Office de la Proprieté Canadian CA 2355158 C 2010/12/07

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 355 1 58
Un organisme An agency of

d'Industrie Canada Industry Canada (12) BREVET CANADIEN

CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 1999/12/14 (51) Cl.Int./Int.Cl. GO6F 9/44(2006.01)
(87) Date publication PCT/PCT Publication Date: 2000/06/29 | (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2010/12/07 GORDON, GRARAM PAUL, ZA

: : : . (73) Proprietaire/Owner:
(85) Entree phase nationale/National Entry: 2001/06/13 GORDON GRAHAM PAUL. ZA
(86) N° demande PCT/PCT Application No.: IB 1999/001989

o o (74) Agent: OYEN WIGGS GREEN & MUTALA LLP

(87) N° publication PCT/PCT Publication No.: 2000/038051
(30) Priorité/Priority: 1998/12/18 (ZA98/11657)

(54) Titre : PROCEDE DE REALISATION D'UN PROCESSUS DINGENIERIE INVERSE D'UN SYSTEME
54) Title: A METHOD OF PERFORMING A SYSTEM REVERSE ENGINEERING PROCESS

12

10 16 -

Gather/Collect/Form
the complete
~ Application
Software/Systam

Selact Candidate
Integrated
Develcpment

Environment (IDE)

Select Candidate
Application
Systeam

Identify Initial

' Analyse /
Object Types

Understang /
———{! Record the nature
/ characteristics
/! properties of
each Object Type

A — — -

-

28

Process Model of
Structures for
~| Export/Reporting to CASE
Tools/Development
invironments/Repositories

Reverse inward on
the Linear
chain/vector to
The Node (first)
with a subseguent
unprobad /

Identify Logical Probe/Explore/Record
Entry Point(s) in a Linear/Vector |ieem:
fashion from each
Logical Entry Point
outward to the first

instance of a node unexplored /

which does not have
a subsequent link unrecor?;gkoutward

tobe/EBxplore/Recor
in a
Linear/Vector
fashion from The
Hode outward to
the first
instance of a
subsequent node
which does not
have a subseguent
link

Break Structures into
candidate compnents

lllllllllll

using Affinity

Analysis/Mathematical
Cluster Techniques, etc,

(57) Abregé/Abstract:

The Invention relates to a method of performing a system reverse engineering process. The method provides for an examination of
the application system that requires reverse engineering by examining the entire network structure forming the system, by tracking
chains of nodes and links In accordance with a predetermined tracking method, that will ensure a complete examination. The
Information gathered from the examination will permit formatting of the information into a form in which it represents the application
system In a usable form. The method of the invention provides also for the creation of a software program or an entire software
system that can be employed for carrying out the reverse engineering process.

.
4
;
e

SRR [] []

e \

. PR A < o+ e\

R
N

et L L/ §
S

C an a dg http.//opic.ge.ca * Ottawa-Hull K1A 0C9 - attp://cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02355158 2001-06-13

WORLD INTELLECTUAL PROPERTY ORGANIZATION R
Intermational Bureau -

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/38051
GO6F 9/44 .

(43) International Publication Date: 29 June 2000 (29.06.00)

(21) International Application Number: PCT/IB99/01989 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,

(22) International Filing Date: 14 December 1999 (14.12.99) ES, Fl, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,

(30) Priority Data: SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
08/11657 18 December 1998 (18.12.98) ZA US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
(71)(72) Applicant and Inventor: GORDON, Graham, Paul BE, CH, CY, DE, DK, ES, FIL, FR, GB, GR, IE, IT, LU,
[ZA/ZA]; Overport, 4067, 519 Moore Road, P.O. Box MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

70008, Glenwood, 4001 Durban (ZA). | GA, GN, GW, ML, MR, NE, SN, TD, TQG).

(74) Agent: ROTTEVEEL, Martin;, Adams & Adams, Adams &
Adams Place, 16 Cranbrook Crescent, La Lucia Ridge, | Published
Office Park, Umhlanga, 4320 Umhlanga (ZA). With international search report.

Before the expiration of the time limit for amending the

claims and 1o be republished in the event of the receipt of
amendments.

(54) Title: A METHOD OF PERFORMING A SYSTEM REVERSE ENGINEERING PROCESS

Select Condidare
Intagxated
Develepaent

Enviveommegnt (10}

$elect Candilate 1dantify Inicial
Application Ohjeut Types

ARalyse /
Undarstand /
=24 | Recocd the nature
/ charvecteristice

7/ properties of
¢ach Qhject Type

Discovered and Inherited Object Tyoe Info

T iy y -ﬁ—-ﬂ“wﬂ_.—-“mﬁ L - aewa —-“-F.J

Precess Yodel of
Stewctures for
l- wremmnd | Export/Reporting te CASK

S— Tools/Davelopnent
invirenments /hepesitoria

Revarss invard on
the Linear

Tl chaln/vector te | swunr

The Hoda {Cirst)

with & subseguent
unpzobed /
vnexplosed /

vngecorded outvard

1ink

identif

Logical
tatey

Probe/ECxplete/Record
Llnt{n

in & Linear/Vecter 1.
fashion (zom each
leagloal Entzy Point
owivaxd to the ficst
instance of & node
vhich does net have
» svbsegueant iink

tobe/Expluora/fecor
in @

Linsar/vecter
fashion (rom The
Uede outwatd teo |

the fleat
instence of »
aubsequent node
vhiah does not
have & avbssquent
)ink

l....._.,..,_.,‘ Sreak Strwotures Into
condidate conpaents

W e T e e R G o ST S e - e v =y QU g § e v e B Sremkdh ey o - . ”.l.' thiity
Analysis/Hathenat ical

Clusteay Techniques, ete,

(37) Abstract

The invention relates to a method of performing a system reverse engineering process. The method provides for an examination of
the application system that requires reverse engineering by examining the entire network structure forming the system, by tracking chains
of nodes and links in accordance with a predetermined tracking method, that will ensure a complete examination. The information gathered
from the examination will permit formatting of the information into a form in which it represents the application system in a usable form.

The method of the invention provides also for the creation of a software program or an entire software system that can be employed for
carrying out the reverse engineering process.

