US 20130276096A1

a2y Patent Application Publication o) Pub. No.: US 2013/0276096 A1

a9 United States

SYMES et al. 43) Pub. Date: Oct. 17,2013
(54) MANAGEMENT OF DATA PROCESSING (52) US.CL
SECURITY IN A SECONDARY PROCESSOR CPC ..ot GO6F 21/606 (2013.01)
USPC ittt s 726/16
(71) Applicant: ARM LIMITED, Cambridge (GB)
. 57 ABSTRACT
(72) Inventors: Dominic Hugo SYMES, Cambridge
(GB); Ola HUGOSSON, Lund (SE); A data processing apparatus is configured to perform secure
Donald FELTON, Ely (GB); Erik data processing operations and non-secure data processing
PERSSON, Lund (SE) operations, wherein the apparatus includes a master device
)) with a secure domain and a non-secure domain. Components
(73) Assignee: ARM LIMITED, Cambridge (GB) of the master device operate in the secure domain when
performing secure data processing operations and operate in
(21) Appl. No.: 13/777,309 the non-secure domain when performing the non-secure data
o processing operations. A slave device is configured to per-
(22) Filed: Feb. 26,2013 form a delegated data processing operation specified by the
30 Foreion Application Priority Dat master device and a communication bus connecting the mas-
(30) orelgn Application Triotily Data ter device to the slave device. The delegated operation is
ADPE 17,2012 (GB) oo 1206760.9 ~ Initiated by an issuing component in the master device,
’ wherein the slave device includes a security inheritance
Publication Classification mechanism configured to cause the delegated operation to
inherit a non-secure security status or a secure status depend-
(51) Int.ClL ing upon whether the issuing component in the master device
GOG6F 21/60 (2006.01) is operating in the non-secure domain or the secure domain.
150 102 154 104 100
\ S / S
D / CPU VPU 110 108 108
secuRe< | [SECURE] [SECURE = = =
i) | | LKERNEL] [DRIVER & WU 140 umy_| 140
= CORE CORE CORE
e RAREEEEEELEEEEEEEE & PTBR PTBR
o HEDULIN 162
o] Tow S| RN \142 142 |[&)
NON J | [SECURE| |SECURE = T f i
SECURE | | [KERNEL| |DRIVER o . =
<C (2]
(122) B 7 \\ 1] 1(L8 2
152 156 w140 umy_|140
108~ |arl cORE serll CORE
142 142
134
A 130 132
126+ SECURE CPU ONLY SECUREVPU f NON-SECUREVPU 160+
/ A A A -~ Al
DECRYPTION SECURE FRAME BUFFER FRAME BUFFER
ks I o | | MESSAGE| | AX
134 | LDECRYPTEDETS REAM || iy | 3L BTSTREAMN | ['BUfreR
106 ; L\ WARE | & L\
At H H
MEMORY N \ <
N\)] | D) N\ A 1 N
166 164 162 168 174 172 170 176

US 2013/0276096 Al

Oct. 17,2013 Sheet 1 of11

Patent Application Publication

l 'Old
9/L OZL ZZb ¥ZL 89 29L ¥9L 99L
N o (A A i
! T AJOWIN
Hvdppom | \JOvdS e 324038 | 901
wana | P A B r— B
o | 30E //§<mmhm:m m xe §<uzﬁwtmDMHm>10mo o
EEER I 434408 INvad 4035 | | [NOLAANO3a
. ~ .> ~ » ~ J
"Logl £ ndA34NISNON 7 ndh34no3s ATNO NdD 34N03S Loz|
zel ogl N W
Vel
44N A4
|| 3yo0o [lddld 00 [l hgg,
|| ovi /L0 o)./ LW 9G1 Z5h
= SR T — L —,
S| 80L 3 s A L
= - ol -vll yana | [1anea
3 : 4 m |2 o [on
x> = h b
| R N owinaanes|_[5. St |
|| 3w00 3400 w00 [B[s [
- | B
< < ~ -1 8k
801 801 0Ll ndA ndo / |
i = GRSV
00} 0l ¥GL 20l 0Sl

<

(zz))
ENIRE

" NON

(0z)
>34N93S

US 2013/0276096 Al

Oct. 17,2013 Sheet 2 of 11

Patent Application Publication

¢ Old
£
m_\,_omuo > TOYLNOD LdNYYIINI T "yl
90z
ceoe
L 1 | [[=fi]OJc] >
EnanoaisTandno gor - N @
LN G| e e
9 S |le—0
SIHOO_ NOLLY¥L ¢ 5 adv Ol
oL ~ -SININaY) \ g
a0r [0 =
®
wees |0=SN Vald 4 m
wees [0=SN vald !
- oo~ [1=SN [SS34QV 3SVE T18VL 39Vd| 0
oLL-] 0z (RYLN3QIS) NOILYOOTIY 30VdS AONIN X_| (37
LINN ONITNA3HIS FH0D
NdA
,J
4015

US 2013/0276096 Al

Oct. 17,2013 Sheet 3 of 11

Patent Application Publication

€ 9Old
| " 952
Nd9 NdO ﬁu% -
XY FYNOIS-NON m 3N03S P Funo3s | MY
9z R4
vie yrz [-85C
IH0D 34900 -
- g g1.n
= =7
= AN
= 85C L |3 90z
z Y || |
89271 | gy00 "EC 00 & | — L = 0
- = am [oo | B[v
R I
< > - N
85z 852 02 Ndo
It = 2
0SZ 52 252

US 2013/0276096 Al

Oct. 17,2013 Sheet4 of 11

Patent Application Publication

¥ Old

(SN) e#QVIYHL

"1

\

3400 |(S) z# QvIYHL
Ndo ™

I

8.¢

(SN) 1#QVIYHL \

3400 | (S) 0# QvIHHL
Nd9

I

9/¢

w | I=SN vald gl
“« | 1=SN vald pl
WNN
/ e | 0=SN veLd |
w | I=SN veld 0
NOLLYDOTTV 30VdS AMOWIN AN
MILSYI
f
Ak

Patent Application Publication Oct. 17,2013 Sheet 5 of 11 US 2013/0276096 A1

NEW VIDEO DECODING 300
JOB FOR VPU TO PERFORM

SECURE SECURE NON-SECURE
OR NON-SECURE
JOB?
v 302 ‘
SECURE DRIVER NON-SECURE DRIVER
ALLOCATES MEMORY ALLOCATES NS MEMORY
AND CONFIGURES P304 3100 “AND CONFIGURES
PAGE TABLES AND PAGE TABLES AND
DESCRIPTORS DESCRIPTORS
i Y
SECURE DRIVER NON-SECURE DRIVER
WRITES NEW SECURE WRITES NEW NON-SECURE
ENTRY INTO LSIDENTRY |-306 312~ ENTRYINTO LSIDENTRY
AT AVAILABLE SLOT AT AVAILABLE SLOT
INCLUDING PAGE INCLUDING PAGE
TABLE BASE ADDRESS TABLE BASE ADDRESS

|

NON-SECURE DRIVERADDS | -308
NEW JOB TO LSIDQUEUE

SCHEDULING UNIT ALLOCATES 314
JOB TO AVAILABLE VPU L
CORE ONCE FIRST IN QUEUE

FIG. 5

Patent Application Publication Oct. 17,2013 Sheet 6 of 11 US 2013/0276096 A1

350 PENDING N
VIDEO DECODE
TASK ?
AT
352 LEAST ONE VPU CORE

AVAILABLE ?

CORE SCHEDULING UNITTAKES | -354
NEXT ENTRY IN LSIDQUEUE

!

CORE SCHEDULING UNIT PASSES

PAGE TABLE BASE ADDRESS OF | 356

IDENTIFIED LSID ENTRY TO
AVAILABLE VPU CORE(S)

!

VPU CORE(S) ACCESS MESSAGE | aeg
BUFFER TOASCERTAINVIDEO |~
DECODE TASK DETAILS

!

