
(12) United States Patent
Barash

USOO969.0886B1

US 9,690,886 B1
Jun. 27, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(51)

(52)

(58)

SYSTEMAND METHOD FOR A
SIMULATION OF A BLOCK STORAGE
SYSTEM ON AN OBJECT STORAGE
SYSTEM

Applicant: ZERTO LTD., Herzliya (IL)

Inventor: Gil Barash, Tel-Aviv (IL)

Assignee: ZERTO LTD., Herzliya (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 15/197,812

Filed: Jun. 30, 2016

Int. C.
G06F 9/44
G06F 3/10
G06F 3/12
G06F 7/50
G06F 3/06
U.S. C.
CPC G06F 17/5009 (2013.01); G06F 3/0604

(2013.01); G06F 3/0632 (2013.01); G06F
3/0673 (2013.01)

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

Field of Classification Search
CPC. G06F 17/5009; G06F 3/0673; G06F 3/0632:

GO6F 3/O604
USPC .. 703/21
See application file for complete search history.

250

BLOCK
STORAGE
SYSTEM

SIMULATION
UNIT

RANGEMAP

RANGE OFFSETISIZE TIME COUNTER

1020 0
It is lister GTEPCOO, (GH EH to H

(56) References Cited

U.S. PATENT DOCUMENTS

7,877.357 B1 * 1/2011 Wu G06F 11,1458
707,639

2003/0101186 A1* 5/2003 Lanzatella GO6F 17,301.06
2008/0140724 A1* 6/2008 Flynn G06F 1 183
2011/0082997 A1* 4/2011 Yochai GO6F 3.0605

711/171
2012/0124307 A1* 5, 2012 Ashutosh G06F 11,1451

T11 162
2014/0040286 A1 2/2014 Bane GO6F 17,30253

707/754

* cited by examiner

Primary Examiner — Dwin M Craig
(74) Attorney, Agent, or Firm — Pearl Cohen Zedek
Latzer Baratz LLP

(57) ABSTRACT

An embodiment may simulate a block storage system on an
object storage system. An embodiment may define one or
more logical parts of the block storage system and may store
data included in the logical parts in a respective plurality of
objects in the object storage system. In order to modify a
simulation when data in the block storage system is modi
fied, an embodiment may create a new object in the object
storage system and may store the modified data in the new
object. An embodiment may update a range-map to include
at least one of: a reference to the new object, a logical
address of the modified data, a size of the modified data and
a COunter.

20 Claims, 3 Drawing Sheets

USER UNIT 280

OBJECT-BASED STORAGESYSTEM

10-20-5-320-1450 168587-1

10-20-7-512-145O190001-2

230

235

U.S. Patent Jun. 27, 2017 Sheet 1 of 3 US 9,690,886 B1

140

FIG. 2 210 r USER UNIT J/r280 200 USER UNIT
SIMULATION

UNIT

RANGEMAP

220

261
262
263
264
265

250 266

BLOCK
STORAGE
SYSTEM 240

251

252 230

253 235

U.S. Patent Jun. 27, 2017 Sheet 2 of 3 US 9,690,886 B1

The block storage

E - O 10 20 30 40 50 60
Storage

Objects
in object- N 0-10
based Storage: 10-20

20-30
30-40

FIG. 3

The block storage

OHOHOHOHOHOHO
Offsets in

O 10 20 30 40 50 60 the storage

1, 100 bytes are written to offset 25
2. Read the "20-30" object i:
3. Object is modified, in memory
4. Write the object back

420

410 FIG. 4

U.S. Patent Jun. 27, 2017 Sheet 3 of 3 US 9,690,886 B1

DEFINING A PLURALITY OF LOGICAL PARTS OF ABLOCK STORAGE SYSTEM
AND STORING DATA INCLUDED IN THE PLURALITY OF LOGICAL PARTS INA
RESPECTIVE PLURALITY OF OBJECTS IN AN OBJECT STORAGE SYSTEM TO

THEREBY PRODUCE A SIMULATION OF THE BLOCK STORAGE

515

|NORDER TOMODIFY THE SIMULATION BASED ON A MODIFICATION OF
DATA IN THE BLOCK STORAGE, CREATING ANEW OBJECT IN THE OBJECT 520
STORAGE SYSTEMAND STORING MODIFIED DATA IN THE NEW OBJECT

UPDATINGA RANGE-MAP TO INCLUDE AT LEAST ONE OF: A REFERENCE
TO THE NEW OBJECT, ALOGICAL ADDRESS OF THE MODIFIED DATA, A 525

SIZE OF THE MODIFIED DATA AND A COUNTER

RECEIVING AREQUEST TO READ DATA, THE REQUEST INCLUDING AN 530
ADDRESS RANGE

EXAMINING THE RANGE-MAP TO DENTIFY OBJECTS IN THE OBJECT
STORAGE THAT STORE DATA RELATED TO THE ADDRESS RANGE AND

535 RESPONDING TO THE REQUEST BASED ON DATA STORED IN THE
IDENTIFIED OBJECTS

FIG. 5

US 9,690,886 B1
1.

SYSTEMAND METHOD FOR A
SIMULATION OF A BLOCK STORAGE
SYSTEM ON AN OBJECT STORAGE

SYSTEM

FIELD OF THE INVENTION

The present invention relates generally to generating a
simulation of a storage system. More specifically, the pres
ent invention relates to simulating a block storage system on
an object storage system.

BACKGROUND OF THE INVENTION

Object storage (also known as object-based storage) is
known in the art. Object storage techniques or object-based
storage systems or architectures are available, e.g., the
online storage web service S3 offered by Amazon. Object
Storage techniques may use a digital data storage architec
ture or platform that stores and manages data as objects or
containers (e.g., buckets in S3). Object Storage is simpler
than other architectures (e.g., file system) and offers advan
tages such as scalability and low cost.

In some object-based storage system, each object has a
unique, string name, and an object (or part of the content in
an object) can be retrieved using the object's name. Some
object-based storage systems provide a listing service that
provides a user with a list of objects in the object-based
Storage System.
As further known in the art, in Some object-based storage

systems, the content of, or data included in, an object stored
in an object-based storage system cannot be modified while
the object is stored in the object-based storage system.
Accordingly, in order to modify a content object in an
object-based storage system, the object may need to be read,
modified and then written back to the object-based storage
system.

Block storage systems (also referred to in the art as
"random access storage systems) such as disks or hard
drives are known in the art. Generally, a block storage
system enables accessing any location in the storage system.
For example, using a numerical address (or logical address),
any amount of data, in any address (or offset) in a random
access storage system, e.g., a disk drive, can be written to,
or read from.

Generally, in block storage systems, files are split into
fixed, or evenly sized blocks of data, each block having its
own address, typically, no other data (or metadata) is main
tained for blocks in block storage systems. In contrast, an
object-based storage system doesn't split files up into raw
blocks of data. Instead, entire chunks of data are stored as
objects that contain the data, metadata, and at least one
unique identifier.

SUMMARY OF THE INVENTION

An embodiment may simulate a block storage system on
an object storage system. An embodiment may define one or
more logical parts of the block storage system and may store
data included in the logical parts in a respective plurality of
objects in the object storage system. In order to modify a
simulation when data in the simulated block storage system
is modified, an embodiment may create a new object in the
object storage system and may store the modified data in the
new object. An embodiment may update a map to include at

10

15

25

30

35

40

45

50

55

60

65

2
least one of a reference to the new object, a logical address
of the modified data, a size of the modified data and a
COunter.