OPRHATS S e s Ak i - e AR A R AW IPACITINIRGCY o 8GR (o s .. IR STy

ot ALY AT STV 4G4 TIDTEMNAML HOH ¥ WA € b s e« 225 e - A TS T T AN AT Y14 4 st (4545, o3

L =N

10

15

20

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989

A METHOD OF PERFORMING A SYSTEM REVERSE ENGINEERING PROCESS

THIS INVENTION relates to a method of performing a system reverse engineering

process.

It is known that as a result of software system accretion, which occurs wh‘en
systems are linked together, when systems are built on or hacked into in a relatively
unstructured mode to effect quick fixes or changes, when systems are modified to
accommodate other systems and/or the like, a congiomerate system can result which,
for various reasons, can no longer be easily managed and which is not understood
in all respects. In extreme cases this can result in a system becoming obsolete,
inutile, or too complicated to continue to operate and work with, essentially requiring

system replacement.

The latter option often is not economically or technically feasible ahd in order to at
least alleviate the prbblem identified and for various other reasons, system reverse
engineering processes have been developed whereby conglomerated systems can be
re-engineered into a workable format. System reverse engineering processes involve
essentially the examination of the existing system, the documentation of the system,
modelling of the system, analyzing of the system and understanding of the system,

whereafter it is possible to re-engineer the system into a workable and useful format.

A system that requires to be reverse engineered as herein envisaged, hereinafter
referred to as the application system, comprises a network structure of nodes and
links, the nodes and links forming chains that either terminate in a final node or that

form a closed loop that extends from a node and returns to the same node. Network

CONFIRMATION COPY

Veradng = rd oot AR PENGAR & ST AT T ¥4 EDACTUTTVTIAE B - CH LA i TR AP AV AP i = - - . o Tt e M e WO A O AT . 0 A A GO EIR 4 Ol = Ut red TR et e =RV VO A0 v sy SNSRI T PR NP LT A8 LI - 74 *4 = Vet 3 M FHAHRHLOME uliics r o DA oty M M bk I AR TR N G- L I TR Ol K- B A s s besas br T e T v el e T U . .

CA 02355158 2001-06-13

04-12-2000 IB 009901989

structures are further complicated insofar as two or more links can extend from a node
and by keeping in mind that a network structure could include millions of nodes and
links, it will be appreciated that very intricate structures can result. The individual
nodes and links referred to essentially are object instances and messages disposed
between the object instances, representing activity and data elements which are
associated with the operation of the system, for carrying out its required purpose or

purposes.

In order to apply a reverse engineering process to an application system, it is required
to obtain a full understanding of the system, i.e. an understanding of the operation of
the network structure forming the system, in order to permit the system to be reverse
engineered into a format which permits a model of the system to be created with the
aid ot a suitable CASE tool (Computer Aided Software/Systems Engineering) or any
other categories of suitable visualisation tools. The examination of an application
system in order to acquire an understanding of the system conventionally involves an
overall consideration of the system and then progressively delving into the system
from a number of predetermined starting points, delving deeper and deeper into the
system until the required understanding is acquired. This generally requires the
cooperation of a team of suitably qualified systems engineers who will cooperate with
one another and add their knowledge together until the required level of understanding
of the system is acquired, which then permits reverse engineering. This examination
system is well known and produced desired results in relation to relatively simpler and
less dynamically changing application systems where systems engineers could acquire
a sufficient overall picture of the system to permit reverse engineering thereof, but in
relation to more complex and dynamic systems this method of examination became

too complex and time consuming and, as such, impractical.

The known approach to system reverse engineering was identified by GALL H et al,
under the title “Balancing in Reverse Engineering and in Object - Oriented Systems

Engineering to Improve Reusability and Maintainability”, during proceedings of the

AMENDED SHEET

et e b - 1 A A
Lo TR FTVTT-FY
i 'mmm“.“rb'dﬂ-n‘wﬁlh‘—'i WS absrdy o30

CA 02355158 2001-06-13

04-12-2000 IB 009901989

Annual International Computer Software and Applications Conference (COMPSAQ),
US, Los Alamitos, IEEE Comp. Soc. Press, Vol. Conf. 18, Page(s) 35-42
XP 000611144, ISBN: 0-8186-6707-9 and particularly also in a reference cited therein
and identified as P. Benedusi, A. Cimitile, and U. de Carlini. Reverse Engineering
Processes, Design Document Production, and Structure Charts. The Journal of
Systems and Software, 19 (3) : 225-245, November 1992,

The above references clearly identify known system reverse engineering processes as

goal orientated processes. A goal orientated process involves only an examination

format which accommodates 3 predetermined goal. Such processes clearly are limited
processes which accommodate only specific goals. This limitation of reverse
engineering to merely achieve goals has always been considered essential in order to
render reverse engineering practically possible and particularly when more complex
Systems are involved, even merely to reverse engineer to the extent of achieving

defined goals has proven to be extremely difficult

The more complex application Systems requiring reverse engineering therefore cannot

be economically salvaged, even with the aid of software programs assisting with the

examination process as above envisaged. As such, it is an object of this invention to

provide an improved method of performing a system reverse engineering process

AMENDED SHEET

hlwg.nm‘,md«‘“w..muu“mwm
VTR R as S menwmm
B 1 [T R CE

10

15

20

CA 02355158 2001-06-13

WO 00/38051 PCT/1B99/01989
_3- . _
which will permit more complex application systems to be reverse engineered to a

workable format and to make reverse engineering of less valuable systems

commercially viable.

According to the invention there is provided a method of performing a system reverse

engineering process, which includes the steps of

identifying the application system that requires reverse engineering and
gathering the entire system and identifying the development environment associated

with the system:

identifying initial object types that can serve as starting points from where an
examination of the system can be initiated and analyzing the nature, characteristics

and properties of each object type;

identifying entry. points, in the form of object instances of certain object types,

for entering the system to carry out the examination of the system;

examining from selected entry points the network structure forming the
application system by tracking chains of nodes and links, each chain being tracked
until the instance of a node that does not have a link or the return of the chain to a
previously examined node, then reverse tracking the chain to a node from which
another chain extends and selectively tracking said other chain and continuing the
process until all the chains within the network structure have been tracked, the
tracking of the chains including an examination of each node and link and a recordal

of information so gathered: and

from the information gathered by the network examination, formatting the
information gathered into a form in which it represents the application system in a

usable form.