VPU CORE(S) ISSUE MEMORY ACCESS

REQUESTS, TRANSLATED BY MMU(S) |,-360

USING PAGE TABLE BASE ADDRESS
AND INCLUDING NS VALUE

Y MEMORY ACCESS
REQUEST TO S MEMORY
?
4 A\
ACCESS DENIED |,364 362 366~| ACCESSALLOWED
(RETURNED) | AND VIDEO DECODE
TASK PROCEEDS

FIG. 6

Patent Application Publication Oct. 17,2013 Sheet 7 of 11 US 2013/0276096 A1

VIDEO CORE REQUIRES CHANGE 400
IN MEMORY ALLOCATION

\

VIDEO CORE WRITES MESSAGETO |402
CPU INTO MESSAGE BUFFER

\

VIDEO CORE SIGNALS REQUEST ~ |404
TO SCHEDULING UNIT

\

SCHEDULING UNITISSUES IRQTO ~ |406
CPU (NON-SECURE DRIVER)

\

CPU READS MESSAGE IN 408
MESSAGE BUFFER

\

AMEND PAGE TABLES AS REQUIRED 410
(VIACALL TO SECURE DRIVER J
FOR SECURE TASK)

\

CPU WRITES CONFIRMATION 412

INTO MESSAGE BUFFER
Y
CPU NOTIFIES 414
SCHEDULING UNIT
\
SCHEDULING UNIT 416
RESTARTS VIDEO CORE

FIG. 7

US 2013/0276096 Al

Oct. 17,2013 Sheet 8 of 11

Patent Application Publication

8 9Ol
SY3LINVAYd
(anvig) L NOANEEE] hounsa 6,)
NdAOL Dm%@%mo HWLEIRIO ™7)
[11LO¥dXY -
f
a0

JOV443LINI SNE 9dV

(43LSVI) NdD

d3AIed
J4NO3S-NON

I
oGl

d3AIed
J4NO3S

f
1212

I
c0l

¢cl
_ NIVINO
J4NO3S
-NON

4
> NIVNOd
J4NO3S

Patent Application Publication Oct. 17,2013 Sheet 9 of 11 US 2013/0276096 A1

LSIDENTRY PARAMETERS
CORES S ONLY
MMUCTRL (PTBA) S ONLY
NS S ONLY
FLUSH S ONLY
TERMINATE S ONLY
IRQ NS ALLOWED
IRQACK NS ALLOWED

FIG. 9

Patent Application Publication

Oct. 17,2013 Sheet 10 of 11

DRIVER IN CPU ISSUES
NEW TASK DEFINITION

500

!

THE DEFINITION PASSED ON APB TO VPU

'

VPU RECEIVES TASK DEFINITION VIAAPB4 SLAVE
PORT INCLUDING AxPROT[1] FROM DRIVER DOMAIN

!

CORE SCHEDULING UNIT IN VPU ADDS
TASK DEFINITION AS NEW LSIDENTRY

US 2013/0276096 Al

79502

f504

506

Y AXPROT[1] N
(ie. NS)=1
?
508
] v TASK
SET LSIDK.NONSEC=1 DEFINITION INCLUDES
S NONSEC=1
510 512 ?
N
514+

SET LSID[K].NONSEC=0

'

LSIDENTRY PENDING UPDATE OR
EXECUTION (AS DEFINED BY JOB QUEUE)

FIG. 10

516

Patent Application Publication Oct. 17,2013 Sheet 11 of 11 US 2013/0276096 A1

DRIVER IN CPU SEEKS
ACCESS TO LSIDENTRY IN
CORE SCHEDULER IN VPU

600

AXPROTI1]

604
—

ACCESS LSIDENTRY
AND RETURN
PARAMETERS TO DRIVER

608
H
ACCESS LSIDENTRY

ON APB=1

AND AMEND
PARAMETERS

614
-

ALLOW WRITE
ACCESS TO

WRITEACCESS |/616
REFUSED

FIG. 11

LSID[K].IRQ OR
LSID[K].IRQACK

US 2013/0276096 Al

MANAGEMENT OF DATA PROCESSING
SECURITY IN A SECONDARY PROCESSOR

FIELD OF THE INVENTION

[0001] The present invention relates to data processing
apparatuses comprising a master device and a slave device.
More particularly the present invention relates to such data
processing apparatuses in which the slave device is config-
ured to perform secure data processing operations and non-
secure data processing operations on behalf of the master
device.

BACKGROUND OF THE INVENTION

[0002] It is known to provide a data processing apparatus
having a master device in overall control of the data process-
ing apparatus and a slave device configured to perform data
processing operations delegated to it by the master device.
For example, in a data processing apparatus which is required
to perform video decoding operations, a master device (e.g. a
general purpose CPU) may delegate much ofthe video decod-
ing operations to a dedicated video processing unit (i.e. the
slave device).

[0003] Data security is further known to be an important
consideration when configuring a contemporary data pro-
cessing apparatus. For example, it is known to categorise
some data as “secure” and other data as ‘‘non-secure”,
whereby the secure data is only allowed to be accessed by
components within a data processing apparatus which are
trusted (i.e. secure). Accordingly a general purpose processor
(such as the above mentioned CPU) may be configured to
have a secure domain and a non-secure domain, wherein only
components which reside in the secure domain of the proces-
sor are allowed to access secure data in memory. For example,
the TrustZone® technology developed by ARM Limited of
Cambridge, UK provide mechanisms for enforcing such
security boundaries in a data processing apparatus (as
described for example in U.S. Pat. No. 7,849,310, the entire
contents of which are incorporated herein by reference).

[0004] The secure domain of such a data processor must be
carefully constructed and administered to ensure that the
security which it is intended to provide is maintained. One
aspect of maintaining the trusted status of the secure domain
is thatany program code (e.g. a driver) which is to be executed
within the secure domain must itself be trusted and carefully
checked to ensure that its execution will not jeopardise the
integrity of the secure domain. Accordingly, it is common for
dedicated driver code to be written to provide a secure driver
within the secure domain and to provide separate program
code for a non-secure driver executing in the non-secure
domain. Following this approach driver code can be written
which is appropriately configured for the security domain in
which it operates and with respect to the processing tasks
which it delegates to a slave device, but this has the disadvan-
tage that two or more versions of the driver program code
must be written.

SUMMARY OF THE INVENTION

[0005] Viewed from a first aspect, the present invention
provides a data processing apparatus configured to perform
secure data processing operations and non-secure data pro-
cessing operations, wherein secure data in said data process-

Oct. 17,2013

ing apparatus cannot be accessed by said non-secure data
processing operations, the data processing apparatus com-
prising:

[0006] a master device comprising a secure domain and a
non-secure domain, wherein components of said master
device are configured to operate in said secure domain when
performing said secure data processing operations and to
operate in said non-secure domain when performing said
non-secure data processing operations;

[0007] a slave device configured to perform a delegated
data processing operation specified by said master device;
and

[0008] acommunication bus connecting said master device
to said slave device,

[0009] wherein said delegated data processing operation is
initiated by an issuing component in said master device issu-
ing a delegated task definition to said slave device on said
communication bus,

[0010] wherein said slave device comprises a security
inheritance mechanism configured to cause said delegated
data processing operation to inherit a non-secure security
status if said issuing component in said master device is
operating in said non-secure domain and to cause said del-
egated data processing operation to inherit a secure security
status if said issuing component in said master device is
operating in said secure domain.

[0011] The master device and the slave device in the data
processing apparatus are coupled together by means of a
communication bus which the master device can use to issue
a delegated task definition to the slave device, the task defi-
nition setting out various parameters of a data processing
operation which the master device is instructing the slave
device to perform on its behalf. Whilst the issuing component
in the master device which issues the delegated task definition
to the slave device on the communication bus is free to define
various parameters which configure the delegated data pro-
cessing operation, the slave device is configured to have a
security inheritance mechanism which causes the delegated
data processing operation to inherit a non-secure security
status if the issuing component is operating in the non-secure
domain of the master device. Equally, the security inheritance
mechanism of the slave device is configured such that by
default the delegated data processing operation will inherit a
secure security status if the issuing component is operating in
the secure domain of the master device. In other words, the
effect of the security inheritance mechanism is that the issu-
ing component in the master device is generally able to
specify all aspects of the delegated task definition which
configures the delegated data processing operation to be car-
ried out other than its security status. This security status is
inherited from the security domain in which the issuing com-
ponent is operating in the master device.

