US 20130246484A1

a9 United States

a2y Patent Application Publication (o) Pub. No.: US 2013/0246484 A1

Stolte et al.

43) Pub. Date: Sep. 19, 2013

(54)

(71)

(72)

@
(22)

(63)

SYSTEMS AND METHODS FOR DISPLAYING
DATA IN SPLIT DIMENSION LEVELS

Applicants: Chris Stolte, Palo Alto, CA (US);
Patrick Hanrahan, Portola Valley, CA

us)

Inventors: Chris Stolte, Palo Alto, CA (US);
Patrick Hanrahan, Portola Valley, CA
us)

Appl. No.: 13/753,452

Filed: Jan. 29, 2013

Related U.S. Application Data

Continuation of application No. 12/821,029, filed on
Jun. 22, 2010, now Pat. No. 8,364,724, which is a
continuation of application No. 10/667,194, filed on
Sep. 16, 2003, now Pat. No. 7,756,907.

Publication Classification

(51) Int.CL
GOGF 17/30 (2006.01)

(52) US.CL
CPC oo GOGF 17/30292 (2013.01)
1673 G 707/807

(57) ABSTRACT

Systems and methods for displaying data in split dimension
levels are disclosed. In some implementations, a method
includes: at a computer, obtaining a dimensional hierarchy
associated with a dataset, wherein the dimensional hierarchy
includes at least one dimension and a sub-dimension of the at
least one dimension; and populating information represent-
ing data included in the dataset into a visual table having a first
axis and a second axis, wherein the first axis corresponds to
the at least one dimension and the second axis corresponds to
the sub-dimension of the at least one dimension.

500
N~y 502
/s Memory 538
Operating System - 540
File System ™. 542
Database hierarchy module ~_ 544
User interface module ™- 546
Database hierarchy ™ 548
Visual specification - 550
Data interpreter module S 552
Query descriptions N 554
User Interface Query cache ™-555
Pane-data-cache ™~ 557
Visual interpreter module - 556
932 | |Database - 558-1
Disk Controller Optional database schema ™ 560-1
Explicit or implicit database hierarchy S~ 562-1
Database ™~ 558-2
Optional database schema ™-560-2
‘ ~534 Explicit or implicit database hierarchy . 5g0.o
536 -
Database - 558-N
Optional database schema ~-560-N
Explicit or implicit database hierarchy ~_ 562-N
Attribute file for database 558-1 ™~ 580-1
Attribute file for database 558-N ™~ 580-N

US 2013/0246484 Al

Sep. 19,2013 Sheet 1 of 25

Patent Application Publication

31y Jouy)
[319

e 2 7 T ot)) e s e e
oo 0] [mo] [mo] [we o] [emo] [owo] [|

US 2013/0246484 Al

Sep. 19,2013 Sheet 2 of 25

Patent Application Publication

(LYY 40nid)
7814
YO'F IEE0E 01 120711 Y0’} 02004 W't 6016 sonpard |y
6610 093'E 66’0 S0p'L 660 £2'1 660 ISLL §0956U]]BUN
660 009'¢ 660 A 660 tiE 1 880 ISL'T a0y
ol 020L CTH Z8LS art 980 CTH 562¢ sIepinp
560 266'F 560 128’ 660 = 850 106"} SONaUD00q
60’} 62021 60’1 268y 60’1 TN &'t 0627 &0y
8ot 8v'9L 904 866'G e0't 'S '} £S6'% ainyuin
o't T 0} 8861 et 08| G 665) uollo] ‘Ciejeodiy _
g0’} o4'S 0l 986 '+ E0'1 €08’ &'l 6eg'l uonoj
2ot 6I6E 201 Fy! 20t A EA L1} dBos o 6AD
660 vy 660 529t 660 olv'} 850 Zve | d20S Jajem 850}
00 168 ot 1S0°E 001 602 W'l 1152 d0s
01 [Ty 0+ Y605 0} FTLE] R %G e upjs
a3usLRA sjanjo SOUTLEA [T e BoUBLIEA s[enan SOURLIEA s[ansa
L Jaengy 1y 9 R

US 2013/0246484 Al

Sep. 19,2013 Sheet 3 of 25

Patent Application Publication

(B Jolid)
€ “S1q
y0'l lee'oe |01 120 | ¥0) 020°0L | ¥0') 601'6 sajuedwoo ||y
00°L 0/£'C 00'L 098 00} 8.L 00} 101 sjaboy
00°L €9y |00} /89', ool 6ZG'L |00 06€'l SN
Ll 8..'8 1l £02'e Ll L06'C 1l €¥9'C siouel4
90°L 6/L'6L |90} orL's [90) plZ's |90} vl'y JSOMPI
160 788°L 160 £89 160 919 160 095 UOAY
10"} 909 ny 2122 10} 9002 10°L ¥Z8'l AingmaN
0} 0099 |40} ov'e | vol w8l |0l G66'L poomafipry
20°) 1561 |20t 62's |20l 908'y |0l 695"y JSE8YLON
gOUBLIeA s|enjoe SoueLIeA sjenyoe SouelIBA Sjenjoe gouelieA sjenjoe sJonpoid |y
| Japen) =T god uer so[es

US 2013/0246484 Al

Sep. 19,2013 Sheet 4 of 25

Patent Application Publication

(uy s0119)
v 814
unjluary oLy sessaqew | g
By 2040 ssopp | g
enjuany o saajeysyooq [&
818D LS uale| uoqo) Jejjeocay { £
8IED DS 008 ceosjoeyo | 2
VETN e T 9 M o eI Liys deos daos jepamescs | |
[rieer't |eoors sjenpe 9 2) dropoid | ook poig Sumipad) 0l peid
_ : {siqe; uoisuewip) 4 M¥00110N3a0dd
£ B0E ST > : d
82 The) } Z |
SiE 056 suad 8 | 1 [unp 8
0L€ 08¢ sjenoe] I | g fap [}
088 [sugyd] b L g Xy #
0ov 08y sjenioe [b [TS o } 2N £
aee 062 suyd ¥ L b | Ge4 2
0eg 02 S[ENIR] b | } uap !
M”M 00E surid £ 1 1 Jaump uluow 1 Uuow
0% 3|enioe £) l
= = —1 _ — (eiqe) uoisusIP) JNYOOT JNIL
092 02 s[enpB 2 } !
06z 082 sued) } } '
o2 o gjenpe | I |
gel 1SEMDIN 8,Jg0
5350) sepg | owueos § ppoig Jpryguoly | peiog f8a SBMpI m__iw.”__n M
B|q8] 10 ge 1sampiy spuBy)
(e1qe1 108}) VIvQ S3TVS ISvE T Ty -
g9 1588LLION AIngMeN Z
E 15BBULION peorenpy L
Ausdwon uoibey alglg ELS

(8192} uoisusWip) dNMOOTIHOLS

US 2013/0246484 Al

Sep. 19,2013 Sheet 5 of 25

Patent Application Publication

Aoy Jonpoid

1onpo.d
adA110npo.d

19npoid

(LY 10Ud)
S |

A8y uoneso _

alelg
JoyE

UoNE0 T

Bunayepy
|oJAed
S9|es
juoid

A9y 1onpoid
Aoy uoneson
Aoy awi}

Aeq
HO3M

Ao —awiL

Aoy s
feqg

9|qe} Joe

Aeqg
YIUO
layenp
les)

Aleap awiy

Patent Application Publication

Sep. 19,2013 Sheet 6 of 25

US 2013/0246484 Al

500
_,\
Vs 502
F522 /— Memory 538
CPU Qperatlng System ~_ 540
533 File System S~ 542
f Database hierarchy module - 544
524 User interface module - 546
526 528 Database hierarchy ~_548
| D Visual specification ~_ 550
530 Data interpreter module S~ 552
/Ancaceaeas Query descriptions = 554
User Interface Query cache - 555
Pane-data-cache ™~ 657
Visual interpreter module - 556
/532 Database - 558-1
Disk Controller - Optional database schema - 560-1
Explicit or implicit database hierarchy ~_ 562-1
Database ~-558-2
Optional database schema ~-560-2
1S 534 Explicit or implicit database hierarchy ~_ 5522
536 -
/ Database - 558-N
NIC Optional database schema ~_ 560-N
A Explicit or implicit database hierarchy ~_ 562-N
Attribute file for database 558-1 ™~ 580-1
Attribute file for database 558-N - 580-N

FIG. 6

Patent Application Publication Sep. 19, 2013 Sheet 7 of 25 US 2013/0246484 A1

IS 602
Determine the hierarchy for each selected database 558
—»1 Obtain a visual specification 550 from the user

Convert the visual specification 550 into a set of efficient queries of
selected hierarchical databases 558

l Vs 608
Query the hierarchical databases 558
l Vs 610
Process the hierarchical database 558 query results
612
-
Reduce visual specification 550 to a normalized set form 1104
£
¢ 614
Construct table 720 using the normalized set form
v 616
Partition query results into relations corresponding to panes
722 in table 720

FI1G. 7

US 2013/0246484 Al

Sep. 19,2013 Sheet 8 of 25

Patent Application Publication

0c.

8 "s1q
1Woid woid Jjoid Wold
000¢ 0002 000¢ 0002
1) . sasuadx3ieloL
vi-cel P E e soleS
o o+eu)iy & - 1590 + ojjeyiiold
o)9 3 yinos Joid
o H o + o + + e 1583 M losheq
- [Bqusn O Buwedo
— oSy
- - - _ ——
¢l NNW %ﬁ L NNN% 0l Nw%ﬁ% 6 NNoN v wws P wa___%%mx
o o ._oo o m_n.v o £+ %W 89 [eqioH Jopd ynereq A uiblep
+ 8 e Al edeus Aiojusauy
_ ezS bujpuz
=57 - “10l0 §909
8L | TeeL @ STl m-wmw%.% 00 | e S00
[esieopng
8 |[p WT4q0° o Apt @ = 5 loskecjobpng
" o @ ossalds3 LS
° ° ° o —19 3 HeW uBiepyebpng
+ . + + 18 $900 18bpng
o suopippyiebpng
. = . F) [SUoIppY
rglgp| el) ¢ ceL |) mmw _%q..w__ws CO0L e | o
+ ~sdpjooy/Buiysnig Joj asn + u.v_mw-dv 83400 w W_%_m_mmﬁ.m../ 90/
0ol - 1onpoid ee
v_..mQ tuw . 8 ¢-80L-H el 4] || #dAnonpold
~Buidnolg 00 . Sjonpoid B~ 7-
DS_mé_v 2 T [555 [odionpaig] | S2ved U I o a7 UG was 0.
L 1 o] Jioid [ieenplal \ = i8}en) ee
I . Bg) e
_ 1 /E¥egesye) suilL B~ | -0/
120 LS pues /_2__“_ A premos <o vwmm o> [vodu) g w?mzom@
IO \ / 0EA SHEI0d @ |
\ | [[\
80 ¥80L 1-80L z-80L 201 o3

US 2013/0246484 Al

Sep. 19,2013 Sheet 9 of 25

Patent Application Publication

Jgjaidiaju| [ensip

*0]8 ‘9IS J0j09 Ul papoous w_. Bleq
}Jew e se paapuai s 9jdny yoe3

6 "S1q

so|dn} jo Buiuos pue
uonebalbbe sued Jad

/

<

<-—---

¢, 2 .00 seued o} Bupuodsenod

Jajaudisu) ejeq

H

salanb

1
!
1
|
L suole|al ojul uonied “
02L ~ - K] \ synsay Aianp !
|
N —HERG Ax z _
% S = - L]

— | 7 ! 1
\ I . 1 1
T _ 1 1 1
L l— — —
1 1
] I 1
N I 1
719 29 _ 9:po| | i
yomjeu (O ()} Z uoissaudxa sjqe} | 4z | |
Buipos TR R yoes jo oy | J+QA |

— pue oyqey +— |1 (9 A.mv ()= 'Cp) } A 1= 106 pazyeunou | (g+v),0 —— |eiouen
Jonjsuo) {(q o)~ (‘e *0)} x andwoy ! uojeoyoeds | !

US 2013/0246484 Al

Sep. 19,2013 Sheet 10 of 25

Patent Application Publication

01 "S14
29, AON, 100 |deg Bny np |unp Aep, Jdy |Jey, ge4 uer
GC11 | 611 [6821 [€GLL |99EL |60%1 |6GEL| 26t | Lol |ZGel | Zvel 1 G0g) ed] /
clbd | 611¢ |991C [¥80¢C |99%C 1825¢ |89¢¢] 1912 1812|9102 086} [LEGL B9] [eqisH 189
10215861 | 2E02 [1661 1660¢C [€€0C | 1961] 9¢61] 961 |296L | OF6. | #7261 0SS9.0S3 M
oG [999 [€79 [008 [912 1769 1962] 060 | €19 | ¢l8 | /E8 | 296 99JJ0)
GyZl | G221 16¥EL | vrel [0vy) 127E) 169€L 1 69¢) 1 6G¢L [Svel [viel | 6Ll B8] odk 119001
886 | 06 | 822 | ¢v | 9cc [926 | Lel | 6LL] 18] | IS | J6v | Liy €3] [BqIoH | 1563 (edA13onpoid
646G | 668 | 186 | J0F | ZI¢ | 8/¢ | 6191 Z9€ | /8Y | €0V | 109 | OV 0s$8.ds3 xuov:ms_v
6v49¢ | 961¢ | £9¢¢ | LELC |¥OLE [SLIE [£20€ BFGC | 1160 |eoec | 902¢ | 79%¢ 98J100
0961 199/1 11981 10461 1Sy61 1+G61 1/68L1 0¥8L 19581 J€6/1 11671 189/1 LN
/¥0Z 10261 | 6902 | 2£0Z | #91Z | 2612 |60L2] S¥0Z] 2202 {0202 | GL0Z] 1202 B9 [eqioH [AUBD
0281 19¢81 |S¥61 |G¥61 1910¢ (9202 {9961] 1961 | S00C | €202 2661 | 126 0S88.JdS3 \
(/961 | 1221|981 m%ﬁlmou v1¢¢ 1890¢] ¢S61 | 26l | 1181] 9¥81 | 581 9900
o ® o = /
s 8 ¢ : 8 ¢ O
4 ® o © L N B ° o 2
. o o8 ® % Ee o Jou
2 3 J40id
shajoagpratle o f
o ¢’ ® o o|® ® £ 05z
© o|® - 0008 \
saq | AoN | 100 |deg | Bny | nr [1ew | god | uer | len | ged | uer (adA130npoid X 1oxJel) + Loid
12119) i) Zho 1O f AR
70z} ——— (LUOW / JoLenD)

