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REGISTER SET USED IN MULTITHREADED
PARALLEL PROCESSOR ARCHITECTURE

BACKGROUND

This invention relates to computer processors.

Parallel processing is an efficient form of information processing ot
concurrent events in a computing process. Parallel processing demands concurrent
execution of many programs in a computer, in contrast to sequential processing. In the
context of a parallel processor, parallelism involves doing more than one thing at the
same time. Unlike a serial paradigm where all tasks are performed sequentially at a
single station or a pipelined machine where tasks are performed at specialized stations,
with parallel processing, a plurality of stations are provided with each capable of
performing all tasks. That is, in general all or a plurality of the stations work
simultaneously and independently on the same or common elements of a problem.

Certain problems are suitable for solution by applying parallel processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a communication system employing a
hardware-based multithreaded processor.

FIG. 2 is a detailed block diagram of the hardware-based multithreaded
processor of FIG. 1.

FIG. 3 is a block diagram of a microengine functional unit employed 1n the
hardware-based multithreaded processor of FIGS. 1 and 2.

FIG. 4 is a block diagram of a pipeline in the microengine of FIG. 3.

FIG. 5 is a block diagram showing general purpose register address
arrangement.

DESCRIPTION

Referring to FIG. 1, a communication system 10 includes a parallel,
hardware-based multithreaded processor 12. The hardware-based multithreaded
processor 12 is coupled to a bus such as a PCI bus 14, a memory system 16 and a second
bus 18. The system 10 is especially useful for tasks that can be broken into parallel
subtasks or functions. Specifically hardware-based multithreaded processor 12 1s usetul

for tasks that are bandwidth oriented rather than latency oriented. The hardware-based
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multithreaded processor 12 has multiple microengines 22 each with multiple hardware
controlled threads that can be simultaneously active and independently work on a task.
The hardware-based multithreaded processor 12 also includes a central
controller 20 that assists in loading microcode control for other resources of the
hardware-based multithreaded processor 12 and performs other general purpose computer
type functions such as handling protocols, exceptions, extra support for packet processing
where the microengines pass the packets off for more detailed processing such as n
boundary conditions. In one embodiment, the processor 20 1s a Strong Arm® (Arm 1s a
trademark of ARM Limited, United Kingdom) based architecture. The general purpose
microprocessor 20 has an operating system. Through the operating system the processor
20 can call functions to operate on microengines 22a-22f. The processor 20 can use any
supported operating system preferably a real time operating system. For the core

processor implemented as a Strong Arm architecture, operating systems such as,

MicrosoftNT® real-time, VXWorks and JCUS, a freeware operating system available

over the Intermet, can be used.

The hardware-based multithreaded processor 12 also includes a plurality
of function microengines 22a-22f. Functional microengines (microengines) 22a-22t each
maintain a plurality of program counters in hardware and states associated with the

program counters. Effectively, a corresponding plurality of sets of threads can be

stmultaneously active on each of the microengines 22a-22{ while only one 1s actually
operating at any one time.

In one embodiment, there are six microengines 22a-22f as shown. Each
microengines 22a-22f has capabilities for processing four hardware threads. The six
microengines 22a-22f operate with shared resources including memory system 16 and bus
interfaces 24 and 28. The memory system 16 includes a Synchronous Dynamic Random
Access Memory (SDRAM) controller 26a and a Static Random Access Memory (SRAM)
controller 26b. SDRAM memory 16a and SDRAM controller 26a are typically used for
processing large volumes of data, e.g., processing of network payloads from network
packets. The SRAM controller 26b and SRAM memory 16b are used 1n a networking
implementation for low latency, fast access tasks, e.g., accessing look-up tables, memory

for the core processor 20, and so forth.

The six microengines 22a-22f access either the SDRAM 16a or SRAM

16b based on characteristics of the data. Thus, low latency, low bandwidth data 1s stored
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in and fetched from SRAM, whereas higher bandwidth data for which latency 1s not as
important, is stored in and fetched from SDRAM. The microengines 22a-22{ can execute
memory reference instructions to either the SDRAM controller 26a or SRAM controller
16b.

