond to the formulae I.1A	and I.2A	
		N	R^3 R^2 R^3	I.1A	
		N	N N N N N N N N N N N N N N N N N N N		
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	
A-458	I.1A	СН3	# N N N CH3	OCHF ₂	
A-459	I.1A	СН₃	# N N N CH3	SCH ₃	
A-4 60	I.1A	CH ₃	#NO	Н	
A-461	I.1A	CH ₃	#NOO	CH ₃	
A-462	I.1A	$\mathrm{CH_3}$	#NO	CF ₃	
A-463	I.1A	CH_3	#NOO	CHF ₂	
A-464	I.1A	CH ₃	#_N_O	OCH ₃	
A-465	I.1A	CH ₃	#NO	OCHF ₂	

TABLE A-continued

	TABLE A-continued				
C	ompounds o	f the formula I whic	h correspond to the formulae I.1	1A and I.2A	
		\mathbb{R}^{N} \mathbb{R}^{5}	R^3 R^2	I.1A	
		\mathbb{R}^{N} \mathbb{R}^{5}	\mathbb{R}^{1}	I.2A	
No.	Formula	R ¹	R ²	R ³	
A-466	I.1A	CH ₃	#_NO	SCH ₃	
A-467 A-468 A-469 A-470 A-471 A-472 A-473 A-474 A-475 A-476 A-477 A-478 A-479 A-480 A-481 A-482 A-483 A-484 A-485 A-486 A-487 A-489 A-490 A-491 A-492 A-493 A-494 A-495 A-496 A-497 A-498 A-490 A-501 A-502 A-503 A-504 A-505 A-506 A-507 A-508	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	CH ₃ CH ₄	C ₆ H ₅ C ₆ H ₄ 4-F-C ₆ H ₄ 4-F-C ₆ H ₄ 4-F-C ₆ H ₄ 4-Cl-C ₆ H ₄ 4-CCH ₃ -C ₆ H ₄ 4-CCH ₂ -C ₆ H ₄ CH-CH ₂ CH-CH ₃ CH-CH-CH ₃ CH-CH-CH ₃ CH-CH-CH ₃ CH-CH-CH ₃ CH-CH-CH ₃ CH-CH-CH ₃	H CH ₃ CF ₃ CHF ₂ OCH ₄ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₄ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₄ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₄ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₄ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₄ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₄ CF ₃ CHF ₂ OCH ₅ CHF ₂ OCH ₄ CF ₃ CHF ₂ OCH ₅ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₅ CHF ₂ OCH ₅ SCH ₃ CHF ₂ OCH ₅ SCH ₃ CHF ₂ COCH ₃ COCH ₅ CHF ₂ COCH ₃ COCH ₅	

TABLE A-continued

Compounds of	f the formula	I which correspon	id to the formulae I.1A ai	ıd I.2A

$$\begin{array}{c} R \\ R \\ Y \\ X \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-509	I.1A	CH ₃	CH₂CH=CH₂	Н
A-510	I.1A	CH_3	$CH_2CH = CH_2$	CH_3
A-511	I.1A	CH_3	CH_2CH $=$ CH_2	CF ₃
A-512	I.1A	CH_3	CH_2CH $=$ CH_2	CHF_2
A-513	I.1A	CH_3	CH_2CH $=$ CH_2	OCH_3
A-514	I.1A	CH_3	CH_2CH — CH_2	OCHF ₂
A-515	I.1A	CH_3	CH_2CH — CH_2	SCH_3
A-516	I.1A	CH_3	$CH_2C = CH$	H
A-517	I.1A	CH_3	$CH_2C = CH$	CH_3
A-518	I.1A	CH_3	$CH_2C = CH$	CF_3
A-519	I.1A	CH_3	$CH_2C = CH$	CHF_2
A-520	I.1A	CH_3	$CH_2C = CH$	OCH ₃
A-521	I.1A	CH_3	$CH_2C = CH$	OCHF ₂
A-522	I.1A	CH_3	$CH_2C = CH$	SCH_3
A-523	I.1A	CH_3	CH ₂ OCH ₂ CF ₃	H
A-524	I.1A	CH_3	CH ₂ OCH ₂ CF ₃	CH_3
A-525	I.1A	CH_3	CH ₂ OCH ₂ CF ₃	CF ₃
A-526	I.1A	CH_3	CH ₂ OCH ₂ CF ₃	CHF_2
A-527	I.1A	CH ₃	CH ₂ OCH ₂ CF ₃	OCH ₃
A-528	I.1A	CH_3	CH ₂ OCH ₂ CF ₃	$OCHF_2$
A-529	I.1A	CH_3	CH ₂ OCH ₂ CF ₃	SCH_3
A-530	I.1A	CH ₃	# O O	Н
A-531	I.1A	CH ₃	# O O	CH ₃
A-532	I.1A	CH ₃	# O O	CF ₃
A-533	I.1A	CH ₃	# O O	CHF ₂
A-534	I.1A	CH ₃	,,,,,	OCH ₃

TABLE A-continued

С	ompounds of	f the formula I whi	ch correspond to the formulae I.1A	and I.2A
		\mathbb{R}^{N}	\mathbb{R}^3 \mathbb{R}^2	I.1A
		\mathbb{R}^{5}	\mathbb{R}^{1}	
No.	Formula	R ¹	R ²	R ³
A-535	I.1A	СН3	# O O	OCHF ₂
A-536	I.1A	CH ₃	# 0	SCH ₃
A-537 A-538 A-539 A-540 A-541 A-542 A-543 A-544 A-545 A-549 A-550 A-551 A-552 A-553 A-554 A-555 A-556 A-557 A-566 A-561 A-563 A-564 A-563 A-564 A-563 A-564 A-565 A-566 A-567 A-568 A-569 A-570 A-571 A-572 A-573 A-574	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	CH ₃ CH ₄	OCH ₂ CH ₃ OCH ₂ CH ₂ OCH ₃ SO ₂ CH ₃ CH ₃ CH ₃ SO	H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ CH ₃ CF ₃ CHF ₂ OCH ₃ CF ₃ CHF ₂ CF ₃ CHF ₂ CGC ₃ CCHF ₂ CCH ₃ CCH ₃ CCH ₃ CF ₃ CCHF ₂ CCH ₃ CCH ₅ C

TABLE A-continued

6 1 0.1	0 1 7 111	1	
Compounds of the	formula I which correst	ond to the formula	ne LIA and LZA

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-575	I.1A	CH ₃	COOCH ₃	CHF ₂
A-576	I.1A	CH_3	$COOCH_3$	OCH_3
A-577	I.1A	CH_3	COOCH ₃	OCHF ₂
A-578	I.1A	CH_3	COOCH ₃	SCH_3
A-579	I.1A	CH_3	COOCH ₂ CH ₃	H
A-580	I.1A	CH_3	COOCH ₂ CH ₃	CH_3
A-581	I.1A	CH ₃	COOCH ₂ CH ₃	CF_3
A-582	I.1A	CH_3	COOCH ₂ CH ₃	CHF_2
A-583	I.1A	CH_3	COOCH ₂ CH ₃	OCH ₃
A-584	I.1A	CH_3	COOCH ₂ CH ₃	OCHF ₂
A-585	I.1A	CH_3	COOCH ₂ CH ₃	SCH ₃
A-586	I.1A	CH_3	# ² —CH ₂ CH ₂ SO	
A-587	I.1A	CH_3	#2—CH(CH ₃)CH ₂ S	
A-588	I.1A	CH_3	$\#^2$ —C(CH ₃) ₂ CH ₂ S	
A-589	I.1A	CH ₃	$\#^2$ — $SO_2CH_2CH_2S$	
A-590	I.1A	CH_3	# ² —CH(OCH ₂ CH ₂ F)CH	
A-591	I.1A	CH_3	$\#^2$ — C (=NOCH ₃)CH ₂ C	
A-592	I.1A	CH_3	$\#^2$ —SO ₂ CH ₂ CH ₂ C(C	
A-593	I.1A	CH_3	#2—N(CH ₃)C(=C	
A-594	I.1A	CH ₃	$\#^2$ —C(\Longrightarrow O)N(CH ₃)	SO ₂ —# ³
A-595	I.1A	CF ₃	#N	Н
A-596	I.1A	CF ₃	#NO	СН3
A-597	I.1A	CF ₃	#N_O	CF ₃
A-598	I.1A	CF ₃	#NO	CHF ₂
A-599	I.1A	CF ₃	#N	OCH ₃

TABLE A-continued

С	ompounds o	of the formula I which	ch correspond to the formulae I.1	A and I.2A
		R R R R R	R^2	I.1A I.2A
		Y	X	
No.	Formula	$ m R^5$	\mathbb{R}^2	\mathbb{R}^3
A-600	I.1A	CF ₃	#N	OCHF ₂
A -601	I.1A	CF ₃	# N o	SCH ₃
A-602	I.1A	CF ₃	#CH ₃	Н
A-603	I.1A	CF ₃	N—O # N—O CH ₃	CH ₃
A -604	I.1A	CF ₃	N—O # N—O CH ₃	CF ₃
A-605	I.1A	CF ₃	#CH ₃	CHF ₂
A-606	I.1A	CF ₃	#CH ₃	OCH_3
A-607	I.1A	CF ₃	#CH ₃	OCHF ₂
A-608	I.1A	CF ₃	#CH ₃	SCH ₃
A-609	I.1A	CF ₃	#N	Н

TABLE A-continued

С	ompounds o	of the formula I whic	ch correspond to the formulae I.1	A and I.2A
		R N R S R S	\mathbb{R}^2	I.1A I.2A
		$\bigvee_{\mathbb{R}^5}$	X \mathbb{R}^1	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-610	I.1A	CF ₃	#N	СН3
A-611	I.1A	CF ₃	#NO	CF ₃
A-612	I.1A	CF ₃	#N_O	CHF ₂
A-613	I.1A	CF ₃	#	OCH ₃
A-614	I.1A	CF ₃	# NO	OCHF ₂
A-615	I.1A	CF ₃	# NO	SCH ₃
A-616	I.1A	CF ₃	#CH ₃	Н
A-617	I.1A	CF ₃	#CH ₃	$\mathrm{CH_3}$
A-618	I.1A	CF ₃	#CH ₃	CF ₃
A-619	I.1A	CF ₃	#CH ₃	CHF ₂

TABLE A-continued

		IADI	Es A-continued	
С	ompounds c	of the formula I wh	ich correspond to the formulae I.1	A and I.2A
		\mathbb{R}^{5}	R X R	I.1A I.2A
		\mathbb{R}^5	$X \xrightarrow{K^1}$	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-620	I.1A	CF ₃	#CH ₃	OCH ₃
A-621	I.1A	CF ₃	#CH ₃	OCHF ₂
A-622	I.1A	CF ₃	#\times_CH_3	SCH ₃
A-623	I.1A	CF ₃	#CH ₃	Н
A-624	I.1A	CF ₃	#CH ₃	CH ₃
A-625	I.1A	CF ₃	#CH ₃	CF ₃
A-626	I.1A	CF ₃	#CH ₃	CHF ₂
A-627	I.1A	CF ₃	#CH ₃	OCH ₃
A-628	I.1A	CF ₃	#CH ₃	OCHF ₂
A-629	I.1A	CF ₃	#CH ₃	SCH ₃

TABLE A-continued

c	ompounds c	of the formula I whi	ch correspond to the formulae I.1.	A and I.2A
		N F	R^3 R^2 R^3	I.1A
		N R ⁵	\mathbb{R}^1	120
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-630	I.1A	CF ₃	# CH ₃	Н
A-631	I.1A	CF ₃	#CH ₃	CH ₃
A-632	I.1 A	CF ₃	#CH ₃	CF ₃
A-633	I.1A	CF ₃	# CH ₃	CHF ₂
A-634	I.1A	CF ₃	#CH ₃	OCH ₃
A-635	I.1A	CF ₃	#CH ₃	OCHF ₂
A-636	I.1A	CF ₃	#CH ₃	SCH ₃
A-637	I.1A	CF ₃	# N N S	Н
A-638	I.1A	CF ₃	#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	СН3
A-639	I.1A	CF ₃	#NNNS NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	CF ₃

TABLE A-continued

С	ompounds c	of the formula I which	a correspond to the formulae I.1	A and I.2A
		R^{5}	R^3 R^2	I.1A
		\mathbb{R}^{5}	$\mathbb{Z}_{\mathbb{Z}_{\mathbb{Z}}}^{\mathbb{R}^{3}}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-640	I.1A	CF ₃	#N	CHF ₂
A-641	I.1A	CF ₃	# N	OCH ₃
A-642	I.1A	CF ₃	# N	OCHF ₂
A-643	I.1A	CF ₃	# N	SCH_3
A-644	I.1A	CF ₃	#_NNN NH ₃ CO	Н
A-645	I.1A	CF ₃	H ₃ C O	СН3
A-646	I.1A	CF ₃	H ₃ C O	CF ₃
A-647	I.1A	CF ₃	H ₃ C O	CHF ₂

TABLE A-continued

Compounds of the	formula I v	which corrected	to the formule	a I 1 A and I 2 A
Compounds of the	: iormula i w	vnich correspond	to the formula	ie i. i A and i. 2 A

		R N R Y	R^3 R^2	I.1A
		\mathbb{R}^{N} \mathbb{R}^{5}	\mathbb{R}^{1}	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-648	I.1A	CF ₃	#_NNN N——O	OCH ₃
A-649	I.1A	CF ₃	#NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	OCHF ₂
A-650	I.1A	CF ₃	H ₃ C O	SCH_3
A-651	I.1A	CF ₃	W N N N N CH3	Н
A-652	I.1A	CF ₃	W N N N CH3	СН3
A-653	I.1A	CF ₃	# N N N CH3	CF ₃

TABLE A-continued

С	ompounds o	f the formula I whic	ch correspond to the formulae I.12	A and I.2A
		$ \begin{array}{c} N \\ \downarrow \\ R^5 \end{array} $	R^3 R^2	I.1A
		N R^5	$\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}^3}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-654	I.1A	CF ₃	# N N N CH3	CHF_2
A-655	I.1A	CF ₃	# N N N CH3	OCH_3
A-656	I.1A	CF ₃	"NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	OCHF ₂
A-657	I.1A	CF ₃	W N N N CH3	SCH_3
A-658	I.1A	CF ₃	#NOO	Н
A-659	I.1A	CF ₃	#NOO	$\mathrm{CH_3}$
A-66 0	I.1A	CF ₃	#_NO	CF ₃

TABLE A-continued

	ompounds c	of the formula I which	correspond to the formulae I.1	A and I.2A
		\mathbb{R}^{N}	\mathbb{R}^{1}	I.1A
		\mathbb{R}^{5}	\mathbb{R}^{1} \mathbb{R}^{1}	1.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-661	I.1A	CF ₃	#NO	CHF ₂
A-662	I.1A	CF_3	#NO	OCH ₃
A-663	I.1A	CF ₃	#NOO	OCHF_2
A-664	I.1 A	CF ₃	#NOO	SCH ₃
A-665	I.1A	CF ₃	C_6H_5	Н
A-666 A-667	I.1 A I.1 A	CF ₃ CF ₃	C ₆ H ₅ C ₆ H ₅	CH ₃ CF ₃
A-668	I.174	CF ₃	C ₆ H ₅	CHF ₂
A-669	I.1A	CF ₃	C ₆ H ₅	OCH ₃
A-670 A-671	I.1 A I.1 A	$ \begin{array}{c} \operatorname{CF_3} \\ \operatorname{CF_3} \end{array} $	${ m C_6H_5} \ { m C_6H_5}$	OCHF ₂ SCH ₃
A-672	I.1A	CF ₃	$4-F-C_6H_4$	Н
A-673 A-674	I.1A I.1A	CF ₃ CF ₃	4-F—C ₆ H ₄ 4-F—C ₆ H ₄	CH ₃ CF ₃
A-675	I.1A I.1A	CF ₃	4 -F $-C_6H_4$	CHF ₂
A-676	I.1A	CF_3	$4-F-C_6H_4$	OCH_3
A-677 A-678	I.1 A I.1 A	CF ₃	4-F—C ₆ H ₄ 4-F—C ₆ H ₄	OCHF ₂ SCH ₃
A-679	I.1A I.1A	CF ₃ CF ₃	$4-\Gamma \longrightarrow C_6\Pi_4$ $4-Cl \longrightarrow C_6H_4$	ЗСП ₃ Н
A-680	I.1A	CF_3	4-Cl—C ₆ H ₄	CH_3
A-681	I.1A	CF ₃	4-Cl—C ₆ H ₄	CF ₃
A-682 A-683	I.1 A I.1 A	CF_3 CF_3	4-Cl—C ₆ H ₄ 4-Cl—C ₆ H ₄	$ \begin{array}{c} \text{CHF}_2\\ \text{OCH}_3 \end{array} $
A-684	I.1A	CF ₃	$4-Cl-C_6H_4$	OCHF ₂
A-685	I.1A	CF ₃	$4-Cl-C_6H_4$	SCH ₃
A-686	I.1A	CF_3 CF_3	4-OCH ₃ —C ₆ H ₄ 4-OCH ₃ —C ₆ H ₄	Н
A-687 A-688	I.1 A I.1 A	CF ₃	4-OCH ₃ —C ₆ H ₄ 4-OCH ₃ —C ₆ H ₄	CH ₃ CF ₃
A-689	I.1A	CF ₃	4-OCH ₃ —C ₆ H ₄	CHF ₂

TABLE A-continued

Compounds of the f	formula I which corre	enand to the formu	log I 1 A and I 2 A
Compounds of the I	ormuia i which corre	spona to the formu	iae i.i A and i.zA

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A -690	I.1A	CF ₃	4-OCH ₃ —C ₆ H ₄	OCH ₃
A-691	I.1A	CF_3	4 -OCH $_3$ —C $_6$ H $_4$	$OCHF_2$
A-692	I.1A	CF ₃	$4\text{-OCH}_3\text{C}_6\text{H}_4$	SCH ₃
A-693	I.1A	CF_3	CH=CH ₂	H
A-694	I.1A	CF_3	CH=CH ₂	CH_3
A-695	I.1A	CF_3	CH=CH ₂	CF ₃
A-696	I.1A	CF ₃	$CH = CH_2$	CHF ₂
A-697	I.1A	CF_3	CH=CH ₂	OCH_3
A-698	I.1A	CF_3	CH=CH ₂	$OCHF_2$
A-699	I.1A	CF_3	CH=CH ₂	SCH_3
A-700	I.1A	CF_3	$CH = CH - CH_3$	H
A-701	I.1A	CF_3	CH=CH-CH ₃	CH_3
A-702	I.1A	CF_3	СН—СН—СН3	CF_3
A-703	I.1A	CF_3	CH = CH - CH_3	CHF_2
A-704	I.1A	CF_3	$CH = CH - CH_3$	OCH_3
A-705	I.1A	CF_3	CH = CH - CH_3	$OCHF_2$
A-706	I.1A	CF ₃	CH = CH - CH_3	SCH_3
A-707	I.1A	CF ₃	CH₂CH=CH₂	H
A-708	I.1A	CF_3	CH₂CH=CH₂	CH_3
A-709	I.1A	CF_3	$CH_2CH = CH_2$	CF ₃
A-710	I.1A	CF ₃	CH₂CH=CH₂	CHF ₂
A-711	I.1A	CF_3	CH₂CH=CH₂	OCH_3
A-712	I.1A	CF_3	$CH_2CH = CH_2$	$OCHF_2$
A-713	I.1A	CF ₃	CH₂CH=CH₂	SCH ₃
A-714	I.1A	CF ₃	$CH_2C = CH$	Н
A-715	I.1A	CF ₃	$CH_2C = CH$	CH ₃
A-716	I.1A	CF ₃	$CH_2C = CH$	CF ₃
A-717	I.1A	CF ₃	$CH_2C = CH$	CHF_2
A-718	I.1A	CF ₃	$CH_2C = CH$	OCH_3
A-719	I.1A	CF ₃	$CH_2C = CH$	$OCHF_2$
A-720	I.1A	CF_3	$CH_2C \Longrightarrow CH$	SCH_3
A-721	I.1A	CF_3	CH ₂ OCH ₂ CF ₃	Н
A-722	I.1A	CF_3	CH ₂ OCH ₂ CF ₃	CH_3
A-723	I.1A	CF_3	CH ₂ OCH ₂ CF ₃	CF ₃
A-724	I.1A	CF_3	CH ₂ OCH ₂ CF ₃	CHF_2
A-725	I.1A	CF_3	CH ₂ OCH ₂ CF ₃	OCH_3
A-726	I.1A	CF_3	CH ₂ OCH ₂ CF ₃	$OCHF_2$
A-727	I.1A	CF_3	CH ₂ OCH ₂ CF ₃	SCH ₃
A-728	I.1A	CF ₃		Н
			#	
A-729	I.1A	CF ₃	~~^°	СН3
			· · · · · · · · · · · · · · · · · · ·	

TABLE A-continued

C	ompounds of	f the formula I wh	ich correspond to the formulae I.1A	and I.2A
		\mathbb{R}^{5}	R R^3 R^2 R^1	I.1A
		\mathbb{R}^{5}	$ \begin{array}{c} R \\ N \\ N \end{array} $ $ X \\ X \\$	L2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-730	I.1A	CF ₃	# O O	CF ₃
A-731	I.1A	CF ₃	# O O	CHF ₂
A-732	I.1A	CF ₃	#	OCH ₃
A-733	I.1A	CF ₃	# O O	OCHF ₂
A-734	I.1A	CF ₃	# O O	SCH ₃
A-735 A-736 A-737 A-738 A-740 A-741 A-742 A-743 A-744 A-745 A-746 A-747 A-750 A-751 A-752 A-753 A-754 A-755 A-758	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	CF ₃	OCH ₂ CH ₃ OCH ₂ CH ₂ OCH ₃ SO ₂ CH ₂ CH ₃	H CH ₃ CF ₃ CHF ₂ OCH ₅ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ F CH ₅

TABLE A-continued

Compounds of the	formula Lwhich	correspond to the	formulae I.1A and I.2A

$$\begin{array}{c} R \\ R^{3} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-759	I.1A	CF ₃	SO ₂ CH ₂ CH ₃	CHF ₂
A-760	I.1A	CF ₃	SO ₂ CH ₂ CH ₃	OCH ₃
A-761	I.1A	CF ₃	SO ₂ CH ₂ CH ₃	OCHF ₂
A-762	I.1A	CF ₃	SO ₂ CH ₂ CH ₃	SCH ₃
A-763	I.1A	CF ₃	SO ₂ CH(CH ₃) ₂	Н
A-764	I.1A	CF ₃	SO ₂ CH(CH ₃) ₂	CH ₃
A-765	I.1A	CF ₃	SO ₂ CH(CH ₃) ₂	CF ₃
A-766	I.1A	CF ₃	SO ₂ CH(CH ₃) ₂	CHF_2
A-767	I.1A	CF ₃	SO ₂ CH(CH ₃) ₂	OCH ₃
A-768	I.1A	CF ₃	$SO_2^2CH(CH_3)_2$	OCHF ₂
A-769	I.1A	CF ₃	SO_2 CH(CH ₃) ₂	SCH ₃
A-770	I.1A	CF ₃	COOCH ₃	Н
A-771	I.1A	CF ₃	COOCH ₃	CH ₃
A-772	I.1A	CF ₃	COOCH ₃	CF ₃
A-773	I.1A	CF ₃	COOCH ₂	CHF ₂
A-774	I.1A	CF ₃	COOCH ₃	OCH ₃
A-775	I.1A	CF ₃	COOCH ₃	OCHF ₂
A-776	I.1A	CF ₃	COOCH ₃	SCH ₃
A-777	I.1A	CF ₃	COOCH ₂ CH ₃	Н
A-778	I.1A	CF ₃	COOCH ₂ CH ₃	CH ₃
A-779	I.1A	CF ₃	COOCH ₂ CH ₃	CF ₃
A-780	I.1A	CF ₃	COOCH ₂ CH ₃	CHF ₂
A-781	I.1A	CF ₃	COOCH ₂ CH ₃	OCH ₃
A-782	I.1A	CF ₃	COOCH ₂ CH ₃	OCHF ₂
A-783	I.1A	CF ₃	COOCH ₂ CH ₃	SCH ₃
A-784	I.1A	CF ₃	# ² —CH ₂ CH ₂ SO ₂	# ³
A-785	I.1A	CF ₃	# ² —CH(CH ₃)CH ₂ S	$O_2 - \#^3$
A-786	I.1A	CF ₃	# ² —C(CH ₃) ₂ CH ₂ SC	
A-787	I.1A	CF ₃	#2—SO ₂ CH ₂ CH ₂ SO	
A-788	I.1A	CF ₃	#2—CH(OCH ₂ CH ₂ F)CH ₂	
A-789	I.1A	CF ₃	#2—C(=NOCH ₃)CH ₂ C	
A-790	I.1A	CF ₃	$\#^2$ —SO ₂ CH ₂ CH ₂ C(C	
A-791	I.1A	CF ₃	#2—N(CH ₃)C(=O	113/2 " NS #3
A-792	I.1A	CF ₃	$\#^2$ —C(=O)N(CH ₃)S)5—;r 20 #3
A-192	1.1A	Cr ₃	# —C(=O)N(Cn ₃)3	O ₂ —#
A-793	I.1A	OCF_3	#\N_	H
			7	
A-794	I.1A	OCF ₃	#_ N_	CH ₃
				J
A-795	I.1A	OCF ₃	# .N.	CF ₃
11 173	1.121	0013	"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C13
			\ /	