US 2013/0246484 Al

Sep. 19, 2013 Sheet 11 of 25

Patent Application Publication

(O

v Iouq) 11 Sig

uonesoT

south

TR T

A a e am g, ————————

B ey Dl T T ——

[]
v
v
]
'
(] ¥
M I O R L LT T i R
]]
]]
H '
] []
: ' -
v
' vt
¥ Y .]
] M) '
] 144 1
] [
» n-\" .
[l 1 resmecowncnrudammsmnrsessmsbwssvnanernanne rewew o -
[1] uti » " "
] [4
\w H e 1] 1 1
1 H [1 ' !
3 H . ' X i
' [} "y 1] 1
] ' P L] 1 1
) S . . 1]
y is* i 1 1 |
[} - ¥ s] 1
1 Pl) []]]
Voot ' ¥]]
' H ¥ e nunsssewanw Damwnn s B0 E A
R M H .] 1 1
¥ ' v e ' 1)
- » [» »]
) H 0w’ ’ ’ '
: ’ " 1] 1
¥ N & [' 1
. » e [1 {
] I »] []
1 0 H] ’]
» »’ " Il ' 1
¥ * 1 L] ¥ 1
' A ¥ [' 1
LSy " L] " 1
-GI 4 H -
-“ v ¥ . B «*
! “ “ 1- _..‘« ﬁ\s
’ n o o \Q
" u Rl RS TR R Ry LT TPy glucusnmsonsw afesnsancane -
4 . 4
] ’ . .]
4 » » - Be
H P « »* '
" e e L Y T LTy
’ » .
H x.-ﬁ ‘\Q nu?
: . . . |
llllllllllll ut.f:C.!t-v'lti-lﬂli-li:tlt!ﬂvh\t:tlilll'Q
“ ‘\
i o .
o 5 2 4}

ea} |eqJay

es)}

ossaldss

jonpold

88JJ00

L4ib

oY
2

US 2013/0246484 Al

Sep. 19, 2013 Sheet 12 of 25

Patent Application Publication

(v 1011g) 71 ‘Sig

pajiejop 3sop
o aels
Jonpoud
ajels \ jolew
layenb yyuow Yiuowl ek
pnpoud Jonpoud adA}
1oew X ales X
lauenb lepenb s Yuow i
npoud adfy adf)

lapenb

1oIEW \
adA)

pajieop jseaT

US 2013/0246484 Al

Sep. 19,2013 Sheet 13 of 25

Patent Application Publication

(y 1ouy) ¢1 Sy

ﬂ* s*H ~* \\
0ju0 UoR3[0Nd
\\\ T ‘\.\ sum je
‘uoipafosd Z o e
JeuocisuswWiIp e
suoy | \ A
sponpoud __mﬁ i \\
(e ' ‘oWiIL) uoneson
ojuo uopssfo.d -
S £ 5 4
2 8 =z 8
(+'SONPOI4 ‘aLtL)
\‘\ quo uopefosy €8} 1eqiey
.......... B2 A SR SRR RO S
\ ‘L \ .T.\
- e9)
b 1 - ossaidse
uopdafoad | i i ST N A
leuoisuawp | 9300
omyy | i
A A A e ot .f-«...n.. KR TET —..-#U
\\ \\> VA
......... ‘ ...i.....u...c.n.........-.\......:....uw..‘..-......... n._ua ’(
S < b L

suopeso) jle

sjonpoid

US 2013/0246484 Al

Sep. 19, 2013 Sheet 14 of 25

Patent Application Publication

4 ¥ ’
. ¢ ’
]] 2
] []
. ¥ ¥
1]]
a] 1
" 1 [
] » '
- IO boemseracan S
. H 1
[1 ’
) ' '
. ' *
* t 1
" 1 .
1] *
. 1 +
. ']
----------- ﬁ;t-.n....-na__!uu.;-\....ov-nl--n!t
. v .
] [v
. 1 L}
? 4 L]
L] 1 .
.]]
. ¥]
. L] L]
’ : 3
----------- [R e T LA YT PPN
. v N
- [b
]) Ll
2 3 L]
» . M
1] [']
] 1)
] [.
+] L{
A $ ¥
o - -
‘ »* N
P Pid Pad
A 2 ra

(1y 101g) 1 Sig

uoneso-

central
west
east

M b4 k]
1] L]
‘ ’]
........ \4 ! ! !
: ' : | jBqio
: ! : e} |eq
H 1 I
L R 1 [])
| AT fumvnnnnenn feecunrnuen fnrimana
+ ¥ []
»”* [' 1
') L] L]
»
(]] ' 4
1 1 [] 3
: ; : : eal O
1 i . '
1] ¥ *
] - . 1 1 l‘
M 54 DU I ST L -, SR
: i i F
1]
R ..\w [N ’
4 . : ; :
P : .
- : " “ ossaidse &
¢ 1 . 1 4
R SO : ! ! O
“ . e ees romccancen | EXTET TSRS LR
-
» L H [1
o : ; ; &
.
- b ‘
1 : 1
e ; : “ =11Te)
1t v » ®
M) » 1
i o H H H
n \“ £] L)
4,? - ’ *
& o~ -sv c..._.
AN < /Lib
wtx.ymv‘.lt P . v .
¥
i &
", "
. .v“ oy
Il bt.u
ACPPPORRRTI SO T s (
‘I ‘Q @/
-
- +

Patent Application Publication Sep. 19, 2013 Sheet 15 of 25 US 2013/0246484 A1

Composite %,
|
| ' §\ Data Source 2
L N
§ Data Source 1
N
y D
- 22 Each data source has a
— /21' different z-axis expression
X

Data sources share x- and
y-axis expressions

Fig. 15

Patent Application Publication Sep. 19, 2013 Sheet 16 of 25 US 2013/0246484 A1

[T 1 T I 1
L 1 1 [1 11
[o0]

I ¢
7 /
/]

5

/

7L}
_5\
':4‘
“\\{\\\\\\\\7

|) :

=
—>HE:

N io0s

Fig. 16

=
1804 /

>
1802 /

(My Joud) LT S1q

US 2013/0246484 Al

Sep. 19,2013 Sheet 17 of 25

Patent Application Publication

|_dien |[eso0 | UMOP Jo dn [lLp O} JqWaW B X0Ij0-ajanoq
< mp >
00'6€9°C¢E 00°/61°GE 00°€59'¢cE 00°9v2'LE 00'682'eEl 20°212't42 1SOM +
00'92LC) 00'SSE €L 00'209°¢C1 00°€LLZL 00'9¥8°0S 9€'926°¢0) yinos +
00°Z5¢'12 00'9/6'¢C Q0'6t¥ ¢C 0012902 0086848 02'85'8.) 1se] +
00'85%' L€ 00%5.°€e 00950 €€ 00ZLY'1E 00°089'62) 28°450°692 [elua)) +
00'522'98 00282°S0} 00'19L'10} 00'268°G6 00'65)°1L0¥ 01°4¢8'618 uoReaoT |y
6 ¥ JBHEND + £ Japeny + ZJoenp + | J8LEND + [E10L 8661 [EjoL SWIL [V 1OER +
- 8661 - swl] iy
JOLEND + TCON -
[A] soeg|| sainseay |
[A] sjonpoud iy || jonpodd |
XIEE agnySHONGIB)S - Jasmolg aqn) @

(My Joud) 81 *S1q

US 2013/0246484 Al

ubrepy

Apesy
7 Sesus) ZiEaus Y jesys\N I <> M
[= eea] ey | m i G £ IR L.
EREEICER i 2 | %
— ses w 3
oliey Jjold £¢
Woid ¢€
Jloiked 1€
Buwadg 0e
o8Iy 62
Bupoweny %
ey uibrep 9
57 |
¥e
[¥4
44
}

Sep. 19,2013 Sheet 18 of 25

- 0
sajeg 186png 6
Woud 136png 8
Jioiked 196png A
uiBiew 196png 9
sbos 196png]
Jsuonippy186png | N
sajegbay z
1j01dBay }
suonppy B} | |2001°228618]2001'89981 71 0'929¥01 |830€°118901 [1G19°60€E04[ECOL 128E0L] 651107 [ScZ86 |282501 J09/L0L 126866 |IEI0L pUei) g
awy E.E SNN“NENR woun.ﬂ.momm m“mmmummn be .,mmm.. 0/5¢]] cwcm.uisu—mulﬂ “Smmm GEZeel | 6EQT 16 mmm £GOEE wﬁ: 155M] 6
sjonpoid E]H S.w.m.mmo.mov vmomm.wmo .._N,ﬁo.u—o\ .uomo yGeElL mmomw.w /21[6£88E 0CLE1 | 980G 92421 GGEEL 20921 £l yinog| g
1861°8/58/ | 169861081 16]9G1LE#5/2¢ [61/2G 20EEC|GEE6. 981 22[999G°9€ECC | 8BELR ¢SELE 19/6d2 e 12902 1seq| 4
SIS - 90¢8'2¥059¢[9028 LOEGE1}902E0 72GEE| 66 ¢oere o906 vIGEE]1IG8Z 960vE] 0B06Z) |8Spic | PGlec GOEE |eiplt [ERUa)| 9 |
1O%IBA -4 ¥ JBEND FREERN] A ED) | IBLEND ¥ 18JEND| ¢ JOHEND] ¢ J8peny)| | J8HEND| ~ 1OMEn| §
o uopeoo 1 EJB|| || reoL pueio| reioL 6661 BBEL]IEI0L 8661 8681
Jodal ajqel A 1 7
JoAld Y} 0} sway| beiq aIaH spjeld ebed doig 3
X A 1517 pjald 8igeL joald o [N J W T 3 T > T ¢ 1T 1+ T H T 9o 1T 41T 3 § 4

S8[es |4 >_ €a _
T [E]% [§ | Ea| W oce0NG
1-V-§-HZ3} e % $E=S=0 7 9 G0E]
‘EFOI@mity 12 - B0 ~a|S-B @ f A FIBERIT
disF mopuifh o1qBi sjod] jeunS4 pasu] MoiA WPT 2iF F
XIEl=] 1oog - [90x3 JosoioN [

Patent Application Publication

Patent Application Publication

_—1900

=
e

Sep. 19,2013 Sheet 19 of 25

p|Quarter pIMonth

&le >

9P File Edit View Analysis Bookmark Window Help

@ tableau - [Worksheet 1]

O] Year

Quarter 4

AR IR I R T T T TS
ANNATEEERREITEEITTITTTEEE TR R RRRRRRRRRR
AR IR TTTTSTSN

Quarter 3

)

ELEEEMEIEEEIIEEEI I T T TS
EALEEMNEEEEH RIS

AN RN

Quarter 2

EUUEERRIERMEEHIEHERERIEREIEEIEREE R T TETRRROEOESOSESSY
AR I T T TSI
AR TR TR TR

Quarter 1

fFebruglMarch] April | May JJune | Juy JAugusq SeptefoctobdNovempecem

AAHEERIEEEIEEEIIEEIEE I T T T T T T T
AAAANANNNEERRNEEEEEEENTE R RN T TR RN
ERMUMEEIEEEEREEE I R TSN

Quarter 4

Decer]
P

|
. |

AR I T T TS
RN TR T T

Quarter 3

EAEEEEIEREINIHIEEEE R A A A RS

ALAEENEEEEIEHE RIS

ALAEEEEEEEEHIEEIEEIR I TS

AALAEMHEEIEIEEEEEIEEIEEEHEEREHEE I R TSI

0%

Quarter 2

ALEEEENIEHEEEREEEEEEEEEEEEEE R RO

ANANERNENNNEREENEEEE TR RN RN RN

AUAMLAIER IR TR SEES

Quarter 1

JanuarlFebruaMarch] Apiit | May JJune | Juy JAugus§Septe

ANANNEEENREER NIRRT R RN

ANAAANNRNRNNEERNNEENEEREERR RN

LML I I TS

O] Sales

36K+

T T T T T Y T T T T T T T T T
U 1 1 U U 1 1 U i i i i i
‘O_ W © < o~

30K+
28K
26K
24K
22K:
20K
18K
16K
14K
12K
0K

T
x
o
o

@
K4

©
o

Filter:

Color: C——1

Mark:
Size:

Size:

Layer 1

cks_Cube

Starbucks Cube

B @ Starbu

AvgSales
Budget Additions
Budget Cogs
Budget Margin
Budget Payroll
Budget Profit
Budget Sales
Inventory

Item Count

Ready

US 2013/0246484 Al

Fig. 19

Patent Application Publication

g tableau - [Worksheet 1]

Sep. 19,2013 Sheet 20 of 25

&
[
I
& Y
S N
S S
c< N
SETTETITITIEITEEEEEE [eSS
AIUUIUIRNANANAANRNNRARARNRY f IR ERAN NN NRRNNANNN
SRTFRERERIETITTRIRTGGY [AT
AUUULIALULNLLLUKANAUKUURARANAY T RDIITRUIUTIRRORNRARARNNN
L RIS
AARAERTIERRTRTTRIRRNENRRNNNNNNNRY AARARRRRAERRRTERRERNRRRRRNRNRNNRN
AUURNURNLNUANRNRNARNNUNRIRAN] TR
ERTTIRRIIRIITITIEEGE [RISy
I]
B ALAALLULNANRANANRANRURANAA, A ANANNRNRANR RN RN RA AN
=
z RTERIRRIRIRRRRITIIENY [AR ERRRRRTERRRE
— R UMUNUAMUMUMUMUAMUAMUAMUAUMUSU LA VLR R DR AU UL LU UL AU DAL UL U L U AL
= E3NSERRNRRETAESEINS | G35 REINSSEINERITRE
§ soleg sajeg
= |B 8661 6661
=
E 0
E
5
£ P 5
E - o o 1= 18l
gl - =
HEWE Bef%es g
o O . gz%&"éé«z g5.82 o § &
S EEE TR LS S I e P e T
2l S83A3EE, 8387 I H T
Bl |[el5E305cceiong Iissagesscu 2T izofetas
ofsllEled @ @ 0o
| B|l5lm

Ready

US 2013/0246484 Al

Fig. 20

Patent Application Publication

/2100

| | | 2102-N

Sep. 19, 2013 Sheet 21 of 25

x|

O]Quarter »[Month

P Eile Edit View Analysis Bookmark Window Help

& tableau - [Worksheet 1]
Rlec »>Ir|A !

Starbucks_Cube ET
|E+@Starbucks_Cube | Filter:

ENONNNNNNNNNNNNNNNNNNNNNNNNSNNNNNI A A A A o A
ANNNNNSNNNNNNNNNNNNNNNNNNNNNNNNY AP AA A 7 VA T
ENNNNNNNNNNNNNNNNNNNNNNNNNNNNNNYAAAA A AP A A /0

AANNNNNSNNNNNNNNNNNNNNNNNNNNNNNN AP A A 7 M A
DONNSANNNNNNNNSONSNNNNNNNNNNNNNNNNYA AP AP A L L 7
NNNNNNONNNNSANNNNSNNNNNNNNNNSNNNNY A A A A VA A Vi 7]

NNNNNNNNNNNNNNNNNNKNNXNKK\KK\KN, GAAAAS A S S S LSS S S S S A S
ANNNNNNNNNNNNNNNNNNNONNNNNNNNNY A A A A
DONNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAAAAA AP AV L 7 VA

2

2102-1

AANNNNNNNNNNNNNNNNNNNNNNNNNNNNNY A AL AL A A
INNANNNNNNNNSNNNNNNNNNNNNNNNNNN A A A A /7

O] Sales

T T TT T YT P reeerrerr
¥ ¥ X
o I o
a -~ -

K

55K
50K
45K
5K
0K

b
el (o)
™ ~N

70K
65K
60K

-

2106-1—

Color: [Year

Mark:
Size:

Layer1f

B

Additions
Cogs
Margin
Payrol

Ready

US 2013/0246484 Al

Fig. 21

Patent Application Publication Sep. 19, 2013 Sheet 22 of 25 US 2013/0246484 A1

RN
AN NN ONOOODO-.-.-.
DUNULMEIEEARI AR R R SR TUA TR R LG LR RRRRR RIS
AN N NN

LU R T RRHEREEEEEEEGMOIOES NIRRT
= NN NN NN NN NN RN

Dacel

I'Iﬂ
E” %]
-

OVe

2200

1999
Aprl | May JJune | July JrugusiSapte[Oct

st Sep(elOcto_beNoveerecev_vl;JanuarFebmgMatd]

998

il | May JJune] Ju

Fig. 22

March)

»[Month

L/

\

USURUTUURUSUTUTURU UL AU
0 NN NN N N N N N N A N N
FTONTCTOBONGIDT N~
—— e

0K:
1K=

OlYear

0| Sales
37K—
36K—
35K=
34K—
33K=
32K=

708-5 ~N 708-4

Color:

[v]
size:]

& Color
Size
Layer 1]

Filter:
Mark:

