
US010877874B2

(12) United States Patent (10) Patent No .: US 10,877,874 B2
(45) Date of Patent : Dec. 29 , 2020 Alluri

6,353,806 B1 * 3/2002 Gehlot (54) SYSTEMS AND METHODS FOR MODELING
AND GENERATING TEST REQUIREMENTS
FOR SOFTWARE APPLICATIONS 7,124,406 B2 *

2004/0103396 Al *
10/2006 Ryu
5/2004 Nehab

(75) Inventor : Chandra M. Alluri , Herndon , VA (US) 2005/0076328 A1 * 4/2005 Berenbach

G06F 30/33
703/21

717/144
GO6F 11/3684

717/127
G06F 8/10

717/104
GOIR 31/318569

714/733
717/124
717/104
717/130

2005/0138514 Al * 6/2005 Burdine (73) Assignee : FEDERAL HOME LOAN
MORTGAGE CORPORATION
(FREDDIE MAC) , McLean , VA (US) 2007/0074166 A1 * 3/2007 Overturf et al .

2007/0266366 A1 * 11/2007 Bucuvalas
2008/0082969 A1 * 4/2008 Agha et al . (*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 1087 days . OTHER PUBLICATIONS

(21) Appl . No .: 12 / 345,084

(22) Filed : Dec. 29 , 2008

John Joseph Chilenski and Steven P. Miller , " Applicability of
modified condition / decision converage to software testing ” , soft
ware engineering journal , Sep. 1994. *
Chilenski , John Joseph , and Steven P. Miller . “ Applicability of
modified condition / decision coverage to software testing . ” Software
Engineering Journal 9.5 (1994) . pp . 193-200 . (Year : 1994) . *

(Continued)
(65) Prior Publication Data

US 2009/0178021 A1 Jul . 9 , 2009

Related U.S. Application Data
(60) Provisional application No. 61 / 006,187 , filed on Dec.

28 , 2007 .

Primary Examiner Kamini S Shah
Assistant Examiner - John E Johansen
(74) Attorney , Agent , or Firm — Finnegan , Henderson ,
Farabow , Garrett & Dunner LLP

(57) ABSTRACT

(51) Int . Cl .
G06F 11/36 (2006.01)

(52) U.S. Ci .
CPC G06F 11/3684 (2013.01)

(58) Field of Classification Search
CPC GO6F 11/3684
USPC 703/22 ; 1/22
See application file for complete search history .

Systems , methods , and computer - readable storage media are
described for modeling the requirements of software to
generate test requirements . In one exemplary embodiment , a
computer - implemented method comprises generating a
model of the requirements using a tree graph model , iden
tifying primary paths of the tree graph model using an
algorithm , and creating test cases based on the identified
primary paths .

(56) References Cited

U.S. PATENT DOCUMENTS

5,542,043 A
5,913,023 A *

7/1996 Cohen et al .
6/1999 Szermer 714 / 38.1 23 Claims , 10 Drawing Sheets

200

201

a

202 203

206
204 207

205

US 10,877,874 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Chilenski , John Joseph , and Steven P. Miller . “ Applicability of
modified condition / decision coverage to software testing . ” Software
Engineering Journal 9.5 (1994) . pp . 193-200 . (Year : 1994) . *
M. Utting et al , Practical Model - Based Testing : A Tools Approach ,
Morgan - Kaufmann 2006 , http://www.cs.waikato.ac.nz/~marku/
mbt / , 2 pages .
http://www.smartesting.com/cms/en/explore/products , “ Test DesignerTM
v3.3 , ” 5 pages .
A.M. Memon , “ An Event - Flow Model of GUI - Based Applications
for Testing , ” Software Testing , Verification and Reliability , Jan. 2 ,
2007 , Wiley InterScience (www.interscience.wiley.com) , pp . 137
157 .
“ IEEE Recommended Practice for Software Requirements Speci
fications , ” IEEE Std . 830-1993 , approved Dec. 2 , 1993 , 32 pages .
P. Ammann et al . , “ Introduction to Software Testing ” Cambridge
University Press , ISBN 978-0-521-88038-1 Hardback , pp . 27-91 ,
150-165 (2008) , 89 pgs .
R. Binder , “ Testing Object - Oriented Systems " Addison - Wesley ,
ISBN 0-201-80938-9 , pp . 111-118 , 123-125 , 176-201 , 269-282 ,
(2000) , 55 pgs .
B. Beizer , “ Software Testing Techniques ” , Van Nostrand Reinhold ,
ISBN 0-442-20672-0 , (1990) , 575 pgs .

* cited by examiner

U.S. Patent Dec. 29 , 2020 Sheet 1 of 10 US 10,877,874 B2

100

Front - End System 110
1
1 Client System 120
1
1 126

5 123 5 124 5 125 DISPLAY
1 RAM ROM STORAGE

DEVICE User Interface
127

1 1 I 5128 s 121
INPUT DEVICE

I
1
BUS

1
1

122 I
1

5 129
CURSOR
CONTROL PROCESSOR

1

-

130

i Back - End System 140 1

Server System 160

I
1
1

Modeling and Testing Tool
170

Data Repository
150

1

FIG . 1

U.S. Patent Dec. 29 , 2020 Sheet 2 of 10 US 10,877,874 B2

200

201

a

202 - 203

C b

206
204 207

f d g

e

205

FIG . 2 .

310

320

U.S. Patent

Te Test Creator
File Edit View / Window

0 X of paa @ 1

Us Untitled 3

com

@ @

??

