US 20130312068A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0312068 A1

Mortimore

43) Pub. Date: Nov. 21, 2013

(54)

(71)

(72)

(73)

@
(22)

(60)

SYSTEMS AND METHODS FOR
ADMINISTRATING ACCESS IN AN
ON-DEMAND COMPUTING ENVIRONMENT

Applicant: SALESFORCE.COM, INC., San
Francisco, CA (US)

Chuck Mortimore, San Francisco, CA
us)

Inventor:

salesforce.com, inc., San Francisco, CA
us)

Assignee:

Appl. No.: 13/889,060

Filed: May 7, 2013

Related U.S. Application Data

Provisional application No. 61/649,540, filed on May
21, 2012.

Publication Classification

(51) Int.CL
HO4L 29/06 (2006.01)
(52) US.CL
CPC oo HO4L 63/10 (2013.01)
L81 C 726/4
(57) ABSTRACT

A system is provided for managing protected data resources.
The system includes a resource server configured to store the
protected data resources and an authorization module
coupled to the resource server and configured to store access
protocols. The authorization module further is configured to
receive a service request from a user via a client module,
evaluate the service request based on the access protocols,
and send an access token to the client module if the user
satisfies the access protocols.

100

/

110)

‘Client Module

(Resource Server 130)

Auth. Module 120)
122 S
Access
Protocols
\. >4

Patent Application Publication Nov. 21,2013 Sheet 1 of 6 US 2013/0312068 A1

g

S

\-“m\& N
S R (< N
O’Jl ~d o4
<~) Al e
b i3 0 =
$. /)
b ') o <
b < o e o O
i) A A5 SIS
o] 2 (s...
&2 = 2.
2 £
@ =
2 <
\& J ~

Y
=)
=
<
M

2 SB
3 .
v
o
<
e
2
& J

US 2013/0312068 A1

!
i
i
;
w
i
i
!
i
|
w
= i
= i
S i
a i
~d
e i
£ m
73 i
!
« |
e
S i
N P oLz’ SI000}04d SS8I0Y |
- i N
™ A g0z TEEDTS
=) { N
4 w uoneeisy; A !
|
i 4
N . O m m [SjEdpuUsINY 507~ 2
P |
M 207 senbay 8aiAeg
i

SNPOW LY

Patent Application Publication

|

01

¢ Old

US 2013/0312068 A1

Nov. 21,2013 Sheet 3 of 6

Patent Application Publication

!
!
|
!
!
!
;

R

]
1
I

gLe. 1sanbay g1eqg !

i
i
i
!
i
i
i

| BIE(] pajsantoy i gze -/
i
!
i
i f
i !
M USNOL 8900 gL -

!
e

yLe- Lann | bay

N7

RBAPSPRPET UINY oLe~

A A .

I3

AVAN!

90e~ IR Soe

708~ T58ND8Y a0IAIRg

|
|
!
!
!
4
|
]
!
!
T
!
|
}
f
!
!
|
|

i

i

i

|

i

!

m -
 SEnUsINY goR-/
i

i

!

i

i

f

i

!

................................ 201
[|

SINPOYY JUSY,

Patent Application Publication Nov. 21,2013 Sheet 4 of 6 US 2013/0312068 A1

MOO

Data Administration Data Administration
{administrator) (auth. module)
¥ b0 ¥ 404
Send administration

Receive request

l
L.

Receive admin.
capabilities

¥

request,

LI I)

Sand admin. capabilities

¥ o~314 i

&

Install admin. capabilities

¥ 316

Generate access profocols

¥

Send access protocols Feceive access protocols

¥ P .

F E G . 4 Store access protocols

Data Access
Regulation
{client moduls)

¥

Patent Application Publication

502

Send service request

Nov. 21,2013 Sheet 5 of 6

US 2013/0312068 A1

Data Access
Regulation
_{auth. module)

504

v

L I S R]

Receive auth. code

¥ Receive request

¥

Redirect

¥

Raceive credentials

Access profocols?

e 10

Generate auth. code

¥

¥

24

Exiract auth. code

¥

528

Request access token

Sand auth. code

o528

PENEET =

Racaive access foken

\ 4

Receive token request

¥

B30

Genearate access token

¥

Send access foken

v

Access reguested data

FIG. &

US 2013/0312068 A1

Nov. 21,2013 Sheet 6 of 6

Patent Application Publication

Yava

9 Old

0

9105830044

waysAy Supredo

€09

< Emmwm:mm Buissad0Lg vieQq

auidwy AOPRISUICY
@F@}\ H .
yoauag Londy bie
929, " o L@ |y
% ;]
X SUIBAY SUIBAIG
§333{q0 .
pIIBYS BTG

075 sojeasussy ddy swpuny

6575
ddy

73RO Y,

(vaeg
ddy

puBuay

e

Jes

—

ISEqETE RS TOMW

S3qe L
10ALE N\

5o AL03O3II(
BIE(] [BSIBATU[}

BIBPBISIAL | | BIRPRISIA
TIHEUD | [IURUI Y,
H 3
a8ce” L vgeo

\Iﬂ!!' ‘fj

—
m)
I/ilﬂf lb.s.\\\

505

Peg

US 2013/0312068 Al

SYSTEMS AND METHODS FOR
ADMINISTRATING ACCESS IN AN
ON-DEMAND COMPUTING ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims the benefit of U.S. provi-
sional patent application Ser. No. 61/649,540, filed May 21,
2012.