TABLE A-continued

С	ompounds o	of the formula I which	ch correspond to the formulae I.1.	A and I.2A
		N R^5	\mathbb{R}^2	I.1A
		$ \begin{array}{c} N \\ R^5 \end{array} $	\mathbb{R}^{1}	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A- 796	I.1A	OCF ₃	#_N_o	CHF ₂
A -797	I.1A	OCF ₃	#N	OCH ₃
A-798	I.1A	OCF ₃	#N	OCHF ₂
A-799	I.1A	OCF ₃	#	SCH ₃
A-800	I.1A	OCF ₃	$^{\#}$ $^{\text{CH}_{3}}$	Н
A-801	I.1 A	OCF ₃	#CH ₃	CH ₃
A-802	I.1A	OCF ₃	#CH ₃	CF ₃
A-803	I.1A	OCF ₃	#CH ₃	CHF ₂
A-804	I.1A	OCF ₃	#CH ₃	OCH ₃

TABLE A-continued

		IADL	A-continued	
С	ompounds o	f the formula I whi	ch correspond to the formulae I.14	A and I.2A
		\mathbb{R}^{N}	R^3 R^2 R^3	I.1A
		\mathbb{R}^{N}	\mathbb{R}^{1}	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-805	I.1A	OCF ₃	#CH ₃	OCHF ₂
A-806	I.1A	OCF ₃	#CH ₃	SCH ₃
A-807	I.1A	OCF ₃	#N_O	Н
A-808	I.1A	OCF ₃	# NO	CH ₃
A-809	I.1A	OCF ₃	# NO	CF ₃
A-810	I.1A	OCF ₃	#N_O	CHF ₂
A-811	I.1A	OCF ₃	#	OCH ₃
A-812	I.1A	OCF ₃	#_N_O	OCHF ₂
A-813	I.1A	OCF ₃	#N	SCH ₃
A-814	I.1A	OCF ₃	#CH ₃	Н

TABLE A-continued

С	ompounds o	of the formula I whic	h correspond to the formulae I.1.	A and I.2A
		\mathbb{R}^{N} \mathbb{R}^{S}	R^3 R^2	I.1A
		\mathbb{R}^{N} \mathbb{R}^{5}	$\mathbb{Z}_{\mathbb{Z}}^{\mathbb{Z}^3}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-815	I.1A	OCF ₃	#CH ₃	СН3
A-816	I.1A	OCF ₃	#CH ₃	CF ₃
A-817	I.1A	OCF ₃	#CH ₃	CHF ₂
A-818	I.1A	OCF ₃	#CH ₃	OCH ₃
A-819	I.1A	OCF ₃	#CH ₃	OCHF ₂
A-820	I.1A	OCF ₃	#CH ₃	SCH ₃
A-821	I.1A	OCF ₃	#CH ₃	Н
A-822	I.1A	OCF ₃	#CH ₃	CH ₃
A-823	I.1A	OCF ₃	#CH ₃	CF ₃

TABLE A-continued

		17101	EL 71-continued	
С	ompounds o	f the formula I whi	ch correspond to the formulae I.1A	and I.2A
		\mathbb{R}^{5}	R^3 R^2	I.1A
		\mathbb{R}^{5}	\mathbb{R}^{1}	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-824	I.1A	OCF ₃	#CH ₃	CHF ₂
A-825	I.1A	OCF ₃	#CH ₃	OCH ₃
A-826	I.1 A	OCF ₃	#CH ₃	OCHF ₂
A-827	I.1A	OCF ₃	# CH ₃	SCH ₃
A-828	I.1A	OCF ₃	# CH ₃	Н
A-829	I.1A	OCF ₃	# CH ₃	СН3
A-830	I.1A	OCF ₃	# CH ₃	CF ₃
A-831	I.1 A	OCF ₃	# CH ₃	CHF ₂
A-832	I.1A	OCF ₃	# CH ₃	OCH ₃

TABLE A-continued

С	ompounds o	f the formula I which	n correspond to the formulae I.1	A and I.2A
		R R ⁵	R^3 R^2 R^3 R^3 R^3	I.1A
No.	Formula	R^5	\mathbb{R}^2	\mathbb{R}^3
A-833	I.1A	OCF ₃	#CH ₃	OCHF ₂
A-834	I.1A	OCF ₃	#CH ₃	SCH ₃
A-835	I.1A	OCF ₃	# N	Н
A-836	I.1A	OCF ₃	# N	CH_3
A-837	I.1A	OCF ₃	#N	CF ₃
A-838	I.1A	OCF ₃	#N	CHF ₂
A-839	I.1A	OCF ₃	# N	OCH ₃
A-840	I.1A	OCF ₃	#N	OCHF ₂
A-841	I.1A	OCF ₃	# N	SCH ₃

TABLE A-continued

	TABLE A-continued				
C	Compounds of the formula I which correspond to the formulae I.1A and I.2A				
		N R^5	R^3 R^2	I.1A	
		\mathbb{R}^{N}	\mathbb{R}^{1}	1.2A	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³	
A-842	I.1A	OCF ₃	#_NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Н	
A-843	I.1A	OCF ₃	# N N N N N N N N N N N N N N N N N N N	СН3	
A-844	I.1A	OCF ₃	#NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	CF ₃	
A-845	I.1A	OCF ₃	#_NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	CHF ₂	
A-846	I.1A	OCF ₃	#N	OCH ₃	
A-847	I.1A	OCF ₃	H ₃ C N	OCHF ₂	
A-848	I.1A	OCF ₃	H ₃ C O	SCH_3	

TABLE A-continued

Compounde of	the formula	I which correspon	d to the formul	ae I 1 A and I 2 A

			*	
		R^{N} R^{5}	\mathbb{R}^{3} \mathbb{R}^{2}	I.1A
		\mathbb{R}^{N} \mathbb{R}^{5}	\mathbb{R}^{1}	I.2A
No.	Formula	R ¹	R ²	R ³
\ -849	I.1A	OCF ₃	"NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Н
A- 850	I.1A	OCF ₃	"NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	CH ₃
A -851	I.1A	OCF ₃	W N N N CH3	CF ₃
A -852	I.1A	OCF ₃	# N N N CH3	CHF ₂
A -853	I.1A	OCF ₃	W N N N CH3	OCH ₃
A -854	I.1A	OCF ₃	W N N N N CH3	OCHF ₂

TABLE A-continued

Compounds of the formula I which correspond to the formulae I.1A and I.2A				
		\mathbb{R}^{N}	R^3 R^2	I.1A
		\mathbb{R}^{N}	$\mathbb{Z}_{X}^{\mathbb{R}^{3}}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-855	I.1A	OCF ₃	W N N N CH3	SCH ₃
A-856	I.1A	OCF ₃	#NO	Н
A-857	I.1 A	OCF ₃	"NOO	СН3
A-858	I.1A	OCF ₃	#NOO	CF ₃
A-859	I.1A	OCF ₃	#NOO	CHF ₂
A-860	I.1A	OCF ₃	#NOO	OCH ₃
A-861	I.1A	OCF ₃	#NOO	OCHF ₂
A-862	I.1A	OCF ₃	#NOO	SCH ₃
A-863	I.1A	OCF ₃	C_6H_5	Н

TABLE A-continued

Compounds of the formula	L which correspond to th	e formulae I 1 A and I 2 A

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-864	I.1A	OCF ₃	C_6H_5	CH ₃
A-865	I.1A	OCF ₃	C_6H_5	CF_3
A-866	I.1A	OCF_3	C_6H_5	CHF_2
A-867	I.1A	OCF ₃	C_6H_5	OCH_3
A-868	I.1A	OCF_3	C_6H_5	$OCHF_2$
A-869	I.1A	OCF_3	C_6H_5	SCH_3
A-870	I.1A	OCF_3	4-F—C ₆ H ₄	H
A-871	I.1A	OCF_3	$4-F$ — C_6H_4	CH_3
A-872	I.1A	OCF_3	$4-F-C_6H_4$	CF_3
A-873	I.1A	OCF_3	$4-F$ — C_6H_4	CHF_2
A-874	I.1A	OCF_3	4 -F $-$ C $_6$ H $_4$	OCH_3
A-875	I.1A	OCF_3	4 -F $-$ C $_6$ H $_4$	$OCHF_2$
A-876	I.1A	OCF_3	$4-F$ — C_6H_4	SCH_3
A-877	I.1A	OCF_3	4-Cl—C ₆ H ₄	Н
A-878	I.1A	OCF_3	4 -Cl—C $_6$ H $_4$	CH_3
A-879	I.1A	OCF_3	4-Cl—C ₆ H ₄	CF ₃
A-880	I.1A	OCF_3	4-Cl—C ₆ H ₄	CHF_2
A-881	I.1A	OCF ₃	$4-Cl-C_6H_4$	OCH ₃
A-882	I.1A	OCF ₃	4-Cl—C ₆ H ₄	$OCHF_2$
A-883	I.1A	OCF ₃	$4-Cl-C_6H_4$	SCH ₃
A-884	I.1A	OCF ₃	4-OCH_3 — C_6H_4	H
A-885	I.1A	OCF ₃	4-OCH ₃ —C ₆ H ₄	CH_3
A-886	I.1A	OCF ₃	4-OCH ₃ —C ₆ H ₄	CF ₃
A-887	I.1A	OCF ₃	4-OCH ₃ —C ₆ H ₄	CHF ₂
A-888	I.1A	OCF ₃	4-OCH ₃ —C ₆ H ₄	OCH ₃
A-889	I.1A	OCF ₃	4-OCH ₃ —C ₆ H ₄	OCHF ₂
A-890	I.1A	OCF ₃	4-OCH ₃ —C ₆ H ₄	SCH ₃
A-891	I.1A	OCF ₃	CH=CH ₂	Н
A-892	I.1A	OCF ₃	CH=CH ₂	CH ₃
A-893	I.1A	OCF ₃	CH=CH ₂	CF ₃
A-894	I.1A	OCF ₃	CH=CH ₂	CHF ₂
A-895	I.1A	OCF ₃	CH=CH ₂	OCH ₃
A-896	I.1A	OCF ₃	CH=CH ₂	OCHF ₂
A-897	I.1A	OCF ₃	CH=CH ₂	SCH ₃
A-898	I.1A	OCF ₃	CH=CH−CH ₃	Н
A-899	I.1A	OCF ₃	CH=CH-CH ₃	CH ₃
A-900	I.1A	OCF ₃	CH=CH-CH ₃	CF ₃
A-901	I.1A	OCF_3	$CH = CH - CH_3$	CHF_2
A-902	I.1A	OCF_3	$CH = CH - CH_3$	OCH_3
A-903	I.1A	OCF_3	$CH = CH - CH_3$	OCHF ₂
A-904	I.1A	OCF_3	СН—СН—СН₃	SCH_3
A-905	I.1A	OCF_3	$CH_2CH = CH_2$	H
A-906	I.1A	OCF_3	CH_2CH $=$ CH_2	CH_3
A-907	I.1A	OCF ₃	CH ₂ CH=CH ₂	CF ₃
A-908	I.1A	OCF ₃	CH ₂ CH=CH ₂	CHF ₂
A-909	I.1A	OCF ₃	CH ₂ CH=CH ₂	OCH ₃
A-910	I.1A	OCF ₃	CH ₂ CH=CH ₂	$OCHF_2$
A-911	I.1A	OCF ₃	CH ₂ CH=CH ₂	SCH ₃
		3	2 2	3

TABLE A-continued

Compounds of the formula I which correspond to t	the formulae I.1A and I.2A
--	----------------------------

$$\begin{array}{c} R \\ R^{3} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R \\ Y \\ X \end{array}$$

		R ³		
No.	Formula	R^1	\mathbb{R}^2	R ³
A-912	I.1A	OCF ₃	CH₂C≡ CH	Н
A-913	I.1A	OCF ₃	$CH_2C = CH$	CH ₃
A-914	I.1A	OCF ₃	$CH_2C = CH$	CF ₃
A-915	I.1A	OCF ₃	$CH_2C = CH$	CHF_2
A-916	I.1A	OCF ₃	$CH_2C = CH$	OCH_3
A-917	I.1A	OCF_3	$CH_2C = CH$	$OCHF_2$
A-918	I.1A	OCF_3	$CH_2C = CH$	SCH_3
A-919	I.1A	OCF ₃	CH ₂ OCH ₂ CF ₃	H
A-920	I.1A	OCF_3	CH ₂ OCH ₂ CF ₃	CH_3
A-921	I.1A	OCF ₃	CH ₂ OCH ₂ CF ₃	CF_3
A-922	I.1A	OCF ₃	CH ₂ OCH ₂ CF ₃	CHF_2
A-923	I.1A	OCF_3	CH ₂ OCH ₂ CF ₃	OCH_3
A-924	I.1A	OCF ₃	CH ₂ OCH ₂ CF ₃	OCHF ₂
A-925	I.1A	OCF ₃	CH ₂ OCH ₂ CF ₃	SCH_3
A-926	I.1A	OCF ₃	# O	Н
A-927	I.1A	OCF ₃	# O O	CH ₃
A-928	I.1A	OCF ₃	# O O	CF ₃
A-929	I.1A	OCF ₃	# O O	CHF ₂
A-930	I.1A	OCF ₃	# O O	OCH ₃
A-931	I.1A	OCF ₃		OCHF ₂

TABLE A-continued

TABLE A-continued					
Compounds of the formula I which correspond to the formulae I.1A and I.2A					
		\mathbb{R}^{5}	R^3 R^2 R^2	L1A	
		\mathbb{R}^{5}	R^3 R^3 R^1	I.2A	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³	
A-932	I.1A	OCF ₃	# O O	SCH ₃	
A-933 A-934 A-935 A-936 A-937 A-938 A-940 A-941 A-942 A-943 A-945 A-946 A-947 A-948 A-950 A-951 A-952 A-953 A-954 A-955 A-956 A-957 A-960 A-961 A-962 A-963 A-964 A-965 A-966 A-967 A-968 A-969 A-970 A-971 A-972 A-973 A-974	1.1A 1.1A	OCF ₃	OCH ₂ CH ₃ OCH ₂ CH ₂ OCH ₃ SO ₂ CH ₂ CH ₃ SO ₂ CH(CH ₃) ₂ SO ₂ CH(CH ₃) ₃	H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCHF ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃	

TABLE A-continued

Compounds of the	e formula I which	correspond to the	formulae I.1A and I.2A

$$\begin{array}{c} R \\ R^{3} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R \\ Y \\ X \end{array}$$

No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-976 A-977	I.1A I.1A	OCF ₃ OCF ₃	COOCH ₂ CH ₃ COOCH ₂ CH ₃	CH ₃ CF ₃
A-978	I.1A	OCF_3	COOCH ₂ CH ₃	CHF_2
A-979	I.1A	OCF_3	COOCH ₂ CH ₃	OCH_3
A-980	I.1A	OCF_3	COOCH ₂ CH ₃	$OCHF_2$
A-981	I.1A	OCF_3	COOCH ₂ CH ₃	SCH ₃
A-982	I.1A	OCF_3	# ² —CH ₂ CH ₂ SO	2—#3
A-983	I.1A	OCF_3	$\#^2$ —CH(CH ₃)CH ₂ S	SO ₂ —#3
A-984	I.1A	OCF_3	$\#^2$ —C(CH ₃) ₂ CH ₂ S	O ₂ —# ³
A-985	I.1A	OCF_3	# ² —SO ₂ CH ₂ CH ₂ S	
A-986	I.1A	OCF_3	#2—CH(OCH ₂ CH ₂ F)CH	2CH2SO2—#3
A-987	I.1A	OCF_3	#2—C(=NOCH ₃)CH ₂ C	CH ₂ SO ₂ —# ³
A-988	I.1A	OCF_3	$\#^2$ —SO ₂ CH ₂ CH ₂ C(C	
A-989	I.1A	OCF ₃	$\#^2$ —N(CH ₃)C(=C	
A-99 0	I.1A	OCF ₃	#2—C(=O)N(CH ₃)	SO ₂ —# ³
A-991	I.1A	SCF_3	#N	Н
A-992	I.1A	SCF ₃	# .N.	CH ₃
		,		J
A-993	I.1A	SCF_3	#N_	CF ₃
A-994	I.1A	SCF_3	#N_	CHF ₂
			\checkmark	
A-995	I.1A	SCF_3	#\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OCH_3
			\(\frac{1}{2}\)	
A-996	I.1A	SCF_3	#\N_	$OCHF_2$
			~ ~	
A-997	I.1A	SCF_3	#\N_	SCH_3
			\(\frac{1}{2}\)	

TABLE A-continued

C	ompounds o	of the formula I whi	ch correspond to the formulae I.1A	and I.2A
		N R ⁵	\mathbb{R}^2	I.1A
		\mathbb{R}^{5}	X X X X	
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-998	I.1A	SCF ₃	#CH ₃	Н
A -999	I.1A	SCF ₃	#CH ₃	CH ₃
A-1000	I.1 A	SCF ₃	#CH ₃	CF ₃
A-1001	I.1A	SCF ₃	#CH ₃	CHF ₂
A-1002	I.1A	SCF ₃	#CH ₃	OCH ₃
A-1003	I.1A	SCF ₃	#_CH ₃	OCHF ₂
A-1004	I.1A	SCF ₃	#CH ₃	SCH ₃
A-1005	I.1A	SCF ₃	#N_O	Н
A-1006	I.1A	SCF ₃	#N_O	CH ₃
A-1007	I.1A	SCF ₃	# NO	CF ₃

TABLE A-continued

		IABL	E A-continued	
C	ompounds o	f the formula I whi	ch correspond to the formulae I.1	A and I.2A
		\mathbb{R}^{N}	\mathbb{R}^{1}	I.1A
		\mathbb{R}^{N}	\mathbb{R}^1	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-1008	I.1A	SCF ₃	#	CHF ₂
A-1009	I.1A	SCF ₃	#N	OCH ₃
A -1010	I.1A	SCF ₃	#NO	OCHF ₂
A-1011	I.1A	SCF ₃	# No	SCH ₃
A-1012	I.1A	SCF ₃	#CH ₃	Н
A-1013	I.1A	SCF ₃	#CH ₃	CH ₃
A-1014	I.1A	SCF ₃	#CH ₃	CF ₃
A-1015	I.1A	SCF ₃	#CH ₃	CHF ₂
A-1016	I.1A	SCF ₃	#CH ₃	OCH ₃
A-1017	I.1A	SCF ₃	#CH ₃	OCHF ₂

TABLE A-continued

		TABL	A-continued	
C	ompounds of	f the formula I whi	ch correspond to the formulae I.12	A and I.2A
		N R ⁵	R^2	I.1A I.2A
		N	\mathbb{Z}_{X}	
		$\bigcap_{\mathbb{R}^5}$	Α	
No.	Formula	R^{1}	\mathbb{R}^2	\mathbb{R}^3
A-1018	I.1A	SCF ₃	#CH3	SCH ₃
A-1019	I.1A	SCF ₃	N—O CH3	Н
A-1020	I.1A	SCF ₃	O—N # CH ₃	CH ₃
A-1021	I.1A	SCF ₃	# CH ₃	CF ₃
A-1022	I.1A	SCF ₃	#CH ₃	CHF ₂
A-1023	I.1A	SCF ₃	$^{\#} \underbrace{\hspace{1cm}^{\text{CH}_{3}}}_{\text{O-N}}$	OCH ₃
A-1024	I.1A	SCF ₃	#CH ₃	OCHF ₂
A-1025	I.1A	SCF ₃	#CH ₃	SCH ₃
A-1026	I.1A	SCF ₃	#CH ₃	Н
A-1027	I.1A	SCF ₃	#CH ₃	CH ₃

TABLE A-continued

$ \begin{array}{c} R \\ R \\ Y \\ X \end{array} $ $ \begin{array}{c} R^3 \\ R^2 \\ \end{array} $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Co	ompounds o	f the formula I which	h correspond to the formulae I.1A	A and I.2A
No. Formula R^1 R^2 R^3 A-1028 I.1A SCF_3 # CH_3 CF_3 A-1029 I.1A SCF_3 # CH_3 CCH_3 CCH_3 A-1030 I.1A SCF_3 # CCH_3 CCH_3 CCH_3 A-1031 I.1A SCF_3 # CCH_3 CCH_3 CCH_3 A-1032 I.1A SCF_3 # CCH_3 CCH_3 CCH_3 A-1033 I.1A SCF_3 # CCH_3 CCH_3 CCH_3 A-1034 I.1A SCF_3 # SCH_3 A-1035 I.1A SCF_3 # SCH_3 A-1035 I.1A SCF_3 # SCH_3 A-1036 I.1A SCF_3 # SCH_3 A-1037 SCH_3 A-1038 I.1A SCF_3 # SCH_3 A-1039 SCH_3 A-1030 SCH_3 A-1031 I.1A SCF_3 # SCH_3 A-1031 III III SCF_3 # SCH_3			N Y	\mathbb{R}^2	I.1A
A-1028 I.1A SCF ₃ # CH ₃ CF ₃ A-1029 I.1A SCF ₃ # CH ₃ CH ₅ A-1030 I.1A SCF ₃ # CH ₃ OCH ₃ A-1031 I.1A SCF ₃ # CH ₃ OCH ₅ A-1032 I.1A SCF ₃ # CH ₃ SCH ₃ A-1033 I.1A SCF ₃ # CH ₃ SCH ₃ A-1034 I.1A SCF ₃ # N CH ₃ A-1035 I.1A SCF ₃ # N CH ₃ CH ₃ CH ₃ SCH ₃ A-1036 CH ₃ SCH ₃ CH ₃ CH ₃ SCH ₃ CH ₃ SCH ₃ A-1037 CH ₃ SCH ₃ A-1038 I.1A SCF ₃ # N CH ₃ CH ₃ SCH ₃ CH ₃ SCH ₃ A-1035 I.1A SCF ₃ # N CH ₃			N Y	\mathbb{R}^{1}	I.2A
A-1029 I.1A SCF_3 # CH ₃ CH_2 A-1030 I.1A SCF_3 # CH ₃ OCH_3 A-1031 I.1A SCF_3 # CH ₃ OCH_2 A-1032 I.1A SCF_3 # CH ₃ OCH_2 A-1033 I.1A SCF_3 # CH ₃ OCH_3 A-1034 I.1A SCF_3 # CH ₃ A-1035 I.1A SCF_3 # CH ₃ CH ₃ CH ₃ CCH ₃	No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-1030 I.1A SCF ₃ # CH ₃ OCH ₃ A-1031 I.1A SCF ₃ # CH ₃ OCHF ₂ A-1032 I.1A SCF ₃ # CH ₃ SCH ₃ A-1033 I.1A SCF ₃ # N A-1034 I.1A SCF ₃ # N S A-1035 I.1A SCF ₃ # N CH ₃	A-1028	I.1A	SCF ₃	$\forall \gamma$	CF ₃
A-1031 I.1A SCF_3 # CH ₃ $OCHF_2$ A-1032 I.1A SCF_3 # CH ₃ SCH_3 A-1033 I.1A SCF_3 # N A-1034 I.1A SCF_3 # N CH ₃	A -1029	I.1A	SCF ₃	$\forall \gamma$	CHF ₂
A-1032 I.1A SCF_3 # CH_3 SCH_3 A-1033 I.1A SCF_3 # N A-1034 I.1A SCF_3 # N CH ₃	A-1030	I.1A	SCF ₃	$\forall \gamma$	OCH ₃
A-1033 L1A SCF_3 # N H A-1034 L1A SCF_3 # N CH ₃ A-1035 L1A SCF_3 # N CF ₃	A-1031	I.1A	SCF ₃	$\forall \gamma$	OCHF ₂
A-1034 I.1A SCF ₃ # $\stackrel{N}{\searrow}$ CH ₃ A-1035 I.1A SCF ₃ # $\stackrel{N}{\searrow}$ CF ₃	A-1032	I.1A	SCF ₃	$\forall \gamma$	SCH ₃
A-1035 L1A SCF_3 # N CF_3	A-1033	I.1A	SCF ₃	# N	Н
	A-1034	I.1A	SCF ₃	# \	CH ₃
A-1036 I.1A SCF_3 # N CHF_2	A-1035	I.1A	SCF ₃	#	CF ₃
`s	A-1036	I.1A	SCF ₃	# N	CHF ₂

TABLE A-continued

Compounds of the	formula Lwhie	h correspond to	the formulae	IIA and I2A
Compounds of the	TOTHUHA I WHIL	il correspond to	ше юппшае	I.I.A. and I.Z.A.