311

Tree View Scenario View Usecases
Testable function

Dec. 29 , 2020 Sheet 3 of 10 US 10,877,874 B2

FIG . 3A

310

320

Test Creator File Edit View Window

g W X of ya da mu

* Untitled 3

U.S. Patent

JS

311

Dec. 29 , 2020

312 313

Tree View Scenario View Usecases
B estable function . to Main flow 1

New Flow as Child

to Main flow 2 New Usecase Before

New Usecase After
x Delete of Cut

Copy a Paste as Child a Paste Before Paste After
Paste Link as Child

Sheet 4 of 10 US 10,877,874 B2

FIG . 3B

310

320

U.S. Patent

T * Untitled 3

311 312

Tree View Scenario View Usecases
Testable function 9 Main flow 1

< > Branch 1

New Step as Child

to Main flow 2

New Branch as Child

Dec. 29 , 2020

313

New Step Before New Branch Before New Branch After
X Delete of Cut

Copy
Paste as Child
a Paste Before g Paste After

Paste Link as Child

Sheet 5 of 10 US 10,877,874 B2

FIG . 3C

U.S. Patent Dec. 29 , 2020

LS C : \ Documents and Settings \ f353198 \ Desktop \ Desktop copy \ GMUISWE - 7991Thesis 799 - 1031 \ Tools Demo Models \ AUC5.xml

Tree View Scenario View Usecases & AUC 5

312

Main flow1

< > If Interest Rate Type = Fixed or Balloon

> IF LLGfee Ind = Y and LLGfee Type = A - Minus

Retrieve Gfee Rate , Buyup Max , A - Minus Buyup Set Remittance Type = GOLD i.e , 19 days

D Retrieve Gfee rate , Max BUYUP , Super ARC days , Remitence Cycle option , Locked / Floating Indicator

D Retrieve Contract (LPC) Remittance Type Boy If Remittance Type = Remittance Cycle Option Set Remittance Adj = 0

Calculate Contract Max Buyup = MC Product Max Buy Up + Remitence Adj

8) If Contract Max Buyup > 12.5

No change in Contract Max Buyup

o Calculate A - Minus contract Max Buyup = MC product A - Minus Max Buyup

> If A - Minus contract Max Buyup > 25 bps

Set A - Minus contract Max Buyup = User Requested A - Minus Max Buyup = 25 bps

a > If A - Minus contract Max Buyup < = 25 bps

o Set User requested A - Minus Buyup = Calculated contract A - Minus Max Buyup

B > If Contract Max Buyup < = 12.5

Contract Max BuyUp = User Requested Max Buyup = MC Product Max Buyup = 12.5bps

o Calculate A - Minus contract Max Buyup = MC product A - Minus Max Buyup

> If A - Minus contract Max Buyup > 25 bps

Set A - Minus contract Max Buyup = User Requested A - Minus Max Buyup = 25 bps

B > If A - Minus contract Max Buyup < = 25 bps

o Set User requested A - Minus Buyup = Calculated contract A - Minus Max Buyup

B < > If Remittance Type < > Remittance Cycle Option

314

Sheet 6 of 10 US 10,877,874 B2

FIG . 3D

U.S. Patent Dec. 29 , 2020 Sheet 7 of 10 US 10,877,874 B2

310 320

TC Test Creator OX
File Edit View Window
OCA @ | XHOLD @@@ 6
US C : Documents and Settings \ f353198 \ Desktop \ Thesis 799 - 1031 \ Tools Demo Models \ Demo.xml COX

Tree View Scenario View
Usecases

FUNCTION - 1
B. Flow - 1

D Step 1
Step 2

D Step 3
Step 4 Step 5

> F1 - C1L1
Step 1
Step 2
Step 3

È F1 - C2L2
F1 - C3L3

BF1 - C4L4
8 . < > F1 - C5L5

VP 1
6. F1 - C6L5

- VP 2
> F1 - C7L3

Flow - 2 420
Flow - 3
Flow - 4

S. FUNCTION - 2
Flow - 1
D Step 1

4103 F1 - C1L1
F1 - C2L2
Lg F1 - C3L3

> F1 - C4L4
DStep 1
o Step 2

F1 - C5L5
B) F1 - C6L5

Step 1
Step 2
VP3

Flow - 2
Flow - 3

B. IF - ELSE - MODEL
Node - 1 -430 IF - condition1

ELSE - condition 2
NESTED - IF - MODEL

B. Node - 1
BLO IF - condition 1

- IF - condition3
IF - condition5 -440

IF - condition 6
ELSE - condition 7

B) ELSE - condition4
< > IF - condition

FIG . 4

OX X |

TextPad - [C : \ Documents and Settings \ F358411 \ Desktop \ AUC5.xml] File Edit Search View Tools Macros Configure Window Help
to © A9Q O fon1201211 ApS at of Qe
< ROOT label = " Usecases " id = " 10001 " currentMaxID = " 10155 " >
< Usecase label = " AUC 5 " id = " 10002 " >
< Flow label = " Main Flow " id = " 10003 " >

< Branch label = " If Interest Rate Type = Fixed or Balloon " requisitionID = " SS_FAP_1122 " id = " 10005 " >
< Branch label = " If LLGfee ind = Y and LLGfee Type = A - Minus " id = " 10009 " >

< Step label = " Retrieve Gfee Rate , Buyup Max , A - Minus Buyup " id = " 10015 " type = " Step " > < / Step >

U.S. Patent

< Step label = " Set Remittance Type = GOLD i.e , 19 days ” id = " 10018 " type = " Step " > < / Step > < Step label = " Retrieve Gfee rate , Max BUYUP , Super ARC days , Remitence Cycle option , Locked / Floating Indi

Dec. 29 , 2020

< Step label = " Retrieve Contract (LPC) Remittance Type " id = " 10022 " type = " Step " > < / Step >

< Branch label = " lf Remittance Type = Remittance Cycle Option " id = " 10024 " >

< Step label = " Set Remittance Adj = 0 " id = " 10025 " type = " Step " > < / Step >

< Step label = " Calculate Max Buyup = MC Product Max Buy Up + Remitence Adj " id = " 10081 "

Sheet 8 of 10

< Branch label = " lf Contract Max Buyup & gt ; 12.5 " id = " 10084 " >

< Step label = " No change in Contract Max Buyup " id = " 10085 " type = " Step " > < / Step > < Step label = " Calculate A - Minus contract Max Buyup = MC product A - Minus Max Buyup " id < Branch label = " If A - Minus contract Max Buyup & gt ; 15 bps " requisitionID = " SS_FAP . 123 " < Step label = " Set A - Minus contract Max Buyup = User Requested A - Minus Max Buy

< / Branch >

< Branch label = " lf A - Minus contract Max Buyup & lt ; = 25 bps " id = " 10122 " >

< Step label = " Set User requested A - Minus Buyup = Calculated contract A - Minus

< / Branch >

< / Branch >

US 10,877,874 B2

FIG . 5

310

320

C : \ Documents and Settings \ f353198 \ Desktop \ Desktop copyIGMUISWE - 7991Thesis 799 - 1031 \ Tools Demo Models \ AUC5-1208.xml