TECHNICAL FIELD

[0002] Embodiments of the subject matter described herein
generally relate to an on-demand computing environment,
such as a multi-tenant database system. More particularly,
exemplary embodiments relate to systems and methods for
administrating access in an on-demand computing environ-
ment.

BACKGROUND

[0003] Modern software development is evolving away
from the client-server model toward network-based process-
ing systems that provide access to data and services via the
Internet or other networks. In contrast to traditional systems
that host networked applications on dedicated server hard-
ware, a “cloud” computing model allows applications to be
provided over the network “as a service” supplied by an
infrastructure provider. The infrastructure provider typically
abstracts the underlying hardware and other resources used to
deliver a customer-developed application so that the customer
no longer needs to operate and support dedicated server hard-
ware. The cloud computing model can often provide substan-
tial cost savings to the customer over the life of the application
because the customer no longer needs to provide dedicated
network infrastructure, electrical and temperature controls,
physical security and other logistics in support of dedicated
server hardware.

[0004] Multi-tenant cloud-based architectures have been
developed to improve collaboration, integration, and commu-
nity-based cooperation between customer tenants without
sacrificing data security. Generally speaking, multi-tenancy
refers to a system wherein a single hardware and software
platform simultaneously supports multiple user groups (also
referred to as “organizations” or “tenants”) from a common
data store. The multi-tenant design provides a number of
advantages over conventional server virtualization systems.
The multi-tenant platform operator may make improvements
to the platform based upon collective information from the
entire tenant community, as well as improving collaboration
and integration between applications and the data managed
by the various applications. The multi-tenant architecture
therefore allows convenient and cost effective sharing of
similar application features between multiple sets of users.
[0005] In certain situations, it may be necessary or desir-
able to grant access to secure or protected data. If the “owner”
of the protected data resources seeks access, then user cre-
dentials may be used (e.g., a username and password). If a
“non-owner” of the protected data resources seeks access,
then the non-owner may use the owner’s credentials to gain
access. Alternatively, authorization or authentication tech-
niques or protocols may be employed to provide regulated
access to the non-owner. For example, the OAuth authoriza-
tion protocol may be used such that the owner’s credentials
need not be disclosed to the non-owner. In this regard, the

Nov. 21, 2013

OAuth authorization protocol calls for the use of access
tokens that enable non-owners to access protected data
resources without knowledge of the owner’s credentials. The
scope, duration, and amount of data access enabled by an
access token may be configured and controlled as needed to
limit, restrict, and/or prevent access to certain data. Unfortu-
nately, the OAuth authorization protocol assumes that the end
user is the owner of the data, and as such, only the end user
may authorize access. However, ifthe end user is a member of
an organization, the organization may want to place restric-
tions on, or otherwise administer access to, the protected data.
[0006] Accordingly, it is desirable to provide systems and
methods for administrating access in an on-demand environ-
ment, particularly an environment that uses an OAuth autho-
rization protocol. Furthermore, other desirable features and
characteristics will become apparent from the subsequent
detailed description and the appended claims, taken in con-
junction with the accompanying drawings and the foregoing
technical field and background.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] A more complete understanding of the subject mat-
ter may be derived by referring to the detailed description and
claims when considered in conjunction with the following
figures, wherein like reference numbers refer to similar ele-
ments throughout the figures.

[0008] FIG.1 is an exemplary system for the storage, man-
agement, and administration protected data resource in accor-
dance with an exemplary embodiment;

[0009] FIG. 2 is a diagram that illustrates data flows asso-
ciated with the administration of protected data resources in
accordance with an exemplary embodiment;

[0010] FIG. 3 is a diagram that illustrates data flows asso-
ciated with the access of protected data resources in accor-
dance with an exemplary embodiment;

[0011] FIG. 4 is a flow chart that illustrates an exemplary
embodiment of an administration process for protected data
resources in accordance with an exemplary embodiment;
[0012] FIG. 5 is a flow chart that illustrates an exemplary
embodiment of an access regulation process for protected
dataresources in accordance with an exemplary embodiment;
and

[0013] FIG. 6 is a block diagram of an exemplary multi-
tenant data processing environment associated with the the
system of FIG. 1 in accordance with an exemplary embodi-
ment.

DETAILED DESCRIPTION

[0014] Broadly, exemplary embodiments discussed herein
provide improved systems and methods for the storage, man-
agement, and administration of protected data resources in an
on-demand environment, particularly an environment that
uses an OAuth authorization protocol. In one exemplary
embodiment, the authorization module manages protected
data resources stored in a resource server. The authorization
module may provide administration capabilities to an admin-
istrator. The administrator may use the administration capa-
bilities to establish access protocols associated with the pro-
tected data resources. As such, when an end user requests
authentication and authorizes a client module to access the
protected data resources, the authorization module reviews
the access protocols prior to authorization. As such, an
administrator may manage access to the protected data

US 2013/0312068 Al

resources instead of relying upon end-user authorization.
Upon authorization, the authorization module sends an
access token to the client module to access the protected data
resources from the resource server.