[0012] In this manner, a highly secure, hardware-enforced
mechanism is provided for ensuring that only a trusted issuing
component operating in the secure domain of the master
deviceis ableto cause a secure data processing operationto be
performed by the slave device. Furthermore, because the
security status of the delegated data processing operation is an
integral part of the hardware configuration of the data pro-
cessing apparatus, this aspect of the issuing component in the
master device is no longer part of the configuration of that
issuing component. For example, when the issuing compo-
nent is a driver being executed in either the secure domain or
the non-secure domain of the master device, the same driver

US 2013/0276096 Al

program code can be used for a range of different security
configurations such as the driver being executed solely in the
secure domain, the driver being executed solely in the non-
secure domain, or a driver in the non-secure domain commu-
nicating with a secure driver in the secure domain. This is due
to the fact that the security inheritance mechanism in the slave
device ensures that the critical security boundary in the sys-
tem (that non-secure operations are not allowed to access
secure data) is enforced, without this having to form part of
the issuing component’s own configuration.

[0013] An indication of which security domain the issuing
component in the master device is operating in could be
passed to the slave device in a number of ways, but in one
embodiment said communication bus is configured such that
said delegated task definition is accompanied by a domain
identifier, said domain identifier indicating if said issuing
component in said master device is operating in said non-
secure domain or if said issuing component in said master
device is operating in said secure domain.

[0014] In some embodiments, said slave device is config-
ured to perform said delegated data processing operation as
one of said non-secure data processing operations if said
domain identifier indicates that said issuing component in
said master device is operating in said non-secure domain.
Accordingly, the security inheritance mechanism in the slave
device can be configured so that the slave device uses the
domain identifier as its reference for deciding how to set the
security status of the delegated data processing operation, in
particular setting it as “non-secure” when the domain identi-
fier received on the communication bus shows that the issuing
component is operating in the non-secure domain of the mas-
ter device.

[0015] Insomeembodiments said delegated task definition
comprises a security status request, said security status
request indicating whether said delegated data processing
operation is requested by said issuing component to be per-
formed as a secure data processing operation or as a non-
secure data processing operation. Thus, the security inherit-
ance mechanism of the slave device notwithstanding, the
issuing component in the master device may be able to
include a security status request in the delegated task defini-
tion indicating the security status with which the issuing
component would like the slave device to perform the del-
egated data processing operation.

[0016] In some embodiments said slave device is config-
ured to perform said delegated data processing operation as
said non-secure data processing operation if said issuing
component in said master device is operating in said non-
secure domain, regardless of said security status request. In
other words, even if an issuing component in the non-secure
domain of the master device seeks to initiate a secure data
processing operation in the slave device by including a secure
security status request in the delegated task definition is sends
on the communication bus, the security inheritance mecha-
nism in the slave device will override this request and only
allow a non-secure data processing operation to be set up.
[0017] In some embodiments said slave device is config-
ured to override said security inheritance mechanism and to
perform said delegated data processing operation in accor-
dance with said security status request if said issuing compo-
nent in said master device is operating in said secure domain.
The security inheritance mechanism in the slave device is
essentially provided as a way of ensuring that a non-secure
issuing component in the master device can only set up non-

Oct. 17,2013

secure data processing operations in the slave device. How-
ever, in a data processing apparatus in which trust is categor-
ised as secure or non-secure, a secure issuing component in
the master device is inherently trusted within such a system
and it may be advantageous to allow a secure issuing compo-
nent in the master device to freely specify whether the del-
egated data processing operation is handled as secure or non-
secure, in particular because this allows the secure issuing
component to establish non-secure delegated data processing
operations within the slave device.

[0018] In some embodiments said issuing component in
said master device is configured to issue a delegated task
update command to said slave device on said communication
bus, wherein said slave device is configured to reconfigure
said delegated data processing operation in accordance with
said delegated task update command. In this way, even after a
delegated data processing operation has been established in
the slave device, reconfiguration of that delegated data pro-
cessing operation may be carried out by means of the del-
egated task update command issued by the issuing compo-
nent in the master device.

[0019] Inone such embodiment, if said issuing component
in said master device is operating in said secure domain said
delegated task update command is configurable to cause said
delegated data processing operation to convert to being per-
formed as one of said non-secure data processing operations
by causing said secure security status to be converted to said
non-secure security status. Hence, in this manner a secure
issuing component can cause a secure delegated data process-
ing operation to be converted to a non-secure delegated data
processing operation.

[0020] In some embodiments said slave device is config-
ured to store said delegated task definition in an entry of a task
definition table, wherein said entry of said task definition
table comprises a task security definition, wherein said task
security definition defines whether said delegated data pro-
cessing operation is performed as one of said non-secure data
processing operations or as one of said secure data processing
operations, wherein said task security definition comprises
either said secure security status or non-secure security status,
wherein if said issuing component in said master device is
operating in said non-secure domain said task security defi-
nition cannot be set with said secure security status. Accord-
ingly, a task definition table may be provided in the slave
device to administer and store the delegated task definitions
received from the master device. A task security definition
indicating either the secure security status or the non-secure
security status forms part of each entry in this task definition
table. This allows the slave device to maintain correct admin-
istration of each delegated task definition in the table, in
particular ensuring that a non-secure issuing component in
the master device cannot cause an entry in the task definition
table to be set with secure security status.

[0021] Inone such embodiment, a component operating in
said non-secure domain in said master device cannot modify
said entry of said task definition table if said task security
definition is set with said secure security status. Accordingly,
a component operating in the non-secure domain of the mas-
ter device is simply blocked from modifying entries which are
set with secure security status. Further, the blocking of such
an attempted modification also extends to any attempt by a
component operating in said non-secure domain in said mas-
ter device to create a delegated data processing operation in a
task definition table entry which is marked as secure. It should

US 2013/0276096 Al

be understood that the above described security inheritance
mechanism does not cause the secure status of an existing task
to be “downgraded” to non-secure merely because a non-
secure component attempted to modify this task definition
table entry. Such attempted accesses are simply blocked. The
security inheritance mechanism only applies to the creation
of'a new task definition table entry.

[0022] Alternatively, in another such embodiment, a com-
ponent operating in said non-secure domain in said master
device can modify a selected portion of said entry of said task
definition table if said task security definition is set with said
secure security status, wherein said selected portion is con-
figured to indicate a status of a communication channel
between said master device and said slave device. Accord-
ingly, even though a component in the non-secure domain of
the master device is generally blocked from modifying an
entry of the task definition table which is labelled as secure, it
may be allowed to modify a limited selected portion of the
entry which relates to the status of communication channel
between the master device and the slave device. For example,
this communication channel may be an interrupt mechanism
wherein although a non-secure component cannot generally
modify an entry in the task definition table, it may use a
selected portion thereof to flag an interrupt request, for
example indicating that a message stored in a shared area of
memory should be accessed by the secure delegated process-
ing operation to allow communication between the master
and the slave device.

[0023] Insomeembodiments said delegated task definition
further comprises a page table base address, wherein said
slave device comprises a memory management unit config-
ured to administer accesses to a memory from said slave
device, said memory management unit configured to perform
translations between virtual memory addresses used by said
slave device and physical memory addresses used by said
memory, wherein said translations are configured in depen-
dence on said page table base address, said page table base
address identifying a storage location in said memory of a set
of descriptors defining said translations. Accordingly the
memory management unit in the slave device can receive, as
part of the delegated task definition, a page table base address
in dependence on which the virtual to physical memory
address translations are made and therefore the page table
base address defines the regions of the memory to which the
delegated data processing operation has access. In this way
further control over the operation of the delegated data pro-
cessing operation can be given to the issuing component in
the master device.

[0024] In one such embodiment, when the slave device is
configured to store the delegated task definition in an entry of
a task definition table, said entry of said task definition table
comprises said page table base address, and wherein a com-
ponent operating in said non-secure domain in said master
device cannot modify said page table base address if said task
security definition is set with said secure security status.
Accordingly, this provides an additional level of security
control to the secure domain in the master device since only a
component operating in the secure domain can modify page
table base addresses within task definitions that are labelled
as secure. Within the context of secure delegated data pro-
cessing operations this has the further advantage that even
though the delegated data processing operation is configured
as secure, its access to the memory can be further defined (and
in particular constrained) by the page table base address. This

Oct. 17,2013

therefore means that a secure delegated data processing
operation being carried out on the slave device does not
necessarily need to be given access to all secure memory and
therefore some secure areas of memory can be retained as
only accessible to the secure domain of the master device.
Equally, two secure delegated data processing operations
need not have access to each other’s data.

