US 20130326264A1

a2y Patent Application Publication o) Pub. No.: US 2013/0326264 A1l

a9 United States

Resch 43) Pub. Date: Dec. 5, 2013

(54) RESOLUTION OF A STORAGE ERROR IN A (52) US.CL
DISPERSED STORAGE NETWORK [0 S SR GOGF 11/2094 (2013.01)
101) S SR 714/6.2

(71) Applicant: CLEVERSAFE, INC., Chicago, I,
(US)

(72) Inventor: Jason K. Resch, Chicago, IL. (US)

(73) Assignee: Cleversafe, Inc., Chicago, IL. (US)

(21) Appl. No.: 13/866,631

(22) Filed: Apr. 19, 2013

Related U.S. Application Data

(60) Provisional application No. 61/655,753, filed on Jun.

5,2012.
Publication Classification

(51) Int.CL

(57) ABSTRACT

A method begins by a dispersed storage (DS) processing
module identifying an encoded data slice having an error,
where a storage unit of a dispersed storage network (DSN)
stores the encoded data slice. The method continues with the
DS processing module sending a lock command to the stor-
age unit. The method continues with the DS processing mod-
ule determining resolution for the error of the encoded data
slice, where the resolution includes one or more of: rebuilding
the encoded data slice, issuing a set of delete requests to
storage units of the DSN regarding a set of encoded data
slices, issuing a set of undo write requests to the storage units
of the DSN regarding the set of encoded data slices, and
issuing a set of roll-back write requests to the storage units of

GOG6F 1120 (2006.01) the DSN regarding the set of encoded data slices.
user device 12 DST processing unit 16
computing core 26 - data 40 &/or task
computing core 26 request 38
DST client —
DST client
module 34 maodule 34 computing
A core 26
v { ¢
interface 32 | interface 32 | | interface 30 i: »| interface 30
A A
user device 14

network 24

Y

A

»| interface 33

computing
core 26

DSTN managing

processing unit 20 I

unit 18
interface 33 [r————f————"——————f}————— I
| Y Y I
- | DST execution DST execution |
computing | unit 36 see unit 36 |
core 26 I I
DST integrity : distributed storage &/or :

task network (DSTN) module 22

distributed computing system 10

US 2013/0326264 A1
|
I
|
|
|
I
I
|
|
|
I
I
|
|
|
|
I
I
|
|
|

T weishs Bugndwoo penguasip | ZZ 8inpow (N1SQ) »omjau yse) | 0Z 1un Buissaacud
i _ loyg ebelojs papnqusip Abejur 18
T | | —
| ¢ Jun ag yun 9¢ 8409
_ 9! eoe 9t _ Bupndwoo
uonnadxs 18Q uoiNd8Xa 1 SQ [
_ y Y | !
_ e N R] € soepaul
=N 8l Jun yy
M Buibeuew N1SQ
— 07 8109
> Bunndwoo
D
=
7 —
EC aoepoUl et > ¢ %I0MyBU
= /.\F\/
e
=
o A
v
3]
[
a
¥ 801aap Jasn
.m Y Y
= € 00BLIOJUI | v“ 0% 993Ul _ _ 7€ 90epa)Ul _ 78 oepa)UI _
2 9 9 f
=
nn._.. gg 2400 — Y
Bunnduwios ¥€ SInpow —=

g ! Juelo 154 y€ anpoul
.m — juelld 18d
s g¢ Jsenial _ B¢ 2400 Bugndwioa —
.“lml ¥se) 10/ OF Elep 9z 2400 Bunndwos
=3
M 91 wun Buissanoud | 8Q Z1 9o1Aep Jasn
=
<
<
-

-
«
s
=)
2 757
Q TAD]E
<
(o)
= e
I _ I
wn
- 97 sinpow ¥Z 8inpow 2. 8npow soepsjul 07 e\npow 80 s|npow 00 s|npow
d0eLRAUI NSO S0ELRIUI OH ysey S0BHDIUI YIOMBU a0BHsUl YgH aoeLRUI SN
! W A A A
g | t ! _
S | |
a I «: \ AR :« _
g _ — _
7 _ 8G eoepal 0d 795018 "
I NOY
e | A I
= I I
I
Q _ v \d — I
pf a6 J9|j0Au0o 09 d0BLAUI ¢9 ainpoul I
S I 96 J8jj04 | O90EERWL L SoepaIU _
a | Ol Ol 89108p O] _
| f |
s _ \d “
= “ 7 L 7 | 0Sanpow _
= | Aowsw uew [~ | Jojonuco Alowew | T Buissasoid _
= _) _
= _
= I
2 _ Y _
= _ &G Jiun Buissaaoud “
.“IW | soIydesb oapia _
S |
m I gz 2100 Bunndwod _
= b o I
<
&
A

US 2013/0326264 Al

Dec. 5,2013 Sheet 3 0f 49

Patent Application Publication

U# JIun uonnosxe 18q

£ onpow
Jusip 18Q

06 2npow
uonnoexa |

8 einpow

98 J8j01uC0 Buissasoud

8g Aowslw

.
Y

u# (s)nsal [eiyed
U# SBDI|S PaA3LIB]

ug ysej [ened

Uz dnoub 291)s

L# (shinsel el

s $00I[S PaAdLYe.
uopndaxXs 1Sq L# $90I|S pardLyel

$z yomau

L# se} lened

L# dnoJb ao|s

10 E|
r—-————————————— -
_] |
¢0l] |
sjnsel jeed ! —L— 507 Jinsa
25 Buissaooud “
1S@ punoqul |
> Z5eep
]
“ _
] |
|]
syse} jeiped 1 1 .
- : —— 5o
1 08 Buissaooud 1
A/m/ 1SQ punogino |
% _ < — 6 epep
sbuidnouf sa1is | 1
]
“ _
| _ |
| v einpow juaid 18d .“
e e e e =

US 2013/0326264 Al

Dec. 5,2013 Sheet 4 of 49

Patent Application Publication

Ug Jiun
uonnooxe

1sd

ug dnaJb 8ol|s

A

A

L#3un
uonnooxe

1sd

Ujf 1se)

|# XSe)

A

L# dnoub 2018

..
1
I
|
|
|
|
|
|
1
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

36 syse} |ened

811 @inpow
|CAUO3 Xse)
painguisip

Y

08 Buissaooud | §Q punogino

-

A
A 4

097 [04u0d

Y11 Jopses

91 @npow
|0.JU0D

91

[

|oJu0o
Y

puidno.b

96 sbuidnoub s01|s

211 Buiposus
lold 8Q

0

©

T |04U00

0l
Buiuoniued

¢l uoniJed ejep

Jad s99I|s papoous

N

ejep

D

0ct suoped ejep

¥6 Yse)

6 Ejep

US 2013/0326264 Al

Dec. 5,2013 Sheet 5 0of 49

Patent Application Publication

sbuidnoub 891js sonpo.d
0] slojoweled Buissaoo.d ay) yim
aoUepIoaoe Ul elep ay) Buissaso.d

el A

E|
sjun | SQ eApoedsal
0} syse [eljed Buipucdse.iod siajowesed Buissesold ejep
pue sbuidno.f 801|s puss pUE SJIUN | §Q 8Y} U paseq
3cT Buiuonned yse) suiwisiep
el
SYSE)
lented sonpoud 0y Buluoned yse) SN 1S 10 Joguinu sy Uo
aU) uo peseq (s)xse) auy uopiped poseq ejep oy} jo siojoweled
3T Buissaoso.d sulwieep

j A

(S)yse) 8y woddns o0y syun
1SQ Jo Jsquinu e sulw.s}ep

wwl_\ A

(s)yse) buipuodsauiod
E PUE BJEp BAI908)

9¢l

(ves)

US 2013/0326264 Al

Dec. 5,2013 Sheet 6 0of 49

Patent Application Publication

9914
gGl ejep
papoous 0G| eep ¥Gl sjuswbas
pool|s poapooUsd painoss
|z bupooussoussq !
0T r — |
Buisseooud | el gy Buipoous Buisssooud 6 wmwwwo q
Aungas | Buioils N lous B Ajunoss N | 5 !
99l Jad Juswbos JusLubes
Zar uoned 097 (0400 _l
ejep Jod s39s == _ — ¢Sl
BJED POPOIUD 09} 104uod | 3]} snpow 091 10JU0d guswbas ejep
|0JJu0d
09} |04Ju0d 091 |04u09

US 2013/0326264 Al

Dec. 5,2013 Sheet 7 of 49

Patent Application Publication

g Juswbas ejep g Juswbes ejep ¥ Juawhes ejep Z JuawBss ejep IANIE
sop | [vwp [evp | | avp | 1op || ovp [6cp | [scp | e || osp | cep || wep [eep | [zep | uep
ocp | [6zp | sap | | sz | 9ep || sep | wep | [eep | zep || vep | oze || 6P [mp | [up | 9ip
aip | [wp e | ap [up || ap | 6p g | /p o | op pp | ep e |
/ Juswbas ejep G Juswbas ejep € Juswbas ejep | Juswbas ejep
[svp [vwp | evp | cwp [oo | ovp | 6cp | gep | sep [9ep | gep | wep [eep | zep | tep |
[ocp [6zp | sep | zzp [9zp | 5o | vap [cop | zep [1ep | oz | e1p [sp | 2ip | oip |
[sip [wp e [ap[uwp|op |0 [sp | o[o || wp[ep|ap | 1p]

Gyp | wWD | EVP | CvP | P
oyP | 66P | 8EP | ZEP | 9EP
GEP | ¥eP | €EP | CEP | LEP
QEP | 6P | 8P | lZP | 9P
Geb | ¥ep | €P | ¢P | 2P
0cb | 61D | 8LP | ZLP | OIP
SIP | ¥IP | €IP | CLP | LLP
0P | 6P 8P P 9p
ap 144 €P P P

0¢T uonyed ejep

25T Sluswbas eep

vl —
buisseooid |e— 094
JuswBes [0uoo

0cr
uonned ejep

US 2013/0326264 Al

Dec. 5,2013 Sheet 8 0of 49

Patent Application Publication

g o1
| 73 L, es3 | swpesa | ospesa | cipgsa | 8#Iuewbes 1o seoys ejep popaous o js
[]
[
[]
| 7Zes3 7653 | 90996P €50 | 12RO €50 | 98GP £9q | B UOL3S 10} S30IS Ejep papoou jo 3as
A= 17253 | vewecpzsa | 61981p zsa | yeepgsq | 2#vewbes loj seoys elep papoous o jos
| 783 1153 [zemierisa | 2991 1Sa | Z91P1SA |y juewbes oy seoys ejep pepoous jo jos
09l g | oy} Buipoous 091
|CJ3U09 ’ Buoys [los ‘ [C43U0D
g Juswbas ejep g Juswbas ejep ¥ Juswbas ejep Z JuswiBas ejep
gvp | | vwp | ewp | [zvp | wp || ovp | eep || scp | zep | | ocp | sep || vep | eep || zep | 1ep
oep | | 6zp | ezp | [zzp | 9ep || sep | vep || czp [zzp || vep [oze || e | ap || Ztp | aip
sip || o [ew [[ap | wp || o] 6p gp | 2p o | cp w | €p o |
 Wuawbas ejep G Juowbas ejep £ uowbas eep | JuswBos ejep

US 2013/0326264 Al

Dec. 5,2013 Sheet 9 of 49

Patent Application Publication

[zsesa | | ss3 | swoesa | | oepssa | | cp8sa | 6o
® ® ® ® ®
o o [J o []
[[o [J []
[zesa | | 1es3 [oessepesa | | Lzmocpesa | | 9sspesa |
| zzea | | 1S3 [vesecpzsa | |[evseipzsa| | wmepesa |
[zisa | | 1s3 [eesiepisa | | zimarpTisa| | emipisa |
G#180 0l p# 150 0} €4 150 0} 2# 100 #1500}
96 sBuidnolb sos
TS RETEETS PTE
Buidnouf < 001104
| 7ss3 1853 | swpesa | oepesa | sipssa |
[J
[J
®
| Zes3 1 €53 | oewsep esa | Logozp €sa | 996 £sa | 7T
uonied ejep Joj
| 7es3 1283 | veveer zsa | 61981p 2Sa | peep gsq | SOCUSPepOde
| Zs3 17183 | zemierTisa | zisapTisa | zeipisa |

US 2013/0326264 Al

Dec. 5,2013 Sheet 10 of 49

Patent Application Publication

GIUNX3LSA PIUNXI LSA €IMNX3LSA ¢WuN X3 LSA LN x31sd

(unyo exep (uoniyed (uoniped (unyoeep | (Hunyo ejep
snonbiuoa) | Joy | elep n3) [Jorz eep n3) | snonbiuod) snonbijuod)
X v X gx g X X
dnoJf ao1is dnoib s01js dnoib 808 dnoJf so11s dnoJb 9011s
GIUN X3 LSA yIUNXI LSA €NUN X3 1SA cWuN X3 1SA L iunX3 1sd

(unyo elep | (funysejep | (unyd ejep (uoniyed (uoped
snonBjuos} | snonBiuco) snonbpued) | 1oy Z elep D3} | 1o} | elEP DI)
£e ¢ € §¢ Ve
dnoub sois dnoub sais dnoub sois dnouf sais dnouf sais
GIUN X3 1sd vIUNX3 LSA €WUNXF LSA ¢Wun X3 1Sa Liun X3 1sd
(uopiped (qunyoeep | (unyoeep | (yunyo ejep (uopied
Joy | erlep n3) | snonbBuoo) snonbiuoo) snonbpuod) | Joj Z elep H3)
ve €¢ Z¢ 4 ¢
dnoJb 201is dnoub ao1s dnoub aoys dnoub 8o1s dnoJb so1s
GIUN X3 LSA vIUN X3 LSA €WUN X3 1Sd cWuN X3 1Sa | wun X3 1sd
(uopiped (uopiped (unyoelep | (unyoeep | (yunyo esep
lopz elep n3) | Joj L eep D3} | snonbpuod) snonbpuod) snonbijuod)
Gl vl £ Z Ll
dnoJB 801is dnoJB 801is dnouB 891s dnoub so1s dnoub 8018
GIuN X3 LSd vIUNX3 LSA €NuNX3 1SAd ¢Wun X3 1Sa L wunX3 1sd

S VA N N |

uonouny BuidnoiB
pue Buipoous

86 SXse) [efed

X#
uoniJed elep

C#
uoiyed elep

o#
uoned eyep

(105 unyo)

L#
uonied eyep

6 581

=D
Bujuonied

26 eep

US 2013/0326264 Al

Dec. 5,2013 Sheet 11 of 49

Patent Application Publication

L# Jlun uonnaaxs 1S3

8zl
|0u0D
1sd

4

9g J3]|0J1u0D

oIl
|0.JU0O
Yse)

Y

¥€ a|npow
Jusipd 1sd

06 a|npow
uoLN2aXs |

86 (shisey
|enJed

<l

-

V7T |1o4u09
Aowsw

A A

» 33 AJowsw

06 $00II8

-

A

¥01 ﬂ_:wev
lopg
001 s891|8

20l s)nsa. |enJed >

>

2.1 syse} |eied-gns pue/] sbuidnolb eo1s-gns

891 ¥oeqpes) 184

interface 169

L#)Un 410 40}
(s)1se) [elped

AR
e1ep snonbiuos

| €eep ol

¢ ¢eep o3

L1 (unyo)
ejep snonbijuos

L#un X3
1@ 4o} sdnosb a01|s

X# uojiped

¢4 uoped

4 uopned

L4 uopied

US 2013/0326264 Al

Dec. 5,2013 Sheet 12 of 49

Patent Application Publication

| #1un uonndasxa |1 SQ

977 |0J)U0D YsE)

| uopiped
Jo] yse] [enled

9g J9]|0J1U0D

GLP | wIP | €IP | CWP | LIP
Olp | 6P 8p 1Y gp
ap vp &P P \p

| uopiped Jo s¥00(q Ejep
snonbiuod pajquiasse-al

¥11 |oquos
Aowaw

33 Alowsw

A

06 s|npow
uonnJaxs

$Y00|q BJEp pa|gLuasse
-84 uo (sjuonauny
yse) [ened wiopsd

14

| uoJed jo | dnolb
Joy (shnsa. jeued

Glp 8sd
v1BELP €S0
ZLBLLp €sd

0186P €SA
88/p €S0
9%Gp €Sa
¥8€P ¢Sa

Z8Lp 1Sd

| Buidnol6 a2is ul
| uoniued Jo sa9l|s
BJEP POPOOUD

€T 'Ol

US 2013/0326264 Al

Z8 8uissanoud 1 sq punoqui

S90IS poAslel
$90||S PopoouD

! I
! _
o | |
- | |
3 “ 887 einpouw I
- U Jun _ — »| [01U0D ¥sE) ey Awwwwe
5 LopnoaXa | 20T sunsal eped peInguisip LA
= 1sa | - i
! Y I
- [_
& _ 33T anpow !
« u# (shnsal [erued ! a0t |
‘ | 061 |0u02 | 0B 10400 I
< Ut S9OI|S ponsLol | _
a o _ 061 [0u0d !
p< ! Y 061 1049 v v “
° ! - !
! 081 Z37 Buipoosp o
Buidno.B-ep ™ lous sq » Dbuuonped +—+» 75 e1Ep
L 3un > “ | -op elep “
uopnooxs | W# (shinsa |ened | — !
18d “ oOT 7T uoniped 0cl !
L# S99I[S PoAdLIal ! ejep Jad suoniped ejep |
! I
! I

Patent Application Publication

US 2013/0326264 Al

Dec. 5,2013 Sheet 14 of 49

Patent Application Publication

17AP]E

(shnsau
ayj sanpo.d 0y Buissasoud
S}NS8J BY) YJIM 8OUBPIOIIE Ul
s)nsal |erped sy Buissadoid

[

" 1

¥SE) 8Y) U0 paseq
Buissaoo.d) nsal Buluiw.sep

oo

» 1

s)nsal |eped sy 0
Buipuodsa.iod yse) BuirsLlal

|

> 1

s)nsal [enJed aAigo8l

(s)

US 2013/0326264 Al

| 2es3 | 18s3 | opesa [oepesa | sipssa |
o ST o
®
| zesa | 1es3 [o9swsepesa | 1zsozpesa | 9vsp esa | vl
$891|$ JO $)8S OJul uoned

2 | 7zs3a | 1zs3 | weveepzsa | eissipzsa | veepesa | E 0 S80|IS paAoLa)
S
=
v | zisa | 1isa [zemepisa | zmarisa | zeipisa |
D
D
=
wnn
=
= {087 J0128j8s ——
a Buidnob-sp < OB 1oAue
w,
g oor
m $891|S PaADLIR)
n | 2esa | | 183 | | cwpesa | [oepssa | [sipesa |
2 ° ° ° ° °
5
w | 2es3a | | es3 | [o9ewsepesa| |[izsozpesa| [9sspesa |
A~ | uoped Joj
.m | zesa | | zs3 | |[wescepesa| [ewsspesa| | wserzsa |
3]
&
= [zusa | | 1isa | [eemepisa| [zmopisa| [zsipisa |
Z G#N3ILSQWON p#NILSQWOY E#NILSQWOY THNILSQWOY L#N3I LSQ WOl
~—
g
S
[~ ™

US 2013/0326264 Al

Dec. 5,2013 Sheet 16 of 49

Patent Application Publication

cch
uonied e Joj
$80I|S parsLiel

0ch
uopiped ejep

91 'Old
8G] elep 0G| elep ¥Gl sjuswbas
popodUs PaolIS popoous paInoos
28], Buipoosp Jous pesiedsip |
— 80¢C
5 ¢0¢] Buissaooid oz
uISS800. v0C 90g buipoosp Ajunoas
fyuroes ooys [~ Buoys-op [| Jowo " juowbes g wmm_wwo%%
Jad aslanul oSN) Y
061 |0u00
— — 4]
061 104u0d 937 o|npow | 061 [04U0S sjuswbas ejep
|0J)u02
061 [04u0d 06T |04u00

US 2013/0326264 Al

Dec. 5,2013 Sheet 17 of 49

Patent Application Publication

LT 'Ol
g Juswwibes ejep 9 juswbes ejep ¥ Juswbes ejep Z Juswbas ejep
GyP yb | E¥P [y OvP | 6P 8Ep | LEP 9ep | gep vep | €EP aep | LEp
0Ep 6P | 8¢p LCP ScP | ¥P €CP | ¢cP Leb | OcP GLP | 8P P | 9p
glLp yIP | €LP 4% op | 6p 8p P 9P gp P £p 4y P

J Juswbas ejep

G Juswbas ejep ¢ Juswfos ejep | Juswbas ejep

¥CT suswbes

palndes
_ 90¢ Bupoosp 70e __
061 [04uc) —» ols - Bupys-op | <+ 0B [0Au0d
35T ejep
papodus wml_.ﬁmﬁ
papoous paols
| zes3 | ospesa | sipgsa | 4 uaWBos Joj $901S J0 105
[J
[]
[]
[zes3 [1es3 [oesceresa| 4 JUaWB3S Joj $3011S J0 513

| vesecp zsa | 61981p 2sa [v3epzsa | 2 uswBBs 1o} $80Ifs JO SjoS

_ ZERIEP 150 _ 1189107180 _ Z81P718a _ L# JuswBas 1o} $90|iS 10 S19S

US 2013/0326264 Al

Dec. 5,2013 Sheet 18 of 49

Patent Application Publication

|uojyed ejep
Sup | vvP | ebP | TP | P 57T
T513 ovP | 6SP | 8ep | Zep | 9gp uoned ejep

GEP | ¥EP | €EP [<Ep | LeP

QEp | 62P | 82P | LdP | 9P ——

0l¢ —_—
gep | vep | eep | zep | 1ep Bussanoid)
0cp elIp 8lLP yANY gip Juswbhas-ap [0JuGd

SR | vIP | €LP | P | LIP
Olp | 6P 8p P 9p

Sp| vP | ep [zp | P sl
sjuawbas ejep

[svp | vwp [cvp | zop | 1o [ovp | 6ep | sep | zep | oep | gep | wep | eep | zep | tep |

| ocp | 62p | szp | zzp [9zp | sep | wep | ezp | zzp | vep | ozp | 61 [s | zip | 9ip |

[sip [wip [ewp [zip [wp [ow | 60 [s | 0 [oo [P | w0 [e | 20 | 1P|

8 Juswbas ejep g Juswbas ejep ¥ Juswbas ejep Z uawbas ejep

ayp vyo [€FP P | P 0¥P | 6€P 8EP | i€P 9ep | Sep pEP | €eP Zep [1ep

oep 6cP | 8cp P | 9ep gcp | vep gcp | <ep lep | Ock 6LP | 8IP LIp | 9P

qip piP | €LP P | 1P Olp | 6P 8p P P ap 124 ep P P

1 uswbas ejep G Juswbas ejep ¢ Juswbas ejep | Juawbas ejep

US 2013/0326264 Al

Dec. 5,2013 Sheet 19 of 49

Patent Application Publication

(Munyo eyep (uopned (uopiped (funyo elep | (yunyo ejep
snonBuod) | Joi | elep n3) | Joj g elep H3) | snonbpuos) | snonBiuos)
L X b X G X € X X
dnaoub 80118 dnoub 8918 dnoJf 291s dnoJf s91s dnoub 80118
GIUN X3 1SA PHUN X3 LSA €IUN X3 1SA cHUN X3 L1SA L hun X3 1sd

(funyoejep [(unyoelep | (qunyo exep (uopiped (uoniped
snonBuod) | snonBiuos} | snonbBiuod) | Jolg elep H3) | Jof | elep D3}
£e Z¢ I € ¢ v e
dnaib 22118 dnoub 22118 dnoub 8218 dnoub a9)|s dnoJb 29118
GIUN X3 1SA PHUN X3 LSA €IUN XTI 1SA cHUN X3 LSA L Iun X3 1sd
(uoniped (unyoejep | (Munyoeep | (junyo ejep (uoniped
o} | eyep 03} | snonBiuos) | snonbBiuco) | snonBiucd) | otz elep H3)
124 €2 3 A ¢¢
dnoub 89118 dnoub 82118 dnoub 8218 dnoJf 291s dnoJb 99118
GIUN XTI 1SA PHUNXF LSA €IUNXI 1SA ¢HUNX3LSA LN X3 1sd

(uoniped (uopiped (unyoelep | (qunyoeep | (yunyd ejep
Jojzeepn3) | Jop L elep D) | snonbruoo) snonBpuoa) snonBpuoa)
Sl vl gl g Ll
dnoub 82118 dnoJb 8915 dnoub 89is dnoJf 8915 dnoub a9l|s
GIUNXI 1SA PHUNXF LSA €IUNXI 1SA ¢WuNX31SA LN X3 1sd

AV VRV

454
Buiposap
pue
BuidnoiB-ap

X4
uonnled ejep

e#
uonn.ed ejep

o
uoled ejep

(1o yunyo)

L#
uonied ejep

6T "OId
1%
Buiuonped
|®v
26 Bjep

US 2013/0326264 Al

Dec. 5,2013 Sheet 20 of 49

Patent Application Publication

U# Jiun uonnoaxe 18d

06 8[npouw ¢ sinpow
uopnoaxe 1 Jualo 1@
g8 Alowalu 9g Je|j0uc
||||||| e ECREEEEEEEE
U# S80I|S panaliel
°
°
°
U# $901|S
V#

Jiun uonndsxe 1 SQ

L# SO0I|S poAsLa)

A

L S30]s

¥ Mompu

30T S201s paAaLa)

e

29 bBuissanoid
1S3 puncqul

gl

[aN]