[0015] FIG. 1 is a diagram that illustrates an exemplary
environment associated with the storage, management, and
administration of protected data resources. FIG. 1 depicts a
simplified system 100 having a client module 110, an autho-
rization module 120, and a resource server 130. Although not
depicted in FIG. 1, the system 100 may be deployed in the
context of a multi-tenant application system, such as a system
described below with reference to FIG. 6.

[0016] FIG. 1 additionally depicts a user device 102 that
enables a user to interact with the system 100. In general, a
user may be any person desiring access or authorize access to
the protected data resources via the client module 110, such as
an employee or customer of an organization. Moreover, an
administrator device 104 is provided to enable an administra-
tor to interact with the system 100. In general, an administra-
tor may be a person within the organization responsible for
establishing access restrictions for the protected data
resources stored in the resource server 130. Although FIG. 1
depicts a single user device 102 and single administrator
device 104, the system environment may support a number of
such devices 102, 104. The devices 102, 104 may be any sort
of personal computer, mobile telephone, tablet or other net-
work-enabled user device on a network for accessing the
system 100.

[0017] FIG.1depicts functional units that might be realized
using, for example, one or more processors, a data processing
engine, or other computer-implemented logic resident in the
system 100. In this regard, each of the devices 102, 104, the
client module 110, the authorization module 120, and/or the
resource server 130 may represent, without limitation: a piece
of hardware (such as a computer, a mobile electronic device,
or any processor-based computing device); a functional, logi-
cal, or processing module of a piece of hardware; a software-
based application that executes at a piece of hardware; or the
like. In certain embodiments, the units may be realized as one
more web-based applications, desktop applications, object-
oriented scripts running on webpages, or the like, which are
suitably designed to perform the various client module tasks,
processes, and procedures described in more detail herein.
FIG. 1 depicts only one client module 110 in the system 100.
Inpractice, however, the authorization module 120 and/or the
resource server 130 may support a plurality of different client
modules. Moreover, although the authorization module 120
and the resource server 130 are depicted as distinct elements,
the two could be realized as a single logical element, module,
or hardware device. A general description of the devices 102,
104, the client module 110, the authorization module 120
and/or the resource server 130 will be briefly provided priorto
a more detailed description with reference to FIGS. 2-5.
[0018] In general, the resource server 130 is suitably
designed to host the protected data resources. As such, the
resource server 130 may include a database 132 to store the
protected data resources. The client module 110 may attempt
to access the protected data resources in the resource server
130 on behalf of the user via the user device 102. In general,
the authorization module 120 may function to manage access
to the protected data resources in the resource server 130, for
example, by authenticating users and granting access tokens
to the client module 110 for accessing the protected data
resources, as requested by the user and/or authorized by the

Nov. 21, 2013

organization. As such, an administrator of the system 100
may define access restrictions via administration capabilities
of the administrator device 104 that may be stored as access
protocols 122. The access protocols 122 may be in any suit-
able form, such as a data table, that defines rights, privileges,
and capabilities associated with the protected data resources.
[0019] Accordingly, during operation, the client module
110, in response to a service request from the user device 102,
requests access and authentication from the authorization
module 120. If the credentials of the user are confirmed and
the user is authorized to access the protected data resources
according to the access protocols 122, the authorization mod-
ule 120 issues an access token, which the client module 110
may use to access the data from the resource server 130. As
such, the administrator may efficiently manage access to the
protected data resources via the access protocols 122.
[0020] As noted above, the authorization module 120 and
resource server 130 may function as set forth in an authori-
zation protocol to provide access to protected data. In one
exemplary embodiment, the authorization protocol is an
OAuth 2.0 authorization protocol, generally referenced
below as an “OAuth authorization protocol.”” An example of
the OAuth 2.0 authorization protocol is provided at http://
tools.ietf.org/html/rfc6749, incorporated herein by reference.
[0021] In general, OAuth authorization protocol enables
clients (e.g., client module 110) to access server resources
(e.g., in resource server 130) on behalf of a user (e.g., at user
device 102) associated with the resource owner (e.g., admin-
istrator device 104). As such, the client module 110, the
authorization module 120, and the resource server 130 may
utilize access tokens that define data access rights, privileges,
or capabilities. In particular, the resource server 130 may
generate access tokens that define these data access attributes.
In this context, the client module 110 may access to protected
data without directly using the credentials (e.g., username and
password) of the end user.

[0022] As used in this description, an “access token” is
digital data that represents an authorization issued to an
entity, application, module, or element that seeks access to
protected data, to access system features, to access system
functionality, and the like. Depending upon the particular
application, system environment, or context, any of the fol-
lowing terms could be used interchangeably with “access
token™: “session,” “Ul session,” or “session key.” For simplic-
ity, the following description consistently refers to “access
token” rather than any of these alternate terms.