[0025] In some embodiments said issuing component in
said master device is a driver configured to operate in either
said secure domain or said non-secure domain. As previously
mentioned above as an example, this has the advantage that
the system designer need only provide one driver which can
be executed in either the secure domain or the non-secure
domain without consideration of the consequences in terms
of security that this would have, due to the fact that the slave
device has the security inheritance mechanism.

[0026] Alternatively the system designer may explicitly
choose to write dedicated drivers for each domain and in such
embodiments, said issuing component in said master device
is a driver configured to operate in a selected domain of said
secure domain and said non-secure domain.

[0027] The slave device may take a wide variety of forms,
but in one embodiment said slave device is a video processing
unit.

[0028] Inone such embodiment said video processing unit
is configured to perform video coding operations on multiple
video streams. Accordingly in this context the ability of the
master device to control the security of delegated data pro-
cessing operations being carried out in the video processing
unit means that the video coding operations may be per-
formed according to either the secure or the non-secure status
for different video streams. This for example enables some
video streams (e.g. encrypted video streams) to be handled by
the video processing unit in a secure manner, such that the
integrity of these selected video streams is not jeopardised by
the video processing unit also performing non-secure video
coding operations on other video streams.

[0029] Viewed from a second aspect the present invention
provides a data processing apparatus configured to perform
secure data processing operations and non-secure data pro-
cessing operations, wherein secure data in said data process-
ing apparatus cannot be accessed by said non-secure data
processing operations, the data processing apparatus com-
prising:

[0030] master device means comprising a secure domain
and a non-secure domain, components of said master device
means for operating in said secure domain when performing
said secure data processing operations and for operating in
said non-secure domain when performing said non-secure
data processing operations;

[0031] slave device means for performing a delegated data
processing operation specified by said master device means;
and

[0032] communication bus means for connecting said mas-
ter device to said slave device,

[0033] wherein said delegated data processing operation is
initiated by an issuing component in said master device
means issuing a delegated task definition to said slave device
means on said communication bus means,

[0034] said slave device means comprising security inher-
itance means for causing said delegated data processing
operation to inherit a non-secure security status if said issuing
component in said master device means is operating in said
non-secure domain and to cause said delegated data process-

US 2013/0276096 Al

ing operation to inherit a secure security status if said issuing
component in said master device means is operating in said
secure domain.

[0035] Viewed from a third aspect the present invention
provides a method of data processing in a data processing
apparatus configured to perform secure data processing
operations and non-secure data processing operations,
wherein secure data in said data processing apparatus cannot
be accessed by said non-secure data processing operations,
the method comprising the steps of:

[0036] operating components of a master device in a secure
domain when performing said secure data processing opera-
tions and operating components of said master device in said
non-secure domain when performing said non-secure data
processing operations;

[0037] performing in a slave device a delegated data pro-
cessing operation specified by said master device;

[0038] connecting said master device to said slave device
via a communication bus;

[0039] initiating said delegated data processing operation
by an issuing component in said master device issuing a
delegated task definition to said slave device on said commu-
nication bus; and

[0040] causing said delegated data processing operation in
said slave device to inherit a non-secure security status if said
issuing component in said master device is operating in said
non-secure domain and causing said delegated data process-
ing operation to inherit a secure security status if said issuing
component in said master device is operating in said secure
domain.

[0041] The above, and other objects, features and advan-
tages of this invention will be apparent from the following
detailed description of illustrative embodiments which is to
be read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0042] The present invention will be described further, by
way of example only, with reference to embodiments thereof
as illustrated in the accompanying drawings, in which:
[0043] FIG. 1 schematically illustrates a data processing
apparatus in one embodiment in which a video processing
unit is provided to perform video coding operations on behalf
of a general purpose CPU;

[0044] FIG. 2 schematically illustrates in more detail the
configuration of the video processing unit of FIG. 1;

[0045] FIG. 3 schematically illustrates a data processing
apparatus in one embodiment in which a graphics processing
unit is provided to perform graphics processing operations on
behalf of a CPU;

[0046] FIG. 4 schematically illustrates in more detail the
configuration of the master MMU shown in FIG. 3;

[0047] FIG. 5 schematically illustrates a series of steps
which may be taken in one embodiment in which a VPU is
allocated a video decoding task to perform;

[0048] FIG. 6 schematically illustrates a series of steps
which may be taken in a VPU in one embodiment;

[0049] FIG. 7 schematically illustrates a series of steps that
may be taken in a data processing apparatus in one embodi-
ment in which two-way communication occurs between a
CPU and a video core in a VPU;

[0050] FIG. 8 schematically illustrates how a delegated
task definition may be constructed and passed from a master
CPU to a slave VPU in one embodiment;

Oct. 17,2013

[0051] FIG. 9 schematically illustrates various task defini-
tion parameters for a secure task and their accessibility by
secure and non-secure components in a task definition table in
one embodiment;

[0052] FIG. 10 schematically illustrates a series of steps
which may be taken in a data processing apparatus in one
embodiment in which a CPU delegates a video processing
task to a VPU; and

[0053] FIG. 11 schematically illustrates a series of steps
which may be taken in one embodiment in which a driver in
a CPU seeks access to a task definition stored in a scheduler
ina VPU.

DESCRIPTION OF EMBODIMENTS

[0054] FIG. 1 schematically illustrates a data processing
apparatus in one embodiment. This data processing apparatus
100 comprises a central processing unit (CPU) 102, a video
processing unit (VPU) 104 and an external memory 106. The
CPU 102 is a general purpose processing device, but the VPU
104 is specifically configured to efficiently perform video
coding tasks. In particular, the CPU 102 and VPU 104 are
configured such that the CPU 102 is the primary or master
device in the data processing apparatus 100 whilst the VPU
104 is configured as a secondary or slave device which oper-
ates under the overall control of the CPU 102. Accordingly,
when the CPU 102 determines that there is a video coding (i.e.
encoding or decoding) task to be carried out it delegates this
task to the VPU 104 which carries it out on behalf of the CPU
102.

[0055] Inmore detail, the VPU 104 has four processor cores
108 provided for the dedicated execution of video processing
tasks. The distribution of video processing tasks to the video
cores 108 is administered by the core scheduling unit 110.
This core scheduling unit 110 in turn receives delegated task
definitions from the CPU 102 over the APB 112. This APB
112 is an AXI Peripheral Bus (as provided by ARM Limited,
Cambridge, UK). The APB 112 connects to the VPU 104 via
the interfaces 114 and 118.

[0056] The CPU 102 is subdivided into a secure domain
120 and a non-secure domain 122. This subdivision of the
CPU 102 into secure and non-secure domains may for
example be provided in accordance with the TrustZone tech-
nology provided by ARM Limited of Cambridge, United
Kingdom as described for example in U.S. Pat. No. 7,849,
310, the entire contents of which are incorporated herein by
reference. In essence, components within the secure domain
120 are trusted within the data processing apparatus 100, and
therefore are allowed access to security-sensitive data within
the data processing apparatus 100, whilst components in the
non-secure domain 122 are not allowed access to such secu-
rity-sensitive data. For example, within the memory 106 there
may be stored decryption keys 124 which enable encoded
data to be decrypted and are therefore examples of such
security-sensitive data. The CPU 102 has access to the
memory 106 via AXI bus 126 (as also provided by ARM
Limited of Cambridge UK). Interfaces to the AXI bus 126 are
not illustrated for clarity. In the same manner that the CPU
102 is subdivided into a secure domain 120 and a non-secure
domain 122, the memory 106 is sub-divided into regions
which may be specified as secure or non-secure. Most impor-
tantly, a component operating in the non-secure domain 122
of'the CPU 102 cannot access a region of memory 106 which
has been specified as secure. The reader is referred to the
above mentioned description of the TrustZone® technology

US 2013/0276096 Al

in U.S. Pat. No. 7,849,310 for further detail of how such
access policing may be configured.