View Analysis Bookmark Window Help
@ Starbucks_Cube

Budget Cogs
Budget Margin
Budget Payroll

AvgSales
Budget Additions

g tableau - [Worksheet 1]
CEEDEDR

Sle > IR[A !
Starbucks Cube

=1
Ready

Patent Application Publication Sep. 19, 2013 Sheet 23 of 25 US 2013/0246484 A1

AR
ANAREEEEREEEEEEERNNE RN RN
ANENENERRNNENEINENEENNREEEEER RN RERRURNNURNNRONNNNRNN

5 AR RN
o CUANANKAN NN RN N NN NN NN NN
o
g AR RN
\
S~ ANNANAENNRENREENEN RN

R R
TR

Q3
0] 2001 §2002] 1997 |1998 }1999 | 2000] 2001|2002 1997 [1998 1999 | 2000 | 2001] 2002] 1997 {1998 {1999 | 2000 | 2001] 2002

v m
=] TR g\
N R b'l)
\ R TS L:
\\\ TS
Lo N
b T S
2 A g T
\ 5 & lE R
|
N3] B OO
_1—1T=lke T T T T T T T T T T T T T
e I X 4 X X 3 - N h4 X X M b4
B g 8 8 8 8 8 8 8 8 8 8 8 8§ ©
8 bt (] = § 8 D ~ b= (7] 3 b ~ ~
= |loliE (o1d ss0ID)NNS
E=)
¥ =
b= <
~ i‘ Z -
g 5 g 8 %
= 2 N >
= Ell - © 1 z - =
] £ 2 a9
2 _;! @IIT' - oy < fared 74 2
] S -n“"':' ~oe g _ng ﬂg 2y @ E
é‘é 2l |5, 5. ;sgéz 5%;%,%; €32 pogppsii 2 B
@ T =N] Z 5] KR T = = = S
<= 8| ZEssg P2E8 28, s, 35222 aeEpsgsatcSiiiLEg .S 0o
Nl EEEE L e B e e R
Sl gl ER2E5ETE: NS O drirg-Iriesraren §792 g Lo Saa o orani iy
| [- — i
aalaa Bll2) i &

2320

pT "SI

Apeay

It Johey

US 2013/0246484 Al

Sep. 19, 2013 Sheet 24 of 25

0 02§

)
—
—

0Ly ———~J-_sorg] el

i8'veliee'eel 01 'sefeas el 002 'vel60€ SE |

6661

521 GE

1069 EE[EYB ¢

672 2876028668 1€

8661

juesaqwano

8)dag psnbny

sunr | e [1udy

Yole [enigaafenuer

¥ Jopen

¢ Joyent)

7 J9penp

] Jayenp

ja] I3l

e

:Aq dnouig

CEREIN [

L JiuoW 1« {suenpjry

el

sasupdx3 0] -
SB{BS -
OfjeY JWoid -
1oid -
Jlo)ked -
Buiadg -
IS -
Bunayep -
ejey ulbuepy -
ulblep -
UNOY WY -
Alojuaau]
Buipug .
$Bog -
sajeg Jabpng -
140ud yebpng -
lozked 1afipng -
uifiiepy 1obpng -
s607 jebipng -
suofippy 1efipng -
sofegbay .
WorcBay .
suonppy -
$9Inseaiy - 5]
Yuopy-+
Joyenp -
1e9p. 4
aul -
YoNpold -;
adAyonpoig.4
Jonpoid -2
AeNS -3
194IBY »¢

[a] 89nD syonqielg

_ uojedo-El
80nD SNBSS S-F

X Ry

| \

iR« 2|®

i A

dioH mopuiM eunood sBAleuy mef 1pd eid &
1 108ussiop] - neajqe) &

Patent Application Publication

/
G-80. g

A\
N ¥-80L

US 2013/0246484 Al

Sep. 19,2013 Sheet 25 of 25

Patent Application Publication

74

31

Apeay
| ELCH]
SO[ES So[eS
10E 102 HoL M0E 10¢ 0L
M ITTEIFEETA T I FEATY PR RN RUATU PSS T RANRRRAETRRERRRTUNRSRUNNARIANSNANTET]

2!

-)¢

=€

- b

)G

=39 o
ROE(E

X8 " s95U2dx3 [B10] -
LL°'80£GE ‘soes -6 oy o
166262} ‘Woid - 10} BT
Alenuep '} JopBNT) ‘666 :ouI) -HMF— Blodo-
o o - YE) —_—— | s
0718 s&““wwn”
" _ 10109 —U_ EN& wal.
e | | g | e
e | | e | e
B 0 L B e bk
L399 | PO | ot mtone
|v_N||0.M m /l b Ewmm»«.

% % B wm - UL suoyIppY - 5
B Aad -
0L 1700 oty
') 1B3A-4
el 3&“&%.% N

_ . - MEL %.%%& A
Z e] openy TN -4
uogesot-El

S8 | sgno spnaEs S
|| O IR

i gR|e > |®
<A / / \ di3H MODUITR ELNOOT SERIEUY MO 1pF ofF &
B / [} 193ysyiop] - neajge) &

A\
A v-804

0cec

US 2013/0246484 Al

SYSTEMS AND METHODS FOR DISPLAYING
DATA IN SPLIT DIMENSION LEVELS

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 12/821,029, filed on Jun. 22, 2010, now
U.S. Pat. No. 8,364,724, which is a continuation of U.S.
patent application Ser. No. 10/667,194 filed Sep. 16, 2003,
now U.S. Pat. No. 7,756,907 which are incorporated herein
by reference in their entities.

[0002] This application relates to U.S. patent application
Ser. No. 11/005,652, titled “Computer Systems and Methods
for Visualizing Data with Generation of Marks,” filed on Dec.
2,2004.

[0003] All of the above-identified patent applications and
patents are hereby incorporated by reference in their entire-
ties.

[0004] This disclosure was supported in part by Defense
Advanced Research Projects Agency (“Visualization of
Complex Systems and Environments”), ARPA Order Num-
ber E269 as well as the Department of Energy ASCI Level 1
Alliance with Stanford University (“Center for Integrated
Turbulence Simulation™) contract LLL-B523583. The U.S.
Government may have rights in this disclosure.

1. TECHNICAL FIELD

[0005] This disclosure relates generally to computer sys-
tems and methods for visualizing data such as database infor-
mation.

2. BACKGROUND

[0006] Imposing meaningful hierarchical structure on large
databases provides levels of abstraction that can be leveraged
by both the computer and the analyst. These hierarchies can
come from several different sources. Some hierarchies are
provided by the inherent nature of the database. Data mining
algorithms, such as decision trees and clustering techniques
that classify the data and thereby automatically derive hier-
archies can be used to determine database hierarchy. Part of
the analysis task when dealing with automatically generated
hierarchies is an understanding and trusting the results. See,
for example, 2001, Thearling et al., “Visualizing Data Mining
Models” in Information Visualization in Data Mining and
Knowledge Discovery, Fayyad, Grinstein and Wierse eds.,
Morgan Kaufman, which is hereby incorporated by reference
in its entirety.

[0007] FIG.1illustrates the hierarchy for a time dimension.
Within the time dimension, there are four levels: “All”,
“year”, “quarter”, and “month”. Simple hierarchies, like the
one shown in FIG. 1, are commonly modeled using a star
schema. The entire dimension hierarchy is represented by a
single dimension table joined to the base fact table. In this
type of hierarchy, there is only one path of aggregation. How-
ever, there are more complex dimension hierarchies where
the aggregation path can branch. For example, a time dimen-
sion might aggregate from “day” to both “week”™ and
“month.”

[0008] To provide another illustration of the concept of a
star schema, consider the case in which one wishes to analyze
monthly total product sales for a department store by break-
ing down the data by region and store. Raw data can come in
the form of product managers’ (FIG. 2) and regional manag-
ers’ (FIG. 3) quarterly sales reports. Once the data has been

Sep. 19,2013

collected and refined, it can reside in a large base table. In
addition, there may be adjunct lookup tables. A star schema
for this base data is shown in FIG. 4. The table schema of FIG.
4 is called a star schema because the central fact table is
depicted as surrounded by each of the dimension tables that
describe each dimension. In this example, the base sales data
table is the fact table and each lookup table is a dimension
table.

[0009] The stores, weeks, and products columns in the fact
table in FIG. 4 contain numeric values. Fact tables can grow
to huge numbers of rows. The lookup tables contain hierarchy
information relating each store, week, and product with its
higher-level aggregations. For example store 1 in the base
table of FIG. 4 connects with the “Store Lookup” table where
it has the name Ridgewood and rolls up to the Northeast
region. Product 2 in the base table connects with the “Product
Lookup” table where it has the name olive oil soap and rolls
up into the product type soap in the skin care products group.
Thomsen, 1997, OLAP Solutions: Building Multidimen-
sional Information Systems, Wiley Computer Publishing,
New York, which is hereby incorporated by reference in its
entirety.

[0010] The most common schemata found in databases are
the star schema and snowflake schema. Each schema has a
fact table containing data items of interest (measures) in the
analysis for which the database is built. These data items
might be transaction amounts such as the amount invested in
a mutual fund or the profit on a sales transaction. The fact
table is surrounded by dimension tables containing detailed
information used to summarize the fact table in different
ways. Anillustration of a star schema has been provided (FIG.
4). FIG. 5 illustrates a snowflake schema that includes hier-
archy. The snowflake and star schema provide a conceptual
multidimensional view of the database. The database is a core
set of measures characterized by a number of dimensions
rather than a set of interrelated tables. This organization cor-
relates directly with the typical analysis query that summa-
rizes a few quantitative attributes (or measures) such as profit
or sales by several characterizing attributes (or dimensions)
such as product, location, or date over a large number of
tuples. The primary differences between the star and snow-
flake schema arise in how they model hierarchical structures
on the dimensions.

[0011] When referring to values within a dimension hier-
archy, a dotted notation can be used to specify a specific path
from the root level “All” (FIG. 1) of the hierarchy down to the
specified value. Specifically, to refer to a value on level m of
a hierarchy, the dimension name is first optionally listed, then
zero or more of the (m-1) intermediate ancestor values, and
then finally the value on the mth level, all separated by peri-
ods. For example, the Jan node on the Month level in the time
hierarchy that corresponds to January, 1998, can be referred
to as 1998.Qtrl.Jan. When this notation is used, the reference
is called a qualified value. When a value is simply described
by its node value (without any path to the root node) the
reference is called an unqualified value.

[0012] One form of database is a relational warehouse, such
as a structured query language (SQL) database. Relational
warehouses organize data into tables. Each row in a table
corresponds to a basic entity or fact and each column repre-
sents a property of that entity. See, for example, Thomsen,
1997, OLAP Solutions: Building Multidimensional Informa-
tion Systems, Wiley Computer Publishing, New York. For
example, a table may represent transactions in a bank, where

US 2013/0246484 Al

each row corresponds to a single transaction. As such, each
transaction can have multiple properties, such as the transac-
tion amount, the account balance, the bank branch, and the
customer. As used herein, a row in a table is referred to as a
tuple or record, and a column in the relation is referred to as
a field. Such tables are also referred to as relations. As such, a
relation is defined as a database table that contains a set of
tuples.

[0013] It is possible to create dimension tables and star
schemas in relational warehouses. A single relational ware-
house will contain many heterogeneous but interrelated
tables. The fields (columns) within a table can be partitioned
into two types: dimensions and measures. Dimensions and
measures are similar to independent and dependent variables
in traditional analysis. For example, the bank branch and the
customer are dimensions, while the account balance is a
measure.

[0014] Business intelligence requires tools for interactive
visualization of multi-dimensional databases. The prior art
provides a number of approaches to visualizing such infor-
mation. For example, FIG. 17 illustrates a screen shot from a
Microsoft Analysis Services interface to a multi-dimensional
database that includes a Time dimension having the levels
year and quarter. In another example, FIG. 18 illustrates a
Microsoft Excel Pivot-Table interface to a multi-dimensional
database. Although the software programs illustrated in
FIGS. 17 and 18 are useful, they are often unsatisfactory.
Such interfaces restrict the construction of the table so that
levels from a single dimension must appear on the same axis
(e.g., the rows or columns) and must be in their natural hier-
archical order. Thus, in FIG. 18, if a user attempts to move
Year to the rows and leave Quarter on the columns, the inter-
face will move all levels (Years as well as Quarters) to the
rows. Similarly, it is not possible to skip levels in the defined
hierarchies. For example, if Year and Month were to appear on
the axis then Quarter must also appear is the hierarchical
source of the data includes such a level. These limitations are
not just cosmetic constraints. They limit the types of analysis
that can be performed on the data using such graphical inter-
faces.

[0015] Based on the above background, what is needed in
the art are improved methods and graphical interfaces for
visualizing data that includes dimensions and measures.

3. SUMMARY

[0016] The present disclosure provides improved methods
for visualizing data. In the present disclosure, dimensions are
not constrained to lie on a single axis of a graphical interface.
Further, dimensions are not constrained such that they must
appear in their natural hierarchical order. Accordingly, the
present disclosure provides advantageous methods and
graphical interfaces for displaying data.

[0017] A first aspect of the present disclosure provides a
method of forming a visual plot using a hierarchical structure
of a dataset. The dataset comprises a measure and a dimen-
sion. The dimension consists of a plurality of levels. The
plurality of levels form a dimension hierarchy. In the method,
the visual plot is constructed based on a specification. A first
level from the plurality of levels is represented by a first
component of the visual plot. A second level from the plural-
ity of levels is represented by a second component of the
visual plot. The dataset is queried to retrieve data in accor-
dance with the specification. The dataincludes all or a portion

Sep. 19,2013

of the dimension and all or a portion of the measure. Finally,
the visual plot is populated with the retrieved data in accor-
dance with the specification.

[0018] A second aspect of the present disclosure provides a
computer program product for use in conjunction with a
computer system. The computer program product comprises
a computer readable storage medium and a computer pro-
gram mechanism embedded therein. The computer program
mechanism forms a visual plot using a hierarchical structure
of'adataset. The dataset comprises a measure and a dimension
as described in the first aspect of the present disclosure. The
computer program mechanism comprises instructions for
constructing the visual plot based on a specification. A first
level from the plurality of levels is represented by a first
component of the visual plot and a second level from the
plurality of levels is represented by a second component of
the visual plot. The computer program mechanism further
comprises instructions for querying the dataset to retrieve
data in accordance with the specification. The data includes
all or a portion of the dimension and all or a portion of the
measure. Finally, the computer program mechanism com-
prises instructions for populating the visual plot with the
retrieved data in accordance with the specification.

[0019] A third aspect of the invent provides a computer
system for forming a visual plot using a hierarchical structure
of'adataset. The dataset comprises a measure and a dimension
as described in the first aspect of the present disclosure. The
computer system comprises a central processing unit and a
memory coupled to the central processing unit. The memory
stores a programming module. In some embodiments the
memory stores the dataset whereas in other embodiments the
dataset is accessed by a remote server. The programming
module comprises instructions for constructing the visual
plot based on a specification. A first level from the plurality of
levels is represented by a first component of the visual plot
and a second level from the plurality of levels is represented
by a second component of the visual plot. In some embodi-
ments, the specification is obtained from a remote server. The
programming module further comprises instructions for que-
rying the dataset to retrieve data in accordance with the speci-
fication, the data including all or a portion of the dimension
and all or a portion of the measure. Further, the programming
module includes instructions for populating the visual plot
with the retrieved data in accordance with the specification. In
some embodiments, all or a portion of the programming
module is distributed on remote servers and/or on client com-
puters.

4. BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 illustrates a hierarchy for time in accordance
with the prior art.

[0021] FIG. 2 illustrates raw data in the form of product
managers’ quarterly sales reports in accordance with the prior
art.

[0022] FIG. 3 illustrates raw data in the form of regional
managers’ quarterly sales reports in accordance with the prior
art.

[0023] FIG. 4 illustrates a star schema for a database in
accordance with the prior art.

[0024] FIG. 5 illustrates a snowflake schema for a database
in accordance with the prior art.

US 2013/0246484 Al

[0025] FIG. 6 illustrates a computer system that facilitates
exploratory analysis of databases having a hierarchical struc-
ture in accordance with one embodiment of the present dis-
closure.

[0026] FIG. 7 illustrates processing steps in accordance
with one embodiment of the present disclosure.

[0027] FIG. 8 illustrates a user interface for creating a
visual specification in accordance with one embodiment of
the present disclosure.

[0028] FIG. 9 provides an exemplary view of processing
steps in accordance with one embodiment of the present
disclosure.

[0029] FIG. 10 illustrates the configuration for a table that
has been generated from the normalized set form of a visual
specification in accordance with one embodiment of the
present disclosure

[0030] FIG. 11 illustrates a data cube for a hypothetical
coffee chain in which each axis in the data cube corresponds
to a level of detail for a dimension (product, location, time) in
a database schema, in accordance with the prior art.

[0031] FIG. 12 illustrates a lattice of data cubes for a par-
ticular database schema in which each dimension has a hier-
archical structure, in accordance with the prior art.

