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(57) ABSTRACT

Techniques and tools for high accuracy position calculation
for picture resizing in applications such as spatially-scalable
video coding and decoding are described. In one aspect, resa-
mpling of a video picture is performed according to a resam-
pling scale factor. The resampling comprises computation of
a sample value at a position i,j in a resampled array. The
computation includes computing a derived horizontal or ver-
tical sub-sample position X or y in a manner that involves
approximating a value in part by multiplying a 2" value by an
inverse (approximate or exact) of the upsampling scale factor.
The approximating can be a rounding or some other kind of
approximating, such as a ceiling or floor function that
approximates to a nearby integer. The sample value is inter-
polated using a filter.
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RESAMPLING AND PICTURE RESIZING
OPERATIONS FOR MULTI-RESOLUTION
VIDEO CODING AND DECODING

RELATED APPLICATION INFORMATION

[0001] The present application claims the benefit of U.S.
Provisional Patent Application No. 60/756,846, entitled
“Resampling Filters For Scalable Video Coding And Decod-
ing,” filed Jan. 6, 2006, the disclosure of which is incorpo-
rated by reference. The present application also claims the
benefit of U.S. Provisional Patent Application No. 60/786,
573, entitled “Resizing Operations For Scalable Video Cod-
ing And Decoding,” filed Mar. 27, 2006, the disclosure of
which is incorporated by reference. The present application
also claims the benefit of U.S. Provisional Patent Application
No. 60/829,515, entitled “High Accuracy Position Calcula-
tion For Picture Resizing,” filed Oct. 13, 2006, the disclosure
of which is incorporated by reference.

TECHNICAL FIELD

[0002] Techniques and tools for encoding/decoding digital
video are described.

BACKGROUND

[0003] With the increased popularity of DVDs, music
delivery over the Internet, and digital cameras, digital media
have become commonplace. Engineers use a variety of tech-
niques to process digital audio, video, and images efficiently
while still maintaining quality. To understand these tech-
niques, it helps to understand how the audio, video, and image
information is represented and processed in a computer.

1. Representation of Media Information in a Computer

[0004] A computer processes media information as a series
of numbers representing that information. For example, a
single number may represent the intensity of brightness or the
intensity of a color component such as red, green or blue for
each elementary small region of a picture, so that the digital
representation of the picture consists of one or more arrays of
such numbers. Each such number may be referred to as a
sample. For a color image, it is conventional to use more than
one sample to represent the color of each elemental region,
and typically three samples are used. The set of these samples
for an elemental region may be referred to as a pixel, where
the word “pixel” is a contraction referring to the concept of a
“picture element.” For example, one pixel may consist of
three samples that represent the intensity of red, green and
blue light necessary to represent the elemental region. Such a
pixel type is referred to as an RGB pixel. Several factors affect
quality of media information, including sample depth, reso-
Iution, and frame rate (for video).

[0005] Sample depth is a property normally measured in
bits that indicates the range of numbers that can be used to
represent a sample. When more values are possible for the
sample, quality can be higher because the number can capture
more subtle variations in intensity and/or a greater range of
values. Resolution generally refers to the number of samples
over some duration of time (for audio) or space (for images or
individual video pictures). Images with higher spatial resolu-
tion tend to look crisper than other images and contain more
discernable useful details. Frame rate is a common term for
temporal resolution for video. Video with higher frame rate
tends to mimic the smooth motion of natural objects better
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than other video, and can similarly be considered to contain
more detail in the temporal dimension. For all of these factors,
the tradeoff for high quality is the cost of storing and trans-
mitting the information in terms of the bit rate necessary to
represent the sample depth, resolution and frame rate, as
Table 1 shows.

TABLE 1

Bit rates for different quality levels of raw video

Bits Per Pixel Resolution (in Frame Rate Bit Rate

(sample depth times pixels, Width x  (in frames per  (in millions of

samples per pixel) Height) second) bits per second)
8 (value 0-255, 160 x 120 7.5 1.2

monochrome)

24 (value 0-255, RGB) 320 x 240 15 27.6

24 (value 0-255, RGB) 640 x 480 30 221.2

24 (value 0-255, RGB) 1280 x 720 60 1327.1

[0006] Despite the high bit rate necessary for storing and
sending high quality video (such as HDTV), companies and
consumers increasingly depend on computers to create, dis-
tribute, and play back high quality content. For this reason,
engineers use compression (also called source coding or
source encoding) to reduce the bit rate of digital media. Com-
pression decreases the cost of storing and transmitting the
information by converting the information into a lower bit
rate form. Compression can be lossless, in which quality of
the video does not suffer but decreases in bit rate are limited
by the complexity of'the video. Or, compression can be lossy,
in which quality of the video suffers but decreases in bit rate
are more dramatic. Decompression (also called decoding)
reconstructs a version of the original information from the
compressed form. A “codec” is an encoder/decoder system.

[0007] In general, video compression techniques include
“intra” compression and “inter” or predictive compression.
For video pictures, intra compression techniques compress
individual pictures. Inter compression techniques compress
pictures with reference to preceding and/or following pic-
tures.

II. Multi-Resolution Video and Spatial Scalability

[0008] Standard video encoders experience a dramatic deg-
radation in performance when the target bit rate falls below a
certain threshold. Quantization and other lossy processing
stages introduce distortion. At low bitrates, high frequency
information may be heavily distorted or completely lost. As a
result, significant artifacts can arise and cause a substantial
drop in the quality of the reconstructed video. Although avail-
able bit rates increase as transmission and processing tech-
nology improves, maintaining high visual quality at con-
strained bit rates remains a primary goal of video codec
design. Existing codecs use several methods to improve
visual quality at constrained bitrates.

[0009] Multi-resolution coding allows encoding of video at
different spatial resolutions. Reduced resolution video can be
encoded at a substantially lower bit rate, at the expense of lost
information. For example, a prior video encoder can down-
sample (using a downsampling filter) full-resolution video
and encode it at a reduced resolution in the vertical and/or
horizontal directions. Reducing the resolution in each direc-
tion by half reduces the dimensions of the encoded picture
size by half. The encoder signals the reduced resolution cod-
ing to a decoder. The decoder receives information indicating
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reduced-resolution encoding and ascertains from the received
information how the reduced-resolution video should be
upsampled (using an upsampling filter) to increase the picture
size before display. However, the information that was lost
when the encoder downsampled and encoded the video pic-
tures is still missing from the upsampled pictures.

[0010] Spatially scalable video uses a multi-layer
approach, allowing an encoder to reduce spatial resolution
(and thus bit rate) in a base layer while retaining higher
resolution information from the source video in one or more
enhancement layers. For example, a base layer intra picture
can be coded at a reduced resolution, while an accompanying
enhancement layer intra picture can be coded at a higher
resolution. Similarly, base layer predicted pictures can be
accompanied by enhancement layer predicted pictures. A
decoder can choose (based on bit rate constraints and/or other
criteria) to decode only base layer pictures at the lower reso-
Iution to obtain lower resolution reconstructed pictures, or to
decode base layer and enhancement layer pictures to obtain
higher resolution reconstructed pictures. When the base layer
is encoded at a lower resolution than the displayed picture
(also referred to as downsampling), the encoded picture size
is actually smaller than the displayed picture. The decoder
performs calculations to resize the reconstructed picture and
uses upsampling filters to produce interpolated sample values
at appropriate positions in the reconstructed picture. How-
ever, previous codecs that use spatially scalable video have
suffered from inflexible upsampling filters and inaccurate or
expensive (in terms of computation time or bit rate) picture
resizing techniques.

[0011] Given the critical importance of video compression
and decompression to digital video, it is not surprising that
video compression and decompression are richly developed
fields. Whatever the benefits of previous video compression
and decompression techniques, however, they do not have the
advantages of the following techniques and tools.

SUMMARY

[0012] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

[0013] Insummary, the Detailed Description is directed to
various techniques and tools for multi-resolution and layered
spatially scalable video coding and decoding.

[0014] For example, the Detailed Description is directed to
various techniques and tools for high accuracy position cal-
culation for picture resizing in applications such as spatially-
scalable video coding and decoding. Techniques and tools for
high accuracy position calculation for picture resizing in
applications such as spatially-scalable video coding and
decoding are described. In one aspect, resampling of a video
picture is performed according to a resampling scale factor.
The resampling comprises computation of a sample value at
a position i,j in a resampled array. The computation includes
computing a derived horizontal or vertical sub-sample posi-
tion X ory in a manner that involves approximating a value in
part by multiplying a 2" value by an inverse (approximate or
exact) of the upsampling scale factor (or dividing the 2" value
by the upsampling scale factor or an approximation of the
upsampling scale factor). The exponent n may be a sum of
two integers including an integer F that represents a number
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of'bits in a fractional component. The approximating can be a
rounding or some other kind of approximating, such as a
ceiling or floor function that approximates to a nearby integer.
The sample value is interpolated using a filter.

[0015] Some alternatives of the described techniques pro-
vide an altered sample position computation that in one
implementation provides approximately one extra bit of pre-
cision in the computations without significantly altering the
sample position computation process or its complexity. Some
further alternatives of the described techniques relate to how
the sample position computation operates with 4:2:2 and
4:4:4 sampling structures. These alternative techniques for
such sampling structures lock the luma and chroma sample
position calculations together whenever the resolution of the
chroma and luma sampling grid is the same in a particular
dimension.

[0016] Additional features and advantages will be made
apparent from the following detailed description of various
embodiments that proceeds with reference to the accompa-
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] FIG. 1 is a block diagram of a suitable computing
environment in conjunction with which several described
embodiments may be implemented.

[0018] FIG. 2 is a block diagram of a generalized video
encoder system in conjunction with which several described
embodiments may be implemented.

[0019] FIG. 3 is a block diagram of a generalized video
decoder system in conjunction with which several described
embodiments may be implemented.

[0020] FIG. 4 is a diagram of a macroblock format used in
several described embodiments.

[0021] FIG. 5A is a diagram of part of an interlaced video
frame, showing alternating lines of a top field and a bottom
field. FIG. 5B is a diagram of the interlaced video frame
organized for encoding/decoding as a frame, and FIG.5Cisa
diagram of the interlaced video frame organized for encod-
ing/decoding as fields.

[0022] FIG. 5D shows six example spatial alignments of
4:2:0 chroma sample locations relative to luma sample loca-
tions for each field of a video frame.

[0023] FIG. 6 is a flowchart showing a generalized tech-
nique for multi-resolution encoding of video.

[0024] FIG. 7 is a flowchart showing a generalized tech-
nique for multi-resolution decoding of video.

[0025] FIG. 8 is a flowchart showing a technique for multi-
resolution encoding of intra pictures and inter-picture pre-
dicted pictures.

[0026] FIG. 9 is a flowchart showing a technique for multi-
resolution decoding of intra pictures and inter-picture pre-
dicted pictures.

[0027] FIG. 10 is a flowchart showing a technique for
encoding spatially scalable bitstream layers to allow decod-
ing video at different resolutions.

[0028] FIG. 11 is a flowchart showing a technique for
decoding spatially scalable bitstream layers to allow decod-
ing video at different resolutions.

[0029] FIGS. 12 and 13 are code diagrams showing
pseudo-code for an example multi-stage position calculation
technique.

[0030] FIG. 14 is a code diagram showing pseudo-code for
an example incremental position calculation technique.
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DETAILED DESCRIPTION

[0031] Described embodiments are directed to techniques
and tools for multi-resolution and layered spatially scalable
video coding and decoding.

[0032] The various techniques and tools described herein
may be used independently. Some of the techniques and tools
may be used in combination (e.g., in different phases of a
combined encoding and/or decoding process).

[0033] Various techniques are described below with refer-
ence to flowcharts of processing acts. The various processing
acts shown in the flowcharts may be consolidated into fewer
acts or separated into more acts. For the sake of simplicity, the
relation of acts shown in a particular flowchart to acts
described elsewhere is often not shown. In many cases, the
acts in a flowchart can be reordered.

[0034] Much of the detailed description addresses repre-
senting, coding, and decoding video information. Techniques
and tools described herein for representing, coding, and
decoding video information may be applied to audio infor-
mation, still image information, or other media information.

1. Computing Environment

[0035] FIG.1illustrates a generalized example of a suitable
computing environment 100 in which several of the described
embodiments may be implemented. The computing environ-
ment 100 is not intended to suggest any limitation as to scope
of use or functionality, as the techniques and tools may be
implemented in diverse general-purpose or special-purpose
computing environments.