[0057] Furthermore, the video processing tasks delegated
to the VPU 104 by the CPU 102 are also classified as either
secure tasks or non-secure tasks, in dependence on the nature
of the task and in particular the nature of the video stream
which that task is required to perform video processing opera-
tions on. Thus, the VPU 104 is required to perform video
processing tasks (in particular in this example embodiment
video decoding tasks) on different video streams, some of
which may be classified as secure. In this example embodi-
ment a video stream is designated as secure if'it is received as
an encrypted bitstream and free access to the decrypted bit-
stream should not be allowed. For this reason, a video core
108 which is performing video processing tasks either per-
forms its video processing tasks making use of'a region 0o£ 130
of memory 106 which is dedicated to the “secure VPU” or to
a region 132 of the memory 106 which is dedicated to the
“non-secure VPU”. Most importantly therefore a video core
108 which is performing a non-secure video processing task
should be prevented from accessing any region of memory
which is defined as being secure. However, within the context
of secure video processing tasks being carried out within the
VPU 104, it would be undesirable to simply give a core 108
executing such a secure video processing task unlimited
access to all secure regions of memory 106 because this
would for example give that core access to a region of
memory 106 such as that labelled 134 in which the decryption
keys 124 are stored and should only be accessed by compo-
nents operating within the secure domain 120 of the CPU 102.
This is the case because although a component within the
secure domain 120 of the CPU 102 may delegate a secure
video processing task to a core 108 of the VPU 104, allowing
that core to have full secure domain status, i.e. extending the
secure domain 120 of the CPU 102 to include the video core
108 carrying out that secure processing task (at least for the
duration thereof), would mean that the VPU 104 would have
to run an operating system which is able to enforce the secure/
non-secure subdivision in the same manner as is carried outin
the CPU 102. However, a dedicated processing device such a
VPU 104 typically does not have the facilities to run such an
operating system.

[0058] The data processing apparatus 100 addresses this
problem by enabling the CPU 102 to delegate video process-
ing tasks to the VPU 104 which, as well as configurational
parameters for the task, specify a page table base address
which is used by a memory management unit (MMU) 140
within each video core 108 to perform translations between
the virtual memory addresses used within each core 108 and
the physical memory addresses used by the memory 106.
Each MMU 140 is provided with one or more page table base
registers (PTBR) 142 in which the page table base address for
the processing task(s) to be carried out is(are) held.

[0059] Within the CPU 102, each of the two security
domains 120 and 122 has its own kernel, namely secure
kernel 150 and non-secure kernel 152. These kernels repre-
sent the core of the operating system running in each domain.
In addition, as illustrated in FIG. 1, a driver is executing in
each of the respective domains namely secure driver 154 and
non-secure driver 156. These drivers are configured to inter-
act with the VPU 104 and to delegate video processing opera-
tions thereto. Accordingly, it is the secure driver 154 which
determines the page table base address which a video core
108 will have locally stored in the page table base register 142

Oct. 17,2013

of'its MMU 140 when it carries out a secure video processing
task on behalf of the CPU 102. Conversely, when a video core
108 is carrying out a non-secure video processing task on
behalf of the CPU 102, either the secure driver 154 or the
non-secure driver 156 may have set the page table base
address in the respective page table base register 142, since
both secure and non-secure parts of the CPU 102 are able to
initiate non-secure video processing tasks in a video core 108.
Significantly, the page table base address set in the page table
base register 142 can only be set by a component running in
the CPU 102 and these page table base addresses cannot be set
by any firmware running on the VPU 104.

[0060] The memory 106 in FIG. 1 is schematically illus-
trated as being sub-divided into three portions 134, 130 and
132, respectively corresponding to: an area which may only
be accessed by a secure component in the CPU; an area
designated for use by a video core 108 performing a secure
video processing task; and an area designated for use by a
video core 108 performing a non-secure video processing
task. The restriction of access to regions of memory 106 is
enforced by two mechanisms. Firstly, only a video processing
task which is designated as secure is able to pass an access
request to the memory 106 via the AXI bus 160 and the AXI
bus interface 162 (as enforced by the above-mentioned Trust-
Zone® technology). Hence, a non-secure video processing
task being carried out by a video core 108 cannot successfully
carry out a memory access pertaining to the secure area 130 or
134.

[0061] The second mechanism by which control over
access to particular regions of memory 106 is exercised is by
means of the above mentioned page table base addresses.
Since these page table base addresses provide the translation
between the virtual memory addresses used within each video
core 108 and the physical memory addresses used by the
memory 106, appropriate setting of these page table base
addresses (and of course the corresponding page tables and
descriptors) can further constrain which areas of memory 106
are accessible to a given video core 108 in dependence on the
video processing task it is carrying out. Hence, within the
secure areas of memory 106, the area 134 can be reserved as
an area which is only accessible to secure components oper-
ating within the CPU 102, whilst access can be granted to the
secure VPU area 130 to secure video processing tasks being
carried out by a video core 108. Example items which may be
held in the secure VPU memory 130 whilst a secure video
processing task is being carried out are the secure frame
buffer 162, the decrypted bit stream 164 and the secure work-
space 166. Additionally, it may commonly be the case that the
firmware provided to configure the operation of the video
cores 108 in VPU 104 is too large to be held within VPU 104
and accordingly this VPU core firmware 168 may also be held
in the secure VPU memory area 130 (such that it is shielded
from non-secure processors being executed by a video core
108). Equivalently, within the non-secure VPU memory area
132, a frame buffer 170, a bit stream 172 and a workspace 174
are examples of items which may be held in the this non-
secure memory for use by a video core 108 when performing
a non-secure video processing task. Additionally, a message
buffer 176 is also held within the non-secure VPU memory
area 132, this message buffer being used to provide a com-
munication channel between the video cores 108 and the CPU
102. Being held in non-secure memory, either a secure or a
non-secure processing task can access this message buffer to
read or write a message as appropriate. Note that although a

US 2013/0276096 Al

given video processing task may be carried out as a secure
data processing operation, aspects of the administration of the
task may nevertheless be handled by the non-secure driver
156 (removing this processing burden from the secure driver
154). For example in the illustrated embodiment, the non-
secure driver 156 can manage the rate and progress of the
video decode by sending messages to the secure session using
message buffer 176. Example messages are “frame com-
plete” or “input buffer empty”.

[0062] FIG. 2 schematically illustrates in more detail the
configuration of some components of the video processing
unit 104 shown in FIG. 1. In particular, more detail is given of
the configuration of the core scheduling unit 110. The APB
112 and interface 114 are as described with reference to FIG.
1. When a driver (whether secure 154 or non-secure 156)
running on CPU 102 (bus master) seeks to write a delegated
task definition to the VPU 104 (bus slave) this takes place via
the APB 112 and the interface 114. Within the VPU 104 the
target of this write operation is the core scheduling unit 110.
The core scheduling unit 110 comprises a memory space
allocation table 200, a job queue 202 and a job administration
unit 204, which administers the allocation of video process-
ing tasks to the video cores 108. The configuration details of
a given delegated task definition are stored in the memory
space allocation table 200, in particular including a page table
base address (PTBA) associated with the delegated task and a
security bit (NS) defining whether the delegated task is to be
carried out as secure task or a non-secure task. Other configu-
ration parameters are also stored, some of which will be
discussed in more detail later on in this description. When a
delegated task definition is added to an entry of a memory
space allocation table 200, an entry can thereafter also made
in the job queue 202, indicating the order in which tasks
defined in entries of the memory space allocation table should
be executed as video cores become available. This updating of
the job queue 202 may happen some time after the initial
configuration of the memory space allocation table 200. For
example, it is typical for the memory space allocation table
200 to be configured once at the start of decoding a video
stream and then the job queue is updated while the stream is
running (such as on a frame by frame basis). There is no need
to add an entry to the job queue at the time the memory space
allocation table is configured. The administration of the job
queue 202 is handled by the non-secure driver 156, since the
particular ordering which the jobs are executed is not secu-
rity-critical. Accordingly, the job administration unit 204
refers to both the memory space allocation table 200 and the
job queue 202 when selecting the next delegated data pro-
cessing operation to be carried out by one of the video cores
108. A further component of the core scheduling unit 110 is
the interrupt control 206 which is configured to receive inter-
rupt signals from the video cores and to issue an interrupt
signal (IRQ) to the CPU 102 via the APB 112. Note that there
is no bus interface from the video cores to the core scheduler
so the registers therein (which form the memory space allo-
cation table 200 and the job queue 202) are only writable by
an external bus master, i.e. the CPU 102.