Advantages of hardware multithreading can be explained by SRAM or
SDRAM memory accesses. As an example, an SRAM access requested by a Thread 0,
from a microengine will cause the SRAM controller 26b to 1nitiate an access to the
SRAM memory 16b. The SRAM controller controls arbitration for the SRAM bus,
accesses the SRAM 16D, fetches the data from the SRAM 16b, and returns data to a
requesting microengine 22a-22b. During an SRAM access, 1f the microengine e.g., 22a
had only a single thread that could operate, that microengine would be dormant until data
was returned from the SRAM. By employing hardware context swapping within each ot
the microengines 22a-22f, the hardware context swapping enables other contexts with
unique program counters to execute 1n that same microengine. Thus, another thread e.g.,
Thread 1 can function while the first thread, e.g., Thread 0, 1s awaiting the read data to
return. During execution, Thread 1 may access the SDRAM memory 16a. While
Thread 1 operates on the SDRAM unit, and Thread 0 is operating on the SRAM unit, a
new thread, e.g., Thread 2 can now operate in the microengine 22a. Thread 2 can
operate for a certain amount of time until it needs to access memory or perform some
other long latency operation, such as making an access to a bus interface. Therefore,
simultaneously, the processor 12 can have a bus operation, SRAM operation and SDRAM
operation all being completed or operated upon by one microengine 22a and have one
more thread available to process more work 1n the data path.

The hardware context swapping also synchronizes completion of tasks.
For example, two threads could hit the same shared resource e.g., SRAM. Each one of
these separate functional units, e.g., the FBUS interface 28, the SRAM controller 26a, and
the SDRAM controller 26b, when they complete a requested task from one of the
microengine thread contexts reports back a flag signaling completion of an operation.
When the flag 1s received by the microengine, the microengine can determine which
thread to turn on.

One example of an application for the hardware-based multithreaded
processor 12 1s as a network processor. As a network processor, the hardware-based

multithreaded processor 12 interfaces to network devices such as a media access
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controller device e.g., a 10/100BaseT Octal MAC 13a or a Gigabit Ethernet device 13b.
In general, as a network processor, the hardware-based multithreaded processor 12 can
interface to any type of communication device or interface that receives/sends large
amounts of data. Communication system 10 functioning in a networking application
could receive a plurality of network packets from the devices 13a, 13b and process those
packets in a parallel manner. With the hardware-based multithreaded processor 12, each
network packet can be independently processed.

Another example for use of processor 12 is a print engine for a postscript
processor or as a processor for a storage subsystem, 1.e., RAID disk storage. A further
use is as a matching engine. In the securities industry for example, the advent ot
electronic trading requires the use of electronic matching engines to match orders
between buyers and sellers. These and other parallel types of tasks can be accomplished
on the system 10.

The processor 12 includes a bus interface 28 that couples the processor to
the second bus 18. Bus interface 28 in one embodiment couples the processor 12 to the
so-called FBUS 18 (FIFO bus). The FBUS interface 28 1s responsible for controlling and
interfacing the processor 12 to the FBUS 18. The FBUS 18 1s a 64-bit wide FIFO bus,
used to interface to Media Access Controller (MAC) devices.

The processor 12 includes a second interface e.g., a PCI bus interface 24
that couples other system components that reside on the PCI 14 bus to the processor 12.
The PCI bus interface 24, provides a high speed data path 24a to memory 16 e.g., the
SDRAM memory 16a. Through that path data can be moved quickly from the SDRAM
16a through the PCI bus 14, via direct memory access (DMA) transfers. The hardware
based multithreaded processor 12 supports image transfers. The hardware based
multithreaded processor 12 can employ a plurality of DMA channels so 1f one target ot a
DMA transfer is busy, another one of the DMA channels can take over the PCI bus to
deliver information to another target to maintain high processor 12 efficiency.
Additionally, the PCI bus interface 24 supports target and master operations. Target
operations are operations where slave devices on bus 14 access SDRAMs through reads
and writes that are serviced as a slave to target operation. In master operations, the

processor core 20 sends data directly to or receives data directly from the PCI interface