[0023] In practice, an access token can be realized as a
string of bits that defines or otherwise indicates, without
limitation: a scope of data access granted to the token holder;
a duration of data access granted to the token holder; data
access capabilities granted to the token holder; and/or par-
ticular system features or functionality accessible to the token
holder. The data access attributes associated with an access
token may be designated and granted by the owner of the
protected resources. Moreover, access tokens may be pro-
cessed by the client module 110, the authorization module
120, and the resource server 130 as needed to implement the
desired data protection schemes. In this regard, the data
access attributes corresponding to an access token may be
static and fixed, or they may be dynamic and responsive to
certain authorization rules or protocols employed by the sys-
tem. For example, the data access attributes associated with a
particular access token may vary in accordance with the date,
time, user identity, user classification, system status, system

US 2013/0312068 Al

condition, or the like. Additional details about the interaction
between the client module 110, the authorization module 120,
and the resource server 130 will now be provided.

[0024] FIG. 2 is a diagram that illustrates data flows 200
associated with the administration of protected data resources
in accordance with an exemplary embodiment. The data flows
200 may be associated, for example, with the system 100
described above with reference to FIG. 1. As such, FIGS. 1
and 2 will be referenced below.

[0025] In accordance with the exemplary embodiment
shown in FIG. 2, the administrator device 104 sends an
administration request to the authorization module 120, as
indicated by data flow 202. The administration request may
include the credentials of the administrator as a legitimate
administrator of the system 100. In response and as indicated
by data flow 204, the authorization module 120 may evaluate
the credentials and, if appropriate, confirm authentication of
the administrator. The authorization module 120 may also
provide access to administration capabilities to the adminis-
trator via the administrator device 104. For example, as indi-
cated by data flow 206, the authorization module 120 may
provide an installation location for the administrator device
104. The installation location may be, for example, a URL
reference for a program stored on the authorization module
120. In response and as indicated by data flow 208, the admin-
istrator, via the administrator device 104, may initiate instal-
lation of the administration capabilities. In response and indi-
cated by data flow 210, the administrator device 104 may
utilize the administration capabilities to define policy con-
trols as the access protocols 122 associated with the protected
data resources in the resource server 130. The policy controls
may be any suitable policy control, including the individuals
and/or groups that have access to the data from the resource
server 130, and if data is accessible, the rights of the individu-
als and/or groups associated with that access. As noted above,
the access protocols 122 are stored in the authorization mod-
ule 120.

[0026] FIG. 3 is a diagram that illustrates data flows 300
associated with the access of protected data resources in
accordance with an exemplary embodiment. The data flows
300 may be associated, for example, with the system 100
described above with reference to FIG. 1. As such, FIGS. 1
and 3 will be referenced below. Generally, the flows 300
described below may be implemented with the OAuth proto-
col that uses assertion flows with requests (e.g., POST and
GET requests) and various other parameters, commands, and
instructions as defined therein. Moreover, the data flows 300
typically occur after the generation of the access protocols
122 discussed above.

[0027] In accordance with the exemplary embodiment
shown in FIG. 3, the user, via user device 102, generates and
sends a service request to the client module 110, as indicated
by data flow 302. Typically, the service request may include a
data request to access a portion of the protected data resources
stored in the resource server 130 of the system 100.

[0028] In response and as indicated by data flows 304 and
306, the client module 110 redirects the user device 102 to the
authorization module 120. The redirect exchange may
include an identifier associated with the client module 110.
[0029] As indicated by data flow 308, the authorization
module 120 authenticates the user, for example, by requesting
and receiving user credentials. The credentials may include a
username and password requested by the authorization mod-
ule 120 from the user device 102. In some exemplary embodi-

Nov. 21, 2013

ments, the authorization module 120 requests confirmation
from the user via the user device 102 that the user is attempt-
ing to grant the client module 110 access to the protected data
resources. In this manner and in accordance with the OAuth
protocol, the client module 110 does not receive the user
credentials.

[0030] The authorization module 120 additionally evalu-
ates the user and the data request in view of the access pro-
tocols 122 stored in the authorization module 120. As noted
above, the access protocols 122 are generally a set of condi-
tions or policy restrictions for accessing the protected data
resources, such as a list of users or groups of users that may
access the protected data resources. For example, the autho-
rization module 120 may determine that the access protocols
122 restrict all access to the protected data resources. In such
situations, the authorization module 120 informs the user
device 102 that the requested data resources are inaccessible
by the user. Similarly, the authorization module 120 may
determine that the protected data resources are only acces-
sible to certain users. As such, the authorization module 120
compares the user credentials to the list of acceptable users. If
the user is not acceptable, the authorization module 120
informs the client module 110 and the user device 102 that the
requested data resources are inaccessible to the user. How-
ever, if the user satisfies the access protocols 122, the autho-
rization module 120 authorizes the user. In this manner, the
access protocols 122 dictate access to the restricted data
resources instead of the user. In conventional systems that
utilize OAuth authorization protocols, the user provides
authorization for the client module to access the protected
data resources.

[0031] Asindicated by data flows 310 and 312, upon autho-
rization, the authorization module 120 sends an authorization
code to the user device 102 and redirects the user device 102
to the client module 110. The client module 110 extracts the
authorization code and sends a token request to the authori-
zation module 120, as indicated by data flow 314.