An embodiment may receive a request to read data, the
request including an address range; examine the map to
identify objects in the object storage that store data related
to the address range; and respond to the request based on
data stored in at least one of the plurality of objects and the
new object.
An embodiment may include a value of a running counter

in names of the objects; sort a plurality of objects based on
the counter value; and create the map by recording a
reference to an object, a logical address of the object, a size
of the object and a counter value.
An embodiment may create the map by recording at least

one of a time and date value, an identification of a user and
an identification of an application.
An embodiment may determine a set of objects in the

object storage system that include data included in a set of
logical parts; and if the number of objects in the set is greater
than a threshold value then an embodiment may initialize a
storage object having a size of the set of logical parts, store,
in the storage object, data read from objects in the object
storage system that include data included in the set of logical
parts, create a new object in the object storage system and
store data read from the storage object in the new object, and
update the map to include at least: a reference to the new
object, a logical address of the modified data, a size of the
modified data and a counter. An embodiment may delete at
least Some of the objects in the object storage system that
include data included in the set of logical parts. A map may
be an in-memory object.

BRIEF DESCRIPTION OF THE DRAWINGS

The Subject matter regarded as the invention is particu
larly pointed out and distinctly claimed in the concluding
portion of the specification. The invention, however, both as
to organization and method of operation, together with
objects, features and advantages thereof, may best be under
stood by reference to the following detailed description
when read with the accompanied drawings. Embodiments of
the invention are illustrated by way of example and not
limitation in the figures of the accompanying drawings, in
which like reference numerals indicate corresponding,
analogous or similar elements, and in which:

FIG. 1 shows high level block diagram of an exemplary
computing device according to some embodiments of the
present invention;

FIG. 2 is an overview of a system according to some
embodiments of the present invention;

FIG. 3 graphically illustrates defining logical data blocks
according to some embodiments of the present invention;

FIG. 4 graphically illustrates maintaining a simulation of
a block storage system in an object-based system according
to Some embodiments of the invention; and

FIG. 5 shows a flowchart of a method for simulation a
block storage system on an object storage system according
to some embodiments of the invention.

It will be appreciated that for simplicity and clarity of
illustration, elements shown in the figures have not neces
sarily been drawn accurately or to scale. For example, the
dimensions of some of the elements may be exaggerated
relative to other elements for clarity, or several physical
components may be included in one functional block or
element. Further, where considered appropriate, reference

US 9,690,886 B1
3

numerals may be repeated among the figures to indicate
corresponding or analogous elements.

DETAILED DESCRIPTION OF THE
INVENTION

In the following detailed description, numerous specific
details are set forth in order to provide a thorough under
standing of the invention. However, it will be understood by
those skilled in the art that the present invention may be
practiced without these specific details. In other instances,
well-known methods, procedures, and components, mod
ules, units and/or circuits have not been described in detail
So as not to obscure the invention. Some features or elements
described with respect to one embodiment may be combined
with features or elements described with respect to other
embodiments. For the sake of clarity, discussion of same or
similar features or elements may not be repeated.

Although some embodiments of the invention are not
limited in this regard, discussions utilizing terms such as, for
example, “processing.” “computing.” “calculating,” “deter
mining.” “establishing”, “analyzing”, “checking, or the
like, may refer to operation(s) and/or process(es) of a
computer, a computing platform, a computing system, or
other electronic computing device, that manipulates and/or
transforms data represented as physical (e.g., electronic)
quantities within the computer's registers and/or memories
into other data similarly represented as physical quantities
within the computers registers and/or memories or other
information non-transitory storage medium that may store
instructions to perform operations and/or processes.
Although embodiments of the invention are not limited in
this regard, the terms “plurality” and “a plurality” as used
herein may include, for example, “multiple or “two or
more'. The terms “plurality” or “a plurality” may be used
throughout the specification to describe two or more com
ponents, devices, elements, units, parameters, or the like.
The term set when used herein may include one or more
items. Unless explicitly stated, the method embodiments
described herein are not constrained to a particular order or
sequence. Additionally, some of the described method
embodiments or elements thereof can occur or be performed
simultaneously, at the same point in time, or concurrently.

Reference is made to FIG. 1, showing a high level block
diagram of an exemplary computing device according to
Some embodiments of the present invention. Computing
device 100 may include a controller 105 that may be, for
example, a central processing unit processor (CPU), a chip
or any Suitable computing or computational device, an
operating system 115, a memory 120, executable code 125,
a storage system 130, input devices 135 and output devices
140. Controller 105 (or one or more controllers or proces
sors, possibly across multiple units or devices) may be
configured to carry out methods described herein, and/or to
execute or act as the various modules, units, etc. More than
one computing device 100 may be included, and one or more
computing devices 100 may act as the various components,
for example the components of system 200 Such as simu
lation unit 210 shown in FIG. 2. For example, system 200
described herein, or various components or modules of
system 200, may be, or may include components of com
puting device 100 (more than one such device may be
included). For example, by executing executable code 125
stored in memory 120, controller 105 or more than one such
controller may be configured to carry out a method of
simulating block storage on an object storage system as
described herein. For example, controller 105 may be con

10

15

25

30

35

40

45

50

55

60

65

4
figured to create objects and a range map and use the range
map to create and update a simulation of the block storage
system as described herein.

Operating system 115 may be or may include any code
segment (e.g., one similar to executable code 125 described
herein) designed and/or configured to perform tasks involv
ing coordination, scheduling, arbitration, Supervising, con
trolling or otherwise managing operation of computing
device 100, for example, scheduling execution of software
programs or enabling software programs or other modules or
units to communicate. Operating system 115 may be a
commercial operating system.
Memory 120 may be or may include, for example, a

Random Access Memory (RAM), a read only memory
(ROM), a Dynamic RAM (DRAM), a Synchronous DRAM
(SD-RAM), a double data rate (DDR) memory chip, a Flash
memory, a volatile memory, a non-volatile memory, a cache
memory, a buffer, a short term memory unit, a long term
memory unit, or other Suitable memory units or storage
units. Memory 120 may be or may include a plurality of
possibly different memory units. Memory 120 may be a
computer or processor non-transitory readable medium, or a
computer non-transitory storage medium, e.g., a RAM.

Executable code 125 may be any executable code, e.g., an
application, a program, a process, task or script. Executable
code 125 may be executed by controller 105 possibly under
control of operating system 115. For example, executable
code 125 may be an application that simulates block storage
on an object storage system as further described herein.
Although, for the sake of clarity, a single item of executable
code 125 is shown in FIG. 1, a system according to some
embodiments of the invention may include a plurality of
executable code segments similar to executable code 125
that may be loaded into memory 120 and cause controller
105 to carry out methods described herein. For example,
units or modules described herein (e.g., simulation unit 210)
may be, or may include, controller 105, memory 120 and
executable code 125. For example, simulation unit 210 may
include at least a memory 120, define one or more logical
parts of a block storage system and store data included in the
logical parts in a respective plurality of objects in an object
storage system; and, when data in the block storage system
is modified, create a new (or additional) object in the object
storage system and store, in the new or additional object the
modified data. A controller such as controller 105 in simu
lation unit 210 may be configured to modify or update a map
(e.g., a range-map described herein) to include at least one
of a reference to the new object, a logical address of the
modified data, a size of the modified data and a counter.