24.
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Each of the functional units are coupled to one or more internal buses. As
described below, the internal buses are dual, 32 bit buses (1.€., one bus for read and one
for write). The hardware-based multithreaded processor 12 also is constructed such that
the sum of the bandwidths of the internal buses in the processor 12 exceed the bandwidth
of external buses coupled to the processor 12. The processor 12 includes an internal core
processor bus 32, e.g., an ASB bus (Advanced System Bus) that couples the processor
core 20 to the memory controller 26a, 26¢ and to an ASB translator 30 described below.
The ASB bus is a subset of the so called AMBA bus that 1s used with the Strong Arm
processor core. The processor 12 also includes a private bus 34 that couples the
microengine units to SRAM controller 26b, ASB translator 30 and FBUS interface 28. A
memory bus 38 couples the memory controller 26a, 26b to the bus interfaces 24 and 28

and memory system 16 including flashrom 16¢ used for boot operations and so forth.

Referring to FIG. 2, each of the microengines 22a-22f includes an arbiter
that examines flags to determine the available threads to be operated upon. Any thread
from any of the microengines 22a-22f can access the SDRAM controller 26a, SDRAM
controller 26b or FBUS interface 28. The memory controllers 26a and 26b each include a
plurality of queues to store outstanding memory reference requests. The queues either
maintain order of memory references or arrange memory references to optimize memory
bandwidth. For example, if a thread 0 has no dependencies or relationship to a thread 1,
there 1s no reason that thread 1 and 0 cannot complete their memory references to the
SRAM unit out of order. The microengines 22a-22f 1ssue memory reference requests to
the memory controllers 26a and 26b. The microengines 22a-221 flood the memory
subsystems 26a and 26b with enough memory reference operations such that the memory
subsystems 26a and 26b become the bottleneck for processor 12 operation.

If the memory subsystem 16 1s flooded with memory requests that are
independent in nature, the processor 12 can perform memory reterence sorting. Memory
reference sorting improves achievable memory bandwidth. Memory reterence sorting, as
described below, reduces dead time or a bubble that occurs with accesses to SRAM.
With memory references to SRAM, switching current direction on signal lines between
reads and writes produces a bubble or a dead time waiting for current to settle on
conductors coupling the SRAM 16b to the SRAM controller 26b.

That 1s, the drivers that drive current on the bus need to settle out prior to

changing states. Thus, repetitive cycles of a read followed by a write can degrade peak



10

15

20

25

30

WO 01/16702 CA 02386558 2002-02-28 PCT/US00/23993
6

bandwidth. Memory reference sorting allows the processor 12 to organize references to
memory such that long strings of reads can be followed by long strings of writes. This
can be used to minimize dead time in the pipeline to effectively achieve closer to
maximum available bandwidth. Reference sorting helps maintain parallel hardware
context threads. On the SDRAM, reference sorting allows hiding of pre-charges from
one bank to another bank. Specifically, if the memory system 16b 1s organized into an
odd bank and an even bank, while the processor i1s operating on the odd bank, the memory
controller can start precharging the even bank. Precharging is possible if memory
references alternate between odd and even banks. By ordering memory references to
alternate accesses to opposite banks, the processor 12 improves SDRAM bandwidth.
Additionally, other optimizations can be used. For example, merging optimizations
where operations that can be merged, are merged prior to memory access, open page
optimizations where by examining addresses an opened page of memory 1s not reopened,
chaining, as will be described below, and refreshing mechanisms, can be employed.