. AT - . .o e o - H‘mw N
T Daammbeion A M ERT | H RS ORI AN A of Friwit i e 00 Chtakiiadc ot el e inil AN ey e s O FPH CRPRE (RIS TS LA B bochbid cieh el o aitiend | 3 i

10

15

20

25

. dr i = wd pOSYE 1 RTINS U Ryt st e

CA 02355158 2001-06-13

WO 00/38051 PCT/1B99/01989
4- -
In identifying the application system that requires reverse engineering and gathering
the entire system, it must be ensured that the Important components of the system
are taken account of in order to ensure the effectiveness of the reverse engineering
process. It must be appreciated also that the application system that requires reverse
engineering may comprise two or more separate systems having common elements,
or a conglomeration of two or more systems. Any reference herein to an application

system must be interpreted as such.

In Identifying the development environm‘ent, which may be an integrated development
environment, the method of the invention may include identifying aspects of the
development environment selected from a group including program language and
syntax used, the mechanisms of storage of data, the interface of the above,

component libraries, code management systems, and the like.

The object types identified typically may fall into multiple categories or groups,
Including process or activity control elements, data management elements and
interface elements. The object types within these groups generally are manifest in
nodes and links which are in the form of object instances and messages and which
form the overall network structure representing the application system. It is believed
in this regard that the vast majority, if not all, development environments ranging
from old legacy development environments to modern object oriented integrated
development environments and any application systems built therein are essentially
networks of nodes and links or objects and messages which can be modelled or
described by notations such as the Unified Modelling Language (UML) inter alia but

not limited thereto.

The examination of the network structure comprises an examination of each node and
each link in the structure to the extent that the nature, characteristics and properties
of each node and each link can be associated with object types through analysis,
matching, mapping and understanding thereof, and gathering and recording all the
information of each node and each link, which may Include inheriting information from

known or predefined object type information about the development environment.

miees e et e eues sepgs TV UCRIOR IO HARSISE &8 oom 8 ¢
T SRS K 3] RPN FUSE v SR TN NI rirt b= e e v I 3

10

15

20

25

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989
_5- -
The entry points identified therefore may comprise the nodes from which a complete
examination of the entire network structure of the application system can be initiated.
The examination of the network structure also involves the complete tracking of each
chain to its termination or return to an earlier node in the chain, before a further chain
is selected and tracked. The tracking of chains within the examination of the network
structure may inciude a comparison and classification of nodes and links as object

Instances, to establish whether they conform with known or unknown object types.

The information gathered from the examination of the network structure will enable
a complete understanding of the network structure and particularly also its object
types and their object instances, which in turn will permit formatting of this
Information into a logical format in which the application system is again rendered

usable.

The method of the invention particularly provides for formatting of the information
gathered into a format in which the information can be exported/reported to CASE
tools, development environments and/or repositories, enabling the creation of a model
of the application system. As such, formatting may include breaking structures into
candidate components by using affinity analysis, mathematical clustering techniques,

and the like.

The method of the invention provides still further for the employment of software
and/or hardware for assisting with the identification of object instances of object
types and the analysis of the nature, characteristics, attributes, operations and
properties of each object instance and object type identified, the identification of
entry points for entering the system to carry out the examination of the network
structure forming the system, the actual examination of the network structure and

the formatting of the information gathered by the examination of the network

structure iInto a usable form.

As such, the method of the invention includes creating a software program or an

entire software system that can be employed for the above purpose In respect of the

— (R . « s e . o eee ‘M“\M|M.mmwwﬂ’ﬂw&.qnnc. .
T ALY TN AL ¢ LEADKATCT 54 AL D L G EDNG P S b e

10

15

20

25

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989
-6- -
particular application system being reverse engineered. A software program, as
envisaged, must be interpreted to include any substitute for such a program, which

may be a hardware component, or the like.

Furthermore, In relation to the employment of the software program as a result of
which object types are identified which were not originally accounted for, the method
of the invention may include modifying the software program in order to take into
account the object types so identified. This may include also modifying the base of
object type information already gained which may be described in the UML but not

limited thereto.

It will be understood in the above regard that although it is the employment of the
software program that renders the method practically feasible, particularly in relation
to more complex application systems, it is the method steps as defined and which
must be followed, which renders the use of a software program for the purpose

practically feasible.

The method of performing a system reverse engineering process, in accordance with
the invention, can be used in respect of a wide range of application systems that are
associlated with the problems hereinabove identified, the method of the invention
essentially enabling these application systems to be salvaged by re-formatting of the
systems through the reverse engineering thereof into a form in which the systems

again be made practically usable.

The method of performing a system reverse engineering process, in accordance with
the invention, is described hereinafter with reference to the accompanying diagrams.

In the diagrams:
Figure 1 illustrates diagrammatically in block diagram form a flow chart

illustrating the method of performing a system reverse engineering process, in

accordance with the invention:

me vt el TR] LI A AN £ AL 1 e Ol sl T Tt e asitee SRR M M AT N R MG & Mo vt e - L AP TR ALt 3 AR a3 e . § e ey A g4 i AL e s

10

15

20

25

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989
-7- =
Figure 2 illustrates diagrammatically in block diagram form a flow chart setting
out a non-application system process for illustrating the method of performing a

system reverse engineering process, in accordance with the invention: and

Figure 3 (13 pages) illustrates diagrammatically in block form a particular
example of a method of performing a system reverse engineering process, in
accordance with the invention, referring by way of explanation to the block diagram

iHustrated in Figure 2.

Referring initially to Figure 1 of the drawings, a method of performing a system
reverse engineering process, in accordance with the invention, is illustrated as a flow
chart in block diagram form. Blocks 10, 12 and 14 represent the initiation of the
method which includes the selection/identification of the application system that
requires reverse engineering, the gathering of all the components of the application
system which are required for the operation of the entire system and the
identification/selection of the development environment associated with the system.
This development environment may be an integrated development environment which
includes the program language and syntax used, the mechanisms of storage of data
and the interface of the above. Clearly, the development environment also may
include other aspects which are associated directly with the application system

Involved such as component libraries and code management systems.