$0018

{8 Buissaooud
1SQ punogno

——

c6 ejep

<—— (6 Elep

US 2013/0326264 Al

Dec. 5,2013 Sheet 21 of 49

Patent Application Publication

U Jun
X3 1@

L#un
X3 1sd

$901|S
J0 ug Jeyd

$80l[8

jo |# Jeyid

1
|
1
I
|
I
|
1
I
|
I
|
I
|
1
I
|
I
|
1
|
|
I
l
I
|
1
I
|
I
|
I
|
-

03 Suissadsold 1SQ punogino

811 elnpow
|04jU0D ¥SE)
painquisip

A
A 4

091

F1T Jojos|es

|CJJu0o

911 8inpow
|0.JU09

{0zz ssedAq

091

|0.JU0o
A

4

Buidnou6

oT¥4
9211 Jo sJey|Id

21T Buipoous
oo sq

i
o Buiuoniued
ejep

817
S99I|S popooud

Z6 ejep

US 2013/0326264 Al

Dec. 5,2013 Sheet 22 of 49

Patent Application Publication

T o
g x ¥ x e X L X x# JuawbBos ejep
[J
@
[]
| 2 [v2 | ¢2 | 72 | vz | | zitjuewbes ejep |
| o [& | a0 | &0 | v | | 1#juewbes ejep |
444
Bui|s @
Buipoous

Z1 1 Buipoous Joue pasiedsip |
|

—_— - |
— 0sl 114 — !
8l¢ Buissaooud T 9l Buissaoold vl “
Juswbas elep Jad <+ Qunoes [By - Buipoous |« funoes [Buissasoid
$90I|S POPOIUS ! mo___m Jod - loue JuowBos usWbas
m A A 097 foquoo} A
Gl 6 erep
D37, [04U0D 91T enpow |9gT [0U00 sjuawbes ejep
_ [0U0o
091 101u0d 091 |101u0D

US 2013/0326264 Al

Dec. 5,2013 Sheet 23 of 49

Patent Application Publication

x bas Jo x Bas Jo x Bas Jo x Bas Jo x Bas Jo
aolIsGJeid | eospJeyd | eos¢eyd | oyszJejid | ools | Jejid
o
°
[J
¢ bss Jo ¢ bas Jo ¢ bas Jo ¢ bas Jo ¢ bas Jo
lsGued | oospuepd | eoysgueyd | eoyszueqd | eols | Jejid
Zbss jo Zbss o Zbss jo z bss jo zbss jo
adlsGlejid | ooyspied | eoys¢leyd | eoyszJed | eoys | Jejd
| Bas Jo | Bas Jo | Bas Jo | Bas Jo | Bas jo
dolsGued | sousyaepd | eoysgaed | eous g Jejd 90I|s | Je||id

GIUN X3 1SA vIUnN X3 1Sa €3un X3 18d

¢IUN X3 1Sa | Iun X3 1Sd

(744
Buidnoub Jejid B
Buois ‘Buipoous

¢6 Ejep

US 2013/0326264 Al

! L# Jun uopnosxe 18Q |
o _ —1 |
- | |
5 | “ 0
- | gg J3||0J3u0d | X Dos Jo
~ | | eolls | Jejd
N | |
g _ !
= | 1
[90] | | []
. ! FIT 104u00 “ o
= L mmmmm o e | Alowaw _ !
S L g¢ 2402 Sunndwod | 9c |4 “
- y
w) N — “ ‘ _seals |l | ¢ bos Jo
< 11| vESInpow | | 063npow ! = - gl sol|s | Je|id
m _ “ warp 1sa | 7| uonndaxa jq | " »| 88 Aowsw . ,m “ =
_ — Lagtl | .
b . | - or [g| |
- |t L | seos | S| 2 Bos jo
S I _ aols | Jej|d
p=] | |
m ! |
= _ !
= [|
nm. ! ! | Bos Jo
= | | 30ls | Jej|d
£ | |
x® | |
S _ | $80lls | # Jejd
= ! — !
2
«
~d
=
2
&
a

US 2013/0326264 Al

Dec. 5,2013 Sheet 25 of 49

Patent Application Publication

78 3uissanoud 1 5@ punoqul

! I
! I
! I
! I
“ 387 9|npow “
Ug J1Un " |0JJUO9)SE) I
_ I
uonnadxe “ painquisip “
18d I A _
! v I
! I
I —
I 98] a|npouw “
“ 061, (04U00 j03ueo 32z ssediq !
! I
U S80I paAdLjel | | :
0BT, [0:4u0d

. “ Y L Y !
I = I
° ! 081 | Z87 Buipooop v8l |
6 > Bujuoniued |
| uidnoab-ap Joud 8Q _
_ opeep | |

| —

LN _ _ 31z —
uoRNIBXd “ 001 JuswBes ejep Jad I cGeep

1sa L # S90I|S poALIIB) ! S89I|S panalnal $80l|S pepooue !
I
! I

US 2013/0326264 Al

26 ejep

¢6 eep

9¢ 'Ol
5 X bX ex 7 X 17X x4 Juowbas ejep
o .
A .
S
0 — - — — -
8 [¢z | v2 | g2 | 7z | vz | 2 awbes ejep
b —
_m 1[4
73 [< [vv | & | 20 [v] |4 uewBos ejep | Juewbos-op
= 7z
K Buipoosp
o PUE 801[S-0p
>
2 .
|
= ! 28] Buiposap Jous pesiadsip |
— —
g | K4 Bussosoid
S — | — UISS8001 —
= 8le ! Buisseooud 702 90¢ fnoss 0le
s Juswibes ejep jod — funooes > Buioifs-op » Buipodsp > EuEmmw » Buissesold
= $901|S PAPOUD U | sos osienu = Joua ssiont Juswwbas-ap
= ! :
& ! A A 57 oguoo}) A
= I MR TSNSk qhyu iyt PRI NI ISR S
5= 1l
= = _ — ¢4l
S 061 104u0d | 957 sinpow | 061 [08UG gy15605 ejep
.“llu_._ __ |03U09 __
= 0BT [03U09 067 [04u00
«
~—
=
=%
~—
=
[~W

US 2013/0326264 Al

Dec. 5,2013 Sheet 27 of 49

Patent Application Publication

Ug jun
uonnoaxs 18Q

¥< ainpow
JuslP 1Sd

98 J9|j0u00

06 ainpow
uonnadxs 1 g

£z °9M ¢¢oINPoW NISd
| B | |I=====-=====" | | [==========7
! W J1un I ! B# 1un _ ! 94 JUN I ! L#1un
| uonnasxs 18Q | | uonnosxe 1sa | | uognosxs 15q i Uoinasxa 18
| | | 1 | | |
1 1 | 1 [1 !
| PEompow |! eee || fonpow |! eee || Fronpow |! eee || FFonpow
| welplsa | i | welplsa | | weloLsa | | welp s
I | 1 I ! 1 !
I | 38usy04u00 ! i | 884mi04u00 ! I | 384sy00u00 ! I | 884ay00u00
| | 1 I ! 1 !
| | G6anpow | ! i | G6einpow | ! | | 06anpow | ! | | 06 einpow
| | uomnoaxe 1q | 1 | | uomnoaxe 1q | 1 | | uonnoaxe |q | 1 ! | uognoexs 1q
B T — “ ! “
" ¥ ©POD YSE) Pepoous S _ ! "
|] T] T | |
! 1 | 1 o 1 |
1 1 | | e | 1 !
" 1 “ | L] "] !
! | ! | | | €apooysey pepoouesg |
| ! | “ | [i
| | | | _ € Bp00 ¥SE) PBpoous SQ _ |
| | 1 | T 1 !
U ejep Popoous §Q _ m _ | 8p00 ¥Se) PApooUs §(Q _
I I e I 0 i | |
| 1 e | I ! ! !
! 1 e ! 1 " 1 "
¢ BJEp PapoILs SQ _ _ i _
“ “ i 1 | Z Bjep papooue 5a _
| 1 I 1 1
m m m _ | BJep popooud S(_
J— — T T p— T T —
! 88 ! " 88 ! ! 88 _ ! 83
! Alowaw ' i Aiowew | i Alowaw | i Aowsw
1 ! | 1 | 1
1 | 1 |

US 2013/0326264 Al

Dec. 5,2013 Sheet 28 of 49

Patent Application Publication

| Zzempow (NLSQ) omou yse) 3 abeiols painguisy |

_ U Bjep pepoous Joue SQ | _

_ s _ % 8P09 ¥SE) Papooua Jole S(_ _

| °] _

| ¢ BJEp PBPOSUS J0LS §(_ e _

I I

| Z BIBD PapoauD 1048 §(_ _ Z 9P09 YSE) POPOIUS 103 SO _ |

I I

| _ | EJEP P8POSUS Jous §Q _ _ | P09 YSE) PApPOaUS JOIB SO _ _

e e e e o I
e — — e
Loneto Z}Z UOIeuwojul Z¥Z UOleuojul Loneuo
nSol uojeoolle 1SQ uoyeoolle 1SQ oy

ZE¢ |npolw ¢E¢ dnpow
uoaNqUISIP XSe} uoRNqUISIp Yse)
A A A A
<[74 74 8¢€e o _
¥OT synsal dieyep | dlxsel aielep [l xser |v0L SINSa
v peeles | pajosjes pajpajes [pajpsies ¢
Z# 8|npow T# 8inpow
usiv 1sd usIp 1SA
al X sel - dl u elep - a1 9 %se) - dl 6 eep -
al ¥se) - ai L &ep-
al ¢ sey - ai¢eep- al L ¥se) - dl g elep -
al | ¥sej- al | eep- 95750p0d ¥se} 10 31| dl L eep-
9£ZS9p00 Nse] Jo 18| YECEIER JO IS . YECEIED 10 S]]

US 2013/0326264 Al

Zbe uoneuLojul
uonedae 1 Sa

Dec. 5,2013 Sheet 29 of 49

X Vv
X A
Z e
A e €
X A 4
X £l
A Z
X ||
— 8¢ | 9L¢
082 poul | jun
seniceded [X3 | X3
X3 1d 1a0 | Isa

0FC aldsel 8EZ al erep —
62 ©l4

pejos|es pajosles ._lv_ yse|

Z-4 vseL
LseL |y yseL

Z exseL
757 9|npow L gysel | gseL
uonnguisip ysey ¢asel | ¢iselL

LLyseL

Z L vsel
el |)yl
o7 9%C
¥Serans | s

ovZ Cel

)Sel-ang < yse|
UDIS U D3SO0 | ZX uippy | ZX UDISu93ses | og udppy | 04 u
€071S'€ D3IS'GE | AA EPPY | A g €01S'€ 93S9L/0L | 89 €4ppY | &g g
¢ O1S°T 9IS G/E | AX TPV | AX Z ¢ 018°T 93S'8/5 | av gppy | av Z
D181 793S e | XXThppY | XX | L VOIS O3SSE [wWolaeey | W | L
0/Z | 89 29¢ | 09¢
/¢ Siejelleied Zleow] |8zs | @ 90¢ Sisjelieled vozow| | 8Zs | Qi
sa ppY ¥SeL | yseL sa PPy Eleq | Eeq

ZGZ Sejnpow uonnosxe | (

0GZ uoneuojul obeI0)S ¥s8)

8FZ uonewlojul abelos Bjep

Patent Application Publication

US 2013/0326264 Al

Dec. 5,2013 Sheet 30 of 49

Patent Application Publication

05 o1 g6z spiom | <
anbiun Jo 38| 91€ spJom snbiun
9¢ 81 EMO|} XSE)
pale|sues
Aposuoo _
7I€ suone(suel
SPJOM 40381 1081109
4 0T€ sioss) 0) asedwos
paje|sue.) A
Aoadiooul
Spiom JO 18|
CI€ sloud 782 e1ep e —
uoje|sues pole|suel)-al mu paje|sues) ﬂu ¢6 elep
762 Spiom pJom-uou 80¢€ %0Eq 90¢ —
-uou oy enp 897 (seseuyd) dle[suel) eje|suel)
SJ0UB 10 18I| spiom pajejsues) | <
oljloads s|| $0E soseiyd Jo/g spiom pajejsued alnads
06¢ Spiom A
-uou Jo 38| —
20¢ (Aeuonoip e Ul jou “B8) spiom-uou
0gz (seseiyd)
SpIOM 211103ds 15| A —
{00€ soseuyd Jojg spiom oij0ads
(z71 pue g | Jo)e paIap.0) SUOIEISUE.] 1994109 SUIWLIBISP - /| %Se)
seselyd 109 Spiom oI110ads pull - 7 € yse) (171 pue G| ¥se} Jolje PRISPIO) SI0LIS UOIE|SUBI PIOM-UOU BUIWIBIOP - 9| S8
BJE[SUES] - |TE Y58 (-1 se) Jo)je paJop.o) Sioue (| 0) 84edwod - G|, ySE)
SoSeIyd J0/3 SPIOM PIJE[SUES Jifi0adsS pulf - ¢ YSeL (€1 vse) Joye palapio) ¥oeq djeISUl) - ¢ | se)

(paiepJo-uou) ajejsuel} - € |)SE)
(passpio-uou) spiom anbiun Ajjuspl - g | ¥se)
(paJapio-uou) spiom-uou Ajuspl - || yse) SATEUE UONE[SUET - |, YSBL

$3SEIUU 1075 SpIoM D930S PUT - 2 JSEL

US 2013/0326264 Al

Dec. 5,2013 Sheet 31 of 49

Patent Application Publication

€ Ol

FoTmTmms Mt Wit | o= W iebinint it | o=
I A R T T I A - T
I Jlun uopgnaaxa 1 | JUN UOKNOAXa | | JUN UO[NOBXa 1 | N UOJNIaXa 1 | N UoN9aXa | | J1un UoRNIaXe | ! Jiun Uojndaxe
180 m 180 0 Isa i} 1sd .l 1sa 4} 1sd 1! isa
1| ¥Eempow (1| $€sinpow |! | 7€ snpow ! 1| 7€ ainpow ! | 7€ ainpow ! 1| 7€ ainpow ! 1| 7€ ainpow
|| WeI01SA |1 | eI 1SA 1| WeIo 1S |1 4| WeIv1Sa 1| Welp 1Sa 1| welw1sa |1 | el 1Sa
} | | } | | }
| } \ | | } | |
1] | Jojjosu0d _“ “_ | 19]|0ju00 _“ m_ G 19]|011U0D _“ m_ i 18]|0]U00 _“ m_ ¢ Jojjonuod || m_ 7 19]|01u00 _“ m_ | J0]|01)U0d
] ' b I by by Ly
1| L1 einpow : |} e|npow : |G ainpouw : | ¥ 8|npow : | ¢ o|npow : | Z ejnpow : || 8|npouw
1| uopnoaxe | I uognoexe | 1| uopnoaxe | | uopnosxe | 1| uopnoexe | 1 uopnosxa | 1| uopnosxe
“ 1d : 1a : 1a : 1a : 1d : 1a : 1d

} | | } | |
m N ¥ Hl Rl il il
! ! ! ! ! _ ¢ BP0 YSE) PAPOILd S _

1 L Ll 1 L1 1 _ _
m Z 9p09 YSB) Papooud §q _ ! ! ! !

T T [] 1)
m ! m ! m _ | BPOD SE} PaPOILD (] _
] P b [T | | |
! 'y N Z ejep papooue s _
) 1 | | | | 1 1 I | I | 1
m 8g Aowawu “m 8g Aowaw “m 8g Auowaw “m 8¢ Alowaw “m 8g Aowalu “m 8g Aowaw “m g Alowaww
1 ! | ! | ! 1 ! | ! | ! 1

€-L'9'Gsun 1S | S¥un1sd GIUN LS |Z€Y | 2GRTPTETZT ZgIM-L el | € laye A
(€ Lse

US 2013/0326264 Al

0 i
I |
| |
1 I
| |
“ bk gLy esn awes)ouou | |7¢ | !
= | _ _ _ _ _ _ _ |
M | p-Lfsun]sq | £hun1Sd Ljun 18Q A3 LLRV9V G e z¢-L¢ auou A “
S | |
- | R B St I
= ! L-¢ sjun 18d gIun 1sa EMNISA [| T8RTPTETTTL | BT ZId-L e | BT Liege | L) !
D | |
7 “ Z51d- 151y Sl !
| 9-Z syun 1sd giun 1s@ Zunisa [| LSRR PL eV L | B2 -1 e | R Ldege | 9 !
c | -t |
Q I B S Zc¢ole B B I
v “ G-l syun 1sd L jun 1sa bwnisa | S| LSRR PLEL T L | 87 M- vy v | Joye ¢l _
| 1
g m TIRVLNVOTTT) | Te-gel m
= I Z-¢ sjun 18d g£Jun 1sa gunlsa |y LeRb v e m -Lel ¢ | leye vl (
| |
| |
= | 76%'°C mem »NHN»NU 7¢-9¢ _ !
= ! g-¢ siun 1sd ¢iun 1s@ zwnisa |eld | Lerire e ve-le suou el !
~
< | -~ -~ -~ -~ -~ -~ B -~ |
= “ G-l syun 1sd L jun 1sa bwnisa || LS r e gL vec-L¢ auou A “
= ! 1
nn._.. m g-1 syun 1sd L jun 1sa bjunisa (Ll | LeeL el 72-1¢ suou bl m
= 1 oce 1
.m “ 0b€ abeiois gcc obeiols | bBuissedoid | FEE aze oze |
5 | |iinsalejelpawisjul | ped yojesds | jnsel Wielul [SWEN | ZEE SPOW X3 LJ JO19S oce uoned elep | Buuepioyse; | Yse) !
.“llu_._ ! Y¢S 0JUl }nsal ajeipalliaju] 2¢S OJUI LONDBX YSE) !
(=¥ 1 1
« “ UOJEDIPUI UDISJSAUCD JBULO) uOled Yoes Joj ojul 1ppy suoniied jo oN Q) eep[X] :0z¢ ojul uoned elep (555 oyl uonesole | Sq “
= e e gy
>
<
[~ ™

US 2013/0326264 Al

Dec. 5,2013 Sheet 33 of 49

Patent Application Publication

result1_4

A uoniped
¢) ynsal

o 06
sinser | 1 spowx3
[efed 1djoles

® °
° e
L]]

0L 06
sjnsal AH_ spowi X3
efed lajoies

200 06
s)insa AH_ Spow X3
eiued 1Qdjojes

| uoniped
€7} ynsa.

(0eq SjBISUBN) ¢ | XSE)

1
_ 201 06 !
' | synsal AH_ spow g |
5 Rw enJed 1Q103es
S| . ° ﬂ_v
[} ! [J L] 1
3| ® o !
5| i 06
|| s | o] s | <
£ “ |ented 1giomps |
N “ “
~ 1
ra) 1 —
= ¢0l 06
8 & S)nsa) AH_ Spow X3 ﬂw
L[1| jemed 10808 | |
| spIomenbun) 2| ose} |

Z uonijed
elep

Z uoiyued Au_

elep

data 92

| uojped
ejep

|

I

|

|

I

g uoniped

AH_ €7} ynsal AH_

m

|
2

|

|

|

result1 3

| result 1_1 (list of non-words) |

&
A%_ SIHEEY
Y

2ok
ST

06
spow X3

1040108 ﬂv

lenJed

® .

. °
o °
c0l 06

AH_ SpoW X3

|efed 1Qjojes
20} 06

sjnsal AH_ spow X3

[ened L1QJjojes

(ereisuen) £ yse)

1
! 200 06
v | sinses AH_ spow X3
2| remed 10010
1 ® [J
! [] []
| LJ L1
! 201 06
AU s)nse AH_ spow X3
| | [leed 1Qjojes
m
0T 06
@ sinsas | (| spowx3
L | feped 104038
[}
1

(spsom-uou q|) |~ | yse)

Z uonied
ElED

Z uoped Au_

ejep

| uopiped
ejep

a Z uoniped
Ejep

W\N Blep

€ oOld

AH_ z uopjued Au_

elep

| uoijped

data 92

data 92

US 2013/0326264 Al

result 1_7 {list of correctly translated
words)

Dec. 5,2013 Sheet 34 of 49

result 1_6 {list of errors due to non-
words)

Patent Application Publication

| | result 1_4 (retranslated data) |

data 92

T [T o
L[06 —
o) amsar [spowxa | Sy
| enJed 1ajojes | v | Zuopped Au_ %w
“ o o L[g1 ynsel) Z
| [] [] | ° m =3
“ o o m . % m
|
\ \ > “.IIIII|I IIIIIIIIIIIIII ! Z uonl NQ
| == || 1 uonyed _ 2 06 |1 [Zuonu
ov 06 1| 77 ynses © A_H_ sjnsau AH_ Spow X3 7] Jnsal
AH_ synses AH_ Spouw X3 AH_ AH_ © lened 1QJo}es AH_
! |ened 104018 | 1 || uopped S | ! Z uopiyed
| (suoneisuen 1pau0o) ;7| ysey | | § Lunsa Mvv, m . . ! Ejep
PR U - iy |
Ewl| | ° ° _ °
25| ! ¢ * .
|mTTTTTTTmmT T ' | z uopyed 57| i -
! 2ot 06 I |G |nsal = ! — ! | | uonpe
gj|nsa. Spoul X3 w, €0l 06 1| 7} ynsal
A_H_ enJed AH_ 1Q 10198 AH_ z uoed = AH_ s)nsa) AH_ spow X3
= - 2 d 0188
! . o L[4 el 2 ! |elJe 1040} .| 1 uoniped
! : 4 ! o “ (asedwon) g™, yse) .m ejep
| 1 ® @ [/ mmmmmmmmmmmmmm—————
| | o 5
“ = = | | 1 uonned 23
_ ! |G Linsa) - g
AH_ S)nsal AH_ Spou X3 AH_ A__H_ M_ m
_ [ented 1d40%.s | 1 | | vopiped B =
| (spJom-Uou 0] anp sioue) g | ysey | | b | NSl -
|

US 2013/0326264 Al

Dec. 5,2013 Sheet 35 of 49

Patent Application Publication

| result 3 (specific translated words/phrases) |

translated words)

result 1_6 (list of errors due to

non-words)

5 oH 3
8
'S
$0T synsau AH_ B
~,
2
<4
8¢ Old
! Z01
_ sjnsal AH_ spow X3
ﬁw eied 1ajojes
“ ® °
\ [} []
I e 2
[i 06
A.Ir_ sjnsal AH_ spow X3
| rensed 1440388
|
200 06
@ synses | 7| spow X3
lejped 1djoies

(seseiyd

/SPIOMm 211108dS pale|SUB.)) € YSE)

Z uoed
€71 Jnsal

Z uopjed
ml_. Jinsal

| uoped
€| Jinsa)

it
result1_3

ot

s 2 3 £
=1 - = S
e |ar| g |9P|sE| 1| 2
= = T & 5]
~ U MM ,W
M ﬂ o ™~
o e w 3
F¥e uonewojul jnsal
18 Ol
LR P .
— | 06 !
= A | sunses spowyg |
w
2 RW erued AH_ 1088 @ NCMMwmQ
= | ® °
o 1 ® 4 “
gl e o I eee
g 01 |
= ! <0l 06 po—
2l G s (<ol | 7o
gl) | lened 1qoges | 1
g !
~p ! | 1 uonied
= 201 06 eep
g @ sjnsa. AH_ spow X3 Jw
L1 1| lened 1g/01es | |
]
_ |
1

(Seselydyspiom ayioads) g ¥se}

data 92

US 2013/0326264 Al

Dec. 5,2013 Sheet 36 of 49

Patent Application Publication

Yor ol
|- - I r-r—-——-—">—~>——"——=—"—=——— A
Il r———— 1 _ |
| b | 39¢ ojnpow jndjno _
|| | _ 87¢ 159nbal jusluisnipe Ajuoud | | |
|| I _ 57 Buissaoosd/N _
I | I [Jaypn I
| | _ | pozondal |
— I
|| I _ P _
|1 I | anpow aziyioLda
|| S I _ vy “
| | [wnsa | 1 | 57% Alewoue
I . I _ Buisseaoid _
| . I _ _
I I _ —
“ _ oGt _ _ _ Z9€ 2npow Jaidisul [
| | Lwnsa | _ | |
_ | 7o smegs A |
I 3T I _ Buissaaoid _
_ _ 1un sa _ | | |
} — 3| {J9¢ 9|npow Jojuow
| l 0Z€ siday _ _
| | ¥SEwsunsq | _ 89¢ sisanba. I I
| = | $5990€ |0 }0S [_ I
L 2G¢ Aowaw NSd . [8G¢ 8npow sa |

0GE eoirop Bunndwoo

US 2013/0326264 Al

Dec. 5,2013 Sheet 37 of 49

Patent Application Publication

SjuN g alow Jo suo 0} Buissasoid
Jayyny paziioudas ay) Jo 89130U puas

[{=]
™

A

Buissasoud Jaypny aznloldsl

A

Ajewoue Buissaoo.d
B 10019p 0 shie)s Buissaooud sy 10.dis)ul

e8¢

A

s)sanbal ss809e NS bulpuad
J0 Ajjean|d e o snjejs Buissaooud Jojuow

08¢

A

US 2013/0326264 Al

Dec. 5,2013 Sheet 38 of 49

Patent Application Publication

Viv 91
|||||||| | f————————— ———
r—-———— 1T € }
_ | €% 1senbai uonn|osal _
| [I >
JE— | = >
_ %Mmm _ _ VED SSOIIS J0 PIOLSSIL SpoSSP _ 30F enpow uopn|oss)
<l
[e |~ Zzvsisenba ajiep I
| ° | _ ¥Z¥ sisenbai opun |
i | 92 sisenbai yoeg-||ol |
\
_ < _ FI7 Jequinu :o_m_>e\
_ S 02F 00s Jinge _ =TT oWeU 8o|)s
| — | 87 PUBLLLLOD)LM |
96¢ JIun [—-11
| obeI0ns | ZE¥ PUBLLLLOI YO0[un [
} } >| 30F ainpow o0

" P “ I 8Ty asuodsal ya0| _ 90¥ 8INpoLL 0]
_ T | O7F puewwoo oo _ N
[_ _ _ F1¥ Jaquinu UoISIAS.
_ 96€ Jun _ _ _ 7% BWeu 80|
_ obelia)s | _ | . o
_ 733 _ " §7% osuodsel _ oInpow Jous Ayuep!
_ I I

I

198 Jlun abeJo)s

JlolJo abelojs

Z0¥ 8inpow 8Q

0B caiaep Buindwoo

US 2013/0326264 Al

Dec. 5,2013 Sheet 39 of 49

Patent Application Publication

11un 8BeIC)S BUY) 0) PUBLLLLOD YI0[UN U pUss

A

2o A

NS au} Jo spun
abe.0is ay) 0] s)sanbau YIBg-|04 JO 19S B BNss|

097 A

NSQ @y} Jo spun
obe.o)s oy} 0} s)sanbas opun Jo Jos e anss|

8 A

UipiingaJ Jou

NSd 8uijo
sjun abelojs 0y sisenbal a1jap J0 188 B 8Nssl

9)9|dwod JWwos

iy A

aseyd

$58004d B)LIM B 10 SNRJS BUIULIS)ep

aseyd sjum [eriul

vy A

801|S BJEP PapoIUs By} plingal giy ol
& A
-

JINGaI G UBD 80I|S JAYI8YM sUIULIBIep

05y A
NSQ e 10 Ayus ue 0j 1s8nhas uoynjosal e puss
BV A
3901|S eJEp papoaus ay) buipiebal

pUBLLUOD 8)LIM B JO 5oUeNnssI-a1 jsenbal
oy A
Buipjingas An 2J0]s-0l alaymos|e

301[S B1EP popOSUs) JO
10118 8Y) 4O} UONN|0SAI BUILLBISP ‘Jun abelois
9y] WolL Juswbpsimounae 20| B 0} asuodsal ul

v A

901 BJEp POPOOUS BY) SBIC)S
1ey) 1lun aBeIo)S & 0) PUBLLLIOD YO0| B puUasS

42 A

Jouss ue Buiaey 8911s EJEP POPOdUB LIE Ajusp

oz A

uonnjosal aje|io.)