Storage system 130 may be, or may include, either a block
storage system or device or an object-based storage system
or device. Storage system 130 may be or may include, for
example, a hard disk drive, a floppy disk drive, a Compact
Disk (CD) drive, a CD-Recordable (CD-R) drive, a Blu-ray
disk (BD), a universal serial bus (USB) device or other
Suitable removable and/or fixed storage unit. Content may
be stored in storage system 130 and may be loaded from
storage system 130 into memory 120 where it may be
processed by controller 105. In some embodiments, some of
the components shown in FIG. 1 may be omitted. For
example, memory 120 may be a non-volatile memory hav
ing the storage capacity of storage system 130. Accordingly,
although shown as a separate component, storage system
130 may be embedded or included in memory 120.

Input devices 135 may be or may include a mouse, a
keyboard, a touch screen or pad or any suitable input device.
It will be recognized that any suitable number of input

US 9,690,886 B1
5

devices may be operatively connected to computing device
100 as shown by block 135. Output devices 140 may include
one or more displays or monitors, speakers and/or any other
suitable output devices. It will be recognized that any
suitable number of output devices may be operatively con
nected to computing device 100 as shown by block 140. Any
applicable input/output (I/O) devices may be connected to
computing device 100 as shown by blocks 135 and 140. For
example, a wired or wireless network interface card (NIC),
a printer, a universal serial bus (USB) device or external
hard drive may be included in input devices 135 and/or
output devices 140.
A system according to some embodiments of the inven

tion may include components such as, but not limited to, a
plurality of central processing units (CPU) or any other
Suitable multi-purpose or specific processors or controllers
(e.g., controllers similar to controller 105), a plurality of
input units, a plurality of output units, a plurality of memory
units, and a plurality of storage units. A system may addi
tionally include other suitable hardware components and/or
Software components. In some embodiments, a system may
include or may be, for example, a personal computer, a
desktop computer, a laptop computer, a workstation, a server
computer, a network device, or any other Suitable computing
device. For example, a system as described herein may
include one or more devices such as computing device 100.

In some cases, it may be desirable to simulate, clone or
replicate a block storage system in, or on, an object-based
storage system, e.g., due to the low cost of storage in an
object-based storage system. The term simulation as used
herein may mean, or may be related to, cloning or replicating
as known in the art, e.g., copying data from a first storage
system to a second storage system.
When used with respect to a block storage system, the

terms 'simulating”, “replicating”, “cloning or "copying as
referred to herein may relate to data and functionality of the
block storage system. For example, simulating, replicating
or cloning a block storage system by, using, or on, an
object-based storage system (e.g., simulating, replicating or
cloning block storage system 250 using object-based storage
system 240 as described herein) may include storing or
including in an object-based storage system any information
Such that any data or functionality provided by a simulated,
replicated or cloned block storage system can be provided
by the object-based storage system. For example, a simula
tion, replication, or cloning of a block storage system, by an
object-based storage system, may provide users with data,
e.g., files, and with functionality, e.g., services or execution
of applications.

However, since an object in an object-based storage
system cannot be modified without reading the object,
modifying it and writing it back to the object-based storage
system, simulating, cloning or replicating a block storage
system in, or on, an object-based storage system is a
challenge faced by the industry.

Reference is made to FIG. 2, an overview of a system 200
and flows according to some embodiments of the present
invention. As shown, a system 200 may include a simulation
unit 210 and a map such as a range map 220. It will be
understood that any suitable map or data structure may be
used in order to store, update, read or otherwise maintain and
use information and data as described with respect to
range-map 220. Accordingly, the terms 'map', 'range map'
and “range-map' may be used herein interchangeably and
may mean, or refer to, the same thing or entity. As shown,
range map (also referred to herein as range-map) 220 may
include entries or rows that include, for each entry or row,

10

15

25

30

35

40

45

50

55

60

65

6
data Such as a range value, an offset value, a size value, a
time value and a counter. Other or different data may be
used. As described, each entry may be related to an object
and information in an entry may be used for determining the
name of the relevant object as further described herein. An
exemplary range map 220 may include rows or entries
261-266 as shown. As further shown, system 200 may
include, or may be connected to, a block storage system 250
and an object-based storage system 240. Object-based stor
age system 240 may be a cloud-based storage system as
known in the art. As shown, block storage system 250 may
include, or be used in order to store, logical data blocks
(LDBs) 251, 252 and 253. Object-based storage system 240
may include, or be used in order to store, objects 221, 222,
230 and 235. A user unit 280 may be connected to simulation
unit 210. For example, a user or operator of user unit 280
may be a client or user of block storage system 250 (e.g., an
agent or employee, or a server in an organization) and may,
during a first time period, read and write data from/to block
storage system 250 and/or use services provided by block
storage system 250 (e.g., use a mail server or database
application executed by block storage system 250). Various
units, modules or component shown in FIG. 2 may be, or
may include components of computing device 100. For
example, simulation unit 210 may be, or may include
components of computing device 100. Similarly, user unit
280, range map 220, object storage system 240 and block
storage system 250 may include elements of computing
device 100. For example, range map 220 may be, or may
include a memory similar to memory 120 and user unit 280,
object storage system 240 and block storage system 250 may
include a controller 105 and a memory 120.

During a second time period, e.g., when block storage
system 250 is simulated, replicated or cloned by object
based storage system 240, user unit 280 may connect to
simulation unit 210 and be provided, by simulation unit 210,
with any data or functionality as provided by block storage
system 250 during the first time period. For example, a
server or a virtual machine (VM) included in or connected
to block storage system 250 and used by user unit 280 during
a first time period and the server or VM may be failed-over
to object-based storage system 240, and used by user unit
280 during the second time period as known in the art.
Although not shown, when using block storage system 250,
user unit 280 may be connected directly to object-based
storage system 240, e.g., without going through, or other
wise involving, simulation unit 210.

It is noted that in order to simulate a block storage system,
an embodiment does not require an actual block storage
system to be included in a system. For example, block
storage system 250 need not be used and simulation unit 210
and object-based storage system 240 may simulate a block
storage system without block storage system 250. While in
Some embodiments an existing block storage system may be
migrated to, or be simulated by, an object-based storage
system, in other embodiments a simulation of a block
storage system using an object-based storage system may be
performed from Scratch, without any actual block storage
system. Accordingly, it will be understood that inclusion of
block storage system 250 in system 200 is optional and some
configurations of system 200 do not include block storage
system 250.

Simulation unit 210, block storage system 250 and object
based system 240 may be connected to a network (not
shown), e.g., the internet or a private network, and may
freely communicate (e.g., send and receive messages or
other data) over the network, e.g., using network cards

US 9,690,886 B1
7

(NICs) or wireless communication systems and software
(e.g., drivers) as known in the art.

Block storage system 250 may be any block storage
system as known in the art and may include components of
computing device 100, e.g., a memory 120, a controller 105
and a storage system 130. For example, block storage
system 250 may be, or may include, a server and a redundant
array of independent disks (raid) connected to the server.