[0036] With reference to FIG. 1, the computing environ-
ment 100 includes at least one processing unit 110 and
memory 120. In FIG. 1, this most basic configuration 130 is
included within a dashed line. The processing unit 110
executes computer-executable instructions and may be a real
or a virtual processor. In a multi-processing system, multiple
processing units execute computer-executable instructions to
increase processing power. The memory 120 may be volatile
memory (e.g., registers, cache, RAM), non-volatile memory
(e.g., ROM, EEPROM,; flash memory, etc.), or some combi-
nation of the two. The memory 120 stores software 180
implementing a video encoder or decoder with one or more of
the described techniques and tools.

[0037] A computing environment may have additional fea-
tures. For example, the computing environment 100 includes
storage 140, one or more input devices 150, one or more
output devices 160, and one or more communication connec-
tions 170. An interconnection mechanism (not shown) such
as a bus, controller, or network interconnects the components
of the computing environment 100. Typically, operating sys-
tem software (not shown) provides an operating environment
for other software executing in the computing environment
100, and coordinates activities of the components of the com-
puting environment 100.

[0038] The storage 140 may be removable or non-remov-
able, and includes magnetic disks, magnetic tapes or cas-
settes, CD-ROMs, DVDs, flash memory, or any other
medium which can be used to store information and which
can be accessed within the computing environment 100. The
storage 140 stores instructions for the software 180 imple-
menting the video encoder or decoder.

[0039] The input device(s) 150 may be a touch input device
such as a keyboard, mouse, pen, touch screen, or trackball, a
voice input device, a scanning device, or another device that
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provides input to the computing environment 100. For audio
or video encoding, the input device(s) 150 may be a sound
card, video card, TV tuner card, or similar device that accepts
audio or video input in analog or digital form, or a CD-ROM,
CD-RW or DVD that reads audio or video samples into the
computing environment 100. The output device(s) 160 may
be a display, printer, speaker, CD- or DVD-writer, or another
device that provides output from the computing environment
100.

[0040] The communication connection(s) 170 enable com-
munication over a communication medium to another com-
puting entity. The communication medium conveys informa-
tion such as computer-executable instructions, audio or video
input or output, or other data in a modulated data signal. A
modulated data signal is a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media include wired or wireless tech-
niques implemented with an electrical, optical, RF, infrared,
acoustic, or other carrier.

[0041] The techniques and tools can be described in the
general context of computer-readable media. Computer-read-
able media are any available media that can be accessed
within a computing environment. By way of example, and not
limitation, with the computing environment 100, computer-
readable media include memory 120, storage 140, communi-
cation media, and combinations of any of the above.

[0042] The techniques and tools can be described in the
general context of computer-executable instructions, such as
those included in program modules, being executed in a com-
puting environment on one or more target real processors or
virtual processors. Generally, program modules include rou-
tines, programs, libraries, objects, classes, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. The functionality of the pro-
gram modules may be combined or split between program
modules as desired in various embodiments. Computer-ex-
ecutable instructions for program modules may be executed
within a local or distributed computing environment.

[0043] Forthe sake of presentation, the detailed description
uses terms like “encode,” “decode,” and “choose” to describe
computer operations in a computing environment. These
terms are high-level abstractions for operations performed by
a computer, and should not be confused with acts performed
by a human being. The actual computer operations corre-
sponding to these terms vary depending on implementation.

II. Example Video Encoder and Decoder

[0044] FIG. 2 is a block diagram of an example video
encoder 200 in conjunction with which some described
embodiments may be implemented. FIG. 3 is a block diagram
of'a generalized video decoder 300 in conjunction with which
some described embodiments may be implemented.

[0045] The relationships shown between modules within
the encoder 200 and decoder 300 indicate general flows of
information in the encoder and decoder; other relationships
are not shown for the sake of simplicity. In particular, FIGS.
2 and 3 usually do not show side information indicating the
encoder settings, modes, tables, etc. used for a video
sequence, picture, slice, macroblock, block, etc. Such side
information is sent in the output bitstream, typically after
entropy encoding of the side information. The format of the
output bitstream may vary depending on implementation.
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[0046] The encoder 200 and decoder 300 process video
pictures, which may be video frames, video fields or combi-
nations of frames and fields. The bitstream syntax and seman-
tics at the picture and macroblock levels may depend on
whether frames or fields are used. There may be changes to
macroblock organization and overall timing as well. The
encoder 200 and decoder 300 are block-based and use a 4:2:0
macroblock format for frames, with each macroblock includ-
ing four 8x8 luminance blocks (at times treated as one 16x16
macroblock) and two 8x8 chrominance blocks. For fields, the
same or a different macroblock organization and format may
be used. The 8x8 blocks may be further sub-divided at dif-
ferent stages, e.g., at the frequency transform and entropy
encoding stages. Example video frame organizations are
described in more detail below. Alternatively, the encoder 200
and decoder 300 are object-based, use a different macroblock
or block format, or perform operations on sets of samples of
different size or configuration than 8x8 blocks and 16x16
macroblocks.

[0047] Depending on implementation and the type of com-
pression desired, modules of the encoder or decoder can be
added, omitted, split into multiple modules, combined with
other modules, and/or replaced with like modules. In alterna-
tive embodiments, encoders or decoders with different mod-
ules and/or other configurations of modules perform one or
more of the described techniques.

[0048]

[0049] In some implementations, the encoder 200 and
decoder 300 process video frames organized as follows. A
frame contains lines of spatial information of a video signal.
For progressive video scanning, these lines contain samples
representing a snapshot of scene content sampled at the same
time instant and covering the entire scene from the top to the
bottom of the frame. A progressive video frame is divided into
macroblocks such as the macroblock 400 shown in FIG. 4.
The macroblock 400 includes four 8x8 luminance blocks (Y1
through Y4) and two 8x8 chrominance blocks that are co-
located with the four luminance blocks but half resolution
horizontally and vertically, following the conventional 4:2:0
macroblock format. The 8x8 blocks may be further sub-
divided at different stages, e.g., at the frequency transform
(e.g., 8x4, 4x8 or 4x4 DCTs) and entropy encoding stages. A
progressive I-frame is an intra-coded progressive video
frame, where the term “intra” refers to coding methods that do
not involve prediction from the content of other previously-
decoded pictures. A progressive P-frame is a progressive
video frame coded using prediction from one or more other
pictures at time instances that temporally differ from that of
the current picture (sometimes referred to as forward predic-
tion in some contexts), and a progressive B-frame is a pro-
gressive video frame coded using inter-frame prediction
involving a (possibly weighted) averaging of multiple predic-
tion values in some regions (sometimes referred to as bi-
predictive or bi-directional prediction). Progressive P- and
B-frames may include intra-coded macroblocks as well as
various types of inter-frame predicted macroblocks.

[0050] Interlaced video frame scanning consists of an alter-
nating series of two types of scans of a scene—one, referred
to as the top field, comprising the even lines (lines numbered
0,2, 4, etc.) of a frame, and the other, referred to as the bottom
field, comprising the odd lines (lines numbered 1, 3, 5, etc.) of
the frame. The two fields typically represent two different
snapshot time instants. FIG. 5A shows part of an interlaced

A. Video Frame Organizations
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video frame 500, including the alternating lines of the top
field and bottom field at the top left part of the interlaced video
frame 500.

[0051] FIG. 5B shows the interlaced video frame 500 of
FIG. 5A organized for encoding/decoding as a frame 530.
The interlaced video frame 500 has been partitioned into
macroblocks or other such regions such as the macroblocks
531 and 532, which use a 4:2:0 format as shown in FIG. 4. In
the luminance plane, each macroblock 531, 532 includes 8
lines from the top field alternating with 8 lines from the
bottom field for 16 lines total, and each line is 16 samples
long. (The actual organization of the picture into macroblocks
or other such regions and the placement of luminance blocks
and chrominance blocks within the macroblocks 531, 532 are
not shown, and in fact may vary for different encoding deci-
sions and for different video coding designs.) Within a given
macroblock, the top-field information and bottom-field infor-
mation may be coded jointly or separately at any of various
phases.

[0052] An interlaced I-frame is an intra-coded interlaced
video frame containing two fields, where each macroblock
includes information for one or both fields. An interlaced
P-frame is an interlaced video frame containing two fields
that is coded using inter-frame prediction, where each mac-
roblock includes information for one or both fields, as is an
interlaced B-frame. Interlaced P- and B-frames may include
intra-coded macroblocks as well as various types of inter-
frame predicted macroblocks.

[0053] FIG. 5C shows the interlaced video frame 500 of
FIG. 5A organized for encoding/decoding as fields 560. Each
of the two fields of the interlaced video frame 500 is parti-
tioned into macroblocks. The top field is partitioned into
macroblocks such as the macroblock 561, and the bottom
field is partitioned into macroblocks such as the macroblock
562. (Again, the macroblocks use a 4:2:0 format as shown in
FIG. 4, and the organization of the picture into macroblocks
or other such regions and placement of luminance blocks and
chrominance blocks within the macroblocks are not shown
and may vary.) In the luminance plane, the macroblock 561
includes 16 lines from the top field and the macroblock 562
includes 16 lines from the bottom field, and each line is 16
samples long.

[0054] An interlaced I-field is a single, separately repre-
sented field of an interlaced video frame. An interlaced P-field
is a single, separately represented field of an interlaced video
frame coded using inter-picture prediction, as is an interlaced
B-field. Interlaced P- and B-fields may include intra-coded
macroblocks as well as different types of inter-picture pre-
dicted macroblocks.

[0055] Interlaced video frames organized for encoding/de-
coding as fields may include various combinations of difter-
ent field types. For example, such a frame may have the same
field type (I-field, P-field, or B-field) in both the top and
bottom fields or different field types in each field.

[0056] The term picture generally refers to a frame or field
of source, coded or reconstructed image data. For progres-
sive-scan video, a picture is typically a progressive video
frame. For interlaced video, a picture may refer to an inter-
laced video frame, the top field of a frame, or the bottom field
of a frame, depending on the context.

[0057] FIG. 5D shows six example spatial alignments of

4:2:0 chroma sample locations relative to luma sample loca-
tions for each field of a video frame.
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[0058] Alternatively, the encoder 200 and decoder 300 are
object-based, use a different macroblock format (e.g., 4:2:2 or
4:4:4) or block format, or perform operations on sets of
samples of different size or configuration than 8x8 blocks and
16x16 macroblocks.

[0059] B. Video Encoder

[0060] FIG. 2 is a block diagram of an example video
encoder system 200. The encoder system 200 receives a
sequence of video pictures including a current picture 205
(e.g., progressive video frame, interlaced video frame, or field
of an interlaced video frame), and produces compressed
video information 295 as output. Particular embodiments of
video encoders typically use a variation or supplemented
version of the example encoder 200.

[0061] The encoder system 200 uses encoding processes
for intra-coded (intra) pictures (I-pictures) and inter-picture
predicted (inter) pictures (P- or B-pictures). For the sake of
presentation, FIG. 2 shows a path for I-pictures through the
encoder system 200 and a path for inter-picture predicted
pictures. Many of the components of the encoder system 200
are used for compressing both I-pictures and inter-picture
predicted pictures. The exact operations performed by those
components may vary depending on the type of information
being compressed.

[0062] An inter-picture predicted picture is represented in
terms of a prediction (or difference) from one or more other
pictures (which are typically referred to as reference pic-
tures). A prediction residual is the difference between what
was predicted and the original picture. In contrast, an [-pic-
ture is compressed without reference to other pictures. [-pic-
tures may use spatial prediction or frequency-domain predic-
tion (i.e., intra-picture prediction) to predict some portions of
the I-picture using data from other portions of the I-picture
itself. However, for the sake of brevity, such I-pictures are not
referred to in this description as “predicted” pictures, so that
the phrase “predicted picture” can be understood to be an
inter-picture predicted picture (e.g., a P- or B-picture).
[0063] If the current picture 205 is a predicted picture, a
motion estimator 210 estimates motion of macroblocks or
other sets of samples of the current picture 205 with respectto
one or more reference pictures, for example, the recon-
structed previous picture 225 buffered in the picture store
220. A motion estimator 210 may estimate motion with
respect to one or more temporally previous reference pictures
and one or more temporally future reference pictures (e.g., in
the case of a bi-predictive picture). Accordingly, the encoder
system 200 may use the separate stores 220 and 222 for
multiple reference pictures.