The FBUS interface 28 supports Transmit and Receive flags for each port
that a MAC device supports, along with an Interrupt flag indicating when service 1s
warranted. The FBUS interface 28 also includes a controller 28a that performs header
processing of incoming packets from the FBUS 18. The controller 28a extracts the
packet headers and performs a microprogrammable source/destination/protocol hashed
lookup (used for address smoothing) in SRAM. If the hash does not successfully resolve,
the packet header is sent to the processor core 20 for additional processing. The FBUS

interface 28 supports the following internal data transactions:

FBUS unit (Shared bus SRAM) to/from microengine.

FBUS unit (via private bus) writes from SDRAM Unit.
FBUS unit (via Mbus) Reads to SDRAM.

The FBUS 18 is a standard industry bus and includes a data bus, e.g., 64
bits wide and sideband control for address and read/write control. The FBUS interface 28
provides the ability to input large amounts of data using a series of input and output
FIFO’s 29a-29b. From the FIFOs 29a-29b, the microengines 22a-221{ fetch data from or
command the SDRAM controller 26a to move data from a receive FIFO 1 which data

has come from a device on bus 18, into the FBUS interface 28. The data can be sent
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through memory controller 26a to SDRAM memory 16a, via a direct memory access.
Similarly, the microengines can move data from the SDRAM 26a to interface 28, out to
FBUS 18, via the FBUS 1nterface 28.

Data functions are distributed amongst the microengines. Connectivity to
the SRAM 26a, SDRAM 26b and FBUS 28 1s via command requests. A command
request can be a memory request or a FBUS request. For example, a command request
can move data from a register located in a microengine 22a to a shared resource, €.g., an
SDRAM location, SRAM location, flash memory or some MAC address. The
commands are sent out to each of the functional units and the shared resources. However,
the shared resources do not need to maintain local buffering of the data. Rather, the
shared resources access distributed data located inside of the microengines. This enables
microengines 22a-22f, to have local access to data rather than arbitrating for access on a
bus and risk contention for the bus. With this feature, there is a O cycle stall for waiting
for data internal to the microengines 22a-221.

The data buses, e.g., ASB bus 30, SRAM bus 34 and SDRAM bus 38
coupling these shared resources, e.g., memory controllers 26a and 26b are of sufficient
bandwidth such that there are no internal bottlenecks. Thus, 1n order to avoid bottlenecks,
the processor 12 has an bandwidth requirement where each of the functional units is
provided with at least twice the maximum bandwidth of the internal buses. As an
example, the SDRAM can run a 64 bit wide bus at 83 MHz. The SRAM data bus could
have separate read and write buses, e.g., could be a read bus of 32 bits wide running at
166 MHz and a write bus of 32 bits wide at 166 MHz. That 1s, 1n essence, 64 bits running
at 166 MHz which 1s effectively twice the bandwidth of the SDRAM.

The core processor 20 also can access the shared resources. The core
processor 20 has a direct communication to the SDRAM controller 26a to the bus
interface 24 and to SRAM controller 26b via bus 32. However, to access the
microengines 22a-22f and transfer registers located at any of the microengines 22a-221,
the core processor 20 access the microengines 22a-22f via the ASB Translator 30 over
bus 34. The ASB translator 30 can physically reside in the FBUS 1nterface 28, but
logically is distinct. The ASB Translator 30 performs an address translation between
FBUS microengine transfer register locations and core processor addresses (1.e., ASB

bus) so that the core processor 20 can access registers belonging to the microengines 22a-

22cC.
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Although microengines 22 can use the register set to exchange data as
described below, a scratchpad memory 27 is also provided to permit microengines to
write data out to the memory for other microengines to read. The scratchpad 27 1s
coupled to bus 34.

S The processor core 20 includes a RISC core 50 implemented 1n a five
stage pipeline performing a single cycle shift of one operand or two operands in a single
cycle, provides multiplication support and 32 bit barrel shift support. This RISC core 50
is a standard Strong Arm® architecture but it is implemented with a five stage pipeline
for performance reasons. The processor core 20 also includes a 16 kilobyte instruction

10 cache 52, an 8 kilobyte data cache 54 and a prefetch stream buffer 56. The core processor
20 performs arithmetic operations in parallel with memory writes and mnstruction fetches.
The core processor 20 interfaces with other functional units via the ARM defined ASB
bus. The ASB bus is a 32-bit bi-directional bus 32.