Object-based storage system 240 may be any suitable
object-based storage system. For example, object-based
storage system 240 may be the online storage web service S3
offered by Amazon. Objects 221, 222, 230 and 235 may be
any objects included in an object-based storage system, for
example, objects 221, 222, 230 and 235 may be objects in
the online storage web service S3 offered by Amazon. It will
be understood that any method or system used as the
underlying layer may be used (e.g., by a provider of object
based storage Such as Amazon) in order to achieve, imple
ment and/or provide object storage as described herein.
LDBs 251, 252 and 253 may be any data units stored in

block storage system 250. An LDB may be defined, created
and used based on a configuration parameter or value. For
example, based on a configuration value, simulation unit 210
may define an LDB as a ten megabyte (10 MB) data block
and may associate offsets (or addresses) in block storage
system 250 with LDBs. An offset as referred to herein may
be a distance from, or an address related to, a reference point
in a storage system. For example, an offset may be calcu
lated or determined based on the location or number of a
sector in a disk. Accordingly, an offset may represent, point
to, or be associated with a specific address in a storage
system. For example, LDB 251 may be, or may include, data
stored from offset or address 10M to (but not including)
offset or address 20M in a disk. For example, LDB 251 may
be, or may include, data stored in offsets or addresses 10-20,
LDB 252 may be, or may include, data stored in offsets or
addresses 20-30, LDB 253 may be, or may include, data
stored in offsets or addresses 30-40 and so on. In some
embodiments, an LDB includes, or is defined by, an offset
and a size. It will be understood that any type, or size, of
LDBs may be used by a system and method according to
embodiments of the invention.

Simulation unit 210 may be, or may include components
of computing device 100. For example, simulation unit 210
may include a memory 120 and a controller 105. For
example, simulation unit 210 may be a server operatively
connected to block storage system 250 and operatively
connected to object-storage system 240. In some embodi
ments, simulation unit may be connected only to object
based system 240. For example, after a simulation or rep
lication of block storage system 250 has been created on
object-based system 240 as described, simulation unit 210
may be disconnected from block storage system 250 and
provide data and functionality of block storage system 250
using the simulation or replication on object-based system
240. Although shown as a separate component, in some
embodiments, simulation unit 210 may be included in block
storage system 250 or in object-storage system 240. For
example, block storage system 250 and simulation unit 210
may be included in, or executed by, the same server. Range
map 220 may be any suitable object adapted to include
information related to LDBs in block storage system 250
and information related to objects in object-storage system
240 as further described. For example, range map 220 may
be a list or table, or it may be an object in a database, e.g.,
a file. In some embodiments, range map 220 may be an
in-memory object as known in the art, e.g., stored in a RAM

5

10

15

25

30

35

40

45

50

55

60

65

8
or other fast memory. For example, range map 220 may be
a segment of memory 120 (an in-memory as known in the
art) such that controller 105 may quickly and in real-time,
modify or update range map 220. Range map may be stored
in storage system 130, e.g., in order to keep a copy of range
map 220 across resets or reboots or a system. For example,
controller 105 may load a copy of range map 220 from
storage system 130 into memory 120 and use range map 220
in memory 120 as described herein. Range map 220 may be
stored in a database, e.g., using persistent storage, for
example, range map 220 may be included in a file created
according to any format and the file may be stored in a
database as known in the art.
As described, in some embodiments, simulation unit 210

splits block storage system 250 into logical parts or LDBs,
e.g., starting from, for example, offset or address Zero ("0")
of a disk of block storage system 250, every 10 MB of data
is defined by simulation unit 210 to be, or viewed by
simulation unit 210 as, a logical part or an LDB. As with
other examples herein, other ranges and values may be used.

Reference is additionally made to FIG. 3 that graphically
illustrates splitting or dividing a block storage system into
LDBs. As shown, offsets or address ranges in a block storage
system may be mapped, linked or associated with objects in
an object-based storage system. For example, and as shown,
object 0-10 may be linked to or associated with, the address
range of 0 to 10 (e.g., 0 to 10 MB). For example, objects
0-10 in an object-based storage system may store or include
data stored or included in addresses 0 to 10 MB in a block
storage system. As further described herein, objects in
object-storage storage (e.g., 0-10, 10-20 etc.) shown in FIG.
3 may be, or may be used in order to, simulate a block
storage, e.g., the block storage with offsets 0, 10, 20 and so
on as shown in FIG. 3.

In some embodiments, simulation unit 210 may read data
in LDBs and copy or store the data in objects in object-based
system 240. As described, when storing an object in object
based system 240 a name for the object may be provided,
e.g., by simulation unit 210 to object-based system 240, and
the object may subsequently be retrieved e.g., by simulation
unit 210 from object-based system 240, using its name. In
Some embodiments, simulation unit 210 may name or label
objects in object-based system 240 based on offsets,
addresses, sizes and/or LDBs. For example, data or content
in each LDB in block storage system 250 may be stored in
an object whose name includes the offsets or address range
of the LDB. For example, the name of an object in object
based system 240 that includes data included in offsets 10
MB to 20 MB in block storage system 250 may be named
or labelled “10-20. For example, as shown, the range of
object 221 may be “10-20 and object 221 may store data in
offsets 10-20 in block storage system 250 (as shown by LDB
251). Similarly, an object in object-based system 240 that
represents, or stores data in the range from the 20" MB till
the 30 MB in block storage system 250 may be “20-30”
and so on.

Simulation unit 210 may modify or update range map 220
Such that an association of objects and LDBS is created and
maintained. For example, and as shown, an association of
object 221 and LDB 251 may be, or may be represented by,
an entry in range map 220 that links object 221 to offsets
10-2O.
As described herein, in Some embodiments, a simulation

of a block storage system may be performed without an
actual, usable or real block storage system. For example, and
as described, block storage system 250 need not be used or
may be omitted or disconnected from system 200 and

US 9,690,886 B1
9

system 200 may simulate a block storage system (e.g., block
storage system 250 or another block storage system) without
being connected to any block storage system, e.g., using
only simulation unit 210 and object-based system 240 in
order to simulate a block storage system.

In some embodiments, a simulation of a block storage
system using an object-based storage system may be
updated, for example, periodically, continuously or in real
time, such that it is kept current or up-to-date with respect
to an actual or real block storage system.

In some embodiments, a simulation of a block storage
system may be changed or updated when the block storage
system is changed. For example, after data included in
logical blocks in block storage system 250 is stored in
objects in object-based system 240 as described, when data
in block storage system 250 is modified (e.g., when new data
is written to block storage system 250, deleted therefrom or
modified thereon), an embodiment may create an additional
object in object-based system 240 and may store the modi
fied data in the additional object. An additional object may
be a new object that is added to the objects already present
in object-based system 240, e.g., the additional or newly
created object may be one that is created when data is
modified in block storage system 250 and the additional or
newly created object is used for storing the modified data. As
further described herein, an embodiment may update a map
(e.g., range-map 220) to include at least one of: a reference
to the new or additional object, a logical address of the
modified data, a size of the modified data and a running
COunter.

For example, a block storage system 250 may include a
change detection unit (e.g., with structures such as in FIG.
1) that may detect changes in block storage system 250, for
example, by intercepting write operations or by identifying
changes in Snapshots as known in the art. For example, a
change detection unit may obtain data or content in input/
output (TO) operations as, or when, they occur in block
storage system 250 and provide the data to simulation unit
210. Simulation unit 210 may use data and metadata
received from a change detection unit in order to update
range map 220, create objects and store objects in object
based system 240 as described. Other than providing the
actual data (or payload) written to block storage system 250,
a change detection unit may provide simulation unit 210
with related metadata, e.g., an address, an offset and size
and/or a time value. Any other system or method may be
used in order to provide simulation unit 210 with data and
metadata used as described herein in order to create a
simulation of a block storage system on an object storage
system as described.