\mathbf{p}^3	I.1A
R R	
N. J. J.	
R^2	
R^1	
T X	
R^5	

No.	Formula	R^1	\mathbb{R}^2	\mathbb{R}^3
A-1037	I.1A	SCF ₃	# N	OCH ₃
A-1038	I.1A	SCF ₃	#NNNS NN	OCHF ₂
A-1039	I.1A	SCF ₃	#NNNS NN	SCH ₃
A-1040	I.1A	SCF_3	#_NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Н
A-1041	I.1A	SCF ₃	$H_{3}C$ N N N N N N	$\mathrm{CH_3}$
A-1042	I.1A	SCF ₃	#NN NO	CF ₃
A-1043	I.1A	SCF ₃	#NN	CHF ₂

TABLE A-continued

C	ompounds o	of the formula I which	n correspond to the formulae I.	1A and I.2A
		R^{5}	R^3 R^2	I.1A
		\mathbb{R}^{5}	$\mathbb{Z}_{\mathbb{Z}_{\mathbb{Z}_{\mathbb{Z}}}}^{\mathbb{R}^{3}}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-1044	I.1A	SCF ₃	# N N N N N N N N N N N N N N N N N N N	OCH ₃
A-1045	I.1A	SCF ₃	H ₃ C O	OCHF ₂
A-1046	I.1A	SCF ₃	# N N N N N N N N N N N N N N N N N N N	SCH ₃
A-1047	I.1A	SCF ₃	# N N N CH3	Н
A-1048	I.1A	SCF ₃	W N N N N CH3	$\mathrm{CH_3}$
A-1049	I.1A	SCF ₃	W N N N N N CH3	CF ₃
A-1050	I.1A	SCF ₃	# N N N CH3	CHF ₂

TABLE A-continued

C	ompounds of	the formula I whi	ich correspond to the formulae I.1	A and I.2A
		\mathbb{R}^{N}	R^3 R^2 R^3	I.1A
		\bigcap^{N}	R^3 R^3 R^3 R^3	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-1051	I.1A	SCF_3	# N N N CH3	${ m OCH_3}$
A-1052	I.1A	SCF ₃	# N N N CH3	OCHF ₂
A-1053	I.1A	SCF_3	W N N N N CH3	SCH_3
A-1054	I.1A	SCF ₃	"NOO	Н
A-1055	I.1A	SCF ₃	#NO	CH ₃
A-1056	I.1A	SCF ₃	#NO	CF ₃
A-1057	I.1A	SCF ₃	#NOO	CHF ₂

TABLE A-continued

Co	ompounds of	the formula I which	h correspond to the formulae I.1	A and I.2A
		N R S	\mathbb{R}^3 \mathbb{R}^2	I.1A
		N R ⁵	$\mathbb{Z}_{\mathbb{Z}_{\mathbb{Z}}}^{\mathbb{R}^3}$	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3
A-1058	I.1A	SCF ₃	#_N_O	OCH ₃
A-1059	I.1A	SCF ₃	#NO	OCHF ₂
A-1060	I.1A	SCF ₃	#NOO	SCH_3
A-1061 A-1062 A-1063 A-1064 A-1065 A-1066 A-1067 A-1070 A-1071 A-1072 A-1073 A-1074 A-1077 A-1078 A-1079 A-1080 A-1081 A-1082 A-1083 A-1084 A-1085 A-1088 A-1088 A-1088 A-1088 A-1089 A-1090 A-1091	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	SCF ₃	C_6H_5 C_6H_4 $4-F-C_6H_4$ $4-F-C_6H_4$ $4-F-C_6H_4$ $4-F-C_6H_4$ $4-C_1-C_6H_4$ $4-C_1-C_1-C_1-C_1-C_1$ $4-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1-C_1$	H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ CH ₃ CH ₃ CH ₃ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CH ₅ CCH ₃ CCH ₃ CCH ₃ CCH ₃ CCH ₅ CCH ₃ CCH ₅ CCH ₃ CCH ₅ CCH ₃ CCH ₅ CCH ₃

TABLE A-continued

Compounds of the	formula I which c	orrespond to the	formulae I.1A and I.2A	

$$\begin{array}{c} R \\ R^{1} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R \\ X \\ \end{array}$$

No.	Formula	R^1	\mathbb{R}^2	R ³
A-1092	I.1A	SCF ₃	CH=CH ₂	CHF ₂
A-1093	I.1A	SCF ₃	CH=CH2	OCH ₃
A-1094	I.1A	SCF ₃	CH=CH ₂	OCHF ₂
A-1095	I.1A	SCF ₃	CH=CH ₂	SCH ₃
A-1096	I.1A	SCF_3	CH≕CH—ĈH₃	Н
A-1097	I.1A	SCF ₃	СН=СН-СН3	CH ₃
A-1098	I.1A	SCF ₃	CH=CH-CH ₃	CF ₃
A-1099	I.1A	SCF ₃	СН=СН-СН3	CHF ₂
A-1100	I.1A	SCF_3	CH=CH-CH ₃	OCH_3
A-1101	I.1A	SCF_3	CH=CH-CH ₃	OCHF ₂
A-1102	I.1A	SCF_3	$CH = CH - CH_3$	SCH_3
A-1103	I.1A	SCF ₃	CH ₂ CH=CH ₂	Н
A-1104	I.1A	SCF ₃	$CH_2CH = CH_2$	CH_3
A-1105	I.1A	SCF_3	$CH_2CH = CH_2$	CF ₃
A-1106	I.1A	SCF_3	$CH_2CH = CH_2$	CHF_2
A-1107	I.1A	SCF_3	$CH_2CH = CH_2$	OCH_3
A-1108	I.1A	SCF_3	$CH_2CH = CH_2$	$OCHF_2$
A-1109	I.1A	SCF_3	$CH_2CH = CH_2$	SCH_3
A-1110	I.1A	SCF_3	$CH_2C = CH$	H
A-1111	I.1A	SCF ₃	$CH_2C = CH$	CH ₃
A-1112	I.1A	SCF_3	$CH_2C = CH$	CF_3
A-1113	I.1A	SCF_3	$CH_2C = CH$	CHF_2
A-1114	I.1A	SCF ₃	$CH_2C = CH$	OCH ₃
A-1115	I.1A	SCF ₃	$CH_2C = CH$	OCHF ₂
A-1116	I.1A	SCF ₃	$CH_2C = CH$	SCH ₃
A-1117	I.1A	SCF ₃	CH ₂ OCH ₂ CF ₃	н
A-1118	I.1A	SCF ₃	CH ₂ OCH ₂ CF ₃	CH ₃
A-1119	I.1A	SCF ₃	CH ₂ OCH ₂ CF ₃	CF ₃
A-1120	I.1A	SCF ₃	CH ₂ OCH ₂ CF ₃	CHF ₂
A-1121	I.1A	SCF ₃	CH ₂ OCH ₂ CF ₃	OCH ₃
A-1122	I.1A	SCF ₃	CH ₂ OCH ₂ CF ₃	OCHF ₂
A-1123	I.1A	SCF ₃	CH ₂ OCH ₂ CF ₃	SCH ₃
A-1123	1.171	5C13	C112OC112C13	5C113
A-1124	I.1A	SCF ₃	# O	Н
A-1125	I.1A	SCF ₃	# O O	СН3
A-1126	I.1A	SCF ₃	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CF ₃

TABLE A-continued

C	ompounds o	f the formula I whi	ich correspond to the formulae I.1A	and I.2A
		\mathbb{R}^{N}	R^3 R^2 R^3	I.1A
		$\bigcap_{R^5}^N$	R^3 R^3 R^3 R^3	I.2A
No.	Formula	\mathbb{R}^1	\mathbb{R}^2	R ³
A-1127	I.1A	SCF ₃	# O O	CHF ₂
A-1128	I.1A	SCF ₃	# O O	OCH ₃
A-1129	I.1A	SCF ₃	# O O	OCHF ₂
A-1130	I.1A	SCF ₃	# O O	SCH ₃
A-1131 A-1132 A-1133 A-1134 A-1135 A-1136 A-1137 A-1138 A-1140 A-1141 A-1142 A-1143 A-1144 A-1145 A-1146 A-1147 A-1148 A-1150 A-1151 A-1152 A-1153 A-1154 A-1155 A-1156 A-1157 A-1158 A-1159	I.1A I.1A I.1A I.1A I.1A I.1A I.1A I.1A	SCF ₃	OCH ₂ CH ₃ OCH ₂ CH ₂ OCH ₃ SO ₂ CH ₂ CH ₃	H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ OCH ₃ OCHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ H CH ₃ CF ₃ CHF ₂ SCH ₃ CHF ₄ SCH ₄

TABLE A-continued

Compounds of the formula I which correspond to the formulae I.1A and I.2A

$$\begin{array}{c} R \\ R^{3} \\ R^{5} \end{array}$$

$$\begin{array}{c} R \\ R \\ Y \\ X \end{array}$$

No.	Formula	R^1	\mathbb{R}^2	R ³
A -1160	I.1A	SCF ₃	SO ₂ CH(CH ₃) ₂	CH ₃
A-1161	I.1A	SCF ₃	$SO_2CH(CH_3)_2$	CF ₃
A-1162	I.1A	SCF ₃	$SO_2CH(CH_3)_2$	CHF_2
A-1163	I.1A	SCF ₃	$SO_2CH(CH_3)_2$	OCH_3
A-1164	I.1A	SCF ₃	$SO_2CH(CH_3)_2$	$OCHF_2$
A-1165	I.1A	SCF ₃	$SO_2CH(CH_3)_2$	SCH_3
A-1166	I.1A	SCF ₃	COOCH ₃	H
A-1167	I.1A	SCF ₃	COOCH ₃	CH_3
A-1168	I.1A	SCF ₃	$COOCH_3$	CF_3
A-1169	I.1A	SCF ₃	COOCH ₃	CHF_2
A-1170	I.1A	SCF ₃	COOCH ₃	OCH_3
A-1171	I.1A	SCF ₃	$COOCH_3$	$OCHF_2$
A-1172	I.1A	SCF ₃	COOCH ₃	SCH_3
A-1173	I.1A	SCF ₃	COOCH ₂ CH ₃	H
A-1174	I.1A	SCF ₃	COOCH ₂ CH ₃	CH_3
A-1175	I.1A	SCF ₃	COOCH ₂ CH ₃	CF ₃
A-1176	I.1A	SCF ₃	COOCH ₂ CH ₃	CHF_2
A-1177	I.1A	SCF ₃	COOCH ₂ CH ₃	OCH_3
A-1178	I.1A	SCF ₃	COOCH ₂ CH ₃	$OCHF_2$
A-1179	I.1A	SCF ₃	COOCH ₂ CH ₃	SCH_3
A-1180	I.1A	SCF ₃	# ² —CH ₂ CH ₂ SO	
A-1181	I.1A	SCF ₃	#2—CH(CH ₃)CH ₂	
A-1182	I.1A	SCF ₃	$\#^2$ —C(CH ₃) ₂ CH ₂ S	
A-1183	I.1A	SCF ₃	# ² —SO ₂ CH ₂ CH ₂ S	
A-1184	I.1A	SCF ₃	$\#^2$ —CH(OCH ₂ CH ₂ F)CH	
A-1185	I.1A	SCF_3	$\#^2$ — C ($=$ NOCH ₃)CH ₂ C	
A-1186	I.1A	SCF ₃	$\#^2$ —SO ₂ CH ₂ CH ₂ C(O	
A-1187	I.1A	SCF ₃	#2—N(CH ₃)C(=C	D)S—# ³
A-1188	I.1A	SCF ₃	#2—C(==)N(CH ₃)\$	SO ₂ —# ³
A-1189	I.2A	CH2OCH2CH2OCH3	_	CF_3
A-1190	I.1A	#I—CH—CI	H—CH=:N—# ²	F
A-1191	I.1A	#1—CH—CI	H—CH=:N—#2	Cl
A-1192	I.1A	# ¹ —CH—Cl	H—CH—N—# ²	CF ₃

 $^{\#^{}I}$ characterizes the bond in position 2 (group $R^{I})$

TABLE A.1

Also especially preferred are compounds A.1-1, A.1-8, A.1-15, A.1-22, A.1-29, A.1-36, A.1-43, A.1-50, A.1-57, A.1-64, A.1-71, A.1-78, A.1-85, A.1-92, A.1-99, A.1-106, A.1-113, A.1-120, A.1-127, A.1-134, A.1-141, A.1-148, A.1-155, A.1-169, A.1-169, A.1-176, A.1-183, A.1-199, A.1-206, A.1-213, A.1-220, A.1-227, A.1-234, A.1-241, A.1-248, A.1-255, A.1-262, A.1-269, A.1-276, A.1-290, A.1-297, A.1-304, A.1-311, A.1-318, A.1-325, A.1-332, A.1-339, A.1-346, A.1-353, A.1-360, A.1-367, A.1-374, A.1-381, A.1-397, A.1-404, A.1-411, A.1-418, A.1-425, A.1-432, A.1-439, A.1-446, A.1-453, A.1-460, A.1-467, A.1-474, A.1-481, A.1-488, A.1-

 $^{\#^2}$ characterizes the bond in position 3 (group R^2)

 $^{\#^3}$ characterizes the bond in position 4 (group $R^3)$

TABLE A.1-continued

495, A.1-502, A.1-509, A.1-516, A.1-523, A.1-530, A.1-537, A.1-544, A.1-551, A.1-558. A.1-565, A.1-572, A.1-579, A.1-595, A.1-602, A.1-609, A.1-616, A.1-623, A.1-630, A.1-637, A.1-644, A.1-651, A.1-658, A.1-665, A.1-672, A.1-679, A.1-679, A.1-686, A.1-693, A.1-700, A.1-707, A.1-714, A.1-721, A.1-728, A.1-735, A.1-742, A.1-749, A.1-756, A.1-763, A.1-770, A.1-777, A.1-793, A.1-800, A.1-807, A.1-814, A.1-821, A.1-828, A.1-835, A.1-842, A.1-849, A.1-856, A.1-863, A.1-870, A.1-877, A.1-884, A.1-891, A.1-898, A.1-905, A.1-912, A.1-919, A.1-926, A.1-933, A.1-940, A.1-947, A.1-954, A.1-961, A.1-968, A.1-975, A.1-991, A.1-998, A.1-1005, A.1-1012, A.1-1019, A.1-1026, A.1-1033, A.1-1040, A.1-1047, A.1-1054, A.1-1061, A.1-1068, A.1-1075, A.1-1082, A.1-1089, A.1-1096, A.1-1103, A.1-1110, A.1-1117, A.1-1124, A.1-1131, A.1-1138, A.1-1145, A.1-1152, A.1-1159, A.1-1166 and A.1-1173 which differ from the corresponding compounds A-1, A-8, A-15, A-22, A-29, A-36, A-43, A-50, A-57, A-64, A-71, A-78, A-85, A-92, A-99, A-106, A-113, A-120, A-127, A-134, A-141, A-148, A-155, A-162, A-169, A-176, A-183, A-199, A-206, A-213, A-220, A-227, A-234, A-241, A-248, A-255, A-262, A-269, A-276, A-283, A-290, A-297, A-304, A-311, A-318, A-325, A-332, A-339, A-346, A-353, A-360, A-367, A-374, A-381, A-397, A-404, A-411, A-418, A-425, A-432, A-439, A-446, A-453, A-460, A-467, A-474, A-481, A-488, A-495, A-502, A-509, A-516, A-523, A-530, A-537, A-544, A-551, A-551,A-558, A-565, A-572, A-579, A-595, A-602, A-609, A-616, A-623, A-630, A-637, A-644, A-651, A-658, A-665, A-672, A-679, A-679, A-686, A-693, A-700, A-707, A-714, A-721, A-728, A-735, A-742, A-749, A-756, A-763, A-770, A-777, A-793, A-800, A-807, A-814, A-821, A-828, A-835, A-842, A-849, A-856, A-863, A-870, A-877, A-884, A-891, A-898, A-905, A-912, A-919, A-926, A-933, A-940, A-947, A-954, A-961, A-968, A-975, A-991, A-998, A-1005, A-1012, A-1019, A-1026, A-1033, A-1040, A-1047, A-1054, A-1061, A-1068, A-1075, A-1082, A-1089, A-1096, A-1103, A-1110, A-1117, A-1124, A-1131, A-1138, A-1145, A-1152, A-1159, A-1166 and A-1173 only in that R³ is F.

TABLE A.2

Also especially preferred are compounds A.2-1, A.2-8, A.2-15, A.2-22, A.2-29, A.2-36, A.2-43, A.2-50, A.2-57, A.2-64, A.2-71, A.2-78, A.2-85, A.2-92, A.2-99, A.2-106, A.2-113, A.2-120, A.2-127, A.2-134, A.2-141, A.2-148, A.2-155, A.2-162, A.2-169, A.2-176, A.2-183, A.2-199, A.2-180, A206, A.2-213, A.2-220, A.2-227, A.2-234, A.2-241, A.2-248, A.2-255, A.2-262, A.2-269, A.2-2276, A.2-283, A.2-290, A.2-297, A.2-304, A.2-311, A.2-318, A.2-325, A.2-332, A.2-339, A.2-346, A.2-353, A.2-360, A.2-367, A.2-374, A.2-381, A.2-397, A.2-404, A.2-411, A.2-418, A.2-419, A.2-4425, A.2-432, A.2-439, A.2-446, A.2-453, A.2-460, A.2-467, A.2-474, A.2-481, A.2-488, A.2-4495, A.2-502, A.2-509, A.2-516, A.2-523, A.2-530, A.2-537, A.2-544, A.2-551, A.2-558, A.2-565, A.2-572, A.2-579, A.2-595, A.2-602, A.2-609, A.2-616, A.2-623, A.2-630, A.2-637, A.2-640, A644, A.2-651, A.2-658, A.2-665, A.2-672, A.2-679, A.2-679, A.2-686, A.2-693, A.2-700, A.2-686, A.2-693, A.2-686, A.2-693, A.2-686, A.2-6707, A.2-714, A.2-721, A.2-728, A.2-735, A.2-742, A.2-749, A.2-756, A.2-763, A.2-770, A.2-777, A.2-793, A.2-800, A.2-807, A.2-814, A.2-821, A.2-828, A.2-835, A.2-842, A.2-849, A.2-8856, A.2-863, A.2-870, A.2-877, A.2-884, A.2-891, A.2-898, A.2-905, A.2-912, A.2-919, A.2-926, A.2-933, A.2-940, A.2-947, A.2-954, A.2-961, A.2-968, A.2-975, A.2-991, A.2-998, A.2-1005, A.2-1012, A.2-1019, A.2-1026, A.2-1033, A.2-1040, A.2-1047, A.2-1054, A.2-1061, A.2-10611068, A.2-1075, A.2-1082, A.2-1089, A.2-1096, A.2-1103, A.2-1110, A.2-1117, A.2-1124, A.2- $1131, A.2\text{-}1138, A.2\text{-}1145, A.2\text{-}1152, A.2\text{-}1159, A.2\text{-}1166 \ \mathrm{and} \ A.2\text{-}1173 \ \mathrm{which} \ \mathrm{differ} \ \mathrm{from} \ \mathrm{the}$ corresponding compounds A-1, A-8, A-15, A-22, A-29, A-36, A-43, A-50, A-57, A-64, A-71, A-78, A-85, A-92, A-99, A-106, A-113, A-120, A-127, A-134, A-141, A-148, A-155, A-162, A-169, A-176, A-183, A-199, A-206, A-213, A-220, A-227, A-234, A-241, A-248, A-255, A-262, A-269, A-276, A-283, A-290, A-297, A-304, A-311, A-318, A-325, A-332, A-339, A-346, A-353, A-360, A-367, A-374, A-381, A-397, A-404, A-411, A-418, A-425, A-432, A-439, A-446, A-453, A-460, A-467, A-474, A-481, A-488, A-495, A-502, A-509, A-516, A-523, A-530, A-537, A-544, A-551, A-558, A-565, A-572, A-579, A-595, A-602, A-609, A-616, A-623, A-630, A-637, A-644, A-651, A-658, A-665, A-672, A-679, A-679, A-686, A-693, A-700, A-707, A-714, A-721, A-728, A-735, A-742, A-749, A-756, A-763, A-770, A-777, A-793, A-800, A-807, A-814, A-821, A-828, A-835, A-842, A-849, A-856, A-863, A-870, A-877, A-884, A-891, A-898, A-905, A-912, A-919, A-926, A-933, A-940, A-947, A-954, A-961, A-968, A-975, A-991, A-998, A-1005, A-1012, A-1019, A-101A-1026, A-1033, A-1040, A-1047, A-1054, A-1061, A-1068, A-1075, A-1082, A-1089, A-1096, A-1103, A-1110, A-1117, A-1124, A-1131, A-1138, A-1145, A-1152, A-1159, A-1166 and A-1173 only in that R^3 is Cl.

[0265] The compounds I and their agriculturally useful salts are suitable, both as isomer mixtures and in the form of the pure isomers, as herbicides. They are suitable as such or as an appropriately formulated composition. The herbicidal compositions comprising the compound I, in particular the preferred aspects thereof, control vegetation on non-crop areas very efficiently, especially at high rates of application. They act against broad-leaved weeds and weed grasses in crops such as wheat, rice, corn, soybeans and cotton without causing any significant damage to the crop plants. This effect is mainly observed at low rates of application.

[0266] Depending on the application method in question, the compounds I, in particular the preferred aspects thereof, or compositions comprising them can additionally be employed in a further number of crop plants for eliminating unwanted plants. Examples of suitable crops are the following:

[0267] Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Avena sativa, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Brassica oleracea, Brassica nigra, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus

limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N. rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pistacia vera, Pisum sativum, Prunus avium, Prunus persica, Pvrus communis, Prunus armeniaca, Prunus cerasus, Prunus dulcis and Prunus domestica, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Sinapis alba, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticale, Triticum durum, Vicia faba, Vitis vinifera, Zea mays.

[0268] The term "crop plants" also includes plants which have been modified by breeding, mutagenesis or genetic engineering. Genetically modified plants are plants whose genetic material has been modified in a manner which does not occur under natural conditions by crossing, mutations or natural recombination (i.e. reassembly of the genetic information). Here, in general, one or more genes are integrated into the genetic material of the plant to improve the properties of the plant.

[0269] Accordingly, the term "crop plants" also includes plants which, by breeding and genetic engineering, have acquired tolerance to certain classes of herbicides, such as hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors, acetolactate synthase (ALS) inhibitors, such as, for example, sulfonylureas (EP-A 257 993, US 5,013,659) or imidazolinones (see, for example, U.S. Pat. No. 6,222,100, WO 01/82685, WO 00/26390, WO 97/41218, WO 98/02526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/14357, WO 03/13225, WO 03/14356, WO 04/16073), enolpyruvylshikimate 3-phosphate synthase (EPSPS) inhibitors, such as, for example, glyphosate (see, for example, WO 92/00377), glutamine synthetase (GS) inhibitors, such as, for example, glufosinate (see, for example, EP-A 242 236, EP-A 242 246), or oxynil herbicides (see, for example, U.S. Pat. No. 5,559, 024).

[0270] Numerous crop plants, for example Clearfield® oilseed rape, tolerant to imidazolinones, for example imazamox, have been generated with the aid of classic breeding methods (mutagenesis). Crop plants such as soybeans, cotton, corn, beet and oilseed rape, resistant to glyphosate or glufosinate, which are available under the tradenames RoundupReady® (glyphosate) and Liberty Link® (glufosinate) have been generated with the aid of genetic engineering methods.

[0271] Accordingly, the term "crop plants" also includes plants which, with the aid of genetic engineering, produce one or more toxins, for example those of the bacterial strain *Bacillus* ssp. Toxins which are produced by such genetically modified plants include, for example, insecticidal proteins of *Bacillus* spp., in particular *B. thuringiensis*, such as the endotoxins Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1, Cry9c, Cry34Ab1 or Cry35Ab1; or vegetative insecticidal proteins (VIPs), for example VIP1, VIP2, VIP3, or VIP3A; insecticidal proteins of nematode-colonizing bacteria, for example *Photorhabdus* spp. or *Xenorhabdus* spp.; toxins of animal organisms, for example wasp, spider or scorpion toxins; fungal toxins, for example from Strepto-

mycetes; plant lectins, for example from peas or barley; agglutinins; proteinase inhibitors, for example trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors, ribosome-inactivating proteins (RIPs), for example ricin, corn-RIP, abrin, luffin, saporin or bryodin; steroid-metabolizing enzymes, for example 3-hydroxysteroid oxidase, ecdysteroid-IDP glycosyl transferase, cholesterol oxidase, ecdysone inhibitors, or HMG-CoA reductase; ion channel blockers, for example inhibitors of sodium channels or calcium channels; juvenile hormone esterase; receptors of the diuretic hormone (helicokinin receptors); stilbene synthase, bibenzyl synthase, chitinases and glucanases. In the plants, these toxins may also be produced as pretoxins, hybrid proteins or truncated or otherwise modified proteins. Hybrid proteins are characterized by a novel combination of different protein domains (see, for example, WO 2002/015701). Further examples of such toxins or genetically modified plants which produce these toxins are disclosed in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/018810 and WO 03/052073. The methods for producing these genetically modified plants are known to the person skilled in the art and disclosed, for example, in the publications mentioned above. Numerous of the toxins mentioned above bestow, upon the plants by which they are produced, tolerance to pests from all taxonomic classes of arthropods, in particular to beetles (Coeleropta), dipterans (Diptera) and butterflies (Lepidoptera) and to nematodes (Nematoda).

[0272] Genetically modified plants which produce one or more genes coding for insecticidal toxins are described, for example, in the publications mentioned above, and some of them are commercially available, such as, for example, Yield-Gard® (corn varieties producing the toxin Cry1Ab), Yield-Gard® Plus (corn varieties which produce the toxins Cry1Ab and Cry3Bb1), Starlink® (corn varieties which produce the toxin Cry9c), Herculex® RW (corn varieties which produce the toxins Cry34Ab1, Cry35Ab1 and the enzyme phosphinothricin-N-acetyltransferase [PAT]); NuCOTN® 33B (cotton varieties which produce the toxin Cry1Ac), Bollgard® I (cotton varieties which produce the toxin Cry1Ac), Bollgard® II (cotton varieties which produce the toxins Cry1Ac and Cry2Ab2); VIPCOT® (cotton varieties which produce a VIP toxin); NewLeaf® (potato varieties which produce the toxin Cry3A); Bt-Xtra®, NatureGard®, KnockOut®, BiteGard®, Protecta®, Bt11 (for example Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France (corn varieties which produce the toxin Cry1Ab and the PAT enyzme), MIR604 from Syngenta Seeds SAS, France (corn varieties which produce a modified version of the toxin Cry3A, see WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn varieties which produce the toxin Cry3Bb1), IPC 531 from Monsanto Europe S.A., Belgium (cotton varieties which produce a modified version of the toxin Cry1Ac) and 1507 from Pioneer Overseas Corporation, Belgium (corn varieties which produce the toxin Cry1F and the PAT enzyme).

[0273] Accordingly, the term "crop plants" also includes plants which, with the aid of genetic engineering, produce one or more proteins which are more robust or have increased resistance to bacterial, viral or fungal pathogens, such as, for example, pathogenesis-related proteins (PR proteins, see EP-A 392 225), resistance proteins (for example potato varieties producing two resistance genes against Phytophthora infestans from the wild Mexican potato Solanum bulb-

ocastanum) or T4 lysozyme (for example potato cultivars which, by producing this protein, are resistant to bacteria such as *Erwinia amylvora*).