[0032] FIG. 13 illustrates the projection of a 3-dimensional
data cube thereby reducing the dimensionality of the data
cube by aggregating across dimensions that are not of interest
to an analysis, in accordance with the prior art.

[0033] FIG. 14 illustrates the construction of a slice of a
data cube by filtering the members of one or more dimensions
of the cube, in accordance with the prior art.

[0034] FIG. 15 illustrates the layering of multiple data
sources and the partitioning of layers in accordance with one
embodiment of the present disclosure.

[0035] FIG. 16 illustrates the association of a subset of
tuples with a pane in one or more panes in a visual table in
accordance with one embodiment of the present disclosure.
[0036] FIG. 17 illustrates an interface for displaying the
levels (year, quarter) of the time dimension of a multi-dimen-
sional database in accordance with the prior art.

[0037] FIG. 18 illustrates an interface for displaying the
levels (year, quarter) of the time dimension of a multi-dimen-
sional database in accordance with the prior art.

[0038] FIG. 19 illustrates a visual plot that shows the natu-
ral hierarchical display of levels of the time dimension (years,
quarters, months) for sales data.

[0039] FIG. 20 illustrates a visual plot having the format
[Time].[Year]*[Sales] (rows, y-axis) versus [Time].[Quar-
ter].[Month] (columns, x-axis) in accordance with one
embodiment of the present disclosure.

[0040] FIG. 21 illustrates a visual plot in accordance with
an embodiment of the present disclosure in which a level of a
dimension hierarchy is used as a level of detail for a graphic.
[0041] FIG. 22 illustrates a visual plot in which a dimension
is skipped, in accordance with one embodiment of the present
disclosure.

[0042] FIG. 23 illustrates a visual plot in which the set of
levels from a dimension hierarchy found in an underlying
dataset is represented by a first component but in an order that
deviates from an order found in the dimension hierarchy, in
accordance with an embodiment of the present disclosure.
[0043] FIG. 24 illustrate a visual plot in which the time
dimension is found on two axis in accordance with an
embodiment of the present disclosure.

Sep. 19,2013

[0044] FIG. 25 illustrates a visual plot that encodes sales
data in a segmented scatterplot in accordance with an embodi-
ment of the present disclosure.

[0045] Like reference numerals refer to corresponding
parts throughout the several views of the drawings.

5. DETAILED DESCRIPTION

[0046] The present disclosure provides computer systems
and methods for visualizing data such as database informa-
tion. In a typical embodiment of the present disclosure, a user
specifies a search query and data is displayed in a graphic.
Advantageously, in the computer systems and methods of the
present disclosure, a dimension can be displayed on more
than one axis of the graphic. More specifically, levels in a
dimension can span multiple axes, group bys, and visual
encodings. Furthermore, levels (e.g., quarter, month) within
dimensions are not constrained to their natural hierarchical
order. In fact, levels defined in a hierarchy can be skipped.
Another advantage of the present disclosure is that measures
are not constrained to text table format; they can be illustrated
in any of a number of graphical manifestations.

[0047] Presented in Section 5.1 below is an overview of an
exemplary system for visualizing database queries. The sys-
tem can be used to visualize database queries using the meth-
ods of the present disclosure. Section 5.1 is merely an exem-
plary system however. The data visualization methods of the
present disclosure are not limited to the visualization of data-
base query results. The data visualization methods of the
present disclosure can be used to visualize any form of data
that includes dimensions and measures, including, for
example, spreadsheets.

[0048] Section 5.2 below illustrates an exemplary method
for forming a database query that advantageously uses the
hierarchical structure that is either (i) explicitly defined in a
database or that (ii) can be derived from the database. The
exemplary method displays queries that are formed using a
visual specification in a visual table. Section 5.3 provides
more details on databases that can be optionally queried using
the methods of the present disclosure. Section 5.3 provides
further information on visual tables of the present disclosure,
as well a conceptual data flow in accordance with some
embodiments of the present disclosure.

[0049] Section 5.4 details the many advantageous features
of the present disclosure, including the ability to represent
dimensions across multiple axes, the ability to represent mea-
sures in data forms that are not limited to text tables, the
ability to display levels of a dimension in orders that are not
limited to their natural hierarchical order, and the ability to
skip the display of levels in a defined hierarchy.

5.1 Overview of an Exemplary System

[0050] FIG. 6 shows a system 500 that facilitates explor-
atory analysis of databases, such as data warchouses, in
accordance with one embodiment of the present disclosure.
[0051] System 500 preferably comprises a computer 502
that includes:

[0052] a central processing unit 522;

[0053] a main non-volatile storage unit 534, preferably
including one or more hard disk drives, for storing soft-
ware and data, the storage unit 534 typically controlled
by disk controller 532;

[0054] asystem memory 538, preferably high speed ran-
dom-access memory (RAM), for storing system control

US 2013/0246484 Al

programs, data, and application programs, including
programs and data loaded from non-volatile storage unit
534; system memory 538 may also include read-only
memory (ROM);

[0055] a user interface 524, including one or more input
devices, such as a mouse 526, a keypad 530, and a
display 528;

[0056] an optional network interface card 536 for con-
necting to any wired or wireless communication net-
work; and

[0057] an internal bus 533 for interconnecting the afore-
mentioned elements of the system.

[0058] Operation of computer 502 is controlled primarily
by operating system 540, which is executed by central pro-
cessing unit 522. Operating system 540 can be stored in
system memory 538. In addition to operating system 540, a
typical implementation of system memory 538 includes:

[0059] file system 542 for controlling access to the vari-
ous files and data structures used by the present disclo-
sure;

[0060] database hierarchy module 544 for interpreting
the hierarchy of a database 558 (e.g., by interpreting the
database schema);

[0061] user interface module 546 for obtaining a visual
specification (specification) from the user (for construct-
ing a visual table, comprised of one or more panes, by
obtaining from a user a specification that is in a language
based on the hierarchical structure of database 558);

[0062] data interpreter module 552 for formulating data-
base queries based on the specification (for querying
database 558 to retrieve a set of tuples or objects in
accordance with the specification); and

[0063] visual interpreter module 556 for processing
database query results and displaying these results in
accordance with the specification (for associating a sub-
set of the set of tuples or objects with a pane in the one or
more panes).

[0064] In some embodiments, user interface module 546
includes:
[0065] a database hierarchy 548 that corresponds to the

hierarchy of a database 558; and

[0066] a visual specification 550 that specifies a formal-
ism that can be used to determine the exact analysis,
query, and drawing operations to be performed by the
system.

[0067] In one embodiment, data interpreter module 552
includes:
[0068] one or more query descriptions 554 that are used

to query databases;
[0069] a query cache 555 that is used to store database
query results; and
[0070] apane-data-cache 557 that is used to store a sepa-
rate data structure for each pane 722 (FIG. 7) in a visual
table 720 that is displayed by visual interpreter module
556.
[0071] System 500 includes one or more databases 558. In
one embodiment a database 558 is OLAP data that can be
viewed conceptually as a multidimensional data cube. See,
for example, Section 5.3. More generally, database 558 is any
form of data storage system, including but not limited to a flat
file, a relational database (SQL), and an OLAP database
(MDX and/or variants thereof). In some specific embodi-
ments, database 558 is a hierarchical OLAP cube. In some
specific embodiments, database 558 comprises star schema

Sep. 19,2013

thatis not stored as a cube but has dimension tables that define
hierarchy. Still further, in some embodiments, database 558
has hierarchy that is not explicitly broken out in the underly-
ing database or database schema (e.g., dimension tables are
not hierarchically arranged). In such embodiments, the hier-
archical information for the respective database 558 can be
derived. For example, in some instances, database hierarchy
module 544 reads database 558 and creates a hierarchy rep-
resenting data stored in the database. In some embodiments,
this external program is run with user input. In some embodi-
ments, there is only a single database 558.

[0072] In typical embodiments, one or more of databases
558 are not hosted by computer 502. Rather, in typical
embodiments, databases 558 are accessed by computer 502
using network interface 536. In some embodiments an
attribute file 580 is associated with each database S558.
Attributes are discussed in Section 5.3.6, below.

[0073] It will be appreciated that many of the modules
illustrated in FIG. 5 can be located on a remote computer. For
example, some embodiments of the present application are
web service-type implementations. In such embodiments,
user interface module 546 can reside on a client computer that
is in communication with computer 502 via a network (not
shown). In some embodiments, user interface module 546 can
be an interactive web page that is served by computer 502 to
the client computer. Further, some or all of the components of
visual interpreter module 556 can reside on the client com-
puter so that the results of a query are displayed on the client
computer. Thus, the present disclosure fully encompasses a
broad array of implementations in which one or more users
can explore one or more databases 558 using the techniques
and methods of the present disclosure from a remote site. The
illustration of the modules in FIG. 5 in a single central com-
puter is merely presented to concisely illustrate certain soft-
ware modules and data structures that are used in various
embodiments of the present disclosure and in no way is lim-
iting. Those of skill in the art will appreciate that numerous
other configurations are possible and all such configurations
are within the scope of the present disclosure.

[0074] Now thatan overview ofa system 500 in accordance
with one embodiment of the present disclosure has been
described, various advantageous methods in accordance with
the present disclosure will now be disclosed in the following
sections.

5.2 Exemplary Method

[0075] Referring to FIG. 7, an exemplary method in accor-
dance with one embodiment of the present disclosure is illus-
trated.

[0076] Step 602.Instep 602, the hierarchy for each selected
database 558 is characterized. In embodiments in which
selected databases 558 have a schema 560 that includes such
hierarchical information, the schema 560 can be read directly
by database hierarchy module 544 and the database hierarchy
562 in this schema 560 can be characterized. Section 5.3
discusses illustrative types of database hierarchy 562 and
database organization. In some embodiments, a plurality of
databases 558 is analyzed concurrently. In such embodi-
ments, database schema 560 of each of the plurality of data-
bases 558 is read directly by database module 544 and char-
acterized. In some embodiments, selected databases 558 do
not have hierarchy that is explicitly defined in the underlying
respective databases 558. In such embodiments, database
hierarchy module 544 analyses each selected database 558

US 2013/0246484 Al

and constructs database hierarchical information for each of
the respective databases. In some instances, this analysis is
assisted by input from a user and/or requires an analysis of the
data stored in the database.

[0077] In some embodiments, the hierarchical structure of
a database 558 is derived from a database schema for the
database 558. This database schema comprises schema fields.
In some embodiments each schema field has a type (e.g., a
basetype oran array type). Representative base types include,
but are not limited to, character strings, integer, short integer,
double integer, single precision floating number, double pre-
cision floating point number, and object handle. Representa-
tive array types include, but are not limited to an array of long
integers, an array of short integers, an array of single preci-
sion floating point numbers, an array of double precision
floating point numbers and an array of object handles.
[0078] Step 604. In step 604, a visual specification (speci-
fication) 550 is obtained from the user by user interface mod-
ule 546. In a preferred embodiment, visual specification 550
is created using a drag-and-drop interface provided by user
interface module 546. An exemplary user interface module
546 is illustrated in FIG. 8. A user creates the visual specifi-
cation 550 by dragging operand names from schema box 702
to various shelves 708 throughout the interface. These oper-
and names are derived from the hierarchical structure of each
selected database 558 that was characterized in step 602. For
example, one of the dimensions available for exploration in
the database could be “time.” Then, likely, operand names
available in schema box 702 would be “year”, “quarter”,
“month”, and “day”. Each of these operand names is referred
to as a type tuple. In some embodiments, more than one
database 602 is characterized in step 602. Further, specifica-
tion 550 can comprise a first element of the hierarchical
structure of a first database 558 characterized in step 602 and
a second element of the hierarchical structure of the second
database characterized in step 602. The first element com-
prises a type tuple that is derived from the first database 558
and the second element comprises a type tuple that is derived
from the second database 558.

[0079] Schema box 702 of FIG. 8 includes a representation
of the database schema for each of the one or more databases
558 being analyzed. Schema box 702 includes each dimen-
sion 704 represented in each schema 560 of each database 558
that is being analyzed. For example, in FIG. 8, a single data-
base that includes the dimensions “time” 704-1, “products”
704-2, and “location” 704-3 is analyzed. An ordered list of the
dimension’s levels is placed below each dimension. For
example, in the case of time 704-1, the ordered list includes
the dimension levels “year”, “quarter”, and “month”. In the
case of products, the ordered list includes the dimension
levels “productype” and “product”. In the case of location, the
ordered list includes the dimension levels “market” and
“state”.

[0080] A user can drop any dimension level into the inter-
face of shelves 708. However, the dimensions 704 cannot be
dragged into the shelves. Shelves 708-4 and 708-5 are the axis
shelves. The operands placed on shelves 708-4 and 708-5
(e.g., year, quarter, month, productype, product, market,
state) determine the structure of visual table 720 and the types
of graphs that are placed in each pane 722 of visual table 720.
For example, in FIG. 8, the value “sales”, which belongs to
the dimension “Productype” has been placed on shelf 708-4.
Therefore, the y-axis of visual table 720 is a breakdown of the
sales of each “productype”. Valid product types include “cof-

Sep. 19,2013

2 <

fee”, “espresso”, “herbal tea”, and “tea.” Thus, the y-axis of
visual table 720 represents the sale of each of these products.
In FIG. 8, the value “profit”, which belongs to the operand
“Quarter” (which is part of the dimension “time”) has been
placed on shelf 708-5. Thus, the x-axis of visual table 720
represents profit. Level of detail shelf 708-2 has been set to
state. Accordingly, each mark in each pane 722 in visual table
720 represents data for a particular state.

[0081] The configuration of operands on shelves 708 (FIG.
8) forms the visual specification 550 (FIG. 6). At a minimum,
avisual specification 550 includes an x-axis expression and a
y-axis expression. More typically, a visual specification 550
further includes a z-axis expression, which is placed on shelf
708-1, and a level of detail expression 708-2. An exemplary
visual specification includes the following expressions:

x:C*(A+B)
y:D+E

z:F

[0082] and the level of detail within each pane 722 is set to:
[0083] level of detail: G

[0084] Insomeembodiments, a user can specify any of the
algebra (e.g., ordinal concatenation, etc.) described in Sec-
tion 5.4 of copending U.S. patent application Ser. No. 10/453,
834, entitled “Computer Systems and Methods for the Query
and Visualization of Multidimensional Databases”, filed Jun.
2, 2003, which is hereby incorporated by reference in its
entirety. In some embodiments, a user types in the algebra
directly using a user interface such as the one illustrated in
FIG. 8, includes it in a file that is then interpreted, or uses
some other form of data entry known in the art.

[0085] Insomeembodiments, the each shelve 708 that rep-
resents an axis of visual table 720 is translated into corre-
sponding expressions in an automated manner. For example
the contents of the shelf 708 that represents the x-axis is
translated into an expression that represents the x-axis of
visual table 720, the shelf 708 that represents the y-axis is
translated into an expression that represents the y-axis of
visual table 720, and the shelf 708 that represents layers is
translated into an expression that represents the z-axis of
visual table 720. The contents of each axis shelve 708 is an
order list of database field names. In some embodiments, the
order of the database field names is constrained such that all
nominal and ordinal fields precede all quantitative fields in
the shelf. Exemplary nominal fields include, but are not lim-
ited to products, regions, account numbers or people. Exem-
plary ordinal fields include, but are not limited to dates or
priority rankings. Exemplary quantitative fields include, but
are not limited to profit, sales, account balances, speed or
frequency. In embodiments where the order of the database
field names is constrained such that all nominal and ordinal
fields precede all quantitative fields in the shelf 708, the
nominal fields are assigned an ordering and treated as ordinal.
This ordering is either a natural ordering (e.g., alphabetic,
numeric) or an ordering specified by the user. Then, the list of
fields in a respective shelf are transformed into an expression
of the form

(01%0; ... x0,)x(QxQ5 ... xQ,,)
[0086] In addition, if any two adjacent categorical fields
represent levels of the same dimension then the cross “x”
operator (see Section 5.4.2.2 of copending U.S. patent appli-

cation Ser. No. 10/453,834, entitled “Computer Systems and

US 2013/0246484 Al

Methods for the Query and Visualization of Multidimen-
sional Databases”, filed Jun. 2, 2003) between them is
replaced with a dot “” operator (see Section 5.4.2.4 of
copending U.S. patent application Ser. No. 10/453,834,
entitled “Computer Systems and Methods for the Query and
Visualization of Multidimensional Databases”, filed Jun. 2,
2003). The specification is used to map data values from a
database 558 to visual properties by visual interpreter module
556. Shelves labeled “Group in panes by” (not shown) and
“Sort in panes by” (708-3, FIG. 8) define the “Group” and
“Sort Order” components of the visual specification.