US 2013/0326264 Al

Dec. 5,2013 Sheet 40 of 49

Patent Application Publication

asuodsal £ousunduod N1SQ 8yl Indino

asuodsal Aouaunouod N1SQ 8y} piedsip

8.y

N A E]

SISIX9 LOIIPUOD JOLIS UB JSLISUM SUILLISIOP

A

Jaguinu uoisiAsl
Jusoal Jsow sy} o} |enbs 4o uey) Jejealb

S| JqUINU UOISIAB) UMOUY 1SE| 8YJ Jeu) seiesipul
1ey) asuodsas Auaund N1 SQ e sjessuab

A

20l1|s
B UInjaJ 0} asuodsal Aousung N1SQ e aelauab

ZE A

N

0%y A

< uey ssa| >

N % A

Jaquinu

UoISIABI JUS03 SOW 8U) UBY) $89| SI Jequinu
UOISIAG LIMOUY)SB| 8] JoLjoym auluo)ep

9

[so]

A

JagWnu UOISIAS) JUS0D JSOW BUIWIRIBp

9

(L]

A

JOQUINU UOISIA) UMOUY 1SE| B Sapnjoul
Jey) 1senbal AoUsLINoU0D N SQ € aAI808)

oy

A

US 2013/0326264 Al

Dec. 5,2013 Sheet 41 of 49

Patent Application Publication

oAOW

AN N

X

$89||S 8Uj} 0} [9A8|
oouewlopad paJinbal ayj pue Jun uopnosxe
1S U843 8U) Jo} [8A8| 8oUELLIOHAd
BU) ‘JIUN UOIINDSXS | S MOU BYj 1o}
[oA8] 8oUBLLIOPSd BU) UO PASEQ JJUN UOIINIaXe
1S mau 3y} 0} Jun uopndaxXa | S Juaund
U} WoJ) $891|S BL) SAOLU 0} JBYjBym sulwIslep

5% A

JUN UONNAaX8 | S JUBLIND BUY) Ul PRIO)S $90I|S
Jo} |an8| sauewlopad paiinbal e aulwislep

57 A

jiun
UoNNoSXe | S MSU Y 0] JIun LUoNN9axs | Sq
UBLIND 8L WoJ) s89l|s ay) Bulisjsuel s1e)|ioe;

4 A

Jun uonasxe | SJ
MaU 3} 0} Jlun uannoaxs | S Jusind au) Wolj
obues ssaJppe N1SQ e bulubisse-a. a)eyl|1oe)

087 A

Jun uonnoaxe 18q
US40 B J0] [9AS] 2oUBWIOLSd B BUIUL@IBp

& i<

JIUN UONNOBXD
1S Mau 8 Jo} [ors| soueLUIoLad B aullLBlep

4 A

1un
UONNDaXa | g MaU E JO BUIUoISSILIWLOD 103j0p
08 A
1

US 2013/0326264 Al

Dec. 5,2013 Sheet 42 of 49

Patent Application Publication

a|NpoW N1 Yl Ul XUjew saleys sy
10 SaIBYS JO Jaquinu y)pim e Bulos 21e)|ioB]

98 A

XlJew saleys e sanpoud 03 Jojoe}
ayy Ag xujew Buiposus sy} Aldynw xujew

<t
~—
LO)|

A

JUBIDIYS0D WOPURI YOBS PUR J0100S
2] SOPN|aUI ey XUIBW JOJooA B S]elausb

N
—
Lo

A

SMOJ JO JagLUNU y)pim
€ PUE SULWN|O2 JO JOQUINU P|OYSaILY} Spodap
B sapnjoul xujew Buipooua ayj Jeyy yons xLieLu
BPUOLISPUEBA B pUE Xujew Ajuapl jeiued
B sapnpul Jeys xujew Buiposus ue ajesoush

O
—
LO|

A

SWg) Jo
BQUINU POYSBIY) 8POISP BU] 10 SWIS) IBYI0 BY)
10 UOBD JO] SN|BA JUSIOLIIS00 WOPUEI B djessush

805 A

SWIS) 1O JequInu ploysa.Ly)
9P02aP BY) 10 WB) JSIIL B 0] J2I00s oy ubisse

505 A

SWLS) 40 JBqUINU PlOYSAIL) p0IBP
€ $9pN|oaul Jey uoissaJdxs olelgable ue ulejqo

oS A

a|npol N1S(q & Ul eBel0)s Joj 12408S B 3AI08)

s 1

G aieys
v aleys
¢ aleys
Z aleys
| 8leys

v

~
~F
o
LL|

oXS + X%+ xki = (u)) :00G uoisseudxa oeigabie

2+ 9% 4 08 20,900
A+ 0%+ @S 20| .9] of
e+ Eu+ges [X el .e e
g — bfojo
‘) S 0] L]0

36F seJeys Og7 J0joon Fgp Xuew Buipoous

US 2013/0326264 Al

Dec. 5,2013 Sheet 43 of 49

Patent Application Publication

Sjiun X4 184
Jo Aijean|d sy Jo awos 1Se3| 1B 8Y) JO 1895gNs
oy Jo sjuswubisse obuel ssaippe N1SQ 8y uo
paseq 1Iun X3 1 S PauoISSILIWOD AmMau auy) JoL
abuel ssaippe N1SQ e 10 Juswubisse a)ey|1oe)

[=o]

828 A

Sjiun X4 184
10 Ajednid 8y 10 sWos 1SB3| 1B B 10 18S0NS
ay) Jo sjuswiubisse abues ssaippe N1 SQ ueqo

A

O
Lo

c

ABojodo} ajnpotw

NLSQ ey uo paseq sjun X3 1 Sq o Anjeunid
B} 0 8WOS ISBA| 1B BY] JO 18NS e 103jes

res A

s)un X3 1Sd Jo Ayeunid ay) jo swos
1se9| Je 8y} Jo ABojodo) einpow N1SQ e Aljuep!

48 A

s)yun
X3 1S Jo Ayjeanid ayp jo swos jses| je Ajuap!

025 A

BINpoW NLSA B 10 sjun X3 18 Jo Ayjeinid
B 101Un X3 | S pPauUoISSILUWOD AMaU B 108)ap

s]

US 2013/0326264 Al

Dec. 5,2013 Sheet 44 of 49

Patent Application Publication

a9t "old J9% "Old g9t "©ld
Zipun | jpqun | gpyun zimun | ypyun | gppun @%I." gimun | jpqun | ogppun [gyun
X3 lsa | x3atsa | xaLsa X31sa | x3alsa | x3isa | x3lsa X31sa | x3aisa | x3Lsa | x3lsa
b ayis g ayis g oyis
gwn | gwn [zyun gwn | gwn | zyun guun | zjun
x3lsa | x3atsa | xaLsa X31sa | x31sa | x3Lsa X310 | x3lsa
g ajis b o)is ¥ a)is
gwun | gpun [pyun gpun | gyun | gwn | swn | gwn | gun
X3150 | x31sa | x31sa x31sa | x31sa | Xx31S0 | Xx318a | X31sa | x3Lsq
Zals Zayis [| Zayis
gwn | zyun L jun ppun | gyun [Zyun Lun pyun | gpun [zyun L jun
X3 1sa | x3atsa | x3Lsa x31sa | x3alsa | x3aisa | xaLsa X31sa | x3aisa | x3Lsa | x3lsa
| as | as | alis
Ziyun | ppun | ooppun [gyun
X31sa | x3aisa | x3Lsa | x3lsa
g oyis
guun | zyn [guwn [gyun
X3 1sa | x3aisa | x3Lsa | x3lsa Y97 914
Z s
puun | gyn [zyun L jun
X31sa | x3aisa | x3Lsa | x3lsa
| oyis

US 2013/0326264 Al

Dec. 5,2013 Sheet 45 of 49

Patent Application Publication

Jled oIS Jusdelpe Jor 913
B} 0} JUBIEIPE JBYLNL BJE JBU) SBYIS JBYI0
8I0LW JO BUO 0} JIed 8IS Jusde[pe ay) Wwolj sjiun
%3 1SQ 2Jou Jo suo Bujuonisoded ajey|ioe;

058 A
1S PUODBS BY) 0}
sjun X3 18a Buiuiewas Buiuonisodal syey|ioe}

Jied ays Jusoelpe su 0} Jusdelpe Jaypn)
JE JeU) SO)IS JOUYJ0 S40W JO BUO WO} Sjun
X3 18Q a.ow Jo auo Buuopisoda. s1ey|oe}

875 A

(=
0|

4

A

8IS Js11} 8U) 0} SHun X3

1S a4 Jo aow Jo auo Buluonisodal ajey[ioe) B}IS M8U 8]} 0} 8)IS PUOOSS 8L} WO SHun

X3 18 2ol Jo auo Buuonisodal ajeyjioe}

E) _ X

sjun
X3 1SQ 8y} uonisodal 0} Jied a)is Jusoelpe 9]ls MaU E 0) 8)Is 1811} 8Y) oJj s)iun
UE JO 8)IS pU02aS PUB 8)IS 181} B Ajjuapl X3 150 2iow Jo suc Bujuopisoda. ajeyioe
575 A 3tg A
$2)IS Judoe(pe Jay)o dI0LW IO SUO UOILIASUI 8)IS MaU e Joy Jied a)is Juaoelpe
) SIUN X3 18q ||e uosodai o) 8)is e Aluapl UE JO 8} PU0IaS pue 8yIs 1sJl B Ajuspl
75 A PO N A
N A

$8)IS JO JOqUINU JuaLIND 8Yy) ey Jejes.b S|
Sa)Is Jo Jaginu pajepdn sy JaLjaym sulLLIS)ep
45 A
S9)IS |0
Jagwinu pajepdn Ue 0} $3)IS JO Jaguinu JUaLINo
e 1B pajedo| jood abelo)s gnpow N1SQ B
JO S)UN UOIINJBX®]S UoHISodal 0 aulLIBIEp

i i

US 2013/0326264 Al

Dec. 5,2013 Sheet 46 of 49

Patent Application Publication

00G J2]/0UCO | o @ @ | 095 J0lI04UOD

09G J8|053u09

A A A
§/G asuodsal
£ [9A3|
<
—>
_ y _ 725G 188nbal
835G 19]04U00 | @ @ @ | BGG Jall0UO0D 355 J0/|04U00 ¢ [9A9
A A A
216G osuodsal
Z 1978
<
_ Y _ >
075 1s8nbal
095G J9)|0U0o | ¢ @ @ | GGG 40lI0AUOD G5 J9]|04U00 AL
A A A
809G asuodsal
| 89
-<—
—>
_ Y _ 099G 1s8nbal
GG J2||0u02 L [9A9)
A
795 esuodsa. 796 150nbay
wajsAs e wo)shs
Y
GG uayp

US 2013/0326264 Al

Dec. 5,2013 Sheet 47 of 49

Patent Application Publication

Ly Ol

19]|0.Ju00
|oAs| Jomo) aU) 0 1senbal paje[suel) ay) pues

065 A

S$S2.Ippe |aAs| JaMO| BY)
U)IM PSJBIDOSSE J9||041U0D [9AB]-1aMO| B Aljusp!

solepdn ay) uo
paseq Jo||0Jju09 [9A8|Jusled e JO 8|ge) Uoiedo|
Jaulejuoo o ssauppe ay) Bunepdn sjeyjioey

™

£8g A

895 A

1senbal pajejsues
B 80Nnpoud 0] SSBIPPE |9A3| JAMO| B 0] SSalppe
[oA8] Jaybiy e ajejsuel) ‘4a||04u0d Juasald
e Ag padinas Apoalip Jou sl 1senbal ay) usym

sojepdn
9|(/e} UOIJEDO| JBUIBJUOD 0} SSaIppe Alljuspl

e85 A

19]|0JU0D PU0IBS BY] 0] J9||04U0D
1811} BY) Wo.) ejep ay) Buiow sje)ijioe)

985 A

O
o

085 A

aWaYos ssalppe
|oAs]-18ybiy e sazi|in jsenbal sy} uisIaym
‘19]|0Ju09 [9A3|-Jaybiy B woJy }senbal e aA808l

|oA8) J3]|0J)UOD UOWWOD B)M pajel|ie
9Je $19]|04)U0D BU) UIRJaYM ‘IB]|0JUOD PUOISS B
0] J9|0JU0D 1S.1) B LLOJ] BJEP SAOW O] SUILIS)Op

= A

[ee]
o

L

A

US 2013/0326264 Al

Dec. 5,2013 Sheet 48 of 49

Patent Application Publication

uoljeziuiido ay) ajey)|oe}

<t
O

709 A

Jun X3 1Sq 8yl
JoJ Julod uoiasul uoneziwndo Jayun e Anuap

Ol

209 A

Jun’x3 1S4 sy 0}
nun x3 18q Aoefis| ayy wouy Jajsuel 0} sbuel

ssaippe Buipuodss.iod e Joj sjuswubisse
abuel ssaippe pue seays buuissues
ajey|e} ‘Nun X3 1 sq Acebal yoes Joj

009 A

apnyubew sbLes SSaIppe UoWWod
L) UM SOUBPJOJIE U| Joysuel} 0 abuel
SS3IppPE UB 199198 ‘JIun X3 18q Aoeba| yoes o}

CO|

365 A

SJun 10 Jaquinu [ejo] e Agq papiap sbuel
ssalppe Jun X3 1 Sq Aoeba e se sjun X3 180
foeBa| om 1se8)| 1B BU) JO YOBD WIOJ) JBJSUB.] 0}
apnjiuBew abuel ssaJppe LOWWOD B aUIWIa}ap

©

%62 A

sjun X3 18q Acefio] om) jses|
1e 8y} Jo} sjuawubisse abuel ssauppe ulelqo

76 A

SIUN X3 1S Aoebal om) Ise3) JE SUIBUCD
Jey) syis e 0} Jiun X3 1 SA € ppe 0} sullisisp

= 1

J8% 9Ol
gun Faun Zuun L Jun
X31Sa | X31Sa | X31sA | X3 1sa
00¥9¢¢ c¢gg9/z SL¢L0C GLL-1OL
ssalppe ‘goz-g/, SSPIppe ssaippe
ssa.ppe
g8t old
Fun g un gnun | Jun
X318a | X31SA | X31S8A | X318a
oow-osc §LE-L0€ GiZlOC GLL-LOL
‘00s-g/z SSIPPE Ssaippe ssaippe
‘002-9.1
sselppe
v8y "Old
gun Zjun L Jun
X31Sa | X31Sa | X31sd
00¥-L0€ 00€-L0Z 00Z-LOL
ssalppe ssaippe ssalppe

US 2013/0326264 Al

Dec. 5,2013 Sheet 49 of 49

Patent Application Publication

67 'Ol

sjulod UOILIASUI 8} LIIm 89UBPIOIOE
ur yun X3 1S mau Buipuodsauiod e o
jun X3 18q Aoehs| suj wolj Jajsuel) o} abuel
ssaippe Bulpuodss.ioo e Joj siuswubisse
obued ssalppe pue seol|s Bulisisuel)
ajejljioe} ‘Jun X3 1 Aoeba) yoes Jo}

[{e/
~
(Lo

A

sjulod uopJasul 40 Jos
ay) pue spnjiubew afuel ssaIppE UOWWOD B}
LM 82UBPIOIJE Ul JBISUBY) 0} dBuel $S2Ippe
Ue sulwJalep ‘Iun X3 18q Aoebs| yoes Jo}

~t|
~]|
[{=

A

sjulod uoiesul
10105 € J0 Jujod uoiuasul Ue Ajjuspl ‘syun
X3 1Sd MaU Jo 18s 841 Jo Jlun X3 180 Yoes Joj

as A

sjjun X3 1S Aoebs| jo Ayjjeind
8U) pue SjUN X3 1S MaU 0 18S 8y} 10 yoes o}
apnyubew abuel ssaippe LOWWOI & sUILLISIep

fam
~
(Lo

A

syun X3 1sq Aoebo) jo Ajeinid
ay} Jo} suswiubisse abuel ssaippe uejgo

(e
[
({=

A

sjun
X3 15 Aoeba) jo Ajjeind e sulejuod jey ajs e

0} SJUN X3 1S MeU J0 Jos B ppe 0} sullL)ep

w A

g6y 'Ol

gLyun | gyun G Jun 6 Jun ¥ Jun
X31SQ | X31Sa | X31Sa | X3 L1sA | X31sd
00-1¥9 O¥9-18G 08S-1¢S 0CS-18y 09F-LOY
§Sappe SSaUppe SSBUpPE Ssappe ssalppe

giun [gun [zun byun | zyun
X31SA | X31Sa | X31sa | X3 L1sa | X31sa
00t-L¥E O¥E-18¢ 08¢-lec 0¢¢-19l 09L-10)
SS2UppE SSOUPPE SSBUPPE SSAIppe ssalppe

vév 'Ol

gwn | gwn [pwn [gun | zZuun L Jun
X31SA | X318 | X318a | X3Llsa | X3 L1sa | X31sd
00-1,09 009-10S 00%-LOF OOV-LOE 00£-L0C 00¢-LOL
SSOppe SSOUPPE SSSIPPE SSAUppE SSAIppe ssauppe

US 2013/0326264 Al

RESOLUTION OF A STORAGE ERROR IN A
DISPERSED STORAGE NETWORK

CROSS REFERENCE TO RELATED PATENTS

[0001] This patent application is claiming priority under 35
USC §119(e) to a provisionally filed patent application
entitted ESTABLISHING AN ADDRESS RANGE
ASSIGNMENT IN A DISTRIBUTED STORAGE AND
TASK NETWORK (Attorney Docket No. CS01093) having a
provisional filing date of Jun. 5, 2012, and a provisional Ser.
No. 61/655,753, which is incorporated herein by reference in
its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not Applicable
INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

[0003] Not Applicable

BACKGROUND OF THE INVENTION

[0004] 1. Technical Field of the Invention

[0005] This invention relates generally to computer net-
works and more particularly to dispersed storage of data and
distributed task processing of data.

[0006] 2. Description of Related Art

[0007] Computing devices are known to communicate
data, process data, and/or store data. Such computing devices
range from wireless smart phones, laptops, tablets, personal
computers (PC), work station, video game devices, to data
centers that support millions of web searches, stock trades, or
on-line purchases every day. In general, a computing device
includes a central processing unit (CPU), a memory system,
user input/output interfaces, peripheral device interfaces, and
an interconnecting bus structure.

[0008] As is further known, a computer may effectively
extend its CPU by using “cloud computing” to perform one or
more computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the
computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an open
source software framework that supports distributed applica-
tions enabling application execution by thousands of comput-
ers.

[0009] Inaddition to cloud computing, a computer may use
“cloud storage” as part of its memory system. As is known,
cloud storage enables a user, via its computer, to store files,
applications, etc. on an Internet storage system. The Internet
storage system may include a RAID (redundant array of
independent disks) system and/or a dispersed storage system
that uses an error correction scheme to encode data for stor-
age.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

[0010] FIG. 1 is a schematic block diagram of an embodi-
ment of a distributed computing system in accordance with
the present invention;

Dec. 5, 2013

[0011] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core in accordance with the present
invention;

[0012] FIG. 3 is a diagram of an example of a distributed
storage and task processing in accordance with the present
invention;

[0013] FIG. 4 is a schematic block diagram of an embodi-
ment of an outbound distributed storage and/or task (DST)
processing in accordance with the present invention;

[0014] FIG. 5is alogic diagram of an example of a method
for outbound DST processing in accordance with the present
invention;

[0015] FIG. 6 is a schematic block diagram of an embodi-
ment of a dispersed error encoding in accordance with the
present invention;

[0016] FIG. 7 is a diagram of an example of a segment
processing of the dispersed error encoding in accordance with
the present invention;

[0017] FIG. 8 is a diagram of an example of error encoding
and slicing processing of the dispersed error encoding in
accordance with the present invention;

[0018] FIG. 9 is a diagram of an example of grouping
selection processing of the outbound DST processing in
accordance with the present invention;

[0019] FIG. 10 is a diagram of an example of converting
data into slice groups in accordance with the present inven-
tion;

[0020] FIG. 11 is a schematic block diagram of an embodi-
ment of'a DST execution unit in accordance with the present
invention;

[0021] FIG. 12 s a schematic block diagram of an example
of operation of a DST execution unit in accordance with the
present invention;

[0022] FIG. 13 is a schematic block diagram of an embodi-
ment of an inbound distributed storage and/or task (DST)
processing in accordance with the present invention;

[0023] FIG.14isalogic diagram of an example of a method
for inbound DST processing in accordance with the present
invention;

[0024] FIG. 15 is a diagram of an example of de-grouping
selection processing of the inbound DST processing in accor-
dance with the present invention;

[0025] FIG. 16 is a schematic block diagram of an embodi-
ment of a dispersed error decoding in accordance with the
present invention;

[0026] FIG.17is adiagram of an example of de-slicing and
error decoding processing of the dispersed error decoding in
accordance with the present invention;

[0027] FIG. 18 is a diagram of an example of a de-segment
processing of the dispersed error decoding in accordance with
the present invention;

[0028] FIG. 19 is a diagram of an example of converting
slice groups into data in accordance with the present inven-
tion;

[0029] FIG. 20 is a diagram of an example of a distributed
storage within the distributed computing system in accor-
dance with the present invention;

[0030] FIG. 21 is a schematic block diagram of an example
of operation of outbound distributed storage and/or task
(DST) processing for storing data in accordance with the
present invention;

[0031] FIG. 22 is a schematic block diagram of an example
of a dispersed error encoding for the example of FIG. 21 in
accordance with the present invention;

US 2013/0326264 Al

[0032] FIG. 23 is a diagram of an example of converting
data into pillar slice groups for storage in accordance with the
present invention;

[0033] FIG. 24 is a schematic block diagram of an example
of a storage operation of a DST execution unit in accordance
with the present invention;

[0034] FIG. 25 is a schematic block diagram of an example
of'operation of inbound distributed storage and/or task (DST)
processing for retrieving dispersed error encoded data in
accordance with the present invention;

[0035] FIG. 26 is a schematic block diagram of an example
of a dispersed error decoding for the example of FIG. 25 in
accordance with the present invention;

[0036] FIG.27 is a schematic block diagram of an example
of'a distributed storage and task processing network (DSTN)
module storing a plurality of data and a plurality of task codes
in accordance with the present invention;

[0037] FIG. 28 is a schematic block diagram of an example
of the distributed computing system performing tasks on
stored data in accordance with the present invention;

[0038] FIG. 29 is a schematic block diagram of an embodi-
ment of a task distribution module facilitating the example of
FIG. 28 in accordance with the present invention;

[0039] FIG. 30 is a diagram of a specific example of the
distributed computing system performing tasks on stored data
in accordance with the present invention;

[0040] FIG. 31 is a schematic block diagram of an example
of'a distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FI1G. 30
in accordance with the present invention;

[0041] FIG. 32 is a diagram of an example of DST alloca-
tion information for the example of FIG. 30 in accordance
with the present invention;

[0042] FIGS. 33-38 are schematic block diagrams of the
DSTN module performing the example of FIG. 30 in accor-
dance with the present invention;

[0043] FIG. 39 is a diagram of an example of combining
result information into final results for the example of FIG. 30
in accordance with the present invention;

[0044] FIG. 40A is a schematic block diagram of an
embodiment of a dispersed storage network in accordance
with the present invention;

[0045] FIG. 40B is a flowchart illustrating an example of
changing a request priority level in accordance with the
present invention;

[0046] FIG. 41A is a schematic block diagram of another
embodiment of a dispersed storage network in accordance
with the present invention;

[0047] FIG. 41B is a flowchart illustrating an example of a
adjusting slice access in accordance with the present inven-
tion;

[0048] FIG. 42 is a flowchart illustrating an example of
synchronizing distributed storage and task (DSTN) network
data in accordance with the present invention;

[0049] FIG. 43 is a flowchart illustrating an example of
assigning an address range in accordance with the present
invention;

[0050] FIG. 44A is a diagram illustrating an example of
matrix multiplication to encode a secret in accordance with
the present invention;

[0051] FIG. 44B is a flowchart illustrating an example of
encoding a secret in accordance with the present invention;

Dec. 5, 2013

[0052] FIG. 45 is a flowchart illustrating another example
of assigning an address range in accordance with the present
invention;

[0053] FIG. 46A is a diagram illustrating an example of a
site mapping in accordance with the present invention;
[0054] FIG. 468 is a diagram illustrating another example
of a site mapping in accordance with the present invention;
[0055] FIG. 46C is a diagram illustrating another example
of a site mapping in accordance with the present invention;
[0056] FIG. 46D is a diagram illustrating another example
of a site mapping in accordance with the present invention;
[0057] FIG. 46E is a flowchart illustrating an example of
migrating distributed storage and task (DST) execution units
in accordance with the present invention;

[0058] FIG. 47A is a schematic block diagram of another
embodiment of a distributed computing system in accordance
with the present invention;

[0059] FIG. 47B is a flowchart illustrating an example of
migrating data in accordance with the present invention;
[0060] FIG. 47C is a flowchart illustrating an example of
facilitating access of data in accordance with the present
invention;

[0061] FIG. 48A is a diagram illustrating an example of an
address range mapping in accordance with the present inven-
tion;

[0062] FIG. 48B is a diagram illustrating another example
of an address range mapping in accordance with the present
invention;

[0063] FIG. 48C is a diagram illustrating another example
of an address range mapping in accordance with the present
invention;

[0064] FIG. 48D is a flowchart illustrating an example of
updating an address range assignment in accordance with the
present invention;

[0065] FIG. 49A is a diagram illustrating another example
of an address range mapping in accordance with the present
invention;

[0066] FIG. 49B is a diagram illustrating another example
of an address range mapping in accordance with the present
invention; and

[0067] FIG.49Cis a flowchart illustrating another example
of' updating an address range assignment in accordance with
the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0068] FIG. 1 is a schematic block diagram of an embodi-
ment of a distributed computing system 10 that includes a
user device 12 and/or a user device 14, a distributed storage
and/or task (DST) processing unit 16, a distributed storage
and/or task network (DSTN) managing unit 18, a DST integ-
rity processing unit 20, and a distributed storage and/or task
network (DSTN) module 22. The components of the distrib-
uted computing system 10 are coupled via a network 24,
which may include one or more wireless and/or wire lined
communication systems; one or more private intranet systems
and/or public internet systems; and/or one or more local area
networks (LAN) and/or wide area networks (WAN).