Reference is additionally made to FIG. 4 that graphically
illustrates maintaining a simulation of a block storage sys
tem in an object-based system according to Some embodi
ments of the invention. In some embodiments, an object for
each LDB in block storage system 250 may be created in
object-based system 240 and the name of the object may be
based on the at least one of: an offset of the LDB, an address
of the LDB and a size of the LDB. For example, an object
in object-based system 240 that includes data also included
in offsets 10 to 20 in block storage system 250 may have the
range of “10-20 included in its name. As described herein,
the name of an object may include other information, e.g., an
offset, a size, a time and a counter as described herein.
Simulation unit 210 may modify or update range map 220,
for example and as shown by row 261 in range map 210, an
entry with the range of “10-20” may be entered into range
map 220 by simulation unit 210 to indicate that an object

5

10

15

25

30

35

40

45

50

55

60

65

10
that stores data in address range 10-20 in object-based
system 240 is present, or included in, object-based system
240. As shown by rows or entries 262. 263. 264 and 265,
range map 220 may include a plurality of entries for a
respective plurality of objects, some of which may be related
to the same address range, offset or LDB. As further
described herein, objects in object-storage storage (e.g.,
object 420.) shown in FIG. 4 may be, or may be used in
order to, simulate a block storage, e.g., the block storage
with offsets 0, 10, 20 and so on as shown in FIG. 4.
Accordingly, a simulation of a block storage system on, or
using, an object storage system may be, or may include, a set
of objects in an object storage (or object-based storage) that
store data read or obtained from, or otherwise related to, a
set of offsets in a block storage system.

In some embodiments, a name of an object may be set
(and determined or deduced) based on a number of metadata
elements (e.g., time and counter in an entry or row in range
map 220). For example, based on the range, offset/size, time
and counter values in entry 261, simulation unit 210 may
determine that the name of the object related to, or refer
enced by, row 261 is simply “10-20' (e.g., since no values
for other metadata elements is found in row 261) and
simulation unit 210 may determine the name of the object
related to, or referenced by, row 263 is “10-20-7-512
1450 190001-2” (e.g., since the range is “10-20, the offset/
size value is 7/512 and so on).

In other embodiments, complex names determined based
on metadata may be included in range map 220. For
example, simulation unit 210 may define a complex name
based on metadata and enter (and use) a complex name in
range map 220. For example, instead of a partial name of
“10-20 in row 262, simulation unit 210 may set the name
to be “10-20-5-320-1450 168587-1” thus the counter value,
time, size and offset values related to object 230 may be
included in the name of the object as included in range map
220 and metadata related to an object may be deduced from
the object's name.

In some embodiments, e.g., during an initial stage, an
entry for each LDB in block storage system 250 may be
created in range map 210 and an object for each LDB in
block storage system 250 may be created in object-based
system 240. For example, rows 261, 265 and 266 in range
map 220 may be created, by simulation unit 210, when
objects for (and including data in) respective offsets 10-12,
20-30 and 30-40 are created.

In order to modify a simulation (e.g., to keep the simu
lated system up-to-date), when data in an LDB in block
storage system 250 is changed, the corresponding object in
object-based system 240 may be read into a memory,
modified, and the modified object may be written to object
based system 240. For example, and as shown FIG. 4, 100
bytes of data may be written to offset 25 in block storage
system 250.

For example, when used in order to simulate a block
storage system, simulation unit 210 may receive a write
request and may use the offset written to in order to
determine or identify the corresponding object. As shown by
block 420, simulation unit 210 may read the corresponding
object from an object-based system. As shown by block 410.
simulation unit 210 may modify the object and as further
shown, simulation unit 210 may write the object back to an
object-based system thus keeping a simulation of a block
storage system in an object-based system up-to-date.

It is noted that the embodiment described with reference
to FIG. 4 may include an overhead related to having to read
and write an entire object for each write of data in block

US 9,690,886 B1
11

storage system 250. For example, using LDBs of 10 MB and
objects of the same size, even writing of a few bytes to some
offset in block storage system 250 may cause an embodi
ment to read, from object-based system 240, an object the
size of 10 MB and then write the 10 MB object to object
based system 240.
An embodiment according to embodiments of the inven

tion may overcome the overhead of operations related to a
simulation of a block storage system on an object storage
system. According to some embodiments, an initial set of
objects may be created as described above, e.g., Such that a
set of objects in an object-based system 240 include sub
stantially the same data included in corresponding or respec
tive set LDBs in block storage system 250.
When simulation unit 210 is notified of a write to an offset

in block storage system 250 for which an object in object
based system 240 already exists, simulation unit 210 may
create a new object in object-based system 240 and include
the data (payload) of the write operation in the new object.
Simulation unit 210 may update range map 220 to indicate
that more than one write operations were made to an offset
or an LDB in block storage system 250.

In some embodiments, when simulation unit 210 is noti
fied of a write operation to an offset in block storage system
250, and is provided with data written and metadata as
described, simulation unit 210 may check range map 220
and determine whether or not an object for the offset already
exists. For example, based on the offset written to and an
amount of data written, as reported by a change detection
unit, simulation unit 210 may search range map 220 for an
object that covers the, or that is related to, the write
operation. For example, if a write of 100 bytes was made to
offset 200 then simulation unit 210 may search range map
220 for an entry with a range that is “0-10 since an object
named (or whose name includes) “0-10” may include data in
the range of addresses 0 to 10 MB in block storage system
250.

If an object for the offset does not exist, simulation unit
210 may create an object as described and update range map
220 accordingly. If an object for the offset (or offsets)
already exists in range map 220 then simulation unit 210
may create a new or additional object for the offset in
object-based system 240 and include the payload of the
write operation in the new or additional object. A name for
an object may be set by simulation unit 210 based on
metadata related to a write operation. For example, a name
of an object may include, or be based on, the exact offset
which the data was written, the length, size or amount of the
data written, a time of the write operation, and a running
COunter.

For example, after an initial write to offset 10-20 and a
creation of an object and an entry 261 as described, simu
lation unit 210 may receive a request to write 320 bytes of
data to offset 10245 in block storage system 250 on Tuesday,
15 Dec. 2015 16:46:14 GMT. Simulation unit 210 may
determine the relative offset of 10245 is 5 in the address
range of 10-20. Simulation unit 210 may access, review or
examine range map 220, identify or find all entries related to
the LDB or address range written to, (e.g., in the present
exemplary case, all entries with a range of “10-20” which
are related to writing data to address range 10240 to 20480).
Simulation unit 210 may identify or determine the highest
counter value in all entries related to a specific LDB or
address range and set the counter value for a new or
additional write to the LDB or address range to be accord
ingly. For example, if the highest counter value found in
range map 220 is 6 than simulation unit 210 may set the

10

15

25

30

35

40

45

50

55

60

65

12
counter for a new write (and a new entry in range map 220)
to be 7. For example, when (and before) adding entry 262,
simulation unit 210 may find that the highest counter value
is zero (“0”) and may therefore set the counter value in entry
262 (and the range of the corresponding object 230) to be
one (“1”). Similarly, when adding entry 263, the counter
value may be set to two (2).