Blocks 16 and 18 represent the method steps of identifying initial object types
incorporated within the system and that can serve as starting points from where an
examination of the system must be initiated and analyzing and understanding the

nature, characteristics and properties of each object type to enhance still further the

overall understanding of the system and the associated development environment.

It must be appreciated in this regard that the object types identified essentially will
fall into multiple categories or groups, i.e. a first group may include process, activity
or cbntrol elements, a second group may include data management elements and a
third group may include interface elements. Examples of object types falling within

the above three groups are set out below:

- * A R AT S DRI 1 o S s i RN RN AT o PR S (G AT R - st . : . o T Ao e A I (A U NI A A A s 1 T s ool e MR O DA MR It e S 4 ey e e . Tt el e WSelde W b A A A e e

10

15

20

25

30

35

40

CA 02355158 2001-06-13

WO 00/38051

Examples of Process, Activity or Control Elements as Object Types

Program
Procedure
Sub-Procedure
Library Procedure
Class

Call

Invocation
Message
Command/Verb
Statement
Algorithm Flow/Control
Rules/Conditions
Method
Operation

Service

_8.

Examples of Data Management Elements

Table
Field

File

Entity
Attribute
Relationship
Relation
Array
Variable
Parameter
Pointer
Message

Examples of Interface Elements ("things" the user of the application system sees or

Interacts with or interface elements to other systems.)

Dialog
Report
Screen (Read-only, Read-write)
Menu
Window

List

Button

Text Box
Check Box
Radio Button
Tree

: T MM TR M L SO AR S Lt s

PCT/IB99/01989

10

15

20

25

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989

It will be understood that additional object types falling within the above groups may
be implemented in object instances within an application system and, as set out
hereafter, these object types, once identified through the method of reverse
engineering as hereinafter described, can then be categorized on an ad-hoc basis. It
must also be understood at this stage that the object types referred to above
generally are acting as nodes and links which form the overall network structure
representing the application system in respect of which reverse engineering is
required, the nodes and links forming chains which themselves define the network

structure.

The next step in the method of performing a system reverse engineering process is
represented by block 20 and involves the identification of logical entry points through

which the system can be entered for examination purposes.

Once these entry points have been identified, the next step within the method of the
iInvention involves the examination of the network structure forming the system,
which includes selecting entry points from the logical entry points aiready identified
and tracking the chains of nodes and links extending from these entry points, each
chain being tracked until the instance of a node that does not have a link or the return
of the chain to a previously examined node. This is then followed by a reverse
tracking of the chain to a node from which another chain extends, selectively tracking
the said other chain and continuing the process in the manner defined until all the
chains within the network structure have been tracked, the tracking of the chains
Including also an examination of each node and link and a recordal of information
gathered from this examination of each node and link. It must be understood that
when reverse tracking of a chain is referred to, a reverse path along a chain will be
followed until a node is identified from which another chain extends that will then be
tracked, unless it has already been tracked. If a node or link of unknown type is hit
which requires first to be defined, this will be recorded or logged for subsequent
attention and reverse tracking will continue until a node is identified from which a

chain extends which will permit tracking. The overall objective remains that

LT

10

15

20

25

30

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989

-10- -
substantially all the chains within a network structure and particularly all the nodes
and links within the structure should be examined and information in respect thereof
must be gathered, although nodes and links identified as unimportant or irrelevant
could be ignored. In Figure 1 the blocks 22, 24 and 26 represent this examination
process, at the completion of which a complete understanding of the original
application system should be possible insofar as all the nodes and links forming
chains within the network structure representing the system will have been examined
and the properties, functions, attributes, operations and characteristics of the nodes

and links will be known.

The final step in the reverse engineering method of the invention hence involves
formatting of the information gathered by the examination referred to above,
particularly using the information gathered for formatting the application system in a
network structure form which is effectively usable, i.e. in a form in which the
application system is understandable and the system can again be used for fulfilling
its required purpose in a normal manner, while also permitting the application system
to be worked with and modified as may be required from time to time. This latter
step in the method of forming a system reverse engineering process is represented
by the blocks 28 and 30 from which it will be appreciated that the newly formatted
application system will be in a form in which predetermined CASE tools and modelling

languages can be utilised for creating a model of the application system, if required.

In order to facilitate the application of the method of performing a system reverse
engineering process, in accordance with the invention, the method steps associated
with the blocks 16 to 30 can be carried out with the aid of a suitable software
program or entire software system that has been created for the purpose and
particularly for use in conjunction with the development environment of the
application system to be reverse engineered. The creation of this software program
or entire software system accordingly also may form a part of the method of the
invention, it being envisaged in this regard that it may be required to modify the
software program from time to time, or to expand the base of “known” object type

iInformation, as a result of unknown object types being identified during the

TN ey o AT SRR MM I PR R TR AR N YTt 194451 HASRINMLAY I { 4N - e AL e ' . - . . e *'“‘Nhlrﬂmquupr A . . . S 2 e 1 LS T A VPRI UL b 444 4 €y = S e eeen TN eI Mt Said . INLCEI T TN LS LA a0 TE 0 s RS o m e i n X e . .

10

15

20

25

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989

-11- -
examination process, permitting a systems engineer to categorise the object type and
then provide the necessary information within the software program and/or “known”
base In order to deal with this object type in carrying out the method of the invention
as described. In this regard it will be appreciated that the method of the invention
could be "manually” carried out in relation to relatively simple application systems,
but in relation to practical application systems which do in fact require reverse

engineering, the assistance of a suitable software program will be essentially required.

Referring to Figure 2 of the drawings, in order to explain the method of performing
a system reverse engineering process, the process can be equated to the exami.nation
of a building having a plurality of rooms that are interlinked with one another in an
essentially random fashion via doors between them and where the layout of the
building i1s not known and therefore requires examination. In this diagram, block 40
can be associated with the identification of the application system to be reverse
engineered, while block 42 provides for the identification of entrance doors which can
lead into the system/building for examination purposes. Different selected entrance

doors will then be entered by different members of the examination team involved.