U.S. Patent

Tree View Scenario View Selct Usecase : E All Usecases

Selct Flow : All Flows

Usecases

Dec. 29 , 2020

AUC 5 - Main Flow : Scenario - 1

1. Branch : If Interest Rate Type = Fixed or Balloon (SS_FAP_1122) 2. Branch : If LLGFee Ind = Y and LLGfee Type = A - Minus 3. Step : Retrieve Gfee Rate , Buyup Max , A - Minus Buyup
4. Step : Set Remittance Type = GOLD i.e , 19 days

5. Step : Retrieve Gfee rate , Max BUYUP , Super ARC days , Remitence Cycle option , Locked / Floating Indicator

6. Step : Retrieve Contract (LPC) Remittance Type 7. Branch : If Remittance Type = Remittance Cycle Option
8. Step : Set Remittance Adj = 0

9. Step : Calculate Contract Max Buyup = MC Product Max Buy Up + Remitence Adj

10. Branch : If Contract Max Buyup > 12.5 11. Step : No change in Contract Max Buyup

12. Step : Calculate A - Minus contract Max Buyup = MC product A - Minus Max Buyup
13. Branch : If A - Minus contract Max Buyup > 25 bps (SS_FAP . 123)

14. Step : Set A - Minus contract Max Buyup = User Requested A - Minus Max Buyup = 25 bps

Sheet 9 of 10

610

US 10,877,874 B2

FIG . 6

U.S. Patent Dec. 29 , 2020 Sheet 10 of 10 US 10,877,874 B2

700

710
Model the

Requirements

720
Verify the Model

730
Select Test Paths

740
Sensitize the Test

Paths

Record the Expected 750
Outcome for Each

Test

760
Conform the Path

FIG . 7

US 10,877,874 B2
1 2

SYSTEMS AND METHODS FOR MODELING tool , and a client system is disclosed . The method comprises
AND GENERATING TEST REQUIREMENTS retrieving modeling requirements of software , wherein the

FOR SOFTWARE APPLICATIONS modeling requirements are specified in the form of one or
more use cases for contract pricing ; receiving , via a graphi

RELATED APPLICATIONS 5 cal user interface , a user's selection of one or more portions
of previously - created models ; generating , using the model

This application claims the benefit of U.S. Provisional ing tool , a tree graph model based on the modeling require
Application No. 61 / 006,187 filed Dec. 28 , 2007 , entitled ments and the one or more user - selected portions of previ
" Systems and Methods of Modeling and Generating Test ously - created models , wherein the tree graph model
Requirements for Software Applications , ” which is incor- 10 comprises one or more details for uncovering bugs or errors
porated herein by reference in its entirety . of the software ; analyzing the tree graph model and verify

ing complete path coverage for the modeling requirements ,
TECHNICAL FIELD by determining whether predicate and clause coverage cri

teria of the tree graph model yields n + 1 truth values , wherein
The present disclosure generally relates to the process of 15 n is a number of clauses in a predicate of a logical expression

software development , and more particularly to systems and in the tree graph model ; generating a plurality of test paths
methods for modeling and generating test requirements for for traversing the tree graph model , wherein the plurality of
software applications . test paths uncover unhandled exceptions corresponding to

the bugs or errors ; testing the modeling requirements by :
BACKGROUND 20 selecting , using an algorithm based on the tree graph model ,

a test path among the plurality of test paths ; storing , in a
The process of software development may include the memory , data associated with one or more expected out

following general steps : requirements gathering ; developing comes from traversing the selected test path ; generating ,
use cases to document the requirements ; modeling the use using an algorithm and based on the selected test path , one
cases ; coding the software ; and testing the software . 25 or more data values that cause the processor to traverse one
Depending on the size and budget of the software develop- or more branches of the selected test path for the software
ment project , the above steps may be performed by one without the bugs or errors ; sensitizing the selected test path
individual or may be divided among individuals or groups of by inputting the one or more data values ; generating a
individuals . plurality of test cases based on the tree graph model and the

For example , the step of gathering requirements may be 30 one or more data values , wherein the plurality of test cases
performed by a business analyst , also commonly referred to exercise each object and relationship in the selected test
as a systems analyst and functional analyst . In gathering path ; generating one or more test outcomes by traversing the
requirements , the business analyst may communicate with sensitized test path and the plurality of test cases via running
clients (i.e. , the procurer of the software to be developed) to the generated data values through the software ; retrieving
gather the client's requirements for the software . The 35 the one or more expected outcomes ; comparing the one or
requirements may be organized , for example , into system more test outcomes to the one or more expected outcomes at
requirements , functional requirements , and user require- multiple intermediate verification points along the selected
ments . test path ; and conforming the selected test path to produce

Once gathered , the requirements may be modeled by the the expected outcomes , based on a difference between the
business analyst . Modeling the requirements may allow the 40 one or more test outcomes and the one or more expected
requirements to be better managed and more readily under- outcomes ; and repeating the testing of the modeling require
stood . In addition , modeling the requirements may assist ments for the plurality of test paths , wherein the test paths
with the creation of test cases to be used in the testing of the are sensitized by inputting the one or more data values that
software . The requirements may be modeled using a stan- cause the processor to do the equivalent of traversing the test
dardized general - purpose modeling tool , such as the Unified 45 paths if there were no bugs or errors and wherein the
Modeling Language (UML) or modeled using flowcharts , sensitized test paths are conformed to produce the expected
tables , graphs , such as a directed acyclic graph (DAG) , and outcomes .
the like . In another embodiment , a computer - readable medium

Using current systems and methods , both the process of containing instructions for performing , when executed by a
modeling the requirements and the development of test cases 50 processor hosted on a server and connected via a network
require highly specialized skills and large quantities of time . connection to at least one networked database , a modeling
Systems and methods consistent with the principles of the tool , and a client system , a method for automated software
present invention facilitate the modeling of the requirements requirements testing and sensitization for consistent perfor
of a software application and the generating of test require- mance is disclosed . The method comprises retrieving mod
ments using the information in the model . 55 eling requirements of software , wherein the modeling

requirements are specified in the form of one or more use
SUMMARY cases for contract pricing ; receiving , via a graphical user

interface , a user's selection of one or more portions of
Consistent with the present invention , as embodied and previously - created models , generating , using the modeling

broadly described herein , systems and methods are disclosed 60 tool , a tree graph model based on the modeling requirements
for modeling and generating test requirements for software and the one or more user - selected portions of previously
applications . created models , wherein the tree graph model comprises one

