フリ マイ・ファイン マイ・ファイン マイ・ファイン アイ・ファイン アイ・ファイ・ファイ・ファイン アイ・ファイン アイ・ファイ・ファイ アイ・ファイ アイ・ファイン アイ・フィー アイ・フィー アイ・フィー アイ・ファイ・ファイ・ファイ・ファイ・ファイン アイ・フィー アイ・フィー アイ・フィー アイ・ファイ アイ・フィー アイ・ファイン アイ・ファイン アイ・ファイン アイ・ファイン アイ・ファイン アイ・ファイン アイ・ファイン アイ・ファイ

 ∞

(51) MΠK **G01N 3/20** (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ

(21), (22) Заявка: 2008134077/22, 19.08.2008

(24) Дата начала отсчета срока действия патента: 19.08.2008

(45) Опубликовано: 10.02.2009

Адрес для переписки:

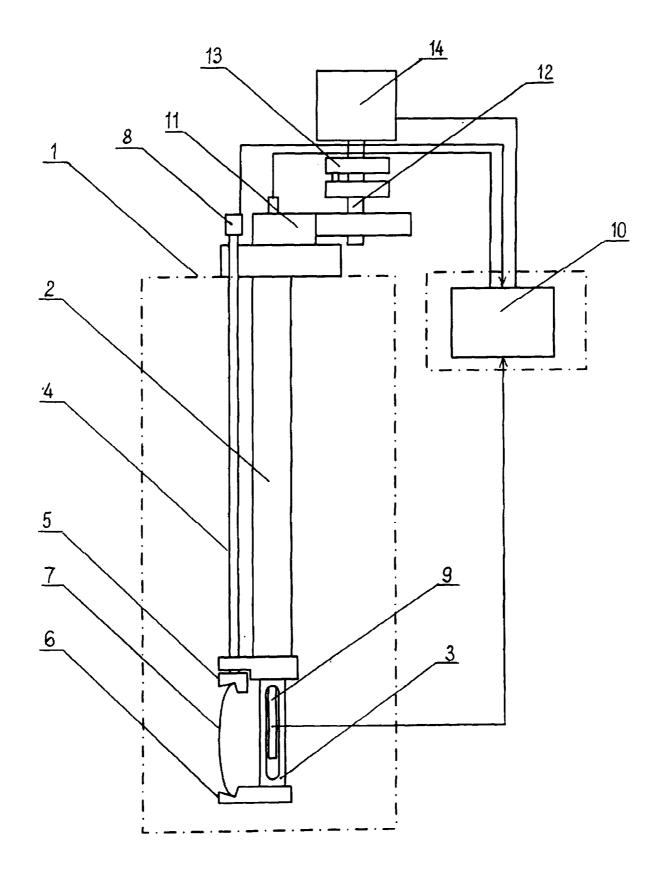
450000, Башкортостан, г.Уфа, ул. К. Маркса, 12, УГАТУ, отдел интеллектуальной собственности, В.П. Ефремовой

(72) Автор(ы):

Вольферц Михаил Владимирович (RU), Краснокутский Николай Иванович (RU)

(73) Патентообладатель(и):

Открытое акционерное общество Башкирское специальное конструкторское бюро "Нефтехимавтоматика" (RU)


(54) УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ХРУПКОСТИ ВЯЗКИХ ИЛИ ПЛАСТИЧНЫХ МАТЕРИАЛОВ

Формула полезной модели

Устройство для определения температуры хрупкости вязких или пластичных материалов, содержащее термостат, в котором установлены две концентричные трубки, внешняя и внутренняя, захваты, верхний и нижний, последний из которых размещен на внутренней концентричной трубке, пластина для нанесения испытуемого материала, размещенная в захватах, а также систему регистрации температуры хрупкости, отличающееся тем, что на внешней трубке дополнительно установлен стержень, на нижнем конце которого размещен верхний захват, а верхний конец которого взаимодействует с тензодатчиком, расположенным вне термостата, причем система регистрации температуры хрупкости включает тензодатчик и датчик температуры, соединенные с микропроцессором.

S

0 ∞

D

R

Страница: 2

Предлагаемая полезная модель относится к испытательной технике, в частности, к устройствам для определения температуры хрупкости вязких или пластичных материалов, таких как битумы, парафины, лаки, краски. Полезная модель может быть использована в нефтепереработке, дорожном строительстве и т.д.

Известно устройство для определения температуры хрупкости материалов, содержащее термостат, две установленные в нем концентричные трубки с размещенными на них захватами, пластину для нанесения слоя испытуемого материала, размещенную в захватах, а также систему регистрации и индикации температуры. Система индикации температуры основана на методе электрического пробоя слоя испытуемого материала (Лабораторный анализатор температуры хрупкости нефтебитумов типа «Пихта-72». - Информационный листок №105-73 Башкирского ЦНТИ, 1973 г.).