The examination of the rooms within the building as represented by blocks 44, 46,
48, b0, 52,. 04, 56, 58, 60, 62 and 64, will effectively represent the examination
process associated with the method of the invention insofar as rooms will be
examined one after the other, until a room is reached which does not have a further
door therein, following which the chain followed will be reversed until a room is
reached from where another door extends and from where the examination process
can continue. The process as described by the blocks 44 to 64 clearly will result in
each room in the building being examined, which will in fact equate to the
examination of all the nodes and links within a network structure of an application

system.
All the information gathered from the individual rooms will then be set out in a logical

format, which operation is represented by the block 66, this logical format enabling

one to obtain a clear picture of the layout of the building involved. This layout of the

’ 77 A A SR b CRREALULA A FEITINR T LALLM v A LR s b e o ’ ’ T T remied W G e IR SR PR IRHOLAOMOR R et Tl S AR e 348 PR M MR A Sl o r - #rrs § : : Ve N I e et s e b e = e 4 e

10

15

20

25

CA 02355158 2001-06-13

WO 00/38051 PCT/1B99/01989
-12- -
buitding, which will now be clear, will equate to the new format of the application
system that has been created, which will comprise an understandable format which
will give a clear understanding of the application system and, particularly, the

network structure forming the system.

This new format, insofar as it applies to the building examined, will then permit
additions to the building to be effected or a model of the building to be built and this
clearly equates to the use of the new format in relation to the method of the invention
which permits the creation of a model of the application system involved with the aid
of suitable CASE tools, or merely the normal application of the application system
which may require system modifications, additions and the like, which could again
be logically carried out as a result of the complete understanding of the system which

Is acquired through the reverse engineering process as described.

Referring to Figure 3 of the drawings, a typical example of a comprehensive
automated reverse engineering method which includes the employment of the method
of the invention is described in a block diagram form and in association with the
simulation of the method of the invention as illustrated in Figure 2 of the drawings.
The individual steps as illustrated in Figure 3 of the drawings therefore are cross-
referenced as step numbers with reference to Figure 2 of the drawings, the step
numbers being associated with the numbers 1 to 10 included within the blocks
forming the diagram illustrated in Figure 2 of the drawings. As the method of the
Invention in its application with reference to Figure 3 will be clear to those skilled in
the art, the method as illustrated in Figure 3 of the drawings is not described in detail

hereafter.

It must be appreciated that the method of the invention can be applied in association
with many different application systems that require reverse engineering, essentially
enabling salvaging of application systems which may otherwise have become
obsolete, insofar as the application systems will be formatted into forms in which the
systems are again rendered usabie through the effective understanding of the

systems.

ST e o AN 4 AL L] L AL e A {2 GENIMATINNH AL G i a3 . ' : T v AT IR RN RN TINA weh e e T I G M I MDA A O P AN e o e wa s s e I T T TU A U PP F S

10

15

20

25

30

CA 02355158 2009-07-20

13-

What is claimed is:

1.

A method of performing a system reverse engineering process on an
application system, which includes the steps of:
gathering components of the application system that requires reverse
engineering which are required for the operation of the entire system and
identifying each development environment associated with the application
system; and
with the aid of a suitably programmed processing system, which is
provided with a data base of object types In respect of which the nature,
characteristics and pr0pe'r’ties are known and which faII In groups that include
process or activity control elements, data management elements and
interface elements, performing the steps of:
identifying the object types, as determined by each development
environment identified as being associated with the application system,
that can serve as starting points from where an examination of the
application system can be initiated;
identifying entry points, in the form of object instances of object
types identified to serve as starting points from where an examination
of the application system can be initiated, for entering the system to
carry out an examination of the system;
examining from selected entry points the network structure

forming the application system by tracking chains of nodes and links,

each chain being tracked until the instance of a node that does not
have a link or the return of the chain to a previously examined node,
then reverse tracking the chain to a node from which another chain
extends and selectively tracking said other chain and continuing the
process until all the chains within the network structure have been
tracked completely, the tracking of the chains including an examination
of each node and each link in the network structure, to the extent that
the nature, characteristics and properties of each node and each link

can be associated with object types through analysis and

10

15

20

25

CA 02355158 2009-07-20

_14-

understanding thereof, and gathering and recording all the information
of each node and each link; and

from the information gathered and recorded by the examination
of the network structure forming the application system, formatting the
iInformation gathered into a form in which it represents the application

system In a usable form.

A method as claimed in claim 1, which includes, in identifying each
development environment associated with the application system, identifying
aspects of each development environment selected from a group including
programming language and syntax used, the mechanisms of storage of data,

the interface of the above, component libraries and code management

systems.

A method as claimed in claim 1, in which the examination of each node and
each link in the chain of the network structure forming the application system,
while tracking the chains, includes a comparison and classification of nodes
and links as object instances of object types to establish whether they
conform with known object types included in the database of the processing
system used, or unknown object types and where they conform with unknown
object types, identifying the nature, characteristics and properties of these
unknown object types and then including them in thé sald database to

become known object types.

A method as claimed in claim 1, which includes formatting the information
gathered and recorded, by the examination of the network structure forming
the application system, into a format into which the information can be
exported/reported to at least one of a computer aided software/systems
engineering tool, a development environment and a repository, which will

enable the creation of a model of the application system.

A method as claimed in claim 4, in which formatting includes breaking

10

15

20

25

CA 02355158 2009-07-20

15-

structures into candidate components by using affinity analysis and

mathematical clustering technigues.

A method as claimed In claim 2. in which the examination of each node and
each link in the chain of the network structure forming the application system,
while tracking the chains, includes a comparison and classification of nodes
and links as object instances of object types to establish whether they
conform with known object types included in the database of the processing
system used, or unknown object types and where they conform with unknown
object types, identifying the nature, characteristics and properties of these
unknown object types and then including them in the said database to

become known object types.

A method as claimed in claim 2, which includes formatting the information
gathered and recorded, by the examination of the network structure forming
the application system, into a format into which the information can be
exported/reported to at least one of a computer aided software/systems
engineering tool, a development environment and a repository, which will

enable the creation of a model of the application system.

A method as claimed in claim 3, which includes formatting the information
gathered and recorded, by the examination of the network structure forming

the application system, into a format into which the information can be
exported/reported to at least one of a computer aided software/systems
engineering tool, a development environment and a repository, which will

enable the creation of a model of the application system.