According to one embodiment , a computer - implemented or more details for uncovering bugs or errors of the software ;
method for automated software requirements testing and analyzing the tree graph model and verifying complete path
sensitization for consistent performance , performed by a 65 coverage for the modeling requirements , by determining
processor hosted on a server and connected via a network whether predicate and clause coverage criteria of the tree
connection to at least one networked database , a modeling graph model yields n + 1 truth values , wherein n is a number

US 10,877,874 B2
3 4

of clauses in a predicate of a logical expression in the tree by inputting the one or more data values ; generating a
graph model ; generating a plurality of test paths for travers- plurality of test cases based on the tree graph model and the
ing the tree graph model , wherein the plurality of test paths one or more data values , wherein the plurality of test cases
uncover unhandled exceptions corresponding to the bugs or exercise each object and relationship in the selected test
errors ; testing the modeling requirements by : selecting , 5 path ; generating one or more test outcomes by traversing the
using an algorithm based on the tree graph model , a test path sensitized test path and the plurality of test cases via running
among the plurality of test paths ; storing , in a memory , data the generated data values through the software ; retrieving
associated with one or more expected outcomes from tra- the one or more expected outcomes ; comparing the one or
versing the selected test path ; generating , using an algorithm more test outcomes to the one or more expected outcomes at
and based on the selected test path , one or more data values 10 multiple intermediate verification points along the selected
that cause the processor to traverse one or more branches of test path ; and conforming the selected test path to produce
the selected test path for the software without the bugs or the expected outcomes , based on a difference between the
errors ; sensitizing the selected test path by inputting the one one or more test ou nes and the one or more expected
or more data values ; generating a plurality of test cases outcomes , and repeating the testing of the modeling require
based on the tree graph model and the one or more data 15 ments for the plurality of test paths , wherein the test paths
values , wherein the plurality of test cases exercise each are sensitized by inputting the one or more data values that
object and relationship in the selected test path ; generating cause the processor to do the equivalent of traversing the test
one or more test outcomes by traversing the sensitized test paths if there were no bugs or errors and wherein the
path and the plurality of test cases via running the generated sensitized test paths are conformed to produce the expected
data values through the software ; retrieving the one or more 20 outcomes .
expected outcomes ; comparing the one or more test out
comes to the one or more expected outcomes at multiple BRIEF DESCRIPTION OF THE DRAWINGS
intermediate verification points along the selected test path ;
and conforming the selected test path to produce the The accompanying drawings , which are incorporated in
expected outcomes , based on a difference between the one 25 and constitute a part of this specification , illustrate various
or more test outcomes and the one or more expected features , embodiments and aspects consistent with the
outcomes ; and repeating the testing of the modeling require- invention and , together with the description , explain advan
ments for the plurality of test paths , wherein the test paths tages and principles of the invention . In the drawings :
are sensitized by inputting the one or more data values that FIG . 1 is a block diagram of an exemplary overview of a
cause the processor to do the equivalent of traversing the test 30 data processing system suitable for implementing embodi
paths if there were no bugs or errors and wherein the ments consistent with the principles of the present invention ;
sensitized test paths are conformed to produce the expected FIG . 2 illustrates an exemplary directed acyclic graph ,
outcomes . consistent with the principles of the present invention ;

In yet another embodiment , a system for automated FIGS . 3A - 3D illustrate screenshots of an exemplary mod
software requirements testing and sensitization for consis- 35 eling and testing tool , consistent with the principles of the
tent performance is disclosed . The system comprises a present invention ;
memory having program instructions and a processor hosted FIGS . 4-6 illustrate screenshots of an exemplary model
on a server and connected via a network connection to at ing and testing tool , consistent with the principles of the
least one networked database , a modeling tool , and a client present invention ; and
system wherein the processor executes the program instruc- 40 FIG . 7 is a flowchart of an exemplary method for mod
tions . The executed program instructions perform operations eling and generating test cases , consistent with the principles
comprising : retrieving modeling requirements of software , of the present invention .
wherein the modeling requirements are specified in the form
of one or more use cases for contract pricing ; receiving , via DESCRIPTION OF THE EMBODIMENTS
a graphical user interface , a user's selection of one or more 45
portions of previously - created models ; generating , using the Reference will now be made in detail to various embodi
modeling tool , a tree graph model based on the modeling ments of the invention , examples of which are illustrated in
requirements and the one or more user - selected portions of the accompanying drawings . Wherever convenient , similar
previously - created models , wherein the tree graph model reference numbers will be used throughout the drawings to
comprises one or more details for uncovering bugs or errors 50 refer to the same or like parts . The implementations set forth
of the software ; analyzing the tree graph model and verify- in the following description do not represent all implemen
ing complete path coverage for the modeling requirements , tations consistent with the claimed invention . Instead , they
by determining whether predicate and clause coverage cri- are merely some examples of systems and methods consis
teria of the tree graph model yields n + 1 truth values , wherein tent with the invention .
nis a number of clauses in a predicate of a logical expression 55 FIG . 1 is a block diagram illustrating an exemplary
in the tree graph model ; generating a plurality of test paths system 100 in which embodiments consistent with the
for traversing the tree graph model , wherein the plurality of present invention may be implemented . In the embodiment
test paths uncover unhandled exceptions corresponding to shown , system 100 includes a front - end system 110 , com
the bugs or errors ; testing the modeling requirements by : prising client system 120 , and a back - end system 140 ,
selecting , using an algorithm based on the tree graph model , 60 comprising data repository 150 and server system 160 .
a test path among the plurality of test paths ; storing , in a Client system 120 includes a bus 121 or other commu
memory , data associated with one or more expected out- nication mechanism for communicating information , and a
comes from traversing the selected test path ; generating , processor 122 coupled with bus 121 for processing infor
using an algorithm and based on the selected test path , one mation . Client system 120 also includes a main memory ,
or more data values that cause the processor to traverse one 65 such as a random access memory (RAM) 123 or other
or more branches of the selected test path for the software dynamic storage device , coupled to bus 121 for storing
without the bugs or errors ; sensitizing the selected test path information and instructions to be executed by processor