[0087] Insomeembodiments, the specification is written in
a language that is based on the metadata (e.g., hierarchical
structure) of the one or more databases 558 that were charac-
terized in step 602. Ata minimum, this language comprises all
or a portion of the dimension levels that make up the hierar-
chies of the one or more databases 558. Examples of dimen-
sion levels (e.g., year, quarter, month, etc.) have been
described. Typically, these dimensional levels are displayed
on user interface 524 as illustrated in FIG. 8. In some embodi-
ments, the language further includes a table algebra, such as
the algebra described in Section 5.4 of copending U.S. patent
application Ser. No. 10/453,834, entitled “Computer Systems
and Methods for the Query and Visualization of Multidimen-
sional Databases”, filed Jun. 2, 2003, that allows the user to
form complex visual tables comprised of one or more panes
722 (FIG. 8). In embodiments where the specification 550
makes use of the table algebra in the form of an algebraic
expression, the specification includes at least one operand. An
operand is a dimension level or a measure/quantitative vari-
able from the database schema (or other database metadata)
that has been selected for inclusion in the algebraic expres-
sion. In addition to the at least one operand, the algebraic
expression includes one or more operators that represent
operations on the metadata of the one or more databases 558
that were characterized in step 602. Examples of such opera-
tors include, but are not limited to, relational operators such as
cross product (Section 5.4.2.2 of copending U.S. patent appli-
cation Ser. No. 10/453,834, entitled “Computer Systems and
Methods for the Query and Visualization of Multidimen-
sional Databases™, filed Jun. 2, 2003), union, selection or
sorting. Other examples of operators include, but are not
limited to, the nest operator (Section 5.4.2.3 of copending
U.S. patent application Ser. No. 10/453,834, entitled “Com-
puter Systems and Methods for the Query and Visualization
of Multidimensional Databases”, filed Jun. 2, 2003) and the
dot operator (Section 5.4.2.4 of copending U.S. patent appli-
cation Ser. No. 10/453,834, entitled “Computer Systems and
Methods for the Query and Visualization of Multidimen-
sional Databases”, filed Jun. 2, 2003). The nest operator ana-
lyzes a fact table within a database whereas the dot operator
analyses a dimension table (or equivalent data structure) asso-
ciated with a database 558 that defines the database 558
hierarchy. Analysis of the fact table by the nest operator
(Section 5.4.2.3 of copending U.S. patent application Ser. No.
10/453,834, entitled “Computer Systems and Methods for the
Query and Visualization of Multidimensional Databases”,
filed Jun. 2, 2003) or the dimensional table (or equivalent data
structure) by the dot operator (Section 5.4.2.4 of copending
U.S. patent application Ser. No. 10/453,834, entitled “Com-
puter Systems and Methods for the Query and Visualization
of Multidimensional Databases”, filed Jun. 2, 2003) repre-
sents an operation on the hierarchical structure of the associ-
ated database 558. The operations and operators within the

Sep. 19,2013

algebraic expressions can be nested. For example, in one
embodiment, parentheses are used to alter the order in which
operators are considered.

[0088] Ina preferred aspectofthe present disclosure, visual
specification 550 organizes panes 722 into a plurality of rows
and a plurality of columns. In embodiments in accordance
with this aspect of the present disclosure, visual specification
550 includes a first algebraic expression for the plurality of
rows and a second algebraic expression for the plurality of
columns. Both the first algebraic expression and the second
algebraic expression each represent an operation on the meta-
data of a database 558 (e.g., hierarchical structure) that was
characterized in step 602. In some instances in accordance
with this aspect of the present disclosure, the specification
further organizes one or more panes 722 into a plurality of
layers. To accomplish this, the specification 550 further com-
prises a third algebraic expression for the plurality of layers.
The third algebraic expression represents an operation on the
metadata of one or more of the databases 558 that were
characterized in step 602. For example, the first two algebraic
expressions could cover revenue for all products whereas the
third algebraic expression could add the dimension “State”
such that each layer represents the revenue by product for
each state.

[0089] Using the methods of the present disclosure, each
visual specification 550 can be interpreted to determine the
exact analysis, query, and drawing operations to be performed
by system 500. In a preferred embodiment, drawing opera-
tions are performed independently in each pane 722 of visual
table 720.

[0090] Visual table 720 includes three axes. The x- and
y-axes are respectively determined by shelves 708-5 and 708-
4, as discussed above. The z-axis is determined by shelf 708-1
(FIG. 8). Each intersection of the x-, y-, and z-axis results in
a table pane 722. Each pane 722 contains a set of records,
obtained by querying a database 558, that are visually
encoded as a set of marks to create a visual table. While
shelves 708-1, 708-4, and 708-5 determine the outer layout of
visual table 720, other shelves 708 in display 700 determine
the layout within a pane 722. In some embodiments, this inner
layout includes the sorting and filtering of operands, the map-
ping of specific databases 558 to specific layers in the z-axis
of'visual table 720, the grouping of data within a pane 722 and
the computation of statistical properties and derived fields,
the type of graphic displayed in each pane 722 (e.g., circles,
bars, glyphs, etc.), and the mapping of data fields to retinal
properties of the marks in the visual tables (e.g., mapping
“profit” to the size of the mark and mapping “quarter” to
color).

[0091] Step 606. In step 606, a set of queries is formed by
data interpreter module 552 based on specification 550.
Before generating database specific queries, data interpreter
module 552 generates a set of one or more abstract query
descriptions 554 that describe the required queries using the
values specified in visual specification 550 (e.g., values
placed on shelves 708-1, 708-4, and 708-5). Query descrip-
tions 554 precisely describe the desired filtering, sorting, and
grouping of tuples or objects from database 558. As used here,
the term “objects” is a semantic derivation that uses one or
more fields form the database. For example, a FAVORITE_
CUSTOMERS object can be created from the CUSTOMERS
field filtered for PROFIT YIELD>5000 and STATE=CA,
WA, or WI.

US 2013/0246484 Al

[0092] The number of distinct query descriptions 554 that
are generated for a single visual specification 550 is deter-
mined by the level of detail specified in visual specification
550 as described in more detail in copending U.S. patent
application Ser. No. 10/453,834, entitled “Computer Systems
and Methods for the Query and Visualization of Multidimen-
sional Databases”, filed Jun. 2, 2003. In some embodiments,
the level of detail within a pane 722 in a visual table 720 is
determined by both the level of detail shelf 708-2 and the table
algebra expressions formed in shelves 708-1, 708-4, and
708-5 (FIG. 8).

[0093] Although it is possible for each pane 722 to corre-
spond to a different level of detail, and thus a different query,
the common situation is for a larger number of panes 722
(FIG. 8) to correspond to the same level of detail and differ
only by how the tuples are filtered. For efficiency, it is pre-
ferred to considered panes 722 that require the same level of
detail as a group and send a single query to a database 558
requesting the appropriate tuples. The tuples can then be
partitioned into panes 722 locally in subsequent processing
steps. Accordingly, in one aspect of the present disclosure,
database queries are grouped. In some embodiments, this is
accomplished by algebraically manipulating visual specifica-
tion 550 in order to determine the queries that are required for
a given visual table 720. Of all the algebraic operators used in
the algebra of the present disclosure (see, for example, Sec-
tion 5.4 of copending U.S. patent application Ser. No. 10/453,
834, entitled “Computer Systems and Methods for the Query
and Visualization of Multidimensional Databases”, filed Jun.
2, 2003), the operator that can produce adjacent panes 722
with differing projections or level of detail is the concatenate
operator. Nest, cross, and dot, described in more detail in
Section 5.4 of copending U.S. patent application Ser. No.
10/453,834, entitled “Computer Systems and Methods for the
Query and Visualization of Multidimensional Databases”,
filed Jun. 2, 2003, include all input dimension levels in each
output p-tuple. Concatenate does not. Thus, if each axis
expression in the visual specification 550 is reduced to a
sum-of-terms form, the resulting terms will correspond to the
set of queries that need to be retrieved from one or more
databases 558.

[0094] To illustrate the sum-of-terms reduction of each
axis, consider exemplary visual specification 550:

x:C*(A+B)
y:D+E
z:F

and the level of detail within each pane 722 is set to G.

[0095] Crossing these expressions, in accordance with the
table algebra specified in Section 5.4 of copending U.S.
patent application Ser. No. 10/453,834, entitled “Computer
Systems and Methods for the Query and Visualization of
Multidimensional Databases”, filed Jun. 2, 2003, and then
reducing to a sum-of-terms form yields:

(A*C*D*F*G)+(A*C*E*F*G)+(B*C*D*F*G)+

(B*C*E*G)
[0096] Thus, in this example, the following four database
queries are made:
(A*C*D*F*QG) Query 1
(A*C*E*F*G) Query 2

Sep. 19,2013

(B*C*D*F*G) Query 3
(B*C*E*G) Query 4
[0097] Most typical multidimensional query languages

provide a mechanism for generating queries of the form found
in queries 1-4. For example, each of queries 1-4 can be a
single multidimensional expressions (MDX) query. MDX
(Microsoft, Redmond Wash.), is a syntax that supports the
definition and manipulation of multidimensional objects and
data. MDX is similar to the structured query language (SQL)
syntax, but is not an extension of the SQL language. As with
an SQL query, each MDX query requires a data request (SE-
LECT clause), a starting point (FROM clause), and a filter
(WHERE clause). These and other keywords provide the
tools used to extract specific portions of data from a hierar-
chical database (e.g., a cube) for analysis. In summary, each
query can map to a relational algebra operator such as an SQP
query or to a data cube query (e.g., an MDX query).

[0098] Now that an overview of how visual specification
550 is reduced to an set of queries has been presented, a
detailed algorithm used in one embodiment of the present
disclosure will be described. The algorithm is set forth in the
following pseudo code:

101: x-terms = List of terms from the sum-of-terms form of the x-axis
expression

102: y-terms = List of terms from the sum-of-terms form of the y-axis
expression
103: z-terms = List of terms from the sum-of-terms form of the z-axis
expression

104: for each layer {

105: for each x-term in x-terms {

106: for each y-term in y-terms {

107: for each z-term in z-terms {

108: p-lookup = PaneLookupDescriptor(x-term, y-
term, z-term)

109: p-spec = The PaneSpecification that applies
to p-lookup

110: qd = new QueryDescription

111: Add to qd all fields in x-term

112: Add to qd all fields in y-term

113: Add to qd all fields in z-term

114: Add to qd all level of detail fields in p-spec

115: Add to qd all drawing order fields in p-spec

116: Add to qd all encoding fields in p-spec

117: Add to qd all selection (brushing/tooltips)
fields in p-spec

118: Add to qd all filters in the visual specification
involving the fields in qd

119: if (qd matches data in data-cache)

120: results = retrieve data from data-cache

121: else

122: results = retrieve data from database server

123: add results to data-cache indexed by qd

124: group-tsf = create GroupingTransform

125: run group-tsf

126: Add each output data structure from group-tsf
to pane-data-cache } } } }

[0099] Lines 101 through 103 of the pseudo code represent

the case in which each axis of visual specification 550 is
reduced to the sum-of-terms. Then, lines 104 through 107 are
used to individually consider each of the terms i. Individually,
each term i describes either a set of rows, a set of columns, or

US 2013/0246484 Al

a set of layers in visual table 720. Together, the terms define a
set of panes 722 that are all at the same level of detail 708-6
(FIG. 7). Thus, lines 104 through 107 can be read as “for each
x-term, y-term, z-term combination”.

[0100] Lines 108 and 109 are used to find the pane speci-
fication, which defines the marks, encodings, etc., for the
panes 722 defined by a particular x-term, y-term, z-term
combination. This is done by testing p-lookup against the
selection criteria predicate in each pane specification in the
visual specification.

[0101] Lines 110 through 118 build a query for the particu-
lar x-term, y-term, z-term combination. Line 110 creates the
variable “qd” to hold the query and lines 111 through 113
adds all the fields in the x-term, the y-term, and the z-term in
the particular x-term, y-term, z-term combination. Lines 114
through 118 add additional terms from visual specification
550, such as level of detail, to the query.

[0102] Next, in lines 119 through 122, a determination is
made as to whether a query of the form built by lines 110
through 118 already exists in the data-cache (query cache
555, FIG. 6). If so, the result is retrieve from the data cache
(line 120, from query cache 555, FIG. 6). If not, the server that
hosts the target database 558 is queried (line 122) using the
query built by lines 110 through 118. If such a database query
is made, data interpreter module 552 will formulate the query
in a database-specific manner. For example, in certain
instances, data interpreter module 552 will formulate an SQL
query whereas in other instances, data interpreter module 552
will formulate an MDX query. In line 123, the results of the
query is added to the data-cache (to query cache 555, FIG. 6).
[0103] The data retrieved in the processing steps above can
contain data for a set of panes 722. When this is the case, the
data is partitioned into a separate data structure for each pane
722 using a grouping transform (lines 124-125) that is con-
ceptually the same as a “GROUP BY” in SQL except separate
data structures are created for each group rather than perform-
ing aggregation. In line 126, each output data structure from
group-tsf is added to pane-data-cache 557 (FIG. 6) for later
use by visual interpreter module 556.

[0104] Step 608. In step 608, the queries developed in step
606 are used to query one or more databases 558. Such
databases 558 can be stored in memory 548. However, in a
more preferred embodiment, these databases 558 are stored in
a remote server.

[0105] Step 610. In step 610, visual interpreter module 556
processes queries that have been generated by data interpreter
module 552. A number of steps are performed in order to
process these queries. An overview of these steps is illustrated
in FIG. 9. In step 612, visual specification 550 is reduced to a
normalized set form 1104. In step 614, visual table 720 is
constructed using the normalized set form. In step 616, the
query results are partitioned into tuples corresponding to the
panes 722 in visual table 720. Each of these steps will now be
described in further detail so that the advantages of the
present disclosure can be appreciated.

[0106] Step 612—reduction of the visual specification to
the normalized set form. In step 604, visual specification 550
was obtained by user interface module 546. The visual speci-
fication 550 comprises the values of shelves 708 that have
been populated by the user. In step 612, visual specification
550 is used to construct algebraic expressions that define how
visual table 720 is partitioned into rows, columns, and layers,
and additionally defines the spatial encodings within each
pane 722 of visual table 720. In this way, visual specification

Sep. 19,2013

550 organizes one or more panes 722 into a plurality of rows
and a plurality of columns. In some embodiments, the plural-
ity of rows and plurality of columns is hierarchically orga-
nized. Further, in some embodiments specification 550 also
organizes the one or more panes 722 into a plurality of layers
that are optionally hierarchically organized. Further still, in
some embodiments, the specification organizes the one or
more panes 722 into separate pages that are optionally hier-
archically organized.

[0107] A complete algebraic expression of visual table 720
is termed a “table configuration.” In other words, in step 612,
the three separate expressions of visual specification 550 that
respectively define the x, y, and z axes of visual table 720 are
normalized to set form (set interpreted) in order to partition
the row, columns and layers of visual table 720. To produce
the normalized set form, each operand in the three separate
expressions is evaluated to set form. The operators in each
expression define how to evaluate each set within an expres-
sion. Thus, normalization to set form results in a single set
(the normalized set form), where each element in the normal-
ized set form corresponds to a single row, column, or layer of
visual table 720. In some embodiments, this normalization
process is extended to yet another dimension, terms “pages”.
[0108] Recall that each expression in the three separate
expressions of visual specification 550 that define the x, y, and
7 axis are drawn from operands (e.g., fields) in the database
schema. The algebra used to produce the normalized set form
characterizes each of the operands in a database schema (or
some other representation of database structure) into two
types: dimension levels and measure. Whether an operand is
a dimensional level or a measure depends on the type of the
operand. The set interpretation of an operand consists of the
members of the order domain of the operand. The set inter-
pretation of the measure operand is a single-element set con-
taining the operand name. For example, the set interpretation
of the “Profit” operand is {Profit}.