[0064] The motion estimator 210 may estimate motion by
full-sample, V2-sample, Y4-sample, or other increments, and
may switch the resolution of the motion estimation on a
picture-by-picture basis or other basis. The motion estimator
210 (and compensator 230) also may switch between types of
reference picture sample interpolation (e.g., between cubic
convolution interpolation and bilinear interpolation) on a per-
frame or other basis. The resolution of the motion estimation
may be the same or different horizontally and vertically. The
motion estimator 210 outputs, as side information, motion
information 215 such as differential motion vector informa-
tion. The encoder 200 encodes the motion information 215
by, for example, computing one or more predictors for motion
vectors, computing differences between the motion vectors
and predictors, and entropy coding the differences. To recon-
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struct a motion vector, a motion compensator 230 combines a
predictor with motion vector difference information.

[0065] The motion compensator 230 applies the recon-
structed motion vector to the reconstructed picture(s) 225 to
form a motion-compensated prediction 235. The prediction is
rarely perfect, however, and the difference between the
motion-compensated prediction 235 and the original current
picture 205 is the prediction residual 245. During later recon-
struction of the picture, an approximation of the prediction
residual 245 will be added to the motion compensated pre-
diction 235 to obtain a reconstructed picture that is closer to
the original current picture 205 than the motion-compensated
prediction 235. In lossy compression, however, some infor-
mation is still lost from the original current picture 205.
Alternatively, a motion estimator and motion compensator
apply another type of motion estimation/compensation.
[0066] A frequency transformer 260 converts the spatial
domain video information into frequency domain (i.e., spec-
tral) data. For block-based video coding, the frequency trans-
former 260 typically applies a discrete cosine transform
(DCT), a variant of a DCT, or some other block transform to
blocks of the sample data or prediction residual data, produc-
ing blocks of frequency-domain transform coefficients. Alter-
natively, the frequency transformer 260 applies another type
of frequency transform such as a Fourier transform or uses
wavelet or sub-band analysis. The frequency transformer 260
may apply an 8x8, 8x4, 4x8, 4x4 or other size frequency
transform.

[0067] A quantizer 270 then quantizes the blocks of fre-
quency-domain transform coefficients. The quantizer applies
scalar quantization to the transform coefficients according to
a quantization step-size that varies on a picture-by-picture
basis, a macroblock basis, or some other basis, where the
quantization step size is a control parameter that governs the
uniformly-spaced spacing between discrete representable
reconstruction points in the decoder inverse quantizer pro-
cess, which may be duplicated in an encoder inverse quantizer
process 276. Alternatively, the quantizer applies another type
of quantization to the frequency-domain transform coeffi-
cients, for example, a scalar quantizer with non-uniform
reconstruction points, a vector quantizer, or non-adaptive
quantization, or directly quantizes spatial domain data in an
encoder system that does not use frequency transformations.
In addition to adaptive quantization, the encoder 200 may use
frame dropping, adaptive filtering, or other techniques for rate
control.

[0068] When a reconstructed current picture is needed for
subsequent motion estimation/compensation, an inverse
quantizer 276 performs inverse quantization on the quantized
frequency-domain transform coefficients. An inverse fre-
quency transformer 266 then performs the inverse of the
operations of the frequency transformer 260, producing a
reconstructed prediction residual approximation (for a pre-
dicted picture) or a reconstructed I-picture approximation. If
the current picture 205 was an I-picture, the reconstructed
I-picture approximation is taken as the reconstructed current
picture approximation (not shown). If the current picture 205
was a predicted picture, the reconstructed prediction residual
approximation is added to the motion-compensated predic-
tion 235 to form the reconstructed current picture approxima-
tion. One or more of the picture stores 220, 222 buffers the
reconstructed current picture approximation for use as a ref-
erence picture in motion compensated prediction of subse-
quent pictures. The encoder may apply a de-blocking filter or
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other picture refining process to the reconstructed frame to
adaptively smooth discontinuities and remove other artifacts
from the picture prior to storing the picture approximation
into one or more picture stores 220, 222.

[0069] The entropy coder 280 compresses the output of the
quantizer 270 as well as certain side information (e.g., motion
information 215, quantization step size). Typical entropy cod-
ing techniques include arithmetic coding, differential coding,
Huffman coding, run length coding, Lempel-Ziv coding, dic-
tionary coding, and combinations of the above. The entropy
coder 280 typically uses different coding techniques for dif-
ferent kinds of information (e.g., low-frequency coefficients,
high-frequency coefficients, zero-frequency coefficients, dif-
ferent kinds of side information), and may choose from
among multiple code tables within a particular coding tech-
nique.

[0070] The entropy coder 280 provides compressed video
information 295 to the multiplexer [“MUX”]290. The MUX
290 may include a butfer, and a buffer fullness level indicator
may be fed back to bit rate adaptive modules for rate control.
Before or after the MUX 290, the compressed video informa-
tion 295 may be channel coded for transmission over the
network. The channel coding may apply error detection and
correction data to the compressed video information 295.
[0071] C. Video Decoder

[0072] FIG. 3 is a block diagram of an example video
decoder system 300. The decoder system 300 receives infor-
mation 395 for a compressed sequence of video pictures and
produces output including a reconstructed picture 305 (e.g.,
progressive video frame, interlaced video frame, or field of an
interlaced video frame). Particular embodiments of video
decoders typically use a variation or supplemented version of
the generalized decoder 300.

[0073] The decoder system 300 decompresses predicted
pictures and I-pictures. For the sake of presentation, FIG. 3
shows a path for I-pictures through the decoder system 300
and a path for predicted pictures. Many of the components of
the decoder system 300 are used for decompressing both
I-pictures and predicted pictures. The exact operations per-
formed by those components may vary depending on the type
of information being decompressed.

[0074] A DEMUX 390 receives the information 395 for the
compressed video sequence and makes the received informa-
tion available to the entropy decoder 380. The DEMUX 390
may include ajitter buffer and other buffers as well. Before or
within the DEMUX 390, the compressed video information
may be channel decoded and processed for error detection
and correction.

[0075] The entropy decoder 380 entropy decodes entropy-
coded quantized data as well as entropy-coded side informa-
tion (e.g., motion information 315, quantization step size),
typically applying the inverse of the entropy encoding per-
formed in the encoder. Entropy decoding techniques include
arithmetic decoding, differential decoding, Huffman decod-
ing, run length decoding, Lempel-Ziv decoding, dictionary
decoding, and combinations of the above. The entropy
decoder 380 typically uses different decoding techniques for
different kinds of information (e.g., low-frequency coeffi-
cients, high-frequency coefficients, zero-frequency coeffi-
cients, different kinds of side information), and may choose
from among multiple code tables within a particular decoding
technique.

[0076] The decoder 300 decodes the motion information
315 by, for example, computing one or more predictors for
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motion vectors, entropy decoding motion vector differences
(at entropy decoder 380), and combining decoded motion
vector differences with predictors to reconstruct motion vec-
tors.

[0077] A motion compensator 330 applies motion informa-
tion 315 to one or more reference pictures 325 to form a
prediction 335 of the picture 305 being reconstructed. For
example, the motion compensator 330 uses one or more mac-
roblock motion vectors to find blocks of samples or to inter-
polate fractional positions between samples in the reference
picture(s) 325. One or more picture stores (e.g., picture store
320, 322) store previous reconstructed pictures for use as
reference pictures. Typically, B-pictures have more than one
reference picture (e.g., at least one temporally previous ref-
erence picture and at least one temporally future reference
picture). Accordingly, the decoder system 300 may use sepa-
rate picture stores 320 and 322 for multiple reference pic-
tures. The motion compensator 330 may compensate for
motion at full-sample, Y2 sample, Y4 sample, or other incre-
ments, and may switch the resolution of the motion compen-
sation on a picture-by-picture basis or other basis. The motion
compensator 330 also may switch between types of reference
picture sample interpolation (e.g., between cubic convolution
interpolation and bilinear interpolation) on a per-frame or
other basis. The resolution of the motion compensation may
be the same or different horizontally and vertically. Alterna-
tively, a motion compensator applies another type of motion
compensation. The prediction by the motion compensator is
rarely perfect, so the decoder 300 also reconstructs prediction
residuals.

[0078] An inverse quantizer 370 inverse quantizes entropy-
decoded data. Typically, the inverse quantizer applies uni-
form scalar inverse quantization to the entropy-decoded data
with a reconstruction step-size that varies on a picture-by-
picture basis, a macroblock basis, or some other basis. Alter-
natively, the inverse quantizer applies another type of inverse
quantization to the data, for example, a non-uniform, vector,
or non-adaptive inverse quantization, or directly inverse
quantizes spatial domain data in a decoder system that does
not use inverse frequency transformations.

[0079] An inverse frequency transformer 360 converts the
inverse quantized frequency domain transform coefficients
into spatial domain video information. For block-based video
pictures, the inverse frequency transformer 360 applies an
inverse DCT [“IDCT”], a variant of IDCT, or some other
inverse block transform to blocks of the frequency transform
coefficients, producing sample data or inter-picture predic-
tion residual data for I-pictures or predicted pictures, respec-
tively. Alternatively, the inverse frequency transformer 360
applies another type of inverse frequency transform such as
an inverse Fourier transform or uses wavelet or sub-band
synthesis. The inverse frequency transformer 360 may apply
an 8x8, 8x4, 4x8, 4x4, or other size inverse frequency trans-
form.

[0080] For a predicted picture, the decoder 300 combines
the reconstructed prediction residual 345 with the motion
compensated prediction 335 to form the reconstructed picture
305. When the decoder needs a reconstructed picture 305 for
subsequent motion compensation, one or more of the picture
stores (e.g., picture store 320) buffers the reconstructed pic-
ture 305 for use in predicting the next picture. In some
embodiments, the decoder 300 applies a de-blocking filter or
other picture refining process to the reconstructed picture to
adaptively smooth discontinuities and remove other artifacts
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from the picture prior to storing the reconstructed picture 305
into one or more of the picture stores (e.g., picture store 320)
or prior to displaying the decoded picture during decoded
video play-out.

III. General Overview of Multi-Resolution Encoding and
Decoding

[0081] Video can be encoded (and decoded) at different
resolutions. For the purposes of this description, multi-reso-
Iution encoding and decoding can be described as frame-
based coding and decoding (e.g., reference picture resam-
pling) or layered (sometimes referred to as spatial scalable)
coding and decoding. Multi-resolution encoding and decod-
ing could also involve interlaced video and field-based encod-
ing and decoding and switching between frame-based and
field-based encoding and decoding on a resolution-specific
basis or on some other basis. However, frame coding of pro-
gressive video is discussed in this overview for purposes of
simplifying the concept description.

[0082] A. Frame-based Multi-Resolution Encoding and
Decoding
[0083] Inframe-based multi-resolution coding, an encoder

encodes input pictures at different resolutions. The encoder
chooses the spatial resolution for pictures on a picture-by-
picture basis or on some other basis. For example, in refer-
ence picture resampling, a reference picture can be resampled
ifitis encoded at a different resolution from that of the picture
being encoded. The term resampling is used to describe
increasing (upsampling) or decreasing (downsampling) the
number of samples used to represent a picture area or some
other section of a sampled signal. The number of samples per
unit area or per signal section is referred to as the resolution of
the sampling.

[0084] Spatial resolution can be chosen based on, for
example, an decrease/increase in available bit rate, decrease/
increase in quantization step size, decrease/increase in the
amount of motion in the input video content, other properties
of the video content (e.g., presence of strong edges, text, or
other content that may be significantly distorted at lower
resolutions), or some other basis. Spatial resolution can be
varied in vertical, horizontal, or both vertical and horizontal
dimensions. Horizontal resolution may be the same as or
different than vertical resolution. A decoder decodes encoded
frames using complementary techniques.

[0085] Once the encoder has chosen a spatial resolution for
a current picture or area within a current picture, the encoder
re-samples the original picture to the desired resolution
before coding it. The encoder can then signal the choice of
spatial resolution to the decoder.