[0274] Accordingly, the term "crop plants" also includes plants whose productivity has been improved with the aid of genetic engineering methods, for example by enhancing the potential yield (for example biomass, grain yield, starch, oil or protein content), tolerance to drought, salt or other limiting environmental factors or resistance to pests and fungal, bacterial and viral pathogens.

[0275] The term "crop plants" also includes plants whose ingredients have been modified with the aid of genetic engineering methods in particular for improving human or animal diet, for example by oil plants producing health-promoting long-chain omega 3 fatty acids or monounsaturated omega 9 fatty acids (for example Nexera® oilseed rape).

[0276] The term "crop plants" also includes plants which have been modified with the aid of genetic engineering methods for improving the production of raw materials, for example by increasing the amylopectin content of potatoes (Amflora® potato).

[0277] Furthermore, it has been found that the compounds of the formula I are also suitable for the defoliation and/or desiccation of plant parts, for which crop plants such as cotton, potato, oilseed rape, sunflower, soybean or field beans, in particular cotton, are suitable. In this regard, there have been found compositions for the desiccation and/or defoliation of plants, processes for preparing these compositions and methods for desiccating and/or defoliating plants using the compounds of the formula I.

[0278] As desiccants, the compounds of the formula I are particularly suitable for desiccating the above-ground parts of crop plants such as potato, oilseed rape, sunflower and soybean, but also cereals. This makes possible the fully mechanical harvesting of these important crop plants.

[0279] Also of economic interest is to facilitate harvesting, which is made possible by concentrating within a certain period of time the dehiscence, or reduction of adhesion to the tree, in citrus fruit, olives and other species and varieties of pomaceous fruit, stone fruit and nuts. The same mechanism, i.e. the promotion of the development of abscission tissue between fruit part or leaf part and shoot part of the plants is also essential for the readily controllable defoliation of useful plants, in particular cotton.

[0280] Moreover, a shortening of the time interval in which the individual cotton plants mature leads to an increased fiber quality after harvesting.

[0281] The compounds I, or the herbicidal compositions comprising the compounds I, can be used, for example, in the form of ready-to-spray aqueous solutions, powders, suspensions, also highly concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for broadcasting, or granules, by means of spraying, atomizing, dusting, spreading, watering or treatment of the seed or mixing with the seed. The use forms depend on the intended purpose; in each case, they should ensure the finest possible distribution of the active ingredients according to the invention.

[0282] The herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula I or an agriculturally useful salt of I, and auxiliaries which are customary for the formulation of crop protection agents.

[0283] Examples of auxiliaries customary for the formulation of crop protection agents are inert auxiliaries, solid carriers, surfactants (such as dispersants, protective colloids, emulsifiers, wetting agents and tackifiers), organic and inorganic thickeners, bactericides, antifreeze agents, antifoams, if appropriate colorants and, for seed formulations, adhesives.

[0284] Examples of thickeners (i.e. compounds which impart to the formulation modified flow properties, i.e. high viscosity in the state of rest and low viscosity in motion) are polysaccharides, such as xanthan gum (Kelzan® from Kelco), Rhodopol® 23 (Rhone Poulenc) or Veegum® (from R. T. Vanderbilt), and also organic and inorganic sheet minerals, such as

[0285] Attaclay® (from Engelhardt).

[0286] Examples of antifoams are silicone emulsions (such as, for example, Silikon® SRE, Wacker or Rhodorsil® from Rhodia), long-chain alcohols, fatty acids, salts of fatty acids, organofluorine compounds and mixtures thereof.

[0287] Bactericides can be added for stabilizing the aqueous herbicidal formulation. Examples of bactericides are bactericides based on diclorophen and benzyl alcohol hemiformal (Proxel® from ICI or Acticide® RS from Thor Chemie and Kathon® MK from Rohm & Haas), and also isothiazolinone derivates, such as alkylisothiazolinones and benzisothiazolinones (Acticide MBS from Thor Chemie).

[0288] Examples of antifreeze agents are ethylene glycol, propylene glycol, urea or glycerol.

[0289] Examples of colorants are both sparingly water-soluble pigments and water-soluble dyes. Examples which may be mentioned are the dyes known under the names Rhodamin B, C.I. Pigment Red 112 and C.I. Solvent Red 1, and also pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48:1, pigment red 57:1, pigment red 53:1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.

[0290] Examples of adhesives are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.

[0291] Suitable inert auxiliaries are, for example, the following:

[0292] mineral oil fractions of medium to high boiling point, such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example paraffin, tetrahydronaphthalene, alkylated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone or strongly polar solvents, for example amines such as N-methylpyrrolidone, and water.

[0293] Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate and magnesium oxide, ground synthetic materials, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate and ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders, or other solid carriers.

[0294] Suitable surfactants (adjuvants, wetting agents, tackifiers, dispersants and also emulsifiers) are the alkali metal salts, alkaline earth metal salts and ammonium salts of aromatic sulfonic acids, for example lignosulfonic acids (e.g. Borrespers-types, Borregaard), phenolsulfonic acids, naphthalenesulfonic acids (Morwet types, Akzo Nobel) and dibutylnaphthalenesulfonic acid (Nekal types, BASF SE), and of fatty acids, alkyl- and alkylarylsulfonates, alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and also of fatty alcohol glycol ethers, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene or of the naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl or tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignosulfite waste liquors and proteins, denatured proteins, polysaccharides (e.g. methylcellulose), hydrophobically modified starches, polyvinyl alcohol (Mowiol types Clariant), polycarboxylates (BASF SE, Sokalan types), polyalkoxylates, polyvinylamine (BASF SE, Lupamine types), polyethyleneimine (BASF SE, Lupasol types), polyvinylpyrrolidone and copolymers thereof.

[0295] Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active ingredients together with a solid carrier.

[0296] Granules, for example coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers.

[0297] Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the compounds of the formula I or la, either as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetting agent, tackifier, dispersant or emulsifier. Alternatively, it is also possible to prepare concentrates comprising active substance, wetting agent, tackifier, dispersant or emulsifier and, if desired, solvent or oil, which are suitable for dilution with water.

[0298] The concentrations of the compounds of the formula I in the ready-to-use preparations can be varied within wide ranges. In general, the formulations comprise from 0.001 to 98% by weight, preferably 0.01 to 95% by weight of at least one active compound. The active compounds are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to NMR spectrum).

[0299] The formulations or ready-to-use preparations may also comprise acids, bases or buffer systems, suitable examples being phosphoric acid or sulfuric acid, or urea or ammonia.

[0300] The compounds I of the invention can for example be formulated as follows:

[0301] 1. Products for Dilution with Water

[0302] A Water-Soluble Concentrates

[0303] 10 parts by weight of active compound are dissolved in 90 parts by weight of water or a water-soluble solvent. As an alternative, wetters or other adjuvants are added. The active compound dissolves upon dilution with water. This gives a formulation with an active compound content of 10% by weight.

[0304] B Dispersible Concentrates

[0305] 20 parts by weight of active compound are dissolved in 70 parts by weight of cyclohexanone with addition of 10 parts by weight of a dispersant, for example polyvinylpyrrolidone. Dilution with water gives a dispersion. The active compound content is 20% by weight.

[0306] C Emulsifiable Concentrates

[0307] 15 parts by weight of active compound are dissolved in 75 parts by weight of an organic solvent (e.g. alkylaromatics) with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). Dilution with water gives an emulsion. The formulation has an active compound content of 15% by weight.

[0308] D Emulsions

[0309] 25 parts by weight of active compound are dissolved in 35 parts by weight of an organic solvent (e.g. alkylaromatics) with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). This mixture is introduced into 30 parts by weight of water by means of an emulsifier (e.g. Ultraturrax) and made into a homogeneous emulsion. Dilution with water gives an emulsion. The formulation has an active compound content of 25% by weight.

[0310] E Suspensions

[0311] In an agitated ball mill, 20 parts by weight of active compound are comminuted with addition of 10 parts by weight of dispersants and wetters and 70 parts by weight of water or an organic solvent to give a fine active compound suspension. Dilution with water gives a stable suspension of the active compound. The active compound content in the formulation is 20% by weight.

[0312] F Water-Dispersible Granules and Water-Soluble Granules

[0313] 50 parts by weight of active compound are ground finely with addition of 50 parts by weight of dispersants and wetters and made into water-dispersible or water-soluble granules by means of technical appliances (for example extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active compound. The formulation has an active compound content of 50% by weight.

[0314] G Water-Dispersible Powders and Water-Soluble Powders

[0315] 75 parts by weight of active compound are ground in a rotor-stator mill with addition of 25 parts by weight of dispersants, wetters and silica gel. Dilution with water gives a stable dispersion or solution of the active compound. The active compound content of the formulation is 75% by weight.

[0316] H Gel Formulations

[0317] In a ball mill, 20 parts by weight of active compound, 10 parts by weight of dispersant, 1 part by weight of gelling agent and 70 parts by weight of water or of an organic solvent are ground to give a fine suspension. Dilution with water gives a stable suspension with active compound content of 20% by weight.

[0318] 2. Products to be Applied Undiluted

[0319] I Dusts

[0320] 5 parts by weight of active compound are ground finely and mixed intimately with 95 parts by weight of finely divided kaolin. This gives a dusting powder with an active compound content of 5% by weight.

[0321] J Granules (GR, FG, GG, MG)

[0322] 0.5 parts by weight of active compound are ground finely and associated with 99.5 parts by weight of carriers. Current methods here are extrusion, spray-drying or the fluidized bed. This gives granules to be applied undiluted with an active compound content of 0.5% by weight.

[0323] K ULV Solutions (UL)

[0324] 10 parts by weight of active compound are dissolved in 90 parts by weight of an organic solvent, for example xylene. This gives a product to be applied undiluted with an active compound content of 10% by weight.

[0325] The compounds I or the herbicidal compositions comprising them can be applied pre- or post-emergence, or together with the seed of a crop plant. It is also possible to apply the herbicidal compositions or active compounds by applying seed, pretreated with the herbicidal compositions or active compounds, of a crop plant. If the active compounds are less well tolerated by certain crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spraying equipment, in such a way that as far as possible they do not come into contact with the leaves of the sensitive crop plants, while the active compounds reach the leaves of undesirable plants growing underneath, or the bare soil surface (post-directed, lay-by).

[0326] In a further embodiment, the compounds of the formula I or the herbicidal compositions can be applied by treating seed.

[0327] The treatment of seed comprises essentially all procedures familiar to the person skilled in the art (seed dressing, seed coating, seed dusting, seed soaking, seed film coating, seed multilayer coating, seed encrusting, seed dripping and seed pelleting) based on the compounds of the formula I according to the invention or the compositions prepared therefrom. Here, the herbicidal compositions can be applied diluted or undiluted.

[0328] The term seed comprises seed of all types, such as, for example, corns, seeds, fruits, tubers, cuttings and similar forms. Here, preferably, the term seed describes corns and seeds.

[0329] The seed used can be seed of the useful plants mentioned above, but also the seed of transgenic plants or plants obtained by customary breeding methods.

[0330] The rates of application of active compound are from 0.001 to 3.0, preferably 0.01 to 1.0, kg/ha of active substance (a.s.), depending on the control target, the season, the target plants and the growth stage. To treat the seed, the compounds I are generally employed in amounts of from 0.001 to 10 kg per 100 kg of seed.

[0331] It may also be advantageous to use the compounds of the formula I in combination with safeners. Safeners are chemical compounds which prevent or reduce damage to useful plants without substantially affecting the herbicidal action of the compounds of the formula I on unwanted plants. They can be used both before sowing (for example in the treatment of seed, or on cuttings or seedlings) and before or after the emergence of the useful plant. The safeners and the compounds of the formula I can be used simultaneously or in succession. Suitable safeners are, for example, (quinolin-8oxy)acetic acids, 1-phenyl-5-haloalkyl-1H-1,2,4-triazole-3carboxylic acids, 1-phenyl-4,5-dihydro-5-alkyl-1H-pyra-4,5-dihydro-5,5-diaryl-3zole-3,5-dicarboxylic acids, isoxazolecarboxylic acids, dichloroacetamides, alphaoximinophenylacetonitriles, acetophenone oximes, 4,6dihalo-2-phenylpyrimidines, N[[4-(aminocarbonyl)phenyl] sulfonyl]-2-benzamides, 1,8-naphthalic anhydride, 2-halo-4-(haloalkyl)-5-thiazolecarboxylic acids, phosphorothiolates and O-phenyl N-alkylcarbamates and their agriculturally useful salts and, provided that they have an acid function, their agriculturally useful derivatives, such as amides, esters and thioesters.

[0332] To broaden the activity spectrum and to obtain synergistic effects, the compounds of the formula I can be mixed and jointly applied with numerous representatives of other herbicidal or growth-regulating groups of active compounds or with safeners. Suitable mixing partners are, for example, 1.2.4-thiadiazoles, 1.3.4-thiadiazoles, amides, aminophosphoric acid and its derivatives, aminotriazoles, anilides, aryloxy/heteroaryloxyalkanoic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-(hetaroyl/aroyl)-1,3-cyclohexanediones, heteroaryl aryl ketones, benzylisoxazolidinones, meta-CF₃-phenyl derivatives, carbamates, quinoline carboxylic acid and its derivatives, chloroacetanilides, cyclohexenone oxime ether derivates, diazines, dichloropropionic acid and its derivatives, dihydrobenzofurans, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and heteroaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, 2-phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid and its derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolecarboxamides, uracils and also phenylpyrazolines and isoxazolines and their derivatives.

[0333] Moreover, it may be useful to apply the compounds I alone or in combination with other herbicides or else also mixed with further crop protection agents, jointly, for example with compositions for controlling pests or phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions which are employed for alleviating nutritional and trace element deficiencies. Other additives such as nonphytotoxic oils and oil concentrates may also be added.

[0334] Examples of herbicides which can be used in combination with the pyridine compounds of the formula I according to the present invention are:

[0335] b1) from the group of the lipid biosynthesis inhibitors:

[0336] alloxydim, alloxydim-sodium, butroxydim, clethodim, clodinafop, clodinafop-propargyl, cycloxydim, cyhalofop, cyhalofop-butyl, diclofop, diclofop-methyl, fenoxaprop, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, haloxyfop, haloxyfop-methyl, haloxyfop-P, haloxyfop-P-methyl, metamifop, pinoxaden, profoxydim, propaquizafop, quizalofop, quizalofop-ethyl, quizalofop-tefuryl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, sethoxydim, tepraloxydim, tralkoxydim, benfuresate, butylate, cycloate, dalapon, dimepiperate, EPTC, esprocarb, ethofumesate, flupropanate, molinate, orbencarb, pebulate, prosulfocarb, TCA, thiobencarb, tiocarbazil, triallate and vernolate;

[0337] b2) from the group of the ALS inhibitors:

[0338] amidosulfuron, azimsulfuron, bensulfuron, bensulfuron-methyl, bispyribac, bispyribac-sodium, chlorimuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cloransulam, cloransulam-methyl, cyclosulfamuron, diclosulam,

ethametsulfuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, florasulam, flucarbazone, flucarbazone-sodium, flucetosulfuron, flumetsulam, flupyrsulfuron, flupyrsulfuron-methyl-sodium, foramsulfuron, halosulfuron, halosulfuron-methyl, imazamethabenz. imazamethabenzmethyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, iodosulfuron-methyl-sodium, mesosulfuron, metosulam, metsulfuron, metsulfuron-methyl, nicosulfuron, orthosulfamuron, oxasulfuron, penoxsulam, primisulfuron, primisulfuron-methyl, propoxycarbazone, propoxycarbazone-sodium, prosulfuron, pyrazosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, pyrimisulfan, pyriftalid, pyriminobac, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, pyroxsulam, rimsulfuron, sulfometuron, sulfometuron-methyl, sulfosulfuron, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, triasulfuron, tribenuron, tribenuron-methyl, trifloxysulfuron, triflusulfuron, triflusulfuron-methyl and tritosulfuron;

[0339] b3) from the group of the photosynthesis inhibitors: [0340] ametryn, amicarbazone, atrazine, bentazone, bentazone-sodium, bromacil, bromofenoxim, bromoxynil and its salts and esters, chlorobromuron, chloridazone, chlorotoluron, chloroxuron, cyanazine, desmedipham, desmetryn, dimefuron, dimethametryn, diquat, diquat-dibromide, diuron, fluometuron, hexazinone, ioxynil and its salts and esters, isoproturon, isouron, karbutilate, lenacil, linuron, metamitron, methabenzthiazuron, metobenzuron, metoxuron, metribuzin, monolinuron, neburon, paraquat, paraquat-dichloride, paraquat-dimetilsulfate, pentanochlor, phenmedipham, phenmedipham-ethyl, prometon, prometryn, propanil, propazine, pyridafol, pyridate, siduron, simazine, simetryn, tebuthiuron, terbacil, terbumeton, terbuthylazine, terbutryn, thidiazuron and trietazine;

[0341] b4) from the group of the protoporphyrinogen-IX oxidase inhibitors:

[0342] acifluorfen, acifluorfen-sodium, azafenidin, bencarbazone, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr, flufenpyr-ethyl, flumiclorac, flumicloracpentyl, flumioxazin, fluoroglycofen, fluoroglycofen-ethyl, fluthiacet, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, 2-chloro-5-[3,6-dihydro-3-methyl-2,6dioxo-4-(trifluoromethyl)-1(2H)-pyrimidinyl]-4-fluoro-N-[(isopropyl)methylsulfamoyl]benzamide (H-1;372137-35-4), ethyl[3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl) phenoxy]-2-pyridyloxy]acetate (H-2; CAS 353292-31-6), N-ethyl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (H-3; CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (H-4; CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (H-5; CAS 452099-05-7), N-tetrahydrofurfuryl-3-(2-chloro-6fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1carboxamide (H-6; CAS 45100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4dione, 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1, 3-dione and 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione;

[0343] b5) from the group of the bleacher herbicides:

[0344] aclonifen, amitrol, beflubutamid, benzobicyclon, benzofenap, clomazone, diflufenican, fluridone, flurochloridone, flurtamone, isoxaflutole, mesotrione, norflurazon, picolinafen, pyrasulfutole, pyrazolynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, topramezone, 4-hydroxy-3-[[2-[(2-methoxyethoxy)methyl]-6-(trifluoromethyl)-3-pyridyl]carbonyl]bicyclo-[3.2.1]oct-3-en-2-one (H-7; CAS 352010-68-5) and 4-(3-trifluoromethylphenoxy)-2-(4-trifluoromethylphenyl)pyrimidine (H-8; CAS 180608-33-7);

[0345] b6) from the group of the EPSP synthase inhibitors: [0346] glyphosate, glyphosate-isopropylammonium and glyphosate-trimesium (sulfosate);

[0347] b7) from the group of the glutamine synthase inhibitors:

[0348] bilanaphos (bialaphos), bilanaphos-sodium, glufosinate and glufosinate-ammonium;

[0349] b8) from the group of the DHP synthase inhibitors: [0350] asulam;

[0351] b9) from the group of the mitose inhibitors:

[0352] amiprophos, amiprophos-methyl, benfluralin, butamiphos, butralin, carbetamide, chlorpropham, chlorthal, chlorthal-dimethyl, dinitramine, dithiopyr, ethalfluralin, fluchloralin, oryzalin, pendimethalin, prodiamine, propham, propyzamide, tebutam, thiazopyr and trifluralin;

[0353] b10) from the group of the VLCFA inhibitors:

[0354] acetochlor, alachlor, anilofos, butachlor, cafenstrole, dimethachlor, dimethanamid, dimethenamid-P, diphenamid, fentrazamide, flufenacet, mefenacet, metazachlor, metolachlor, metolachlor-S, naproanilide, napropamide, pethoxamid, piperophos, pretilachlor, propachlor, propisochlor, pyroxasulfone (KIH-485) and thenylchlor;

[0355] Compounds of the formula 2:

in which the variables have the following meanings:

[0356] Y is phenyl or 5- or 6-membered heteroaryl as defined at the outset, which radicals may be substituted by one to three groups R^{aa} ; R^{21} , R^{22} , R^{23} , R^{24} are H, halogen or C_1 - C_4 -alkyl; X is O or NH; N is 0 or 1.

[0357] Compounds of the formula 2 have in particular the following meanings: Y is

$$R^{25}$$
 $N - R^{26}$ R^{25} $N - R^{26}$

-continued
$$\begin{array}{c} \text{-continued} \\ \\ N \\ \end{array}$$

where # denotes the bond to the skeleton of the molecule; and [0358] R^{21} , R^{22} , R^{23} , R^{24} are H, Cl, F or CH₃; R^{25} is halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl; R^{26} is C_1 - C_4 -alkyl; R^{27} is halogen, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy; R²⁸ is H, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-ha loalkoxy; M is 0, 1, 2 or 3; X is oxygen; N is 0 or 1.

[0359] Preferred compounds of the formula 2 have the following meanings: Y is

R²¹ is H; R²²,R²³ are F; R²⁴ is H or F; X is oxygen; N is 0 or

[0360] Particularly preferred compounds of the formula 2 are:

[0361] 3-[5-(2,2-difluoroethoxy)-1-methyl-3-trifluoromethyl-1H-pyrazol-4-ylmethanesulfonyl]-4-fluoro-5,5dimethyl-4,5-dihydroisoxazole (2-1); 3-{[5-(2,2-difluoroethoxy)-1-methyl-3-trifluoromethyl-1H-pyrazol-4-yl] fluoromethanesulfonyl}-5,5-dimethyl-4,5dihydroisoxazole (2-2); 4-(4-fluoro-5,5-dimethyl-4,5dihydroisoxazole-3-sulfonylmethyl)-2-methyl-5trifluoromethyl-2H-[1,2,3]triazole dimethyl-4,5-dihydroisoxazole-3-sulfonyl)fluoromethyll-2-methyl-5-trifluoromethyl-2H-[1,2,3]triazole (2-4); 4-(5, 5-dimethyl-4,5-dihydroisoxazole-3-sulfonylmethyl)-2methyl-5-trifluoro-methyl-2H-[1,2,3]triazole (2-5); 3-{[5-(2,2-difluoroethoxy)-1-methyl-3-trifluoromethyl-1Hpyrazol-4-yl]difluoromethanesulfonyl}-5,5-dimethyl-4,5dihydroisoxazole (2-6);4-[(5,5-dimethyl-4,5dihydroisoxazole-3-sulfonyl)difluoromethyl]-2-methyl-5-trifluoromethyl-2H-[1,2,3]triazole (2-7); 3-{[5-(2,2-d ifluoroethoxy)-1-methyl-3-trifluoromethyl-1H-pyrazol-4-yl|difluoromethanesulfonyl}-4-fluoro-5,5-dimethyl-4, 5-dihydroisoxazole (2-8); 4-[difluoro-(4-fluoro-5,5-dimethyl-4,5-dihydroisoxazole-3-sulfonyl)methyl]-2-methyl-5-trifluoromethyl-2H-[1,2,3]triazole (2-9);

[0362] b11) from the group of the cellulose biosynthesis inhibitors:

[0363] chlorthiamid, dichlobenil, flupoxam and isoxaben;

[0364] b12) from the group of the decoupler herbicides: [0365] dinoseb, dinoterb and DNOC and its salts;

[0366] b13) from the group of the auxin herbicides:

[0367] 2,4-D and its salts and esters, 2,4-DB and its salts and esters, aminopyralid and its salts such as aminopyralidtris(2-hydroxypropyl)ammonium and its esters, benazolin, benazolin-ethyl, chloramben and its salts and esters, clomeprop, clopyralid and its salts and esters, dicamba and its salts and esters, dichlorprop and its salts and esters, dichlorprop-P and its salts and esters, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, MCPA and its salts and esters, MCPAthioethyl, MCPB and its salts and esters, mecoprop and its salts and esters, mecoprop-P and its salts and esters, picloram and its salts and esters, quinclorac, quinmerac, TBA (2,3,6) and its salts and esters, triclopyr and its salts and esters, and 5,6-dichloro-2-cyclopropyl-4-pyrimidinecarboxylic (H-9; CAS 858956-08-8) and its salts and esters;

[0368] b14) from the group of the auxin transport inhibitors: diflufenzopyr, diflufenzopyr-sodium, naptalam and naptalam-sodium;

[0369] b15) from the group of the other herbicides: bromobutide, chlorflurenol, chlorflurenol-methyl, cinmethylin, cumyluron, dalapon, dazomet, difenzoquat, difenzoquat-metilsulfate, dimethipin, DSMA, dymron, endothal and its salts, etobenzanid, flamprop, flamprop-isopropyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flurenol, flurenol-butyl, flurprimidol, fosamine, fosamine-ammonium, indanofan, maleic hydrazide, mefluidide, metam, methyl azide, methyl bromide, methyl-dymron, methyl iodide, MSMA, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb, quinoclamine, triaziflam, tridiphane and 6-chloro-3-(2-cyclopropyl-6-methylphenoxy)-4-pyridazinol CAS 499223-49-3) and its salts and esters.

[0370] Examples of preferred safeners C are benoxacor, cloquintocet, cyometrinil, cyprosulfamide, dichlormid, dicyclonone, dietholate, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, mephenate, naphthalic anhydride, oxabetrinil, 4-(dichloroacetyl)-1-oxa-4azaspiro[4.5]decane (H-11; MON4660, CAS 71526-07-3) 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (H-12; R-29148, CAS 52836-31-4).

[0371] The active compounds of groups b1) to b15) and the safeners C are known herbicides and safeners, see, for example, The Compendium of Pesticide Common Names (http://www.alanwood.net/pesticides/); B. Hock, C. Fedtke, R. R. Schmidt, Herbizide [Herbicides], Georg Thieme Verlag, Stuttgart, 1995. Further herbicidally active compounds are known from WO 96/26202, WO 97/41116, WO 97/41117, WO 97/41118, WO 01/83459 and WO 2008/074991 and from W. Kramer et al. (ed.) "Modern Crop Protection Compounds", Vol. 1, Wiley VCH, 2007 and the literature quoted therein.