[0032] Inresponse, the authorization module 120 generates
an access token based on the token request and the authori-
zation code and provides the access token to the client module
110, as indicated by data flow 316. As noted above, the access
token indicates to the resource server 130 that the client
module 110 has access to the protected data resources. The
access token may also indicate the limitations of that access,
such as duration.

[0033] As indicated by data flows 318 and 320, the client
module 110 then sends a data request to the resource server
130 with the access token, and in turn, the resource server 130
sends the client module 110 the requested data based on the
access token. In general, the client module 110 may send
additional data requests within the scope of the access token
until the access token expires. The client 110 may thenuse the
data as authorized by the user.

[0034] FIG. 4 is a flow chart that illustrates an exemplary
embodiment of a data administration process 400. The vari-
ous tasks performed in connection with the process 400 may
be performed by software, hardware, firmware, or any com-
bination thereof For illustrative purposes, the following
description of the process 400 may refer to elements men-
tioned above in connection with FIG. 1. As such, FIGS. 1 and
4 are referenced below.

[0035] It should be appreciated that the process 400 may
include any number of additional or alternative tasks, the
tasks shown in FIG. 4 need not be performed in the illustrated

US 2013/0312068 Al

order, and the process 400 may be incorporated into a more
comprehensive procedure or process having additional func-
tionality not described in detail herein. Moreover, one or more
of the tasks shown in FIG. 4 could be omitted from an
embodiment of the process 400 as long as the intended overall
functionality remains intact.

[0036] For this particular embodiment, certain tasks of the
process 400 are performed by an administrator device, such
as the administrator device 104 discussed above, while other
tasks are performed by an authorization module, such as the
authorization module 120 discussed above. Accordingly, the
left side of FIG. 4 corresponds to tasks performed by the
administrator device 104, and the right side of FIG. 4 corre-
sponds to tasks performed by the authorization module 120.
[0037] The process 400 assumes that the administrator
device 104 desires to manage or otherwise regulate access to
protected data resources. To this end, the administrator device
104 may generate and send a suitable formatted populated
administration request, as indicated by step 402. In certain
embodiments, the administration request also includes or is
generated with credentials of the administrator that facilitate
authentication of the administrator device 104.

[0038] In steps 404 and 406, the authorization module 120
receives the administration request and evaluates the admin-
istrator credentials. In step 406, if the administration request
is denied, the authorization module 120 terminates the pro-
cess, as indicated by step 408. However, if the administration
request is accepted, the authorization module 120 generates
and sends a response, including access to administration
capabilities, as indicated by step 410. For example, the autho-
rization module 120 may provide an installation location to
the administrator device 104. The installation location may
be, for example, a URL reference for a program stored on the
authorization module 120.

[0039] In steps 412 and 414, the administrator device 104
receives and installs the administration capabilities. In steps
416 and 418, the administrator generates the access protocols
using the administration capabilities and sends the access
protocols to the authorization module 120. In steps 420 and
422, the authorization module 120 receives and stores the
policy controls as access protocols 122.

[0040] FIG. 5 is a flow chart that illustrates an exemplary
embodiment of a data access regulation process 500. The
various tasks performed in connection with the process 500
may be performed by software, hardware, firmware, or any
combination thereof. For illustrative purposes, the following
description of the process 500 may refer to elements men-
tioned above in connection with FIG. 1. As such, FIGS. 1 and
5 are referenced below. Generally, the process 500 occurs
after generation of the access protocols 122 described above.
[0041] It should be appreciated that the process 500 may
include any number of additional or alternative tasks, the
tasks shown in FIG. 5 need not be performed in the illustrated
order, and the process 500 may be incorporated into a more
comprehensive procedure or process having additional func-
tionality not described in detail herein. Moreover, one or more
of the tasks shown in FIG. 5 could be omitted from an
embodiment of the process 500 as long as the intended overall
functionality remains intact.

[0042] For this particular embodiment, certain tasks of the
process 500 are performed by a client module, such as the
client module 110 discussed above, while other tasks are
performed by an authorization module, such as the authori-
zation module 120 discussed above. Accordingly, the left side

Nov. 21, 2013

of FIG. 5 corresponds to tasks performed by the client module
110, and the right side of FIG. 5 corresponds to tasks per-
formed by the authorization module 120.

[0043] The process 500 assumes that the client module 110
received an access or service request from a user device, such
as user device 102, to access a portion of the protected data
resources. In step 502, the client module 110 generates and
sends an authorization request to the authorization module
120.

[0044] In steps 504 and 506, the authorization module 120
receives the request and redirects the user device 102. In step
510, the authorization module 120 receives and evaluates the
credentials of the client module 110. In step 506, if the autho-
rization request is denied, the authorization module 120 ter-
minates the process, as indicated by step 512.

[0045] Assuming the credentials of the user are authenti-
cated, in step 514, the authorization module 120 evaluates the
user and the data request in view of the access protocols 122
stored in the authorization module 120. If the authorization
module 120 determines that the access protocols 122 restrict
the user from accessing the requested data, the authorization
module 120 terminates the process 500, as indicated by step
516. However, if the access protocols 122 indicate that the
user has access to the protected data resources, the authori-
zation module 120 generates and sends an authorization code,
which is provided to the client module 110, as indicated by
steps 518 and 520.