[0086] FIG. 6 shows a technique (600) for frame-based
multi-resolution encoding of pictures. An encoder, such as
encoder 200 in FIG. 2 sets a resolution (610) for a picture.
[0087] For example, the encoder considers the criteria
listed above or other criteria. The encoder then encodes the
picture (620) at that resolution. If the encoding of all pictures
that are to be encoded is done (630), the encoder exits. If not,
the encoder sets a resolution (610) for the next picture and
continues encoding. Alternatively, the encoder sets resolu-
tions at some level other than picture level, such as setting the
resolution differently for different parts of picture or making
a resolution selection for a group or sequence of pictures.
[0088] The encoder may encode predicted pictures as well
as intra pictures. FIG. 8 shows a technique (800) for frame-
based multi-resolution encoding of intra pictures and inter-
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picture predicted pictures. First, the encoder checks at 810
whether the current picture to be encoded is an intra picture or
a predicted picture. If the current picture is an intra picture,
the encoder sets the resolution for the current picture at 820.
If the picture is a predicted picture, the encoder sets the
resolution for the reference picture at 830 before setting the
resolution for the current picture. After setting the resolution
for the current picture, the encoder encodes the current pic-
ture (840) at that resolution. Setting the resolution for a pic-
ture (whether a current source picture or a stored reference
picture) may involve resampling the picture to match the
selected resolution and may involve encoding a signal to
indicate the selected resolution to the decoder. If the encoding
ofall pictures that are to be encoded is done (850), the encoder
exits. If not, the encoder continues encoding additional pic-
tures. Alternatively, the encoder treats predicted pictures in a
different way.

[0089] A decoder decodes the encoded picture, and, if nec-
essary, resamples the picture before display. Like the resolu-
tion of the encoded picture, the resolution of the decoded
picture can be adjusted in many different ways. For example,
the resolution of the decoded picture can be adjusted to fit the
resolution of an output display device or of a region of an
output display device (for example, for “picture-in-picture”
or PC desktop window display).

[0090] FIG. 7 shows a technique (700) for frame-based
multi-resolution decoding of pictures. A decoder, such as
decoder 300 in FIG. 3, sets a resolution (at 710) for a picture.
For example, the decoder gets resolution information from
the encoder. The decoder then decodes the picture (720) at
that resolution. If the decoding of all pictures that are to be
decoded is done (730), the decoder exits. If not, the decoder
sets a resolution (710) for the next picture and continues
decoding. Alternatively, the decoder sets resolutions at some
level other than picture level.

[0091] The decoder may decode predicted pictures as well
as intra pictures. FIG. 9 shows a technique (900) for frame-
based multi-resolution decoding of intra pictures and pre-
dicted pictures.

[0092] First, the decoder checks whether the current frame
to be decoded is an intra picture or a predicted picture (910).
If the current picture is an intra picture, the decoder sets the
resolution for the current picture (920). If the picture is a
predicted picture, the decoder sets the resolution for the ref-
erence picture (930) before setting the resolution for the cur-
rent picture (920). Setting the resolution of the reference
picture may involve resampling the stored reference picture to
match the selected resolution. After setting the resolution for
the current picture (920), the decoder decodes the current
picture (940) at that resolution. If the decoding of all pictures
that are to be decoded is done (950), the decoder exits. If not,
the decoder continues decoding.

[0093] The decoder typically decodes pictures at the same
resolutions used in the encoder. Alternatively, the decoder
decodes pictures at different resolutions, such as when the
resolutions available to the decoder are not exactly the same
as those used in the encoder.

[0094] B. Layered Multi-Resolution Encoding and Decod-
ing
[0095] In layered multi-resolution coding, an encoder

encodes video in layers, with each layer having information
for decoding the video at a different resolution. In this way,
the encoder encodes at least some individual pictures in the
video at more than one resolution. A decoder can then decode
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the video at one or more resolutions by processing different
combinations of layers. For example, a first layer (sometimes
referred to as a base layer) contains information for decoding
video at a lower resolution, while one or more other layers
(sometimes referred to as enhancement layers) contain infor-
mation for decoding the video at higher resolutions.

[0096] The base layer may be designed to itself be an inde-
pendently decodable bitstream. Thus, in such a design, a
decoder that decodes only the base layer will produce a valid
decoded bitstream at the lower resolution of the base layer.
Proper decoding of higher-resolution pictures using an
enhancement layer may require also decoding some or all of
the encoded base layer data and possibly of one or more
enhancement layers. A decoder that decodes the base layer
and one or more other higher-resolution layers will be able to
produce higher resolution content than a decoder that decodes
only the base layer. Two, three or more layers may be used to
allow for two, three or more different resolutions. Alterna-
tively, a higher resolution layer may itself also be an indepen-
dently decodable bitstream. (Such a design is often referred to
as a simulcast multi-resolution encoding approach.)

[0097] FIG. 10 shows a technique (1000) for encoding bit-
stream layers to allow decoding at different resolutions. An
encoder such as encoder 200 in FIG. 2 takes full-resolution
video information as input (1010). The encoder downsamples
the full-resolution video information (1020) and encodes the
base layer using the downsampled information (1030). The
encoder encodes one or more higher-resolution layers using
the base layer and higher-resolution video information
(1040). A higher-resolution layer can be a layer that allows
decoding at full resolution, or a layer that allows decoding at
some intermediate resolution. The encoder then outputs a
layered bitstream comprising two more ofthe encoded layers.
Alternatively, the encoding of the higher-resolution layer
(1040) may not use base layer information and may thus
enable the independent decoding of the higher-resolution
layer data for a simulcast multi-resolution encoding
approach.

[0098] The encoder can accomplish multi-resolution layer
encoding in several ways following the basic outline shown in
FIG. 10. For more information, see, e.g., U.S. Pat. No. 6,510,
177, or the MPEG-2 standard or other video standards.

[0099] FIG. 11 shows a technique (1100) for decoding bit-
stream layers to allow decoding video at different resolutions.
A decoder such as decoder 300 in FIG. 3 takes a layered
bitstream as input (1110). The layers include a lower-resolu-
tion layer (base layer) and one or more layers comprising
higher-resolution information. The higher-resolution layers
need not contain independently encoded pictures; typically,
higher-resolution layers include residual information that
describes differences between higher- and lower-resolution
versions of pictures. The decoder decodes the base layer
(1120) and, if higher-resolution decoding is desired, the
decoder upsamples the decoded base layer pictures (1130) to
the desired resolution. The decoder decodes one or more
higher-resolution layers (1140) and combines the decoded
higher-resolution information with the upsampled, decoded
base layer pictures to form higher-resolution pictures (1150).
Depending on the desired resolution level, the higher-resolu-
tion pictures may be full-resolution pictures or intermediate-
resolution pictures. For more information, see, e.g., U.S. Pat.
No. 6,510,177, or the MPEG-2 standard or other video stan-
dards.
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[0100] The decoder typically decodes pictures at one of the
resolutions used in the encoder. Alternatively, the resolutions
available to the decoder are not exactly the same as those used
in the encoder.

IV. Resampling Filters for Scalable Video Coding and
Decoding

[0101] This section describes techniques and tools for scal-
able video coding and decoding.

[0102] Although some described techniques and tools are
described in a layered (or spatial scalable) context, some
described techniques and tools can also be used in a frame-
based (or reference picture sampling) context, or in some
other context that involves resampling filters. Further,
although some described techniques and tools are described
in the context of resampling pictures, some described tech-
niques and tools can also be used for resampling residual or
difference signals that result from prediction of higher reso-
lution signals.

[0103] Scalable video coding (SVC) is a type of digital
video coding that allows a subset of a larger bitstream to be
decoded to produce decoded pictures with a quality that is
acceptable for some applications (although such picture qual-
ity would be lower than the quality produced by decoding an
entire higher-bit-rate bitstream). One well-known type of
SVC is referred to as spatial scalability, or resolution scal-
ability. In a spatial SVC design, the encoding process (or a
pre-processing function to be performed prior to the encoding
process, depending on the exact definition of the scope of the
encoding process) typically includes downsampling the
video to a lower resolution and encoding that lower-resolu-
tion video for enabling a lower-resolution decoding process,
and upsampling of the lower-resolution decoded pictures for
use as a prediction of the values of the samples in the pictures
of the higher-resolution video. The decoding process for the
higher-resolution video then includes decoding the lower-
resolution video (or some part of it) and using that upsampled
video as a prediction of the value of the samples in the pictures
of'the higher-resolution video. Such designs require the use of
resampling filters. In particular, codec designs include the use
of upsamplingfilters in both decoders and encoders and the
use of downsamplingfilters in encoders or encoding pre-pro-
cessors. We especially focus on the upsampling filters used in
such designs. Typically, the upsampling process is designed
to be identical in encoders and decoders, in order to prevent a
phenomenon known as drift, which is an accumulation of
error caused by the use of differing predictions of the same
signal during encoding and decoding.

[0104] One drawback of some spatial SVC designs is the
use of low-quality filters (e.g., two-tap bilinear filters) in the
decoding process. The use of higher quality filters would be
beneficial to video quality.

[0105] Spatial SVC may include resampling filters that
enable a high degree of flexibility in the resampling ratio of
the filter. However, this may require a large number of par-
ticular filter designs for each different “phase” of such a filter
to be developed and the “tap” values of these filters to be
stored in implementations of encoders and decoders.

[0106] Furthermore, it can be beneficial to video quality to
allow an encoder to control the amount of blurriness of the
resampling filters used for spatial SVC. Thus, for each
“phase” of resampling to be designed for upsampling or
downsampling, it may be beneficial to have several different
filters to choose from, depending on the desired degree of
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blurriness to be introduced in the process. The selection of the
degree of blurriness to be performed during upsampling may
be sent from an encoder to a decoder as information conveyed
for use in the decoding process. This extra flexibility further
complicates the design, as it greatly increases the number of
necessary tap values that may need to be stored in an encoder
or decoder.

[0107] A unified design could beused to specify a variety of
resampling filters with various phases and various degrees of
blurriness. One possible solution is the use of the Mitchell-
Netravali filter design method. Straightforward application of

(12-9b—6¢) | x> —(18 = 12b — 6¢) | x |* +(6 — 2b)
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[0117] simple to operate (e.g., using practical word-
length arithmetic).

[0118]

[0119] Described techniques and tools take a separable fil-
tering approach—therefore, the following discussion will
focus primarily on processing of a one-dimensional signal, as
the two-dimensional case is a simple separable application of
the one-dimensional case. It first proposes a two-parameter
set of filters based on the conceptually-continuous impulse
response h(x) given by:

A. Mitchell-Netravali Upsampling Filters

Ix| <1 o5

1
h(x)=g* —(b+60)| x> +(6b+30c) | x> —(12b+48¢) | x| +(8b+24c) 1<|x| <2

0

the Mitchell-Netravali filter design method to these problems
may require excess computational resources in the form of an
excessive dynamic range of possible values for quantities that
are to be computed in the encoder or decoder. For example,
one such design might require the use of 45-bit arithmetic
processing, rather than the 16-bit or 32-bit processing ele-
ments normally used in general-purpose CPUs and DSPs. To
address this issue, we provide some design refinements.

[0108] A typical SVC design requires a normative upsam-
pling filter for spatial scalability. To support arbitrary resam-
pling ratios (a feature known as extended spatial scalability),
an upsampling filter design is described that incorporates a
great deal of flexibility regarding resampling ratios. Another
key aspect is the relative alignment of luma and chroma.
Since a variety of alignment structures (see, e.g., H.261/
MPEG-1 vs. MPEG-2 alignment for 4:2:0 chroma, and
H.264/MPEG-4 AVC) are found in single-layer approaches,
described techniques and tools support a flexible variety of
alignments, with an easy way for the encoder to indicate to the
decoder how to apply the filtering appropriately.

[0109] Described techniques and tools comprise upsam-
pling filters capable of high-quality upsampling and good
anti-aliasing. In particular, described techniques and tools
have quality beyond that provided by previous bilinear filter
designs for spatial scalability. Described techniques and tools
have high-quality upsampling filters that are visually pleasing
as well as providing good signal-processing frequency behav-
ior. Described techniques and tools comprise a filter design
that is simple to specify and does not require large memory
storage tables to hold tap values, and the filtering operations
themselves are computationally simple to operate. For
example, described techniques and tools have a filter that is
not excessively lengthy and does not require excessive math-
ematical precision or overly complex mathematical func-
tions.

[0110] This section describes designs having one or more
of the following features:

[0111] flexibility of luma/chroma phase alignment;
[0112] flexibility of resampling ratio;

[0113] flexibility of frequency characteristics;

[0114] high visual quality;

[0115] not too few and not too many filter taps (e.g.,

between 4 and 6);

[0116] simple to specify;

otherwise,

where b and ¢ are the two parameters. For a relative phase
offset position O=x<1, this kernel produces a 4-tap finite
impulse response (FIR) filter with tap values given by the
following matrix equation:

é*[lx}c2 ] (&)

b 6-2b b 0
—(3b+6¢) 0 3b+6¢ 0
3b+12¢ —18+12b+6c 18-15b—12c —6¢
—(b+6¢)  12-9b—6¢ —(12-9b—-6¢) b+6¢

Actually, it is sufficient to consider only the range of x from 0
to ¥4, since the FIR filter kernel for x is simply the FIR filter
kernel for 1-x in reverse order.