A method as claimed in claim 6, which includes formatting the information
gathered and recorded, by the examination of the network structure forming
the application system, into a format into which the information can be
exported/reported to at least one of a computer aided software/systems

engineering tool, a development environment and a repository, which will

10

10.

11.

12.

CA 02355158 2009-07-20

-16-

enable the creation of a model of the application system.

A method as claimed in claim 7, in which formatting includes breaking
structures into candidate components by using affinity analysis and

mathematical clustering techniques.

A method as claimed in claim 8, in which formatting includes breaking
structures into candidate components by using affinity analysis and

mathematical clustering techniques.

A method as claimed in claim 9, in which formatting includes breaking
structures Into candidate components by using affinity analysis and

mathematical clustering techniques.

CA 02355158 2001-06-13

PCT/IB99/01989

WO 00/38051

L2

*239 ‘sanbruyoal as3ysny)
TedTIewayle| /s T8ATRUY

AJTut Iy bButrsn
sjuaudwod gjeprpued
OJUY £310735013S Yeaayg

- -

AUTT
juanbesqns e aaey
Jou s80p YoTyMm

epou juanbasqns A
e 30 soue3sus "/ peordreun
_ . 3SITI 8u) / paqoidun
A 3 PIEM3INO 3poN juanbasqns e yjtm
YL WOI3 UOTYSeJ (3IS3TJ) OSPON m&&
103284/3e3uTT o] 07 107084 /uUTRUD
2 U /utey

. Ieaurn o
1003y /@107d”3/3q02 uo vumkcﬁmmmmwbwm

O¢

SN AOODDORPODOO SN Oe
SPOPISOOOOIROODDIDPOOS

397103 T50day/FUBWUOITAUS
Juswdotraaag/sTo0]
3S¥YD 031 bHutiaoday/jaodxy <
. 103 $3INJIONIJS
3O 19pol ss&3d0ag

9¢

A998 %A RS

44 éBueny

1/15

S ——-

Aresenednvd

YUTT jusnbasqns e

9ABY JOU SIOP yYoTyMm

Spou ® JO aduelsut
A8IT3 °Yy3y 03 prem3ino

JuTod Aaju3g testboq

yoes woxj uotysey N yovvorunn
I0308A/IRBUTT P UT
pPI003y/ei10T7dx3/8qoid

i

(s)3jurog Axjuqg
1eot1boq AjTiuap]

04

0Ju] 3dA| 1RGO PANIBYU] Pue PaIAN0ISIQ

8dAL 309(qo yoes
3O s8t31adoad /

SOTISTIa}DRIRYD /
2anjeu ayly piooay

/ puej3saapupn
/ 9sdAteuy

UR)}SAS/83eM] JOS
uorleofTddy
9jeTdwod eyl

WIoJg/yoeTT0D/I9yjes

A . — ——

¢ee ¢%

sadA1l 3o0alqgo
TeT3Tul Aj3tauspr

(83A1) 3Iuawuoataug

wajlsAg Juswdoiaasqg

uotTjeot1ddy

pajeabajurx
91epIpue) 30918

931eptTpue) 3087188

-y %A s daad e st eas *aa . wvasd L 11 o =-» -

. TI1Y 1€~ A0 * aadeiiaiil oasamnn s s d o ety ok dhadey S oy g SF F ASRC LA YA LB AR dAR, T, t v, v,

P BB AP A P Al Al At A B B al s 0% ® st ft it s e %L At . o mavB . .

CA 02355158 2001-06-13

PCT/IB99/01989

WO 00/38051

L TN

2/15

99

¢ Ji4

LPuUnog
SJO0(] MIN

'Palaud Jou sey

9y Wooy PlO
ue i JOoC] maN

10} duUINOO'| spiemyoeg]

sdalg siy saoml |

pue B1wWwe) Y} Sasne,|
UBWIRIWE) Y] MON w

SIWO0Y MIN
0} S100(] 10J
duyoo'| Hooy

Y1 SOAPIA

HEWIRIDWE) @

SAA
SIA .
(Wo0Y ‘1 Juiwijiy paue)s
FUBI] 34 1Byl WOO0Y 2y
U ul SI Y J§ SHONY)
URWIRIAWE D ON Auy
174, N 6
09
ON
"ul A[IULIND SI 3y
WOOY Ay} ul SI00(]
MaN At punoj
SEL A J1 SNIOYD
UBLUEIOLR) N\
9G
SIA HG - &5

Jjduexy,, -09 w4 Azeig,,

POYI3N | SS3301¢
bunaautbug

A1eIuaWINdo(] Jo
uoINPoL | pue sunipy
10§ wawdinbg oipnig

ay) ol sade | ay
pEOT] puk 01IpMI§ AL
ay) 0} yoeg on o .—

9S13N3Y
pajewo}ny
anIsuayaldwo

SOA

ON

06

P S-Sk

"AI0JIY Py
UD2Q SBY PAIdU
SRY A 100y
U} §1 SYIAYO

upwiRIsue) m

SWO0Y MIN

0} $100(] 40} Bu}00")

vy

WOO0Y Y SOIPIA
ugwesawe)

¢

87 ob

WOOY MIN
€ O) spui
Ay 100¢] M)
yanoy) syjem

UBLURIMIR) DU |, .v

e e

100(J 3dueiu’]
yoea Y3noty)
UBIRIDWE)) B

puag pue 3uip[ing
3Y1 0} S100(]

doueuy put.j

Ne.\

a)IS 3Y) 0}
ML) pUag

0) 4

|

IMALIY el i et

Free L e R AT N ORI

S e S MM MMV Y S kLA LT8R) B A AT LA JUTRLI IS Wil 4 ¢

CA 02355158 2001-06-13

WO 00/38051 PCT/1B99/01989

3/15

Comprehensive Automated
Reverse Engineering

Process / Method
- Example

Limited to a single entry point of a
SQL Integrated Development
Environment.

SQL Data Definition
"Create Table” statement

FIG 3A

Overview

® This example uses a non-systems
oriented example (Crazy Filming Co.)

m The example steps are cross referenced
against an extract of a Comprehensive
Automated Reverse Engineering exercise
on a subset of a working Application
System.