Accordingly, simulation unit 210 may create a new or
additional object as shown by object 230 and name it
“10-20-5-320-1450 168587-1 where the “10-20 portion of
the name indicates or represents this object is related to
object and offset 10-20, the "5-320” portion of the name
indicates or represents that 320 bytes were written to offset
5 in the object or LDB, the “1450 168587 portion of the
name is a Unix time representation of the date and time as
known in the art, and the “1” portion of the name is a
running counter that may be advanced or incremented with
each write to the offset of 10-20 in block storage system 250.
At a later stage, an additional write may be made to the range
of 10-20 in block storage system 250. For example, 512
bytes may be written to offset 10247 in block storage system
250 on Tuesday, 15 Dec. 2015 14:33:21 GMT.

Using the same logic as described, simulation unit 210
may create a new or additional object as shown by object
235 and name it “10-20-7-512-145O190001-2 where the
“10-20' portion of the name indicates or represents this
object is related to object and offset 10-20, the “7-512
portion of the name indicates or represents that 512 bytes
were written to offset 7 in the object or LDB, the
“1450.190001’ portion of the name is a Unix time represen
tation of the date and time as known in the art, and the '2'
portion of the name is a running counter that may be
advanced or incremented with each write to the offset of
10-20 in block storage system 250. For example, a counter
of '2' in the name indicates that two writes were made to the
offset after the initial object (221) was created.

According to embodiments of the invention, when read
ing data from an offset or address range is required, simu
lation unit 210 may access, review or examine a map (e.g.
range-map 220) to identify objects in the object storage that
store data related to the offset or address range. For example,
simulation unit 210 may receive a request to read data from
an object in object-based storage system 240 and the request
may include a logical address, an address range, or an offset
and size. As known in the art, a logical address may be the
address at which an item (e.g., a storage element Such as an
LDB) appears to reside from the perspective of an executing
application program.

For example, in order to retrieve data using a logical
address (or using other methods used with block storage
systems) a unit may send a read request to simulation unit
210 and may indicate, in the request, at least one of an
offset, a size or amount of data to read and an address range,
e.g., as done when requesting data from a block storage
system such as a disk as known in the art.

For example, if a read request for offset 10250 is
requested then simulation unit 210 may determine that the
read is related to object 221 since this object covers, or is
related to, addresses 10M to 20M. To find all objects related
to the offset or address range, simulation unit 210 may
search range map 220 for objects that include the range of
object 221, e.g., include the term “10-20 in their names.

In the exemplary case illustrated by range map 220 in
FIG. 2, simulation unit 210 may find entries or rows 262 and
263 that indicate additional writes to the range of 10M to
20M (or 10240 to 20480) were made. As shown, range map
220 may include additional information, e.g., the order of

US 9,690,886 B1
13

the additional writes (e.g., based on the counter, simulation
unit 210 determines that the write represented by row or
entry 263 was made after the one represented by row 262),
the time a write was made, the offset written to and the size
or amount of data written.

Having identified objects related to a read request, simu
lation unit 210 may respond to the request based on data
stored the identified objects, e.g., in the above exemplary
case, simulation unit 210 may respond to a read request
using data in objects 221, 230 and 235 since they are all
related to the same address range. For example, simulation
unit 210 may read object 221 into a memory object, then
according to the counter or time of write in range map 220,
read object 230 and modify the memory object according to
data in object 230, e.g., overwrite or modify the relevant
portions of the memory object based on data in object 230,
and then read object 235 and further modify the memory
object according to data in object 235. Simulation unit 210
may then use the data in the modified memory object in
order to generate a response to the read query and may send
the response to the requesting entity. Accordingly, a
response or output of an embodiment, with respect to a read
request from a block storage system as described, may be, or
may include, data read or obtained from, objects as
described. It will be appreciated that simulating a block
storage system using an object storage system as described
improves the storage technology as well as a functioning of
a computer. For example, a storage system may be greatly
improved by embodiments of the system, e.g., Storage
capacity may be greatly increased while storage cost is
decreased.
Some embodiments of the invention may use only some

of the objects used for storing data related to an LDB or
related to an address range. For example, a request for data
in an address range may not cover, or be related to, the entire
range. For example, a request to read 200 bytes of data from
offset 10247 does not cover or require extracting all data in
the address range of 10 MB to 20 NB. Simulation unit 210
may examine a request and may determine, by examining
range map 220, which objects need to be retrieved in order
to respond to the request. For example, in the example of
requesting 200 bytes of data from offset 10247, simulation
unit may determine that the last write to the requested offset
is represented by object 230 (since this object covers the
range of 10245 to 10565 and 200 bytes starting from 10247
are included in the range covered by object 230). Accord
ingly, in order to respond to a request for 200 bytes of data
from offset 10247, simulation unit 210 may retrieve object
230 from object-based storage system 240 and use data in
the retrieved object 230 in order to respond to the request.

In some embodiments, object-based storage system 240
may enable reading only a portion of an object stored in
object-based storage system 240. For example, and as
known in the art, the S3 service or platform enables reading
a part of an object. Accordingly, simulation unit 210 may
identify the set of objects that are relevant to a request or
query and may read only a portion or part of one or more of
the objects. For example, in the above example of requesting
200 bytes of data from offset 10247, simulation unit 210
may determine that the object is object 230 as described,
however, instead of reading the entire object, simulation unit
210 may read (or request from object-based storage system
240) only the requested 200 bytes in object 230 (e.g., by
providing an object range, offset and size as known in the
art). Accordingly, a system and method according to some

10

15

25

30

35

40

45

50

55

60

65

14
embodiments may be further optimized by reducing the
amount of data being read from an object-based storage
system.

Accordingly, Some embodiments of the invention may
select a set of objects to be used for generating a response
based on data in a request or query (e.g., a size and address
in a request) and based on data in a range map. For example,
simulation unit 210 may receive a request to read data, the
request including an address range and simulation unit 210
may examine range-map 220 to identify objects in object
based storage system 240 that store data related to the
address range. For example, simulation unit 210 may iden
tify or find, in range map 220, a set of one or more objects
with the same range or with a name that includes a specific
portion (e.g., simulation unit 210 may find in range map 220
all objects with ranges that include “10-20). Using a set of
objects found or identified as described, simulation unit 210
may retrieve at least a portion of the data in one or more of
the objects and use data to generate a response for the
received request.

Range map 220 may be restored or initialized based on
objects in object-based storage system 240. For example, to
create, initialize or restore range map 220 (e.g., following a
crash or reset of a system), simulation unit 210 may examine
names of objects in object-based storage system 240 and
may populate entries of range map 220 based on the names.
For example and as described, an object’s name “10-20-7-
512-1450190001-2” may be used, by simulation unit 210, to
create an entry in range map 220 that indicates or shows that
the object is related to range 10-20, the object was created
on Tuesday, 15 Dec. 2015, the object include 512 bytes that
were written to offset 7 in the range 10-20 and that this is the
second write to the range after the initial object for the range
was created (e.g., this object is an additional object for the
range as described). In some embodiments, simulation unit
210 may sort the objects based on their names, ranges and
counters to produce a sorted list and create range map 220
based on the sorted list.