[0120] This design has a number of interesting and useful
properties. Here are some of them:

[0121] No trigonometric functions, transcendental func-
tions or irrational-number processing is needed to com-
pute the filter tap values. In fact, tap values for such a
filter can be directly computed with only a few simple
operations. They do not need to be stored for the various
possible values of the parameters and phases that are to
be used; they can simply be computed when needed. (So,
to standardize the use of such filters, only a few formulas
are needed—no huge tables of numbers or standardized
attempts to approximate functions like cosines or Bessel
functions are needed.)

[0122] 'The resulting filter has 4 taps. This is a very prac-
tical number.

[0123] 'The filter has only a single sidelobe on each side
of the main lobe. It thus will not produce excessive
ringing artifacts.

[0124] The filter has a smooth impulse response. It value
and its first derivative are both continuous.

[0125] It has unity gain DC response, meaning that there
is no overall brightness amplification or attenuation in
the information being upsampled.

[0126] Members of this family of filter include relatively
good approximations of well-known good filters such as
the “Lanczos-2” design and the “Catmull-Rom” design.
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Furthermore, described techniques and tools include a par-
ticular relationship between the two parameters for the selec-
tion of visually-pleasing filters. That relationship can be
expressed as follows:

c=%(1—b) ®

This reduces the degrees of freedom to a single bandwidth
control parameter b. This parameter controls the degree of
extra blurriness introduced by the filter. Note that the member
of this family associated with the value b=0 is the excellent
and well-known Catmull-Rom upsampling filter (also known
as a Keys “cubic convolution™ interpolation filter).

[0127] The Catmull-Rom upsampling filter has a number of
good properties of its own, in addition to the basic advantages
found for all members of the Mitchell-Netravali filter family:

[0128] It is an “interpolating” filter—i.e., for phase val-
ues of x=0 and x=1, the filter has a single non-zero tap
equal to 1. In other words, an upsampled signal will pass
exactly through the values of the input samples at the
edges of each upsampled curve segment.

[0129] If the set of input samples forms a parabola (or a
straight line, or a static value), the output points will lie
exactly on the parabolic curve (or straight line or static
value).

In fact, in some ways, the Catmull-Rom upsampler can be
considered the best upsampling filter of this length for these
reasons—although introducing some extra blurring (increas-
ing b) may sometimes be more visually pleasing. Also, intro-
ducing some extra blurring can help blur out low-bit-rate
compression artifacts and thus act more like a Wiener filter (a
well-known filter used for noise filtering) estimator of the true
upsampled picture.

[0130] Simple substitution of Equation (3) into Equation
(2) results in the following tap values:

b 6-2b b 0 )
1 -3 0 3 0
— %[l x 2% ]« .
6 6-3b —-15+9b6 12-95 -3+3b
—-(3-2b) 9-6b -9-6b) 3-2b

[0131] It has been reported that, based on subjective tests
with 9 expert viewers and over 500 samples:
[0132] a usable range is reported as 0<b=<5/3;
[0133] 0<b=1/2is categorized as visually “satisfactory”,
with b=1/3 reported as visually pleasing;
[0134] b>1/2 is categorized as “blurry,” with b=3/2
reported as excessively blurry

[0135] B. Integerization of the Bandwidth Control Param-
eter
[0136] The division by 6 in the Equation (4) may not be

desirable. It may be desirable instead to integerize the band-

ax2F
_02F+S-1

[1i2#]=
(25 =3a)=2F

-2 - 2a)
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width control parameter and filter tap values, as infinite pre-
cision is impractical as part of a decoder design. Consider a
substitution using a new integer-valued variable a defined as
follows:

a=(b/6)*25 ®),

where S is an integer shift factor and a is an unsigned integer
acting as an integerized bandwidth control parameter. The
parameter a can be encoded as a syntax element by the
encoder at the video sequence level in a bitstream. For
example, the parameter a can be encoded explicitly with a
variable-length or fixed-length code, jointly coded with other
information, or signaled explicitly. Alternatively, the param-
eter a is signaled at some other level in a bitstream.

e integerization results in integerized tap values
0137] The integ t It teg d tap val
of
1 xx% 23] (6)
a 25 - 2a a 0
_2571 0 2571 0
25 -3a -5+25"' 4+ 9a 25t _9q 2571434
251 22a) 3:25'—6a —(3x25'—6a) 25'-24

The result would then need to be scaled down by S positions
in binary arithmetic processing.

[0138] Ifahas arange of 0to M, then b has a range from 0
to 6*M/2°. Some possible useful choices for M include the
following:

[0139] M=28-2_1, resulting in a range of b from 0 to
3/2-6/2°.
[0140] M=Ceil(2°/6), which returns the smallest integer

greater than or equal to 2°/6, resulting in range of b from
0 to slightly more than 1.

[0141] M=2%"%_1, resulting in an approximate range of
b from O to 3/4-6/2°. These choices for M are large
enough cover most useful cases, with the first choice
(M=2%-2_1) being the larger of the three choices. A
useful range for S is between 6 and 8. For example,
consider S=7 and M=2®"2-1,i.e., M=31. Alternatively,
other values of M and S can be used.

[0142] C. Integerization ofthe Fractional-Sample Position-
ing
[0143] Next we consider the granularity of the value of x.

For practicality, we should approximate x as well. For
example, we can define an integer i such that:

x=i+2F @)
where F represents a supported fractional-sample position
precision. For an example of a sufficiently-accurate resam-
pling operation, consider Fz4 (one-sixteenth or greater

sample positioning precision). This results in the following
integerized filter tap values:

(25 = 2a)x23F ax23F 0 ®)
0 22F+S—1 0

(=525 490y 2F (257 —9a)«2F (=251 4 3a)x2F

3+25 60 —(3+25' —6a) 2571 _2g
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For example, consider F=4. The result would then need to be
scaled down by 3F+S positions.

[0144] Note that every entry in the matrix above contains a
factor of two in common (assuming that S is greater than 1).
Thus we can instead formulate the tap values as follows:
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a=2""1 @5 —a)«2’F ax2*F1 0 ©)
_22F+572 0 22F+S*2 0
[1i? )= ,
(25 =3a)#2F71 (=5%257 1 £ 9a)«2F71 (25H —9g)«2F1 (22571 43y 20!
-2 -0 3:27—a) -3:2%7-0) 27 —qa

where each of the tap values have been divided by 2. The
result then would need to be scaled down by only 3F+S-1
positions.

[0145] For the down-scaling, we define the function
RoundingRightShift(p, R) as the output of a right shift of R
bits (with rounding) computed for input value p, computed as
follows:

(p+2F Y >>R for R=2,3,4, ... (10)

RouningRightShif(p, R) =
§iig ifip { for R=0or 1

() >>R

where the notation “>>" refers to a binary arithmetic right
shift operator using two’s complement binary arithmetic.
Alternatively, rounding right shifting is performed differ-
ently.

[0146] Some example applications for rounding right shift-
ing are provided below.

[0147] D. Dynamic Range Consideration

[0148] If we filter pictures with Nbits of sample bit depth
and do so two-dimensionally before performing any round-
ing, we will need 2*(3F+S-1)+N+1 bits of dynamic range in
the accumulator prior to down-shifting the result by 2*(3F+
S-1) positions and clipping the output to an N bit range. For
example, if we have F=4, S=7 and N=8, we may need to use
a 45-bit accumulator to compute the filtered result.

[0149] We describe some approaches to mitigating this
problem in the following subsections. These approaches can
be used separately or in combination with each other. It
should be understood that variations of the described dynamic
range mitigation approaches are possible based on the
descriptions herein.

1. First Example Dynamic Range Mitigation
Approach

[0150] Consider an example where horizontal filtering is
performed first, followed by vertical filtering. Consider a
maximum word length of Whits for any point in the two-
dimensional processing pipeline. In a first dynamic range
mitigation approach, to accomplish the filtering we use a
rounding right shift of R, bits at the output of the first (hori-
zontal) stage of the process and a rounding right shift of R,
bits at the output of the second (vertical) stage of the process.
[0151] We thus compute the following:

2*(3F+S-1)+N+1-Ry=W (11),
and therefore

Ry=2*(3F+S-1)+N+1-W (12).

Then the right shift for the second (vertical) stage can be
computed from

Ry+R,=2*(3F+5-1) (13),
and therefore

Ry=2*(3F+S-1)-Ryy. (14).

For example, for F=4 and S=7 and N=8 and W=32, we obtain
R;=13 and R, _,;. Thus, instead of 45 bits of dynamic range,
with rounding right shifts the dynamic range is reduced to 32
bits. Right shifts of different numbers of bits can be used for
different values of W.

2. Second Example Dynamic Range Mitigation
Approach

[0152] A second dynamic range mitigation approach
involves reducing the precision of the tap values rather than
reducing the precision of the phase positioning (i.e., reducing
F), reducing the granularity of the filter bandwidth adjustment
parameter (i.e., reducing S) or reducing the precision of the
output of the first stage (i.e., increasing R;,).

[0153] We denote the four integer tap values produced by
Equation (9) as [t_j, t,, t;, t,]. Note that the sum of the four
filter tap values will be equal to 237+ ie.,

tHlgHt =235 15).

This is an important property of this example dynamic range
mitigation approach because whenever all four input samples
have the same value, the output will have that same value.
[0154] Usingthe example definition of rounding right shift-
ing found in Equation (10), and given a right shift quantity R,
for the tap values, we define the following:

u_;=RoundingRightShift(z_,,R,);
u;=RoundingRightShift(z,,R,);

u,=RoundingRightShift(z,,R,);

_53FES-1
ug=2 —U_—U .

We then perform the filtering with tap values [u_,, u,, u;, u,]
ratherthan [t_,,t,,t;,t,]. Eachincrease of 1 in the value of R,
represents one less bit of dynamic range necessary in the
arithmetic accumulator, and one less bit of right-shifting to be
performed in subsequent stages of processing.

3. Third Example Dynamic Range Mitigation
Approach

[0155] One previous design uses a trick that is similar in
concept but differs from the first example dynamic range
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mitigation approach in that it makes the amount of right-
shifting after the first stage of the process a function of the
value of the phase positioning variable 1.

[0156] We can recognize that the filter tap values shown in
Equation (9) will contain K zero-valued .SBs when the value
ofiis an integer multiple of 2%, Thus, if the second stage of the
filtering process uses a phase positioning variable i that is an
integer multiple of 2%, we can right-shift the tap values of the
second stage by K bits and decrease the amount of right
shifting for the first stage by K bits.

[0157] This might get rather difficult to keep track of when
operating a generalized resampling factor. However, when
performing simple resampling factors of 2:1 or other simple
factors, it is easy to recognize that all phases in use for the
second stage of the filtering process contain the same multiple
of 2%, allowing this approach to be applied in these special
cases.

V. Position Calculation Techniques and Tools

[0158] Techniques and tools for computing positioning
information for spatial SVC are described.

[0159] Some techniques and tools are directed to how to
focus on a word length B and optimize the precision of the
computation within the constraint of that word length. Instead
of just selecting the precision and requiring some necessary
word length, applying the new method will result in higher
precision in a real implementation and will broaden the range
of effective application of the technique, because it uses all of
the available word length to maximize the accuracy within
that constraint.

[0160] Some techniques and tools are directed to a) offset-
ting the origin of the coordinate system and b) using unsigned
integers rather than signed integers in order to achieve a better
trade-off between precision and word length/dynamic range.
A minor increase in computations is needed to add the origin
offset term to each calculated position.

[0161] Some techniques and tools are directed to breaking
the computation of different sections of the string of samples
to be produced into different stages of processing, wherein
the origin of the coordinate system is changed at the start of
each stage. Again it provides a better trade-off between pre-
cision and word length/dynamic range with another minor
increase in computational requirements (since certain extra
computations are performed at the start of each stage). If the
technique is taken to its logical extreme, the need for multi-
plication operations can be eliminated and the trade-off
between precision and word length/dynamic range can be
further improved. However, certain extra operations would
need to be performed for every sample (since the extra com-
putation needed for “each stage” becomes needed for every
sample when every stage contains only one sample).

[0162] As a general theme, designs are described for the
position calculation part of the processing to achieve desir-
able trade-offs between precision of the computed results,
word length/dynamic range of the processing elements, and
the number and type of mathematical operations involved in
the processing (e.g., shift, addition and multiplication opera-
tions).