[0372] The invention also relates to compositions in the form of a crop protection composition formulated as a 1-component composition comprising an active compound combination comprising at least one pyridine compound of the formula I and at least one further active compound, preferably selected from the active compounds of groups b1 to b15, and at least one solid or liquid carrier and/or one or more surfactants and, if desired, one or more further auxiliaries customary for crop protection compositions.

[0373] The invention also relates to compositions in the form of a crop protection composition formulated as a 2-component composition comprising a first component comprising at least one pyridine compound of the formula I, a solid or liquid carrier and/or one or more surfactants and a second component comprising at least one further active compound selected from the active compounds of groups b1 to b15, a solid or liquid carrier and/or one or more surfactants, where additionally both components may also comprise further auxiliaries customary for crop protection compositions.

Safener C

[0374] In binary compositions comprising at least one compound of the formula I as component A and at least one herbicide B, the weight ratio of the active compounds A:B is generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1.

[0375] In binary compositions comprising at least one compound of the formula I as component A and at least one safener C, the weight ratio of the active compounds A:C is generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1.

[0376] In ternary compositions comprising both at least one compound of the formula I as component A, at least one herbicide B and at least one safener C, the relative parts by weight of the components A:B are generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1; the weight ratio of the components A:C is generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1; and the weight ratio of the components B:C is generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1. Preferably, the weight ratio of the components A+B to the component C is in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1.

[0377] Examples of particularly preferred compositions according to the invention comprising in each case one individualized compound of the formula I and one mixing partner or a mixing partner combination are given in Table B below. [0378] A further aspect of the invention relates to the compositions B-1 to B-1236 listed in Table B below, where in each case one row of Table B corresponds to a herbicidal composition comprising one of the compounds of the formula I individualized in the above description (component 1) and the further active compound from groups b1) to b15) and/or safener C stated in each case in the row in question (component 2). The active compounds in the compositions described are in each case preferably present in synergistically effective amounts.

TABLE B

	Herbicide(s) B	Safener C
B-1	clodinafop-propargyl	_
B-2	cycloxydim	_
B-3	cyhalofop-butyl	_
B-4	fenoxaprop-P-ethyl	_
B-5	pinoxaden	_
B-6	profoxydim	_
B-7	tepraloxydim	_
B-8	tralkoxydim	_
B-9	esprocarb	_
B-10	prosulfocarb	_
B-11	thiobencarb	_
B-12	triallate	_
B-13	bensulfuron-methyl	_
B-14	bispyribac-sodium	_
B-15	cyclosulfamuron	_

TABLE B-continued

Herbicide(s) B

	Herbicide(s) B	Safener C
B-16	flumetsulam	_
B-17	flupyrsulfuron-methyl-sodium	_
B-18	foramsulfuron	_
B-19	imazamox	_
B-20	imazapic	_
B-21	imazapyr	_
B-22	imazaquin	_
B-23 B-24	imazethapyr	_
B-24 B-25	imazosulfuron iodosulfuron-methyl-sodium	
B-26	mesosulfuron	
B-27	nicosulfuron	_
B-28	penoxsulam	_
B-29	propoxycarbazone-sodium	_
B-30	pyrazosulfuron-ethyl	_
B-31	pyroxsulam	_
B-32 B-33	rimsulfuron sulfosulfuron	_
B-33	thiencarbazone-methyl	_
B-35	tritosulfuron	_
B-36	2,4-D and its salts and esters	_
B-37	aminopyralid and its salts and esters	_
B-38	clopyralid and its salts and esters	_
B-39	dicamba and its salts and esters	_
B-40	fluroxypyr-meptyl	_
B-41	quinclorac	_
B-42 B-43	quinmerac H-9	
B-44	diflufenzopyr	_
B-45	diflufenzopyr-sodium	_
B-46	clomazone	_ _
B-47	diflufenican	_
B-48	fluorochloridone	_
B-49	isoxaflutol	_
B-50	mesotrione	_
B-51	picolinafen	_
B-52 B-53	sulcotrione tefuryltrione	
B-54	tembotrione	_
B-55	topramezone	_
B-56	H-7	_
B-57	atrazine	_
B-58	diuron	_
B-59	fluometuron	_
B-60	hexazinone	_
B-61 B-62	isoproturon metribuzin	_
B-63	propanil	
B-64	terbuthylazine	_
B-65	paraquat dichloride	_
B-66	flumioxazin	_
B-67	oxyfluorfen	_
B-68	saflufenacil	_
B-69	sulfentrazone	_
B-70 B-71	H-1 H-2	_
B-71 B-72	glyphosate	
B-73	glyphosate-isopropylammonium	_
B-74	glyphosate-trimesium (sulfosate)	_
B-75	glufosinate	_
B-76	glufosinate-ammonium	_
B-77	pendimethalin	_
B-78	trifluralin	_
B-79 B-80	acetochlor	_
B-80 B-81	cafenstrole dimethenamid-P	_
B-81	fentrazamide	_
B-83	flufenacet	_
B-84	mefenacet	_
B-85	metazachlor	_
B-86	metolachlor-S	_
B-87	pyroxasulfone	_
B-88	isoxaben	_
B-89 B-90	dymron	_
D-90	indanofan	_

TABLE B-continued

TABLE B-continued

	Herbicide(s) B	Safener C		Herbicide(s) B	Safener C
B-91	oxaziclomefone		B-166	bispyribac-sodium	benoxacor
B-92	triaziflam	_	B-167	cyclosulfamuron	benoxacor
B-93	chlorotoluron	_	B-168	flumetsulam	benoxacor
B-94	atrazine + H-1	_	B-169	flupyrsulfuron-methyl-sodium	benoxacor
B-95	atrazine + glyphosate	_	B-170	foramsulfuron	benoxacor
B-96	atrazine + mesotrione	_	B-171	imazamox	benoxacor
B-97	atrazine + nicosulfuron	_	B-172	imazapic	benoxacor
B-98	atrazine + tembotrione	_	B-173	imazapyr	benoxacor
B-99	atrazine + topramezone	_	B-174	imazaquin	benoxacor
B-100	clomazone + glyphosate	_	B-175	imazethapyr	benoxacor
B-101	diflufenican + clodinafop-propargyl	_	B-176	imazosulfuron	benoxacor
B-102	diflufenican + fenoxaprop-P-ethyl	_	B-177	iodosulfuron-methyl-sodium	benoxacor
B-103	diflufenican + flupyrsulfuron-methyl-sodium	_	B-178	mesosulfuron	benoxacor
B-104	diflufenican + glyphosate	_	B-179	nicosulfuron	benoxacor
B-105	diflufenican + mesosulfuron-methyl	_	B-180	penoxsulam	benoxacor
B-106	diflufenican + pinoxaden	_	B-181	propoxycarbazone-sodium	benoxacor
B-107	diflufenican + pyroxsulam	_	B-182	pyrazosulfuron-ethyl	benoxacor
B-108	flumetsulam + glyphosate	_	B-183	pyroxsulam	benoxacor
B-109	flumioxazin + glyphosate	_	B-184	rimsulfuron	benoxacor
B-110	imazapic + glyphosate	_	B-185	sulfosulfuron	benoxacor
B-111	imazethapyr + glyphosate	_	B-186	thiencarbazone-methyl	benoxacor
B-112	isoxaflutol + H-1	_	B-187	tritosulfuron	benoxacor
B-113	isoxaflutol + glyphosate	_	B-188	2,4-D and its salts and esters	benoxacor
B-114	metazachlor + H-1	_	B-189	aminopyralid and its salts and esters	benoxacor
B-115	metazachlor + glyphosate	_	B-190	clopyralid and its salts and esters	benoxacor
B-116	metazachlor + mesotrione	_	B-191	dicamba and its salts and esters	benoxacor
B-117	metazachlor + nicosulfuron	_	B-192	fluroxypyr-meptyl	benoxacor
B-118	metazachlor + terbuthylazine	_	B-193	quinclorac	benoxacor
B-119	metazachlor + topramezone	_	B-194	quinmerac	benoxacor
B-120	metribuzin + glyphosate	_	B-195	H-9	benoxacor
B-121	pendimethalin + H-1	_	B-196	diflufenzopyr	benoxacor
B-122	pendimethalin + clodinafop-propargyl	_	B-197	diflufenzopyr-sodium	benoxacor
B-123	pendimethalin + fenoxaprop-P-ethyl	_	B-198	clomazone	benoxacor
B-124	pendimethalin + flupyrsulfuron-methyl-sodium	_	B-199	diflufenican	benoxacor
B-125	pendimethalin + glyphosate	_	B-200	fluorochloridone	benoxacor
B-126	pendimethalin + mesosulfuron-methyl	_	B-201	isoxaflutol	benoxacor
B-127	pendimethalin + mesotrione	_	B-202	mesotrione	benoxacor
B-128	pendimethalin + nicosulfuron	_	B-203	picolinafen	benoxacor
B-129	pendimethalin + pinoxaden	_	B-204	sulcotrione	benoxacor
B-130	pendimethalin + pyroxsulam	_	B-205	tefuryltrione	benoxacor
B-131	pendimethalin + tembotrione	_	B-206	tembotrione	benoxacor
B-132	pendimethalin + topramezone	_	B-207	topramezone	benoxacor
B-133	pyroxasulfone + tembotrione	_	B-208	H-7	benoxacor
B-134	pyroxasulfone + topramezone	_	B-209	atrazine	benoxacor
B-135	sulfentrazone + glyphosate	_	B-210	diuron	benoxacor
B-136	terbuthylazine + H-1	_	B-211	fluometuron	benoxacor
B-137	terbuthylazine + foramsulfuron	_	B-212	hexazinone	benoxacor
B-138	terbuthylazine + glyphosate	_	B-213	isoproturon	benoxacor
B-139	terbuthylazine + mesotrione	_	B-214	metribuzin	benoxacor
B-140	terbuthylazine + nicosulfuron	_	B-215	propanil	benoxacor
B-141	terbuthylazine + tembotrione	_	B-216	terbuthylazine	benoxacor
B-142	terbuthylazine + topramezone	_	B-217	paraquat dichloride	benoxacor
B-143	trifluralin + glyphosate	_	B-218	flumioxazin	benoxacor
B-144	_	benoxacor	B-219	oxyfluorfen	benoxacor
B-145	_	cloquintocet	B-220	saflufenacil	benoxacor
B-146	_	cyprosulfamide	B-221	sulfentrazone	benoxacor
B-147	_	dichlormid	B-222	H-1	benoxacor
B-148	_	fenchlorazole	B-223	H-2	benoxacor
B-149	_	isoxadifen	B-224	glyphosate	benoxacor
B-150	_	mefenpyr	B-225	glyphosate-isopropylammonium	benoxacor
B-151	_	H-11	B-226	glyphosate-trimesium (sulfosate)	benoxacor
B-152	_	H-12	B-227	glufosinate	benoxacor
B-153	clodinafop-propargyl	benoxacor	B-228	glufosinate-ammonium	benoxacor
B-154	cycloxydim	benoxacor	B-229	pendimethalin	benoxacor
B-155	cyhalofop-butyl	benoxacor	B-230	trifluralin	benoxacor
B-156	fenoxaprop-P-ethyl	benoxacor	B-231	acetochlor	benoxacor
B-157	pinoxaden	benoxacor	B-232	cafenstrole	benoxacor
B-158	profoxydim	benoxacor	B-233	dimethenamid-P	benoxacor
B-159	tepraloxydim	benoxacor	B-234	fentrazamide	benoxacor
B-160	tralkoxydim	benoxacor	B-235	flufenacet	benoxacor
	esprocarb	benoxacor	B-236	mefenacet	benoxacor
B-101					
B-161 B-162	prosulfocarb	benoxacor	B-237	metazachlor	benoxacor
		benoxacor benoxacor	B-237 B-238	metazachlor metolachlor-S	benoxacor benoxacor
B-162	prosulfocarb				

TABLE B-continued

TABLE B-continued

	Herbicide(s) B	Safener C		Herbicide(s) B	Safener C
B-241	dymron	benoxacor	B-316	imazaquin	cloquintocet
B-242	indanofan	benoxacor	B-317	imazethapyr	cloquintocet
B-243	oxaziclomefone	benoxacor	B-318	imazosulfuron	cloquintocet
B-244	triaziflam	benoxacor	B-319	iodosulfuron-methyl-sodium	cloquintocet
B-245	atrazine + H-1	benoxacor	B-320	mesosulfuron	cloquintocet
B-246	atrazine + glyphosate	benoxacor	B-321	nicosulfuron	cloquintocet
B-247	atrazine + mesotrione	benoxacor	B-322	penoxsulam	cloquintocet
B-248	atrazine + nicosulfuron	benoxacor	B-323	propoxycarbazone-sodium	cloquintocet
B-249	atrazine + tembotrione	benoxacor	B-324	pyrazosulfuron-ethyl	cloquintocet
B-250 B-251	atrazine + topramezone clomazone + glyphosate	benoxacor benoxacor	B-325 B-326	pyroxsulam rimsulfuron	cloquintocet
B-251 B-252	diflufenican + clodinafop-propargyl	benoxacor	B-320 B-327	sulfosulfuron	cloquintocet cloquintocet
B-252 B-253	diflufenican + fenoxaprop-P-ethyl	benoxacor	B-327	thiencarbazone-methyl	cloquintocet
B-255	diffurencean + flupyrsulfuron-methyl-sodium	benoxacor	B-328 B-329	tritosulfuron	cloquintocet
B-255	diffufenican + glyphosate	benoxacor	B-320	2,4-D and its salts and esters	cloquintocet
B-256	diflufenican + mesosulfuron-methyl	benoxacor	B-331	aminopyralid and its salts and esters	cloquintocet
B-257	diflufenican + pinoxaden	benoxacor	B-332	clopyralid and its salts and esters	cloquintocet
B-258	diflufenican + pyroxsulam	benoxacor	B-333	dicamba and its salts and esters	cloquintocet
B-259	flumetsulam + glyphosate	benoxacor	B-334	fluroxypyr-meptyl	cloquintocet
B-260	flumioxazin + glyphosate	benoxacor	B-335	quinclorac	cloquintocet
B-261	imazapic + glyphosate	benoxacor	B-336	quinmerac	cloquintocet
B-262	imazethapyr + glyphosate	benoxacor	B-330 B-337	H-9	cloquintocet
B-263	isoxaflutol + H-1	benoxacor	B-338	diflufenzopyr	cloquintocet
B-264	isoxaflutol + fl-1	benoxacor	B-339	diflufenzopyr-sodium	cloquintocet
B-265	metazachlor + H-1	benoxacor	B-340	clomazone	cloquintocet
B-266	metazachlor + glyphosate	benoxacor	B-341	diflufenican	cloquintocet
B-267	metazachlor + mesotrione	benoxacor	B-342	fluorochloridone	cloquintocet
B-268	metazachlor + nicosulfuron	benoxacor	B-343	isoxaflutol	cloquintocet
B-269	metazachlor + terbuthylazine	benoxacor	B-344	mesotrione	cloquintocet
B-270	metazachlor + topramezone	benoxacor	B-345	picolinafen	cloquintocet
B-271	metribuzin + glyphosate	benoxacor	B-346	sulcotrione	cloquintocet
B-272	pendimethalin + H-1	benoxacor	B-347	tefuryltrione	cloquintocet
B-273	pendimethalin + clodinafop-propargyl	benoxacor	B-348	tembotrione	cloquintocet
B-274	pendimethalin + fenoxaprop-P-ethyl	benoxacor	B-349	topramezone	cloquintocet
B-275	pendimethalin + flupyrsulfuron-methyl-sodium	benoxacor	B-350	H-7	cloquintocet
B-276	pendimethalin + glyphosate	benoxacor	B-351	atrazine	cloquintocet
B-277	pendimethalin + mesosulfuron-methyl	benoxacor	B-352	diuron	cloquintocet
B-278	pendimethalin + mesotrione	benoxacor	B-353	fluometuron	cloquintocet
B-279	pendimethalin + nicosulfuron	benoxacor	B-354	hexazinone	cloquintocet
B-280	pendimethalin + pinoxaden	benoxacor	B-355	isoproturon	cloquintocet
B-281	pendimethalin + pyroxsulam	benoxacor	B-356	metribuzin	cloquintocet
B-282	pendimethalin + tembotrione	benoxacor	B-357	propanil	cloquintocet
B-283	pendimethalin + topramezone	benoxacor	B-358	terbuthylazine	cloquintocet
B-284	pyroxasulfone + tembotrione	benoxacor	B-359	paraquat dichloride	cloquintocet
B-285	pyroxasulfone + topramezone	benoxacor	B-360	flumioxazin	cloquintocet
B-286	sulfentrazone + glyphosate	benoxacor	B-361	oxyfluorfen	cloquintocet
B-287	terbuthylazine + H-1	benoxacor	B-362	saflufenacil	cloquintocet
B-288	terbuthylazine + foramsulfuron	benoxacor	B-363	sulfentrazone	cloquintocet
B-289	terbuthylazine + glyphosate	benoxacor	B-364	H-1	cloquintocet
B-290	terbuthylazine + mesotrione	benoxacor	B-365	H-2	cloquintocet
B-291	terbuthylazine + nicosulfuron	benoxacor	B-366	glyphosate	cloquintocet
B-292	terbuthylazine + tembotrione	benoxacor	B-367	glyphosate-isopropylammonium	cloquintocet
B-293	terbuthylazine + topramezone	benoxacor	B-368	glyphosate-trimesium (sulfosate)	cloquintocet
B-294	trifluralin + glyphosate	benoxacor	B-369	glufosinate	cloquintocet
B-295	clodinafop-propargyl	cloquintocet	B-370	glufosinate-ammonium	cloquintocet
B-296	cycloxydim	cloquintocet	B-371	pendimethalin	cloquintocet
B-297	cyhalofop-butyl	cloquintocet	B-372	trifluralin	cloquintocet
B-298	fenoxaprop-P-ethyl	cloquintocet	B-373	acetochlor	cloquintocet
B-299	pinoxaden	cloquintocet	B-374	cafenstrole	cloquintocet
B-300	profoxydim	cloquintocet	B-375	dimethenamid-P	cloquintocet
B-301	tepraloxydim	cloquintocet	B-376	fentrazamide	cloquintocet
B-302	tralkoxydim	cloquintocet	B-377	flufenacet	cloquintocet
B-303	esprocarb	cloquintocet	B-378	mefenacet	cloquintocet
B-304	prosulfocarb	cloquintocet	B-379	metazachlor	cloquintocet
B-305	thiobencarb	cloquintocet	B-380	metolachlor-S	cloquintocet
B-306	triallate	cloquintocet	B-381	pyroxasulfone	cloquintocet
B-307	bensulfuron-methyl	cloquintocet	B-382	isoxaben	cloquintocet
B-308	bispyribac-sodium	cloquintocet	B-383	dymron	cloquintocet
B-309	cyclosulfamuron	cloquintocet	B-384	indanofan	cloquintocet
B-310	flumetsulam	cloquintocet	B-385	oxaziclomefone	cloquintocet
B-311	flupyrsulfuron-methyl-sodium	cloquintocet	B-386	triaziflam	cloquintocet
B-312	foramsulfuron	cloquintocet	B-387	atrazine + H-1	cloquintocet
B-313	imazamox	cloquintocet	B-388	atrazine + glyphosate	cloquintocet
	imazamox imazapic	cloquintocet	B-389	atrazine + gryphosate atrazine + mesotrione	cloquintocet

TABLE B-continued

TABLE B-continued

	Herbicide(s) B	Safener C		Herbicide(s) B	Safener C
B-391	atrazine + tembotrione	cloquintocet	B-466	pyrazosulfuron-ethyl	dichlormid
B-392	atrazine + topramezone	cloquintocet	B-467	pyroxsulam	dichlormid
B-393	clomazone + glyphosate	cloquintocet	B-468	rimsulfuron	dichlormid
B-394	diflufenican + clodinafop-propargyl	cloquintocet	B-469	sulfosulfuron	dichlormid
B-395	diflufenican + fenoxaprop-p-ethyl	cloquintocet	B-470	thiencarbazone-methyl	dichlormid
B-396	diflufenican + flupyrsulfuron-methyl-sodium	cloquintocet	B-471	tritosulfuron	dichlormid
B-397	diflufenican + glyphosate	cloquintocet	B-472	2,4-D and its salts and esters	dichlormid
B-398	diflufenican + mesosulfuron-methyl	cloquintocet	B-473	aminopyralid and its salts and esters	dichlormid
B-399	diflufenican + pinoxaden	cloquintocet	B-474	clopyralid and its salts and esters	dichlormid
B-400	diflufenican + pyroxsulam	cloquintocet	B-475	dicamba and its salts and esters	dichlormid
B-401	flumetsulam + glyphosate	cloquintocet	B-476	fluroxypyr-meptyl	dichlormid
B-402	flumioxazin + glyphosate	cloquintocet	B-477	quinclorac	dichlormid
B-403	imazapic + glyphosate	cloquintocet	B-478	quinmerac	dichlormid
B-404	imazethapyr + glyphosate	cloquintocet	B-479	H-9	dichlormid
B-405	isoxaflutol + H-1	cloquintocet	B-480	diflufenzopyr	dichlormid
B-406	isoxaflutol + glyphosate	cloquintocet	B-481	diflufenzopyr-sodium	dichlormid
B-407	metazachlor + H-1	cloquintocet	B-482	clomazone	dichlormid
B-408	metazachlor + glyphosate	cloquintocet	B-483	diflufenican	dichlormid
B-409	metazachlor + mesotrione	cloquintocet	B-484	fluorochloridone	dichlormid
B-410	metazachlor + nicosulfuron	cloquintocet	B-485	isoxaflutol	dichlormid
B-411	metazachlor + terbuthylazine	cloquintocet	B-486	mesotrione	dichlormid
B-412	metazachlor + topramezone	cloquintocet	B-487	picolinafen	dichlormid
B-413	metribuzin + glyphosate	cloquintocet	B-488	sulcotrione	dichlormid
B-414	pendimethalin + H-1	cloquintocet	B-489	tefuryltrione	dichlormid
B-415	pendimethalin + clodinafop-propargyl	cloquintocet	B-490	tembotrione	dichlormid
B-416	pendimethalin + fenoxaprop-P-ethyl	cloquintocet	B-491	topramezone	dichlormid
B-417	pendimethalin + flupyrsulfuron-methyl-sodium	cloquintocet	B-492	H-7	dichlormid
B-418	pendimethalin + glyphosate	cloquintocet	B-493	atrazine	dichlormid
B-419	pendimethalin + mesosulfuron-methyl	cloquintocet	B-494	diuron	dichlormid
B-420	pendimethalin + mesotrione	cloquintocet	B-495	fluometuron	dichlormid
B-420	pendimethalin + nicosulfuron	cloquintocet	B-496	hexazinone	dichlormid
					dichlormid
B-422 B-423	pendimethalin + pinoxaden pendimethalin + pyroxsulam	cloquintocet cloquintocet	B-497 B-498	isoproturon	dichlormid
B-423 B-424	pendimethalin + tembotrione	cloquintocet	B-498 B-499	metribuzin	dichlormid
				propanil	
B-425	pendimethalin + topramezone	cloquintocet	B-500	terbuthylazine	dichlormid
B-426	pyroxasulfone + tembotrione	cloquintocet	B-501	paraquat dichloride	dichlormid
B-427	pyroxasulfone + topramezone	cloquintocet	B-502	flumioxazin	dichlormid
B-428	sulfentrazone + glyphosate	cloquintocet	B-503	oxyfluorfen	dichlormid
B-429	terbuthylazine + H-1	cloquintocet	B-504	saflufenacil	dichlormid
B-430	terbuthylazine + foramsulfuron	cloquintocet	B-505	sulfentrazone	dichlormid
B-431	terbuthylazine + glyphosate	cloquintocet	B-506	H-1	dichlormid
B-432	terbuthylazine + mesotrione	cloquintocet	B-507	H-2	dichlormid
B-433	terbuthylazine + nicosulfuron	cloquintocet	B-508	glyphosate	dichlormid
B-434	terbuthylazine + tembotrione	cloquintocet	B-509	glyphosate-isopropylammonium	dichlormid
B-435	terbuthylazine + topramezone	cloquintocet	B-510	glyphosate-trimesium (sulfosate)	dichlormid
B-436	trifluralin + glyphosate	cloquintocet	B-511	glufosinate	dichlormid
B-437	clodinafop-propargyl	dichlormid	B-512	glufosinate-ammonium	dichlormid
B-438	cycloxydim	dichlormid	B-513	pendimethalin	dichlormid
B-439	cyhalofop-butyl	dichlormid	B-514	trifluralin	dichlormid
B-440	fenoxaprop-P-ethyl	dichlormid	B-515	acetochlor	dichlormid
B-441	pinoxaden	dichlormid	B-516	cafenstrole	dichlormid
B-442	profoxydim	dichlormid	B-517	dimethenamid-P	dichlormid
B-443	tepraloxydim	dichlormid	B-518	fentrazamide	dichlormid
B-444	tralkoxydim	dichlormid	B-519	flufenacet	dichlormid
B-445	esprocarb	dichlormid	B-520	mefenacet	dichlormid
B-446	prosulfocarb	dichlormid	B-521	metazachlor	dichlormid
B-447	thiobencarb	dichlormid	B-522	metolachlor-S	dichlormid
B-448	triallate	dichlormid	B-523	pyroxasulfone	dichlormid
B-449	bensulfuron-methyl	dichlormid	B-524	isoxaben	dichlormid
B-450	bispyribac-sodium	dichlormid	B-525	dymron	dichlormid
B-451	cyclosulfamuron	dichlormid	B-526	indanofan	dichlormid
B-452	flumetsulam	dichlormid	B-527	oxaziclomefone	dichlormid
B-453	flupyrsulfuron-methyl-sodium	dichlormid	B-528	triaziflam	dichlormid
B-454	foramsulfuron	dichlormid	B-529	atrazine + H-1	dichlormid
B-455	imazamox	dichlormid	B-530	atrazine + glyphosate	dichlormid
B-456	imazapic	dichlormid	B-531	atrazine + mesotrione	dichlormid
B-457	imazapyr	dichlormid	B-532	atrazine + nicosulfuron	dichlormid
B-458	imazaquin	dichlormid	B-533	atrazine + tembotrione	dichlormid
B-459	imazethapyr	dichlormid	B-534	atrazine + topramezone	dichlormid
B-460	imazosulfuron	dichlormid	B-535	clomazone + glyphosate	dichlormid
B-461	iodosulfuron-methyl-sodium	dichlormid	B-536	diflufenican + clodinafop-propargyl	dichlormid
		dichlormid	B-537	diflufenican + fenoxaprop-p-ethyl	dichlormid
B-462	mesosulfuron	dicinomia			
	nicosulfuron nicosulfuron	dichlormid	B-538	diflufenican + flupyrsulfuron-methyl-sodium	dichlormid
B-462					