[0069] The DSTN module 22 includes a plurality of dis-
tributed storage and/or task (DST) execution units 36 that
may be located at geographically different sites (e.g., one in
Chicago, one in Milwaukee, etc.). Each of the DST execution
units is operable to store dispersed error encoded data and/or
to execute, in a distributed manner, one or more tasks on data.
The tasks may be a simple function (e.g., a mathematical

US 2013/0326264 Al

function, a logic function, an identify function, a find func-
tion, a search engine function, a replace function, etc.), a
complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc.

[0070] Each of'the user devices 12-14, the DST processing
unit 16, the DSTN managing unit 18, and the DST integrity
processing unit 20 include a computing core 26 and may be a
portable computing device and/or a fixed computing device.
A portable computing device may be a social networking
device, a gaming device, a cell phone, a smart phone, a per-
sonal digital assistant, a digital music player, a digital video
player, a laptop computer, a handheld computer, a tablet, a
video game controller, and/or any other portable device that
includes a computing core. A fixed computing device may be
a personal computer (PC), a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-
sole, and/or any type of home or office computing equipment.
User device 12 and DST processing unit 16 are configured to
include a DST client module 34.

[0071] Withrespectto interfaces, each interface 30, 32, and
33 includes software and/or hardware to support one or more
communication links via the network 24 indirectly and/or
directly. For example, interfaces 30 support a communication
link (e.g., wired, wireless, direct, via a LAN, via the network
24, etc.) between user device 14 and the DST processing unit
16. As another example, interface 32 supports communica-
tion links (e.g., a wired connection, a wireless connection, a
LAN connection, and/or any other type of connection to/from
the network 24) between user device 12 and the DSTN mod-
ule 22 and between the DST processing unit 16 and the DSTN
module 22. As yet another example, interface 33 supports a
communication link for each of the DSTN managing unit 18
and DST integrity processing unit 20 to the network 24.
[0072] The distributed computing system 10 is operable to
support dispersed storage (DS) error encoded data storage
and retrieval, to support distributed task processing on
received data, and/or to support distributed task processing on
stored data. In general and with respect to DS error encoded
data storage and retrieval, the distributed computing system
10 supports three primary operations: storage management,
data storage and retrieval (an example of which will be dis-
cussed with reference to FIGS. 20-26), and data storage integ-
rity verification. In accordance with these three primary func-
tions, data can be encoded, distributedly stored in physically
different locations, and subsequently retrieved in a reliable
and secure manner. Such a system is tolerant of a significant
number of failures (e.g., up to a failure level, which may be
greater than or equal to a pillar width minus a decode thresh-
old minus one) that may result from individual storage device
failures and/or network equipment failures without loss of
data and without the need for a redundant or backup copy.
Further, the system allows the data to be stored for an indefi-
nite period of time without data loss and does so in a secure
manner (e.g., the system is very resistant to attempts at hack-
ing the data).

[0073] The second primary function (i.e., distributed data
storage and retrieval) begins and ends with a user device
12-14. Forinstance, if a second type of user device 14 has data
40 to store in the DSTN module 22, it sends the data 40 to the
DST processing unit 16 via its interface 30. The interface 30

Dec. 5, 2013

functions to mimic a conventional operating system (OS) file
system interface (e.g., network file system (NFS), flash file
system (FFS), disk file system (DFS), file transfer protocol
(FTP), web-based distributed authoring and versioning
(WebDAV), etc.) and/or a block memory interface (e.g., small
computer system interface (SCSI), internet small computer
system interface (iISCSI), etc.). In addition, the interface 30
may attach a user identification code (ID) to the data 40.
[0074] To support storage management, the DSTN manag-
ing unit 18 performs DS management services. One such DS
management service includes the DSTN managing unit 18
establishing distributed data storage parameters (e.g., vault
creation, distributed storage parameters, security parameters,
billing information, user profile information, etc.) for a user
device 12-14 individually or as part of a group of user devices.
For example, the DSTN managing unit 18 coordinates cre-
ation of a vault (e.g., a virtual memory block) within memory
of'the DSTN module 22 for a user device, a group of devices,
or for public access and establishes per vault dispersed stor-
age (DS) error encoding parameters for a vault. The DSTN
managing unit 18 may facilitate storage of DS error encoding
parameters for each vault of a plurality of vaults by updating
registry information for the distributed computing system 10.
The facilitating includes storing updated registry information
in one or more of the DSTN module 22, the user device 12, the
DST processing unit 16, and the DST integrity processing
unit 20.

[0075] The DS error encoding parameters (e.g. or dispersed
storage error coding parameters) include data segmenting
information (e.g., how many segments data (e.g., a file, a
group of files, a data block, etc.) is divided into), segment
security information (e.g., per segment encryption, compres-
sion, integrity checksum, etc.), error coding information (e.g.,
pillar width, decode threshold, read threshold, write thresh-
old, etc.), slicing information (e.g., the number of encoded
data slices that will be created for each data segment); and
slice security information (e.g., per encoded data slice
encryption, compression, integrity checksum, etc.).

[0076] The DSTN managing module 18 creates and stores
user profile information (e.g., an access control list (ACL)) in
local memory and/or within memory of the DSTN module 22.
The user profile information includes authentication informa-
tion, permissions, and/or the security parameters. The secu-
rity parameters may include encryption/decryption scheme,
one or more encryption keys, key generation scheme, and/or
data encoding/decoding scheme.

[0077] The DSTN managing unit 18 creates billing infor-
mation for a particular user, a user group, a vault access,
public vault access, etc. For instance, the DSTN managing
unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access billing information. In another instance, the DSTN
managing unit 18 tracks the amount of data stored and/or
retrieved by a user device and/or a user group, which can be
used to generate a per-data-amount billing information.
[0078] Another DS management service includes the
DSTN managing unit 18 performing network operations, net-
work administration, and/or network maintenance. Network
operations includes authenticating user data allocation
requests (e.g., read and/or write requests), managing creation
of vaults, establishing authentication credentials for user
devices, adding/deleting components (e.g., user devices, DST
execution units, and/or DST processing units) from the dis-
tributed computing system 10, and/or establishing authenti-

US 2013/0326264 Al

cation credentials for DST execution units 36. Network
administration includes monitoring devices and/or units for
failures, maintaining vault information, determining device
and/or unit activation status, determining device and/or unit
loading, and/or determining any other system level operation
that affects the performance level of the system 10. Network
maintenance includes facilitating replacing, upgrading,
repairing, and/or expanding a device and/or unit of the system
10.

[0079] To support data storage integrity verification within
the distributed computing system 10, the DST integrity pro-
cessing unit 20 performs rebuilding of ‘bad’ or missing
encoded data slices. At a high level, the DST integrity pro-
cessing unit 20 performs rebuilding by periodically attempt-
ing to retrieve/list encoded data slices, and/or slice names of
the encoded data slices, from the DSTN module 22. For
retrieved encoded slices, they are checked for errors due to
data corruption, outdated version, etc. If a slice includes an
error, it is flagged as a “bad’ slice. For encoded data slices that
were not received and/or not listed, they are flagged as miss-
ing slices. Bad and/or missing slices are subsequently rebuilt
using other retrieved encoded data slices that are deemed to
be good slices to produce rebuilt slices. The rebuilt slices are
stored in memory of the DSTN module 22. Note that the DST
integrity processing unit 20 may be a separate unit as shown,
it may be included inthe DSTN module 22, it may be included
in the DST processing unit 16, and/or distributed among the
DST execution units 36.

[0080] To support distributed task processing on received
data, the distributed computing system 10 has two primary
operations: DST (distributed storage and/or task processing)
management and DST execution on received data (an
example of which will be discussed with reference to FIGS.
3-19). With respect to the storage portion of the DST man-
agement, the DSTN managing unit 18 functions as previously
described. With respect to the tasking processing of the DST
management, the DSTN managing unit 18 performs distrib-
uted task processing (DTP) management services. One such
DTP management service includes the DSTN managing unit
18 establishing DTP parameters (e.g., user-vault affiliation
information, billing information, user-task information, etc.)
for a user device 12-14 individually or as part of a group of
user devices.

[0081] Another DTP management service includes the
DSTN managing unit 18 performing DTP network opera-
tions, network administration (which is essentially the same
as described above), and/or network maintenance (which is
essentially the same as described above). Network operations
includes, but is not limited to, authenticating user task pro-
cessing requests (e.g., valid request, valid user, etc.), authen-
ticating results and/or partial results, establishing DTP
authentication credentials for user devices, adding/deleting
components (e.g., user devices, DST execution units, and/or
DST processing units) from the distributed computing sys-
tem, and/or establishing DTP authentication credentials for
DST execution units.

[0082] To support distributed task processing on stored
data, the distributed computing system 10 has two primary
operations: DST (distributed storage and/or task) manage-
ment and DST execution on stored data. With respect to the
DST execution on stored data, if the second type of user
device 14 has a task request 38 for execution by the DSTN
module 22, it sends the task request 38 to the DST processing
unit 16 via its interface 30. An example of DST execution on

Dec. 5, 2013

stored data will be discussed in greater detail with reference to
FIGS. 27-39. With respect to the DST management, it is
substantially similar to the DST management to support dis-
tributed task processing on received data.

[0083] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core 26 that includes a processing mod-
ule 50, a memory controller 52, main memory 54, a video
graphics processing unit 55, an input/output (IO) controller
56, a peripheral component interconnect (PCI) interface 58,
an IO interface module 60, at least one 10 device interface
module 62, a read only memory (ROM) basic input output
system (BIOS) 64, and one or more memory interface mod-
ules. The one or more memory interface module(s) includes
one or more of a universal serial bus (USB) interface module
66, a host bus adapter (HBA) interface module 68, a network
interface module 70, a flash interface module 72, a hard drive
interface module 74, and a DSTN interface module 76.
[0084] The DSTN interface module 76 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS), disk
file system (DFS), file transfer protocol (FTP), web-based
distributed authoring and versioning (WebDAV), etc.) and/or
a block memory interface (e.g., small computer system inter-
face (SCSI), internet small computer system interface
(iSCSI), etc.). The DSTN interface module 76 and/or the
network interface module 70 may function as the interface 30
ofthe user device 14 of FIG. 1. Further note that the IO device
interface module 62 and/or the memory interface modules
may be collectively or individually referred to as 10 ports.
[0085] FIG. 3 is a diagram of an example of the distributed
computing system performing a distributed storage and task
processing operation. The distributed computing system
includes a DST (distributed storage and/or task) client mod-
ule 34 (which may be in user device 14 and/or in DST pro-
cessing unit 16 of FIG. 1), a network 24, a plurality of DST
execution units 1-n that includes two or more DST execution
units 36 of FIG. 1 (which form at least a portion of DSTN
module 22 of FIG. 1), a DST managing module (not shown),
and a DST integrity verification module (not shown). The
DST client module 34 includes an outbound DST processing
section 80 and an inbound DST processing section 82. Each
of the DST execution units 1-n includes a controller 86, a
processing module 84, memory 88, a DT (distributed task)
execution module 90, and a DST client module 34.

[0086] In an example of operation, the DST client module
34 receives data 92 and one or more tasks 94 to be performed
upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few Terra-
Bytes), the content (e.g., secure data, etc.), and/or task(s)
(e.g., MIPS intensive), distributed processing of the task(s) on
the data is desired. For example, the data 92 may be one or
more digital books, a copy of a company’s emails, a large-
scale Internet search, a video security file, one or more enter-
tainment video files (e.g., television programs, movies, etc.),
data files, and/or any other large amount of data (e.g., greater
than a few Terra-Bytes).

[0087] Within the DST client module 34, the outbound
DST processing section 80 receives the data 92 and the task(s)
94. The outbound DST processing section 80 processes the
data 92 to produce slice groupings 96. As an example of such
processing, the outbound DST processing section 80 parti-
tions the data 92 into a plurality of data partitions. For each
data partition, the outbound DST processing section 80 dis-
persed storage (DS) error encodes the data partition to pro-

US 2013/0326264 Al

duce encoded data slices and groups the encoded data slices
into a slice grouping 96. In addition, the outbound DST pro-
cessing section 80 partitions the task 94 into partial tasks 98,
where the number of partial tasks 98 may correspond to the
number of slice groupings 96.

[0088] The outbound DST processing section 80 then
sends, via the network 24, the slice groupings 96 and the
partial tasks 98 to the DST execution units 1-n of the DSTN
module 22 of FIG. 1. For example, the outbound DST pro-
cessing section 80 sends slice group 1 and partial task 1 to
DST execution unit 1. As another example, the outbound DST
processing section 80 sends slice group #n and partial task #n
to DST execution unit #n.

[0089] Each DST execution unit performs its partial task 98
upon its slice group 96 to produce partial results 102. For
example, DST execution unit #1 performs partial task #1 on
slice group #1 to produce a partial result #1, for results. As a
more specific example, slice group #1 corresponds to a data
partition of a series of digital books and the partial task #1
corresponds to searching for specific phrases, recording
where the phrase is found, and establishing a phrase count. In
this more specific example, the partial result #1 includes
information as to where the phrase was found and includes the
phrase count.

[0090] Upon completion of generating their respective par-
tial results 102, the DST execution units send, via the network
24, their partial results 102 to the inbound DST processing
section 82 of the DST client module 34. The inbound DST
processing section 82 processes the received partial results
102 to produce a result 104. Continuing with the specific
example of the preceding paragraph, the inbound DST pro-
cessing section 82 combines the phrase count from each of the
DST execution units 36 to produce a total phrase count. In
addition, the inbound DST processing section 82 combines
the ‘where the phrase was found’ information from each of
the DST execution units 36 within their respective data par-
titions to produce ‘where the phrase was found’ information
for the series of digital books.

[0091] In another example of operation, the DST client
module 34 requests retrieval of stored data within the memory
of the DST execution units 36 (e.g., memory of the DSTN
module). In this example, the task 94 is retrieve data stored in
the memory of the DSTN module. Accordingly, the outbound
DST processing section 80 converts the task 94 into a plural-
ity of partial tasks 98 and sends the partial tasks 98 to the
respective DST execution units 1-n.

[0092] Inresponse to the partial task 98 of retrieving stored
data, a DST execution unit 36 identifies the corresponding
encoded data slices 100 and retrieves them. For example,
DST execution unit #1 receives partial task #1 and retrieves,
in response thereto, retrieved slices #1. The DST execution
units 36 send their respective retrieved slices 100 to the
inbound DST processing section 82 via the network 24.
[0093] The inbound DST processing section 82 converts
the retrieved slices 100 into data 92. For example, the inbound
DST processing section 82 de-groups the retrieved slices 100
to produce encoded slices per data partition. The inbound
DST processing section 82 then DS error decodes the
encoded slices per data partition to produce data partitions.
The inbound DST processing section 82 de-partitions the data
partitions to recapture the data 92.

[0094] FIG. 4 is a schematic block diagram of an embodi-
ment of an outbound distributed storage and/or task (DST)
processing section 80 of a DST client module 34 FIG. 1

Dec. 5, 2013

coupled to a DSTN module 22 of a FIG. 1 (e.g., a plurality of
n DST execution units 36) via a network 24. The outbound
DST processing section 80 includes a data partitioning mod-
ule 110, a dispersed storage (DS) error encoding module 112,
a grouping selector module 114, a control module 116, and a
distributed task control module 118.

[0095] In an example of operation, the data partitioning
module 110 partitions data 92 into a plurality of data parti-
tions 120. The number of partitions and the size of the parti-
tions may be selected by the control module 116 via control
160 based on the data 92 (e.g., its size, its content, etc.), a
corresponding task 94 to be performed (e.g., simple, com-
plex, single step, multiple steps, etc.), DS encoding param-
eters (e.g., pillar width, decode threshold, write threshold,
segment security parameters, slice security parameters, etc.),
capabilities of the DST execution units 36 (e.g., processing
resources, availability of processing recourses, etc.), and/or
as may be inputted by a user, system administrator, or other
operator (human or automated). For example, the data parti-
tioning module 110 partitions the data 92 (e.g., 100 Terra-
Bytes) into 100,000 data segments, each being 1 Giga-Byte in
size. Alternatively, the data partitioning module 110 parti-
tions the data 92 into a plurality of data segments, where some
of data segments are of a different size, are of the same size,
or a combination thereof.

[0096] The DS error encoding module 112 receives the data
partitions 120 in a serial manner, a parallel manner, and/or a
combination thereof. For each data partition 120, the DS error
encoding module 112 DS error encodes the data partition 120
in accordance with control information 160 from the control
module 116 to produce encoded data slices 122. The DS error
encoding includes segmenting the data partition into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC),
etc.), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC), etc.). The control information 160
indicates which steps of the DS error encoding are active for
a given data partition and, for active steps, indicates the
parameters for the step. For example, the control information
160 indicates that the error encoding is active and includes
error encoding parameters (e.g., pillar width, decode thresh-
old, write threshold, read threshold, type of error encoding,
etc.).

[0097] The group selecting module 114 groups the encoded
slices 122 of a data partition into a set of slice groupings 96.
The number of slice groupings corresponds to the number of
DST execution units 36 identified for a particular task 94. For
example, if five DST execution units 36 are identified for the
particular task 94, the group selecting module groups the
encoded slices 122 of a data partition into five slice groupings
96. The group selecting module 114 outputs the slice group-
ings 96 to the corresponding DST execution units 36 via the
network 24.

[0098] Thedistributed task control module 118 receives the
task 94 and converts the task 94 into a set of partial tasks 98.
For example, the distributed task control module 118 receives
atask to find where in the data (e.g., a series of books) a phrase
occurs and a total count of the phrase usage in the data. In this
example, the distributed task control module 118 replicates
the task 94 for each DST execution unit 36 to produce the
partial tasks 98. In another example, the distributed task con-
trol module 118 receives a task to find where in the data a first
phrase occurs, wherein in the data a second phrase occurs, and

US 2013/0326264 Al

atotal count for each phrase usage in the data. In this example,
the distributed task control module 118 generates a first set of
partial tasks 98 for finding and counting the first phase and a
second set of partial tasks for finding and counting the second
phrase. The distributed task control module 118 sends respec-
tive first and/or second partial tasks 98 to each DST execution
unit 36.

[0099] FIG.5 is alogic diagram of an example of a method
for outbound distributed storage and task (DST) processing
that begins at step 126 where a DST client module receives
data and one or more corresponding tasks. The method con-
tinues at step 128 where the DST client module determines a
number of DST units to support the task for one or more data
partitions. For example, the DST client module may deter-
mine the number of DST units to support the task based on the
size of the data, the requested task, the content of the data, a
predetermined number (e.g., user indicated, system adminis-
trator determined, etc.), available DST units, capability of the
DST units, and/or any other factor regarding distributed task
processing of the data. The DST client module may select the
same DST units for each data partition, may select different
DST units for the data partitions, or a combination thereof.
[0100] The method continues at step 130 where the DST
client module determines processing parameters of the data
based on the number of DST units selected for distributed task
processing. The processing parameters include data partition-
ing information, DS encoding parameters, and/or slice group-
ing information. The data partitioning information includes a
number of data partitions, size of each data partition, and/or
organization of the data partitions (e.g., number of data
blocks in a partition, the size of the data blocks, and arrange-
ment of the data blocks). The DS encoding parameters
include segmenting information, segment security informa-
tion, error encoding information (e.g., dispersed storage error
encoding function parameters including one or more of pillar
width, decode threshold, write threshold, read threshold, gen-
erator matrix), slicing information, and/or per slice security
information. The slice grouping information includes infor-
mation regarding how to arrange the encoded data slices into
groups for the selected DST units. As a specific example, if
the DST client module determines that five DST units are
needed to support the task, then it determines that the error
encoding parameters include a pillar width of five and a
decode threshold of three.

[0101] The method continues at step 132 where the DST
client module determines task partitioning information (e.g.,
how to partition the tasks) based on the selected DST units
and data processing parameters. The data processing param-
eters include the processing parameters and DST unit capa-
bility information. The DST unit capability information
includes the number of DT (distributed task) execution units,
execution capabilities of each DT execution unit (e.g., MIPS
capabilities, processing resources (e.g., quantity and capabil-
ity of microprocessors, CPUs, digital signal processors, co-
processor, microcontrollers, arithmetic logic circuitry, and/or
and the other analog and/or digital processing circuitry),
availability of the processing resources, memory information
(e.g., type, size, availability, etc.), and/or any information
germane to executing one or more tasks.

[0102] The method continues at step 134 where the DST
client module processes the data in accordance with the pro-
cessing parameters to produce slice groupings. The method
continues at step 136 where the DST client module partitions
the task based on the task partitioning information to produce

Dec. 5, 2013

a set of partial tasks. The method continues at step 138 where
the DST client module sends the slice groupings and the
corresponding partial tasks to respective DST units.

[0103] FIG. 6 is a schematic block diagram of an embodi-
ment of the dispersed storage (DS) error encoding module
112 of an outbound distributed storage and task (DST) pro-
cessing section. The DS error encoding module 112 includes
a segment processing module 142, a segment security pro-
cessing module 144, an error encoding module 146, a slicing
module 148, and a per slice security processing module 150.
Each of these modules is coupled to a control module 116 to
receive control information 160 therefrom.

[0104] Inan example of operation, the segment processing
module 142 receives a data partition 120 from a data parti-
tioning module and receives segmenting information as the
control information 160 from the control module 116. The
segmenting information indicates how the segment process-
ing module 142 is to segment the data partition 120. For
example, the segmenting information indicates how many
rows to segment the data based on a decode threshold of an
error encoding scheme, indicates how many columns to seg-
ment the data into based on a number and size of data blocks
within the data partition 120, and indicates how many col-
umns to include in a data segment 152. The segment process-
ing module 142 segments the data 120 into data segments 152
in accordance with the segmenting information.

[0105] The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., cyclic redun-
dancy check (CRC), etc.), and/or any other type of digital
security. For example, when the segment security processing
module 144 is enabled, it may compress a data segment 152,
encrypt the compressed data segment, and generate a CRC
value for the encrypted data segment to produce a secure data
segment 154. When the segment security processing module
144 is not enabled, it passes the data segments 152 to the error
encoding module 146 or is bypassed such that the data seg-
ments 152 are provided to the error encoding module 146.
[0106] The error encoding module 146 encodes the secure
data segments 154 in accordance with error correction encod-
ing parameters received as control information 160 from the
control module 116. The error correction encoding param-
eters (e.g., also referred to as dispersed storage error coding
parameters) include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Salomon based algorithm, an online coding algorithm, an
information dispersal algorithm, etc.), a pillar width, a decode
threshold, a read threshold, a write threshold, etc. For
example, the error correction encoding parameters identify a
specific error correction encoding scheme, specifies a pillar
width of five, and specifies a decode threshold of three. From
these parameters, the error encoding module 146 encodes a
data segment 154 to produce an encoded data segment 156.
[0107] The slicing module 148 slices the encoded data seg-
ment 156 in accordance with the pillar width of the error
correction encoding parameters received as control informa-
tion 160. For example, if the pillar width is five, the slicing
module 148 slices an encoded data segment 156 into a set of
five encoded data slices. As such, for a plurality of data
segments 156 for a given data partition, the slicing module
outputs a plurality of sets of encoded data slices 158.

US 2013/0326264 Al

[0108] The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice 158 based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it com-
presses an encoded data slice 158, encrypts the compressed
encoded data slice, and generates a CRC value for the
encrypted encoded data slice to produce a secure encoded
data slice 122. When the per slice security processing module
150 is not enabled, it passes the encoded data slices 158 or is
bypassed such that the encoded data slices 158 are the output
of the DS error encoding module 112. Note that the control
module 116 may be omitted and each module stores its own
parameters.