[0046] Insteps 522 and 524, the client module 110 receives
and extracts the authorization code, and in step 526, the client
module 110 requests an access token from the authorization
module 120. In steps 528, 530, and 532, the authorization
module 120 receives the token request, generates the access
token, and sends the access token to the client module 110. In
steps 534 and 536, the client module 110 receives the access
token and subsequently accesses the requested data from the
resource server 130 with the access token.

[0047] In some exemplary embodiments, the systems and
methods described above may be implemented in a multi-
tenant application system, such as the multi-tenant applica-
tion system 600 illustrated in FIG. 6. Referring to FIG. 6, an
exemplary multi-tenant application system 600 suitably
includes a server 602 that dynamically creates virtual appli-
cations 628A-B based upon data 632 from a common data-
base 630 that is shared between multiple tenants. As an
example, the database 630 may store the protected data
resources discussed above. Data and services generated by
the virtual applications 628A-B are provided via network 645
to any number of client devices 640A-B, as desired. Each
virtual application 628A-B is suitably generated at run-time
using acommon platform 610 that securely provides access to
data 632 in database 630 for each of the various tenants
subscribing to system 600. As examples, the virtual applica-
tions 628 A-B may correspond to one or more of the modules
110, 120 and servers 130 discussed above, and devices
640A-B may correspond to one or more of the devices 102,
104 discussed above.

[0048] A “tenant” or “organization” generally refers to a
group of users that shares access to common data within
database 630. Tenants may represent customers, customer
departments, business or legal organizations, and/or any other
entities that maintain data for particular sets of users within
system 600. Using the examples above, a tenant may be a
group that enables end users to access protected data
resources via a client module. Although multiple tenants may

US 2013/0312068 Al

share access to a common server 602 and database 630, the
particular data and services provided from server 602 to each
tenant can be securely isolated from those provided to other
tenants, as described more fully below. The multi-tenant
architecture therefore allows different sets of users to share
functionality without necessarily sharing each other’s data
632.

[0049] Database 630 is any sort of repository or other data
storage system capable of storing and managing data 632
associated with any number of tenants. Database 630 may be
implemented using any type of conventional database server
hardware. In various embodiments, database 630 shares pro-
cessing hardware 604 with server 602. In other embodiments,
database 630 is implemented using separate physical and/or
virtual database server hardware that communicates with
server 602 to perform the various functions described herein.

[0050] Data 632 may be organized and formatted in any
manner to support multi-tenant application platform 610. In
various embodiments, data 632 is suitably organized into a
relatively small number of large data tables to maintain a
semi-amorphous “heap”—type format. Data 632 can then be
organized as needed for a particular virtual application 628 A-
B. In various embodiments, conventional data relationships
are established using any number of pivot tables 634 that
establish indexing, uniqueness, relationships between enti-
ties, and/or other aspects of conventional database organiza-
tion as desired.

[0051] Further data manipulation and report formatting is
generally performed at run-time using a variety of meta-data
constructs. Metadata within a universal data directory (UDD)
636, for example, can be used to describe any number of
forms, reports, workflows, user access privileges, business
logic and other constructs that are common to multiple ten-
ants. Tenant-specific formatting, functions and other con-
structs may be maintained as tenant-specific metadata
638A-B for each tenant, as desired. Rather than forcing data
632 into an inflexible global structure that is common to all
tenants and applications, then, database 630 is organized to be
relatively amorphous, with tables 634 and metadata 636-638
providing additional structure on an as-needed basis. To that
end, application platform 610 suitably uses tables 634 and/or
metadata 636, 638 to generate “virtual” components of appli-
cations 628A-B to logically obtain, process, and present the
relatively amorphous data 632 from database 630.

[0052] Server 602 is implemented using one or more actual
and/or virtual computing systems that collectively provide a
dynamic application platform 610 for generating virtual
applications 628A-B. Server 602 operates with any sort of
conventional computing hardware 604, such as any processor
605, memory 606, input/output features 607 and the like.
Processor 605 may be implemented using one or more of
microprocessors, microcontrol modules, processing cores
and/or other computing resources spread across any number
of distributed or integrated systems, including any number of
“cloud-based” or other virtual systems. Memory 606 repre-
sents any non-transitory short or long term storage capable of
storing programming instructions for execution on processor
605, including any sort of random access memory (RAM),
read only memory (ROM), flash memory, magnetic or optical
mass storage, and/or the like. Input/output features 607 rep-
resent conventional interfaces to networks (e.g., to network
645, or any other local area, wide area or other network), mass
storage, display devices, data entry devices and/or the like. In
a typical embodiment, application platform 610 gains access

Nov. 21, 2013

to processing resources, communications interfaces and other
features of hardware 604 using any sort of conventional or
proprietary operating system 608. As noted above, server 602
may be implemented using a cluster of actual and/or virtual
servers operating in conjunction with each other, typically in
association with conventional network communications,
cluster management, load balancing and other features as
appropriate.