15  Microengines:

Referring to FIG. 3, an exemplary one of the microengines 22a-221, e.g.,
microengine 22f is shown. The microengine includes a control store 70 which, in one
implementation, includes a RAM of here 1,024 words of 32 bit. The RAM stores a
microprogram. The microprogram is loadable by the core processor 20. The

20  microengine 22f also includes controller logic 72. The controller logic includes an
instruction decoder 73 and program counter (PC) units 72a-72d. The four micro program
counters 72a-72d are maintained in hardware. The microengine 22f also includes context
event switching logic 74. Context event logic 74 receives messages (€.8.,

SEQ # EVENT RESPONSE; FBI EVENT RESPONSE; SRAM

25  EVENT RESPONSE; SDRAM EVENT RESPONSE; and ASB
- EVENT RESPONSE) from each one of the shared resources, e.g., SRAM 20a, SDRAM
26b, or processor core 20, control and status registers, and so forth. These messages
provide information on whether a requested function has completed. Based on whether or
not a function requested by a thread has completed and signaled completion, the thread

30 needs to wait for that completion signal, and if the thread is enabled to operate, then the
thread is placed on an available thread list (not shown). The microengine 22f can have a

maximum of e.g., 4 threads available.
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In addition to event signals that are local to an executing thread, the
microengines 22 employ signaling states that are global. With signaling states, an
executing thread can broadcast a signal state to all microengines 22. Receive Request
Available signal, Any and all threads 1n the microengines can branch on these signaling
states. These signaling states can be used to determine availability of a resource or
whether a resource 1s due for servicing.

The context event logic 74 has arbitration for the four (4) threads. In one
embodiment, the arbitration is a round robin mechanism. Other techniques could be used
including priority queuing or weighted fair queuing. The microengine 22f also includes
an execution box (EBOX) data path 76 that includes an arithmetic logic unit 76a and
general purpose register set 76b. The arithmetic logic unit 76a performs arithmetic and
logical functions as well as shift functions. The registers set 76b has a relatively large
number of general purpose registers. As will be described 1in FIG. 6, 1n this
implementation there are 64 general purpose registers in a first bank, Bank A and 64 1n a
second bank, Bank B. The general purpose registers are windowed as will be described
so that they are relatively and absolutely addressable.

The microengine 22f also includes a write transfer register stack 78 and a
read transfer stack 80. These registers are also windowed so that they are relatively and
absolutely addressable. Write transfer register stack 78 1s where write data to a resource
1s located. Similarly, read register stack 80 1s for return data from a shared resource.
Subsequent to or concurrent with data arrival, an event signal from the respective shared
resource €.g2., the SRAM controller 26a, SDRAM controlier 26b or core processor 20 will
be provided to context event arbiter 74 which will then alert the thread that the data 1s
available or has been sent. Both transfer register banks 78 and 80 are connected to the
execution box (EBOX) 76 through a data path. In one implementation, the read transfer
register has 64 registers and the write transfer register has 64 registers.

Referring to FIG. 4, the microengine datapath maintains a 5-stage micro-
pipeline 82. This pipeline includes lookup of microinstruction words 82a, formation of
the register file addresses 82b, read of operands from register file 82c, ALU, shift or
compare operations 82d, and write-back of results to registers 82¢. By providing a write-
back data bypass into the ALU/shifter units, and by assuming the registers are
implemented as a register file (rather than a RAM), the microengine can perform a

simultaneous register file read and write, which completely hides the write operation.
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The SDRAM interface 26a provides a signal back to the requesting
microengine on reads that indicates whether a parity error occurred on the read request.
The microengine microcode is responsible for checking the SDRAM read Parity tlag
when the microengine uses any return data. Upon checking the flag, if it was set, the act
of branching on it clears it. The Parity flag is only sent when the SDRAM 1s enabled for
checking, and the SDRAM is parity protected. The microengines and the PCI Umnit are
the only requestors notified of parity errors. Therefore, 1f the processor core 20 or FIFO
requires parity protection, a microengine assists in the request.