US 10,877,874 B2
5 6

122. RAM 123 also may be used to store temporary vari- system 160 , alternate embodiments may store the modeling
ables or other intermediate information produced during and testing tool 170 on client system 120. For example ,
execution of instructions by processor 122. Client system modeling and testing tool 170 may be stored using RAM
120 further includes a read only memory (ROM) 124 or 123 , ROM 124 , or storage device 125. Processor 122 may
other static storage device coupled to bus 121 for storing 5 execute instructions of the modeling and testing tool 170 to
static information and instructions for processor 122. A perform operations and functions of the modeling and
storage device 125 , such as a magnetic disk or optical disk , testing tool 170 described in further detail below . The
is provided and coupled to bus 121 for storing information configuration and number of programs , systems , and pro
and instructions . cessors implementing processes consisted with the invention

Client system 120 may also include a display device 126 , 10 are not critical to the invention .
such as a thin film transistor liquid crystal display (TFT- In an exemplary requirements gathering process , a user
LCD) , for displaying information to and receiving informa- (e.g. , a business analyst) may meet with a client to formulate
tion from a computer user through , for example , user and document the requirements of a software application to
interface 127. A user may interact with components and be developed . As used herein , the term “ requirements ” refers
software of the back - end system 140 through the use of user 15 to the needs or conditions that the software must fulfill . In
interface 127. An input device 128 , such as a keyboard one embodiment , requirements are actionable , measurable ,
including alphanumeric and other keys , may be used for testable , related to identified business needs or opportunities ,
communicating information and command selections to and defined to a level of detail sufficient for the design of the
processor 122. Another type of user input device is a cursor software . The requirements may be organized as user
control 129 , such as a mouse , a trackball , or cursor direction 20 requirements , system requirements , and functional require
keys for communicating direction information and com- ments .
mand selections to processor 122 and for controlling cursor For example , the requirements may be organized into a
movement on display 126. This input device typically has formal document report , commonly referred to as a software
two degrees of freedom in two axes , a first axis (e.g. , x) and requirements specification . The software requirements
a second axis (e.g. , y) , that allows the device to specify 25 specification is a complete description of the behavior of the
positions in a plane . software to be developed . The software requirements speci

Front - end system 110 may be connected to the back - end fication may include information regarding : interfaces ; func
system 140 through network connection 130. Network con- tional capabilities ; performance levels ; data structures / ele
nection 130 may include , alone or in any suitable combina- ments ; safety ; reliability ; security / privacy ; quality ; and
tion , a telephony - based network , a local area network 30 constraints and limitations . The software requirements
(LAN) , a wide area network (WAN) , a dedicated intranet , specification may also include use cases that describe the
wireless LAN , the Internet , and intranet , a wireless network , user requirements . The user requirements may be generally
a bus , or any other communication mechanisms . Further , defined as the interactions that a user will have with the
any suitable combination of wired and / or wireless compo- software .
nents and systems may provide network connection 130. 35 A use case may be generally defined as a sequence of
Moreover , network connection 130 may be embodied using steps that describe a software's behavior as it responds to a
bi - directional , unidirectional , or dedicated communication request that originates from outside of the software , such as
links . Network connection 130 may also implement standard a request from a user or another software . Specifically , use
transmission protocols , such as Transmission Control Pro- cases are meant to describe sequences of actions that the
tocol / Internet Protocol (TCP / IP) , Hyper Text Transfer Pro- 40 software performs as a result of inputs from the users ; that
tocol (HTTP) , SOAP , Remote Procedure Call (RPC) , or is , they help express the work flow of a computer applica
other protocols . tion . Because use cases are developed early during the

Back - end system 140 includes data repository 150 and software development process , they may be valuable in
server system 160. In the embodiment shown , server system helping a tester of the software to start testing activities
160 includes modeling and testing tool 170. Modeling and 45 early .
testing tool 170 facilitates a user in the modeling of software Although different schemes and templates for the orga
requirements and the testing of software during a software nization of a use case exist , there is a general consensus
development process . A user may interact with the modeling concerning the core sections of a use case . For example , a
and testing tool 170 through user interface 127 of client use case may comprise : a use case name , which is a unique
system 120. Processor 122 and a processor (not illustrated) 50 identifier for the use case ; a version , which informs a reader
of the server system may execute instructions of the mod- of the stage of the use case ; a goal , which briefly describes
eling and testing tool 170 to perform operations and func- what the user intends to achieve with the use case ; an actor ,
tions of the modeling and testing tool 170 described in which is someone or something that interacts with the
further detail below . software ; preconditions , which defines the conditions that

Data repository 150 may comprise one or more databases 55 must be true for a trigger to meaningfully cause the initiation
that store information and are accessed and managed of the use case ; a trigger , which describes the event that
through back - end system 140. By way of example , data causes the use case to be initiated ; basic course of events
repository 150 may be an OracleTM database , a SybaseTM (i.e. , transaction flows) , which are often conveyed as a set of
database , or other relational database . Data repository 150 numbered steps that define a primary scenario , or typical
may be used to store information about the software appli- 60 course of events (commonly referred to as “ primary path , ”
cation that is being modeled and tested . Systems and meth- “ happy path , " " happy flow , " " basic flow , " or " sunny day ") ;
ods of the present invention , however , are not limited to alternative paths , which represent secondary paths or alter
separate databases or even to the use of a database as other native scenarios ; post - conditions , which describe what the
organized collections of data or memory systems will serve change in state of the software will be after the use case
as well . 65 completes ; and business rules , which are rules or policies

Although the embodiment disclosed in FIG . 1 illustrates that determine how an organization conducts its business
the modeling and testing tool 170 stored on the server with regard to a use case .

represented

US 10,877,874 B2
7 8

A scenario is similar to a use case but , in most instances , returning values , and computations . As an initial step , use
not as detailed as a use case . Specifically , a scenario may be cases to be modeled may be entered into the modeling and
defined as one path or work flow of an actor through a part testing tool 170 by entering a name of a use case to be
of the software . Scenarios correspond to goals that users will modeled . For purposes of illustration , the name “ Testable
set out to accomplish . A use case , on the other hand , spells 5 function ” 311 has been entered for a use case . Subsequently ,
out , step by step , what must take place for that scenario to as illustrated in FIG . 3B , transaction flows for use case 311
run to a successful completion . may be created by the user . For purposes of explanation ,