[0109] FIG. 7 is a diagram of an example of a segment
processing of a dispersed storage (DS) error encoding mod-
ule. In this example, a segment processing module 142
receives a data partition 120 that includes 45 data blocks (e.g.,
d1-d45), receives segmenting information (i.e., control infor-
mation 160) from a control module, and segments the data
partition 120 in accordance with the control information 160
to produce data segments 152. Each data block may be of the
same size as other data blocks or of a different size. In addi-
tion, the size of each data block may be a few bytes to
megabytes of data. As previously mentioned, the segmenting
information indicates how many rows to segment the data
partition into, indicates how many columns to segment the
data partition into, and indicates how many columns to
include in a data segment.

[0110] In this example, the decode threshold of the error
encoding scheme is three; as such the number of rows to
divide the data partition into is three. The number of columns
for each row is set to 15, which is based on the number and
size of data blocks. The data blocks of the data partition are
arranged in rows and columns in a sequential order (i.e., the
first row includes the first 15 data blocks; the second row
includes the second 15 data blocks; and the third row includes
the last 15 data blocks).

[0111] With the data blocks arranged into the desired
sequential order, they are divided into data segments based on
the segmenting information. In this example, the data parti-
tion is divided into 8 data segments; the first 7 include 2
columns of three rows and the last includes 1 column of three
rows. Note that the first row of the 8 data segments is in
sequential order of the first 15 data blocks; the second row of
the 8 data segments in sequential order of the second 15 data
blocks; and the third row of the 8 data segments in sequential
order of the last 15 data blocks. Note that the number of data
blocks, the grouping of the data blocks into segments, and
size of the data blocks may vary to accommodate the desired
distributed task processing function.

[0112] FIG. 8 is a diagram of an example of error encoding
and slicing processing of the dispersed error encoding pro-
cessing the data segments of FIG. 7. In this example, data
segment 1 includes 3 rows with each row being treated as one
word for encoding. As such, data segment 1 includes three
words for encoding: word 1 including data blocks d1 and d2,
word 2 including data blocks d16 and d17, and word 3 includ-
ing data blocks d31 and d32. Each of data segments 2-7
includes three words where each word includes two data

Dec. 5, 2013

blocks. Data segment 8 includes three words where each word
includes a single data block (e.g., d15, d30, and d45).
[0113] In operation, an error encoding module 146 and a
slicing module 148 convert each data segment into a set of
encoded data slices in accordance with error correction
encoding parameters as control information 160. More spe-
cifically, when the error correction encoding parameters indi-
cate a unity matrix Reed-Solomon based encoding algorithm,
5 pillars, and decode threshold of 3, the first three encoded
data slices of the set of encoded data slices for a data segment
are substantially similar to the corresponding word of the data
segment. For instance, when the unity matrix Reed-Solomon
based encoding algorithm is applied to data segment 1, the
content of the first encoded data slice (DS1_d1&2) of the first
set of encoded data slices (e.g., corresponding to data seg-
ment 1) is substantially similar to content of the first word
(e.g., d1 & d2); the content of the second encoded data slice
(DS1_d16&17) of the first set of encoded data slices is sub-
stantially similar to content of the second word (e.g., d16 &
d17); and the content of the third encoded data slice (DS1_
d31&32) of the first set of encoded data slices is substantially
similar to content of the third word (e.g., d31 & d32).
[0114] The content of the fourth and fifth encoded data
slices (e.g., ES1_1 and ES1_ 2) of the first set of encoded
data slices include error correction data based on the first-
third words of the first data segment. With such an encoding
and slicing scheme, retrieving any three of the five encoded
data slices allows the data segment to be accurately recon-
structed.

[0115] The encoding and slices of data segments 2-7 yield
sets of encoded data slices similar to the set of encoded data
slices of data segment 1. For instance, the content of the first
encoded data slice (DS2_d3&4) of the second set of encoded
data slices (e.g., corresponding to data segment 2) is substan-
tially similar to content of the first word (e.g., d3 & d4); the
content of the second encoded data slice (DS2_d18&19) of
the second set of encoded data slices is substantially similar to
content of the second word (e.g., d18 & d19); and the content
of' the third encoded data slice (DS2_d33&34) of the second
set of encoded data slices is substantially similar to content of
the third word (e.g., d33 & d34). The content of the fourth and
fifth encoded data slices (e.g., ES1_1 and ES1_2) of the
second set of encoded data slices includes error correction
data based on the first-third words of the second data segment.
[0116] FIG. 9 is a diagram of an example of grouping
selection processing of an outbound distributed storage and
task (DST) processing in accordance with group selection
information as control information 160 from a control mod-
ule. Encoded slices for data partition 122 are grouped in
accordance with the control information 160 to produce slice
groupings 96. In this example, a grouping selection module
114 organizes the encoded data slices into five slice groupings
(e.g., one for each DST execution unit of a distributed storage
and task network (DSTN) module). As a specific example, the
grouping selection module 114 creates a first slice grouping
for a DST execution unit #1, which includes first encoded
slices of each of the sets of encoded slices. As such, the first
DST execution unit receives encoded data slices correspond-
ing to data blocks 1-15 (e.g., encoded data slices of contigu-
ous data).

[0117] The grouping selection module 114 also creates a
second slice grouping for a DST execution unit #2, which
includes second encoded slices of each of the sets of encoded
slices. As such, the second DST execution unit receives

US 2013/0326264 Al

encoded data slices corresponding to data blocks 16-30. The
grouping selection module 114 further creates a third slice
grouping for DST execution unit #3, which includes third
encoded slices of each of the sets of encoded slices. As such,
the third DST execution unit receives encoded data slices
corresponding to data blocks 31-45.

[0118] The grouping selection module 114 creates a fourth
slice grouping for DST execution unit #4, which includes
fourth encoded slices of each of the sets of encoded slices. As
such, the fourth DST execution unit receives encoded data
slices corresponding to first error encoding information (e.g.,
encoded data slices of error coding (EC) data). The grouping
selection module 114 further creates a fifth slice grouping for
DST execution unit #5, which includes fifth encoded slices of
each of the sets of encoded slices. As such, the fifth DST
execution unit receives encoded data slices corresponding to
second error encoding information.

[0119] FIG. 10 is a diagram of an example of converting
data 92 into slice groups that expands on the preceding fig-
ures. As shown, the data 92 is partitioned in accordance with
a partitioning function 164 into a plurality of data partitions
(1-x, where x is an integer greater than 4). Each data partition
(or chunkset of data) is encoded and grouped into slice group-
ings as previously discussed by an encoding and grouping
function 166. For a given data partition, the slice groupings
are sent to distributed storage and task (DST) execution units.
From data partition to data partition, the ordering of the slice
groupings to the DST execution units may vary.

[0120] Forexample, the slice groupings of data partition #1
is sent to the DST execution units such that the first DST
execution receives first encoded data slices of each of the sets
of encoded data slices, which corresponds to a first continu-
ous data chunk of the first data partition (e.g., refer to FIG. 9),
a second DST execution receives second encoded data slices
of each of the sets of encoded data slices, which corresponds
to a second continuous data chunk of the first data partition,
etc.

[0121] For the second data partition, the slice groupings
may be sent to the DST execution units in a different order
than it was done for the first data partition. For instance, the
first slice grouping of the second data partition (e.g., slice
group 2_ 1) is sent to the second DST execution unit; the
second slice grouping of the second data partition (e.g., slice
group 2 2) is sent to the third DST execution unit; the third
slice grouping of the second data partition (e.g., slice group
2_ 3)is sent to the fourth DST execution unit; the fourth slice
grouping of the second data partition (e.g., slice group 2_ 4,
which includes first error coding information) is sent to the
fifth DST execution unit; and the fifth slice grouping of the
second data partition (e.g., slice group 25, which includes
second error coding information) is sent to the first DST
execution unit.

[0122] The pattern of sending the slice groupings to the set
of DST execution units may vary in a predicted pattern, a
random pattern, and/or a combination thereof from data par-
tition to data partition. In addition, from data partition to data
partition, the set of DST execution units may change. For
example, for the first data partition, DST execution units 1-5
may be used; for the second data partition, DST execution
units 6-10 may be used; for the third data partition, DST
execution units 3-7 may be used; etc. As is also shown, the
task is divided into partial tasks that are sent to the DST
execution units in conjunction with the slice groupings of the
data partitions.

Dec. 5, 2013

[0123] FIG. 11 is a schematic block diagram of an embodi-
ment of a DST (distributed storage and/or task) execution unit
that includes an interface 169, a controller 86, memory 88,
one or more DT (distributed task) execution modules 90, and
a DST client module 34. The memory 88 is of sufficient size
to store a significant number of encoded data slices (e.g.,
thousands of slices to hundreds-of-millions of slices) and
may include one or more hard drives and/or one or more
solid-state memory devices (e.g., flash memory, DRAM,
etc.).

[0124] In an example of storing a slice group, the DST
execution module receives a slice grouping 96 (e.g., slice
group #1) via interface 169. The slice grouping 96 includes,
per partition, encoded data slices of contiguous data or
encoded data slices of error coding (EC) data. For slice group
#1, the DST execution module receives encoded data slices of
contiguous data for partitions #1 and #x (and potentially
others between 3 and x) and receives encoded data slices of
EC data for partitions #2 and #3 (and potentially others
between 3 and x). Examples of encoded data slices of con-
tiguous data and encoded data slices of error coding (EC) data
are discussed with reference to FI1G. 9. The memory 88 stores
the encoded data slices of slice groupings 96 in accordance
with memory control information 174 it receives from the
controller 86.

[0125] Thecontroller 86 (e.g., aprocessing module, a CPU,
etc.) generates the memory control information 174 based on
a partial task(s) 98 and distributed computing information
(e.g., user information (e.g., user 1D, distributed computing
permissions, data access permission, etc.), vault information
(e.g., virtual memory assigned to user, user group, temporary
storage for task processing, etc.), task validation information,
etc.). For example, the controller 86 interprets the partial
task(s) 98 in light of the distributed computing information to
determine whether a requestor is authorized to perform the
task 98, is authorized to access the data, and/or is authorized
to perform the task on this particular data. When the requestor
is authorized, the controller 86 determines, based on the task
98 and/or another input, whether the encoded data slices of
the slice grouping 96 are to be temporarily stored or perma-
nently stored. Based on the foregoing, the controller 86 gen-
erates the memory control information 174 to write the
encoded data slices of the slice grouping 96 into the memory
88 and to indicate whether the slice grouping 96 is perma-
nently stored or temporarily stored.

[0126] With the slice grouping 96 stored in the memory 88,
the controller 86 facilitates execution of the partial task(s) 98.
In an example, the controller 86 interprets the partial task 98
in light of the capabilities of the DT execution module(s) 90.
The capabilities include one or more of MIPS capabilities,
processing resources (e.g., quantity and capability of micro-
processors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or and the
other analog and/or digital processing circuitry), availability
of the processing resources, etc. If the controller 86 deter-
mines that the DT execution module(s) 90 have sufficient
capabilities, it generates task control information 176.
[0127] The task control information 176 may be a generic
instruction (e.g., perform the task on the stored slice group-
ing) or a series of operational codes. In the former instance,
the DT execution module 90 includes a co-processor function
specifically configured (fixed or programmed) to perform the
desired task 98. In the latter instance, the DT execution mod-
ule 90 includes a general processor topology where the con-

US 2013/0326264 Al

troller stores an algorithm corresponding to the particular task
98. In this instance, the controller 86 provides the operational
codes (e.g., assembly language, source code of a program-
ming language, object code, etc.) of the algorithm to the DT
execution module 90 for execution.

[0128] Depending on the nature of the task 98, the DT
execution module 90 may generate intermediate partial
results 102 that are stored in the memory 88 or in a cache
memory (not shown) within the DT execution module 90. In
either case, when the DT execution module 90 completes
execution of the partial task 98, it outputs one or more partial
results 102. The partial results may 102 also be stored in
memory 88.

[0129] If, when the controller 86 is interpreting whether
capabilities of the DT execution module(s) 90 can support the
partial task 98, the controller 86 determines that the DT
execution module(s) 90 cannot adequately support the task 98
(e.g., does not have the right resources, does not have suffi-
cient available resources, available resources would be too
slow, etc.), it then determines whether the partial task 98
should be fully offloaded or partially offloaded.

[0130] If the controller 86 determines that the partial task
98 should be fully offloaded, it generates DST control infor-
mation 178 and provides it to the DST client module 34. The
DST control information 178 includes the partial task 98,
memory storage information regarding the slice grouping 96,
and distribution instructions. The distribution instructions
instruct the DST client module 34 to divide the partial task 98
into sub-partial tasks 172, to divide the slice grouping 96 into
sub-slice groupings 170, and identity of other DST execution
units. The DST client module 34 functions in a similar man-
ner as the DST client module 34 of FIGS. 3-10 to produce the
sub-partial tasks 172 and the sub-slice groupings 170 in
accordance with the distribution instructions.

[0131] The DST client module 34 receives DST feedback
168 (e.g., sub-partial results), via the interface 169, from the
DST execution units to which the task was offloaded. The
DST client module 34 provides the sub-partial results to the
DST execution unit, which processes the sub-partial results to
produce the partial result(s) 102.

[0132] If the controller 86 determines that the partial task
98 should be partially offloaded, it determines what portion of
the task 98 and/or slice grouping 96 should be processed
locally and what should be offloaded. For the portion that is
being locally processed, the controller 86 generates task con-
trol information 176 as previously discussed. For the portion
that is being offloaded, the controller 86 generates DST con-
trol information 178 as previously discussed.

[0133] Whenthe DST client module 34 receives DST feed-
back 168 (e.g., sub-partial results) from the DST executions
units to which a portion of the task was offloaded, it provides
the sub-partial results to the DT execution module 90. The DT
execution module 90 processes the sub-partial results with the
sub-partial results it created to produce the partial result(s)
102.

[0134] The memory 88 may be further utilized to retrieve
one or more of stored slices 100, stored results 104, partial
results 102 when the DT execution module 90 stores partial
results 102 and/or results 104 and the memory 88. For
example, when the partial task 98 includes a retrieval request,
the controller 86 outputs the memory control 174 to the
memory 88 to facilitate retrieval of slices 100 and/or results
104.

Dec. 5, 2013

[0135] FIG. 12 s a schematic block diagram of an example
of'operation of a distributed storage and task (DST) execution
unit storing encoded data slices and executing a task thereon.
To store the encoded data slices of a partition 1 of slice
grouping 1, a controller 86 generates write commands as
memory control information 174 such that the encoded slices
are stored in desired locations (e.g., permanent or temporary)
within memory 88.

[0136] Once the encoded slices are stored, the controller 86
provides task control information 176 to a distributed task
(DT) execution module 90. As a first step executing the task in
accordance with the task control information 176, the DT
execution module 90 retrieves the encoded slices from
memory 88. The DT execution module 90 then reconstructs
contiguous data blocks of a data partition. As shown for this
example, reconstructed contiguous data blocks of data parti-
tion 1 include data blocks 1-15 (e.g., d1-d15).

[0137] With the contiguous data blocks reconstructed, the
DT execution module 90 performs the task on the recon-
structed contiguous data blocks. For example, the task may be
to search the reconstructed contiguous data blocks for a par-
ticular word or phrase, identify where in the reconstructed
contiguous data blocks the particular word or phrase
occurred, and/or count the occurrences of the particular word
or phrase on the reconstructed contiguous data blocks. The
DST execution unit continues in a similar manner for the
encoded data slices of other partitions in slice grouping 1.
Note that with using the unity matrix error encoding scheme
previously discussed, if the encoded data slices of contiguous
data are uncorrupted, the decoding of them is a relatively
straightforward process of extracting the data.

[0138] If, however, an encoded data slice of contiguous
data is corrupted (or missing), it can be rebuilt by accessing
other DST execution units that are storing the other encoded
data slices of the set of encoded data slices of the corrupted
encoded data slice. In this instance, the DST execution unit
having the corrupted encoded data slices retrieves at least
three encoded data slices (of contiguous data and of error
coding data) in the set from the other DST execution units
(recall for this example, the pillar width is 5 and the decode
threshold is 3). The DST execution unit decodes the retrieved
data slices using the DS error encoding parameters to recap-
ture the corresponding data segment. The DST execution unit
thenre-encodes the data segment using the DS error encoding
parameters to rebuild the corrupted encoded data slice. Once
the encoded data slice is rebuilt, the DST execution unit
functions as previously described.

[0139] FIG. 13 is a schematic block diagram of an embodi-
ment of an inbound distributed storage and/or task (DST)
processing section 82 of a DST client module coupled to DST
execution units of a distributed storage and task network
(DSTN) module via a network 24. The inbound DST process-
ing section 82 includes a de-grouping module 180, a DS
(dispersed storage) error decoding module 182, a data de-
partitioning module 184, a control module 186, and a distrib-
uted task control module 188. Note that the control module
186 and/or the distributed task control module 188 may be
separate modules from corresponding ones of outbound DST
processing section or may be the same modules.

[0140] Inanexample of operation, the DST execution units
have completed execution of corresponding partial tasks on
the corresponding slice groupings to produce partial results
102. The inbounded DST processing section 82 receives the
partial results 102 via the distributed task control module 188.

US 2013/0326264 Al

The inbound DST processing section 82 then processes the
partial results 102 to produce a final result, or results 104. For
example, if the task was to find a specific word or phrase
within data, the partial results 102 indicate where in each of
the prescribed portions of the data the corresponding DST
execution units found the specific word or phrase. The dis-
tributed task control module 188 combines the individual
partial results 102 for the corresponding portions of the data
into a final result 104 for the data as a whole.

[0141] In another example of operation, the inbound DST
processing section 82 is retrieving stored data from the DST
execution units (i.e., the DSTN module). In this example, the
DST execution units output encoded data slices 100 corre-
sponding to the data retrieval requests. The de-grouping mod-
ule 180 receives retrieved slices 100 and de-groups them to
produce encoded data slices per data partition 122. The DS
error decoding module 182 decodes, in accordance with DS
error encoding parameters, the encoded data slices per data
partition 122 to produce data partitions 120.

[0142] The data de-partitioning module 184 combines the
data partitions 120 into the data 92. The control module 186
controls the conversion of retrieve slices 100 into the data 92
using control signals 190 to each of the modules. For instance,
the control module 186 provides de-grouping information to
the de-grouping module 180, provides the DS error encoding
parameters to the DS error decoding module 182, and pro-
vides de-partitioning information to the data de-partitioning
module 184.

[0143] FIG.14isalogic diagram of an example of a method
that is executable by distributed storage and task (DST) client
module regarding inbound DST processing. The method
begins at step 194 where the DST client module receives
partial results. The method continues at step 196 where the
DST client module retrieves the task corresponding to the
partial results. For example, the partial results include header
information that identifies the requesting entity, which corre-
lates to the requested task.

[0144] The method continues at step 198 where the DST
client module determines result processing information based
on the task. For example, if the task were to identify a par-
ticular word or phrase within the data, the result processing
information would indicate to aggregate the partial results for
the corresponding portions of the data to produce the final
result. As another example, if the task were to count the
occurrences of a particular word or phrase within the data,
results of processing the information would indicate to add
the partial results to produce the final results. The method
continues at step 200 where the DST client module processes
the partial results in accordance with the result processing
information to produce the final result or results.

[0145] FIG. 15 is a diagram of an example of de-grouping
selection processing of an inbound distributed storage and
task (DST) processing section of a DST client module. In
general, this is an inverse process of the grouping module of
the outbound DST processing section of FIG. 9. Accordingly,
for each data partition (e.g., partition #1), the de-grouping
module retrieves the corresponding slice grouping from the
DST execution units (EU) (e.g., DST 1-5).

[0146] As shown, DST execution unit #1 provides a first
slice grouping, which includes the first encoded slices of each
of the sets of encoded slices (e.g., encoded data slices of
contiguous data of data blocks 1-15); DST execution unit #2
provides a second slice grouping, which includes the second
encoded slices of each of the sets of encoded slices (e.g.,

Dec. 5, 2013

encoded data slices of contiguous data of data blocks 16-30);
DST execution unit #3 provides a third slice grouping, which
includes the third encoded slices of each of the sets of
encoded slices (e.g., encoded data slices of contiguous data of
data blocks 31-45); DST execution unit #4 provides a fourth
slice grouping, which includes the fourth encoded slices of
each of the sets of encoded slices (e.g., first encoded data
slices of error coding (EC) data); and DST execution unit #5
provides a fifth slice grouping, which includes the fifth
encoded slices of each of the sets of encoded slices (e.g., first
encoded data slices of error coding (EC) data).

[0147] The de-grouping module de-groups the slice group-
ings (e.g., received slices 100) using a de-grouping selector
180 controlled by a control signal 190 as shown in the
example to produce a plurality of sets of encoded data slices
(e.g., retrieved slices for a partition into sets of slices 122).
Each set corresponding to a data segment of the data partition.

[0148] FIG. 16 is a schematic block diagram of an embodi-
ment of a dispersed storage (DS) error decoding module 182
of an inbound distributed storage and task (DST) processing
section. The DS error decoding module 182 includes an
inverse per slice security processing module 202, a de-slicing
module 204, an error decoding module 206, an inverse seg-
ment security module 208, a de-segmenting processing mod-
ule 210, and a control module 186.

[0149] In an example of operation, the inverse per slice
security processing module 202, when enabled by the control
module 186, unsecures each encoded data slice 122 based on
slice de-security information received as control information
190 (e.g., the compliment of the slice security information
discussed with reference to FIG. 6) received from the control
module 186. The slice security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC verification, etc.), and/or any other type of
digital security. For example, when the inverse per slice secu-
rity processing module 202 is enabled, it verifies integrity
information (e.g., a CRC value) of each encoded data slice
122, it decrypts each verified encoded data slice, and decom-
presses each decrypted encoded data slice to produce slice
encoded data 158. When the inverse per slice security pro-
cessing module 202 is not enabled, it passes the encoded data
slices 122 as the sliced encoded data 158 or is bypassed such
that the retrieved encoded data slices 122 are provided as the
sliced encoded data 158.

[0150] The de-slicing module 204 de-slices the sliced
encoded data 158 into encoded data segments 156 in accor-
dance with a pillar width of the error correction encoding
parameters received as control information 190 from the con-
trol module 186. For example, if the pillar width is five, the
de-slicing module 204 de-slices a set of five encoded data
slices into an encoded data segment 156. The error decoding
module 206 decodes the encoded data segments 156 in accor-
dance with error correction decoding parameters received as
control information 190 from the control module 186 to pro-
duce secure data segments 154. The error correction decoding
parameters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Salomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read thresh-
old, a write threshold, etc. For example, the error correction
decoding parameters identify a specific error correction
encoding scheme, specify a pillar width of five, and specify a
decode threshold of three.

US 2013/0326264 Al

[0151] The inverse segment security processing module
208, when enabled by the control module 186, unsecures the
secured data segments 154 based on segment security infor-
mation received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment secu-
rity processing module 208 is enabled, it verifies integrity
information (e.g., a CRC value) of each secure data segment
154, it decrypts each verified secured data segment, and
decompresses each decrypted secure data segment to produce
a data segment 152. When the inverse segment security pro-
cessing module 208 is not enabled, it passes the decoded data
segment 154 as the data segment 152 or is bypassed.

[0152] Thede-segment processing module 210 receives the
data segments 152 and receives de-segmenting information
as control information 190 from the control module 186. The
de-segmenting information indicates how the de-segment
processing module 210 is to de-segment the data segments
152 into a data partition 120. For example, the de-segmenting
information indicates how the rows and columns of data
segments are to be rearranged to yield the data partition 120.
[0153] FIG.17isadiagram of an example of de-slicing and
error decoding processing of a dispersed error decoding mod-
ule. A de-slicing module 204 receives at least a decode thresh-
old number of encoded data slices 158 for each data segment
in accordance with control information 190 and provides
encoded data 156. In this example, a decode threshold is
three. As such, each set of encoded data slices 158 is shown to
have three encoded data slices per data segment. The de-
slicing module 204 may receive three encoded data slices per
data segment because an associated distributed storage and
task (DST) client module requested retrieving only three
encoded data slices per segment or selected three of the
retrieved encoded data slices per data segment. As shown,
which is based on the unity matrix encoding previously dis-
cussed with reference to FIG. 8, an encoded data slice may be
a data-based encoded data slice (e.g., DS1_d1&d2) or an
error code based encoded data slice (e.g., ES3_1).

[0154] An error decoding module 206 decodes the encoded
data 156 of each data segment in accordance with the error
correction decoding parameters of control information 190 to
produce secured segments 154. In this example, data segment
1 includes 3 rows with each row being treated as one word for
encoding. As such, data segment 1 includes three words: word
1 including data blocks dl and d2, word 2 including data
blocks d16 and d17, and word 3 including data blocks d31 and
d32. Each of data segments 2-7 includes three words where
each word includes two data blocks. Data segment 8 includes
three words where each word includes a single data block
(e.g., d15, d30, and d45).

[0155] FIG. 18 is a diagram of an example of a de-segment
processing of an inbound distributed storage and task (DST)
processing. In this example, a de-segment processing module
210 receives data segments 152 (e.g., 1-8) and rearranges the
data blocks of the data segments into rows and columns in
accordance with de-segmenting information of control infor-
mation 190 to produce a data partition 120. Note that the
number of rows is based on the decode threshold (e.g., 3 in
this specific example) and the number of columns is based on
the number and size of the data blocks.

[0156] The de-segmenting module 210 converts the rows
and columns of data blocks into the data partition 120. Note

Dec. 5, 2013

that each data block may be of the same size as other data
blocks or of a different size. In addition, the size of each data
block may be a few bytes to megabytes of data.