FIG 3B

D e e R el R alace s h TP e P v e e e o AT TR - : S s =rrortas asemgdase nfpinauil S0 2Bemle IO PR byl e sy = : : TN TR Pk MO R (DAL P e - el b cedt

CA 02355158 2001-06-13

WO 00/38051 PCT/1B99/01989

4/15

Identify an Application System

m An application system representing a

complete business application must be
located. step 1

m This will be the source system for
Comprehensive Automated Reverse
Engineering. Step 1

FIG 3C

Gather all input files into
VIRTUAL file (memory)

m For each physical input file step 2

— Read all lines from the input file into the
VIRTUAL file step 2

FIG 3D

e A TN AR M TR AL LN O ARSI ST (04, o s 1ot S T T Y e N R AT N W RATIRMNC JRRR AN Mt - Fus i T R e, NP A AT AN LA T e T N e A OO ST s Rbescsim e 8 e

CA 02355158 2001-06-13

WO 00/38051 PCT/1B99/01989

5/15

Analyse, Parse and Record
all Metadata iIn VIRTUAL file

m For each line in the VIRTUAL file, we
iterate sStep 3,8 & 9

— Assign the current line to storage variable

— If line has "create table" then

m Start looking for the "end of create table"

marker by starting a new iteration, from the
current position in the list. step 3

m Read the first of the new set of lines and
reformat to ensure we have no unnecessary

Characters (tab stops and double spaces) in the
line. Step 3

FIG 3E

Analyse, Parse and Record all
Metadata in VIRTUAL file

= While the current line does not contain the
“end of table” marker then: step 4

— Concatenate the current line with the storage
variable step 4

= Concatenate the current line, which contains

the “end of table” marker, with the storage
variable. step 4

m If format of "create table" statement is correct
then step 4

~ Strip the table name from the table definition, and
store each as a substring. step 4

FIG 3F

—— : e ATCHA AR TR AT R s XA 1 y ST L I IR A Rt e Ll 11 e
A N G e CRAE MR ELAL AL S A TR AT AL st i Ee . * - '

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989

6/15

Analyse, Parse and Record all
‘Metadata in VIRTUAL file

— Check if the table item exists in our nodal model, if it
does not then: Step 5

= Add the table name to the list of tables with a
unique ID. Step 6

« Trim known garbage from the ends of the table
definition. step 7

= Find fields within the table defintion. step 7

FIG 3G

Analyse, Parse and Record all
Metadata in VIRTUAL file

s For each of the fields in the table definition line
Step4 & 7

- Split the field into field name, field type,
field storage format and field data entry
constaint, Step 4

- Check if it exists as nodal item linked to
this table item, if it does not, then: Step 5

> Add the field to the list of fields
with a unique ID. (Record) step 6

> Add a tablefield link to the list of
links for this field and current
table. Step 6

FIG 3H

el i e P i P DO AP A A LA X IO UM S A Ty v o WAL S ’ ’ . Prerm el oute il ol ok OB YOI TR e s s raeTatLs et

CA 02355158 2001-06-13

WO 00/38051 PCT/1B99/01989 .

7/15

Analyse, Parse and Recora all
Metadata in VIRTUAL file

a Else if format of “create table” incorrect then
Step4 & 7

= [dentify the incorrect statements line number,
file name and location of file. Step 4

s Check if this Unkown item eXxists as nodal item

linked to the current file, if it does not, then:
Step 5

- Add the incorrect statement to the list of
“Unkown” items with a unique ID step 6

- Add an unknownfile link to the list of

links for this Unknown and respective file
Step 6

FIG 3]

Analyse, Parse and Record all
Metadata in VIRTUAL file

— End of has “create table” condition. stepsas

— If line has "create index" then
m Check validity of create index statement. If it’s invalid,

« Identify the incorrect statements line number,
file name and location of file. Step 4

a Check if this Unkown item exists as nodal item

linked to the current file, if it does not, then:
Step 5

- Add the incorrect statement to the list of
“Unkown” items with a unique ID step 6

- Add a unknownfile link to the list of links
for this Unknown and respective file step 6

FIG 3J

s Ao 4300 3 IS arg el AN A AR AT AT AT T R S ST e IO ety LY = P v o2 & "o = . . . St N QA o B ACA RO TN P OO R LI AT e e e s e e .. C e ey e e g | TR AL AT 1 { N A AL e e s . . P etemees wmaa o Sl g4 NS ST AL T S S Ca v s e Gy W A YaraT s o ey TR

S A L TRANLA SO i W LT NS N T

CA 02355158 2001-06-13

WO 00/38051

8/15

Analyse, Parse and Record all
Metadata in VIRTUAL file

a If the create index statement is valid:

» Identify the field that the index is being created
On. Step 4

s Check if this “create index” item exists as nodal
itemn linked to the identified field, if it does not
exist: Step5

- Add the “create index” item to the nodal
item list of indexes with a unique
identifier. step 6

- If the field being indexed does not yet
exist, add the new “create index” item to
the list of items pending linkage. step 6

- Else Create an indexField link to the list
of links that connects this “create index”
to the affected field. step 6

FIG 3K

Analyse, Parse and Record all
Metadata in VIRTUAL file

» If the "Create index” statement exists: Step 5

- Add the incorrect or duplicate statement
to the list of “"Unkown” items with a
unique ID step 6

- Add a unknownindex link to the list of
links for this Unknown and its respective
field. Step 6

m End of VIRTUAL file iteration. step 10

FIG 3L

. X , ‘ kb ST Cal b A TS O R s - . ' T v s A D IR it i R Lyt L ML Lt e e ’ PO e s st NI 3 RS M G e A ’
om e vy n) M AT SR NG YL AL i Tt gt

PCT/1B99/01989

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989

9/15

Analyse, Parse and Record all
Metadata in VIRTUAL file

m Iterate through list of items pending
linkage. Step 7

= II'f ﬁg the current unlinked item now has valid
INKS.
— create an item specific link item in the link list. step 6

s If the current unlinked item still has invalid link
points:
- Add an unknown item to the list of unknown items
with a unique identifier. step 6

— Add a link from this unknown item to the file the
unlinked item occurred in, and the line in that file. If
there is a single side to the link, add an unknown
item link from this unsuccessful link object to the

~ known link point. step 6

m End of items pending linkage iteration.