[0163] For example, described techniques and tools allow
flexible precision calculations using B-bit (e.g., 32-bit) arith-
metic. This allows a spatial SVC encoder/decoder to flexibly
accommodate different image sizes without having to convert
to different arithmetic (e.g., 16-bit or 64-bit arithmetic) for
calculations. With the flexible precision B-bit (e.g., 32-bit)
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arithmetic, an encoder/decoder can devote a flexible number
of bits to the fractional component. This allows increased
precision for calculations as the number of required bits for
representing the integer component decreases (e.g., for a
smaller frame size). As the number of required bits for rep-
resenting the integer component increases (e.g., for a larger
frame size), the encoder/decoder can use more bits for the
integer component and less bits for the fractional component,
reducing precision but maintaining the B-bit arithmetic. In
this way, changing between different precisions and different
frame sizes is greatly simplified.

[0164] This section includes specific details for an example
implementation. However, it should be noted that the specit-
ics described herein can be varied in other implementations
according to principles described herein.

[0165] A. Introduction and Position Calculation Principles
[0166] Techniques for computing position and phase infor-
mation, resulting in much lower computational requirements
without any significant loss of accuracy, are described. For
example, described techniques can reduce computational
requirements significantly—e.g., by reducing nominal
dynamic range requirements dramatically (by tens of bits).
Considering the variety of possible chroma positions that may
be used in base and enhancement layers, it is desirable to find
a solution providing proper positioning of resampled chroma
samples relative to luma samples. Accordingly, described
techniques allow adjustments to be made to calculate posi-
tions for video formats with different relationships between
luma and chroma positions.

[0167] A previous upsampling method designed for
extended spatial scalability uses a rather cumbersome method
of calculating the position and phase information when
upsampling the low-resolution layer; it scales an up-shifted
approximate inverse of a denominator, which causes ampli-
fication of the rounding error in the inversion approximation
as the numerator increases (i.e., as the upsampling process
moves from left to right, or from top to bottom). By compari-
son, techniques described herein have excellent accuracy and
simplify computation. In particular, techniques are described
that reduce the dynamic range and the amount of right-shift-
ing in the position calculations by tens of bits.

[0168] Forexample, atechniqueis described for computing
the positioning information for obtaining an integer position
and a phase positioning variable i, where i=0.27 -1, for use in
SVC spatial upsampling.

[0169] Described techniques apply the resampling process
to the application of spatial scalable video coding rather than
to forward reference picture resampling. In this application of
spatial scalable video coding, certain simplifications can
apply. Rather than a general warping process, we only need a
picture resizing operation. This can be a separable design for
each dimension.

[0170]

[0171] Consider a problem statement, in each dimension (x
ory), as the production of a string of samples lying concep-
tually in a real-valued range from L. to R>L in the new (up-
sampled) array. This real-valued range is to correspond to a
range from L' to R™>L' in the referenced lower-resolution
array.

[0172] For aposition T in the new array where L<T<R, we
then need to compute the position in the reference array that
corresponds to the position in the new array. This would be the
position T'=L'+(T-L)*(R'-L"+(R-L).

B. Position Calculation Design
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[0173] Now instead of considering the resizing of the range
from L to R, we define an integer M>0 and consider resizing
the range from L to L+2* by the same resizing ratio (R'-L")
+(R-L). The corresponding range in the referenced sample
coordinates are then from L' to R", where R"=L+2"*(R'-L")
+(R-L). If M is sufficiently large, i.e., if M=Ceil(Log,(R-
L)), then R"=R". (Let us assume for now that this constraint
holds in order to explain the concepts below, although this
constraint is not really necessary for proper functioning of the
equations.)

[0174] Now we can use linear interpolation between the
positions L' and R" for the positioning calculations. Position
L is mapped to position L', and position T=zL is mapped to
position ((2"—(T-L))*L'+(T-L)*R")+2™. This converts the
denominator of the operation to a power of 2, thus reducing
the computational complexity of the division operation by
allowing it to be replaced by a binary right shift.

[0175] Appropriate modifications can be made to integer-
ize the computations. We round the values of [' and R" to
integer multiples of 1+2°, where G is an integer, such that L'
is approximated by k+2< and R" is approximated by r+2°
where k and r are integers. Using this adjustment, we have
position T mapped to position

((@M~(T-L))*k+(T-L)*r)+ 200,
[0176] Now we assume that the relevant values of T and L
are integer multiples of 1+2”, where I is an integer, such that

T-L=j+2”. Using this adjustment, we have position T mapped
to position

((2(M+2)_j) *k+j *r)+2(M+G+J)_

[0177] Recall from section IV, above, that the fractional
phase of the resampling filter is to be an integer in units of
1+27. So the computed position, in these units, is

Round((QM*—jy* k7 *p)s 2M+GH-F) o1
=Myt 5y 2 G E Dy (ML G4 J-F) (16),

or, more simply,

r=(*C+D)>>S 17),
where
S=M+G+J-F (18),
C=r-k (19),
D=(k<<(M+I)+(1<<(S-1)) (20).
[0178] The only error produced in the method described

here (assuming no error in the representation of L. and R and
L'and R") prior to the rounding of the computed position to the
nearest multiple of 1+2% (which is an error that is present in
both designs) is the rounding error from the rounding of the
position R" to the nearest multiple of 1+2°. This amount is
very small if G+M is relatively large. In fact, this source of
error is tightly bounded to a magnitude of about (T-L)+2¢*
a=+1), the word length requirements for computation of the
results are modest, and the modulo arithmetic allows the
integer part of the result to be separated out to minimize word
length, or allows the computation to be decomposed in other
similar ways as well.

[0179] F can, for example, be 4 or greater. (For some appli-
cations, F=3 or F=2 may suffice.) Example values of J include
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J=1 for luma position calculations and J=2 for chroma sample
positions. Rationale for these example values of J can be
found below.

1. First Example Simplified Position Calculation
Technique Using Signed B-Bit Arithmetic

[0180] IfR™0 and L">-R', then all positions t' to be com-
puted in the picture to be upsampled, as an integer in units of
127, will lie between —-2% and 2%4-1, where Z—Ceil(Log
2(R")+F. If the word length of the (j*C+D) computation is B
bits, and we assume the use of signed two’s complement
arithmetic, then we can require that B-1=7+S. High accuracy
is achieved if this constraint is tight, i.e., if B-1=Z+M+G+J-
F.

[0181] For reasonably-small picture sizes (e.g., for levels
up to level 4.2 in the current H.264/MPEG-4 AVC standard),
B=32 can be used as a word length. Other values of B also can
be used. For very large pictures, a larger B may be used. The
computations can also be easily decomposed into smaller
word length sub-computations for use on 16-bit or other
processors.

[0182] The remaining two degrees of freedom are M and G.
Their relationship is flexible, as long as G is sufficiently large
to avoid any need for rounding error when representing L' as
k+2€. Thus, based on issues discussed in the next section for
SVC, we can just pick G=2, yielding

M=B+F-(G+J+Z+1)
ie.,
M=32+4-(2+1+Z+1)
ie.,

M=32-Z.

[0183] For example, if we want to upsample the luma array
of'a picture that has a width of 1000 luma samples with B=32
and L'=0, we can use F=4, G=2, ]=1, M=18, S=17, and Z=14
using this first example position calculation technique.

[0184] When T is very close (or equal) to R and R' is very
close (or equal) to an integer power of 2, especially when
(T-L)*(R'-L")+2" is large (e.g., greater than 1%), it may be
hypothetically possible for the upper bound to be violated by
1. We do not further consider such cases here, although
adjustments to handle such cases are straightforward.

2. Second Example Position Calculation Technique
Using Unsigned B-Bit Arithmetic

[0185] Ifall positions to be calculated in the low-resolution
picture are greater than or equal to 0, which is something that
can be made true by adding an appropriate offset to the origin
of the coordinate system, then it may be a better choice to
compute t'=(j*C+D) using unsigned integer arithmetic rather
than signed two’s complement arithmetic. This allows one
more bit of dynamic range without overflow in the computa-
tions (i.e., we can use B bits of dynamic range magnitude
rather than B-1 bits), thus increasing M (or G) and S each by
1 and further increasing the accuracy of the computed results.
Thus, after including an offset E to adjust the origin of the
coordinate system, the form of the computation would be
t'=((G*C+D)>>S")+E rather than just t=(j*C+D)>>S.



US 2013/0271651 Al

[0186] We provide further detail on this more accurate
method involving unsigned arithmetic by identifying when
the origin offset E would not be needed as follows.

[0187] Choose values for B, F, G, ], and Z as described
above.

[0188] Set M=B+F—(G+J+Z).

[0189] Compute S, C, and D as specified above in Equa-

tions (18), (19) and (20), respectively, where D is com-
puted as a signed number.

[0190] If D is greater than or equal to zero, no origin
offset (i.e., no use of E) is needed and the computation
can be performed simply as t'=(*C+D)>>S using
unsigned arithmetic and the result will have greater
accuracy than the first example position calculation
technique described in section V.B.1 above.

[0191] Inaddition to enhancing accuracy by enabling com-
putation using unsigned integers, offsetting the origin can
sometimes also be used to provide improved accuracy by
enabling a decrease in the value of Z. Without the origin
offset, Z is a function of R'. But with the origin offset, we can
make Z a function of R'-L', which will make the computation
more accurate if this results in a smaller value of Z.

[0192] We provide further detail on this more accurate
method involving unsigned arithmetic by showing one way to
offset the origin, deriving D' and E as follows.

[0193] Choose values for B, F, G, and J, as described
above.

[0194] Set Z=Ceil(Log 2(R'-L")+F.

[0195] Set M=B+F—(G+J+Z).

[0196] Compute S, C, and D as specified above in Equa-

tions (18), (19) and (20), respectively, where D is com-
puted as a signed number.

[0197] Set E=D>>S.
[0198] Set D'=D-(E<<S).
[0199] The position computation can then be performed as

t'=((G*C+D)>>S)+E.

[0200] IfD'and E (and M, S, and Z) are computed in this
manner, the mathematical result of the equation t'=((G*C+D")
>>S)+E will actually always be theoretically the same as the
result of the equation t'=(j*C+D)>>S, except that the value of
(G*C+D) may sometimes fall outside of the range of values
from 0 to 2%-1, while the value of (j*C+D") will not.

[0201] For example, if we want to upsample the luma array
of'a picture that has a width of 1000 luma samples with B=32
and L'=0, we can use F=4, G=2, ]=1, M=19, S=18, and Z=14
using this second example position calculation technique.
Another possibility that would work equally well, rather than
offsetting the origin so that all values of j*C+D' are non-
negative and thus allowing use of the B-bit computing range
from O to 2%-1 using unsigned arithmetic, would be to offset
the origin further to the right by another 21 to allow use of
the B-bit computing range from -2%1 to 2¥-V-1 using
signed arithmetic.

[0202] As in the first example position calculation tech-
nique in the previous section, there could be “corner case”
adjustments needed when T is very close (or equal) to R and
R'-L' is very close (or equal) to an integer power of 2.

3. Example Multi-Stage Techniques for Position
Calculation

[0203] Wehave discussed methods in which the design was
made to be able to perform the computation using the same
equation, e.g., t'=((j*C+D")>>S)+E, with the same variable
values C, D', S, and E for all values of j covering the range of
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samples to be generated (i.e., for all values of T between . and
R). We now discuss how this assumption can be relaxed,
enabling greater accuracy and/or reduced computational
dynamic range requirements.

[0204] Ordinarily, the resampling process proceeds from
left to right (or top to bottom) to generate a string of consecu-
tive samples at equally-spaced positions. In the second
example position technique described in section V.B.2 above,
we showed how changing the origin using the offset param-
eter E can be used to make good use of the B-bit dynamic
range of the register used to compute the (j*C+D") part of the
position computation.

[0205] Recall that in the previous section, only the S least
significant bits of D were retained in D', and the rest was
moved into E. Thus the major remaining issue for computa-
tion of (j*C+D") is the magnitude of j*C.

[0206] Recall that T and L are integer multiples of 1+27.
Ordinarily we perform the upsampling process to generate a
string of samples at integer-valued increments in the higher-
resolution picture, e.g., with a spacing of 2” between consecu-
tively-generated samples. Thus we desire to compute the
positions t', that correspond to the positions T,=(p+i*27)+2”
for i=0 to N-1 for some value of p and N.