[0109] The assignment of sets to the different types of
operands reflects the difference in how the two types of oper-
ands are encoded into the structure of visual table 720.
Dimensional level operands partition the table into rows and
columns, whereas measure operands are spatially encoded as
axes within table panes. A valid expression in the algebra used
in the present disclosure is an ordered sequence of one or
more operands with operators between each pair of adjacent
operands. The operators in this algebra, in order of prece-
dence are cross (x), nest (/), and concatenation (+). Parenthe-
ses can be used to alter the precedence. Because each operand
is interpreted as an ordered set, the precise semantics of each
operator is defined in terms of how they combine two sets
(one each from the left and right operands) into a single set.
[0110] Thus, every expression in visual specification 550
can be reduced to a single set, with each entry in the set being
an ordered concatenation of zero or more dimension level
values followed by zero or more measure operand names. For
example, the normalized set form of the expression “monthx
profit” is {(January, Profit), (February, Profit), . . . , (Decem-
ber, Profit) }. The normalized set form of an expression deter-
mines one axis of visual table 720. The table axis is
partitioned into columns (or rows or layers) so that there is a
one-to-one correspondence between columns and entries in
the normalized set.

[0111] Now that an overview of step 612 has been
described, an example will be given. Consider the exemplary
visual specification 550 of FIG. 9:

US 2013/0246484 Al

x:C*(A+B)
y:D+E
z:F

[0112] Computation of the normalized set form of this
visual specification, in accordance with step 612 provides:

x:{(cpar) ... by}

y{(dp, - die), - - - s(en)}

z{(f),... ()}

[0113] Advantageously, the algebraic formalisms of the
present disclosure can make use of an operator, termed the dot
operator, that is specifically designed to work with dimension
levels. Thus, the algebraic formalisms provide direct support
for the use and exploration of database hierarchy in the
present disclosure. One of the advantages of the dot operator
is that it can deduce hierarchical information without analyz-
ing database fact tables.

[0114] Step 614—construction of visual table 720 using the
normalized set form. In step 614 (FIG. 7, FIG. 9), visual
interpreter 556 constructs visual table 720 using the normal-
ized set form of the expressions for the x, y, and z-axis
obtained from visual specification 550. Each element in the
normalized set form of the expressions for the x, y, and z-axis
corresponds to a single row, column or layer.

[0115] FIG. 10 illustrates the configuration for a visual
table 720 that has been generated from the normalized set
form of a visual specification. FIG. 10 displays Profit infor-
mation for the coffee chain data set (COFFEE). The y-axis is
defined by the expression Profit+(MarketxProductType) and
the x-axis is defined by the expression (Quarter/Month). The
z-axis is not illustrated in FIG. 10.

[0116] Asillustrated in FIG. 10, expressions 1202 and 1204
are composed of operands connected by operators. Each
operand is evaluated to a mathematical sequence of p-tuples
(the set interpretation). A mathematical sequence is an
ordered list of elements that allows duplicate members. The
operators between each operand define how to combine two
sequences. Thus, each expression can be interpreted as a
single sequence (the normalized set form), where each ele-
ment in the sequence corresponds to a single row, column, or
layer.

[0117] Insomeembodiments, the normalized set form gen-
erated in step 612 is more formally defined as p-entries and
p-tuples. The set interpretation of an operand is a finite (pos-
sibly empty) sequence of heterogeneous p-tuples. Each
p-tuple in a set interpretation defines a row (or column or
layer) of visual table 720. In other words, each p-tuple maps
to a row, a column, or a layer in visual table 720. A p-tuple is
afinite sequence of p-entries. A single p-tuple defines a single
row (or column or layer). The entries of a p-tuple define the
spatial encoding (axis) within the row and the selection cri-
teria on the fact table of a database 558. A p-entry is an
ordered “tag-value” pair where the tag defines the meaning
and possible values of the value member of the pair. A p-entry
will be written as tag:value; e.g., field:Profit. A tag can be a
field, constant, or field name, as discussed in further detail in
Section 5.4 copending U.S. application Ser. No. 10/453,834,
entitled “Computer Systems and Methods for the Query and
Visualization of Multidimensional Databases”, attorney
docket number 11311-004-999, filed Jun. 2, 2003. In some
embodiments, the panes 722 of the row, column, or layer to

Sep. 19,2013

which an ordered set of tuples (p-tuple) is mapped are ordered
within the row, column, or layer in visual table 720 in the
same order that is presented in the p-tuple.

[0118] Insummary, each axis of visual table 720 is defined
by an expression from visual specification 550 that has been
rewritten in normalized set form. The cardinality of this nor-
malized set determines the number of rows (or columns or
layers) along the axis, with the exception of when the nor-
malized set is the empty sequence. In a preferred embodi-
ment, when the normalized set is an empty sequence, a single
row or column is created rather than zero rows or columns.
Each p-tuple within the normalized set defines a row (or
column or layer). The p-entries within each p-tuple define
both a selection criterion on the database 558 fact table,
selecting tuples to be displayed in the row, and the spatial
encoding in the row, defining the positions of the graphical
marks used to visualize the database tuples.

[0119] Insome embodiments visual table 720 is presented
as a web interface. In some embodiments, all or portions of
user interface module 546 are run and displayed on a remote
user computer in order to facilitate the presentation of visual
table 720 as a web interface.

[0120] Step 616—partition query results into tuples corre-
sponding to panes 722 in visual table 720. In step 616 (FIG. 7,
FIG. 9) visual interpreter module 556 processes query results
that are returned by data interpreter module 552. These query
results are referred to as tuples. In some embodiments of the
present disclosure visual interpreter module 556 performs the
following algorithm:

201: x-set = compute normalized set form of x-axis expression
202: y-set = compute normalized set form of y-axis expression
203: z-set = compute normalized set form of z-axis expression
204: for each x-entry in x-set {

205: for each y-entry in y-set {

206: for each z-entry in z-set {

207: p-lookup = new PaneLookupDescriptor(x-entry, y-
entry, z-entry)

208: p-spec = The PaneSpecification that applies to p-
lookup

209: create the pane graphic

210: create the primitive object for rendering tuples

211: create the encoding objects for the visual properties
and add to primitive

212: create the per-pane transform that sorts tuples into
drawing order

213: retrieve the data from the pane-data-cache using p-
lookup

214: bind the data from the pane-data-cache using
p-lookup

215: bind the pane to the data } } }

[0121] Lines 201 through 203 are performed in step 612

(FIG. 7). Lines 204 through 206 are a triple “for” loop to
individual consider each pane 722 in visual table 720. For
each pane 1, lines 207-214 are performed.

[0122] Inlines 207 and 208, the pane specification for pane
iis located. The pane specification is ultimately derived from
visual specification 550. The pane specification for pane i
defines the mark, encodings, etc., for the pane.

[0123] In lines 209-212, the pane graphic of pane i is cre-
ated using the pane specification that applies to panei. In line
210, primitive objects for rendering tuples within pane 1 is
created. An example of a pane primitive object is a bar in a bar
chart. In line 211, the encoding objects for the visual proper-
ties of each respective primitive object created in line 210 are

US 2013/0246484 Al

created and added to the corresponding primitive objects.
Exemplary encoding objects in the case of a bar are color and
size of the bar. In line 212, the per-pane transform that sorts
tuples into drawing order is applied. In other words, the
per-pane transform is used to describe how tuples will be
displayed in pane i.

[0124] In line 213, the data for pane i is retrieved from
pane-data-cache 557 using p-lookup. In lines 214-215, the
data (e.g., a subset of the set of tuples that were retrieved from
a query of database 558) for pane i is bound to pane i. In this
way, data from a query of database 558 is bound to visual
table 720 by visual interpreter module 556.

[0125] Inotherwords, inlines 209-212 a tuple in a subset of
tuples associated with pane i is encoded as a graphical mark.
In some instances the tuple in the subset of tuples comprises
a field that is then mapped to a graphical attribute (e.g., a
color, a value, a size, a shape, a phrase, or a symbol). In some
embodiments the field is classified as quantitative or ordinal
and (1) when the field is classified as quantitative, it is mapped
to a first graphical attribute and (ii) when the field is classified
as ordinal it is mapped to a second graphical attribute. In some
embodiments the field is classified as independent or depen-
dent and (i) when the field is classified as independent, it is
mapped to a first graphical attribute and (ii) when the field is
classified as dependent it is mapped to a second graphical
attribute. The first and second attribute are each indepen-
dently a color, a value, a size, a shape, a phrase or a symbol.
[0126] In some embodiments, the subset of tuples associ-
ated with pane i is determined by a selection function. Insome
embodiments, the selection function uses an identity of a
schema field that is present in the metadata of the database
558 characterized in step 602 to form the subset of tuples. For
example, the specification may assign all tuples that belong to
a specific schema field type to pane i. In some embodiments,
the selection function uses a relational operator (e.g., a selec-
tion operator or a grouping operator) to form the subset of
tuples associated with pane i. Further, the ordering of rows
and columns in visual table 720 can be controlled and filtered
as well.

[0127] The algorithm described in lines 201 through 215
assumes that each query of 558 is available in a pane-data-
cache 557. Recall that an important advantage of the present
disclosure is that queries are typically grouped across several
panes. Thus, queries need to be partitioned into a separate
table for each pane and then placed in the pane-data-cache
557. While the present disclosure imposes no limitation on
which software module performs this grouping transforma-
tion, in one embodiment of the present disclosure, the group-
ing transformation is performed by data interpreter module
552 as part of a generalized algorithm for querying databases
558. See, for example, the algorithm described in step 606,
above.

[0128] Insomeembodiments ofthe present disclosure, step
608 returns a set of tuples. Next, in step 610 a new tuple is
derived from the set of tuples. This new tuple is then incor-
porated into the set of tuples for possible association with one
or more panes 722 in the graphic that is specified by visual
specification 550. In some instances a relational operator
(e.g., a sorting operator, an aggregation operator, or a trans-
forming operator) is used to create the new tuple. An example
of this is an additional transformation that is performed to
augment the query language. For example, it is known that an
MDX query can easily aggregate all twelve months of a year
into year total and then, say, aggregate multiple years into a

Sep. 19,2013

multi-year total because this aggregation occurs up and down
the hierarchy. But MDX cannot easily aggregate across a
hierarchy (e.g., the totals for all Januaries regardless of the
year). The present disclosure allows for aggregation across a
hierarchy by applying one or more local transformations to a
set of returned tuples (e.g., a set of tuples returned from one or
more MDX queries). For example, in order to obtain totals for
all Januaries regardless of year, one or more MDX queries are
made to obtain the relevant tuples and then the month of
January is aggregated across respective years in the MDX
query results.

[0129] Insomeembodiments ofthe present disclosure, step
608 returns a set of tuples. A group is formed using all or a
portion of the tuples in the set of tuples. Then a graphic based
on the group is formed. Such embodiments are useful in
instances where a multi-pane graphic is constructed.
Examples of such graphics include a line that connects each
tuple in a group or an area that encloses each tuple in the
group.

[0130] In some embodiments, specification 550 organizes
one or more panes 722 into a plurality of layers and each layer
in the plurality of layers is assigned a tuple from a different
database 558 that was characterized in step 602. In some
embodiments, the specification 550 organizes one or more
panes 722 into a plurality of columns and a plurality of rows
and each column in the plurality of columns is assigned a
tuple from a different database 558 that was characterized in
step 602. In still other embodiments, the specification orga-
nizes the one or more panes into a plurality of columns and a
plurality of rows and each row in the plurality of rows is
assigned to a tuple from a different database 558 that was
characterized in step 602. In still further embodiments, the
specification organizes the one or more panes into a plurality
of'pages and each page in the plurality of pages is assigned to
atuple from a different database 558 that was characterized in
step 602.

[0131] An overview of the steps performed in accordance
with one embodiment of the present disclosure has been
provided. The present disclosure is highly advantageous
because it takes advantage of the underlying hierarchy of one
or more target database 558 in order to allow a user to more
efficiently explore databases 558. A user can rapidly drill
down hierarchical layers within each target database 558. For
example, in one embodiment of the present disclosure, the
interface includes a “¥”” icon 708-6 (FIG. 7). When the user
presses the “¥”” icon 708-6, the user is presented with a listing
of all the levels of the dimension (including diverging levels
in complex dimensional hierarchies in the target databases).
When a new level is selected, this is interpreted as a drill down
(or roll up) operation along that dimension and the current
level is automatically replaced with the selected level (with
the same qualification). Thus, the present disclosure allows
the user to rapidly move between different levels of detail
along a dimension, refining the visual specification 550 as the
user navigates. At each level, the present disclosure forms
efficient database queries using the novel table algebra of the
present disclosure. Another advantage of the present disclo-
sure is that a subset of tuples associated with a pane in step
616 can be used as a visual specification 550 in a new iteration
of'steps 605 through 616. For example, the user can select one
or more tuples in the subset of the tuples associated with the
pane as a basis for a new specification. Then, steps 606
through 616 can be repeated using the new specification. Still
another advantage of the present disclosure is that each speci-

US 2013/0246484 Al

fication 550 can be expressed in a form that can be stored for
later usage. Storage of specifications 550 allow for services
such as the bookmarking of favored specifications as well as
support for specification “undo” and “redo”. In a specification
“undo”, for example, the specification 550 that was used in a
previous instance of step 604 is obtained and used to perform
steps 606 through 616.

5.3 lustrative Types of Database Hierarchy and
Database Organization

[0132] The present disclosure provides visualization tech-
niques for the exploration and analysis of multidimensional
analytic data stored in databases 558. One form of databases
558 is a data warehouse. Data warehouses are typically struc-
tured as either relational databases or multidimensional data
cubes. In this section, aspects of relational databases and
multidimensional data cubes that are relevant to the present
disclosure are described. For more information on relational
databases and multidimensional data cubes, see Berson and
Smith, 1997, Data Warehousing, Data Mining and OLAP,
McGraw-Hill, New York; Freeze, 2000, Unlocking OLAP
with Microsoft SQL Server and Excel 2000, IDG Books
Worldwide, Inc., Foster City, Calif.; and Thomson, 1997,
OLAP Solutions: Building Multidimensional Information
Systems, Wiley Computer Publishing, New York. In addition,
it will be appreciated that in some embodiments database 558
does not have a formal hierarchical structure. In such embodi-
ments, hierarchical structure for the database is derived by
analyzing the database using user interface module 544.

5.3.1 Data Organization

[0133] Databases have typically been used for operational
purposes (OLTP), such as order entry, accounting and inven-
tory control. More recently, corporations and scientific
projects have been building databases, called data ware-
houses or large on-line analytical processing (OLAP) data-
bases, explicitly for the purposes of exploration and analysis.
The “data warehouse” can be described as a subject-oriented,
integrated, time-variant, nonvolatile collection of data in sup-
port of management decisions. The key aspect of the data
warehouse is that it is a repository for analytic data rather than
transactional or operational data. The data contained in the
data warehouse usually represents historical data, e.g., trans-
actions over time, about some key interest of the business or
project. This data is typically collected from many different
sources such as operational databases, simulations, data col-
lection tools (e.g., tqdump), and other external sources.
[0134] Data warehouses are built using both relational
databases and specialized multidimensional structures called
data cubes. In this subsection, the organization of the data
within these databases, such as the database schemas, the use
of semantic hierarchies, and the structure of data cubes, is
explained. In the next subsection, the difference between the
organization of OLAP databases and OLTP databases is
described.