TABLE B-continued

TABLE B-continued

	Herbicide(s) B	Safener C		Herbicide(s) B	Safener C
B-541	diflufenican + pinoxaden	dichlormid	B-616	clopyralid and its salts and esters	fenchlorazole
B-542	diflufenican + pyroxsulam	dichlormid	B-617	dicamba and its salts and esters	fenchlorazole
B-543	flumetsulam + glyphosate	dichlormid	B-618	fluroxypyr-meptyl	fenchlorazole
B-544	flumioxazin + glyphosate	dichlormid	B-619	quinelorae	fenchlorazole
B-545	imazapic + glyphosate	dichlormid	B-620	quinmerac	fenchlorazole
B-546	imazethapyr + glyphosate	dichlormid	B-621	H-9	fenchlorazole
B-547	isoxaflutol + H-1	dichlormid	B-622	diflufenzopyr	fenchlorazole
B-548	isoxaflutol + glyphosate	dichlormid	B-623	diflufenzopyr-sodium	fenchlorazole
B-549 B-550	metazachlor + H-1	dichlormid dichlormid	B-624 B-625	clomazone diflufenican	fenchlorazole fenchlorazole
B-551	metazachlor + glyphosate metazachlor + mesotrione	dichlormid	B-626	fluorochloridone	fenchlorazole
B-551 B-552	metazachlor + nicosulfuron	dichlormid	B-627	isoxaflutol	fenchlorazole
B-553	metazachlor + terbuthylazine	dichlormid	B-628	mesotrione	fenchlorazole
B-554	metazachlor + terotunyazane metazachlor + topramezone	dichlormid	B-629	picolinafen	fenchlorazole
B-555	metribuzin + glyphosate	dichlormid	B-630	sulcotrione	fenchlorazole
B-556	pendimethalin + H-1	dichlormid	B-631	tefuryltrione	fenchlorazole
B-557	pendimethalin + clodinafop-propargyl	dichlormid	B-632	tembotrione	fenchlorazole
B-558	pendimethalin + fenoxaprop-P-ethyl	dichlormid	B-633	topramezone	fenchlorazole
B-559	pendimethalin + flupyrsulfuron-methyl-sodium	dichlormid	B-634	H-7	fenchlorazole
B-560	pendimethalin + glyphosate	dichlormid	B-635	atrazine	fenchlorazole
B-561	pendimethalin + mesosulfuron-methyl	dichlormid	B-636	diuron	fenchlorazole
B-562	pendimethalin + mesotrione	dichlormid	B-637	fluometuron	fenchlorazole
B-563	pendimethalin + nicosulfuron	dichlormid	B-638	hexazinone	fenchlorazole
B-564	pendimethalin + pinoxaden	dichlormid	B-639	isoproturon	fenchlorazole
B-565	pendimethalin + pyroxsulam	dichlormid	B-640	metribuzin	fenchlorazole
B-566	pendimethalin + tembotrione	dichlormid	B-641	propanil	fenchlorazole
B-567	pendimethalin + topramezone	dichlormid	B-642	terbuthylazine	fenchlorazole
B-568	pyroxasulfone + tembotrione	dichlormid	B-643	paraquat dichloride	fenchlorazole
B-569	pyroxasulfone + topramezone	dichlormid	B-644	flumioxazin	fenchlorazole
B-570	sulfentrazone + glyphosate	dichlormid	B-645	oxyfluorfen	fenchlorazole
B-571	terbuthylazine + H-1	dichlormid	B-646	saflufenacil	fenchlorazole
B-572	terbuthylazine + foramsulfuron	dichlormid	B-647 B-648	sulfentrazone	fenchlorazole
B-573 B-574	terbuthylazine + glyphosate terbuthylazine + mesotrione	dichlormid dichlormid	B-649	H-1 H-2	fenchlorazole fenchlorazole
B-575	terbuthylazine + nicosulfuron	dichlormid	B-650	glyphosate	fenchlorazole
B-576	terbuthylazine + tembotrione	dichlormid	B-651	glyphosate-isopropylammonium	fenchlorazole
B-577	terbuthylazine + tembourione terbuthylazine + topramezone	dichlormid	B-652	glyphosate-trimesium (sulfosate)	fenchlorazole
B-578	trifluralin + glyphosate	dichlormid	B-653	glufosinate	fenchlorazole
B-579	clodinafop-propargyl	fenchlorazole	B-654	glufosinate-ammonium	fenchlorazole
B-580	cycloxydim	fenchlorazole	B-655	pendimethalin	fenchlorazole
B-581	cyhalofop-butyl	fenchlorazole	B-656	trifluralin	fenchlorazole
B-582	fenoxaprop-P-ethyl	fenchlorazole	B-657	acetochlor	fenchlorazole
B-583	pinoxaden	fenchlorazole	B-658	cafenstrole	fenchlorazole
B-584	profoxydim	fenchlorazole	B-659	dimethenamid-P	fenchlorazole
B-585	tepraloxydim	fenchlorazole	B-660	fentrazamide	fenchlorazole
B-586	tralkoxydim	fenchlorazole	B-661	flufenacet	fenchlorazole
B-587	esprocarb	fenchlorazole	B-662	mefenacet	fenchlorazole
B-588	prosulfocarb	fenchlorazole	B-663	metazachlor	fenchlorazole
B-589	thiobencarb	fenchlorazole	B-664	metolachlor-S	fenchlorazole
B-590	triallate	fenchlorazole	B-665	pyroxasulfone	fenchlorazole
B-591 B-592	bensulfuron-methyl	fenchlorazole fenchlorazole	B-666 B-667	isoxaben dymron	fenchlorazole fenchlorazole
B-593	bispyribac-sodium cyclosulfamuron	fenchlorazole	B-668	indanofan	fenchlorazole
B-594	flumetsulam	fenchlorazole	B-669	oxaziclomefone	fenchlorazole
B-595	flupyrsulfuron-methyl-sodium	fenchlorazole	B-670	triaziflam	fenchlorazole
B-596	foramsulfuron	fenchlorazole	B-671	atrazine + H-1	fenchlorazole
B-597	imazamox	fenchlorazole	B-672	atrazine + glyphosate	fenchlorazole
B-598	imazapic	fenchlorazole	B-673	atrazine + mesotrione	fenchlorazole
B-599	imazapyr	fenchlorazole	B-674	atrazine + nicosulfuron	fenchlorazole
B-600	imazaquin	fenchlorazole	B-675	atrazine + tembotrione	fenchlorazole
B-601	imazethapyr	fenchlorazole	B-676	atrazine + topramezone	fenchlorazole
B-602	imazosulfuron	fenchlorazole	B-677	clomazone + glyphosate	fenchlorazole
B-603	iodosulfuron-methyl-sodium	fenchlorazole	B-678	diflufenican + clodinafop-propargyl	fenchlorazole
B-604	mesosulfuron	fenchlorazole	B-679	diflufenican + fenoxaprop-P-ethyl	fenchlorazole
B-605	nicosul furon	fenchlorazole	B-680	diflufenican + flupyrsulfuron-methyl-sodium	fenchlorazole
B-606	penoxsulam	fenchlorazole	B-681	diflufenican + glyphosate	fenchlorazole
B-607	propoxycarbazone-sodium	fenchlorazole	B-682	diflufenican + mesosulfuron-methyl	fenchlorazole
B-608	pyrazosulfuron-ethyl	fenchlorazole	B-683	diflufenican + pinoxaden	fenchlorazole
B-609	pyroxsulam	fenchlorazole	B-684	diflufenican + pyroxsulam	fenchlorazole
B-610	rimsulfuron	fenchlorazole	B-685	flumetsulam + glyphosate	fenchlorazole
B-611	sulfosulfuron	fenchlorazole	B-686	flumioxazin + glyphosate	fenchlorazole
B-612	thiencarbazone-methyl	fenchlorazole	B-687	imazapic + glyphosate	fenchlorazole
B-613	tritosulfuron 2,4-D and its salts and esters	fenchlorazole fenchlorazole	B-688	imazethapyr + glyphosate	fenchlorazole fenchlorazole
B-614			B-689	isoxaflutol + H-1	
B-615	aminopyralid and its salts and esters	fenchlorazole	B-690	isoxaflutol + glyphosate	fenchlorazole

TABLE B-continued

TABLE B-continued

	Herbicide(s) B	Safener C		Herbicide(s) B	Safener C
B-691	metazachlor + H-1	fenchlorazole	B-766	clomazone	isoxadifen
B-692	metazachlor + glyphosate	fenchlorazole	B-767	diflufenican	isoxadifen
B-693	metazachlor + mesotrione	fenchlorazole	B-768	fluorochloridone	isoxadifen
B-694	metazachlor + nicosulfuron	fenchlorazole	B-769	isoxaflutol	isoxadifen
B-695	metazachlor + terbuthylazine	fenchlorazole	B-770	mesotrione	isoxadifen
B-696	metazachlor + topramezone	fenchlorazole	B-771	picolinafen	isoxadifen
B-697	metribuzin + glyphosate	fenchlorazole	B-772	sulcotrione	isoxadifen
B-698 B-699	pendimethalin + H-1	fenchlorazole fenchlorazole	B-773 B-774	tefuryltrione	isoxadifen isoxadifen
B-099 B-700	pendimethalin + clodinafop-propargyl pendimethalin + fenoxaprop-P-ethyl	fenchlorazole	B-775	tembotrione topramezone	isoxadifen
B-700 B-701	pendimethalin + flupyrsulfuron-methyl-sodium	fenchlorazole	B-776	H-7	isoxadifen
B-701	pendimethalin + glyphosate	fenchlorazole	B-777	atrazine	isoxadifen
B-702	pendimethalin + mesosulfuron-methyl	fenchlorazole	B-778	diuron	isoxadifen
B-704	pendimethalin + mesotrione	fenchlorazole	B-779	fluometuron	isoxadifen
B-705	pendimethalin + nicosulfuron	fenchlorazole	B-780	hexazinone	isoxadifen
B-706	pendimethalin + pinoxaden	fenchlorazole	B-781	isoproturon	isoxadifen
B-707	pendimethalin + pyroxsulam	fenchlorazole	B-782	metribuzin	isoxadifen
B-708	pendimethalin + tembotrione	fenchlorazole	B-783	propanil	isoxadifen
B-709	pendimethalin + topramezone	fenchlorazole	B-784	terbuthylazine	isoxadifen
B-710	pyroxasulfone + tembotrione	fenchlorazole	B-785	paraquat dichloride	isoxadifen
B-711	pyroxasulfone + topramezone	fenchlorazole	B-786	flumioxazin	isoxadifen
B-712	sulfentrazone + glyphosate	fenchlorazole	B-787	oxyfluorfen	isoxadifen
B-713	terbuthylazine + H-1	fenchlorazole	B-788	saflufenacil	isoxadifen
B-714	terbuthylazine + foramsulfuron	fenchlorazole	B-789	sulfentrazone	isoxadifen
B-715	terbuthylazine + glyphosate	fenchlorazole	B-790	H-1	isoxadifen
B-716	terbuthylazine + mesotrione	fenchlorazole	B-791	H-2	isoxadifen
B-717	terbuthylazine + nicosulfuron	fenchlorazole	B-792	glyphosate	isoxadifen
B-718	terbuthylazine + tembotrione	fenchlorazole	B-793	glyphosate-isopropylammonium	isoxadifen
B-719	terbuthylazine + topramezone	fenchlorazole	B-794	glyphosate-trimesium (sulfosate)	isoxadifen
B-720	trifluralin + glyphosate	fenchlorazole	B-795	glufosinate	isoxadifen
B-721	clodinafop-propargyl	isoxadifen	B-796	glufosinate-ammonium	isoxadifen
B-722	cycloxydim	isoxadifen	B-797	pendimethalin	isoxadifen
B-723	cyhalofop-butyl	isoxadifen	B-798	trifluralin	isoxadifen
B-724	fenoxaprop-P-ethyl	isoxadifen	B-799	acetochlor	isoxadifen
B-725	pinoxaden	isoxadifen	B-800	cafenstrole	isoxadifen
B-726	profoxydim	isoxadifen	B-801	dimethenamid-P	isoxadifen
B-727	tepraloxydim	isoxadifen	B-802	fentrazamide	isoxadifen
B-728	tralkoxydim	isoxadifen	B-803	flufenacet	isoxadifen
B-729 B-730	esprocarb prosulfocarb	isoxadifen isoxadifen	B-804 B-805	mefenacet	isoxadifen isoxadifen
B-730 B-731	thiobencarb	isoxadifen	B-805 B-806	metazachlor metolachlor-S	isoxadifen
B-731 B-732	triallate	isoxadifen	B-807	pyroxasulfone	isoxadifen
B-732	bensulfuron-methyl	isoxadifen	B-808	isoxaben	isoxadifen
B-733	bispyribac-sodium	isoxadifen	B-809	dymron	isoxadifen
B-735	cyclosulfamuron	isoxadifen	B-810	indanofan	isoxadifen
B-736	flumetsulam	isoxadifen	B-811	oxaziclomefone	isoxadifen
B-737	flupyrsulfuron-methyl-sodium	isoxadifen	B-812	triaziflam	isoxadifen
B-738	foramsulfuron	isoxadifen	B-813	atrazine + H-1	isoxadifen
B-739	imazamox	isoxadifen	B-814	atrazine + glyphosate	isoxadifen
B-740	imazapic	isoxadifen	B-815	atrazine + mesotrione	isoxadifen
B-741	imazapyr	isoxadifen	B-816	atrazine + nicosulfuron	isoxadifen
B-742	imazaquin	isoxadifen	B-817	atrazine + tembotrione	isoxadifen
B-743	imazethapyr	isoxadifen	B-818	atrazine + topramezone	isoxadifen
B-744	imazosulfuron	isoxadifen	B-819	clomazone + glyphosate	isoxadifen
B-745	iodosulfuron-methyl-sodium	isoxadifen	B-820	diflufenican + clodinafop-propargyl	isoxadifen
B-746	mesosulfuron	isoxadifen	B-821	diflufenican + fenoxaprop-P-ethyl	isoxadifen
B-747	nicosulfuron	isoxadifen	B-822	diflufenican + flupyrsulfuron-methyl-sodium	isoxadifen
B-748	penoxsulam	isoxadifen	B-823	diflufenican + glyphosate	isoxadifen
B-749	propoxycarbazone-sodium	isoxadifen	B-824	diflufenican + mesosulfuron-methyl	isoxadifen
B-750	pyrazosulfuron-ethyl	isoxadifen	B-825	diflufenican + pinoxaden	isoxadifen
B-751	pyroxsulam	isoxadifen	B-826	diflufenican + pyroxsulam	isoxadifen
B-752	rimsulfuron	isoxadifen	B-827	flumetsulam + glyphosate	isoxadifen
B-753	sulfosulfuron	isoxadifen	B-828	flumioxazin + glyphosate	isoxadifen
B-754	thiencarbazone-methyl	isoxadifen	B-829	imazapic + glyphosate	isoxadifen
B-755	tritosulfuron	isoxadifen	B-830	imazethapyr + glyphosate	isoxadifen
B-756	2,4-D and its salts and esters	isoxadifen	B-831	isoxaflutol + H-1	isoxadifen
B-757	aminopyralid and its salts and esters	isoxadifen	B-832	isoxaflutol + glyphosate	isoxadifen
B-758	clopyralid and its salts and esters	isoxadifen	B-833	metazachlar + H-1	isoxadifen
D 750	dicamba and its salts and esters	isoxadifen	B-834	metazachlar + glyphosate	isoxadifen isoxadifen
B-759		isoxadifen	B-835	metazachlor + mesotrione	
B-760	fluroxypyr-meptyl	icovedifor			
B-760 B-761	quinelorae	isoxadifen	B-836	metazachlor + nicosulfuron	isoxadifen
B-760 B-761 B-762	quinclorac quinmerac	isoxadifen	B-837	metazachlor + terbuthylazine	isoxadifen
B-760 B-761	quinelorae				

TABLE B-continued

TABLE B-continued

	Herbicide(s) B	Safener C		Herbicide(s) B	Safener C
B-841	pendimethalin + clodinafop-propargyl	isoxadifen	B-916	tembotrione	mefenpyr
B-842	pendimethalin + fenoxaprop-P-ethyl	isoxadifen	B-917	topramezone	mefenpyr
B-843	pendimethalin + flupyrsulfuron-methyl-sodium	isoxadifen	B-918	H-7	mefenpyr
B-844	pendimethalin + glyphosate	isoxadifen	B-919	atrazine	mefenpyr
B-845	pendimethalin + mesosulfuron-methyl	isoxadifen	B-920	diuron	mefenpyr
3-846	pendimethalin + mesotrione	isoxadifen	B-921	fluometuron	mefenpyr
B-847	pendimethalin + nicosulfuron	isoxadifen	B-922	hexazinone	mefenpyr
B-848	pendimethalin + pinoxaden	isoxadifen	B-923	isoproturon	mefenpyr
3-849	pendimethalin + pyroxsulam	isoxadifen	B-924	metribuzin	mefenpyr
3-850	pendimethalin + tembotrione	isoxadifen	B-925	propanil	mefenpyr
3-851	pendimethalin + topramezone	isoxadifen	B-926	terbuthylazine	mefenpyr
B-852	pyroxasulfone + tembotrione	isoxadifen	B-927	paraquat dichloride	mefenpyr
B-853	pyroxasulfone + topramezone	isoxadifen	B-928	flumioxazin	mefenpyr
B-854	sulfentrazone + glyphosate	isoxadifen	B-929	oxyfluorfen	mefenpyr
B-855	terbuthylazine + H-1	isoxadifen	B-930	saflufenacil	mefenpyr
3-856	terbuthylazine + foramsulfuron	isoxadifen	B-931	sulfentrazone	mefenpyr
B-857	terbuthylazine + glyphosate	isoxadifen	B-932	H-1	mefenpyr
B-858	terbuthylazine + mesotrione	isoxadifen	B-933	H-2	mefenpyr
3-859	terbuthylazine + nicosulfuron	isoxadifen	B-934	glyphosate	mefenpyr
B-860	terbuthylazine + tembotrione	isoxadifen	B-935	glyphosate-isopropylammonium	mefenpyr
B-861	terbuthylazine + topramezone	isoxadifen	B-936	glyphosate-trimesium (sulfosate)	mefenpyr
B-862	trifluralin + glyphosate	isoxadifen	B-937	glufosinate	mefenpyr
B-863	clodinafop-propargyl	mefenpyr	B-938	glufosinate-ammonium	mefenpyr
B-864	cycloxydim	mefenpyr	B-939	pendimethalin	mefenpyr
B-865	cyhalofop-butyl	mefenpyr	B-940	trifluralin	mefenpyr
B-866	fenoxaprop-P-ethyl	mefenpyr	B-941	acetochlor	mefenpyr
B-867	pinoxaden	mefenpyr	B-942	cafenstrole	mefenpyr
B-868	profoxydim	mefenpyr	B-943	dimethenamid-P	mefenpyr
B-869	tepraloxydim	mefenpyr	B-944	fentrazamide	mefenpyr
B-870	tralkoxydim	mefenpyr	B-945	flufenacet	mefenpyr
B-871	esprocarb	mefenpyr	B-946	mefenacet	mefenpyr
B-872	prosulfocarb	mefenpyr	B-947	metazachlor	mefenpyr
B-873	thiobencarb	mefenpyr	B-948	metolachlor-S	mefenpyr
B-874	triallate	mefenpyr	B-949	pyroxasulfone	mefenpyr
B-875	bensulfuron-methyl	mefenpyr	B-950	isoxaben	mefenpyr
B-876	bispyribac-sodium	mefenpyr	B-951	dymron	mefenpyr
B-877	cyclosulfamuron	mefenpyr	B-952	indanofan	mefenpyr
B-878	flumetsulam	mefenpyr	B-953	oxaziclomefone	mefenpyr
B-879	flupyrsulfuron-methyl-sodium	mefenpyr	B-954	triaziflam	mefenpyr
B-880	foramsulfuron	mefenpyr	B-955	atrazine + H-1	mefenpyr
B-881	imazamox	mefenpyr	B-956	atrazine + glyphosate	mefenpyr
B-882	imazapic	mefenpyr	B-957	atrazine + mesotrione	mefenpyr
B-883	imazapyr	mefenpyr	B-958	atrazine + nicosulfuron	mefenpyr
B-884	imazaquin	mefenpyr	B-959	atrazine + tembotrione	mefenpyr
B-885	imazethapyr	mefenpyr	B-960	atrazine + topramezone	mefenpyr
B-886	imazosulfuron	mefenpyr	B-961	clomazone + glyphosate	mefenpyr
B-887	iodosulfuron-methyl-sodium	mefenpyr	B-962	diflufenican + clodinafop-propargyl	mefenpyr
B-888	mesosulfuron	mefenpyr	B-963	diflufenican + fenoxaprop-P-ethyl	mefenpyr
B-889	nicosulfuron	mefenpyr	B-964	diflufenican + flupyrsulfuron-methyl-sodium	mefenpyr
B-890	penoxsulam	mefenpyr	B-965	diflufenican + glyphosate	mefenpyr
B-891	propoxycarbazone-sodium	mefenpyr	B-966	diflufenican + mesosulfuron-methyl	mefenpyr
B-892	pyrazosulfuron-ethyl	mefenpyr	B-967	diflufenican + pinoxaden	mefenpyr
B-893	pyroxsulam	mefenpyr	B-968	diflufenican + pyroxsulam	mefenpyr
B-894	rimsulfuron	mefenpyr	B-969	flumetsulam + glyphosate	mefenpyr
B-895	sulfosulfuron	mefenpyr	B-970	flumioxazin + glyphosate	mefenpyr
B-896	thiencarbazone-methyl	mefenpyr	B-971	imazapic + glyphosate	mefenpyr
B-897	tritosulfuron	mefenpyr	B-972	imazethapyr + glyphosate	mefenpyr
B-898	2,4-D and its salts and esters	mefenpyr	B-972	isoxaflutol + H-1	mefenpyr
B-899	aminopyralid and its salts and esters	mefenpyr	B-973	isoxaflutol + H-1 isoxaflutol + glyphosate	mefenpyr
B-900	clopyralid and its salts and esters	mefenpyr	B-974 B-975	metazachlor + H-1	mefenpyr
B-900	dicamba and its salts and esters	mefenpyr	B-975	metazachior + ri-1 metazachior + glyphosate	mefenpyr
B-901	fluroxypyr-meptyl	mefenpyr	B-970 B-977	metazachlor + mesotrione	mefenpyr
				metazachior + mesotrione metazachior + nicosulfuron	
B-903	quinclorac	mefenpyr	B-978		mefenpyr
B-904 B-905	quinmerac H-9	mefenpyr	B-979 B-980	metazachlor + terbuthylazine	mefenpyr mefenpyr
		mefenpyr		metazachlor + topramezone	1.0
B-906	diffuserzopyr	mefenpyr	B-981	metribuzin + glyphosate	mefenpyr
B-907	diflufenzopyr-sodium	mefenpyr	B-982	pendimethalin + H-1	mefenpyr
B-908	clomazone	mefenpyr	B-983	pendimethalin + clodinafop-propargyl	mefenpyr
B-909	diflufenican	mefenpyr	B-984	pendimethalin + fenoxaprop-P-ethyl	mefenpyr
B-910	fluorochloridone	mefenpyr	B-985	pendimethalin + flupyrsulfuron-methyl-sodium	mefenpyr
B-911	isoxaflutol	mefenpyr	B-986	pendimethalin + glyphosate	mefenpyr
B-912	mesotrione	mefenpyr	B-987	pendimethalin + mesosulfuron-methyl	mefenpyr
	picolinafen	mefenpyr	B-988	pendimethalin + mesotrione	mefenpyr
	•				
B-913 B-914	sulcotrione	mefenpyr	B-989	pendimethalin + nicosulfuron	mefenpyr