Недостаток известного устройства - зависимость срабатывания системы индикации температуры от места, формы или направления трещины в слое испытуемого материала, что ведет к низкой точности измерения температуры хрупкости.

Известно устройство для определения температуры хрупкости вязких или пластичных материалов (принято за прототип), содержащее термостат, две установленные в нем концентричные трубки с размещенными на них захватами, пластину для нанесения испытуемого материала, размещенную в захватах, а также системы регистрации и индикации температуры. Система индикации выполнена в виде пьезоэлектрического реле с подпружиненным пьезоэлементом, один конец которого взаимодействует с внешней трубкой, а другой - с пластиной (авт. свид-во СССР №1017959, опубл. 1983.05.15., МПК G01N 3/20).

Недостатком устройства является невысокая точность измерений в связи с высокой чувствительностью пьезоэлемента, реагирующего на посторонние шумы. Кроме того, расположение пьезоэлемента в зоне установки пластины увеличивает вероятность его повреждения в процессе работы (возможно примерзание к пластине и поломка), что снижает надежность устройства.

Задачей полезной модели является повышение точности измерения температуры хрупкости, а также повышение надежности устройства за счет использования тензодатчика.

35

Задача решается устройством для определения температуры хрупкости вязких или пластичных материалов, содержащим термостат, в котором установлены две концентричные трубки, внешняя и внутренняя, захваты, верхний и нижний, последний из которых размещен на внутренней концентричной трубке, пластина для нанесения испытуемого материала, размещенная в захватах, а также систему регистрации температуры хрупкости, в котором, 6 отличие от прототипа, на внешней трубке дополнительно установлен стержень, на нижнем конце которого размещен верхний захват, а верхний конец которого взаимодействует с тензодатчиком, расположенным вне термостата, причем система регистрации температуры хрупкости включает тензодатчик и датчик температуры, соединенные с микропроцессором.

На чертеже показана схема устройства для определения температуры хрупкости вязких или пластичных материалов.

Устройство содержит термостат 1, в котором установлены две концентричные трубки, внешняя 2 и внутренняя 3, стержень 4, установленный на внешней трубке, верхний захват 5, размещенный на нижнем конце стержня, и нижний захват 6, размещенный на внутренней трубке, пластина для нанесения испытуемого материала 7, размещенная в захватах, а также систему регистрации температуры

хрупкости, которая включает тензодатчик 8 и датчик температуры 9, соединенные с микропроцессором 10. Тензодатчик расположен вне термостата и при установке пластины соприкасается с верхним концом стержня 4.

Внешняя трубка 2 соединена с кареткой 11, на которой установлен винт 12, соединенный с муфтой 13, через которую осуществляется управление перемещением нижнего захвата 6 при помощи шагового двигателя 14.

Устройство работает следующим образом.

5

Пластину 7 с испытуемым образцом устанавливают в пазы захватов 5 и 6 и при помощи шагового двигателя 14 выставляют расстояние между пазами, равное 40,0±0,1 мм. Затем устройство помещают в термостат 1, и температуру начинают понижать со скоростью 1,0±0,1°С/мин. Температура контролируется по показаниям датчика температуры 9. При достижении температуры, примерно, на 10°С выше ожидаемой температуры хрупкости, включается двигатель 14 и пластина 7 начинает сгибаться. Пластина сгибается сначала в одну сторону до достижения максимального прогиба (при уменьшении расстояния между пазами захватов (до 36,5±0,1) мм, а затем в обратную сторону до достижения исходного положения (40,0±0,1 мм). Весь процесс сгиба-разгиба пластины должен заканчиваться за 20-24 с. Операция сгиба-разгиба повторяется в начале каждой минуты.

При появлении первой трещины в образце происходит резкое изменение усилия давления со стороны пластины 7 на стержень 4, которое воспринимается тензодатчиком 8. Одновременно в момент появления трещины фиксируют температуру датчиком температуры 9. Сигналы от датчиков поступают на микропроцессор 10, где их обрабатывают программными средствами. Частота опроса тензодатчика - 10 Гц. Температура, зафиксированная в момент появления трещины, является температурой хрупкости испытуемого материала.

Использование тензодатчика позволяет повысить точность измерений, а его установка вне термостата снижает вероятность поломки и, следовательно, ведет к повышению надежности устройства. Предусмотрена также защита тензодатчика от перегрузки, осуществляемая с помощью микропроцессора.