[0063] FIG. 3 schematically illustrates an alternative
embodiment to that illustrated in FIG. 1, wherein the data
processing apparatus 250 comprises a CPU 252, a graphics
processing unit (GPU) 254 and a memory 256. The CPU 252
is configured in the same way as the CPU 102 in FIG. 1 and is
not described further here. Similarly the memory 256 is con-
figured like the memory 106 in FIG. 1, and the buses 260, 262

Oct. 17,2013

and 264 and the interfaces 266 and 268 are also configured
like their counterparts in FIG. 1. Within the GPU 254, graph-
ics processing cores 258 are provided which carry out graph-
ics processing tasks delegated by the CPU 252.

[0064] In the GPU 254, the system control unit 270 plays
the role that the core scheduling unit 110 plays in the embodi-
ment illustrated in FIG. 1. One difference to the core sched-
uling unit 110 is that the system control unit 270 comprises a
master MMU 272 which provides a centralised administra-
tion of the virtual to physical address translations mentioned
above. The master MMU 272 and system control unit 270 are
configured to administer the control over which areas of
memory 256 are accessible to the tasks being carried out by
the graphics processing cores 258 on a thread basis, as will be
described in more details with reference to FIG. 4. Because of
the centralised master MMU 272, each graphics processor
core 258 is provided with a micro-TLB 274, which each
provide associated local storage for the relevant graphics
processing core 258 to store copies of address translations
recently performed by the memory management unit 272 for
that processor core.

[0065] FIG. 4 schematically illustrates in more detail the
configuration and operation of the master MMU 272 as
shown in FIG. 3. The master MMU 272 and system control
unit 270 administer the data processing tasks delegated to the
GPU 254 on a thread basis. The master MMU 272 has a
memory space allocation table 274 in which the configuration
details of up to 16 delegated processing operations can be
stored (in accordance with the delegated task definitions
received from the CPU 252 over the APB 260). As before in
the example of the memory space allocation table 200 within
the core scheduling unit 110 in FIG. 2, the memory space
allocation table 274 comprises page table base address infor-
mation and security status information (as well as other con-
figuration details) for each delegated task definition. Each
such delegated task definition can be carried out by the gen-
eration of one or more threads which may be executed by one
or more graphics processing cores. Hence, as illustrated in
FIG. 4 the delegated task definition stored in entry 1 of the
memory space allocation table 274 is a secure task which is
being executed by thread #0 on GPU core 276 and the thread
#2 on GPU core 278. Similarly, the delegated task definition
that is stored in entry 14 of the memory space allocation table
is being executed as thread #1 on GPU core 276 and thread #3
on GPU core 278. Accordingly, it will be appreciated that not
only can two separate threads executing on different GPU
cores operate with reference to one memory space allocation
table entry, but also that within a given GPU core both secure
and non-secure threads may execute simultaneously. In this
manner, any given thread executing on a GPU core 258 may
only access areas of memory 256 in accordance with the
address translations provided by master MMU 272 (and pos-
sibly cached in micro-TLB 274) on the basis of the corre-
sponding page table base address stored in the memory space
allocation table 274.

[0066] FIG. 5 schematically illustrates a series of steps
which are taken in one embodiment in which a VPU (such as
that illustrated in FIG. 1) is allocated a video decoding task to
perform. The flow begins at step 300 when a new video
decoding job exists for the VPU to perform on behalf of the
CPU. At step 302 it is determined whether or not this video
decoding job (task) should be handled as a secure task or not.
Although a non-secure job can safely be handled as a secure
job, in general only those tasks which explicitly need to be

US 2013/0276096 Al

performed securely will be handled as secure tasks. Further-
more it may be the case that the video input for a non-secure
job may come from a non-trusted component which does not
have access to secure memory and so it may in any event not
be practical to handle a non-secure job as a secure job. In the
case of a secure task, the flow proceeds to step 304, wherein
it is the secure driver 154 within the CPU 102 which allocates
an area of secure memory (i.e. within the section 130 of the
memory 106) and the secure driver further configures the
page tables and descriptors accordingly to correspond to the
allocated memory area. Then at step 306 the secure driver 154
writes a new secure entry into the register LSIDENTRY (i.e.
into the memory space allocation table 200) at an available
entry slot. This new entry is labelled as secure (NS=0) and
includes the page table base address provided by the secure
driver at step 304. The flow then proceeds to step 308.

[0067] Alternatively, if the new video decoding job to be
performed can be handled non-securely then from step 302
the flow proceeds to step 310 whereby it is the non-secure
driver 156 in the CPU 102 which allocates an area of non-
secure memory to this task and configures the page tables and
descriptors pointed to by a suitable page table base address to
correspond to this allocated area of memory. Then at step 312
the non-secure driver 156 writes the new non-secure entry
into LSIDENTRY (i.e. memory space allocation table 200) at
an available slot including the page table base address defined
at step 310. The entry is labelled as non-secure (i.e. NS=1).
Note that the interface between the CPU 102 and the VPU 104
is such that a non-secure driver 156 cannot set the security
status of an entry in the memory space allocation table to be
secure. This mechanism described in more detail in the fol-
lowing. The flow then proceeds to step 308.

[0068] At step 308 the non-secure driver 156 adds the new
job to the job queue 202 (LSIDQUEUE). In other words, the
administration of the order in which the delegated video
decoding tasks are carried out is administered by the non-
secure driver 156, since this burden can be taken away from
the secure driver 154 because it is not a security-critical task.
Finally, at step 314 the core scheduling unit 110 (in particular
by means of the job administration unit 204) allocates this job
to an available VPU core 108 once it becomes first in the job
queue 202.

[0069] FIG. 6 schematically illustrates a series of steps
taken in a VPU such as that illustrated in FIG. 1 in one
embodiment. The flow begins at step 350 where it is deter-
mined ifthere is a pending video decode task to be carried out,
i.e. if the job queue 202 indicates an entry in the memory
space allocation table 200 which should be handled. Once this
is the case the flow proceeds to step 352 where it is determined
if there is at least one VPU core 108 available. Once this is the
case then the flow proceeds to step 354. Here, the core sched-
uling unit 110 (specifically, the job administration unit 204)
takes the next entry in the job queue (LSIDQUEUE) and at
step 356, the core scheduling unit 110 passes the page table
base address from the identified LSIDENTRY to the available
VPU core (or cores, if the task is to be shared between more
than one video core). Then at step 358, the VPU core accesses
the message buffer 176 in the non-secure memory area 132 to
ascertain further particular details of the video decode task to
be carried out (for example the location of the bit stream in
memory which is to be decoded). The flow then proceeds to
step 360, where the VPU core begins carrying out this decod-
ing task. This involves issuing memory access requests via the
interface 162 and the AXI bus 160 to the memory 106, these

Oct. 17,2013

memory access requests having being translated by the MMU
140 within the video core 108 using the page table base
address stored in the relevant page table base register 142. The
MMU allows each area of memory to be configured with one
of'four bus attribute configurations. The bus attribute configu-
rations set policies such as security status and cache-ability.
Importantly the bus attribute setting for each memory access
requests are necessarily influenced by the NS value defined in
the memory space allocation table 200 for this delegated task.
One the one hand it is possible for a secure (NS=0) video task
to make a non-secure bus access for certain memory areas
(such as the message buffer). However, for a non-secure task
the bus attribute is forced to be non-secure. The AXI access
security, which is the deciding factor in whether a given
memory access request is allowed to proceed, is taken from
the bus attribute setting rather than the NS bit directly. In this
manner, at step 362 it is determined if a non-secure memory
access request is being made to a secure area of memory. As
mentioned above, this policing of the physical division
between the secure and non-secure worlds forms part of the
hardware (i.e. bus interface 162 and the AX1 bus 160), in this
example in accordance with the TrustZone technology pro-
vided by ARM Limited, Cambridge, UK. Accordingly, if at
step 362 it is determined that a non-secure memory access is
seeking to access secure memory then the flow proceeds to
step 364 where this access is denied and the memory access
request is returned to its issuer. Alternatively, if the determi-
nation at step 362 is negative then the flow proceeds to step
366 where the access to memory is allowed and the video
decoding task proceeds.