[0207] This process can be summarized in pseudo-code as
shown in the pseudo-code 1200 of FIG. 12 for some value of
p and N. As i increases toward N, the value of q increases, and
the maximum value of q should be kept within the available
dynamic range of B bits. The maximum value computed for q
is (p+(N=1)*27)*C+Dr.

[0208] Now, instead of generating all samples in one loop
in this fashion, consider breaking up the process into multiple
stages, e.g., two stages. For example, in a two stage process,
the first stage generates the first N,<N samples, and the sec-
ond stage generates the remaining N-N, samples. Also, since
p is a constant with respect to the loop, we can move its impact
into D' and E before the first stage. This results in a two-stage
process illustrated in pseudo-code 1300 in FIG. 13.

[0209] Atthe beginning of each stage in pseudo-code 1300,
the origin has been reset such that all but the S least significant
bits of the first value of q for the stage have been moved into
E (i.e., into E, for the first stage and E, for the second stage).
Thus, during operation of the each of the two stages, q
requires a smaller dynamic range. After breaking the process
into stages in this fashion, the maximum value of q will be
N*C'+Dy, or ((N-Ny—-1)*C'+D,, whichever is larger. But
since D, and D, each have no more than S bits of unsigned
dynamic range, this will ordinarily be a smaller maximum
value than in the previously-described single-stage design.
The number of samples generated in the stage (i.e., N, for the
first stage and N-N, for the second stage) can affect the
dynamic range for the associated computations. For example,
using a smaller number of samples in each stage will result in
a smaller dynamic range for the associated computations.

[0210] Each stage can be split further into more stages, and
thus the generation of the N total samples can be further
decomposed into any number of such smaller stages. For
example, the process could be broken up into stages of equal
size so that blocks of] e.g., 8 or 16 consecutive samples are
generated in each stage. This technique can either be used to
reduce the necessary number of bits of dynamic range B for
computing q or to increase the precision of the computation
(increasing S and G+M) while keeping the dynamic range the
same, or a mixture of these two benefits.
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[0211] This technique of decomposing the position calcu-
lation process into stages can also be used to perform a con-
tinuous resampling process along a very long string of input
samples (conceptually, the string could be infinitely long),
such as when performing sampling rate conversion as
samples arrive from an analog-to-digital converter for an
audio signal. Clearly, without breaking up the process into
finite-size stages and resetting the origin incrementally from
each stage to the next, an infinitely-long string of samples
could not be processed by the techniques described in the
previous sections, since this would require an infinite
dynamic range in the processing word length. However, the
difficulty in applying the techniques to effectively-infinite
string lengths is not a substantial limitation on such tech-
niques since the application to effectively-infinite length
would only be useful when no rounding error is entailed by
the representation of the hypothetical benchmark positions L'
and R" in integer units representing multiples of 1+2°.
[0212] Under the circumstances in which multi-stage posi-
tion calculation techniques can be applied, they provide a way
for the computations to be performed along an infinite-length
string of samples with no “drifting” accumulation of round-
ing error whatsoever in the operation of the position calcula-
tions throughout the entire rate conversion process.

4. Example Incremental Operation of Position
Calculation

[0213] An interesting special case for the multi-stage
decomposition concept described above is when the number
of samples to be produced in each stage has been reduced all
the way to just one sample per stage. The pseudo-code 1400
in FIG. 14 represents a process for generating N positions t';
for i=0 to N-1.

[0214] Since the process is described as an upsampling
process (although the same principles could also apply to a
downsampling process), we know that for each increment of
i there is a spacing of 1 in the higher-resolution picture and
therefore there is an increment of less than or equal to 1 in the
lower-resolution picture. An increment of 1 in the spatial
position in the lower-resolution picture corresponds to a value
of 26*F) for C'. Also, we know that D'<25. Therefore g=C'+D
has a range from 0 to less than 2¢° 742, and therefore q can
be computed with a dynamic range requirement of no more
than B=S+F+1 bits using unsigned integer arithmetic. In one
implementation, this dynamic range requirement is invariant
to picture size (i.e., it does not depend on the value of R' or
R'-L".

[0215] For scalable video coding and many other such
applications, there may be no real need to support upsampling
ratios that are very close to 1. In such applications, we can
assume that C' actually requires no more than S+F bits.
[0216] For example, if we want to upsample the luma array
of'a picture that has a width of 1000 luma samples with B=32
and L'=0, we can use F=4, G=2, ]=1, M=29, S=28, and Z=14
using this method. The result would be so extraordinarily
precise as to make a smaller value of B seem like a more
reasonable choice.

[0217] Alternatively, if we want to upsample the luma array
of'a picture that has a width of 1000 luma samples with B=16
and L'=0, we can use F=4, G=2, J=1, M=13, S=12, Z=14
using this method.

[0218] Further knowledge of the circumstances of the
upsampling operation to be performed may provide further
optimization opportunities. For example, if the upsampling
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ratio is significantly greater than two, the dynamic range
requirement will be reduced by another bit, and so on for
upsampling ratios greater than four, sixteen, etc.

[0219] None of the changes (relative to the example multi-
stage position calculation technique discussed above)
described with reference to the example incremental position
calculation technique in this section affect the actual com-
puted values of the positions t'; for given values of C, D and S.
Only the dynamic range necessary to support the computation
is changed.

[0220] The inner loop in pseudo-code 1400 for this form of
decomposition does not require any multiplication opera-
tions. This fact may be beneficial to providing reduced com-
putation time on some computing processors.

5. Additional Remarks

[0221] For common resampling ratios such as 2:1, 3:2,
etc.—any case in which no rounding would be necessary for
approximating the positions [.' and R" as an integer in units of
1+2%—there is no rounding error at all when using these
methods (other than whatever rounding error may be induced
when rounding the final result to an integer in units of 1+27,
which is an error that would be present regardless of the
position computation method).
[0222] C. Luma and Chroma Positions and Relationships
[0223] Assuming exact alignment of the complete new (up-
sampled) picture and the reference picture arrays, relative to
the luma sampling grid index coordinates, the positions . and
R in the current picture coordinates are L=—2 and R=W-15,
where W is the number of samples in the image vertically or
horizontally, depending on the relevant resampling dimen-
sion. Equivalently, we could set the origin of the image spatial
coordinate system a half-sample to the left of (or above) the
position of grid index 0 and add % when converting from
image spatial coordinates to grid index values, thus avoiding
the need to deal with negative numbers when performing
computations in the spatial coordinate system.
[0224] The positions L' and R' in the referenced (lower-
resolution) picture are referenced to the sampling grid coor-
dinates in the same way, where in this case W is the number of
samples in the referenced picture rather than in the new pic-
ture.
[0225] For the chroma sampling grid (whether in the new
picture or the referenced picture), the situation is somewhat
less straightforward. To construct the designated alignment of
chroma samples relative to luma, consider the image rect-
angle that is represented by the chroma samples to be the
same as the rectangle that is represented by the luma samples.
This produces the following cases:
[0226] Horizontally, for 4:2:0 chroma sampling types 0,
2, and 4 (see FIG. 5D), the current picture coordinates
are defined by L=-4 and R=W-14.
[0227] Horizontally, for 4:2:0 chroma sampling types 3,
1, and 5 (see FIG. 5D), the current picture coordinates
are defined by L=-5 and R=W-154.
[0228] Vertically, for 4:2:0 chroma sampling types 2 and
3 (see FIG. 5D), the current picture coordinates are
defined by L=-4 and R=W-V4.
[0229] Vertically, for 4:2:0 chroma sampling types 0 and
1 (see FIG. 5D), the current picture coordinates are
defined by L=-2 and R=W-14.
[0230] Vertically, for 4:2:0 chroma sampling types 4 and
5 (see FIG. 5D), the current picture coordinates are
defined by L=-34 and R=W-%4.
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[0231] Horizontally, for 4:2:2 chroma sampling, the cur-
rent picture coordinates for the 4:2:2 sampling typically
used in industry practice are defined by L—=-V4 and
R=W-1Ya.

[0232] Vertically, for 4:2:2 chroma sampling, the current
picture coordinates for the 4:2:2 sampling typically used
in industry practice are defined by L=-1% and R=W-1/4.

[0233] Bothhorizontally and vertically, for 4:4:4 chroma
sampling, the current picture coordinates are defined by
L-¥2 and R=W-14.

[0234] Again an offset can be used to place the origin of the
coordinate system sufficiently to the left of position I and
avoid the need to work with negative numbers.

[0235] The integer coordinates and the fractional phase
offset remainder are computed by adjusting the integer coor-
dinate positions of the samples to be produced in the
upsampled array to compensate for the fractional offset L,
and then applying the transformation shown at the end of
section V.B. Conceptually, shifting the result to the right by F
bits results in the integer coordinate pointer into the reference
picture, and subtracting the left-shifted integer coordinate
(shifted by F bits) provides the phase offset remainder.

[0236] D. Extra Precision for Position Calculation for
Upsampling
[0237] This section describes how to map the position cal-

culation method of section V.C.4 above to a specific upsam-
pling process, such as an upsampling process that may be
used for the H.264 SVC Extension. The position calculation
is applied in a very flexible way to maximize the precision for
both luma and chroma channels at various chroma formats as
well as for both progressive and interlace frame formats. The
techniques described in this section can be varied depending
on implementation and for different upsampling processes.
[0238] In the above-described position calculations (in
above sections V.A-C), the rescaling parameter (which is the
variable C, and hereafter labeled deltaX (or deltaY) in the
following equations) is scaled up by a scaling factor equal to
27 (where J=1 for luma and 2 for chroma) to form the incre-
ment added for generating each sample position from left to
right or top to bottom. The scaling was selected such that the
up-scaled increment will fit into 16 bits.

1. Maximum Precision for Scaling Position
Computation

[0239] A direct way to apply the position calculation
method is to scale up the rescaling parameter by a scaling
factor equal to 27, where J=1 for luma and 2 for chroma, to
form the increment added for generating each sample posi-
tion from left to right or top to bottom. The scaling parameters
are then selected to ensure that the up-scaled increment will fit
into a specific word length such as 16 bits. A more flexible
design is described in the following sections to maximize the
position precisions.

a. Luma Channel

[0240] The “direct” luma position calculation method can
be summarized with the following example equations for F=4
and S=12 (along the horizontal direction):

deltaX=Floor(((BasePicWidth<<15)+(ScaledBase-
Width>>1))+ScaledBaseWidth)

xf=((2*(xP-ScaledBaseLeftOffset)+1)*deltaX-30720)
>>12

16
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[0241] Here, BasePicWidth is the horizontal resolution of
the base-layer or low-resolution picture; ScaledBaseWidth is
the horizontal resolution of the high-resolution picture region
or window; deltaX is the intermediate rescaling parameter,
which in this case is a rounded approximation 0f 32768 times
the inverse of the upsampling ratio; xP represents the sample
position in the high-resolution picture; ScaledBasel.eftOffset
represents the relative position of the picture window in the
high-resolution picture, and Floor( ) denotes the largest inte-
ger less than or equal to its argument. The constant value
30720 results from adding 2°~* as the rounding offset prior to
the right shift and subtracting 252772 for the half-sample
offset of the luma sampling grid reference location as dis-
cussed at the beginning of section V.C above.

[0242] It is noteworthy that each increment of XP results in
an increment of 2*deltaX inside the equations. And, the LSB
of'the quantity 2*deltaX is always zero, so one bit of compu-
tational precision is essentially being wasted. Approximately
one extra bit of precision can be obtained, without any sig-
nificant increase in complexity, by changing these equations
to:

deltaX=Floor(((BasePicWidth<<16)+(ScaledBase-
Width>>1))+ScaledBaseWidth)
xf=((xP-ScaledBaseLeftOffset)*deltaX+
(deltaX>>1)-30720)>>12
[0243]

deltaXa=Floor(((BasePicWidth<<16)+(ScaledBase-
Width>>1))+ScaledBaseWidth)

or a (slightly) more accurate form as follows:

deltaXb=Floor(((BasePicWidth<<15)+(ScaledBase-
Width<<1))+ScaledBaseWidth)

xf=((xP-ScaledBaseLeftOffset)*deltaXa+deltaXb—
30720)>>12

[0244] The latter of these two forms is suggested due to its
higher accuracy and negligible complexity impact (although
the precision difference also seems very small).