In addition to use cases and scenarios , the software transaction flows " Main flowl ” 312 and " Main flow2 " 313
requirements specification generally presents the require- have been created . Transaction flows 312 and 313 may be
ments in a sequence (i.e. , course) of events for the software 10 represented as nodes in the tree graph model being created .
and sequences (i.e. , courses) of actions for the software . The primary scenario or typical course of events that
Functional requirements (i.e. , calculations , technical details , describe a transaction flow of a use case may be
data manipulation and processing , and other specific func- as branches in the tree graph model . For example , as
tionality) of the software may also be represented within the illustrated in FIG . 3C , a user may enter the steps for
software requirements specification as logical expressions 15 transaction flow 312. Steps may have sub - steps to further
and program structures , such as if - else structures , nested if describe the transaction flow . An example of a modeled
structures , decision tree structures , case / switch structures , transaction flow (i.e. , Main flow1 312) with steps and
and the like . Logical expressions may also be derived from sub - steps of the transaction flow is illustrated in tree graph
various software artifacts , such as code , specifications , and model 314 of FIG . 3D . In general , because use cases are
finite state machines . In one specific implementation , a 20 usually expressed in terms that a user can understand , use
logical expression may be defined as two arithmetic expres- cases rarely include complicated predicates that contain
sions connected by a relational operator indicating whether multiple clauses . Accordingly , a graph generated from use
an expression is greater than , equal to , or less than the other , cases often result in a graph with complete path coverage .
or connected by a logical variable , logical constant (e.g. , true FIG . 4 illustrates the modeling of logical expressions ,
or false) , or logical operator . 25 if - else statements , and nested if statements , which may also

The requirements of the software detailed in the software be contained in a requirements specification . The process of
requirements specification may be represented as a model . A modeling logical expressions , if - else statements , and nested
model may provide a richer , higher level , and more seman- if statements is similar to the process disclosed above for
tically precise set of constructs than the underlying natural modeling use cases . For example , FIG . 4 illustrates an
language of the software requirements specification . Using 30 exemplary tree graph model 410 comprising logical expres
a model may reduce ambiguity , make it easier to check for sions 420 , if - else statements 430 , and nested if statements
incompleteness of the captured requirements , and may 440 .
improve understandability by providing a different perspec- In modeling a logical expression , a user may define the
tive from which to view the software . scope of the testable function which needs to be further

There are multiple modeling designs and tools , such as the 35 analyzed . In the illustrated example of FIG . 4 , a user may
entity - relationship model (ERM) , Unified Modeling Lan- define Function - 1 as the root node for the tree graph model
guage (UML) , directed acyclic graph (DAG) , transaction 410. In general , a logical expression may contain predicates
flows , activity diagrams , and the like . As disclosed herein , and clauses . Predicates may be taken from if statements ,
modeling and testing tool 170 may model the requirements case / switch statements , for loops , while loops , do - until
of a software using a DAG design . 40 loops , and the like .
A DAG is an example of a tree graph . More specifically , If , for example , a logical expression has four predicates ,

a DAG is an example of a directed graph with no directed it may be modeled using four nodes : Flow - 1 , Flow - 2 ,
cycles . A DAG has a topological sort , an ordering of the Flow - 3 , and Flow - 4 . In addition , if there exists any activities
vertices such that each vertex comes before all vertices it has or events along the flow between the root node , Function - 1 ,
edges to . FIG . 2 illustrates an exemplary DAG , 200. As 45 and the four nodes of the predicates , they may be created as
illustrated , DAG 200 has six edges (i.e. , branches) and seven steps . To check the expected behavior of the logical expres
vertices (i.e. , nodes) ; vertex a (201) , vertex b , (202) , vertex sion , verification points may be added to the model . A
c (203) , vertex d (204) , vertex e (205) , vertex f (206) , and verification point may be used to compare an actual result to
vertex g (207) . an expected result . As illustrated in FIG . 4 , exemplary tree

The requirements of the software detailed in the software 50 graph model 410 for Function - 1 may include verification
requirements specification may be represented as a tree points VP1 and VP2 . Verification point VP1 may include
graph model using modeling and testing tool 170. The five predicates represented as F1 - C1L1 , F1 - C2L2 , F1 - C3L3 ,
modeling and testing tool 170 may model the requirements F1 - C4L4 , and F1 - C5L5 . Verification point VP2 may include
of a software requirements specification by abstracting the five predicates , F1 - C1L1 , F1 - C2L2 , F1 - C3L3 , F1 - C4L4 ,
implementation details of , for example , the use cases , activ- 55 and F1 - C6L5 .
ity diagrams , sequence diagrams , state - transition diagrams , In instances wherein the logical expression includes com
and logical expressions contained in the requirements speci- pound predicates , prior to modeling , the compound predi
fication . The modeling and testing tool 170 may model the cates may be broken down to equivalent sequences of simple
requirements as a tree graph model , and specifically , a DAG . predicates or to the disjunctive normal form . If there are n

The modeling process may begin by user activating the 60 clauses in a predicate , the combinatorial coverage of the
modeling and testing tool 170 via user interface 127. FIG . logical expression leads to 2 " truth values . Applying appro
3A illustrates an exemplary screenshot generated by the priate predicate and clause coverage criteria results in n + 1
modeling and testing tool 170. As illustrated , the screenshot truth - values .
includes a tree view workspace 310 (selected in the illus- Each of the tree graph models (e.g. , tree graph models 314
trated screenshot) and a scenario view workspace 320. 65 and 410) generated by the modeling and testing module 170
Modeling and testing tool 170 may model a variety of the may be stored in data repository 150 as an XML document
components within a use case , for example , state changes , for easy parsing of the text . The stored XML documents may

10

US 10,877,874 B2
9 10

be subsequently opened in any other standalone instance of truth values . The model may be verified to ensure that
the modeling and testing tool 170. For example , subsequent appropriate predicate and clause coverage criteria results in
users may create additional models by editing , copying , or n + 1 truth - values .
cutting and pasting portions of the XML document . FIG . 5 A basic tree - traversal algorithm may be used to identify
illustrates an exemplary portion of the XML documents and select test paths within the model (step 730) . Examples
corresponding to tree graph model 314. Users may open of test paths are illustrated in FIG . 6. In a subsequent step ,
multiple XML documents of previously created models , the selected test paths may be sensitized (step 740) . For analyze these models separately , and cut and paste portions example , a test path may be sensitized by inputting specific of the models into the tree view workspace 310 to create a data values that would cause the software to do the equiva new model or edit an existing model .
XML documents corresponding to models generated by lent of traversing the selected path if there were no bugs or

the modeling and testing tool 170 may also be used to keep errors in the path . The expected outcome for each test
track of changes , as well as capture information related to requirements may be recorded and stored by the modeling
the user who created or edited the model and the date and and testing tool 170 in data repository 170 (step 750) . The
time the model was created or edited . The XML documents 15 expected outcomes may be compared to the outcome
may also assist in configuration management . Configuration received from the sensitized test path . If the expected
management is a field of management that focuses on outcome differs from the outcome received from the sensi
establishing and maintaining consistency of a software's tized test path , the path may be conformed to produce the
performance and its requirements , design , and operational expected result (step 760) .
information throughout the development process of the 20 The foregoing description of possible implementations
software . and embodiments consistent with the present invention does