[0070] FIG. 7 schematically illustrates a series of steps
which may be taken in one embodiment, which illustrates
how a video core, such as one of the video cores 108 in FIG.
1, may communicate with the CPU 102. One reason why the
video core may wish to communicate with the CPU 102 is if
it requires a change in the memory allocation provided to it
(step 400). For example, it may be the case that an initial
memory allocation proves to be insufficient for the video
decoding task that the video core 108 is seeking to perform
and therefore a larger memory allocation must be requested.
Thus, when a video core 108 requires such a change in
memory allocation, it stops the video decoding that it is
currently performing and the flow proceeds to step 402 where
the video core 108 writes a message to the CPU 102 into the
message buffer 176 in the non-secure area of memory 132.
Then at step 404, the video core 108 signals through the core
scheduling unit 110 that it wishes to notify the CPU 102 of
this new message, which is to be done via means of an inter-
rupt. Hence, at step 406 the core scheduling unit 110 (in
particular the interrupt control 206) issues the corresponding
interrupt (IRQ to the CPU 102 via interface 114 and APB
112). The receipt of this interrupt (which is handled by the
non-secure driver 156) causes the CPU 102 to read the mes-
sage which has been stored in the message buffer 176 (step
408). Then at step 410, either the non-secure driver itself
amends the page tables as required to allocate more memory
for anon-secure video decoding task, or the non-secure driver
calls the secure driver 154 to amend the page tables as
required to allocate more memory for a secure video decod-
ing task. Once this is completed, the CPU 102 writes a con-
firmation message into the message buffer 176 (step 412) and
then notifies the core scheduling unit 110 (step 414) that this
has been done. Finally at step 416, the core scheduling unit
110 (in particular the job administration unit 204) signals to

US 2013/0276096 Al

the corresponding video core that it can restart the video
decoding task and can now make use of the additional
memory allocated.

[0071] FIG. 8 schematically illustrates in more detail how a
delegated task definition is constructed and passed from a
CPU to a VPU in one embodiment, such as that illustrated in
FIG. 1. The delegated task definition which a driver in the
CPU 102 wishes to write to the VPU (not illustrated in FIG. 8)
is (in this example embodiment) composed of ten definition
parameters. As illustrated in FIG. 8, nine of these task defi-
nition parameters are provided by the driver which issues the
delegated task definition i.e. either secure driver 154 or non-
secure driver 156. However, the APB interface 118 by which
the CPU 102 is coupled to the APB 112 is configured such that
one task definition parameter of the delegated task definition,
namely AXPROT [1], does not come from the driver issuing
the delegated task definition but is provided by the domain in
which the driver is operating. Accordingly, when non-secure
driver 156 writes a delegated task definition (i.e. by construct-
ing the nine task definition parameters which it has the free-
dom to set) onto the APB 112 the AxPROT value is automati-
cally setto one (i.e. NS=1), indicating that this delegated task
definition has been issued by a component operating in the
non-secure domain. Conversely, when the secure driver 154
writes its nine task definition parameters, the AXPROT value
is automatically set to zero (i.e. NS=0), indicating that this
delegated task definition has been issued by a component
operating in the secure domain. The delegated task definition
is then passed to the VPU. A delegated task definition
received by the VPU is added to a task definition such as the
memory space allocation table 200 illustrated in FIG. 2.

[0072] In addition to the page table base address and secu-
rity bit, an LSIDENTRY has various other parameters as
schematically illustrates in FIG. 9, which shows an example
entry for a secure task. Once such a secure task is written into
the task definition table, generally only a secure component
operating in the secure domain 120 of the CPU 102 is allowed
to amend these parameters, however as illustrated in FIG. 9,
the IRQ and IRQACK parameters may also be amended by a
non-secure component operating in the non-secure domain
122. As illustrated in FIG. 9, the LSIDENTRY parameters for
a secure task which can only be amended by a secure com-
ponent are #CORES (i.e. a value indicating the number of
cores on which this task should be executed), MMUCTRL
(the PTBA definition), the NS bit (defining the security sta-
tus), FLUSH (by means of which a core can be caused to
flush) and TERMINATE (by means of which an already
executing job can be caused to prematurely terminate) are
only amendable by a secure component. In the case of an
LSIDENTRY for a non-secure task a non-secure secure com-
ponent operating in the non-secure domain 122 is permitted
access, with the usual provision that a non-secure secure
component operating in the non-secure domain 122 cannot
set the NS bit to NS=0 (secure status). The use and amend-
ment of some of these parameters is described with reference
to FIGS. 10 and 11.

[0073] FIG. 10 illustrates a series of steps which may be
taken in one embodiment, showing how the issuance of a new
task definition from the CPU is handled. The flow begins at
step 500 where a driver (either secure or non-secure) in the
CPU 102 issues a new task definition. This task definition is
passed via the APB 112 to the VPU 104 (step 502). Impor-
tantly, the task definition received by the VPU 104 via its APB
4 slave port (i.e. interface 114) includes the AxPROT|[1] value

Oct. 17,2013

which has come from the driver domain as described above.
Next at step 506, the core scheduling unit 110 in the VPU 104
adds this task definition as a new LSIDENTRY entry (i.e. into
the memory space allocation table 200). At step 508, the core
scheduling unit determines whether the value of AXPROT [1]
is one or not (i.e. whether this a secure or a non-secure
originating task definition). If it is a non-secure originating
task definition then the flow proceeds to step 510 where
LSID[k] NONSEC is set to one (i.e. the k” entry in the set of
LSIDENTRY values is set to 1 defining this is a non-secure
task). Alternatively, if at step 508 it is determined that this is
a secure domain originating task definition then the flow
proceeds to step 512 at which it is determined whether the
task definition includes an indication that the security of the
task in the memory space allocation table 200 should be set as
non-secure (i.e. if the task definition written by the issuing
driver includes a parameter NONSEC=1). In other words, the
task definition received from the CPU includes a security
status request indicating the security status which the issuing
component in the CPU wants the delegated task to have. As
can be seen in FIG. 10, if the issuing component is within the
non-secure domain then this information is never considered
(i.e. an issuing component in the non-secure domain has no
choice to set a task as secure). However, an issuing compo-
nent in the secure domain does have the choice to set up a
non-secure delegated task. Accordingly if the task definition
includes this request for a non-secure status at step 512 then
the flow proceeds to step 510 and the task is labelled as
non-secure. Otherwise from step 512 the flow proceeds to
step 514 where LSID[k].NONSEC is set to zero (i.e. the k”
entry in the set of LSIDENTRY values is set to 0 defining this
is a secure task). The final step of the flow chain in FIG. 10 is
step 516 where this new LSIDENTRY is then waiting to be
executed on one of the VPU cores 108 (or to be updated by a
subsequent access from the CPU 102 before it is executed).
Accordingly, it will be appreciated that the configuration of
the core scheduling unit 110 to perform the steps 508, 510,
512 and 514 described above represents a security inheritance
mechanism whereby a delegated data processing operation
scheduled within the core scheduling unit 110 inherits the
security status of the domain in which the issuing component
setting up that delegated data processing operation is itself
operating. Hence, an issuing component in the non-secure
domain can only be set up a non-secure task. Additionally
however, the security status request which can be included in
the task definition received on the APB 112 allows, only in the
case of an issuing component in the secure domain of the CPU
112, to override this security inheritance mechanism and to
set up a non-secure task in the core scheduling unit 110.

[0074] FIG. 11 illustrates a series of steps which may be
taken in one embodiment, showing what happens when a
driver in the CPU 102 seeks access to a parameter in a LSI-
DENTRY stored in the core scheduler of the VPU. Thus when
such an access is sought (at step 600), the flow proceeds to
step 602, where it is determined if the access is a read or a
write request. Read access to LSIDENTRY parameters is
freely allowed (step 604). If a write access is sought then the
flow proceeds to step 606.