In some embodiments, simulation unit 210 may merge or
aggregate data in a number of objects. For example, if a large
number of objects, all related to the same address range, are
detected by simulation unit 210 then simulation unit 210
may create a new object (e.g., an in memory 120 object) that
includes data from the objects. For example, using the
counter values in object names, an in memory object may be
made to first include an initial or first object related to an
address range, e.g., object 221 with counter value of Zero
(0), then, changes may be applied to the in memory object
according to the next object as indicated by the counter
values, e.g., changes may be applied to the in memory object
according to, or based on, content of object 230 with counter
value of one (1). Similarly, further changes may be applied
to the in memory object according to the next object, object
235 with counter value of one (2). In another embodiment,
the order of changes applied to an in memory object may be
based on the time values, that may be used in a way
described herein with reference to the counter values.
An in memory object created and updated as described

herein may include, or represent an up-to-date address range
in block storage system 250. Accordingly, simulation unit
210 may replace a number of objects in object-based storage
system 240 by one, up-to-date object. For example, after
creating and updating an in memory object based on objects
221, 230 and 235, the three objects 221, 230 and 235 may
be deleted or removed from object-based storage system
240, and a new or additional object that includes the content
of the in memory object may be created in object-based

US 9,690,886 B1
15

storage system 240. For example, simulation unit 210 may
write the content of the memory object to object 221, thus
causing object 221 to be up-to-date and may delete objects
230 and 235 since the data in these objects is already
included in the modified object 221. Accordingly, a plurality
of objects may be merged or combined into a single object
Such that the single objects reflects an up-to-date or current
state of a simulated, cloned or replicated block storage
system 250. Accordingly, an embodiment may enable keep
ing the number of objects used in an object-based storage
system 240 low.
By tracking and recording writes using range map as

described, further optimizations may be enabled by embodi
ments of the invention. For example, in some cases, a
number of writes may overlap, that is, some disk offsets
written to (when writing data to a disk as known in the art)
in a first write may be written (or overwritten) again in a
second or subsequent write. For example, object 230 repre
sents and includes writing of 320 bytes in offset 5 as
described and object 235 represents or includes writing of
512 bytes in offset 7 as described, accordingly, the 318 bytes
starting at offset 7 included in object 230 are overlapped, or
re-written by, the 318 bytes starting at offset 7 included in
object 235.
Some embodiments of the invention may identify the last

write to an address range and/or identify the object that
includes the last write or most relevant or up-to-date data
and use the identified object in order to respond to a request
for data. For example, if a request for 100 bytes starting at
address 10250 is received by simulation unit 210 then, using
range map 220, simulation unit 210 may identify or deter
mine that the three objects 221, 230 and 235 might be
relevant to the request since they are all related to an address
range that includes the requested 100 bytes.

Additionally, simulation unit 210 may, e.g., using coun
ters and/or time values and/or offsets and sizes, in range map
220 (or in the names of objects), determine that the most
up-to-date, or recent, write of the requested 100 is included
in object 235, e.g., using the information in range map 220
simulation unit may determine or identify that the requested
100 bytes were initially written or stored in object 221, then
re-written as represented or included in object 230 and
simulation unit 210 may determine that the last time the
requested 100 bytes were written or updated is represented
and/or included in object 235. Accordingly, simulation unit
210 may determine or identify the most relevant, recent or
up-to-date object and use the identified object in order to
respond to a request or query, e.g., in the above example of
a request for 100 bytes starting at address 10250 (and objects
and entries in range map 220 as shown in FIG. 2), simulation
unit 210 may use object 235 in order to provide the
requested 100 bytes starting at address 10250. As described,
simulation unit 210 may read only a part of an object. For
example, having determined that object 235 should be used
to provide the requested 100 bytes in the above example,
simulation unit 210 may identify that the size of object 235
is 512 bytes and, instead of reading the entire object 235,
simulation unit 210 read only the requested 100 bytes from
object 235.

Various considerations may be applied to reducing the
number of objects used. For example, simulation unit 210
may keep, e.g., in a data structure Such as a map. Such as
range map 220, data related to the data being stored. For
example, a map may include or store the number of times an
address range or offset was accessed, e.g., the number of
times the address range 10-20 was read from and/or written
to. Simulation unit 210 may update, e.g., in range map 220,

5

10

15

25

30

35

40

45

50

55

60

65

16
an access frequency value or counter. An access frequency
may indicate the number of accesses per time unit, e.g., an
access frequency value of address range 10-20 may be
incremented each time one of objects 220, 230 and 235 is
either read, or written to, since these objects are all related
to address range 10-20. If an access frequency of an address
range exceeds a threshold, then simulation unit 210 may
merge or aggregate Some or even all of the objects related to
the address range into a single object as described. For
example, objects 221, 230 and 235 may be merged into
object 221 and objects 230 and 235 may then be deleted or
removed from object-based storage system 240, thus saving
storage space and other computational resources.

Reference is made to FIG. 5 which shows a flowchart of
a method for simulation a block storage system on an object
storage system according to some embodiments of the
invention. As shown by block 515, one or more logical parts
or LDBs of, or in, a block storage system may be defined
(e.g., in order to create a simulation of the block storage
system), and data included in the logical parts or LDBs may
be included in a respective one or more objects in an object
storage system. For example, data logical parts or LDBS
may be address ranges as described herein, e.g., address
ranges 10-20 20-30 may be logical parts or LDBs of, or in,
block storage system 250 and the data in address range may
be included in objects 0.221, 230 and 235. For example, an
embodiment may logically divide block storage system 250
into a set of logical parts such as LDBs 251, 252 and 253 and
store data included in the logical parts in a respective set of
objects in object-based storage system 240, e.g., objects 230
and 235.
As shown by block 520, when data in the simulated block

storage system is modified, a new or additional object in the
object storage system may be created and made to store the
modified data. For example, when data in the range 10-20 is
modified, the modified data may be included in a new or
additional object, e.g., in object 230 which is a new or an
additional object, with respect to object 221.
As shown by block 525, a map Such as a range-map may

be updated or modified. For example, a map may be updated
to include at least one of: a reference to the new or additional
object that includes or stores the modified data, an address
of the modified data, a size of the modified data and a
counter. For example, an entry in range map 220 that
includes a reference to the new or additional object may be
created (or updated), e.g., entry 261 is a reference to object
221, entry or row 262 is a reference to object 230 and so on.
An entry in range map 220 that includes an address may be
created (or updated), for example, an address range (e.g.,
“10-20 in the names of objects) and an offset (e.g., 5 in
entry 262). For example, addresses 10250, 10240 and
204800 may be logical addresses in a disk as known in the
art. A size of the modified data and a counter may be as
described herein with reference to entries of range map 220.
As shown by block 530, a request to read data, including

an address range, may be received, e.g., from user unit 280.
For example, block storage system 250 may be simulated by
object-based system 240 and simulation unit 210 and an
operator (or user) of user unit 280 may send a read request
to simulation unit 210 as described. In another case, e.g.,
when used as a backup or fail-over system, simulation unit
210 may receive requests from a server.
As shown by block 535, range-map 220 may be accessed

or examined (e.g., by simulation unit 210 as described) to
identify objects in the object storage that store data related
to the address range and a response to a read request may be
generated based on the identified objects. For example,

US 9,690,886 B1
17

when receiving a request related to address range 10-20,
simulation unit 210 may identify that objects 221, 230 and
235 are related to the address range (e.g., based on their
names as described) and may generate a response to a read
request based on these objects, e.g., by updating an in
memory object according to a counter or a chronological
order of objects as described.
As described herein, a method or flow may include

inserting or including a value of a running counter in names
of the objects, sorting the objects based on the counter value,
and creating a range-map by recording, in entries of the
range map, references to objects, a logical addresses related
to the object, sizes of the objects and counter values of the
objects. For example, range map 220 includes references,
logical addresses, sizes and counter values for objects 221,
222 and 230 as described.
As described herein, a method or flow may include

creating a map Such as a range-map based on, or by
recording in the rang map, at least one of a reference to an
object, a time and date value, a running counter, an address
range, an offset in the address range and a size. It will be
understood that other data may be included in range map
220. For example, based on metadata included in a request
to modify or write data (e.g., received from user unit 280),
an identification of a user and/or an identification of an
application that access data may be recorded, by simulation
unit 210, in range map 220. Accordingly, merging of objects
as described may be based on a user or application. For
example, in order to improve performance of a specific
application that reads a specific address range, simulation
unit 210 may select to merge a number of objects related to
the specific address range. In other cases, the access fre
quency threshold used for merging objects, as described,
may be set differently for different users or applications.
As described, a system and method according to embodi

ments of the invention may include determining or finding
the set of objects in an object storage system that include
data included in a set of logical parts and, if the number of
objects in the set is greater than a threshold value, an
embodiment may initialize a storage object having a size of
the set of logical parts, store, in the storage object, data read
from objects in the object storage system that include data
included in the set of logical parts, create a new object in the
object storage system and store data read from the storage
objects in the new object.