TABLE B-continued

TABLE B-continued

	Herbicide(s) B	Safener C		Herbicide(s) B	Safener C
B-991	pendimethalin + pyroxsulam	mefenpyr	B-1066	metribuzin	H-12
B-992	pendimethalin + tembotrione	mefenpyr	B-1067	propanil	H-12
B-993	pendimethalin + topramezone	mefenpyr	B-1068	terbuthylazine	H-12
B-994	pyroxasulfone + tembotrione	mefenpyr	B-1069	paraquat dichloride	H-12
B-995	pyroxasulfone + topramezone	mefenpyr	B-1070	flumioxazin	H-12
B-996	sulfentrazone + glyphosate	mefenpyr	B-1071 B-1072	oxyfluorfen	H-12
B-997 B-998	terbuthylazine + H-1 terbuthylazine + foramsulfuron	mefenpyr mefenpyr	B-1072 B-1073	saflufenacil sulfentrazone	H-12 H-12
B-999	terbuthylazine + glyphosate	mefenpyr	B-1073	H-1	H-12 H-12
B-1000	terbuthylazine + mesotrione	mefenpyr	B-1075	H-2	H-12
B-1001	terbuthylazine + nicosulfuron	mefenpyr	B-1076	glyphosate	H-12
B-1002	terbuthylazine + tembotrione	mefenpyr	B-1077	glyphosate-isopropylammonium	H-12
B-1003	terbuthylazine + topramezone	mefenpyr	B-1078	glyphosate-trimesium (sulfosate)	H-12
B-1004	trifluralin + glyphosate	mefenpyr	B-1079	glufosinate	H-12
B-1005	clodinafop-propargyl	H-12	B-1080	glufosinate-ammonium	H-12
B-1006	cycloxydim	H-12	B-1081	pendimethalin	H-12
B-1007	cyhalofop-butyl	H-12	B-1082	trifluralin	H-12
B-1008	fenoxaprop-P-ethyl	H-12	B-1083	acetochlor	H-12
B-1009	pinoxaden	H-12	B-1084	cafenstrole	H-12
B-1010	profoxydim	H-12	B-1085	dimethenamid-P	H-12
B-1011	tepraloxydim	H-12	B-1086	fentrazamide	H-12
B-1012	tralkoxydim	H-12	B-1087	flufenacet	H-12
B-1013	esprocarb	H-12	B-1088	mefenacet	H-12
B-1014	prosulfocarb	H-12	B-1089	metazachlor	H-12
B-1015	thiobencarb	H-12	B-1090	metolachlor-S	H-12
B-1016	triallate	H-12	B-1091	pyroxasulfone	H-12
B-1017	bensulfuron-methyl	H-12	B-1092	isoxaben	H-12
B-1018	bispyribac-sodium	H-12	B-1093	dymron	H-12
B-1019 B-1020	cyclosulfamuron	H-12 H-12	B-1094 B-1095	indanofan	H-12 H-12
B-1020	flumetsulam flupyrsulfuron-methyl-sodium	H-12 H-12	B-1093 B-1096	oxaziclomefone triaziflam	H-12
B-1021	foramsulfuron	H-12	B-1090	atrazine + H-1	H-12
B-1022	imazamox	H-12	B-1097	atrazine + glyphosate	H-12
B-1024	imazapic	H-12	B-1099	atrazine + mesotrione	H-12
B-1025	imazapyr	H-12	B-1100	atrazine + nicosulfuron	H-12
B-1026	imazaquin	H-12	B-1101	atrazine + tembotrione	H-12
B-1027	imazethapyr	H-12	B-1102	atrazine + topramezone	H-12
B-1028	imazosulfuron	H-12	B-1103	clomazone + glyphosate	H-12
B-1029	iodosulfuron-methyl-sodium	H-12	B-1104	diflufenican + clodinafop-propargyl	H-12
B-1030	mesosulfuron	H-12	B-1105	diflufenican + fenoxaprop-P-ethyl	H-12
B-1031	nicosulfuron	H-12	B-1106	diflufenican + flupyrsulfuron-methyl-sodium	H-12
B-1032	penoxsulam	H-12	B-1107	diflufenican + glyphosate	H-12
B-1033	propoxycarbazone-sodium	H-12	B-1108	diflufenican + mesosulfuron-methyl	H-12
B-1034	pyrazosulfuron-ethyl	H-12	B-1109	diflufenican + pinoxaden	H-12
B-1035	pyroxsulam	H-12	B-1110	diflufenican + pyroxsulam	H-12
B-1036	rimsulfuron	H-12	B-1111	flumetsulam + glyphosate	H-12
B-1037 B-1038	sulfosulfuron thiencarbazone-methyl	H-12 H-12	B-1112 B-1113	flumioxazin + glyphosate	H-12 H-12
B-1039	tritosulfuron	H-12 H-12	B-1113	imazapic + glyphosate imazethapyr + glyphosate	H-12
B-1039	2,4-D and its salts and esters	H-12	B-1115	isoxaflutol + H-1	H-12
B-1040	aminopyralid and its salts and esters	H-12	B-1116	isoxaflutol + glyphosate	H-12
B-1042	clopyralid and its salts and esters	H-12	B-1117	metazachlor + H-1	H-12
B-1043	dicamba and its salts and esters	H-12		metazachlor + glyphosate	H-12
		H-12		metazachlor + mesotrione	H-12
B-1045	quinclorac	H-12	B-1120	metazachlor + nicosulfuron	H-12
B-1046	quinmerac	H-12	B-1121	metazachlor + terbuthylazine	H-12
B-1047	B-9	H-12	B-1122	metazachlor + topramezone	H-12
B-1048	diflufenzopyr	H-12	B-1123	metribuzin + glyphosate	H-12
B-1049	diflufenzopyr-sodium	H-12	B-1124	pendimethalin + H-1	H-12
B-1050	clomazone	H-12	B-1125	pendimethalin + clodinafop-propargyl	H-12
B-1051	diflufenican	H-12	B-1126	pendimethalin + fenoxaprop-P-ethyl	H-12
B-1052	fluorochloridone	H-12	B-1127	pendimethalin + flupyrsulfuron-methyl-sodium	H-12
B-1053	isoxaflutol	H-12	B-1128	pendimethalin + glyphosate	H-12
B-1054	mesotrione	H-12	B-1129	pendimethalin + mesosulfuron-methyl	H-12
B-1055	picolinafen	H-12	B-1130	pendimethalin + mesotrione	H-12
B-1056	sulcotrione	H-12	B-1131	pendimethalin + nicosulfuron	H-12
B-1057 B-1058	tefuryltrione	H-12 H-12	B-1132 B-1133	pendimethalin + pinoxaden pendimethalin + pyroxsulam	H-12 H-12
B-1058 B-1059	tembotrione topramezone	H-12 H-12	B-1133 B-1134	pendimethalin + pyroxsulam pendimethalin + tembotrione	H-12 H-12
1022	H-7	H-12 H-12	B-1134 B-1135	pendimethalin + temborrione pendimethalin + topramezone	H-12 H-12
B-1060				pyroxasulfone + tembotrione	H-12
B-1060 B-1061		H-17	H-1146		
B-1061	atrazine	H-12 H-12	B-1136 B-1137		
B-1061 B-1062	atrazine diuron	H-12	B-1137	pyroxasulfone + topramezone	H-12
B-1061	atrazine				

TABLE B-continued

TABLE B-continued

	TABLE D-continued	
	Herbicide(s) B	Safener C
B-1141	terbuthylazine + glyphosate	H-12
B-1142	terbuthylazine + mesotrione	H-12
B-1143 B-1144	terbuthylazine + nicosulfuron terbuthylazine + tembotrione	H-12 H-12
B-1145	terbuthylazine + ternoone	H-12
B-1146	trifluralin + glyphosate	H-12
B-1147	2-1	_
B-1148 B-1149	2-2 2-3	
B-1150	2-4	
B-1151	2-5	_
B-1152 B-1153	2-6 2-7	_
B-1154	2-7	_
B-1155	2-9	_
B-1156	2-1	benoxacor
B-1157 B-1158	2-2 2-3	benoxacor benoxacor
B-1159	2-4	benoxacor
B-1160	2-5	benoxacor
B-1161 B-1162	2-6 2-7	benoxacor
B-1162 B-1163	2-7 2-8	benoxacor benoxacor
B-1164	2-9	benoxacor
B-1165	2-1	cloquintocet
B-1166 B-1167	2-2 2-3	cloquintocet cloquintocet
B-1168	2-3	cloquintocet
B-1169	2-5	cloquintocet
B-1170 B-1171	2-6	cloquintocet
B-1171 B-1172	2-7 2-8	cloquintocet cloquintocet
B-1173	2-9	cloquintocet
B-1174	2-1	cyprosulfamide
B-1175 B-1176	2-2 2-3	cyprosulfamide cyprosulfamide
B-1177	2-4	cyprosulfamide
B-1178	2-5	cyprosulfamide
B-1179	2-6	cyprosulfamide
B-1180 B-1181	2-7 2-8	cyprosulfamide cyprosulfamide
B-1182	2-9	cyprosulfamide
B-1183	2-1	dichlormid
B-1184 B-1185	2-2 2-3	dichlormid dichlormid
B-1186	2-4	dichlormid
B-1187	2-5	dichlormid
B-1188 B-1189	2-6 2-7	dichlormid dichlormid
B-1199	2-7	dichlormid
B-1191	2-9	dichlormid
B-1192	2-1	fenchlorazole
B-1193 B-1194	2-2 2-3	fenchlorazole fenchlorazole
B-1195	2-4	fenchlorazole
B-1196	2-5	fenchlorazole
B-1197 B-1198	2-6 2-7	fenchlorazole fenchlorazole
B-1198	2-7	fenchlorazole
B-1200	2-9	fenchlorazole
B-1201	2-1	isoxadifen
B-1202 B-1203	2-2 2-3	isoxadifen isoxadifen
B-1204	2-4	isoxadifen
B-1205	2-5	isoxadifen
B-1206 B-1207	2-6 2-7	isoxadifen isoxadifen
B-1207 B-1208	2-7	isoxadifen
B-1209	2-9	isoxadifen
B-1210	2-1	mefenpyr
B-1211 B-1212	2-2 2-3	mefenpyr mefenpyr
B-1212	2-4	mefenpyr
B-1214	2-5	mefenpyr
B-1215	2-6	mefenpyr

	Herbicide(s) B	Safener C
B-1216	2-7	mefenpyr
B-1217	2-8	mefenpyr
B-1218	2-9	mefenpyr
B-1219	2-1	H-11
B-1220	2-2	H-11
B-1221	2-3	H-11
B-1222	2-4	H-11
B-1223	2-5	H-11
B-1224	2-6	H-11
B-1225	2-7	H-11
B-1226	2-8	H-11
B-1227	2-9	H-11
B-1228	2-1	H-12
B-1229	2-2	H-12
B-1230	2-3	H-12
B-1231	2-4	H-12
B-1232	2-5	H-12
B-1233	2-6	H-12
B-1234	2-7	H-12
B-1235	2-8	H-12
B-1236	2-9	H-12

[0379] The compounds I and the compositions according to the invention may also have a plant-strengthening action. Accordingly, they are suitable for mobilizing the defense system of the plants against attack by unwanted microorganisms, such as harmful fungi, but also viruses and bacteria. Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances which are capable of stimulating the defense system of treated plants in such a way that, when subsequently inoculated by unwanted microorganisms, the treated plants display a substantial degree of resistance to these microorganisms.

[0380] The compounds I can be employed for protecting plants against attack by unwanted microorganisms within a certain period of time after the treatment. The period of time within which their protection is effected generally extends from 1 to 28 days, preferably from 1 to 14 days, after the treatment of the plants with the compounds I, or, after treatment of the seed, for up to 9 months after sowing.

[0381] The compounds I and the compositions according to the invention are also suitable for increasing the harvest yield. [0382] Moreover, they have reduced toxicity and are tolerated well by the plants.

[0383] Hereinbelow, the compounds of the formula I are illustrated by way of examples, without limiting the subject matter of the present invention to the examples shown.

I. SYNTHESIS EXAMPLES

[0384] With appropriate modification of the starting materials, the procedures given in the synthesis examples below were used to obtain further compounds I. The compounds obtained in this manner are listed in the table that follows, together with physical data.

[0385] The products shown below were characterized by determination of the melting point, by NMR spectroscopy or by the masses ([m/z]) or retention time (RT; [min.]) determined by HPLC-MS spectrometry.

HPLC-MS=high performance liquid chromatography coupled with mass spectrometry; HPLC column:

[0386] RP-18 column (Chromolith Speed ROD from Merck KgaA, Germany), 50*4.6 mm; mobile phase: acetonitrile+0.1% trifluoroacetic acid (TFA)/water+0.1% TFA, using a gradient from 5:95 to 100:0 over 5 minutes at 40° C., flow rate 1.8 ml/min.

 $\mbox{\bf [0387]}~MS:$ quadrupole electrospray ionization, $80\,V$ (positive mode).

[0388] Ac: Acetyl; THF: tetrahydrofurane; DMF: dimethylformamide; dppf: 1,1'-bis(diphenylphosphino)ferrocen; dba: dibenzylidenacetone; PE: petrol ether; EtOAc: acetic acid ethyl ester; DCM: dichloromethane; NCS: N-chlorosuccinimide; LiHMDS: lithium-hexamethyldisilazane; AcOH: acetic acid; MeOH: methanol; TFA: trifluoroacetic acid; Ph: phenyl; i-Pr: iso-propyl; t-Bu: tert-butyl.

Example 1

Preparation of 3-[5-chloro-3-morpholino-2-(trifluoromethyl)phenyl]-4-hydroxy-pyrano[3,2-b]pyridin-2-one (Hereinafter also Referred to as Compound 11 which Corresponds to Compound 1-49 in the Table I Below)

[0389]

[0390] Step 1: To a solution of compound 1 (80 g, 0.41 mol) in 800 ml AcOH was added Br₂ (131 g, 0.82 mol) at room temperature. The mixture was stirred at 50° C. for 5 hrs. The mixture was diluted with CH₂Cl2 and washed with water, aq. Na₂CO₃ and brine, the organic layer was dried over Na₂SO₄ and concentrated in vacuum, the crude product was purified by column chromatography to give compound 2 (80 g, yield: 55%).

[0391] 1 H NMR MeOD 400 MHz δ 7.69 (s, 1H).

[0392] Step 2: To a solution of compound 2 (40 g, 0.11 mol) in $\rm H_3PO_4$ (1.2 I) was added dropwise a solution of NaNO₂ (47 g, 0.68 mol) in 200 ml water at -4° C., $\rm H_3PO_2$ (480 ml) was added dropwise at -4° C. The resulting mixture was stirred overnight at room temperature. The reaction mixture was diluted with CH₂Cl₂ and neutralized with sat. Na₂CO₃, the organic layer was washed brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo, the crude product was purified by column chromatography to give compound 3 (30 g, yield: 78%).

[0393] 1 H NMR MeOD 400 MHz δ 7.93 (s, 2H).

[0394] Step 3: A mixture of compound 3 (10 g, 29.6 mmol), morpholine (2.6 g, 29.6 mmol), t-BuONa (5.7 g, 59.1 mmol), dppf (1.0 g, 1.77 mmol) and Pd₂(dba)₃ (0.81 g, 0.89 mmol) in toluene (150 ml) was heated to 90° C. under N₂ atmosphere overnight. The reaction mixture was filtered and concentrated in vacuo, the residue was purified by column chromatography to give compound 4 (2.8 g, yield: 25%).

[0395] 1 H NMR MeOD 400 MHz δ 7.56 (s, 1H), 7.33 (s, 1H), 3.77~3.79 (m, 4H), 2.95~2.97 (m, 4H).

[0396] Step 4: A mixture of compound 4 (5.0 g, 14.5 mmol), tri-n-butyl(cyanomethyl)stannane (5.7 g, 17.4 mmol, for preparation reference is made to J. Org. Chem. 1988, 53, 3051-3057), and $PdCl_2[(o-tolyl)_3]_2$ (120 mg, 0.15 mmol) in xylene (50 ml) was heated to 120° C. under N_2 atmosphere overnight. The reaction mixture was concentrated in vacuum, the residue was purified by column chromatography (PE: EtOAc=10:1) to give compound 5 (1 g, yield: 24%).

[**0397**] ¹H NMR MeOD 400 MHz δ 7.56 (s, 1H),7.33 (s, 1H), 4.57 (s, 2H), 3.78~3.80 (m, 4H), 2.95~2.97 (m, 4H).

[0398] Step 5: A mixture of compound 5 (2.7 g, 8.9 mmol) in 30 ml of HCl: AcOH (1:1) was stirred at 100° C. for 3 hrs. The reaction mixture was concentrated and diluted with water, the aqueous layer was basified to pH 9 with sat. NaHCO3 and washed with EtOAc. The aqueous layer was acidified to pH 3, extracted with EtOAc and washed with brine. The organic layer was dried over anhydrous Na2SO4 and concentrated in vacuo to give compound 6 (1.3 g, yield: 45%)

[0399] ¹H NMR: CDCl₃ 400 MHz δ 7.23 (s, 1H), 7.08 (s, 1H), 3.81~3.83 (m, 6H), 2.89~2.92 (m, 4H).

[0400] Step 6: To a mixture of compound 6 (1.3 g, 4.0 mmol) in MeOH (30 ml) was added conc. $\rm H_2SO_4$ (0.8 g, 8.0 mmol) at room temperature, then the resulting mixture was heated under reflux for 4 hrs. The reaction mixture was concentrated in vacuo, the residue was basified with saturated aq. NaHCO₃ and extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄, concentrated in vacuo to give compound 7 (1.1 g, yield: 81%).

[**0401**] ¹H NMR: CDCl₃ 400 MHz δ 7.23 (s, 1H), 7.08 (s, 1H), 3.95 (s, 3H), 3.81~3.83 (m, 6H), 2.89~2.92 (m, 4H).

[0402] Step 7: LiHMDS (0.8 mL, 0.8 mmol, 1 M) was added dropwise to a mixture of compound 7 (0.34 g, 0.8 mmol) and compound 8 (0.3 g, 0.8 mmol) in THF (20 mL) at -78° C. under $\rm N_2$ atmosphere. The resulting mixture was warmed gradually to room temperature and continued to stir at -78° C. for 2 hrs. The reaction mixture was quenched with $\rm H_2O$ and acidified to pH 3, the mixture was extracted with

EtOAc and washed with brine, the organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo to give crude compound 9 (0.5 g, crude), the crude product was used directly without further purification.

[0403] Step 8: The compound 9 (0.5 g, crude) in TFA (10 mL) was stirred at room temperature for 3 hrs. The reaction mixture was concentrated in vacuo and purified by column chromatography (PE:EtOAc=50:1) to give compound 10 (0.1 g, yield: 20% from compound 7).

[0404] Step 9: To a mixture of compound 10 (0.1 g, 0.22 mmol) in MeOH (6 mL) and water (2 mL) was added NaOH (35 mg, 0.87 mmol) at room temperature, the resulting mixture was stirred at room temperature for 2 hrs. The reaction mixture was evaporated to remove methanol, the residue was diluted with water and washed with EtOAc, the aqueous layer was acidified with aq.HCl to pH<3, extracted with DCM. The organic layer was dried over anhydrous $\rm Na_2SO_4$ and concentrated in vacuo, the crude product was purified by p-HPLC to give compound 11 (30 mg, yield: 32%)

[**0405**] ¹H NMR: CDCl₃ 400 MHz δ 8.56 (d, 1H, J=4.4 Hz), 7.76 (d, 1H, J=8.8 Hz), 7.62~7.65 (m, 1H), 7.40 (s, 1H), 7.19 (s, 1H), 4.83 (br, 1H), 3.85~3.87 (m, 4H), 2.97~2.99 (m, 4H).

Example 2

Preparation of 4-hydroxy-3-[3-(2-methoxyethoxy)-2-(trifluoromethyl)phenyl]pyrano[3,2-b]pyridin-2-one (Hereinafter also Referred to as Compound 19 which Corresponds to Compound 1-19 in the Table I Below)

[0406]

[0407] Step 1: To the 2-Methoxy-ethanol (1.41 g, 18.5 mol, 3 eq.) in DMF (10 ml) was added sodium hydride (800 mg, 6.1 mmol, 3 eq.) stirred at room temperature for 15 min, then compound 12 (1.5 g, 6.1 mmol) was added to above mixture, stirred at room temperature for 2 hours. The resulting solution was quenched with aq. NH $_4$ Cl, separated between EtOAc and water. The organic solution was concentrated carefully at room temperature. The residue was 13 (1.6 g, 88%), that was used without further purification.

19

[0408] Step 2: To the solution of compound 13 (1.5 g, 5.05 mmol), LiCl (424 mg, 10.1 mmol) and Pd(PPh₃)Cl₂ (353 mg, 0.505 mmol) in 10 ml DMF, then allyl-tributyl-stannane (2.5 g, 7.6 mmol) was added to the reaction, and stirred under N_2 at 90° C. for 1 h. The reaction was quenched with aq.NH₄Cl, extracted with EtOAc, the organic layer was dried over Na₂SO₄, concentrated carefully at room temperature to give the crude product 14 (2.4 g, crude), then used directly.

[0409] 1 H NMR: CDCl₃ 400 MHz $_{8}$ 7.37 (t, 1H, J=7.6 Hz), 6.91 (d, 1H, J=7.6 Hz), 6.85 (d, 1H, J=7.6 Hz), 5.92~5.97 (m, 1H), 5.02~5.06 (m, 2H), 4.18~4.21 (m, 2H), 4.18~4.21 (m, 2H), 3.54~3.56 (m, 2H), 3.45 (s, 3H).

[0410] Step 3: A solution of the crude compound 14 (2.4 g) in 100 mL DCM was cooled to -78° C. and bubbled with O₃ until the solution turned blue, and O₃ was continued to bubble for 0.5 h. The mixture was purged with oxygen and N₂. The cooled solution was added dropwise to a previously-prepared Jones Reagent (To a suspension of 13.4 g CrO₃ in 300 mL acetone was added 10 mL conc. H₂SO₄ and 10 mL water under ice-cooling) at 0° C. The mixture was stirred at room temperature overnight. The reaction mixture was quenched with i-PrOH and filtered. The filtrate was concentrated and diluted with water, basified to pH 10, washed with EtOAc. The aqueous phase was acidified to pH 3, extracted with EtOAc and concentrated in vacuo to give 15 (560 mg, crude). [0411] Step 4: To the solution of compound 14 (560 mg, crude) in methanol (10 ml) was added conc. H₂SO₄ (352 mg. 3.6 mmol), stirred at refluxed overnight. The resulting mixture was concentrated in vaccum, and partitioned with EtOAc/H₂O, the organic layer was washed by brine and dried over Na₂SO₄. The organic was concentrated in vaccum. The residue was purified by column (PE: EtOAc=15:1) to yield compound 16 (400 mg).

[**0412**] ¹H NMR: CDCl₃ 400 MHz δ 7.394 (t, 1H, J=8 Hz), 7.003 (d, 1H, J=8 Hz), 6.841 (d, 1H, J=8 Hz), 4.179 (t, 2H), 3.828 (t, 2H), 3.788 (t, 2H), 3.704 (s, 3H), 3.455 (s, 3H).

[0413] Step 5: LiHMDS (5.5 ml, 5.5 mmol, 1M) was added dropwise to a solution of compound 8 (400 mg, 1.37mmol) and compound 16 (582 mg, 1.37 mmol) in dry THF (50 ml) at -78° C. under nitrogen. The mixture was continued to stir at -78° C., then warmed to room temperature and stirred for 2 hours. The mixture was concentrated in vacuum to give compound 17 (800 mg, crude) as a yellow syrup used directly without further purification.

[0414] Step 6: A solution of compound 17 (800 mg, crude) in TFA (10 ml) was stirred at room temperature for 1 hour. The mixture was adjusted to pH 7 with aqueous sodium hydroxide. Then it was used directly in the next step without further purification.

[0415] Step 7: To a solution of compound 18 in methanol/ $\rm H_2O(30\,ml/10\,ml)$ was added sodium hydroxide (100 mg, 2.4 mmol) in portions at 0° C. The mixture was stirred at room temperature for 1 hour. Methanol was removed in vacuum. To the resulting aqueous phase was added water. It was washed with EtOAc and DCM. Then the aqueous phase was adjusted to pH 3 and extracted with DCM for 3 times. The resulting organic phase was dried over anhydrous sodium sulfate and concentrated in vacuum. The residue was purified by p-HPLC to give compound 19 as a yellow solid (120 mg, 23% three steps from compound 16).

[0416] 1 H NMR: CDCl₃ 400 MHz δ 8.545 (d, 1H, J=8 Hz), 7.742 (d, 1H, J=8 Hz), 7.526~7.61 (m, 3H), 7.140 (d, 1H, J=8 Hz), 6.969 (d, 1H, J=8 Hz), 4.246 (t, 2H), 3.821 (t, 2H), 3.477 (s, 3H).