5.3.2 Relational Databases

[0135] Relational databases organize data into tables where
each row corresponds to a basic entity or fact and each column
represents a property of that entity. For example, a table may
represent transactions in a bank, where each row corresponds
to a single transaction, and each transaction has multiple
attributes, such as the transaction amount, the account bal-

Sep. 19,2013

ance, the bank branch, and the customer. The table is referred
to as a relation, a row as a tuple, and a column as an attribute
orfield. The attributes within a relation can be partitioned into
two types: dimensions and measures. Dimensions and mea-
sures are similar to independent and dependent variables in
traditional analysis. For example, the bank branch and the
customer would be dimensions, while the account balance
would be a measure. A single relational database will often
describe many heterogeneous but interrelated entities. For
example, a database designed for a coffee chain might main-
tain information about employees, products, and sales. The
database schema defines the relations (tables) in a database,
the relationships between those relations, and how the rela-
tions model the entities of interest.

5.3.3 Hierarchical Structure

[0136] Most dimensions in a databases have a hierarchical
structure. This hierarchical structure can be derived from the
semantic levels of detail within the dimension or generated
from classification algorithms. The systems and methods of
the present disclosure use these hierarchies to provide tools
that an analyst can use to explore and analyze data at multiple
levels of detail calculated from the fact table. For example,
rather than having a single dimension “state”, a hierarchical
dimension “location” that has three levels, one each for coun-
try, state, and county, can be used. Then, the analyst can
aggregate the measures of interest to any of these levels. The
aggregation levels are determined from the hierarchical
dimension, which is structured as a tree with multiple levels.
The highest level is the most aggregated and the lowest level
is the least aggregated. Each level corresponds to a different
semantic level of detail for that dimension. Within each level
of'the tree, there are many nodes, with each node correspond-
ing to a value within the domain of that level of detail of that
dimension. The tree forms a set of parent-child relationships
between the domain values at each level of detail. These
relationships are the basis for aggregation, drill down, and roll
up operations within the dimension hierarchy. FIG. 1 illus-
trates the dimension hierarchy for a Time dimension. Simple
hierarchies, like the one shown in FIG. 1, are commonly
modeled using a star schema. The entire dimensional hierar-
chy is represented by a single dimension table. In this type of
hierarchy, there is only one path of aggregation. However,
there are more complex dimension hierarchies in which the
aggregation path can branch. For example, a time dimension
might aggregate from Day to both Week and Month. These
complex hierarchies are typically represented using the snow-
flake schema, as described in Section 2, which uses multiple
relations (tables) to represent the diverging hierarchies.

5.3.4 Data Cubes

[0137] A data warehouse can be constructed as a relational
database using either a star or snowflake schema and will
provide a conceptual model of a multidimensional data set.
However, the typical analysis operations such as summaries
and aggregations are not well supported by the relational
model. The queries are difficult to write in languages such as
SQL and the query performance is not ideal. As a result,
typically, the fact tables and dimension tables are not used
directly for analysis but rather as a basis from which to con-
struct a multidimensional database called a data cube.

[0138] Each axis in the data cube corresponds to a dimen-
sion in the relational schema and consists of every possible

US 2013/0246484 Al

value for that dimension. For example, an axis corresponding
to states would have fifty values, one for each state. Each cell
in the data cube corresponds to a unique combination of
values for the dimensions. For example, if there are two
dimensions, “State” and “Product”, then there would be a cell
for every unique combination of the two, e.g., one cell each
for (California, Tea), (California, Coffee), (Florida, Tea),
(Florida, Coftee), etc. Each cell contains one value per mea-
sure of the data cube. So if product production and consump-
tion information is needed, then each cell would contain two
values, one for the number of products of each type consumed
in that state, and one for the number of products of each type
produced in that state. FIG. 11 illustrates a data cube for a
hypothetical nationwide coffee chain data warehouse. Each
cell in the data cube summarizes all measures in the base fact
table for the corresponding values in each dimension.
[0139] Dimensions within the data warehouse are often
augmented with a hierarchical structure. The systems and
methods of the present disclosure use these hierarchies to
provide tools that can be used to explore and analyze the data
cube at multiple meaningful levels of aggregation. Each cell
in the data cube then corresponds to the measures of the base
fact table aggregated to the proper level of detail. If each
dimension has a hierarchical structure, then the data ware-
house is not a single data cube but rather a lattice of data
cubes, where each cube is defined by the combination of a
level of detail for each dimension (FIG. 12). In FIG. 12, the
hierarchical structure of each dimension (time, product, loca-
tion) defines the lattice of cubes. Within the lattice, each cube
is defined by the combination of a level of detail for each
dimension. The cubes at the bottom of the lattice contain the
most detailed information whereas the cubes at the top of the
lattice are the most abstract.

5.3.5 OLAP Versus OLTP

[0140] The previous section described how both relational
databases and data cubes could be organized and used for
analytical purposes (OLAP). Traditionally, however, rela-
tional databases have been used for day-to-day operational
purposes. These OLTP databases address different issues than
OLAP databases or data warehouses and, as a result, have
schemas and usage patterns that are quite different. It is nec-
essary to understand the differences between these two types
of databases in order to understand the issues affecting the
design of OLAP visualization tools.

[0141] OLTP databases are optimized for performance
when processing short transactions to either query or modify
data, possibly interfacing with more then one system and
supporting many simultaneous connections. Furthermore,
query performance is typically secondary to issues like avoid-
ing data redundancy and supporting updates. Typical OLTP
queries retrieve a few dozen tuples from only a few relations
and then update some of the tuples. For example, a typical
query might retrieve a single customer’s record based on their
account number, or add a single transaction to a sales relation
when a sale occurs. Database schema definitions for opera-
tional databases focus on maximizing concurrency and opti-
mizing insert, update, and delete performance. As a result, the
schema is often normalized, resulting in a database with many
relations, each describing a distinct entity set.

[0142] In contrast, rather than being used to maintain
updateable transaction data, users need to be able to interac-
tively query and explore OLAP databases. The queries for
OLAP are very different in that they typically retrieve thou-

Sep. 19,2013

sands of rows of information and modify none of them. The
queries are large, complex, ad hoc, and data-intensive.
Because an operational schema separates the underlying data
into many relations, executing these analytical queries on a
database based on an operational schema would require many
expensive join computations. Since analysis databases are
typically read-only, and because query performance is the
primary concern, OLAP databases sacrifice redundancy and
update performance to accelerate queries, typically by denor-
malizing the database into a very small number of relations
using a star or snowflake schema. External tools can typically
view an OLAP database as either a data cube or a single large
relation (table).

5.3.6 Multidimensional Analysis Operations

[0143] In some embodiments database 558 is typically
quite large, comprising many dimensions each with hierar-
chical structure and often many members. To navigate the
resulting lattice of data cubes and perform dimensional
reduction to extract data for analysis, there are a number of
multidimensional analysis operations that are used. This sec-
tion describes such operations.

[0144] Drill down refers to the process of navigating
through the lattice of data cubes in the direction of more
detail. It is the technique used to break one piece of informa-
tion into smaller and more detailed parts. Roll up is the
inverse of drill down, aggregating detailed data into coarser
elements. Projection (illustrated in FIG. 13) reduces the
dimensionality of an n-dimensional data cube to (n-1) by
aggregating across a dimension. For example, in FIG. 13, the
first projection summarizes across “Location”, reducing the
3-dimensional cube to a 2-dimensional cube.

[0145] Where projection reduces dimensionality via aggre-
gation, slicing (illustrated in FIG. 14) reduces dimensionality
by filtering a dimension to a single value. In other words, one
dimension is held constant to generate a slice across that
dimension. In the example illustrated in FIG. 14, a two-
dimensional slice corresponding to data for “Qtr 2” has been
taken from the “Time” dimension.

5.3.7 Data Characterization for Visualization

[0146] Having described how the OLAP data used by some
embodiments of the present disclosure is organized, addi-
tional data characterization used to support some visualiza-
tion processes of the present disclosure is now presented. For
the purposes of visualization, more about an attribute than is
usually captured by a database system is needed. Databases
typically provide limited information about a field, such as its
name, whether a field is a dimension or measure, and its type
(e.g., time, integer, float, character).

[0147] In some embodiments of the present disclosure, a
determination is made as to whether a database field (oper-
and) is nominal, ordinal, or quantitative in order to determine
how to encode the field in a visual table using visual proper-
ties. Representative visual properties include, but are not
limited to, color, size, or position. This includes regular black
text appearing in tables like Pivot Tables. This characteriza-
tion is based on a simplification of Stevens’ scales of mea-
surement. See Stevens, 1946, Science 103, pp. 677-680. In
some embodiments, this characterization is further simplified
depending on if the context emphasizes the difference
between discrete data and continuous data or if the context
emphasizes whether the field has an ordering. In one example,

US 2013/0246484 Al

when encoding a field spatially, the emphasis is on whether a
field has discrete values. Furthermore, when a field is
assigned to an axis, it has an ordering. Thus, in this context,
nominal fields that do not normally have an ordering are
assigned one and then treated as an ordinal field in some
embodiments of the present disclosure. The resulting charac-
terization is called categorical. In contrast, when assigning
visual properties such as color to a field, the important distin-
guishing characterization is order. In this context, the ordinal
and quantitative fields are treated as a single characterization
and nominal fields are considered separately, in some
embodiments of the present disclosure. In addition, attributes
have associated units and semantic domains. For example,
attributes can encode time, geographic units such as latitude,
or physical measurements. If this information is available, it
can also be used to generate more effective visual encodings
and aid in determining the geometry (e.g., aspect ratio) of a
visual table 720. For example, knowing that the x and y axis
of a visual table 720 correspond to latitude and longitude,
rather than profit and sales, will affect the determination of the
appropriate geometry.

[0148] Databases also typically only store the current
domain of a field (e.g., the values that currently exist within
the database) without any ordering. However, for analysis it is
important to understand the actual domain of a field, such as
the possible values and their inherent (if applicable) ordering.
To encode an attribute as an axis of a visual table 720, all
possible values and their ordering need Ser. No. 10/453,834
so that an indication of when data is missing can be made and
to present data within its semantic context rather than using
some arbitrary ordering, e.g., alphabetic. In some embodi-
ments, this additional data characterization is captured in an
attribute file 580 (e.g., an XML document) that is associated
with database 558 (FIG. 6).

5.3.8 Layers

[0149] Inthe present disclosure a layer in a visual table 720
is a single x-y table whose structure is defined by the x- and
y-axes expressions. Every layer in a specification is compos-
ited together back-to-front to form the final visualization. A
single visualization can combine multiple data sources. Each
data source is mapped to a distinct layer or set of layers. While
all data sources and layers share the same configuration for
the x- and y-axes of the table, each data source can have a
different expression (the z-axis) for partitioning its data into
layers. Layering of multiple data sources and the partitioning
oflayers is illustrated in FIG. 15. In some embodiments of the
present disclosure, each data source in a visualization is
mapped to a distinct layer. The layers for a data source can be
partitioned into additional layers by the z-axis expression for
that data source. All the layers in a specification are compos-
ited together back-to-front to form the final visualization.

[0150] Constant operands are an important aspect of layer-
ing. A single visualization can be composed of multiple het-
erogeneous databases 558, each mapped to a distinct layer,
and all layers must share the same expressions for the x- and
y-axes. However, sometimes it is desirable to include ordinal
fields in the x- and y-axes expressions that exist in only a
subset of'the visualized databases. When this occurs, constant
operands are generated for the other layers with a predefined
set interpretation that matches the domain of the ordinal field
in the layer in which the field does appear, Thus, the expres-
sions can be properly evaluated for each layer.

Sep. 19,2013

[0151] The z-axis expression for a data source is more
constrained than the expressions for the x and y-axes. Spe-
cifically, since layering must be discrete, a z-axis expression
can contain only ordinal operands; not quantitative operands.
In other words, a z-axis expression is constrained to the
Oexpr, production rule in the grammar of the present disclo-
sure.

5.3.9 Conceptual Data Flow

[0152] At this point, it is useful to consider the conceptual
data flow in accordance with one embodiment of the present
disclosure. As well as defining visual table 720 structure, the
algebraic expressions of the visual specification (formed on
shelves 708-1, 708-4, and 708-5) define which tuples of the
database 558 should be selected and mapped into each pane
722. When a specification is interpreted, one or more queries
are generated to retrieve tuples from the database (FIG. 7, step
608; F1G. 16, step 1802). The resulting tuples are partitioned
into layers and panes (FIG. 16, step 1804). Then, tuples
within each pane are grouped, sorted and aggregated (FIG.
16, step 1806). Once the tuples have been sorted into panes
722, they are then mapped to graphic marks to generate a
perceivable display (FIG. 16, step 1808).

5.4 Spreading a Dimension Across Multiple Axes

[0153] Another aspect of the present disclosure provides a
method of forming a visual plot. In some embodiments, the
visual plot is a visual graph 720. In other methods it is a visual
text plot (not shown). In both embodiments, the hierarchical
structure of a dataset is determined. The dataset includes a
measure (e.g., sales, profits, quantities). Further the dataset
includes a dimension (e.g., time) consisting of a plurality of
levels (e.g., year, quarter, month) that form a dimension hier-
archy.

[0154] Inthe method the visual plot is constructed based on
a specification. Such specifications can range anywhere from
simple indications of what the axes of the visual plot will
represent to complex algebraic expressions that are described
in more detail in Section 5.4 of copending U.S. patent appli-
cation Ser. No. 10/453,834, entitled “Computer Systems and
Methods for the Query and Visualization of Multidimen-
sional Databases”, filed Jun. 2, 2003.

[0155] Regardless, of the complexity of the specification, a
first level from the plurality of levels of the dimension is
represented by a first component of the visual plot and a
second level from the plurality of levels is represented by a
second component of the visual plot. For example, consider
the case in which the dimension is time, the first level is
months, the second level is years, the first component is the
x-axis of the visual plot and the second component is the
y-axis of the visual plot. In this example, the x-axis of the
visual plot will represent months and the y-axis of the visual
plot will represent years.

[0156] The method continues with a query of the dataset to
retrieve data in accordance with the specification. The data
retrieved from the dataset will include all or a portion of the
dimension and all or a portion of the measure. For example,
consider the case in which the dimension is time and the
plurality of the levels of the time dimension in the dataset
includes the levels years, quarters, and months. Further, the
measure is sales. In such an example, sales data for all or a
portion of the levels years, quarters, and months will be
retrieved. In some embodiments, the dataset is a database 558

US 2013/0246484 Al

and the querying step comprises retrieving a set of tuples in
accordance with the specification. Such techniques are
described in further detail in steps 606 and 608 of Section 5.2,
above.

[0157] In some embodiments, the dataset is a database,
such as one of the databases 558 illustrated in FIG. 6. How-
ever, this aspect of the present disclosure is not limited to such
databases. More generally, any dataset that includes a mea-
sure (e.g., sales, profits) and a dimension (e.g., time) that has
a dimension hierarchy (e.g., year.quarter.month) can be used.
Other examples of measures include, but are not limited to,
business measurements like cash balances, cash flows, finan-
cial variance, units sold or customer response times, as well as
scientific measurements like temperature or pressure.
Examples of dimensions include, but are not limited to dates,
product, markets segments, geographic regions, item identi-
fiers like stock keeping units (SKUs), or the names of bud-
getary planning scenarios.

[0158] In the method, the visual plot is populated with the
retrieved data in accordance with the specification. Exem-
plary methods by which the visual plot is populated with the
retrieved data in accordance with the specification are dis-
cussed in steps 610 through 616 of Section 5.2, above, in
conjunction with FIG. 7. However, this aspect of the present
disclosure is not limited to the population schemes disclosed
in Section 5.2 and illustrated in FIG. 7. In some embodiments,
the visual plot comprises a plurality of panes and the popu-
lating step comprises associating all or a subset of the data
(e.g., tuples) with a pane in the plurality of panes as described
in further detail in step 616 of Section 5.2. In some embodi-
ments, tuples are encoded a pane as a graphic as described in
further detail in step 616 of Section 5.2.

[0159] Insome embodiments, the specification that is used
in this aspect of the present disclosure is a language based on
the hierarchical structure of the dataset. For example, con-
sider the case in which the dataset includes a time dimension
with the level years, quarters and months. In such an example,
the language used to construct the specification will include
the expressions years, quarters and months as well as alge-
braic operators for combining such levels (e.g., cross opera-
tor, dot operator, etc.). Using the language, highly selective
specifications can be used to construct the visual plot. More
information on the use of language based on the hierarchical
structure of a database 558 is disclosed in Section 5.2, above.
The techniques disclosed in Section 5.2 can be used in this
aspect of the present disclosure.