Таким образом, предложенное техническое решение позволяет более точно измерять температуру хрупкости материалов, а также повышает надежность устройства.

(57) Реферат

Полезная модель относится к испытательной технике, в частности, к устройствам для определения температуры хрупкости вязких или пластичных материалов, таких как битумы, парафины, лаки, краски. Устройство для определения температуры хрупкости вязких или пластичных материалов содержит термостат, в котором установлены две концентричные трубки, внешняя и внутренняя, захваты, верхний и нижний, последний из которых размещен на внутренней концентричной трубке, пластина для нанесения испытуемого материала, размещенная в захватах, а также систему регистрации температуры хрупкости. На внешней концентричной трубке дополнительно установлен стержень, на нижнем конце которого размещен верхний захват, а верхний конец которого взаимодействует с тензодатчиком, расположенным вне термостата. Система регистрации температуры хрупкости включает тензодатчик и датчик температуры, соединенные с микропроцессором. Предложенное техническое решение позволяет более точно измерять температуру хрупкости материалов, а также повышает надежность устройства. 1 ил.

(54) Устройство для определения температуры хрупкости вязких или пластичных материалов

Реферат

(57) Полезная модель относится к испытательной технике, в частности, к устройствам для определения температуры хрупкости вязких или пластичных материалов, таких как битумы, парафины, лаки, краски.

Устройство для определения температуры хрупкости вязких или пластичных материалов содержит термостат, в котором установлены две концентричные трубки, внешняя и внутренняя, захваты, верхний и нижний, последний из которых размещен на внутренней концентричной трубке, пластина для нанесения испытуемого материала, размещенная в захватах, а также систему регистрации температуры хрупкости. На внешней концентричной трубке дополнительно установлен стержень, на нижнем конце которого размещен верхний захват, а верхний конец которого взаимодействует с тензодатчиком, расположенным вне термостата. Система регистрации температуры хрупкости включает тензодатчик и датчик температуры, соединенные с микропроцессором. Предложенное техническое решение позволяет более точно измерять температуру хрупкости материалов, а также повышает надежность устройства. 1 ил.

Референт Ефремова В.П.

2008134077

ΜΠΚ G01N3/20

Устройство для определения температуры хрупкости вязких или пластичных материалов.

Предлагаемая полезная модель относится к испытательной технике, в частности, к устройствам для определения температуры хрупкости вязких или пластичных материалов, таких как битумы, парафины, лаки, краски. Полезная модель может быть использована в нефтепереработке, дорожном строительстве и т.д.

хрупкости определения температуры устройство для Известно материалов, содержащее термостат, две установленные в нем концентричные трубки с размещенными на них захватами, пластину для нанесения слоя испытуемого материала, размещенную в захватах, а также систему регистрации и индикации температуры. Система индикации температуры основана на методе электрического пробоя слоя испытуемого материала (Лабораторный хрупкости нефтебитумов типа «Пихта-72».температуры анализатор Информационный листок №105-73 Башкирского ЦНТИ, 1973 г.).

Недостаток известного устройства - зависимость срабатывания системы индикации температуры от места, формы или направления трещины в слое испытуемого материала, что ведет к низкой точности измерения температуры хрупкости.

Известно устройство для определения температуры хрупкости вязких или пластичных материалов (принято за прототип), содержащее термостат, две установленные в нем концентричные трубки с размещенными на них захватами, пластину для нанесения испытуемого материала, размещенную в захватах, а также системы регистрации и индикации температуры. Система индикации выполнена в виде пьезоэлектрического реле с подпружиненным пьезоэлементом, один конец которого взаимодействует с внешней трубкой, а другой - с пластиной (авт. свид-во СССР № 1017959, опубл. 1983.05.15., МПК G01N3/20).

Недостатком устройства является невысокая точность измерений в связи с высокой чувствительностью пьезоэлемента, реагирующего на посторонние шумы. Кроме того, расположение пьезоэлемента в зоне установки пластины увеличивает вероятность его повреждения в процессе работы (возможно примерзание к пластине и поломка), что снижает надежность устройства.

Задачей полезной модели является повышение точности измерения температуры хрупкости, а также повышение надежности устройства за счет использования тензодатчика.