Referring to FIG. 5, the two register address spaces that exist are Locally
accessibly registers, and Globally accessible registers accessible by all microengines.
The General Purpose Registers (GPRs) are implemented as two separate banks (A bank
and B bank) whose addresses are interleaved on a word-by-word basis such that A bank
registers have 1sb=0, and B bank registers have Isb=1. Each bank 1s capable of
performing a simultaneous read and write to two different words within its bank.

Across banks A and B, the register set 76b is also organized into four
windows 76bgy-76bs of 32 registers that are relatively addressable per thread. Thus,
thread O will find its register O at 77a (register 0), the thread 1 will find 1ts register_0 at
77b (register 32), thread 2 will find its register 0 at 77c (register 64), and thread_3 at 77d
(register 96). Relative addressing is supported so that multiple threads can use the exact
same control store and locations but access different windows of register and perform
different functions. The uses of register window addressing and bank addressing provide
the requisite read bandwidth using only dual ported RAMS in the microengine 221.

These windowed registers do not have to save data from context switch to
context switch so that the normal push and pop of a context swap file or stack 1s
eliminated. Context switching here has a 0 cycle overhead for changing from one context
to another. Relative register addressing divides the register banks into windows across
the address width of the general purpose register set. Relative addressing allows access
any of the windows relative to the starting point of the window. Absolute addressing 1s
also supported in this architecture where any one of the absolute registers may be
accessed by any of the threads by providing the exact address of the register.

Addressing of general purpose registers 78 occurs 1n 2 modes depending
on the microword format. The two modes are absolute and relative. In absolute mode,

addressing of a register address is directly specified in 7-bit source field (a6-a0 or b6-b0):
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76 54321060
S S P S SRR SN S
A GPR: |a6|0|a5|a4|a3|a2|al|a0] a6=0
5 B GPR: |b6]|1]|b5| b4|b3|b2|bl|b0] b6=0
SRAM/ASB:| a6| a5| a4| 0 | a3| a2| al| a0] a6=1, a5=0, a4=0
SDRAM: |a6|a5|ad|0]|a3|a2|alla0| a6=1, a5=0, a4=1

register address directly specified in 8-bit dest field (d7-d0):
10
76 543210
S R S S S S
A GPR: |d7|de6|d5| d4] d3| d2| d1| dO] d7=0, d6=0
B GPR: |d7| d6| d5| d4| d3| d2| d1| dO| d7=0, d6=1
15 SRAM/ASB:| d7| d6| d5| d4| d3| d2| d1| dO] d7=1, d6=0, d5=0
SDRAM: |d7|do6|d5| d4| d3| d2| d1| d0| d7=1, d6=0, d5=1

If <a6:a5>=1,1, <b6:b5>=1,1, or <d7:d6>=1,1 then the lower bits are
interpreted as a context-relative address field (described below). When a non-relative A
20  or B source address is specified in the A, B absolute field, only the lower half of the
SRAM/ASB and SDRAM address spaces can be addressed. Effectively, reading
absolute SRAM/SDRAM devices has the effective address space; however, since this
restriction does not apply to the dest field, writing the SRAM/SDRAM still uses the full
address space.
25 In relative mode, addresses a specified address 1s offset within context
space as defined by a 5-bit source field (a4-a0 or b4-b0):
76 54321060
S P S N S S
A GPR: | a4d| 0 |context| a3| a2| al| a0 a4=0
30 B GPR: |b4| 1 |context| b3| b2| bl| b0| b4=0
SRAM/ASB:|ab4| 0 |ab3|context| b2| b1|ab0| ab4=1, ab3=0
SDRAM: |ab4| 0 |ab3|context| b2| bl|ab0| ab4=1, ab3=1
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or as defined by the 6-bit dest field (d5-d0O):