[0160] FIG. 19 illustrates a visual plot 1900 that illustrates
the natural hierarchical display of levels of the time dimen-
sion (years, quarters, months) for sales data. In some embodi-
ments, visual plot 1900 is generated as a visual table 720
using the systems and techniques described in Sections 5.1
through 5.3, above. In such embodiments, a visual specifica-
tion is used to generate visual plot 1900. However, in other
embodiments, visual plot 1900 is generated from data that
was not obtained using the exemplary techniques discussed in
Sections 5.1 through 5.3. For example, in some embodiments,
visual plot 1900 is generated from spreadsheet data or a flat
file. More generally, each of the graphics disclosed in this
aspect of the present disclosure can be constructed using the
exemplary techniques discussed in Sections 5.1 through 5.3,
with a query of databases 558, or they can be generated from
alternative sources of data. The only constraint on the data
used by the graphics of the present disclosure is that it
includes at least one dimension and at least one measure.

Sep. 19,2013

[0161] As disclosed above, the visual specifications in
accordance with this aspect of the present disclosure (Section
5.4) includes a first component and a second component that
respectively represent a first level and a second level in the
dimension hierarchy of the underlying dataset (e.g., database
558). In some embodiments the first component and the sec-
ond component are not the same and are each independently
selected from the group consisting of a plurality of rows in the
visual plot, a plurality of columns in the visual plot, a plurality
oflayers in the visual plot, an axis in the visual plot, a graphic
in the visual plot, or a level of detail of a graphic in the visual
plot. FIG. 20 illustrates the concept. In FIG. 20, the dimension
in the dataset is time. Time appears on multiple axes of visual
plot (both rows and columns) 2000. In visual plot 2000 the
first component is columns and the second component is
rows. Further, the first level is months and the second level is
years. As such, the columns represent months and the rows
represent years. Both the “years” level of the time dimension
and the measure “sales” appear in the rows (y-axis) while the
“quarters” and “months” levels of the time dimension appear
on the x-axis, with the columns representing months.

[0162] In visual plot 2000, a first component (FIG. 20,
y-axis) represents a first level (FIG. 20, years) of the dimen-
sion hierarchy and a measure (FIG. 20, sales) such that the
measure is partitioned into a plurality of segments (FIG. 20,
rows 2002) with each segment (FIG. 20, row 2002) in the
plurality of segments representing a data point (FIG. 20, a
respective year, e.g., 1998, 1999) in the first level. The second
component (FIG. 20, x-axis) represents at least a second level
(e.g., quarter and month) of the dimension hierarchy from the
underlying dataset.

[0163] Visual plot 2000 allows for the analysis of the sales
data illustrated in FIG. 19 in a very different manner. Visual
plot 2000 (FIG. 20) has the format [Time].[Year|*[Sales]
(rows, y-axis) versus [Time].[Quarter].[Month] (columns,
x-axis). Therefore, each year generates a new row 2002 in the
visual plot and each row represents sales for the correspond-
ing year. Further, each row is delineated firstly by quarters and
secondly by months. Thus, each bar in the visual plot repre-
sents sales in a given month for a given year. Advantageously,
in visual plot 2000, sales for a respective month of the year
(e.g., January) from multiple years (e.g., 1998 and 1999) are
overlayed directly on top of each other in the same graphic.
This allows, for example, the unique comparison of same
month sales across multiple years. In some embodiments
each row 2002 is assigned a different color or hash pattern.
[0164] As discussed previously, the visual plots in this
aspect of the present disclosure are based on the specification.
A first level from the plurality of levels is represented by a first
component of the visual table and a second level from the
plurality of levels is represented by a second component of
the visual table. In some embodiments, the first component is
aplurality of rows and the second component is a plurality of
columns. In some embodiments, the first component is a
plurality of rows and the second component is a plurality of
layers. In other embodiments, the first component is a plural-
ity of columns and the second component is a plurality of
layers. Graphs that include multiple layers are illustrated in
FIGS. 15 and 16. Generally speaking, layers are plotted in the
z-dimension, with each layer spanning the x- and y-axis of the
plot.

[0165] Insome embodiments of the present disclosure, the
graphics (e.g., bars) in each row in the table are assigned a
different color or hash pattern. Thus, in one embodiment, the

US 2013/0246484 Al

bars in row 2002-1 are colored blue and the bars in row
2002-2 are colored green. More generally, in some embodi-
ments of the present disclosure the elements of the first and/or
second components (e.g., bars, text) are assigned different
colors and/or hash pattern.

[0166] FIG. 21 illustrates a visual plot 2100 in which a first
component (segments 2106) represents a level of detail of a
graphic (FIG. 21, bars 2102) and the second component (FIG.
21, months) is represented on a first axis (FIG. 21, the x-axis)
of the visual plot while the second axis (y-axis) of the graph
plot represents a measure (sales). The graphic (FIG. 21, bars
2102) is partitioned into a plurality of segments 2106 in
accordance with the level of detail (FIG. 21, years) such that
each segment 2106 of the plurality of segments is assigned a
different color or a different hash pattern and each segment of
the plurality of segments 2106 represents a different data
point (FIG. 21, a different year) in the first level (FIG. 21
years) of the dimension hierarchy. As such, visual plot 2100
has the format [Sales] versus [Time].[Quarter].[Month] bro-
ken down by [Time].[Year]. That is, each bar 2102 in visual
plot 2100 represents sales for a given month across multiple
years. For example, bar 2102-1 represents sales made in
January of the years 1998 and 1999. Furthermore, each bar
2102 is segmented by year. For example, a lower portion 2106
of'bar 2102 represents the relative sales in January 1998 and
is colored a first color or given a first hash pattern and an upper
portion 2108 of bar 2102-1 represents relative sales in Janu-
ary 1999 and is colored a second color or given a second hash
pattern. As such, level of time defines both an axis of the
graphic and the level of detail of the graphic.

[0167] FIG. 22 illustrates an embodiment in which a set of
levels from the dimension (FIG. 22, time) in the underlying
dataset are represented by a first component (FIG. 22, col-
umns) where the set of levels represent a portion of the dimen-
sion hierarchy of the dimension. In visual plot 2200 the set of
levels represent the year.quarter.month levels of the time hier-
archy. Further, as illustrated in FIG. 22, the set of levels do not
include each level in the portion of the dimension hierarchy
represented by the set of levels. In the case of FIG. 22, the set
of levels are represented on the y-axis as columns. The set of
levels on the y-axis include year and months, but not quarters.
In other words, visual plot 2200 charts the measure “sales”
(row, y-axis) versus the dimension “time” (columns, x-axis).
However, in this embodiment, a level of the dimension time
(year, quarter, month, day, minute) is skipped. Thus, although
the underlying data has time delineated into the hierarchy
year, quarter, and month, visual plot 2200 only displays the
level “months” for the respective years 1998 and 1999. This is
accomplished by selecting the year and month levels of the
time dimension on shelf 708-5, which controls displacement
of data on the x-axis (columns in FIG. 22), and the measure
“sales” on shelf 708-4, which controls displacement of data
on the y-axis of visual plot 2200.

[0168] FIG. 23 illustrates an embodiment in which the set
of levels from the dimension hierarchy (e.g., FIG. 23, time)
found in the underlying dataset is represented by the first
component (FIG. 23 y-axis, columns) but in an order that
deviates from an order in the dimension hierarchy. In particu-
lar, visual plot 2300 charts the measure SUM(gross_profit)
(row) versus the dimension time (columns). However, in this
embodiment, the levels of the dimension time are not dis-
played in their natural order. That is, year is nested within
quarter. Thus, although the underlying data has time delin-
eated into the hierarchy year, quarter, and month, visual plot

Sep. 19,2013

2300 displays the level “year” nested within “quarter”. This is
accomplished by selecting the quarter and year levels of the
time dimension in reverse order on shelf 708-5, which con-
trols displacement of data on the x-axis (columns in FI1G. 23),
and the measure “SUM(gross_profit)” on shelf 708-4, which
controls displacement of data on the y-axis of visual plot
2300. Advantageously, visual plot 2300 provides a direct
comparison of corresponding quarters from respective years.
For example, in panel 2304, gross profits in the first quarter
can be directly compared across the years 1997, 1998, 1999,
2000, 2001, and 2002.

[0169] The techniques of the present disclosure are not
limited to bar charts. A wide variety of different marks can be
used in the present disclosure. In some embodiments, a user
selects which mark to use with toggle 2320 (FIG. 23). In
visual plot 2300, the toggle is set to “bar” and, hence, a bar
chart is depicted. However, in visual plot 2400 (FIG. 24),
toggle 2320 is set to “text” resulting in the display of a text
table. When toggle 2320 is set to “text”, panel 2410 is used to
specify what text is to be used in the graphic. Alternatively, in
embodiments not shown, the user drags the text to be used
directly onto the graphic. In FIG. 24, the text to be used is set
to “sales.” Thus, sales data for each month is displayed in text
format along the x-axis of visual plot 2400. Further, because
the level “year” of the dimension “time” is specified in shelf
708-5, the sales data along the x-axis is broken into rows
along the y-axis, with each row representing a respective year
of sales data.

[0170] Toggle 2320 can be set to a wide range of graphic
types, including scatterplot matrices, as illustrated in visual
plot 2500 (FIG. 25), where toggle 2320 is set to “square”. In
visual plot 2500, shelf 708-5 is set to the level “quarter” of the
dimension time as well as the measure “sales”. Therefore, the
y-axis of visual plot 2500 depicts sales by quarter. Shelf708-4
is set to the level “year” of the dimension time as well as the
measure “profit”. Accordingly, visual plot 2500 depicts a
scatterplot of profit versus sales in respective quarters of
respective years. Each data point in the scatterplot represents
a given month and the coordinates of the data point are deter-
mined by the profits versus sales for the given month.

5.5 References Cited

[0171] All references cited herein are incorporated herein
by reference in their entirety and for all purposes to the same
extent as if each individual publication or patent or patent
application was specifically and individually indicated to be
incorporated by reference in its entirety for all purposes.

5.6 Alternative Embodiments

[0172] The present disclosure can be implemented as a
computer program product that comprises a computer pro-
gram mechanism embedded in a computer readable storage
medium. For instance, the computer program product could
contain the program modules shown in FIG. 6. These pro-
gram modules may be stored on a CD-ROM, magnetic disk
storage product, or any other computer readable data or pro-
gram storage product. The software modules in the computer
program product can also be distributed electronically, viathe
Internet or otherwise, by transmission of a computer data
signal (in which the software modules are embedded) on a
carrier wave.

[0173] Many modifications and variations of the present
disclosure can be made without departing from its spirit and

US 2013/0246484 Al

scope, as will be apparent to those skilled in the art. The
specific embodiments described herein are offered by way of
example only, and the invention is to be limited only by the
terms of the appended claims, along with the full scope of
equivalents to which such claims are entitled.

What is claimed is:

1. A method comprising:

at a computer:

obtaining a dimensional hierarchy associated with a
dataset, wherein the dimensional hierarchy includes
at least one dimension and a sub-dimension of the at
least one dimension; and

populating information representing data included in the
dataset into a visual table having a first axis and a
second axis, wherein the first axis corresponds to the
at least one dimension and the second axis corre-
sponds to the sub-dimension of the at least one dimen-
sion.

2. The method of claim 1, wherein the first axis is in
horizontal direction and the second axis is in vertical direc-
tion.

3. The method of claim 1, wherein the at least one dimen-
sion and the sub-dimension are time dimensions, and wherein
the least one dimension is higher than the sub-dimension in a
natural hierarchy of time.

4. The method of claim 1, wherein the at least one dimen-
sion and the sub-dimension are location dimensions, and
wherein the least one dimension is higher than the sub-di-
mension in a natural hierarchy of location.

5. The method of claim 1, wherein the at least one dimen-
sion and the sub-dimension are product dimensions, and
wherein the least one dimension is higher than the sub-di-
mension in a natural hierarchy of product.

6. The method of claim 1, wherein the dataset includes a
plurality of data tuples, wherein a respective tuple in the
plurality of tuples includes:

(1) a first field corresponding to the at least one dimension;

and

(ii) a second field corresponding to the sub-dimension.

7. The method of claim 6, wherein populating information
representing data included in the dataset into the visual table
includes:

populating, into the visual table, a plurality of display

marks; and wherein a respective display mark in the

plurality of display marks corresponds to a respective
tuple in the plurality of tuples.

8. A computer system, comprising:

one Or more processors;

memory; and

one or more programs, wherein the one or more programs

are stored in the memory and are configured to be

executed by the one or more processors, the one or more
programs including instructions which when executed
cause the computer system to:

obtain a dimensional hierarchy associated with a
dataset, wherein the dimensional hierarchy includes
at least one dimension and a sub-dimension of the at
least one dimension; and

populate information representing data included in the
dataset into a visual table having a first axis and a
second axis, wherein the first axis corresponds to the
at least one dimension and the second axis corre-
sponds to the sub-dimension of the at least one dimen-
sion.

Sep. 19,2013

9. The system of claim 8, wherein the first axis is in hori-
zontal direction and the second axis is in vertical direction.

10. The system of claim 8, wherein the at least one dimen-
sion and the sub-dimension are time dimensions, and wherein
the least one dimension is higher than the sub-dimension in a
natural hierarchy of time.

11. The system of claim 8, wherein the at least one dimen-
sion and the sub-dimension are location dimensions, and
wherein the least one dimension is higher than the sub-di-
mension in a natural hierarchy of location.

12. The system of claim 8, wherein the at least one dimen-
sion and the sub-dimension are product dimensions, and
wherein the least one dimension is higher than the sub-di-
mension in a natural hierarchy of product.

13. The system of claim 8, wherein the dataset includes a
plurality of data tuples; and wherein a respective tuple in the
plurality of tuples includes:

(1) a first field corresponding to the at least one dimension;

and

(i1) a second field corresponding to the sub-dimension.

14. The system of claim 13, wherein the instructions for
populating information representing data included in the
dataset into the visual table include instructions for:

populating, into the visual table, a plurality of display

marks, wherein a respective display mark in the plurality
of display marks corresponds to a respective tuple in the
plurality of tuples.

15. A non-transitory computer readable storage medium
having one or more computer programs embedded therein,
the one or more computer programs comprising instructions,
which when executed by a computer system, cause the com-
puter system to:

obtain a dimensional hierarchy associated with a dataset,

wherein the dimensional hierarchy includes at least one
dimension and a sub-dimension of the at least one
dimension; and

populate information representing data included in the

dataset into a visual table having a first axis and a second
axis, wherein the first axis corresponds to the at least one
dimension and the second axis corresponds to the sub-
dimension of the at least one dimension.

16. The non-transitory computer readable storage medium
of claim 15, wherein the first axis is in horizontal direction
and the second axis is in vertical direction.

17. The non-transitory computer readable storage medium
of claim 15, wherein the at least one dimension and the
sub-dimension are time dimensions, and wherein the least
one dimension is higher than the sub-dimension in a natural
hierarchy of time.

18. The non-transitory computer readable storage medium
of claim 15, wherein the at least one dimension and the
sub-dimension are location dimensions, and wherein the least
one dimension is higher than the sub-dimension in a natural
hierarchy of location.

19. The non-transitory computer readable storage medium
of claim 15, wherein the at least one dimension and the
sub-dimension are product dimensions, and wherein the least
one dimension is higher than the sub-dimension in a natural
hierarchy of product.

20. The non-transitory computer readable storage medium
of claim 15, wherein the dataset includes a plurality of data
tuples; and wherein a respective tuple in the plurality of tuples
includes:

US 2013/0246484 Al Sep. 19,2013
17

(1) a first field corresponding to the at least one dimension;
and
(ii) a second field corresponding to the sub-dimension.
21. The non-transitory computer readable storage medium
of claim 19, wherein the instructions for populating informa-
tion representing data included in the dataset into the visual
table include instructions for:
populating, into the visual table, a plurality of display
marks, wherein a respective display mark in the plurality
of display marks corresponds to a respective tuple in the
plurality of tuples.

#* #* #* #* #*