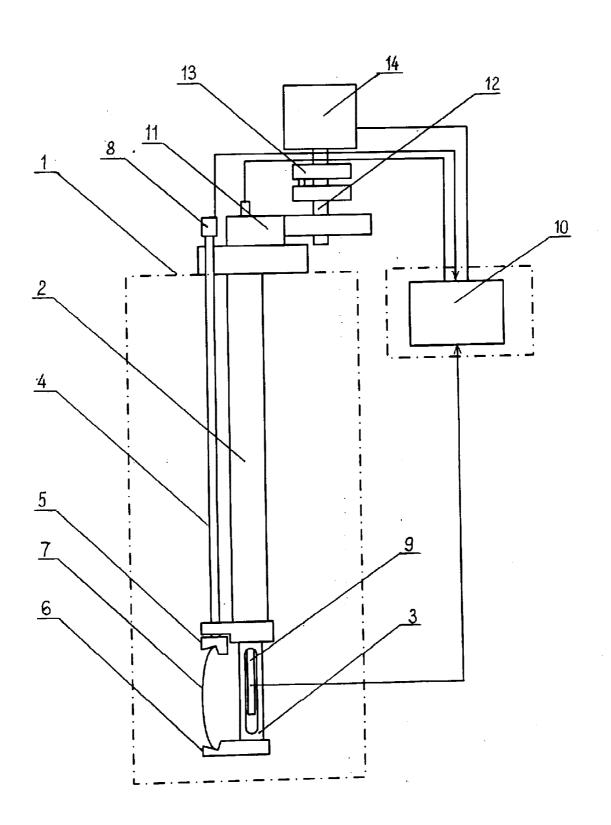
Задача решается устройством для определения температуры хрупкости вязких или пластичных материалов, содержащим термостат, в котором установлены две концентричные трубки, внешняя и внутренняя, захваты, верхний и нижний, последний из которых размещен на внутренней концентричной трубке, пластина для нанесения испытуемого материала, размещенная в захватах, а также систему регистрации температуры хрупкости, в котором, в отличие от прототипа, на внешней трубке дополнительно установлен стержень, на нижнем конце которого размещен верхний захват, а верхний конец которого взаимодействует с тензодатчиком, расположенным вне термостата, причем система регистрации температуры хрупкости включает тензодатчик и датчик температуры, соединенные с микропроцессором.

На чертеже показана схема устройства для определения температуры хрупкости вязких или пластичных материалов.

Устройство содержит термостат 1, в котором установлены две концентричные трубки, внешняя 2 и внутренняя 3, стержень 4, установленный на внешней трубке, верхний захват 5, размещенный на нижнем конце стержня, и нижний захват 6, размещенный на внутренней трубке, пластина для нанесения испытуемого материала 7, размещенная в захватах, а также систему регистрации температуры хрупкости, которая включает тензодатчик 8 и датчик температуры 9, соединенные с микропроцессором 10. Тензодатчик расположен вне термостата и при установке пластины соприкасается с верхним концом стержня 4.

Внешняя трубка 2 соединена с кареткой 11, на которой установлен винт 12, соединенный с муфтой 13, через которую осуществляется управление перемещением нижнего захвата 6 при помощи шагового двигателя 14.

Устройство работает следующим образом.


Пластину 7 с испытуемым образцом устанавливают в пазы захватов 5 и 6 и при помощи шагового двигателя 14 выставляют расстояние между пазами, равное 40,0±0,1мм. Затем устройство помещают в термостат 1, и температуру начинают понижать со скоростью 1,0±0,1° С/мин. Температура контролируется по показаниям датчика температуры 9. При достижении температуры, примерно, на 10°С выше ожидаемой температуры хрупкости, включается двигатель 14 и пластина 7 начинает сгибаться. Пластина сгибается сначала в одну сторону до достижения максимального прогиба (при уменьшении расстояния между пазами захватов (до 36,5±0,1) мм, а затем в обратную сторону до достижения исходного положения (40,0±0,1мм). Весь процесс сгиба-разгиба пластины должен заканчиваться за 20-24с. Операция сгибаразгиба повторяется в начале каждой минуты.

При появлении первой трещины в образце происходит резкое изменение усилия давления со стороны пластины 7 на стержень 4, которое воспринимается тензодатчиком 8. Одновременно в момент появления трещины фиксируют температуру датчиком температуры 9. Сигналы от датчиков поступают на микропроцессор 10, где их обрабатывают программными средствами. Частота опроса тензодатчика — 10 Гц. Температура, зафиксированная в момент появления трещины, является температурой хрупкости испытуемого материала.

Использование тензодатчика позволяет повысить точность измерений, а его установка вне термостата снижает вероятность поломки и, следовательно, ведет к повышению надежности устройства. Предусмотрена также защита тензодатчика от перегрузки, осуществляемая с помощью микропроцессора.

Таким образом, предложенное техническое решение позволяет более точно измерять температуру хрупкости материалов, а также повышает надежность устройства.

Устройство для определения температуры хрупкости вязких или пластичных материалов