In general , a test - ready model contains enough informa not represent a comprehensive list of all such implementa
tion to produce test cases for its implementation automati- tions or all variations of the implementations described . The
cally . Accordingly , an algorithm may be designed to produce description of only some implementations should not be
ready - to - run test cases with only the information (e.g. , 25 construed as an intent to exclude other implementations .
structure) in the model . Modeling and testing tool 170 may Other embodiments of the invention will be apparent to
support both manual and automated test generation . those skilled in the art from consideration of the specifica

For example , in the exemplary DAG 200 illustrated in tion and practice of the invention disclosed herein . One of
FIG . 2 , an algorithm may be designed to identify test ordinary skill in the art will understand how to implement
requirements by visiting a particular node or edge , or by 30 the invention in the appended claims in other ways using
touring a particular path in the graph . Utilizing such an equivalents and alternatives that do not depart from the
algorithm , four test or paths (T) may be generated using the scope of the following claims . It is intended that the speci
primary path coverage as T = { a , b , d } , { a , b , e } , { a , c , f } , { a , fication and examples be considered as exemplary only , with
c , g } . Each primary path corresponds to one scenario of the a true scope and spirit of the invention being indicated by the
model (i.e. , the DAG 200) . 35 following claims .

Modeling and testing module 170 may be utilized to
produce ready to run test cases from , for example , generated What is claimed is :
tree graph model 314. In one embodiment , modeling and 1. A computer - implemented method for automated soft
testing module 170 may utilize the basic tree - traversal ware requirements testing and sensitization for consistent
algorithm to traverse the tree graph model 314. The activi- 40 performance , performed by a processor hosted on a server
ties / events / steps (i.e. , represented as branches in between and connected via a network connection to at least one
the nodes of the tree graph model 314 are collected and networked database , a modeling tool , and a client system ,
displayed in the form of a continuous sequence of steps in the method comprising :
the test case . The resulting test cases generated by the retrieving modeling requirements of software , wherein
modeling and testing module 170 comprise a series of tests 45 the modeling requirements are specified in the form of
that will cover tree graph model 314 so that each object and one or more use cases for contract pricing : -
relationship is exercised and errors are uncovered . receiving , via a graphical user interface , a user's selection
FIG . 6 illustrates an exemplary screenshot of test cases of one or more portions of previously - created models ;

generated from tree graph model 314 using the basic tree- generating , using the modeling tool , a tree graph model
traversal algorithm . As indicated in FIG . 6 , scenario view 50 based on the modeling requirements and the one or
workspace 320 is selected . The selection of scenario view more user - selected portions of previously - created mod
workspace 320 displays the test cases 610 generated by the els , wherein the tree graph model comprises one or
traversal of the structure of tree graph model 314 using the more details for uncovering bugs or errors of the
basic tree - traversal algorithm . Test cases 610 map to a software ;
testing requirement . analyzing the tree graph model and verifying complete
FIG . 7 is a flowchart of exemplary steps used to model path coverage for the modeling requirements , by deter

and test software requirements in accordance with modeling mining whether predicate and clause coverage criteria
and testing tool 170. In the embodiment shown , in the initial of the tree graph model yields n + 1 truth values , wherein
step , the requirements of a software application , typically n is a number of clauses in a predicate of a logical
organized into a software requirements specification , are 60 expression in the tree graph model ;
modeled (step 710) . Once the requirements have been mod- generating a plurality of test paths for traversing the tree
eled , the model may be verified (step 720) . For example , the graph model , wherein the plurality of test paths
model may be reviewed to ensure that the model provides uncover unhandled exceptions corresponding to the
complete path coverage for the requirements . In the instance bugs or errors ;
wherein a logical expression is being modeled , if n clauses 65 testing the modeling requirements by :
are present in a predicate of the logical expression , the selecting , using an algorithm based on the tree graph
combinatorial coverage of the logical expression leads to 2 " model , a test path among the plurality of test paths ;

55

5

10

US 10,877,874 B2
11 12

storing , in a memory , data associated with one or more receiving , via a graphical user interface , a user's selection
expected outcomes from traversing the selected test of one or more portions of previously - created models ;
path ; generating , using the modeling tool , a tree graph model

generating , using an algorithm and based on the based on the modeling requirements and the one or
selected test path , one or more data values that cause more user - selected portions of previously - created mod
the processor to traverse one or more branches of the els , wherein the tree graph model comprises one or
selected test path for the software without the bugs or more details for uncovering bugs or errors of the
errors ; software ; sensitizing the selected test path by inputting the one or analyzing the tree graph model and verifying complete more data values ; path coverage for the modeling requirements , by deter generating a plurality of test cases based on the tree mining whether predicate and clause coverage criteria graph model and the one or more data values ,
wherein the plurality of test cases exercise each of the tree graph model yields n + 1 truth values , wherein
object and relationship in the selected test path ; n is a number of clauses in a predicate of a logical

generating one or more test outcomes by traversing the 15 expression in the tree graph model ;
sensitized test path and the plurality of test cases via generating a plurality of test paths for traversing the tree
running the generated data values through the soft graph model , wherein the plurality of test paths
ware ; uncover unhandled exceptions corresponding to the

retrieving the one or more expected outcomes ; bugs or errors ;
comparing the one or more test outcomes to the one or 20 testing the modeling requirements by :
more expected outcomes at multiple intermediate selecting , using an algorithm based on the tree graph
verification points along the selected test path ; and model , a test path among the plurality of test paths ;

conforming the selected test path to produce the storing , in a memory , data associated with one or more
expected outcomes , based on a difference between expected outcomes from traversing the selected test
the one or more test outcomes and the one or more 25 path ;
expected outcomes ; and generating , using an algorithm and based on the

repeating the testing of the modeling requirements for the selected test path , one or more data values that cause plurality of test paths , wherein the test paths are sen the processor to traverse one or more branches of the sitized by inputting the one or more data values that selected test path for the software without the bugs or cause the processor to do the equivalent of traversing 30 errors ; the test paths if there were no bugs or errors and
wherein the sensitized test paths are conformed to sensitizing the selected test path by inputting the one or

more data values ; produce the expected outcomes .
2. The computer - implemented method of claim 1 , generating a plurality of test cases based on the tree

wherein : graph model and the one or more data values ,
the requirements comprise one or more of a logical wherein the plurality of test cases exercise each

expression , a use case , a program structure , a sequence object and relationship in the selected test path ;
of events , or a sequence of actions . generating one or more test outcomes by traversing the