FIG 3M

Actual Data Manipulation
Stages

FIG 3N

Tt LT s et DN AR SN AN AR AE QLG TP o . Gt A T T TR SRR IR RTINSO TN A R s pias Sttt st T et s T R Y v AR AR RO oI s s e s

CA 02355158 2001-06-13

PCT/1B99/01989

WO 00/38031
10/15

Original Statement In SQL
Definition File

create table chedgmast

(
cheque no integer,
cheque value decimal(9,2) not null,
date chque date,
practice char(7),
delind char(1l)
)
create index i1 chegmast on chegmast (
cheque no };

FIG 30

After Concatenation and
Whitespace Cleaning

create table chegmast (cheque no
integer,cheque value decimal (2,2) not

null,date chque date,
practice char (7),delind char (1)

) 2

Validity is tested at this point.

FIG 3P

et emn s Wi A - W SR AT AR AR b M 4 G ST Tt W e O AT M NI TR e ot o

CA 02355158 2001-06-13

WO 00/38051 ' PCT/IB99/01989 _
11/15 |

After Stage One Reformatting

(No space before comma)

create table chegmast (chegque no
integer, cheque value decimal(9,2) not
null,date chque date,

practice char(7),delind char(1l)
) ; |

FIG 30

After Stage Two Reformatting

(Single space after open bracket)

create table chegmast(cheque no
integer, cheque value decimal(9,2) not
null,date chque date,

practice char(7),delind char(1)

) ;

CA 02355158 2001-06-13

Eal

WO 00/38051 PCT/IB99/01989 _
12/15 |

After Stage Three Reformatting

(Single space after open comma)

create table chegmast(cheque no integer,
cheque value decimal(9, 2) not null,
date chque date,

practice char(7), delind char(1)
) ;

FIG 3S

After Stage Four Reformatting

(Single space before closing bracket)

create table chegmast(cheque no integer,
cheque value decimal(9, 2) not null,
date chque date,

practice char(7), delind char(1)
) ;

FIG 3T

¢ e g et A P UM AT LR ST O V5 S b KT R A - 1t : M Al A T IR SRR A RO e <4lire o e . . S L L o wrrmwanrewysw mypswmarrce varr e ter e e SRR LI TR

CA 02355158 2001-06-13

WO 00/38051 PCT/IB99/01989 _

T 13/15

Split Table Name and Definition

create table chegmast(cheque nc integer,
cheque value

decimal(9, 2) not null, date chque date,
practice char(7), delind char(1)

) ;
And leaves us with:

Table name : chegmast

Table definition : (cheque_no integer, cheque_value
decdmal(9, 2) not null, date_chque date,

practice char(7), delind char(1)
);
The table node is stored.

FIG 3U

After Trim known garbage from
the ends of the definition

cheque no integer, cheque value decimal(9, 2
} not null, date chque date,

practice char(7)}, delind char(1)

Tt et urgas SR BRELSAARNE VR W AL r et e e T i oW VRN AT {1 a4 e

e b AT A AT A IR T AN e e e e o e . "

WO 00/38051

CA 02355158 2001-06-13

PCT/1B99/01989
14/15

After Splitting Fields

cheque no integer

cheque value decimal(9, 2) not null
date chque date

practice char(7)

delind char({(1)

FIG 3W

Find data types, formats and
constraints, finds the following

cheque value decimal(9, 2) not null

A AA A ~ A A e e o om - A

e S R e R e anbe e T A duge D 4EEr Y - A T

Name Type Format Constraint
Which is stored as:
Field Name : cheque_value
Field Type : decimal
Field Storage Format : 9, 2

Field Data Entry Constraint : not null

Each of the field nodes are stored and linked, using a
link node, to their respective table node and the next
table node is found and analysed.

FIG 3X

- g = . .. e eeteee e n e G- Tk R AR OM 'WWMQN%. -ty des et .. BTN o .;wmw*m‘nw»nu..... -t

T e e n et e) WA TR LT e A Y AR e
R =00 w et phan sy Prel O 3 TR SR T A

CA 02355158 2001-06-13

. WO 00/38051
) PCT/IB99/01989
| 15/15 -

Analyse “create index” statement

create index i_chegmast on chegmast (cheque_no);

Statement Name Table Field
Which is stored as:
Index Name : i_chegmast
Index Table . chegmast
Field to index on : cheque_no

1f the table chegmast does not yet exist, o does not yet have a
field by the name cheque_no, the “create index” object is

created and placed in the “to link” list.

If the table and field both exist, the "create index” object is created
and an index-field link is added to the list of links.

FIG 3Y

L BT b s = e e .
e Tome s P U2 AN 4 BTN P Nt e G CTPAITE - 14T Y - At g s e
I e e L S T P o e e e A B e . .
* e ® S M e Y AR YIRS T I A g e e

12

6 18

(IDE)

-

Discovered and Inherited Object Type Info

Software/Systam

Identify Logical
Entrxy Point(s)

Probe/Explore/Record
in a Linear/Vector
fashion from each
Logical Entry Point

outward to the first
instance of a node

which does not have
a subsequent 1link

249

Reverse inward on
the Linear
chain/vector to
The Node (first)
with a subseguent

unprobad /
unexplored /
unrecorded outward
link

[ETET FE N Y

tobe/EBxplore/Recor
in a
Linear/Vector
fashion from The
Hode outward to
the first
instance of a
subsegquent node
which deoes not
have a subseguent
link

P

-

IFa iR b bbb

ddvdonpeansfy

b~

._;2LD Raecord the nature

Select Candidate Select Candidate Gather/Collect/Form Tdentify Initial Analyse /
Integrated Application the complete Object Types Understang /
Develeopment System ~ Application

BEnvironment

/ characteristiecs
/! properties of
each Object Type

*éuPe

A — — -

Process Model of
Structures for

Export/Reporting to CASE

Tools/Development

invironments/Repositories

e vacanaaandeand

'J SEENFPEGSA AT TTY RS

28

30

Break Structures into

candidate compnents
using Affinity

Analysis/Mathematical

Cluster Techniques, etc,

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