[0075] Here the AxPROT[1] value accompanying the
access request on the APB 112 is examined and it is deter-
mined if the issuing component resides in the secure domain
120 of the CPU 102. If it does (i.e. AxPROT][1] is 0) then full
write access to the LSIDENTRY is granted to this secure
issuing component (e.g. secure driver 154) at step 608. If

US 2013/0276096 Al

however AXPROT[1] is 1 (i.e. the request comes from a
component such as non-secure driver 156 in the non-secure
domain 122), then at step 610 it is determined what the
security status is of the LSIDENTRY to which access is
sought. If this LSIDENTRY is non-secure then the flow pro-
ceeds to step 608 and the write access is allowed. If on the
other hand this LSIDENTRY is denoted as corresponding to
a secure task, then only limited write access is permissible.
Specifically, at step 612 it is determined if the write access is
seeking to modify the IRQ or IRQACK parameters of this
LSIDENTRY (by means of which a video core can signal a
request for and acknowledge communication with the master
CPU). Write access to these particular parameters is allowed
(step 614), but all other write accesses are refused (step 616).
[0076] Although a particular embodiment has been
described herein, it will be appreciated that the invention is
not limited thereto and that many modifications and additions
thereto may be made within the scope of the invention. For
example, various combinations of the features of the follow-
ing dependent claims could be made with the features of the
independent claims without departing from the scope of the
present invention.

We claim:

1. A data processing apparatus configured to perform
secure data processing operations and non-secure data pro-
cessing operations, wherein secure data in said data process-
ing apparatus cannot be accessed by said non-secure data
processing operations, the data processing apparatus com-
prising:

a master device comprising a secure domain and a non-
secure domain, wherein components of said master
device are configured to operate in said secure domain
when performing said secure data processing operations
and to operate in said non-secure domain when perform-
ing said non-secure data processing operations;

a slave device configured to perform a delegated data pro-
cessing operation specified by said master device; and

acommunication bus connecting said master device to said
slave device,

wherein said delegated data processing operation is initi-
ated by an issuing component in said master device
issuing a delegated task definition to said slave device on
said communication bus, wherein said issuing compo-
nent in said master device is a driver configured to oper-
ate in either said secure domain or said non-secure
domain,

wherein said slave device comprises a security inheritance
mechanism configured to cause said delegated data pro-
cessing operation to inherit a non-secure security status
if said issuing component in said master device is oper-
ating in said non-secure domain and to cause said del-
egated data processing operation to inherit a secure secu-
rity status if said issuing component in said master
device is operating in said secure domain.

2. The data processing apparatus as claimed in claim 1,
wherein said communication bus is configured such that said
delegated task definition is accompanied by a domain identi-
fier, said domain identifier indicating if said issuing compo-
nent in said master device is operating in said non-secure
domain or if said issuing component in said master device is
operating in said secure domain.

3. The data processing apparatus as claimed in claim 2,
wherein said slave device is configured to perform said del-
egated data processing operation as one of said non-secure

Oct. 17,2013

data processing operations if said domain identifier indicates
that said issuing component in said master device is operating
in said non-secure domain.

4. The data processing apparatus as claimed in claim 1,
wherein said delegated task definition comprises a security
status request, said security status request indicating whether
said delegated data processing operation is requested by said
issuing component to be performed as a secure data process-
ing operation or as a non-secure data processing operation.

5. The data processing apparatus as claimed in claim 4,
wherein said slave device is configured to perform said del-
egated data processing operation as said non-secure data pro-
cessing operation if said issuing component in said master
device is operating in said non-secure domain, regardless of
said security status request.

6. The data processing apparatus as claimed in claim 4,
wherein said slave device is configured to override said secu-
rity inheritance mechanism and to perform said delegated
data processing operation in accordance with said security
status request if said issuing component in said master device
is operating in said secure domain.

7. The data processing apparatus as claimed in claim 1,
wherein said issuing component in said master device is
configured to issue a delegated task update command to said
slave device on said communication bus, wherein said slave
device is configured to reconfigure said delegated data pro-
cessing operation in accordance with said delegated task
update command.

8. The data processing apparatus as claimed in claim 7,
wherein if said issuing component in said master device is
operating in said secure domain said delegated task update
command is configurable to cause said delegated data pro-
cessing operation to convert to being performed as one of said
non-secure data processing operations by causing said secure
security status to be converted to said non-secure security
status.

9. The data processing apparatus as claimed in claim 1,
wherein said slave device is configured to store said delegated
task definition in an entry of a task definition table, wherein
said entry of said task definition table comprises a task secu-
rity definition, wherein said task security definition defines
whether said delegated data processing operation is per-
formed as one of said non-secure data processing operations
or as one of said secure data processing operations, wherein
said task security definition comprises either said secure
security status or non-secure security status, wherein if said
issuing component in said master device is operating in said
non-secure domain said task security definition cannot be set
with said secure security status.

10. The data processing apparatus as claimed in claim 9,
wherein a component operating in said non-secure domain in
said master device cannot modify said entry of said task
definition table if said task security definition is set with said
secure security status.

11. The data processing apparatus as claimed in claim 9,
wherein a component operating in said non-secure domain in
said master device can modify a selected portion of said entry
of said task definition table if said task security definition is
set with said secure security status, wherein said selected
portion is configured to indicate a status of a communication
channel between said master device and said slave device.

12. The data processing apparatus as claimed in claim 1,
wherein said delegated task definition further comprises a
page table base address,

US 2013/0276096 Al

wherein said slave device comprises a memory manage-
ment unit configured to administer accesses to a memory
from said slave device, said memory management unit
configured to perform translations between virtual
memory addresses used by said slave device and physi-
cal memory addresses used by said memory,

wherein said translations are configured in dependence on

said page table base address, said page table base
address identifying a storage location in said memory of
a set of descriptors defining said translations.

13. The data processing apparatus as claimed in claim 12,
wherein said slave device is configured to store said delegated
task definition in an entry of a task definition table, wherein
said entry of said task definition table comprises a task secu-
rity definition, wherein said task security definition defines
whether said delegated data processing operation is per-
formed as one of said non-secure data processing operations
or as one of said secure data processing operations, wherein
said task security definition comprises either said secure
security status or non-secure security status, wherein if said
issuing component in said master device is operating in said
non-secure domain said task security definition cannot be set
with said secure security status, wherein said entry of said
task definition table comprises said page table base address,
and wherein a component operating in said non-secure
domain in said master device cannot modify said page table
base address if said task security definition is set with said
secure security status.

14. The data processing apparatus as claimed in claim 1
wherein said issuing component in said master device is a
driver configured to operate in a selected domain of said
secure domain and said non-secure domain.

15. The data processing apparatus as claimed in claim 1
wherein said slave device is a video processing unit.

16. The data processing apparatus as claimed in claim 1
wherein said video processing unit is configured to perform
video coding operations on multiple video streams.

17. A data processing apparatus configured to perform
secure data processing operations and non-secure data pro-
cessing operations, wherein secure data in said data process-
ing apparatus cannot be accessed by said non-secure data
processing operations, the data processing apparatus com-
prising:

master device means comprising a secure domain and a

non-secure domain, components of said master device
means for operating in said secure domain when per-
forming said secure data processing operations and for
operating in said non-secure domain when performing
said non-secure data processing operations;

10

Oct. 17,2013

slave device means for performing a delegated data pro-
cessing operation specified by said master device
means; and

communication bus means for connecting said master

device to said slave device,

wherein said delegated data processing operation is initi-

ated by an issuing component in said master device
means issuing a delegated task definition to said slave
device means on said communication bus means,
wherein said issuing component in said master device
means is a driver configured to operate in either said
secure domain or said non-secure domain,

said slave device means comprising security inheritance

means for causing said delegated data processing opera-
tion to inherit a non-secure security status if said issuing
component in said master device means is operating in
said non-secure domain and to cause said delegated data
processing operation to inherit a secure security status if
said issuing component in said master device means is
operating in said secure domain.

18. A method of data processing in a data processing appa-
ratus configured to perform secure data processing operations
and non-secure data processing operations, wherein secure
data in said data processing apparatus cannot be accessed by
said non-secure data processing operations, the method com-
prising the steps of:

operating components of a master device in a secure

domain when performing said secure data processing
operations and operating components of said master
device in said non-secure domain when performing said
non-secure data processing operations;

performing in a slave device a delegated data processing

operation specified by said master device;

connecting said master device to said slave device via a

communication bus;
initiating said delegated data processing operation by an
issuing component in said master device issuing a del-
egated task definition to said slave device on said com-
munication bus, wherein said issuing component in said
master device is a driver configured to operate in either
said secure domain or said non-secure domain; and

causing said delegated data processing operation in said
slave device to inherit a non-secure security status if said
issuing component in said master device is operating in
said non-secure domain and causing said delegated data
processing operation to inherit a secure security status if
said issuing component in said master device is operat-
ing in said secure domain.

#* #* #* #* #*