[0157] FIG. 19 is a diagram of an example of converting
slice groups into data 92 within an inbound distributed stor-
age and task (DST) processing section. As shown, the data 92
is reconstructed from a plurality of data partitions (1-x, where
X is an integer greater than 4). Each data partition (or chunk
set of data) is decoded and re-grouped using a de-grouping
and decoding function 212 and a de-partition function 214
from slice groupings as previously discussed. For a given data
partition, the slice groupings (e.g., at least a decode threshold
per data segment of encoded data slices) are received from
DST execution units. From data partition to data partition, the
ordering of the slice groupings received from the DST execu-
tion units may vary as discussed with reference to FIG. 10.

[0158] FIG. 20 is a diagram of an example of a distributed
storage and/or retrieval within the distributed computing sys-
tem. The distributed computing system includes a plurality of
distributed storage and/or task (DST) processing client mod-
ules 34 (one shown) coupled to a distributed storage and/or
task processing network (DSTN) module, or multiple DSTN
modules, via a network 24. The DST client module 34
includes an outbound DST processing section 80 and an
inbound DST processing section 82. The DSTN module
includes a plurality of DST execution units. Each DST execu-
tion unit includes a controller 86, memory 88, one or more
distributed task (DT) execution modules 90, and a DST client
module 34.

[0159] Inan example of data storage, the DST client mod-
ule 34 has data 92 that it desires to store in the DSTN module.
The data 92 may be a file (e.g., video, audio, text, graphics,
etc.), a data object, a data block, an update to a file, an update
to a data block, etc. In this instance, the outbound DST pro-
cessing module 80 converts the data 92 into encoded data
slices 216 as will be further described with reference to FIGS.
21-23. The outbound DST processing module 80 sends, via
the network 24, to the DST execution units for storage as
further described with reference to FIG. 24.

[0160] Inanexample of data retrieval, the DST client mod-
ule 34 issues a retrieve request to the DST execution units for
the desired data 92. The retrieve request may address each
DST executions units storing encoded data slices of the
desired data, address a decode threshold number of DST
execution units, address a read threshold number of DST
execution units, or address some other number of DST execu-
tion units. In response to the request, each addressed DST
execution unit retrieves its encoded data slices 100 of the
desired data and sends them to the inbound DST processing
section 82, via the network 24.

[0161] When, for each data segment, the inbound DST
processing section 82 receives at least a decode threshold
number of encoded data slices 100, it converts the encoded
data slices 100 into a data segment. The inbound DST pro-
cessing section 82 aggregates the data segments to produce
the retrieved data 92.

[0162] FIG. 21 is a schematic block diagram of an embodi-
ment of an outbound distributed storage and/or task (DST)
processing section 80 of a DST client module coupled to a
distributed storage and task network (DSTN) module (e.g., a
plurality of DST execution units) via a network 24. The
outbound DST processing section 80 includes a data parti-
tioning module 110, a dispersed storage (DS) error encoding

US 2013/0326264 Al

module 112, a group selection module 114, a control module
116, and a distributed task control module 118.

[0163] In an example of operation, the data partitioning
module 110 is by-passed such that data 92 is provided directly
to the DS error encoding module 112. The control module
116 coordinates the by-passing of the data partitioning mod-
ule 110 by outputting a bypass 220 message to the data
partitioning module 110.

[0164] The DS error encoding module 112 receives the data
92 in a serial manner, a parallel manner, and/or a combination
thereof. The DS error encoding module 112 DS error encodes
the data in accordance with control information 160 from the
control module 116 to produce encoded data slices 218. The
DS error encoding includes segmenting the data 92 into data
segments, segment security processing (e.g., encryption,
compression, watermarking, integrity check (e.g., CRC,
etc.)), error encoding, slicing, and/or per slice security pro-
cessing (e.g., encryption, compression, watermarking, integ-
rity check (e.g., CRC, etc.)). The control information 160
indicates which steps of the DS error encoding are active for
the data 92 and, for active steps, indicates the parameters for
the step. For example, the control information 160 indicates
that the error encoding is active and includes error encoding
parameters (e.g., pillar width, decode threshold, write thresh-
old, read threshold, type of error encoding, etc.).

[0165] The group selecting module 114 groups the encoded
slices 218 of the data segments into pillars of slices 216. The
number of pillars corresponds to the pillar width of the DS
error encoding parameters. In this example, the distributed
task control module 118 facilitates the storage request.
[0166] FIG.22 is a schematic block diagram of an example
of'adispersed storage (DS) error encoding module 112 for the
example of FIG. 21. The DS error encoding module 112
includes a segment processing module 142, a segment secu-
rity processing module 144, an error encoding module 146, a
slicing module 148, and a per slice security processing mod-
ule 150. Each of these modules is coupled to a control module
116 to receive control information 160 therefrom.

[0167] Inan example of operation, the segment processing
module 142 receives data 92 and receives segmenting infor-
mation as control information 160 from the control module
116. The segmenting information indicates how the segment
processing module is to segment the data. For example, the
segmenting information indicates the size of each data seg-
ment. The segment processing module 142 segments the data
92 into data segments 152 in accordance with the segmenting
information.

[0168] The segment security processing module 144, when
enabled by the control module 116, secures the data segments
152 based on segment security information received as con-
trol information 160 from the control module 116. The seg-
ment security information includes data compression,
encryption, watermarking, integrity check (e.g., CRC, etc.),
and/or any other type of digital security. For example, when
the segment security processing module 144 is enabled, it
compresses a data segment 152, encrypts the compressed data
segment, and generates a CRC value for the encrypted data
segment to produce a secure data segment. When the segment
security processing module 144 is not enabled, it passes the
data segments 152 to the error encoding module 146 or is
bypassed such that the data segments 152 are provided to the
error encoding module 146.

[0169] The error encoding module 146 encodes the secure
data segments in accordance with error correction encoding

Dec. 5, 2013

parameters received as control information 160 from the con-
trol module 116. The error correction encoding parameters
include identifying an error correction encoding scheme
(e.g., forward error correction algorithm, a Reed-Salomon
based algorithm, an information dispersal algorithm, etc.), a
pillar width, a decode threshold, a read threshold, a write
threshold, etc. For example, the error correction encoding
parameters identify a specific error correction encoding
scheme, specifies a pillar width of five, and specifies a decode
threshold of three. From these parameters, the error encoding
module 146 encodes a data segment to produce an encoded
data segment.

[0170] The slicing module 148 slices the encoded data seg-
ment in accordance with a pillar width of the error correction
encoding parameters. For example, if the pillar width is five,
the slicing module slices an encoded data segment into a set of
five encoded data slices. As such, for a plurality of data
segments, the slicing module 148 outputs a plurality of sets of
encoded data slices as shown within encoding and slicing
function 222 as described.

[0171] The per slice security processing module 150, when
enabled by the control module 116, secures each encoded
data slice based on slice security information received as
control information 160 from the control module 116. The
slice security information includes data compression, encryp-
tion, watermarking, integrity check (e.g., CRC, etc.), and/or
any other type of digital security. For example, when the per
slice security processing module 150 is enabled, it may com-
press an encoded data slice, encrypt the compressed encoded
data slice, and generate a CRC value for the encrypted
encoded data slice to produce a secure encoded data slice
tweaking. When the per slice security processing module 150
is not enabled, it passes the encoded data slices or is bypassed
such that the encoded data slices 218 are the output of the DS
error encoding module 112.

[0172] FIG. 23 is a diagram of an example of converting
data 92 into pillar slice groups utilizing encoding, slicing and
pillar grouping function 224 for storage in memory of a
distributed storage and task network (DSTN) module. As
previously discussed the data 92 is encoded and sliced into a
plurality of sets of encoded data slices; one set per data
segment. The grouping selection module organizes the sets of
encoded data slices into pillars of data slices. In this example,
the DS error encoding parameters include a pillar width of 5
and a decode threshold of 3. As such, for each data segment,
5 encoded data slices are created.

[0173] The grouping selection module takes the first
encoded data slice of each of the sets and forms a first pillar,
which may be sent to the first DST execution unit. Similarly,
the grouping selection module creates the second pillar from
the second slices of the sets; the third pillar from the third
slices of the sets; the fourth pillar from the fourth slices of the
sets; and the fifth pillar from the fifth slices of the set.

[0174] FIG. 24 is a schematic block diagram of an embodi-
ment of a distributed storage and/or task

[0175] (DST) execution unit that includes an interface 169,
a controller 86, memory 88, one or more distributed task (DT)
execution modules 90, and a DST client module 34. A com-
puting core 26 may be utilized to implement the one or more
DT execution modules 90 and the DST client module 34. The
memory 88 is of sufficient size to store a significant number of
encoded data slices (e.g., thousands of slices to hundreds-of-

US 2013/0326264 Al

millions of slices) and may include one or more hard drives
and/or one or more solid-state memory devices (e.g., flash
memory, DRAM, etc.).

[0176] In an example of storing a pillar of slices 216, the
DST execution unit receives, via interface 169, a pillar of
slices 216 (e.g., pillar #1 slices). The memory 88 stores the
encoded data slices 216 of the pillar of slices in accordance
with memory control information 174 it receives from the
controller 86. The controller 86 (e.g., a processing module, a
CPU, etc.) generates the memory control information 174
based on distributed storage information (e.g., user informa-
tion (e.g., user 1D, distributed storage permissions, data
access permission, etc.), vault information (e.g., virtual
memory assigned to user, user group, etc.), etc.). Similarly,
when retrieving slices, the DST execution unit receives, via
interface 169, a slice retrieval request. The memory 88
retrieves the slice in accordance with memory control infor-
mation 174 it receives from the controller 86. The memory 88
outputs the slice 100, via the interface 169, to a requesting
entity.

[0177] FIG. 25 is a schematic block diagram of an example
of operation of an inbound distributed storage and/or task
(DST) processing section 82 for retrieving dispersed error
encoded data 92. The inbound DST processing section 82
includes a de-grouping module 180, a dispersed storage (DS)
error decoding module 182, a data de-partitioning module
184, a control module 186, and a distributed task control
module 188. Note that the control module 186 and/or the
distributed task control module 188 may be separate modules
from corresponding ones of an outbound DST processing
section or may be the same modules.

[0178] In an example of operation, the inbound DST pro-
cessing section 82 is retrieving stored data 92 from the DST
execution units (i.e., the DSTN module). In this example, the
DST execution units output encoded data slices correspond-
ing to data retrieval requests from the distributed task control
module 188. The de-grouping module 180 receives pillars of
slices 100 and de-groups them in accordance with control
information 190 from the control module 186 to produce sets
of encoded data slices 218. The DS error decoding module
182 decodes, in accordance with the DS error encoding
parameters received as control information 190 from the con-
trol module 186, each set of encoded data slices 218 to pro-
duce data segments, which are aggregated into retrieved data
92. The data de-partitioning module 184 is by-passed in this
operational mode via a bypass signal 226 of control informa-
tion 190 from the control module 186.

[0179] FIG. 26 is a schematic block diagram of an embodi-
ment of a dispersed storage (DS) error decoding module 182
of an inbound distributed storage and task (DST) processing
section. The DS error decoding module 182 includes an
inverse per slice security processing module 202, a de-slicing
module 204, an error decoding module 206, an inverse seg-
ment security module 208, and a de-segmenting processing
module 210. The dispersed error decoding module 182 is
operable to de-slice and decode encoded slices per data seg-
ment 218 utilizing a de-slicing and decoding function 228 to
produce a plurality of data segments that are de-segmented
utilizing a de-segment function 230 to recover data 92.
[0180] In an example of operation, the inverse per slice
security processing module 202, when enabled by the control
module 186 via control information 190, unsecures each
encoded data slice 218 based on slice de-security information
(e.g., the compliment of the slice security information dis-

Dec. 5, 2013

cussed with reference to FIG. 6) received as control informa-
tion 190 from the control module 186. The slice de-security
information includes data decompression, decryption, de-
watermarking, integrity check (e.g., CRC verification, etc.),
and/or any other type of digital security. For example, when
the inverse per slice security processing module 202 is
enabled, it verifies integrity information (e.g., a CRC value)
of each encoded data slice 218, it decrypts each verified
encoded data slice, and decompresses each decrypted
encoded data slice to produce slice encoded data. When the
inverse per slice security processing module 202 is not
enabled, it passes the encoded data slices 218 as the sliced
encoded data or is bypassed such that the retrieved encoded
data slices 218 are provided as the sliced encoded data.
[0181] The de-slicing module 204 de-slices the sliced
encoded data into encoded data segments in accordance with
a pillar width of the error correction encoding parameters
received as control information 190 from a control module
186. For example, if the pillar width is five, the de-slicing
module de-slices a set of five encoded data slices into an
encoded data segment. Alternatively, the encoded data seg-
ment may include just three encoded data slices (e.g., when
the decode threshold is 3).

[0182] The error decoding module 206 decodes the
encoded data segments in accordance with error correction
decoding parameters received as control information 190
from the control module 186 to produce secure data seg-
ments. The error correction decoding parameters include
identifying an error correction encoding scheme (e.g., for-
ward error correction algorithm, a Reed-Salomon based algo-
rithm, an information dispersal algorithm, etc.), a pillar
width, a decode threshold, a read threshold, a write threshold,
etc. For example, the error correction decoding parameters
identify a specific error correction encoding scheme, specify
apillar width of five, and specify a decode threshold of three.
[0183] The inverse segment security processing module
208, when enabled by the control module 186, unsecures the
secured data segments based on segment security information
received as control information 190 from the control module
186. The segment security information includes data decom-
pression, decryption, de-watermarking, integrity check (e.g.,
CRC, etc.) verification, and/or any other type of digital secu-
rity. For example, when the inverse segment security process-
ing module is enabled, it verifies integrity information (e.g., a
CRC value) of each secure data segment, it decrypts each
verified secured data segment, and decompresses each
decrypted secure data segment to produce a data segment
152. When the inverse segment security processing module
208 is not enabled, it passes the decoded data segment 152 as
the data segment or is bypassed. The de-segmenting process-
ing module 210 aggregates the data segments 152 into the
data 92 in accordance with control information 190 from the
control module 186.

[0184] FIG. 27 is a schematic block diagram of an example
of'a distributed storage and task processing network (DSTN)
module that includes a plurality of distributed storage and
task (DST) execution units (#1 through #n, where, for
example, n is an integer greater than or equal to three). Each
of the DST execution units includes a DST client module 34,
a controller 86, one or more DT (distributed task) execution
modules 90, and memory 88.

[0185] In this example, the DSTN module stores, in the
memory of the DST execution units, a plurality of DS (dis-
persed storage) encoded data (e.g., 1 through n, where nis an

US 2013/0326264 Al

integer greater than or equal to two) and stores a plurality of
DS encoded task codes (e.g., 1 throughk, wherekis an integer
greater than or equal to two). The DS encoded data may be
encoded in accordance with one or more examples described
with reference to FIGS. 3-19 (e.g., organized in slice group-
ings) or encoded in accordance with one or more examples
described with reference to FIGS. 20-26 (e.g., organized in
pillar groups). The data that is encoded into the DS encoded
data may be of any size and/or of any content. For example,
the data may be one or more digital books, a copy of a
company’s emails, a large-scale Internet search, a video secu-
rity file, one or more entertainment video files (e.g., television
programs, movies, etc.), data files, and/or any other large
amount of data (e.g., greater than a few Terra-Bytes).

[0186] The tasks that are encoded into the DS encoded task
code may be a simple function (e.g., a mathematical function,
alogic function, an identify function, a find function, a search
engine function, a replace function, etc.), a complex function
(e.g., compression, human and/or computer language trans-
lation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more
algorithms, one or more applications, etc. The tasks may be
encoded into the DS encoded task code in accordance with
one or more examples described with reference to FIGS. 3-19
(e.g., organized in slice groupings) or encoded in accordance
with one or more examples described with reference to FIGS.
20-26 (e.g., organized in pillar groups).

[0187] Inan example of operation, a DST client module of
auser device orofa DST processing unitissues a DST request
to the DSTN module. The DST request may include a request
to retrieve stored data, or a portion thereof, may include a
request to store data that is included with the DST request,
may include a request to perform one or more tasks on stored
data, may include a request to perform one or more tasks on
data included with the DST request, etc. In the cases where
the DST request includes a request to store data or to retrieve
data, the client module and/or the DSTN module processes
the request as previously discussed with reference to one or
more of FIGS. 3-19 (e.g., slice groupings) and/or 20-26 (e.g.,
pillar groupings). In the case where the DST request includes
a request to perform one or more tasks on data included with
the DST request, the DST client module and/or the DSTN
module process the DST request as previously discussed with
reference to one or more of FIGS. 3-19.

[0188] Inthecase wherethe DST request includes a request
to perform one or more tasks on stored data, the DST client
module and/or the DSTN module processes the DST request
as will be described with reference to one or more of FIGS.
28-39. In general, the DST client module identifies data and
one or more tasks for the DSTN module to execute upon the
identified data. The DST request may be for a one-time execu-
tion of the task or for an on-going execution of the task. As an
example of the latter, as a company generates daily emails, the
DST request may be to daily search new emails for inappro-
priate content and, if found, record the content, the email
sender(s), the email recipient(s), email routing information,
notify human resources of the identified email, etc.

[0189] FIG. 28 is a schematic block diagram of an example
of a distributed computing system performing tasks on stored
data. In this example, two distributed storage and task (DST)
client modules 1-2 are shown: the first may be associated with
a user device and the second may be associated with a DST
processing unit or a high priority user device (e.g., high pri-
ority clearance user, system administrator, etc.). Each DST

Dec. 5, 2013

client module includes a list of stored data 234 and a list of
tasks codes 236. The list of stored data 234 includes one or
more entries of data identifying information, where each
entry identifies data stored in the DSTN module 22. The data
identifying information (e.g., data ID) includes one or more
of'adatafile name, a data file directory listing, DSTN address-
ing information of the data, a data object identifier, etc. The
list of tasks 236 includes one or more entries of task code
identifying information, when each entry identifies task
codes stored in the DSTN module 22. The task code identi-
fying information (e.g., task ID) includes one or more of a
task file name, a task file directory listing, DSTN addressing
information of the task, another type of identifier to identify
the task, etc.

[0190] As shown, the list of data 234 and the list of tasks
236 are each smaller in number of entries for the first DST
client module than the corresponding lists of the second DST
client module. This may occur because the user device asso-
ciated with the first DST client module has fewer privileges in
the distributed computing system than the device associated
with the second DST client module. Alternatively, this may
occur because the user device associated with the first DST
client module serves fewer users than the device associated
with the second DST client module and is restricted by the
distributed computing system accordingly. As yet another
alternative, this may occur through no restraints by the dis-
tributed computing system, it just occurred because the
operator of the user device associated with the first DST client
module has selected fewer data and/or fewer tasks than the
operator of the device associated with the second DST client
module.

[0191] In an example of operation, the first DST client
module selects one or more data entries 238 and one or more
tasks 240 from its respective lists (e.g., selected data ID and
selected task ID). The first DST client module sends its selec-
tions to a task distribution module 232. The task distribution
module 232 may be within a stand-alone device of the dis-
tributed computing system, may be within the user device that
contains the first DST client module, or may be within the
DSTN module 22.

[0192] Regardless of the task distributions modules loca-
tion, it generates DST allocation information 242 from the
selected task ID 240 and the selected data ID 238. The DST
allocation information 242 includes data partitioning infor-
mation, task execution information, and/or intermediate
result information. The task distribution module 232 sends
the DST allocation information 242 to the DSTN module 22.
Note that one or more examples of the DST allocation infor-
mation will be discussed with reference to one or more of
FIGS. 29-39.

[0193] The DSTN module 22 interprets the DST allocation
information 242 to identify the stored DS encoded data (e.g.,
DS error encoded data 2) and to identify the stored DS error
encoded task code (e.g., DS error encoded task code 1). In
addition, the DSTN module 22 interprets the DST allocation
information 242 to determine how the data is to be partitioned
and how the task is to be partitioned.

[0194] The DSTN module 22 also determines whether the
selected DS error encoded data 238 needs to be converted
from pillar grouping to slice grouping. If so, the DSTN mod-
ule 22 converts the selected DS error encoded data into slice
groupings and stores the slice grouping DS error encoded
data by overwriting the pillar grouping DS error encoded data

US 2013/0326264 Al

or by storing it in a different location in the memory of the
DSTN module 22 (i.e., does not overwrite the pillar grouping
DS encoded data).

[0195] The DSTN module 22 partitions the data and the
task as indicated in the DST allocation information 242 and
sends the portions to selected DST execution units of the
DSTN module 22. Each of the selected DST execution units
performs its partial task(s) on its slice groupings to produce
partial results. The DSTN module 22 collects the partial
results from the selected DST execution units and provides
them, as result information 244, to the task distribution mod-
ule. The result information 244 may be the collected partial
results, one or more final results as produced by the DSTN
module 22 from processing the partial results in accordance
with the DST allocation information 242, or one or more
intermediate results as produced by the DSTN module 22
from processing the partial results in accordance with the
DST allocation information 242.

[0196] The task distribution module 232 receives the result
information 244 and provides one or more final results 104
therefrom to the first DST client module. The final result(s)
104 may be result information 244 or a result(s) of the task
distribution module’s processing of the result information
244.

[0197] In concurrence with processing the selected task of
the first DST client module, the distributed computing system
may process the selected task(s) of the second DST client
module on the selected data(s) of the second DST client
module. Alternatively, the distributed computing system may
process the second DST client module’s request subsequent
to, or preceding, that of the first DST client module. Regard-
less of the ordering and/or parallel processing of the DST
client module requests, the second DST client module pro-
vides its selected data 238 and selected task 240 to a task
distribution module 232. Ifthe task distribution module 232 is
a separate device of the distributed computing system or
within the DSTN module, the task distribution modules 232
coupledto the first and second DST client modules may be the
same module. The task distribution module 232 processes the
request of the second DST client module in a similar manner
as it processed the request of the first DST client module.
[0198] FIG. 29 is a schematic block diagram of an embodi-
ment of a task distribution module 232 facilitating the
example of FIG. 28. The task distribution module 232
includes a plurality of tables it uses to generate distributed
storage and task (DST) allocation information 242 for
selected data and selected tasks received from a DST client
module. The tables include data storage information 248, task
storage information 250, distributed task (DT) execution
module information 252, and task < sub-task mapping
information 246.

[0199] The data storage information table 248 includes a
data identification (ID) field 260, a data size field 262, an
addressing information field 264, distributed storage (DS)
information 266, and may further include other information
regarding the data, how it is stored, and/or how it can be
processed. For example, DS encoded data #1 has a data ID of
1, a data size of AA (e.g., a byte size of a few terra-bytes or
more), addressing information of Addr 1_AA, and DS
parameters of 3/5; SEG__1; and SLC__1. In this example, the
addressing information may be a virtual address correspond-
ing to the virtual address of the first storage word (e.g., one or
more bytes) of the data and information on how to calculate
the other addresses, may be a range of virtual addresses for the

Dec. 5, 2013

storage words of the data, physical addresses of the first
storage word or the storage words of the data, may be a list of
slices names of the encoded data slices of the data, etc. The
DS parameters may include identity of an error encoding
scheme, decode threshold/pillar width (e.g., 3/5 for the first
data entry), segment security information (e.g., SEG__1), per
slice security information (e.g., SLC_ 1), and/or any other
information regarding how the data was encoded into data
slices.

[0200] The task storage information table 250 includes a
task identification (ID) field 268, a task size field 270, an
addressing information field 272, distributed storage (DS)
information 274, and may further include other information
regarding the task, how it is stored, and/or how it can be used
to process data. For example, DS encoded task #2 has a task
ID of 2, a task size of XY, addressing information of Addr__
2_XY, and DS parameters of 3/5; SEG_2; and SLC_2. In
this example, the addressing information may be a virtual
address corresponding to the virtual address of the first stor-
age word (e.g., one or more bytes) of the task and information
on how to calculate the other addresses, may be a range of
virtual addresses for the storage words of the task, physical
addresses of the first storage word or the storage words of the
task, may be a list of slices names of the encoded slices of the
task code, etc. The DS parameters may include identity of an
error encoding scheme, decode threshold/pillar width (e.g.,
3/5 for the first data entry), segment security information
(e.g., SEG_2), per slice security information (e.g., SLC__2),
and/or any other information regarding how the task was
encoded into encoded task slices. Note that the segment and/
or the per-slice security information include a type of encryp-
tion (if enabled), a type of compression (if enabled), water-
marking information (if enabled), and/or an integrity check
scheme (if enabled).

[0201] The task < sub-task mapping information table
246 includes a task field 256 and a sub-task field 258. The task
field 256 identifies a task stored in the memory of a distributed
storage and task network (DSTN) module and the corre-
sponding sub-task fields 258 indicates whether the task
includes sub-tasks and, if so, how many and if any of the
sub-tasks are ordered. In this example, the task < sub-task
mapping information table 246 includes an entry for each task
stored in memory of the DSTN module (e.g., task 1 through
task k). In particular, this example indicates that task 1
includes 7 sub-tasks; task 2 does not include sub-tasks, and
task k includes r number of sub-tasks (where r is an integer
greater than or equal to two).

[0202] The DT execution module table 252 includes a DST
execution unit ID field 276, a DT execution module ID field
278, and a DT execution module capabilities field 280. The
DST execution unit ID field 276 includes the identity of DST
units in the DSTN module. The DT execution module ID field
278 includes the identity of each DT execution unit in each
DST unit. For example, DST unit 1 includes three DT execu-
tions modules (e.g., 1_1,1_2 and 1_3). The DT execution
capabilities field 280 includes identity of the capabilities of
the corresponding DT execution unit. For example, DT
execution module 1_1 includes capabilities X, where X
includes one or more of MIPS capabilities, processing
resources (e.g., quantity and capability of microprocessors,
CPUs, digital signal processors, co-processor, microcontrol-
lers, arithmetic logic circuitry, and/or and other analog and/or
digital processing circuitry), availability of the processing

US 2013/0326264 Al

resources, memory information (e.g., type, size, availability,
etc.), and/or any information germane to executing one or
more tasks.