TABLE I

Compounds of the formula I.1A	-1

I.1A-1

$$\bigcap_{O} \bigcap_{R^1} \bigcap_{R^2} \bigcap_{R^2}$$

No.	R^1	\mathbb{R}^2	\mathbb{R}^3	R^4	MS m/z
I-1	Н	OCH ₂ O		Н	284.0
I-2	H	СНСНСНСН		Η	290.0
I-3	S—(4-Cl—Ph)	H	Н	Η	282.0
I-4	O—(2-(3,6-(OMe)2-Pyrimidyl)	H	H	Η	394.1
I-5	CH ₂ —(2-thienyl)	H	Н	Η	336.1
I-6	S—Ph	H	H	Η	348.0
I-7	S(4-FPh)	H	H	Η	366.0
I-8	S — CF_3	H	H	Η	340.0
I-9	CF ₃	3-Isoxazolinyl	H	Η	377.0
I-10	Me	3-Isoxazolinyl	H	Η	401.0
I-11	Cl	3-Isoxazolinyl	SMe	Η	389.0
I-12	CF ₃	3-Isoxazolyl	H	Η	375.0
I-13	Ph	H	H	Η	316.0
I-14	O—(2-(4-Br-Pyrimidyl))	H	H	Η	411.0
I-15	H	OPh	H	Η	332.1
I-16	Me	3-(5-Me-Isoxazolinyl)	SO_2Me	Η	415.1
I-17	H	COMe	H	Η	282.0
I-18	CF ₃	OCH ₂ CF ₃	H	Η	405.0
I-19	CF ₃	OCH ₂ CH ₂ OMe	H	Η	382.0
I-20	CF ₃	OCH ₂ (2-tetrahydrofuryl)	H	Η	408.0
I-21	Me	3-Isoxazolinyl	CN	Η	348.0
I-22	Cl	2-thiazolyl	SO_2Me	Η	343.1
I-23	Me	CHCH ₂	SO_2Me	Η	358.0
I-24	Me	C(spiro-O—N—CMe—CH ₂ —	–)CH ₂ SO ₂	Η	413.0
I-25	SCH ₂ CH ₂ C(Me	;) ₂	Н	Η	373.1
I-26	CF ₃	4-Morpholinyl	Н	Η	393.1
I-27	CF ₃	OPh	Н	Н	400.0
I-28	O—(2-Me—Ph)	H	Н	Н	346.1
I-29	O—(CH ₂ —(4-(2-(4-F-pheny))thiazolyl)	H	Н	Н	463.0
I-30	Me	SO ₂ NMe ₂	SO ₂ Me	Н	439.0
I-31	O—(2-(4,6-(OMe) ₂)-triazinyl	Н	Н	Н	395.1
I-32	CHCH—(5-(3-cyclopropyl)-oxazolyl)	H	Н	Н	373.1
I-33	OCH ₂ CHCH ₂	Н	Н	Н	296.0
I-34	OCOMe	Н	Н	Н	298.0
I-35	Н	OCH ₂ Ph	OMe	Н	376.1
I-36		H	Н	Н	404.1
	OCH ₂ CH ₂ CH ₂ OPh	Н	Н	Н	
I-37	OCH ₂ Ph				346.0
I-38	Me	3-Isoxazolinyl	CF ₃	Н	391.1
I-39	Me	1-phtalimido	Н	Η	399.1
I-40	Me	1-tetrahydrophtalimido	Н	Η	403.1
I-41	O—(3-(1-(4-Cl—Ph))-pyrrol	Н	Н	Η	432.0
I-42	CHCHCHN		Me	Η	305.1
I-43	CHCHCHN		$_{\mathrm{Br}}$	Η	371.0
I-44	CF ₃	SO_2Ph	Η	Η	448.0
I-45	O—(4-(2-propyl-4-CF ₃ -pyrimidyl))	H	Н	Η	444.1
I-46	Cl	$SO_2CH_2CH_2CMe_2$		Η	405.0
I-47	Me	SO ₂ CH ₂ CH ₂ CMe ₂		Н	385.1
I-48	Me	Ph	Н	Н	330.1
I-49	CF ₃	4-Morpholinyl	Н	Cl	425.8
I-50	CF ₃	SO ₂ Me	Н	Н	385.1

[0417] wherein Me denotes methyl and Ph denotes phenyl

TABLE II

Compounds of the formula L2A-1

I.2A-1

OH R^4 R^3 No. R^1 R^3 R^4 R^4 R^3 R^4 R^4 R^3 R^4 R^4 R^5 R^4 R^5

II. USE EXAMPLES

Cl

Η

274.1

385.0

[0418] The herbicidal activity of the compunds of the formula I was demonstrated by the following greenhouse experiments:

[0419] The culture containers used were plastic flowerpots containing loamy sand with approximately 3.0% of humus as the substrate. The seeds of the test plants were sown separately for each species.

[0420] For the pre-emergence treatment, the active ingredients, which had been suspended or emulsified in water, were applied directly after sowing by means of finely distributing nozzles. The containers were irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover caused uniform germination of the test plants, unless this has been impaired by the active ingredients.

[0421] For the post-emergence treatment, the test plants were first grown to a height of 3 to 15 cm, depending on the plant habit, and only then treated with the active ingredients which had been suspended or emulsified in water. For this purpose, the test plants were either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted into the test containers a few days prior to treatment.

[0422] Depending on the species, the plants were kept at 10-25° C. or 20-35° C. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.

[0423] Evaluation was carried out using a scale from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the aerial moieties, and 0 means no damage, or normal course of growth. A good herbicidal activity is given at values of at least 70 and a very good herbicidal activity is given at values of at least 85.

[0424] The plants used in the greenhouse experiments belonged to the following species:

Bayer Code	Scientific name	English name
ABUTH	Abutilon theophrasti	velvetleaf
ALOMY	Alopecurus myosuroides	blackgrass

-continued

Bayer Code	Scientific name	English name
AMARE	Amaranthus retroflexus	common amaranth
CHEAL	Chenopodium album	lampsquaters
ECHCG	Echinochloa crus-galli	comon barnyardgrass
GALAP	Galium aparine	goosegrass
SETFA	Setaria faberi	Faber's foxtail
SETVI	Setaria viridis	green foxtail

[0425] At an application rate of 3 kg/ha, the compound II-2 applied by the post-emergence method, showed very good herbicidal activity against ABUTH.

[0426] At an application rate of 1 kg/ha, the compound I-4, applied by the post-emergence method, showed very good herbicidal activity against ALOMY.

[0427] At an application rate of 0.5 kg/ha, the compound I-9, applied by the post-emergence method, showed very good herbicidal activity against ALOMY.

[0428] At an application rate of 0.3 kg/ha, the compound I-22 applied by the post-emergence method, showed very good herbicidal activity against AMARE.

[0429] At an application rate of 0.336 kg/ha, the compound I-21 applied by the post-emergence method, showed very good herbicidal activity against AMARE.

[0430] At an application rate of 0.5 kg/ha, the compounds I-9, I-10, I-16, I-18, I-19, I-20, I-23, I-24, I-27, I-50, I-42, I-43 and I-44 applied by the post-emergence method, showed very good herbicidal activity against AMARE.

[0431] At an application rate of 0.23 kg/ha, the compound I-30, applied by the post-emergence method, showed very good herbicidal activity against CHEAL.

[0432] At an application rate of 0.25 kg/ha, the compounds I-12 and I-41, applied by the post-emergence method, showed very good herbicidal activity against CHEAL.

[0433] At an application rate of 0.336 kg/ha, the compound I-21, applied by the post-emergence method, showed very good herbicidal activity against CHEAL.

[0434] At an application rate of 0.5 kg/ha, the compounds I-10, I-16, I-18, I-19, I-20, I-23, I-24, I-27, I-38, I-50, I-42, I-43 and I-44, applied by the post-emergence method, showed very good herbicidal activity against CHEAL.

[0435] At an application rate of 0.177 kg/ha, the compound I-26, applied by the post-emergence method, showed very good herbicidal activity against ECHCG.

[0436] At an application rate of 0.5 kg/ha, the compound I-38, applied by the post-emergence method, showed very good herbicidal activity against ECHCG.

[0437] At an application rate of 0.25 kg/ha, the compound I-49, applied by the post-emergence method, showed very good herbicidal activity against GALAP.

[0438] At an application rate of 1 kg/ha, the compounds I-4, II-1 and I-25 applied by the post-emergence method, showed very good herbicidal activity against SETFA.

[0439] At an application rate of 0.25 kg/ha, the compound I-49, applied by the post-emergence method, showed very good herbicidal activity against SETVI.

Ι

1-15. (canceled)

16. A compound of formula I

$$R^{7} \xrightarrow{N} Y \xrightarrow{X} X$$

$$R^{1} \xrightarrow{R^{4}} A$$

in which:

R is O— R^{A} , S(O)_n13 R^{A} or O—S(O)_n— R^{A} ;

 R^A is hydrogen, C_1 - C_4 -alkyl, Z— C_3 - C_6 -cycloalkyl, C_1 - C_4 -haloalkyl, C_2 - C_6 -alkenyl, Z— C_3 - C_6 -cycloalkenyl, C_2 - C_6 -alkynyl, Z—C(=O)— R^a , Z— NR^1 —C (O)— NR^iR^{ii} , Z— $P(=O)(R^a)_2$, NR^iR^{ii} , a 3- to 7-membered monocyclic or 9- or 10-membered bicyclic saturated, unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S and which may be partially or fully substituted by groups R^a and/or R^b ,

 R^a is hydrogen, OH, C_1 - C_8 -alkyl, C_1 - C_4 -haloalkyl, Z—C₃-C₆-cycloalkyl, C₂-C₈-alkenyl, Z—C₅-C₆-cy-Z— C_1 - C_6 -alkoxy, cloalkenyl, C_2 - C_8 -alkynyl, Z—C₃-C₈-alkenyloxy, Z— C_1 - C_4 -haloalkoxy, $Z-C_3-C_8$ -alkynyloxy, NR^iR^{ii} , C_1-C_6 -alkylsulfonyl, Z-(tri-C₁-C₄-alkyl)silyl, Z-phenyl, Z-phenoxy, Z-phenylamino or a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S, where the cyclic groups are unsubstituted or substituted by 1, 2, 3 or 4 groups R^b ; Ri, Rii independently of one another are hydrogen, $\begin{array}{lll} C_1\text{-}C_8\text{-alkyl}, & C_1\text{-}C_4\text{-halo-alkyl}, & C_3\text{-}C_8\text{-alkenyl}, \\ C_3\text{-}C_8\text{-alkynyl}, & Z\text{--}C_3\text{-}C_6\text{-cycloalkyl}, & Z\text{--}C_1\text{--}C_8\text{-} \end{array}$ alkoxy, $Z-C_1-C_8$ -haloalkoxy, $Z-C(=O)-R^a$, Z-phenyl, a 3- to 7-membered monocyclic or 9- or 10-membered bicyclic saturated, unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S and which is attached via Z; or

Rⁱ and Rⁱⁱ together with the nitrogen atom to which they are attached form a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S;

Z is a covalent bond or C_1 - C_4 -alkylene;

n is 0, 1 or 2;

R¹ is cyano, halogen, nitro, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₆-haloalkyl, Z—C₁-C₆-alkoxy, Z—C₁-C₄-alkoxy-C₁-C₄-alkoxy, Z—C₁-C₄-alkyllthio, C₂-C₆-alkenyloxy, C₂-C₆-alkynyloxy, C₁-C₆-haloalkoxy, C₁-C₄-haloalkoxy-C₁-C₄-alkoxy, S(O) _nR^{bb}, Z-phenoxy, or Z-heterocyclyloxy, where heterocyclyl is a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of

O, N and S, where cyclic groups are unsubstituted or partially or fully substituted by R^b ;

 \mathbf{R}^{bb} is $\mathbf{C}_1\text{-}\mathbf{C}_8\text{-alkyl},~\mathbf{C}_2\text{-}\mathbf{C}_6\text{-alkenyl},~\mathbf{C}_2\text{-}\mathbf{C}_6\text{-alkynyl},~\mathbf{C}_2\text{-}\mathbf{C}_6\text{-haloalkenyl},~\mathbf{C}_2\text{-}\mathbf{C}_6\text{-haloalkynyl}$ or $\mathbf{C}_1\text{-}\mathbf{C}_6\text{-haloalkyl}$ and n is 0, 1 or 2;

A is N or $C-R^2$;

R² is Z¹-phenyl, phenoxy or Z¹-heterocyclyl, where heterocyclyl is a 5- or 6-membered monocyclic or 9- or 10-membered bicyclic saturated, partially unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S, where cyclic groups are unsubstituted or partially or fully substituted by R^b; or

 $\begin{array}{lll} R^2 & \text{is } C_1\text{-}C_8\text{-}alkyl, \ C_2\text{-}C_4\text{-}haloalkyl, \ C_1\text{-}C_4\text{-}alkoxy-} \\ C_1\text{-}C_4\text{-}alkyl, \ C_1\text{-}C_4\text{-}alkylthio-}C_1\text{-}C_4\text{-}alkyl, \ C_2\text{-}C_8\text{-}alkenyl, \ C_2\text{-}C_8\text{-}haloalkenyl, \ C_2\text{-}C_8\text{-}haloalkynyl, \ C_2\text{-}C_8\text{-}haloalkoxyl, \ Z$$-}C_1\text{-}C_4\text{-}alkoxy, \ Z$$-}C_1\text{-}C_4\text{-}alkoxy, \ C_2\text{-}C_6\text{-}alkoxy, \ C_3\text{-}C_6\text{-}alkenyloxy, \ C_3\text{-}C_6\text{-}alkynyloxy, \ C_2\text{-}C_6\text{-}alkylthio, \ C_2\text{-}C_6\text{-}haloalkylthio, \ Z$$-}C_6\text{-}haloalkylthio, \ Z$$-}C_6\text{-}olkylthio, \ Z$$-}C_6\text{-}olky$

Z¹ is a covalent bond, C₁-C₄-alkyleneoxy, C₁-C₄-oxyalkylene or C₁-C₄-alkyleneoxy-C₁-C₄-alkylene:

R^b independently of one another are Z—CN, Z—OH, Z—NO₂, Z-halogen, oxo (≡O), ≡N—R^a, C₁-C₈-alkyl, C₁-C₄-haloalkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, Z—C₁-C₈-alkoxy, Z—C₁-C₈-haloalkoxy, Z—C₃-C₁₀-cycloalkyl, O—Z—C₃-C₁₀-cycloalkyl, Z—C(≡O)—R^a, NRⁱRⁱⁱ, Z-(tri-C₁-C₄-alkyl)silyl, Z-phenyl and S(O)_nR^{bb}, or two groups R^b may together form a ring which has three to six ring members and, in addition to carbon atoms, contain heteroatoms from the group consisting of O, N and S and may be unsubstituted or substituted by further groups R^b; or

R² together with the group attached to the adjacent carbon atom form a five- to ten-membered saturated or partially or fully unsaturated mono- or bicyclic ring which, in addition to carbon atoms, may contain 1, 2 or 3 heteroatoms selected from the group consisting of O, N and S and may be substituted by further groups R^b;

 $\rm R^3$ is hydrogen, halogen, cyano, nitro, $\rm C_1\text{-}C_4\text{-}alkyl,$ $\rm C_1\text{-}C_4\text{-}haloalkyl,}$ $\rm C_1\text{-}C_4\text{-}alkoxy,}$ $\rm C_2\text{-}C_4\text{-}alkenyl,}$ $\rm C_2\text{-}C_4\text{-}alkynyl,}$ $\rm C_2\text{-}C_4\text{-}alkenyloxy,}$ $\rm C_2\text{-}C_4\text{-}alkynyloxy,}$ or $\rm S(O)_n\rm R^{bb};$

R⁴ is hydrogen, halogen or C₁-C₄-haloalkyl;

 R^{5} is hydrogen, $C_{1}\text{-}C_{4}\text{-}alkyl,\ C_{1}\text{-}C_{4}\text{-}haloalkyl,\ C_{1}\text{-}C_{4}\text{-}alkoxy,\ C_{1}\text{-}C_{4}\text{-}alkylthio,\ C_{1}\text{-}C_{4}\text{-}haloalkoxy,\ or\ C_{1}\text{-}C_{4}\text{-}haloalkylthio;}$

 R^6 , R^7 independently of one another are hydrogen, halogen or C_1 - C_4 -alkyl;

Y is O or S;

X is O, S or N— \mathbb{R}^x ;

 $\begin{array}{lll} R^x \text{ is hydrogen, C_1-C_6-alkyl, C_1-C_4-haloalkyl, C_2-C_6-alkenyl, C_3-C_6-alkynyl, Z-C_3-C_{10}-cycloalkyl, C_1-C_6-alkoxy$-$C_1$-$C_6$-alkyl, C_1-C_6-cyanoalkyl, Z-phenyl, Z-$C($\Longrightarrow$O)$-R^{a^2} or tri-C_1-C_4-alkylsilyl; \\ \end{array}$

 R^{a2} is C_1 - C_6 -alkyl, C_1 - C_4 -haloalkyl, Z— C_1 - C_6 -alkoxy, Z— C_1 - C_4 -haloalkoxy or NR^iR^{ii} ;

where in the groups $R^{\mathcal{A}}$ and their subsubstituents, the carbon chains and/or the cyclic groups may be partially or fully substituted by groups Rb, or an N-oxide or an agriculturally suitable salt thereof

- 17. The compound of claim 16 in which A is CR².
- 18. The compound of claim 17 in which
- R² is an optionally substituted five- or six-membered saturated, partially unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S.
- 19. The compound of claim 17 in which R^2 is

in which # denotes the bond through which the group R^2 is attached and:

 R^{P2} is H or F;

 R^{P3} is H, F, Cl or OCH₃; and

 R^{P4} is H, F, Cl, CH_3 , CF_3 , OCH_3 , OCH_2OCH_3 or $OCH_2CH_2OCH_3$.

- **20**. The compound of claim **18** in which R^2 is an optionally R^b -substituted heterocycle selected from the group consisting of isoxazoline, tetrazolone, 1,2-dihydrotetrazolone, 1,4-dihydrotetrazolone, tetrahydrofuran, dioxolane, piperidine, morpholine, piperazine, isoxazole, pyrazole, thiazole, oxazole, furyl, pyridine and pyrazine.
- **21**. The compound of claim **20** in which the groups R^b are selected from the group consisting of C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl and C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl.
 - 22. The compound of claim 17 in which
 - R^2 is an aliphatic group selected from the group consisting of $C_1\text{-}C_6\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_2\text{-}C_6\text{-}alkenyl,\ C_2\text{-}C_6\text{-}alkynyl,\ C_2\text{-}C_4\text{-}alkoxy,\ C_2\text{-}C_4\text{-}haloalkoxy,\ C_3\text{-}C_6\text{-}alkenyloxy,\ C_3\text{-}C_6\text{-}alkynyloxy,\ C_3\text{-}C_6\text{-}haloalkenyloxy,\ C_3\text{-}C_6\text{-}haloalkynyloxy,\ C_1\text{-}C_4\text{-}alkoxycarbonyl,\ S(O)_2\text{--}C_1\text{-}C_8\text{-}alkyl\ and\ S(O)_2\text{--}C_1\text{-}C_8\text{-}haloalkyl.}$
 - 23. The compound of claim 16 in which
 - R^1 is halogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy,\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkoxy,\ C_1\text{-}C_4\text{-}alkylthio,\ C_1\text{-}C_4\text{-}haloalkylthio or\ C_1\text{-}C_4\text{-}alkylsulfonyk\ and}$
 - $\rm R^3$ is H, halogen, CN, NO $_2$, C $_1$ -C $_4$ -alkyl, C $_1$ -C $_4$ -alkoxy, C $_1$ -C $_4$ -haloalkoxy, C $_1$ -C $_4$ -alkylthio, or C $_1$ -C $_4$ -alkylsulfonyl.
- **24**. The compound of claim **17** in which R^2 together with R^1 or R^3 forms an optionally R^b -substituted five- to ten-membered mono- or bicyclic, partially unsaturated ring which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S.
- 25. The compound of claim 22 in which the ring substituted by groups $R^1,\,R^2,\,R^3$ and R^4 corresponds to one of groups A to L

$$\begin{array}{c}
\mathbb{R}^4 \\
\mathbb{R}^3 \\
\mathbb{R}^5 \\
\mathbb{R}^b)_{0-3}
\end{array}$$

$$\mathbb{R}^4$$

$$\mathbb{R}^3$$

$$(\mathbb{R}^b)_{0-3}$$

$$\mathbb{R}^4$$

$$\mathbb{R}^3$$

$$\mathbb{R}^b_{0\cdot 3}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{b}_{0.3}$$

$$\mathbb{R}^{4} \xrightarrow{\mathbb{Q}} \mathbb{Q}$$

$$\mathbb{Q}$$

$$\begin{array}{c}
\mathbb{R}^4 & \mathbb{O} \\
\mathbb{R}^1 & \mathbb{O} \\
\mathbb{N} & \mathbb{O}
\end{array}$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

$$\mathbb{R}^1 \quad \mathbb{Q}$$

$$\mathbb{R}^b)_{0.6}$$

Η

Ι

J

K

L

-continued R^4 R^4

$$\text{\#} \underbrace{\prod_{R^1}^{R^4}}_{\text{H}/R^b}$$

26. The compound of claim **16** in which A is N.

27. The compound of claim 26 in which

 R^1 is nitro, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkyl,\ C_1\text{-}C_4\text{-}alkoxy-}\\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy-}\\ C_1\text{-}C_4\text{-}alkoxy,\ C_1\text{-}C_4\text{-}alkoxy,\ C_1\text{-}C_4\text{-}alkylthio,}\\ C_1\text{-}C_4\text{-}haloalkylthio\ or\ C_1\text{-}C_4\text{-}alkylsulfonyl;\ and}$

 $\rm R^3$ is H, CN, NO $_2$, C $_1$ -C $_4$ -alkyl, C $_1$ -C $_4$ -haloalkyl, C $_1$ -C $_4$ -alkoxy, C $_1$ -C $_4$ -alkylthio or C $_1$ -C $_4$ -alkylsulfonyl.

28. The compound of claim 16 in which

X,Y independently of one another are O or S and R^4,R^5,R^6,R^7 are H.

- 29. A composition comprising a herbicidally effective amount of a compound of claim 16 and auxiliaries customary for formulating crop protection agents.
- **30**. A method for controlling unwanted vegetation which comprises allowing a herbicidally effective amount of a compound of claim **16** to act on plants, their seed and/or their babitat
- 31. The method of claim 30, wherein in the compound of formula I, A is CR^2 .

32. The method of claim 31, wherein in the compound of formula I,

R² is an optionally substituted five- or six-membered saturated, partially unsaturated or aromatic heterocycle which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S.

33. The method of claim 31, wherein in the compound of formula I, \mathbb{R}^2 is

in which # denotes the bond through which the group R^2 is attached and:

 R^{P2} is H or F;

R^{P3} is H, F, Cl or OCH₃; and

 $R^{\it P4}$ is H, F, Cl, CH₃, CF₃, OCH₃, OCH₂OCH₃ or OCH₂CCH₂OCH₃.

- **34**. The method of claim **32**, wherein in the compound of formula I, R^2 is an optionally R^b -substituted heterocycle selected from the group consisting of isoxazoline, tetrazolone, 1,2-dihydrotetrazolone, 1,4-dihydrotetrazolone, tetrahydrofuran, dioxolane, piperidine, morpholine, piperazine, isoxazole, pyrazole, thiazole, oxazole, furyl, pyridine and pyrazine.
- **35**. The method of claim **34**, wherein in the compound of formula I, the groups R^b are selected from the group consisting of C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkyl and C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl.
- **36**. The method of claim **31**, wherein in the compound of formula I.

 R^2 is an aliphatic group selected from the group consisting of $C_1\text{-}C_6\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_2\text{-}C_6\text{-}alkenyl,\ C_2\text{-}C_6\text{-}alkynyl,\ C_2\text{-}C_4\text{-}alkoxy,\ C_3\text{-}C_6\text{-}alkenyloxy,\ C_3\text{-}C_6\text{-}alkynyloxy,\ C_3\text{-}C_6\text{-}haloalkenyloxy,\ C_3\text{-}C_6\text{-}haloalkynyloxy,\ C_1\text{-}C_4\text{-}alkoxycarbonyl,\ S(O)_2\text{--}C_1\text{-}C_8\text{-}alkyl\ and\ S(O)_2\text{--}C_1\text{-}C_8\text{-}haloalkyl.}$

37. The method of claim 30, wherein in the compound of formula I,

 R^1 is halogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkyl,\ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy,\ C_1\text{-}C_4\text{-}haloalkoxy,\ C_1\text{-}C_4\text{-}alkyl,\ lthio,\ C_1\text{-}C_4\text{-}haloalkylthio\ or\ C_1\text{-}C_4\text{-}alkylsulfonyl;\ and}$

 $\rm R^3$ is H, halogen, CN, NO $_2$, C $_1$ -C $_4$ -haloalkyl, C $_1$ -C $_4$ -alkoxy, C $_1$ -C $_4$ -haloalkoxy, C $_1$ -C $_4$ -alkylthio, or C $_1$ -C $_4$ -alkylsulfonyl.

38. The method of claim **31**, wherein in the compound of formula I, R^2 together with R^1 or R^3 forms an optionally R^b -substituted five- to ten-membered mono- or bicyclic, partially unsaturated ring which contains 1, 2, 3 or 4 heteroatoms selected from the group consisting of O, N and S.

39. The method of claim **30**, wherein in the compound of formula I, the ring substituted by groups R^1 , R^2 , R^3 and R^4 corresponds to one of groups A to L

A

В

C

D

Е

F

G

$$R^{4}$$
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}

-continued H

$$\mathbb{R}^4$$
 \mathbb{R}^4
 \mathbb{R}^4

- **40**. The method of claim **30**, wherein in the compound of formula I, A is N.
- 41. The method of claim 40, wherein in the compound of formula I,

 $\begin{array}{l} R^1 \text{ is nitro, } C_1\text{-}C_4\text{-alkyl, } C_1\text{-}C_4\text{-haloalkyl, } C_1\text{-}C_4\text{-alkoxy-} \\ C_1\text{-}C_4\text{-alkyl, } C_1\text{-}C_4\text{-alkoxy-}C_1\text{-}C_4\text{-alkoxy-}C_1\text{-}C_4\text{-alkyl,} \\ C_1\text{-}C_4\text{-alkoxy, } C_1\text{-}C_4\text{-haloalkoxy, } C_1\text{-}C_4\text{-alkylthio,} \\ C_1\text{-}C_4\text{-haloalkylthio or } C_1\text{-}C_4\text{-alkylsulfonyl;} \text{ and} \end{array}$

 $\rm R^3$ is H, CN, NO $_2$, C $_1$ -C $_4$ -alkyl, C $_1$ -C $_4$ -haloalkyl, C $_1$ -C $_4$ -alkoxy, C $_1$ -C $_4$ -alkylthio or C $_1$ -C $_4$ -alkylsulfonyl.

42. The method of claim 30, wherein in the compound of formula I,

X,Y independently of one another are O or S and R^4,R^5,R^6,R^7 are H.

* * * * *