76 543210

S S S SN S S s
A GPR: |d5| d4|context| d3]| d2| d1|dO] d5=0, d4=0
B GPR: | d5| d4|context| d3| d2|dl| dO] d5=0, d4=1
SRAM/ASB:| d5| d4| d3|context| d2| d1| dO| d5=1, d4=0, d3=0
SDRAM: | d5|d4] d3|context| d2| d1|dO| d5=1, d4=0, d3=1

If <d5:d4>=1,1, then the destination address does not address a valid

register, thus, no dest operand is written back.

Other embodiments are within the scope of the appended claims.

What 1s claimed 1s:
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1. A method of maintaining execution threads in a parallel multithreaded

Processor COmprises:

accessing, by an executing thread in the multithreaded processor, a register

set organized into a plurality of relatively addressable windows of registers that are

relatively addressable per thread.

2. The method of claim 1 wherein multiple threads can use the same control

store and relative register locations but access different window banks of registers.

3. The method of claim 1 wherein the relative register addressing divides the

register banks into windows across the address width of the general purpose register set.

4. The method of claim 1 wherein relative addressing allows access any of

the window registers relative to the starting point of a window of registers.

5. The method of claim 1 further comprising:

organizing the register set into windows according to the number of

threads that execute in the processor.

6. The method of claim 1 wherein relative addressing allow the multiple
threads to use the same control store and locations while allowing access to different

windows of register and perform different functions.

7. The method of claim 1 wherein the window registers are implemented

using dual ported random access memories.

8. The method of claim 1 wherein relative addressing allows access to any of

the windows of registers relative to the starting point of the window of registers.

9. The method of claim 1 wherein the register set 1s also absolutely
addressable where any one of the absolutely addressable registers may be accessed by any

of the threads by providing the exact address of the register.
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10. The method of claim 9 wherein an absolute address of a register 1s directly

specified in a source field or destination field of an instruction.

11. The method of claim 1 wherein relative addresses are specified 1n
5  instructions as an address offset within a context execution space as defined by a source

field or destination field operand.

12. A hardware based multi-threaded processor comprises:
a processor unit comprising:
10 control logic including context event switching logic, the context
switching logic arbitrating access to the microengine for a plurality of executable

threads;
an arithmetic logic unit to process data for executing threads; and

a register set that is organized into a plurality of relatively addressable

15  windows of registers that are relatively addressable executable thread.

13. The processor of claim 12 wherein the control logic further comprises:
an instruction decoder; and

program counter units to track executing threads.

20
14. The processor of claim 13 wherein the program counters units are

maintained in hardware.

15. The processor of claim 13 wherein the register banks are organized into
25  windows across an address width of the general purpose register set with each window

relatively accessible by a corresponding thread.

16. The processor of claim 15 wherein the relative addressing allows access to

any of the registers relative to the starting point of a window of registers.
30
17. The processor of claim 15 wherein the number of windows of the register

set 1s according to the number of threads that execute in the processor.
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13. The processor of claim 13 wherein relative addressing allow the multiple
threads to use the same control store and locations while allowing access to different

windows of register and perform different functions.

19. The processor of claim 13 wherein the window registers are provided

using dual ported random access memories.

20. The processor of claim 12 wherein the processing unit 1s a

microprogrammed processor unit.

21. A computer program product residing on a computer readable medium for
managing execution of multiple threads in a multithreaded processor comprising

Instructions causing a processor to:

access, by an executing thread in the multithreaded processor, a register set
organized into a plurality of relatively addressable windows of registers that are relatively

addressable per thread.

22. The product of claim 21 wherein the register set 1s also absolutely
addressable where any one of the absolutely addressable registers may be accessed by any

of the threads by providing the exact address of the register.
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