3. The computer - implemented method of claim 1 , sensitized test path and the plurality of test cases
wherein the tree graph model is generated by abstracting 40 using the generated data values ;

implementation details contained in one or more of a retrieving the one or more expected outcomes ;
logical expression , a use case , a program structure , a comparing the one or more test outcomes to the one or
sequence of events , or a sequence of actions . more expected outcomes at multiple intermediate

4. The computer - implemented method of claim 1 , verification points along the selected test path ; and
wherein a node of the tree graph model represents a 45 conforming the selected test path to produce the

transaction flow of a use case . expected outcomes , based on a difference between
5. The computer - implemented method of claim 4 , the one or more test outcomes and the one or more
wherein a first branch of the tree graph model represents expected outcomes ; and

a step of the transaction flow . repeating the testing of the modeling requirements for the
6. The computer - implemented method of claim 5 , plurality of test paths , wherein the test paths are sen
wherein a second branch of the tree graph model repre sitized by inputting the one or more data values that

sents a verification point . cause the processor to do the equivalent of traversing
7. The computer - implemented method of claim 1 , the test paths if there were no bugs or errors and
wherein the tree graph model is a directed acyclic graph . wherein the sensitized test paths are conformed to
8. The computer - implemented method of claim 1 , 55 produce the expected outcomes .

wherein the tree graph models comprise predicates and 10. The computer - readable medium of claim 9 , wherein :
clauses of a logical expression . the requirements comprise one or more of a logical

9. A non - transitory computer - readable medium storing expression , a use case , a program structure , a sequence
instructions , which , when executed by a by a processor of events , or a sequence of actions .
hosted on a server and connected via a network connection 60 11. The computer - readable medium of claim 9 , wherein
to at least one networked database , a modeling tool , and a the tree graph model is generated by abstracting implemen
client system , perform a method for automated software tation details contained in one or more of a logical expres
requirements testing and sensitization for consistent perfor- sion , a use case , a program structure , a sequence of events ,
mance , the method comprising : or a sequence of actions .

retrieving modeling requirements of software , wherein 65 12. The computer - readable medium of claim 9 , wherein
the modeling requirements are specified in the form of a node of the tree graph model represents a transaction
one or more use cases for contract pricing : flow of a use case .

35

50

US 10,877,874 B2
13 14

13. The computer - readable medium of claim 11 , generating , using an algorithm and based on the
wherein a first branch of the tree graph model represents selected test path , one or more data values that

a step of the transaction flow . cause the processor to traverse one or more
14. The computer - readable medium of claim 13 , branches of the selected test path for the software
wherein a second branch of the tree graph model repre- 5 without the bugs or errors ;

sents a verification point . sensitizing the selected test path by inputting the one
15. The computer - readable medium of claim 9 , wherein or more data values ;
the tree graph model is a directed acyclic graph . generating a plurality of test cases based on the tree
16. The computer - readable medium of claim 9 , wherein graph model and the one or more data values , the tree graph models comprise predicates and clauses of a 10 wherein the plurality of test cases exercise each logical expression . object and relationship in the selected test path ;
17. A system for automated software requirements testing

and sensitization for consistent performance comprising : generating one or more test outcomes by traversing
the sensitized test path and the plurality of test a memory storing program instructions ; and cases using the generated data values ; a processor hosted on a server and connected via a 15

network connection to at least one networked database , retrieving the one or more expected outcomes ;
a modeling tool , and a client system wherein the comparing the one or more test outcomes to the one
processor executes the program instructions to perform or more expected outcomes at multiple verifica
operations comprising : tion points along the selected test path ; and
retrieving modeling requirements of software , wherein 20 conforming the selected test path to produce the

the modeling requirements are specified in the form expected outcomes , based on a difference between
of one or more use cases for contract pricing ; the one or more test outcomes and the one or more

receiving , via a graphical user interface , a user's selec expected outcomes ; and
tion of one or more portions of previously - created repeating the testing of the modeling requirements for the
models ; plurality of test paths , wherein the test paths are sen generating , using the modeling tool , a tree graph model sitized by inputting the one or more data values that
based on the modeling requirements and the one or cause the processor to do the equivalent of traversing
more user - selected portions of previously created the test paths if there were no bugs or errors and
models , wherein the tree graph model comprises one wherein the sensitized test paths are conformed to
or more details for uncovering bugs or errors of the 30 produce the expected outcomes .
software ; 18. The system of claim 17 , wherein : analyzing the tree graph model and verifying complete
path coverage for the modeling requirements , by the requirements comprise one or more of a logical
determining whether predicate and clause coverage expression , a use case , a program structure , a sequence
criteria of the tree graph model yields n + 1 truth 35 of events , or a sequence of actions .
values , wherein n is a number of clauses in a 19. The system of claim 17 , wherein the tree graph model
predicate of a logical expression in the tree graph is generated by abstracting implementation details contained
model ; in one or more of a logical expression , a use case , a program

generating a plurality of test paths for traversing the structure , a sequence of events , or a sequence of actions .
tree graph model , wherein the plurality of test paths 40 20. The system of claim 17 , wherein a node of the tree
uncover unhandled exceptions corresponding to the graph model represents a transaction flow of a use case .
bugs or errors ; 21. The system of claim 20 , wherein a branch of the tree testing the modeling requirements by : graph model represents a step of the transaction flow .
selecting , using an algorithm based on the tree graph 22. The system of claim 17 , wherein the tree graph model model , a test path among the plurality of test 45 is a directed acyclic graph . paths ;
storing , in a memory , data associated with one or 23. The system of claim 17 , wherein the tree graph models
more expected outcomes from traversing the comprise predicates and clauses of a logical expression .
selected test path ;

25