[0203] From these tables, the task distribution module 232
generates the DST allocation information 242 to indicate
where the data is stored, how to partition the data, where the
task is stored, how to partition the task, which DT execution
units should perform which partial task on which data parti-
tions, where and how intermediate results are to be stored, etc.
If multiple tasks are being performed on the same data or
different data, the task distribution module factors such infor-
mation into its generation of the DST allocation information.
[0204] FIG. 30 is a diagram of a specific example of a
distributed computing system performing tasks on stored data
as a task flow 318. In this example, selected data 92 is data 2
and selected tasks are tasks 1, 2, and 3. Task 1 corresponds to
analyzing translation of data from one language to another
(e.g., human language or computer language); task 2 corre-
sponds to finding specific words and/or phrases in the data;
and task 3 corresponds to finding specific translated words
or/or phrases in translated data.

[0205] In this example, task 1 includes 7 sub-tasks: task
1__1—identify non-words (non-ordered); task 1_2—iden-
tify unique words (non-ordered); task 1 3—translate (non-
ordered); task 1 __4—translate back (ordered after task 1_ 3);
task 1 5—compare to ID errors (ordered after task 1-4); task
1__6—determine non-word translation errors (ordered after
task 1_Sand 1_1); and task 1 7—determine correct trans-
lations (ordered after 1_5 and 1_2). The sub-task further
indicates whether they are an ordered task (i.e., are dependent
on the outcome of another task) or non-order (i.e., are inde-
pendent of the outcome of another task). Task 2 does not
include sub-tasks and task 3 includes two sub-tasks: task3 1
translate; and task 3_ 2 find specific word or phrase in trans-
lated data.

[0206] Ingeneral, thethree tasks collectively are selected to
analyze data for translation accuracies, translation errors,
translation anomalies, occurrence of specific words or
phrases in the data, and occurrence of specific words or
phrases on the translated data. Graphically, the data 92 is
translated 306 into translated data 282; is analyzed for spe-
cific words and/or phrases 300 to produce a list of specific
words and/or phrases 286; is analyzed for non-words 302
(e.g., not in a reference dictionary) to produce a list of non-
words 290; and is analyzed for unique words 316 included in
the data 92 (i.e., how many different words are included in the
data) to produce a list of unique words 298. Each of these
tasks is independent of each other and can therefore be pro-
cessed in parallel if desired.

[0207] The translated data 282 is analyzed (e.g., sub-task
3 2) for specific translated words and/or phrases 304 to
produce a list of specific translated words and/or phrases. The
translated data 282 is translated back 308 (e.g., sub-task 1 4)
into the language of the original data to produce re-translated
data 284. These two tasks are dependent on the translate task
(e.g., task 1_ 3) and thus must be ordered after the translation
task, which may be in a pipelined ordering or a serial order-
ing. The re-translated data 284 is then compared 310 with the
original data 92 to find words and/or phrases that did not
translate (one way and/or the other) properly to produce a list
of incorrectly translated words 294. As such, the comparing
task (e.g., sub-task 1_5) 310 is ordered after the translation
306 and re-translation tasks 308 (e.g., sub-tasks 1_3 and
1_4).

Dec. 5, 2013

[0208] The list of words incorrectly translated 294 is com-
pared 312 to the list of non-words 290 to identify words that
were not properly translated because the words are non-words
to produce a list of errors due to non-words 292. In addition,
the list of words incorrectly translated 294 is compared 314 to
the list of unique words 298 to identify unique words that
were properly translated to produce a list of correctly trans-
lated words 296. The comparison may also identify unique
words that were not properly translated to produce a list of
unique words that were not properly translated. Note that
each list of words (e.g., specific words and/or phrases, non-
words, unique words, translated words and/or phrases, etc.,)
may include the word and/or phrase, how many times it is
used, where in the data it is used, and/or any other information
requested regarding a word and/or phrase.

[0209] FIG. 31 is a schematic block diagram of an example
of'a distributed storage and task processing network (DSTN)
module storing data and task codes for the example of FIG.
30. As shown, DS encoded data 2 is stored as encoded data
slices across the memory (e.g., stored in memories 88) of
DST execution units 1-5; the DS encoded task code 1 (of task
1) and DS encoded task 3 are stored as encoded task slices
across the memory of DST execution units 1-5; and DS
encoded task code 2 (oftask 2) is stored as encoded task slices
across the memory of DST execution units 3-7. As indicated
in the data storage information table and the task storage
information table of FIG. 29, the respective data/task has DS
parameters of 3/5 for their decode threshold/pillar width;
hence spanning the memory of five DST execution units.
[0210] FIG. 32 is a diagram of an example of distributed
storage and task (DST) allocation information 242 for the
example of FIG. 30. The DST allocation information 242
includes data partitioning information 320, task execution
information 322, and intermediate result information 324.
The data partitioning information 320 includes the data iden-
tifier (ID), the number of partitions to split the data into,
address information for each data partition, and whether the
DS encoded data has to be transformed from pillar grouping
to slice grouping. The task execution information 322
includes tabular information having a task identification field
326, a task ordering field 328, a data partition field ID 330,
and a set of DT execution modules 332 to use for the distrib-
uted task processing per data partition. The intermediate
result information 324 includes tabular information having a
name ID field 334, an ID of the DST execution unit assigned
to process the corresponding intermediate result 336, a
scratch pad storage field 338, and an intermediate result stor-
age field 340.

[0211] Continuing with the example of FIG. 30, where
tasks 1-3 are to be distributedly performed on data 2, the data
partitioning information includes the ID of data 2. In addition,
the task distribution module determines whether the DS
encoded data 2 is in the proper format for distributed com-
puting (e.g., was stored as slice groupings). If not, the task
distribution module indicates that the DS encoded data 2
format needs to be changed from the pillar grouping format to
the slice grouping format, which will be done the by DSTN
module. In addition, the task distribution module determines
the number of partitions to divide the data into (e.g., 2_1
through 2_7) and addressing information for each partition.
[0212] The task distribution module generates an entry in
the task execution information section for each sub-task to be
performed. For example, task 1_1 (e.g., identify non-words
on the data) has no task ordering (i.e., is independent of the

US 2013/0326264 Al

results of other sub-tasks), is to be performed on data parti-
tions 21 through 2_z by DT execution modules 1_ 1,21,
3_1,4_1, and 5_1. For instance, DT execution modules
11,2 1,3 1,4 _1,and5_ 1 search for non-words in data
partitions 2__1 through 2_zto produce task 1__1 intermediate
results (R1-1, which is a list of non-words). Task 1 2 (e.g.,
identify unique words) has similar task execution information
astask 1_ 1 to produce task 1_ 2 intermediate results (R1-2,
which is the list of unique words).

[0213] Task 1_3 (e.g., translate) includes task execution
information as being non-ordered (i.e., is independent), hav-
ing DT execution modules 1_1,2_ 1,3 1,4 1,and 5 1
translate data partitions 2_ 1 through 24 and having DT
executionmodules 1_ 2,2 2,3_2.4 2 and 5_ 2 translate
data partitions 2_ 5 through 2_z to produce task 1_ 3 inter-
mediate results (R1-3, which is the translated data). In this
example, the data partitions are grouped, where different sets
of DT execution modules perform a distributed sub-task (or
task) on each data partition group, which allows for further
parallel processing.

[0214] Task 1 4 (e.g., translate back) is ordered after task
1_3 and is to be executed on task 1_ 3’s intermediate result
(e.g.,R1-3_1) (e.g., the translated data). DT execution mod-
ules1_1,2_1,3_1,4_1,and 5__1 are allocated to translate
back task 1_ 3 intermediate result partitions R1-3__1 through
R1-3_ 4 and DT execution modules 1_2,2 2,6 _1,7_1,
and 7_ 2 are allocated to translate back task 1__3 intermediate
result partitions R1-3 5 through R1-3_zto produce task 1-4
intermediate results (R1-4, which is the translated back data).
[0215] Task1_5 (e.g., compare data and translated data to
identify translation errors) is ordered after task 1 4 and is to
be executed on task 1__4’s intermediate results (R4-1) and on
the data. DT execution modules 1_1,2_1,3 1,4 1, and
5_1 are allocated to compare the data partitions (2_1
through 2_z) with partitions of task 1-4 intermediate results
partitions R1-4_ 1 through R1-4_zto produce task 1__5 inter-
mediate results (R1-5, which is the list words translated incor-
rectly).

[0216] Task 1_6 (e.g., determine non-word translation
errors) is ordered after tasks 1_1 and 1_5 and is to be
executed on tasks 1 1’s and 1 5’s intermediate results
(R1-1 and R1-5). DT execution modules 11,2 1,3 1,
4 1,and5_ 1 are allocated to compare the partitions of task
1__ 1 intermediate results (R1-1__1 through R1-1_z) with par-
titions of task 1-5 intermediate results partitions (R1-5_1
through R1-5_z) to produce task 1_ 6 intermediate results
(R1-6, which is the list translation errors due to non-words).
[0217] Task 1_7 (e.g., determine words correctly trans-
lated) is ordered aftertasks 1 2and 1__5andis to be executed
on tasks 1_2’s and 1_5’s intermediate results (R1-1 and
R1-5). DT executionmodules 12,2 2,3 2.4 2 and5 2
are allocated to compare the partitions of task 1_ 2 interme-
diate results (R1-2__ 1 through R1-2_z) with partitions of task
1-5 intermediate results partitions (R1-5__1 through R1-5_z)
to produce task 1 7 intermediate results (R1-7, which is the
list of correctly translated words).

[0218] Task 2 (e.g., find specific words and/or phrases) has
no task ordering (i.e., is independent of the results of other
sub-tasks), is to be performed on data partitions 2__1 through
2_7 by DT execution modules 31,4 1,5 1,6 1, and
7__1. For instance, DT execution modules 3_1,4_1,5_1,
6__1,and 7__1 search for specific words and/or phrases in data
partitions 2__ 1 through 2_z to produce task 2 intermediate
results (R2, which is a list of specific words and/or phrases).

Dec. 5, 2013

[0219] Task3_ 2 (e.g.,find specific translated words and/or
phrases) is ordered after task 1_ 3 (e.g., translate) is to be
performed on partitions R1-3_ 1 through R1-3_z by DT
execution modules 1_2, 2 2,3 2,4 2 and 5_2. For
instance, DT execution modules 1_2,2 2,3 2,4 2 and
5_ 2 search for specific translated words and/or phrases in the
partitions of the translated data (R1-3__1 through R1-3_z) to
producetask 3_ 2 intermediate results (R3-2, which is alist of
specific translated words and/or phrases).

[0220] For each task, the intermediate result information
indicates which DST unit is responsible for overseeing execu-
tion of the task and, if needed, processing the partial results
generated by the set of allocated DT execution units. In addi-
tion, the intermediate result information indicates a scratch
pad memory for the task and where the corresponding inter-
mediate results are to be stored. For example, for intermediate
result R1-1 (the intermediate result of task 1__1), DST unit 1
is responsible for overseeing execution of the task 1_1 and
coordinates storage of the intermediate result as encoded
intermediate result slices stored in memory of DST execution
units 1-5. In general, the scratch pad is for storing non-DS
encoded intermediate results and the intermediate result stor-
age is for storing DS encoded intermediate results.

[0221] FIGS. 33-38 are schematic block diagrams of the
distributed storage and task network (DSTN) module per-
forming the example of FIG. 30. In FIG. 33, the DSTN
module accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with distributed storage and task
network (DST) allocation information. For each data parti-
tion, the DSTN identifies a set of its DT (distributed task)
execution modules 90 to perform the task (e.g., identify non-
words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules 90 may be the same, different, or a combination
thereof (e.g., some data partitions use the same set while other
data partitions use different sets).

[0222] For the first data partition, the first set of DT execu-
tion modules (e.g., 1_1,2 1,3 1,4 1, and 5_1 per the
DST allocation information of FIG. 32) executes task 1__1 to
produce a first partial result 102 of non-words found in the
first data partition. The second set of DT execution modules
(eg,1 1,2 1,3 1,4 1,and5 1 perthe DST allocation
information of FIG. 32) executes task 1_1 to produce a
second partial result 102 of non-words found in the second
data partition. The sets of DT execution modules (as per the
DST allocation information) perform task 1_1 on the data
partitions until the “z” set of DT execution modules performs
task 1__1 on the “zth” data partition to produce a “zth” partial
result 102 of non-words found in the “zth” data partition.
[0223] As indicated in the DST allocation information of
FIG. 32, DST execution unit 1 is assigned to process the first
through “zth” partial results to produce the first intermediate
result (R1-1), which is a list of non-words found in the data.
For instance, each set of DT execution modules 90 stores its
respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or
may be determined by DST execution unit 1). A processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate
result (e.g., R1_1). The processing module stores the first
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

US 2013/0326264 Al

[0224] DST executionunit 1 engagesits DST client module
to slice grouping based DS error encode the first intermediate
result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of non-words
is of a sufficient size to partition (e.g., greater than a Terra-
Byte). If yes, it partitions the first intermediate result (R1-1)
into a plurality of partitions (e.g., R1-1__1 through R1-1_m).
If the first intermediate result is not of sufficient size to par-
tition, it is not partitioned.

[0225] For each partition of the first intermediate result, or
for the first intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).
[0226] In FIG. 34, the DSTN module is performing task
1_2 (e.g., find unique words) on the data 92. To begin, the
DSTN module accesses the data 92 and partitions it into a
plurality of partitions 1-z in accordance with the DST alloca-
tion information or it may use the data partitions oftask 1 1
if the partitioning is the same. For each data partition, the
DSTN identifies a set of its DT execution modules to perform
task 1_ 2 in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules may be the same, different, or acombination thereof.
For the data partitions, the allocated set of DT execution
modules executes task 1 2 to produce a partial results (e.g.,
1% through “zth”) of unique words found in the data parti-
tions.

[0227] As indicated in the DST allocation information of
FIG. 32, DST execution unit 1 is assigned to process the first
through “zth” partial results 102 of task 1 2 to produce the
second intermediate result (R1-2), which is a list of unique
words found in the data 92. The processing module of DST
execution 1 is engaged to aggregate the first through “zth”
partial results of unique words to produce the second inter-
mediate result. The processing module stores the second
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

[0228] DST executionunit 1 engagesits DST client module
to slice grouping based DS error encode the second interme-
diate result (e.g., the list of non-words). To begin the encod-
ing, the DST client module determines whether the list of
unique words is of a sufficient size to partition (e.g., greater
than a Terra-Byte). If yes, it partitions the second intermediate
result (R1-2) into a plurality of partitions (e.g., R1-2 1
through R1-2_m). If the second intermediate result is not of
sufficient size to partition, it is not partitioned.

[0229] For each partition of the second intermediate result,
or for the second intermediate results, the DST client module
uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-5).

[0230] In FIG. 35, the DSTN module is performing task
1_3 (e.g., translate) on the data 92. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN

Dec. 5, 2013

identifies a set of its DT execution modules to perform task
1_ 3 inaccordance with the DST allocation information (e.g.,
DT executionmodules 1_1,2_1,3_1,4_1,and5__1 trans-
late data partitions 21 through 2 4 and DT execution mod-
ules1 2,2 2,3 2,4 2 and5_ 2 translate data partitions
2 Sthrough 2_z). For the data partitions, the allocated set of
DT execution modules 90 executes task 1_ 3 to produce par-
tial results 102 (e.g., 1* through “zth”) of translated data.
[0231] As indicated in the DST allocation information of
FIG. 32, DST execution unit 2 is assigned to process the first
through “zth” partial results of task 1 3 to produce the third
intermediate result (R1-3), which is translated data. The pro-
cessing module of DST execution 2 is engaged to aggregate
the first through “zth” partial results of translated data to
produce the third intermediate result. The processing module
stores the third intermediate result as non-DS error encoded
data in the scratchpad memory or in another section of
memory of DST execution unit 2.

[0232] DST execution unit 2 engages its DST client module
to slice grouping based DS error encode the third intermedi-
ate result (e.g., translated data). To begin the encoding, the
DST client module partitions the third intermediate result
(R1-3) into a plurality of partitions (e.g., R1-3__1 through
R1-3_y). For each partition of the third intermediate result,
the DST client module uses the DS error encoding parameters
of'the data (e.g., DS parameters of data 2, which includes 3/5
decode threshold/pillar width ratio) to produce slice group-
ings. The slice groupings are stored in the intermediate result
memory (e.g., allocated memory in the memories of DST
execution units 2-6 per the DST allocation information).
[0233] Asis further shown in FIG. 35, the DSTN module is
performing task 1_ 4 (e.g., retranslate) on the translated data
of the third intermediate result. To begin, the DSTN module
accesses the translated data (from the scratchpad memory or
from the intermediate result memory and decodes it) and
partitions it into a plurality of partitions in accordance with
the DST allocation information. For each partition of the third
intermediate result, the DSTN identifies a set of its DT execu-
tion modules 90 to perform task 1_ 4 in accordance with the
DST allocation information (e.g., DT execution modules
1_1,2_1,3_1,4_1,and5_ 1 are allocated to translate back
partitions R1-3__1 through R1-3_ 4 and DT execution mod-
ules1_2,2 2.6 _1,7 1,and7_ 2 are allocated to translate
back partitions R1-3__5 through R1-3_z). For the partitions,
the allocated set of DT execution modules executes task 1 4
to produce partial results 102 (e.g., 1* through “zth”) of
re-translated data.

[0234] As indicated in the DST allocation information of
FIG. 32, DST execution unit 3 is assigned to process the first
through “zth” partial results oftask 1 4 to produce the fourth
intermediate result (R1-4), which is retranslated data. The
processing module of DST execution 3 is engaged to aggre-
gate the first through “zth” partial results of retranslated data
to produce the fourth intermediate result. The processing
module stores the fourth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 3.

[0235] DST execution unit3 engages its DST client module
to slice grouping based DS error encode the fourth interme-
diate result (e.g., retranslated data). To begin the encoding,
the DST client module partitions the fourth intermediate
result (R1-4) into a plurality of partitions (e.g., R1-4_1
through R1-4_z). For each partition of the fourth intermediate
result, the DST client module uses the DS error encoding

US 2013/0326264 Al

parameters of the data (e.g., DS parameters of data 2, which
includes 3/5 decode threshold/pillar width ratio) to produce
slice groupings. The slice groupings are stored in the inter-
mediate result memory (e.g., allocated memory in the memo-
ries of DST execution units 3-7 per the DST allocation infor-
mation).

[0236] In FIG. 36, a distributed storage and task network
(DSTN) module is performing task 1_5 (e.g., compare) on
data 92 and retranslated data of FIG. 35. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality of
partitions in accordance with the DST allocation information
or it may use the data partitions oftask 1 1 if'the partitioning
is the same. The DSTN module also accesses the retranslated
data from the scratchpad memory, or from the intermediate
result memory and decodes it, and partitions it into a plurality
of partitions in accordance with the DST allocation informa-
tion. The number of partitions of the retranslated data corre-
sponds to the number of partitions of the data.

[0237] For each pair of partitions (e.g., data partition 1 and
retranslated data partition 1), the DSTN identifies a set of its
DT execution modules 90 to perform task 1__5 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1,2 1,3 1,4 1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules executes
task 1_5 to produce partial results 102 (e.g., 1** through
“zth”) of a list of incorrectly translated words and/or phrases.

[0238] As indicated in the DST allocation information of
FIG. 32, DST execution unit 1 is assigned to process the first
through “zth” partial results of task 1_5 to produce the fifth
intermediate result (R1-5), which is the list of incorrectly
translated words and/or phrases. In particular, the processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results of the list of incorrectly trans-
lated words and/or phrases to produce the fifth intermediate
result. The processing module stores the fifth intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 1.

[0239] DST executionunit 1 engagesits DST client module
to slice grouping based DS error encode the fifth intermediate
result. To begin the encoding, the DST client module parti-
tions the fifth intermediate result (R1-5) into a plurality of
partitions (e.g., R1-5_ 1 through R1-5_z). For each partition
of'the fifth intermediate result, the DST client module uses the
DS error encoding parameters of the data (e.g., DS param-
eters of data 2, which includes 3/5 decode threshold/pillar
width ratio) to produce slice groupings. The slice groupings
are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5 per the
DST allocation information).

[0240] Asis further shown in FIG. 36, the DSTN module is
performing task 1_6 (e.g., translation errors due to non-
words) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list of
non-words (e.g., the first intermediate result R1-1). To begin,
the DSTN module accesses the lists and partitions them into
a corresponding number of partitions.

[0241] For each pair of partitions (e.g., partition R1-1_1
and partition R1-5_ 1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_6 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1,2 1,3 1,4 1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules executes

Dec. 5, 2013

task 1_6 to produce partial results 102 (e.g., 1* through
“zth”) of a list of incorrectly translated words and/or phrases
due to non-words.

[0242] As indicated in the DST allocation information of
FIG. 32, DST execution unit 2 is assigned to process the first
through “zth” partial results of task 1__6 to produce the sixth
intermediate result (R1-6), which is the list of incorrectly
translated words and/or phrases due to non-words. In particu-
lar, the processing module of DST execution 2 is engaged to
aggregate the first through “zth” partial results of the list of
incorrectly translated words and/or phrases due to non-words
to produce the sixth intermediate result. The processing mod-
ule stores the sixth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 2.

[0243] DST execution unit 2 engages its DST client module
to slice grouping based DS error encode the sixth intermedi-
ate result. To begin the encoding, the DST client module
partitions the sixth intermediate result (R1-6) into a plurality
of partitions (e.g., R1-6__1 through R1-6_z). For each parti-
tion of the sixth intermediate result, the DST client module
uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
2-6 per the DST allocation information).

[0244] As is still further shown in FIG. 36, the DSTN
module is performing task 1_7 (e.g., correctly translated
words and/or phrases) on the list of incorrectly translated
words and/or phrases (e.g., the fifth intermediate result R1-5)
and the list of unique words (e.g., the second intermediate
result R1-2). To begin, the DSTN module accesses the lists
and partitions them into a corresponding number of parti-
tions.

[0245] For each pair of partitions (e.g., partition R1-2_ 1
and partition R1-5_1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1 7 in accordance
with the DST allocation information (e.g., DT execution
modules 1_2,2 2,3 2 4 2 and 5_2). For each pair of
partitions, the allocated set of DT execution modules executes
task 1_ 7 to produce partial results 102 (e.g., 1st through
“zth”) of a list of correctly translated words and/or phrases.
[0246] As indicated in the DST allocation information of
FIG. 32, DST execution unit 3 is assigned to process the first
through “zth” partial results of task 1 7 to produce the sev-
enth intermediate result (R1-7), which is the list of correctly
translated words and/or phrases. In particular, the processing
module of DST execution 3 is engaged to aggregate the first
through “zth” partial results of the list of correctly translated
words and/or phrases to produce the seventh intermediate
result. The processing module stores the seventh intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 3.

[0247] DST execution unit3 engages its DST client module
to slice grouping based DS error encode the seventh interme-
diate result. To begin the encoding, the DST client module
partitions the seventh intermediate result (R1-7) into a plu-
rality of partitions (e.g., R1-7__1 through R1-7_z). For each
partition of the seventh intermediate result, the DST client
module uses the DS error encoding parameters of the data
(e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The

US 2013/0326264 Al

slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 3-7 per the DST allocation information).

[0248] InFIG. 37, the distributed storage and task network
(DSTN) module is performing task 2 (e.g., find specific words
and/or phrases) on the data 92. To begin, the DSTN module
accesses the data and partitions it into a plurality of partitions
1-z in accordance with the DST allocation information or it
may use the data partitions of task 1 1 if the partitioning is
the same. For each data partition, the DSTN identifies a set of
its DT execution modules 90 to perform task 2 in accordance
with the DST allocation information. From data partition to
data partition, the set of DT execution modules may be the
same, different, or a combination thereof. For the data parti-
tions, the allocated set of DT execution modules executes task
2 to produce partial results 102 (e.g., 1% through “zth”) of
specific words and/or phrases found in the data partitions.
[0249] As indicated in the DST allocation information of
FIG. 32, DST execution unit 7 is assigned to process the first
through “zth” partial results of task 2 to produce task 2 inter-
mediate result (R2), which is a list of specific words and/or
phrases found in the data. The processing module of DST
execution 7 is engaged to aggregate the first through “zth”
partial results of specific words and/or phrases to produce the
task 2 intermediate result. The processing module stores the
task 2 intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 7.

[0250] DST executionunit 7 engages its DST client module
to slice grouping based DS error encode the task 2 interme-
diate result. To begin the encoding, the DST client module
determines whether the list of specific words and/or phrases is
of a sufficient size to partition (e.g., greater than a Terra-
Byte). If yes, it partitions the task 2 intermediate result (R2)
into a plurality of partitions (e.g., R2__1throughR2_m). Ifthe
task 2 intermediate result is not of sufficient size to partition,
it is not partitioned.

[0251] For each partition of the task 2 intermediate result,
or for the task 2 intermediate results, the DST client module
uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, and 7).

[0252] InFIG. 38, the distributed storage and task network
(DSTN) module is performing task 3 (e.g., find specific trans-
lated words and/or phrases) on the translated data (R1-3). To
begin, the DSTN module accesses the translated data (from
the scratchpad memory or from the intermediate result
memory and decodes it) and partitions it into a plurality of
partitions in accordance with the DST allocation information.
For each partition, the DSTN identifies a set of its DT execu-
tion modules to perform task 3 in accordance with the DST
allocation information. From partition to partition, the set of
DT execution modules may be the same, different, or a com-
bination thereof. For the partitions, the allocated set of DT
execution modules 90 executes task 3 to produce partial
results 102 (e.g., 1% through “zth”) of specific translated
words and/or phrases found in the data partitions.