[0053] Application platform 610 is any sort of software
application or other data processing engine that generates
virtual applications 628 A-B that provide data and/or services
to client devices 640A-B. Virtual applications 628A-B are
typically generated at run-time in response to queries
received from client devices 640A-B, as described more fully
below. In the example illustrated in FIG. 6, application plat-
form 610 includes a bulk data processing engine 612, a query
generator 614, a search engine 616 that provides text indexing
and other search functionality, and a runtime application gen-
erator 620. Each of these features may be implemented as a
separate process or other module, and many equivalent
embodiments could include different and/or additional fea-
tures, components or other modules as desired.

[0054] Runtime application generator 620 dynamically
builds and executes virtual applications 628A-B in response
to specific requests received from client devices 640A-B.
Virtual applications 628A-B created by tenants are typically
constructed in accordance with tenant-specific metadata 638,
which describes the particular tables, reports, interfaces and/
or other features of the particular application. In various
embodiments, each virtual application 628A-B generates
dynamic web content that can be served to a browser or other
client program 642A-B associated with client device 640A-
B, as appropriate. Data processing engine 612 performs bulk
processing operations on data 632 such as uploads or down-
loads, updates, online transaction processing and/or the like.
[0055] In operation, then, developers use application plat-
form 610 to create data-driven virtual applications 628A-B
for the tenants that they support. Such applications 628 A-B
may make use of interface features such as tenant-specific
screens 624, universal screens 622 or the like. Any number of
tenant-specific and/or universal objects 626 may also be
available for integration into tenant-developed applications
628A-B. Data 632 associated with each application 628A-B
is provided to database 630, as appropriate, and stored until
requested, along with metadata 638 that describes the particu-
lar features (e.g., reports, tables, functions, etc.) of tenant-
specific application 628A-B until needed.

[0056] Data and services provided by server 602 can be
retrieved using any sort of personal computer, mobile tele-
phone, tablet or other network-enabled client device 640 on
network 645. Typically, the user operates a conventional
browser or other client program 642 to contact server 602 via
network 645 using, for example, the hypertext transport pro-
tocol (HTTP) or the like. The user typically authenticates his
or her identity to the server 602 to obtain a session identifi-
cation (“SessionlD”) that identifies the user in subsequent
communications with server 602. When the identified user
requests access to a virtual application 628, application gen-
erator 620 suitably creates the application at run time based
upon metadata 636 and 638, as appropriate. Query generator
614 suitably obtains the requested data 632 from database
630 as needed to populate the tables, reports or other features
of virtual application 628. As noted above, the virtual appli-
cation 628 may contain Java, ActiveX or other content that

US 2013/0312068 Al

can be presented using conventional client software 642 run-
ning on client device 640; other embodiments may simply
provide dynamic web or other content that can be presented
and viewed by the user, as desired

[0057] Generally speaking, the various functions and fea-
tures described above may be carried out with any sort of
hardware, software and/or firmware logic that is stored and/or
executed on any platform. Some or all aspects of exemplary
embodiments may be carried out, for example, by logic
executing within platform 610 in FIG. 6, for example, using
software or firmware logic that is stored in memory and
executed by processor as part of application platform. The
particular hardware, software and/or firmware logic may vary
from context to context, implementation to implementation,
and embodiment to embodiment in accordance with the vari-
ous features, structures and environments set forth herein.
The particular means used to implement each of the various
functions may be any sort of processing structures that are
capable of executing software and/or firmware logic in any
format, and/or any sort of application-specific or general pur-
pose hardware, including any sort of discrete and/or inte-
grated circuitry.

[0058] Techniques and technologies may be described
herein in terms of functional and/or logical block compo-
nents, and with reference to symbolic representations of
operations, processing tasks, and functions that may be per-
formed by various computing components or devices. Such
operations, tasks, and functions are sometimes referred to as
being computer-executed, computerized, software-imple-
mented, or computer-implemented. In practice, one or more
processor devices can carry out the described operations,
tasks, and functions by manipulating electrical signals repre-
senting data bits at memory locations in the system memory,
as well as other processing of signals. The memory locations
where data bits are maintained are physical locations that
have particular electrical, magnetic, optical, or organic prop-
erties corresponding to the data bits. It should be appreciated
that the various block components shown in the figures may
be realized by any number of hardware, software, and/or
firmware components configured to perform the specified
functions. For example, an embodiment of a system or a
component may employ various integrated circuit compo-
nents, e.g., memory elements, digital signal processing ele-
ments, logic elements, look-up tables, or the like, which may
carry out a variety of functions under the control of one or
more microprocessors or other control devices.

[0059] Whenimplemented in software or firmware, various
elements of the systems described herein are essentially the
code segments or instructions that perform the various tasks.
The program or code segments can be stored in a processor-
readable medium or transmitted by a computer data signal
embodied in a carrier wave over a transmission medium or
communication path. The “processor-readable medium” or
“machine-readable medium” may include any medium that
can store or transfer information. Examples of the processor-
readable medium include an electronic circuit, a semiconduc-
tor memory device, a ROM, a flash memory, an erasable
ROM (EROM), a floppy diskette, a CD-ROM, an optical disk,
ahard disk, a fiber optic medium, a radio frequency (RF) link,
or the like. The computer data signal may include any signal
that can propagate over a transmission medium such as elec-
tronic network channels, optical fibers, air, electromagnetic