[0245] Note that on processing architectures on which divi-
sion calculations are difficult to perform, having the result of
one of these equations can simplify the computation of the
other. The value of deltaXa will always be in the range of
2*deltaXa plus or minus 1. The following simplified rule can
therefore be derived to avoid the need to perform a division
operation for the computation of deltaXa:

deltaXa=(deltaXb<<1)

remainderDiff=(BasePicWidth<<16)+(ScaledBase-
Width>>1)-deltaXa

if (remainderDiff<0) deltaXa——
else if (remainderDiffeScaledBaseWidth) deltaXa++

b. Chroma Channels

[0246] A factor-of-four multiplier can be used for chroma
channels instead of a factor-of-two multiplier in this part of
the design to enable representation of the chroma positions
for 4:2:0 sampling (using J=2 for chroma rather than J=1 as
described for luma). Therefore the “direct” equations are:

deltaXC=Floor(((BasePicWidthC<<14)+(ScaledBase-
WidthC>>1))+ScaledBaseWidthC)

xfC=((((4*(xC-ScaledBaseLeftOffsetC)+(2+scaled-
BaseChromaPhaseX))*deltaX(C)+2048)>>12)-4*
(2+baseChromaPhaseX)
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[0247] Here, baseChromaPhaseX and scaledBaseChro-
maPhaseX represent chroma sampling grid position offsets
for the low- and high-resolution pictures, respectively. The
values of these parameters may be explicitly conveyed as
information sent from the encoder to the decoder, or may have
specific values determined by the application. All other vari-
ables are similar to that defined for the luma channel with
additional “C” suffix to represent application to the chroma
channel.

[0248] Each increment of xC results in an increment of
4*deltaXC inside the equation. Therefore, approximately two
extra bits of precision can be obtained, without any substan-
tial increase in complexity, by changing these equations to:

deltaXC=Floor(((BasePicWidthC<<16)+(ScaledBase-
WidthC>>1))+ScaledBaseWidthC

xfC=(((xC-ScaledBaseLeftOffsetC)*deltaXC+(2+
scaledBaseChromaPhaseX)*((deltaXC+K)>>2)+
2048)>>12)-4*(2+baseChromaPhaseX)

where K=0, 1, or 2. Using K=0 would avoid an extra opera-
tion. Using K=1 or K=2 would have a little higher accuracy.
[0249] The corresponding, slightly more accurate form
would be the following:

deltaXCa=Floor(((BasePicWidthC<<16)+(Scaled-
BaseWidthC>>1))+ScaledBaseWidthC)

deltaXCh=Floor(((BasePicWidthC<<14)+(Scaled-
BaseWidthC>>1))+ScaledBaseWidthC)

xfC=(((xC-ScaledBaseLeftOffsetC)*deltaXCa+(2+
scaledBaseChromaPhaseX)*deltaXCh+2048)
>>12)-4*(2+baseChromaPhaseX)

[0250] As with the luma case, the latter variant is preferred
since the complexity difference seems negligible (although
the precision difference also seems very small).

c. Interlaced Field Coordinates

[0251] The reference for the coordinate system of a picture
is ordinarily based on half-sample positions in luma frame
coordinates, thus resulting in the scale factor of two for luma
coordinate reference positions as described above. A half-
sample shiftin luma frame coordinates corresponds to a quar-
ter-sample shift in 4:2:0 chroma frame coordinates, which is
why we currently use a factor of four rather than a factor of
two in the scaling for the chroma coordinates as described
above.

[0252] Horizontally there is no substantial difference in
operations for coded pictures that represent a frame and those
that represent a single field of interlaced video. However,
when a coded picture represents a single field, a half-sample
position shift in luma frame vertical coordinates corresponds
to a quarter-sample position shift in luma field vertical coor-
dinates. Thus, a scale factor of four rather than two should be
applied in the calculation of the vertical luma coordinate
positions.

[0253] Similarly, when a coded picture represents a single
field, a half-sample position shift in luma frame vertical coor-
dinates corresponds to a one-eighth-sample position shift in
the chroma field vertical coordinates. Thus, a scale factor of
eight rather than four should be applied in the calculation of
the vertical chroma coordinate positions.

[0254] These scaling factors for computation of vertical
coordinate positions in coded field pictures can be incorpo-
rated into a deltaY vertical increment computation in the
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same manner as described above for the increment computa-
tion in coded frame pictures. In this case, due to the increased
scaling factor that is applied, the precision improvement
becomes approximately two bits of added precision for luma
positions and three bits of added precision for chroma (verti-
cally).

2. 4:2:2 and 4:4:4 Chroma Restriction and
Refinement

[0255] The position calculation method of section V.D.1.b
requires use of a different multiplication factor for chroma
than for luma. This makes sense for 4:2:0 video and it is also
reasonable for 4:2:2 video horizontally, but it is not necessary
for4:2:2 video vertically or for 4:4:4 video either horizontally
or vertically, since in those cases the luma and chroma reso-
Iution is the same and the luma and chroma samples are
therefore presumably co-located.

[0256] As a result, the method of section V.D.1.b might
require separate computations for determining luma and
chroma positions even when the luma and chroma resolution
is the same in some dimension and no phase shift is intended,
just because the rounding will be performed slightly difter-
ently in the two cases. This is undesirable, so a different
handling of chroma is suggested in this section for use with
4:2:2 and 4:4:4 sampling structures.

a. 4:2:2 Vertical and 4:4:4 Horizontal and Vertical
Positions

[0257] For the vertical dimension of 4:2:2 video and for
both vertical and horizontal dimensions of 4:4:4 video, there
is no apparent need for the custom control of chroma phase.
Therefore, whenever the chroma resolution is the same as the
luma resolution in some dimension, the equations for the
computation of chroma positions should be modified to result
in computing the exact same positions for both luma and
chroma samples whenever the chroma sampling format has
the same resolution for luma and chroma in a particular
dimension. One option is just to set the chroma position
variables equal to the luma position variables, and another is
to set up the chroma position equations so that they have the
same result.

b. 4:2:2 Horizontal Positions

[0258] While there is no functional problem with allowing
chroma phase adjustment horizontally for 4:2:2 video, if there
is only one type of horizontal subsampling structure that is in
use for 4:2:2, such as one that corresponds to the value -1 for
scaledBaseChromaPhaseX or BaseChromaPhaseX in the
equations of section V.D.1.b, it may be desirable to consider
forcing these values to be used whenever the color sampling
format is 4:2:2.

VI. Extensions and Alternatives

[0259] Techniques and tools described herein also can be
applied to multi-resolution video coding using reference pic-
ture resampling as found, for example in Annex P of the
ITU-T international standard Recommendation H.263.

[0260] Techniques and tools described herein also can be
applied not only to the upsampling of picture sample arrays,
but also to the upsampling of residual data signals or other
signals. For example, techniques and tools described herein
also can be applied to the upsampling of residual data signals
for reduced resolution update coding as found, for example in
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Annex Q of the ITU-T international standard Recommenda-
tion H.263. As another example, techniques and tools
described herein can also be applied to the upsampling of
residual data signals for prediction of high-resolution residual
signals from lower-resolution residual signals in a design for
spatial scalable video coding. As a further example, tech-
niques and tools described herein can also be applied to the
upsampling of motion vector fields in a design for spatial
scalable video coding. As a further example, techniques and
tools described herein can also be applied to upsampling of
graphics images, photographic still pictures, audio sample
signals, etc.

[0261] Having described and illustrated the principles of
my invention with reference to various described embodi-
ments, it will be recognized that the described embodiments
can be modified in arrangement and detail without departing
from such principles. It should be understood that the pro-
grams, processes, or methods described herein are not related
or limited to any particular type of computing environment,
unless indicated otherwise. Various types of general purpose
or specialized computing environments may be used with or
perform operations in accordance with the teachings
described herein. Elements of the described embodiments
shown in software may be implemented in hardware and vice
versa.

[0262] Inview of the many possible embodiments to which
the principles of my invention may be applied, I claim as my
invention all such embodiments as may come within the
scope and spirit of the following claims and equivalents
thereto.

1.-2. (canceled)
3. A computer system adapted to perform a method com-
prising:
performing upsampling of a video picture according to a
horizontal upsampling scale factor and a vertical upsam-
pling scale factor, wherein the upsampling comprises
computation of an interpolated sample value at horizon-
tal position i and vertical position j in an upsampled
array, and wherein the computation comprises:
computing a derived horizontal sub-sample position x in
amanner that is mathematically equivalent in resultto
the formula x=(1*C+D)>>S, wherein C is derived by
approximating a value equivalent to 2°* multiplied
by an inverse of the horizontal upsampling scale fac-
tor, and wherein F, C, D, and S are integer values;
computing a derived vertical sub-sample position y in a
manner that is mathematically equivalent in result to
the formula y=(j*C+D)>>S, wherein C is derived by
approximating a value equivalent to 2°* multiplied
by an inverse of the vertical upsampling scale factor;
and
interpolating a sample value at the derived sub-sample
position X, y.
4. The computer system of claim 3 wherein the computa-
tion further comprises:
selecting a horizontal resampling filter based on F least
significant bits of the derived horizontal sub-sample
position x; and
selecting lower resolution samples to be filtered based on
the remaining more significant bits of the derived hori-
zontal sub-sample position x; and
wherein interpolating a sample value at the derived sub-
sample position X, y comprises:
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interpolating the sample value based on the selected
lower resolution samples and using the selected hori-
zontal resampling filter.
5. The computer system of claim 4 wherein a horizontal
resampling filter applied for at least one value of the F least
significant bits of the derived horizontal sub-sample position
X is a finite impulse response filter with more than two non-
zero filter tap values.
6. The computer system of claim 5, wherein a horizontal
resampling filter applied for all values other than O for the F
least significant digits of the derived horizontal sub-sample
positionx is a finite impulse response filter with four non-zero
filter tap values.
7. The computer system of claim 3 wherein the computa-
tion further comprises:
selecting a vertical resampling filter based on F least sig-
nificant bits of the derived vertical sub-sample position
y; and

selecting lower resolution samples to be filtered based on
the remaining more significant bits of the derived verti-
cal sub-sample position y; and

wherein interpolating a sample value at the derived sub-

sample position X, y comprises:

interpolating the sample value based on the selected
lower resolution samples and using the selected ver-
tical resampling filter.

8. The computer system of claim 7 wherein a vertical
resampling filter applied for at least one value of the F least
significant bits of the derived vertical sub-sample positiony is
a finite impulse response filter with more than two non-zero
filter tap values.

9. The computer system of claim 8, wherein a vertical
resampling filter applied for all values other than O for the F
least significant digits of the derived vertical sub-sample posi-
tion X is a finite impulse response filter with four non-zero
filter tap values.

10. The computer system of claim 3 wherein the upsam-
pling is performed using one or more Mitchell-Netravalli
resampling filters.

11. The computer system of claim 3 wherein the upsam-
pling is performed using one or more Catmull-Rom resam-
pling filters.

12. The computer system of claim 3 wherein at least one of
the vertical or horizontal values of F, C, D, or S differs based
at least in part on whether the sample value is a chroma
sample value or a luma sample value.

13. (canceled)

14. The computer system of claim 3 wherein the upsam-
pling is performed using one or more resampling filters hav-
ing filter tap values controlled by a bandwidth control param-
eter.

15.-17. (canceled)

18. The computer system of claim 3 wherein the value of F
is equal to 4 and the value of S is equal to 12.

19.-22. (canceled)

23. A method of performing upsampling of base layer
image data with a computing device that implements an
image or video encoder or decoder, the method comprising,
for a position in an upsampled array:

with the computing device, computing a position in the

base layer image data, wherein x indicates a value for the
position in the base layer image data, wherein derivation
of xincludes computation that is mathematically equiva-
lent in result to G*C+D)>>S, and wherein:
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j indicates a value for the position in the upsampled
array;

C approximates 25 multiplied by an inverse of a scale
factor;

D is an offset;

S is a shift value; and

F is based on a number of bits in a fractional component
of x.

24. In a computer system, a method comprising:

processing spatially scalable video using a resampling fil-

ter that produces correct relative luma and chroma align-
ment for plural alignment structures, the spatially scal-
able video capable of being processed at plural spatial
resolutions.

25. The method of claim 24 wherein the processing com-
prises using one or more bandwidth control parameters.

26. The method of claim 25 wherein the one or more
bandwidth control parameters comprise blurriness control
parameters.

27. The method of claim 25 further comprising integeriz-
ing the one or more bandwidth control parameters.

28. The method of claim 24 wherein the resampling filter
includes a Mitchell-Netravali filter or a Catmull-Rom filter.

29. The method of claim 24 wherein the resampling filter
has a smooth impulse response and/or a unity DC response.

30. The method of claim 24 wherein the resampling filter is
an approximation of a Lanczos-2 design.

#* #* #* #* #*