For example, simulation unit 210 may determine the set
of objects 221, 230 and 235 include data included in address
range or LDB 10-20 as described, and, if a threshold of two
(2) is configured or set, simulation unit 210 may determine
the number of objects in the set (e.g., three in this case) is
greater than the threshold, may create a new object (e.g., an
in memory object as described), include data from objects
221, 230 and 235 in the new object and use the new object
to create a new object in object-based storage system 240 or
overwrite an existing object in object-based storage system
240. As described, objects no longer needed may be deleted.
For example, objects 230 and 235 may be deleted after
copying data from these objects into an updated object as
described.
As described, simulation unit 210 may determine the set

of objects that include data included in a set of logical parts.
For example, simulation unit 210 may identify or determine
(e.g., based on data in rang map 220) all objects related to
the set of logical parts 10-20 and 20-30. In such exemplary
case, e.g., as shown in FIG. 2, simulation unit 210 may
identify or determine that the set of objects 221, 222, 230
and 235 include data included in a set of logical parts 10-20

10

15

25

30

35

40

45

50

55

60

65

18
and 20-30. Simulation unit 210 may aggregate, merge or
combine objects 221, 222, 230 and 235 into a new or
additional object and store the new or additional object in
object based storage system 240 as described. Of course, in
Some cases, objects may be combined or merged for a single,
or just one, logical part, e.g., as described herein.

While certain features of the invention have been illus
trated and described herein, many modifications, Substitu
tions, changes, and equivalents may occur to those skilled in
the art. It is, therefore, to be understood that the appended
claims are intended to cover all Such modifications and
changes as fall within the true spirit of the invention.

Various embodiments have been presented. Each of these
embodiments may of course include features from other
embodiments presented, and some embodiments not spe
cifically described may include various features described
herein.

The invention claimed is:
1. A computerized method of simulating a block storage

system on an object storage system, the method comprising:
creating a simulated block storage system on the object

storage system, by defining a plurality of logical parts
of the simulated block storage system and storing data
included in the logical parts in a respective plurality of
objects in the object storage system, wherein data
included in a logical part is stored in at least one
respective object; and

when receiving a notification of a write operation in the
simulated block storage system:
creating a new object in the object storage system and

storing the data of the write operation in the new
object, and

updating a range-map to include at least one of a
reference to the new object, a logical address of the
data of the write operation, and a size of the data of
the write operation, and a counter.

2. The method of claim 1, comprising:
receiving a request to read data, the request including an

address range;
examining the range-map to identify objects in the object

storage that store data related to the address range; and
responding to the request based on data stored in at least

one of the plurality of objects and the new object.
3. The method of claim 1, comprising:
including a value of a running counter in names of the

objects;
sorting a plurality of objects based on the counter value;

and
creating the range-map by recording a reference to an

object, a logical address of the object, a size of the
object and a counter value.

4. The method of claim 3, comprising creating the range
map by recording at least one of a time and date value, an
identification of a user and an identification of an applica
tion.

5. The method of claim 1, comprising:
determining the set of objects in the object storage system

that include data included in a set of logical parts; and
if the number of objects in the set is greater than a

threshold value then:
initializing a storage object having a size of the set of

logical parts,
storing, in the storage object, data read from objects in

the object storage system that include data included
in the set of logical parts,

US 9,690,886 B1
19

creating a new object in the object storage system and
storing data read from the storage object in the new
object, and

updating the range-map to include at least: a reference
to the new object, a logical address of the modified
data, a size of the modified data and a counter.

6. The method of claim 5, comprising deleting at least
some of the objects in the object storage system that include
data included in the set of logical parts.

7. The method of claim 5, wherein the set of logical parts
includes one logical part.

8. The method of claim 1, wherein the range-map is an
in-memory object.

9. The method of claim 5, comprising removing the set of
objects from the object storage system.

10. A computerized method of simulating a block storage
System on an object storage system, the method comprising:

logically dividing the simulated block storage system into
a set of logical parts and storing data included in the
logical parts in a respective set of objects in the object
storage system, wherein data included in a logical part
is stored in at least one respective object; and

when a write operation is performed in the simulated
block storage system:
creating a new object in the object storage system and

including the data of the write operation in the new
object, and

modifying a map to include at least one of: a reference
to the object, a logical address of the data of the write
operation, a size of the data of the write operation,
and a running counter.

11. A system comprising:
a memory; and
a controller configured to:

define a plurality of logical parts of a simulated block
storage system and store data included in the logical
parts in a respective plurality of objects in an object
storage system, wherein data included in a logical
part is stored in at least one respective object; and

when receiving a notification of a write operation in the
simulated block storage system:
create a new object in the object storage system and

store the data of the write operation in the new
object, and

update a range-map to include at least one of a
reference to the new object, a logical address of
the data of the write operation, a size of the data
of the write operation and a counter.

12. The system of claim 11, wherein the controller is
configured to:

10

15

25

30

35

40

45

20
receive a request to read data, the request including an

address range;
examine the range-map to identify objects in the object

storage that store data related to the address range; and
respond to the request based on data stored in at least one

of the plurality of objects and the new object.
13. The system of claim 11, wherein the controller is

configured to:
include a value of a running counter in names of the

objects;
sort a plurality of objects based on the counter value; and
create the range-map by recording a reference to an

object, a logical address of the object, a size of the
object and a counter value.

14. The system of claim 13, wherein the controller is
configured to create the range-map by recording at least one
of a time and date value, an identification of a user and an
identification of an application.

15. The system of claim 11, wherein the controller is
configured to:

determine the set of objects in the object storage system
that include data included in a set of logical parts; and

if the number of objects in the set is greater than a
threshold value then:

initialize a storage object having a size of the set of logical
parts,
store, in the storage object, data read from objects in the

object storage system that include data included in
the set of logical parts.

create a new object in the object storage system and
storing data read from the storage object in the new
object, and

update the range-map to include at least: a reference to
the new object, a logical address of the modified
data, a size of the modified data and a counter.

16. The system of claim 15, wherein the controller is
configured to delete at least some of the objects in the object
storage system that include data included in the set of logical
parts.

17. The system of claim 15, wherein the set of logical
parts includes one logical part.

18. The system of claim 11, wherein the range-map is an
in-memory object.

19. The system of claim 15, wherein the controller is
configured to remove the set of objects from the object
storage system.

20. The system of claim 11, wherein the controller is
configured to create the range-map based on names of
objects in object storage system.