Nov. 21, 2013

paths, or RF links. The code segments may be downloaded via
computer networks such as the Internet, an intranet, a LAN,
or the like.
[0060] The following description refers to elements or
nodes or features being “connected” or “coupled” together.
As used herein, unless expressly stated otherwise, “coupled”
means that one element/node/feature is directly or indirectly
joined to (or directly or indirectly communicates with)
another element/node/feature, and not necessarily mechani-
cally. Likewise, unless expressly stated otherwise, “con-
nected” means that one element/node/feature is directly
joined to (or directly communicates with) another element/
node/feature, and not necessarily mechanically. Thus,
although the schematic shown in FIGS. 1-6 depicts exem-
plary arrangements of elements, additional intervening ele-
ments, devices, features, or components may be present in an
embodiment of the depicted subject matter.
[0061] For the sake of brevity, conventional techniques
related to signal processing, data transmission, signaling, net-
work control, and other functional aspects of the systems (and
the individual operating components of the systems) may not
be described in detail herein. Furthermore, the connecting
lines shown in the various figures contained herein are
intended to represent exemplary functional relationships and/
or physical couplings between the various elements. It should
be noted that many alternative or additional functional rela-
tionships or physical connections may be present in an
embodiment of the subject matter.
[0062] The foregoing detailed description is merely illus-
trative in nature and is not intended to limit the embodiments
of the subject matter or the application and uses of such
embodiments. As used herein, the word “exemplary” means
“serving as an example, instance, or illustration.” Any imple-
mentation described herein as exemplary is not necessarily to
be construed as preferred or advantageous over other imple-
mentations.
[0063] While at least one exemplary embodiment has been
presented in the foregoing detailed description, it should be
appreciated that a vast number of variations exist. It should
also be appreciated that the exemplary embodiment or
embodiments described herein are not intended to limit the
scope, applicability, or configuration of the claimed subject
matter in any way. Rather, the foregoing detailed description
will provide those skilled in the art with a convenient road
map for implementing the described embodiment or embodi-
ments. It should be understood that various changes can be
made in the function and arrangement of elements without
departing from the scope defined by the claims, which
includes known equivalents and foreseeable equivalents at
the time of filing this patent application.
What is claimed is:
1. A system for managing protected data resources, com-
prising:
a resource server configured to store the protected data
resources; and
an authorization module coupled to the resource server and
configured to store access protocols, the authorization
module further configured to receive a service request
from a user via a client module, evaluate the service
request based on the access protocols, and send an
access token to the client module if the user satisfies the
access protocols.
2. The system of claim 1, wherein the authorization module
is configured to receive an administration request from an

US 2013/0312068 Al

administrator device and to provide administration capabili-
ties to the administrator device.

3. The system of claim 2, wherein the authorization module
is configured to receive and store the access protocols from
the administrator device generated with the administration
capabilities.

4. The system of claim 1, wherein the authorization module
is configured to receive credentials associated with the user
with the service request and authenticate the credentials.

5. The system of claim 1, wherein the resource server is
configured to receive the service request and the access token.

6. The system of claim 5, wherein the resource server is
configured to provide the protected data resources to the
client module according to the service request and the access
token.

7. The system of claim 1, wherein the resource server is a
database of a multi-tenant database system.

8. The system of claim 1, wherein the access token is an
access token according to an OAuth 2.0 authorization proto-
col.

9. A computer-implemented method of regulating access to
protected data resources, the method comprising:

receiving a service request at an authorization module from

a user via a client module to access the protected data
resources stored in a resource server;

evaluating the service request with the authorization mod-

ule based on access protocols; and

sending, if the user is an authorized user according to the

access protocols, an access token to the client module to
access the protected data resources.

10. The method of claim 9, further comprising the steps of
receiving an administration request at the authorization mod-
ule from an administrator device and providing administra-
tion capabilities to the administrator device.

11. The method of claim 10, further comprising the step of
receiving and storing the access protocols from the adminis-
trator device generated with the administration capabilities.

Nov. 21, 2013

12. The method of claim 9, wherein the receiving step
includes receiving credentials associated with the user with
the service request, and wherein the evaluating step includes
authenticating the credentials.

13. The method of claim 9, further comprising the step of
receiving the service request and the access token at the
resource server.

14. The method of claim 13, further comprising the step of
providing the protected data resources to the client module
according to the service request and the access token.

15. The method of claim 9, wherein the resource server is
a database of a multi-tenant database system.

16. The method of claim 9, wherein the access token is an
access token according to an OAuth 2.0 authorization proto-
col.

17. A system comprising a processor and a memory,
wherein the memory comprises computer-executable instruc-
tions that, when executed by the processor, cause the system
to:

receive a service request from a user via a client module,

evaluate the service request based on the access protocols,

and

send an access token to the client module if the user satis-

fies the access protocols.

18. The system of claim 17, wherein the instructions addi-
tionally cause the system to

provide administration capabilities to the administrator

device in response to an administration request from an
administrator device, and

store the access protocols from the administrator device

generated with the administration capabilities.

19. The system of claim 17, wherein the instructions addi-
tionally cause the system to provide the protected data
resources to the client module according to the service
request and the access token.

20. The system of claim 1, wherein the access token is an
access token according to an OAuth 2.0 authorization proto-
col.