[0253] As indicated in the DST allocation information of
FIG. 32, DST execution unit 5 is assigned to process the first
through “zth” partial results of task 3 to produce task 3 inter-
mediate result (R3), which is a list of specific translated words

Dec. 5, 2013

and/or phrases found in the translated data. In particular, the
processing module of DST execution 5 is engaged to aggre-
gate the first through “zth” partial results of specific translated
words and/or phrases to produce the task 3 intermediate
result. The processing module stores the task 3 intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 7.

[0254] DST execution unit 5 engages its DST client module
to slice grouping based DS error encode the task 3 interme-
diate result. To begin the encoding, the DST client module
determines whether the list of specific translated words and/
or phrases is of a sufficient size to partition (e.g., greater than
aTerra-Byte). If yes, it partitions the task 3 intermediate result
(R3) into a plurality of partitions (e.g., R3__1 through R3_m).
If the task 3 intermediate result is not of sufficient size to
partition, it is not partitioned.

[0255] For each partition of the task 3 intermediate result,
or for the task 3 intermediate results, the DST client module
uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, 5, and 7).

[0256] FIG. 39 is a diagram of an example of combining
result information into final results 104 for the example of
FIG. 30. In this example, the result information includes the
list of specific words and/or phrases found in the data (task 2
intermediate result), the list of specific translated words and/
or phrases found in the data (task 3 intermediate result), the
list of non-words found in the data (task 1 first intermediate
result R1-1), the list of unique words found in the data (task 1
second intermediate result R1-2), the list of translation errors
due to non-words (task 1 sixth intermediate result R1-6), and
the list of correctly translated words and/or phrases (task 1
seventh intermediate result R1-7). The task distribution mod-
ule provides the result information to the requesting DST
client module as the results 104.

[0257] FIG. 40A is a schematic block diagram of an
embodiment of a dispersed storage network that includes a
computing device 350 and a dispersed storage network
(DSN) memory 352. The DSN memory 352 may be imple-
mented utilizing one or more of a distributed storage and task
network (DSTN), a DSTN module, a plurality of storage
nodes, one or more dispersed storage (DS) unit sets 354, and
a plurality of dispersed storage (DS) units 356. Each DS unit
356 may be implemented utilizing at least one of a storage
server, a storage unit, a storage module, a memory device, a
memory, a distributed storage and task (DST) execution unit,
a user device, a DST processing unit, and a DST processing
module. The computing device 350 may be implemented
utilizing at least one of a server, a storage unit, a DSTN
managing unit, a DSN managing unit, a DS unit 356, a storage
server, a storage module, a DS processing unit, a DST execu-
tion unit, a user device, a DST processing unit, and a DST
processing module. For example, computing device 350 is
implemented as the DS processing unit. The computing
device 350 includes a dispersed storage (DS) module 358.
The DS module 358 includes a monitor module 360, an
interpret module 362, a reprioritize module 364, and an out-
put module 366.

[0258] The system functions to monitor processing status
372 of access requests, interpret the processing status 372 to

US 2013/0326264 Al

detect a processing anomaly 374, reprioritizes further pro-
cessing access requests, and outputs notice of reprioritized
further processing 376. With regards to the monitoring of the
processing status 372 of the access requests, monitor module
360 monitors processing status 372 of a plurality of pending
DSN access requests, where a pending DSN access request of
the plurality of pending DSN access requests includes a set of
access requests 368 regarding a set of encoded data slices.
The set of access requests 368 is sent to DS units 356 (e.g., DS
unit set 354) of the DSN memory 352, where less than a
desired number of the DS units 356 have favorably responded
to the set of access requests 368. The monitor module 360
monitors the processing status 372 by one or more ofa variety
of monitoring approaches.

[0259] A first monitoring approach includes the monitor
module 360 determining a number of favorable replies of
replies 370 received from the DS units 356 regarding the
pending DSN access request. The DSN access request
includes one or more of a read request, a request of a three-
phase write commit process (e.g., a request of the three-phase
write commit process includes at least one of a write request,
a commit request, and a finalize request), a status request, a
delete request, and an update request. The DSN access
request may further include one or more of a requested pri-
ority level and a transaction number. The requested priority
level may include a continuum from high to low, no priority
level, and zero priority to cancel the DSN access request. The
requested priority level may be determined based on one or
more of a predetermination, a historical record, and a perfor-
mance requirement. The replies 370 includes at least one of a
read response and a write response. The read response and the
write response may include one or more of a transaction
number, a slice name, an encoded data slice for a read request,
and a favorability indicator. A favorable read response indi-
cates a favorable reply with regards to a corresponding pend-
ing DSN read access request. A favorable write response
indicates a favorable reply with regards to a corresponding
pending DSN write access request. The monitor module 360
may also determine a number of unfavorable replies received
from the DS units regarding the pending DSN access request
(e.g., responses including a unfavorable indicator).

[0260] A second monitoring approach includes the monitor
module 360 determining a rate of receiving favorable replies
from the DS units 356 regarding the pending DSN access
request (e.g., quantity per unit of time). A third monitoring
approach includes the monitor module 360 determining a
priority of the pending DSN access request. The determining
includes at least one of performing a lookup, interpreting a
copy of the pending DSN access request, and issuing a query
to a corresponding DS unit 356. A fourth monitoring
approach includes the monitor module 360 determining a
request type of the pending DSN access request. The deter-
mining includes at least one of performing a lookup, inter-
preting the copy of the pending DSN access request, and
issuing a query to the corresponding DS unit 356. The DSN
access requests of different request types may be prioritized
differently in accordance with the request type. For example,
a read request may be prioritized over a write request. As
another example, a write request may be prioritized over a
delete request. As yet another example, a delete request may
be prioritized over a status request.

[0261] A fifth monitoring approach includes the monitor
module 360 determining that at least a threshold number of
favorable replies from the DS units 356 regarding the pending

Dec. 5, 2013

DSN access request have been received. The threshold num-
ber of favorable number of replies may correspond to a read
request type. For example, a decode threshold number of
favorable replies is utilized when the request type is a read
request and a favorable reply includes a favorable read
response. As another example, a write threshold number of
favorable replies is utilized when the request type is a write or
a commit write transaction request and a favorable reply
includes a favorable write response. A sixth monitoring
approach includes the monitor module 360 determining a
duration ofthe pending DSN access request. The determining
includes calculating a time difference between issuing of the
pending DSN access request and a current time.

[0262] With regards to the interpreting the processing sta-
tus 372 to detect the processing anomaly 374, the interpret
module 362 interprets the processing status 372 of the plural-
ity of pending DSN access requests to detect a processing
anomaly 374 of one of the plurality of pending DSN access
requests. The processing anomaly 374 includes one of a vari-
ety of anomalies. A first anomaly includes the processing of
the pending DSN access request is exceeding a first desired
processing level. For example, more than a decode threshold
number of favorable replies has been received with regards to
aread request. As another example, more than a write thresh-
old number of favorable replies has been received with
regards to a write request. A second anomaly includes the
processing of the pending DSN access request is below a
second desired processing level. The second desired process-
ing level may be very close to the first desired processing
level. For example, less than the decode threshold number of
favorable replies has been received with regards to the read
request. As another example, less than the write threshold
number of favorable replies has been received with regards to
the write request.

[0263] The interpret module 362 interprets the processing
status 372 by at least one of a variety of interpreting
approaches. A first interpreting approach includes the inter-
pretmodule 362 indicating the processing anomaly 374 when
a desired number of favorable replies from the DS units 356
regarding the one of the plurality of pending DSN access
requests has not been received. For example, the interpret
module 362 indicates the processing anomaly 374 when
greater than a pillar width minus the decode threshold number
of unfavorable read responses has been received indicating
that a desired number (e.g., a decode threshold number) of
favorable replies will never be received. As another example,
the interpret module 362 indicates the processing anomaly
374 when greater than the pillar width minus the write thresh-
old number of unfavorable write responses has been received
indicating that a desired number (e.g., a write threshold num-
ber) of favorable replies will never be received. A second
interpreting approach includes the interpret module 362 indi-
cating the processing anomaly 374 when a desired rate of
receiving favorable replies from the DS units 356 regarding
the one of the plurality of pending DSN access requests is not
achieved. For example, the interpret module 362 indicates the
processing anomaly 374 when a rate of receiving favorable
replies is less than the desired rate. As another example, the
interpret module 362 indicates the processing anomaly 374
when the rate of receiving favorable replies is greater than the
desired rate.

[0264] A third interpreting approach includes the interpret
module 362 indicating the processing anomaly 374 when the
one of the plurality of pending DSN access requests has been

US 2013/0326264 Al

pending for longer than a desired duration. For example, the
interpret module 362 indicates the processing anomaly 374
when the one of the plurality of pending DSN access requests
is taking too long. A fourth interpreting approach includes the
interpret module 362 indicating the processing anomaly 374
when a threshold number of favorable replies from the DS
units 356 regarding the one of the plurality of pending DSN
access requests have been received. For example, the interpret
module 362 indicates the processing anomaly 374 when a
decode threshold number of favorable replies has been
received for a read request. As another example, interpret
module 362 indicates the processing anomaly 374 when a
write threshold number of favorable replies has been received
for a write request or write commit write transaction request.

[0265] With regards to the reprioritizing the further pro-
cessing access requests, the reprioritize module 364 repriori-
tizes further processing of at least one of the one of the
plurality of pending DSN access requests having the process-
ing anomaly 374 and another one or more of the plurality of
pending DSN access requests to produce the reprioritized
further processing 376. The reprioritize module 364 repriori-
tizes further processing by at least one of a variety of repri-
oritizing approaches. A first reprioritizing approach includes
the reprioritize module 364 increasing priority of the one of
the plurality of pending DSN access requests having the
processing anomaly 374, when the processing anomaly 374 is
indicative of the processing of the one of the plurality of
pending DSN access requests being below a second desired
processing level. For example, increasing priority of a pend-
ing read request when the decode threshold number of favor-
able replies has not been received. As another example,
increasing priority of a pending write request when the write
threshold number of favorable replies has not been received.
A second reprioritizing approach includes the reprioritize
module 364 decreasing priority of the other one or more of the
plurality of pending DSN access requests when the process-
ing of the other one or more of the plurality of pending DSN
access requests is above a first desired processing level. For
example, decreasing priority to cancel a pending read request
when the decode threshold number of favorable read replies
has been received. As another example, decreasing priority of
a pending write request when the write threshold number of
favorable write replies has been received.

[0266] A third reprioritizing approach includes the repri-
oritize module 364 increasing priority of the one of the plu-
rality of pending DSN access requests having the processing
anomaly 374. For example, increasing priority of a pending
read request when a request to speed up the operation is
received. As another example, increasing priority of a pend-
ing write request when receiving a DS unit shutdown mes-
sage. A fourth reprioritizing approach includes the repriori-
tize module 364 decreasing priority of the other one or more
of'the plurality of pending DSN access requests. For example,
decreasing priority to cancel a pending write request when
greater than the pillar width minus the write threshold number
of unfavorable write or write commit replies has been
received. As another example, decreasing priority to cancel a
pending read request when greater than the pillar width minus
the decode threshold number of unfavorable read replies has
been received.

[0267] With regards to the outputting the notice of the rep-
rioritized further processing 376, the output module 366
sends notice of the reprioritized further processing 376 to one
or more of the DS units 356. The output module 366 sends

Dec. 5, 2013

notice of the reprioritized further processing 376 by identify-
ing the one or more of the DS units 356 as units of the DS units
356 that have not provided a reply to the one of the plurality
of pending DSN access requests or to the other one of the
plurality of pending DSN access requests. The sending of the
notice further includes generating a priority adjustment
request 378 that includes one or more of the transaction
number, an updated priority level of the reprioritizing further
processing, and the slice name. The sending of the notice
further includes outputting the priority adjustment request
378 to the identified one or more of the DS units 356.

[0268] FIG. 40B is a flowchart illustrating an example of
changing a request priority level. The method begins at step
380 where a processing module (e.g., of a dispersed storage
(DS) processing unit) monitors processing status of a plural-
ity of pending dispersed storage network (DSN) access
requests. A pending DSN access request of the plurality of
pending DSN access requests includes a set of access requests
regarding a set of encoded data slices. The set of access
requests is sent to DS units of a DSN when less than a desired
number of the DS units have favorably responded to the set of
access requests. The monitoring the processing status
includes one or more of'a variety of monitoring approaches. A
first monitoring approach includes determining a number of
favorable replies received from the DS units regarding the
pending DSN access request. A second monitoring approach
includes determining a rate of receiving favorable replies
from the DS units regarding the pending DSN access request.
A third monitoring approach includes determining a priority
of the pending DSN access request. A fourth monitoring
approach includes determining a request type of the pending
DSN access request. A fifth monitoring approach includes
determining that at least a threshold number of favorable
replies from the DS units regarding the pending DSN access
request have been received. A sixth monitoring approach
includes determining a duration of the pending DSN access
request.

[0269] The method continues at step 382 where the pro-
cessing module interprets the processing status of the plural-
ity of pending DSN access requests to detect a processing
anomaly of one of the plurality of pending DSN access
requests. The interpreting the processing status includes at
least one of a variety of interpreting approaches. A first inter-
preting approach includes indicating the processing anomaly
when a desired number of favorable replies from the DS units
regarding the one of the plurality of pending DSN access
requests has not been received. A second interpreting
approach includes indicating the processing anomaly when a
desired rate of receiving favorable replies from the DS units
regarding the one of the plurality of pending DSN access
requests is not achieved. A third interpreting approach
includes indicating the processing anomaly when the one of
the plurality of pending DSN access requests has been pend-
ing for longer than a desired duration. A fourth interpreting
approach includes indicating the processing anomaly when a
threshold number of favorable replies from the DS units
regarding the one of the plurality of pending DSN access
requests have been received.

[0270] The method continues at step 384 where the pro-
cessing module reprioritizes further processing of at least one
of the one of the plurality of pending DSN access requests
having the processing anomaly and another one or more of the
plurality of pending DSN access requests. The reprioritizing
further processing includes at least one of a variety of repri-

US 2013/0326264 Al

oritizing approaches. A first reprioritizing approach includes
increasing priority of the one of the plurality of pending DSN
access requests having the processing anomaly, when the
processing anomaly is indicative of the processing of the one
of' the plurality of pending DSN access requests being below
a second desired processing level. A second reprioritizing
approach includes decreasing priority of the other one or
more of the plurality of pending DSN access requests when
the processing of the other one or more of the plurality of
pending DSN access requests is above a first desired process-
ing level. A third reprioritizing approach includes increasing
priority of the one of the plurality of pending DSN access
requests having the processing anomaly. A fourth reprioritiz-
ing approach includes decreasing priority of the other one or
more of the plurality of pending DSN access requests.

[0271] The method continues at step 386 where the pro-
cessing module sends notice of the reprioritized further pro-
cessing to one or more of the DS units. The sending notice of
the reprioritized further processing includes identifying the
one or more of the DS units as units of the DS units that have
not provided a reply to the one of the plurality of pending
DSN access requests or to the other one of the plurality of
pending DSN access requests. The sending notice further
includes outputting the notice of the reprioritize further pro-
cessing to the identified one or more of the DS units.

[0272] FIG. 41A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) that
includes a computing device 390 and a dispersed storage
network (DSN) memory 392. The DSN memory 392 includes
one or more storage unit sets 394. Each storage unit set 394
includes a set of storage units 396. Alternatively, the DSN
memory 392 may be implemented utilizing one or more of a
distributed storage and task network (DSTN), a DSTN mod-
ule, a plurality of storage nodes, a plurality of DS units, a
plurality of DST execution units, and a plurality of storage
units 396. Each storage unit 396 may be implemented utiliz-
ing at least one of a storage server, a storage module, a
memory device, a memory, a plurality of memory devices, a
distributed storage and task (DST) execution unit, a DS unit,
a user device, a DST processing unit, and a DST processing
module. The computing device 390 may be implemented
utilizing at least one of a server, a storage unit 396, a rebuild-
ing unit, a plurality of computers, a storage integrity process-
ing unit, a DSTN managing unit, a DSN managing unit, a DS
unit, a storage server, a storage module, a DS processing unit,
a DST execution unit, a user device, a DST processing unit,
and a DST processing module. For example, computing
device 390 is implemented as the rebuilding unit. The com-
puting device 390 includes a dispersed storage (DS) module
402. The DS module 402 includes an identify error module
404, a lock module 406, and a resolution module 408.

[0273] The system functions to identify an encoded data
slice having an error, send a lock command 410 to a storage
unit 396 associated with the encoded data slice having the
error, and determine resolution for the error of the encoded
data slice. With regards to identifying the encoded data slice
having the error, the identify error module 404 identifies the
encoded data slice having the error. The encoded data slice
has a slice name 412 and a revision number 414, both of
which may be included in identification of the error. The
storage unit 396 of the DSN stores the encoded data slice. The
identify error module 404 identifies the encoded data slice
having the error by at least one of a variety of identifying
approaches. A first identifying approach includes the identify

Dec. 5, 2013

error module 404 identitying the encoded data slice via a
rebuilding detection process. The rebuilding detection pro-
cess includes issuing a set of list requests to two or more
storage units 396 of the storage unit set 394 over a slice name
range that includes the slice name 412 and issuing a set of list
digest requests over a slice name range that includes the slice
name 412. The rebuilding detection process further includes
comparing one or more storage error responses 416, received
as list and/or list digest responses, to identify the encoded data
slice. A second identifying approach includes the identify
error module 404 receiving a message indicating the error.
For example, receiving an unfavorable write response and/or
an unfavorable commit write response as the storage error
response 416. A third identifying approach includes the iden-
tify error module 404 receiving a response to a query regard-
ing the encoded data slice as the storage error response 416.
The response to the query may include one or more of the
slice name 412 and the revision number 414.

[0274] With regards to sending the lock command 410 to
the storage unit 396 associated with the encoded data slice
having the error, the lock module 406 sends the lock com-
mand 410 to the storage unit 396. The lock command 410
instructs the storage unit 396 to ignore access requests (e.g.,
read, write, delete, etc.) regarding the encoded data slice from
other entities (e.g., a user device, a DS processing unit, etc.) of
the DSN and to ignore write-related requests and delete-
related requests regarding other encoded data slices from the
other entities of the DSN. The write-related requests includes
at least one of a write request, a commit request, a finalize
request, a delete request, an overwrite request, and a modify
request. The other encoded data slices have the slice name but
different revision numbers than the encoded data slice. The
sending of the lock command 410 includes generating the
lock command 410 to include the slice name 412, identifying
the storage unit 396 (e.g., a lookup, a query response), and
outputting the lock command 410 to the storage unit 396.

[0275] With regards to determining resolution for the error
of the encoded data slice, the resolution module 408, in
response to a lock acknowledgement 418 (e.g., a favorable
acknowledgment indicating that the lock command 410 has
been executed) from the storage unit 396, determines resolu-
tion for the error of the encoded data slice. The resolution
includes one or more of rebuilding the encoded data slice to
produce arebuilt slice 420, issuing a set of delete requests 422
to storage units 396 (e.g., the storage unit set 394) of the DSN
regarding a set of encoded data slices, issuing a set of undo
write requests 424 to the storage units 396 (e.g., the storage
unit set 394) of the DSN regarding the set of encoded data
slices, and issuing a set of roll-back write requests 426 to the
storage units (e.g., the storage unit set 394) of the DSN
regarding the set of encoded data slices. The set of encoded
data slices includes the encoded data slice. The storage units
396 (e.g., the storage unit set 394) of the DSN includes the
storage unit 396. The resolution module 408, may, when the
resolution for of the error of the encoded data slice has been
executed, send an unlock command 432 to the storage unit
396. The resolution module 408 may determine the resolution
by requesting re-issuance of a write command 428 regarding
the encoded data slice. For example, issuing a retry of a write
request as the write command 428 when the encoded data
slice is available from a local memory. Alternatively, or in
addition to, the resolution module 408 may send a resolution
request 430 regarding the resolution to at least one of the other
entities of the DSN for execution of the resolution.

US 2013/0326264 Al

[0276] The resolution module 408 further functions to
determine to rebuild the encoded data slice by a series of
rebuilding determining steps. A first rebuilding determining
step includes the resolution module 408 determining whether
at least a threshold number of encoded data slices of the set of
encoded data slices is stored in the DSN, where a data seg-
ment is dispersed storage error encoded to produce the set of
encoded data slices, and where the set of encoded data slices
includes the encoded data slice. The determining includes one
or more of receiving an error message, initiating a query,
receiving responses from storage units 396 of the DSN, and
comparing the responses. The query includes issuing a set of
list requests that includes the set of slice names associated
with the encoded data slice. The resolution module 408 deter-
mines not to rebuild the encoded data slice when the at least a
threshold number of encoded data slices of the set of encoded
data slices is not stored in the DSN. A second rebuilding
determining step includes the resolution module 408, when
the at least a threshold number of encoded data slices is stored
in the DSN;, rebuilding the encoded data slice using at least
one of a partial rebuilding process and a rebuilding process.
The rebuilding includes at least one of direct rebuilding and
indirect rebuilding. The direct rebuilding includes retrieving a
decode threshold number of encoded data slices 434 of the
revision number from the storage units 396 of the DSN,
decoding the decode threshold number of encoded data slices
434 to reproduce a data segment, re-encoding the data seg-
ment to reproduce the encoded data slice as the rebuilt slice
420. The indirect rebuilding includes issuing a rebuilding
request to a rebuilding entity, where the rebuilding request
includes the slice name 412 and the revision number 414.

[0277] The resolution module 408 further functions to
determine to issue the set of delete requests 422 by a series of
deleting determining steps. A first deleting determining step
includes the resolution module 408, when a determination is
made not to rebuild the encoded data slice, determining status
of'a write process. The status of the write process includes an
initial write phase, a commit phase, and complete. The initial
write phase corresponds to write requests sent and awaiting
receipt of a write threshold number of write responses. The
commit phase corresponds to commit requests sent and await-
ing receipt of a write threshold number of commit responses.
Complete corresponds to finalize requests sent and write pro-
cess complete. The determining the status of the write process
includes atleast one of performing a lookup, accessing a write
processing state table, initiating a query, receiving a response,
and receiving an error message. A second deleting determin-
ing step includes the resolution module 408, when the status
of the write process is complete, issuing the set of delete
requests 422 to storage units 396 (e.g., the storage unit set
394) of the DSN to delete the set of encoded data slices, which
includes the encoded data slice. The set of delete requests 422
includes a set of slice names of the set of encoded data slices
and the revision number.

[0278] The resolution module 408 further functions to
determine to issue the set of undo write requests 424 by a
series of undoing determining steps. A first undoing deter-
mining step includes the resolution module 408, when the
determination is made not to rebuild the encoded data slice,
determining the status of the write process. A second undoing
determining step includes the resolution module 408, when
the status of the write process is at the commit phase, issuing
the set of undo requests 424 to storage units 396 (e.g., the
storage unit set 394) of the DSN to undo storing the set of

Dec. 5, 2013

encoded data slices, which includes the encoded data slice.
The set of undo requests 424 includes a transaction number
associated with the storing the set of encoded data slices.
[0279] The resolution module 408 further functions to
determine to issue the set of roll-back write requests 426 by a
series of rolling back determining steps. A first rolling back
determining step includes the resolution module 408, when
the determination is made not to rebuild the encoded data
slice, determining the status of the write process. A second
rolling back determining step includes the resolution module
408, when the status of the write process is at the initial write
phase, issuing the set of roll-back requests 426 to storage
units 396 (e.g., the storage unit set 394) of the DSN to retract
the initial write phase regarding storing the set of encoded
data slices, which includes the encoded data slice. The set of
roll-back requests 426 includes the transaction number asso-
ciated with the storing the set of encoded data slices (e.g., the
initial write phase regarding the storing the set of encoded
data slices).

[0280] FIG. 41B is a flowchart illustrating an example of a
adjusting slice access. The method begins at step 440 where a
processing module (e.g., of a rebuilding module, of a dis-
persed storage (DS) processing unit) within a dispersed stor-
age network (DSN) identifies an encoded data slice having an
error, where the encoded data slice has a slice name and a
revision number. A storage unit of the DSN stores the encoded
data slice. The identifying the encoded data slice having the
error includes at least one of a variety of identifying
approaches. A first identifying approach includes identifying
the encoded data slice via a rebuilding detection process (e.g.,
use of a slice listing procedure and/or a slice digest listing
procedure across a set of storage units that includes the stor-
ageunit). A second identifying approach includes receiving a
message indicating the error. A third identifying approach
includes receiving a response to a query regarding the
encoded data slice.

[0281] The method continues at step 442 where the pro-
cessing module sends a lock command to the storage unit,
where the lock command instructs the storage unit to ignore
access requests regarding the encoded data slice from other
entities of the DSN and to ignore write-related requests and
delete-related requests regarding other encoded data slices
from the other entities of the DSN. The other encoded data
slices have the slice name but different revision numbers than
the encoded data slice. The sending of the lock command
includes generating the lock command to include the slice
name, identifying the storage unit, and outputting the lock
command to the storage unit.

[0282] The method continues at step 444 where, in
response to a lock acknowledgement from the storage unit,
the processing module determines resolution for the error of
the encoded data slice. The resolution may include one or
more of a requesting re-issuance of a write command regard-
ing the encoded data slice, sending a resolution request to
another entity of the DSN, and rebuilding the encoded data
slice when determining that the encoded data slice can be
rebuilt. When the encoded data slice can’t be rebuilt, the
resolution may include at least one of issuing a set of delete
requests to storage units of the DSN regarding a set of
encoded data slices, issuing a set of undo write requests to the
storage units of the DSN regarding the set of encoded data
slices, and issuing a set of roll-back write requests to the
storage units of the DSN regarding the set of encoded data
slices. The set of encoded data slices includes the encoded

US 2013/0326264 Al

data slice and the storage units (e.g., a set of storage units
associated with the set of encoded data slices) of the DSN
includes the storage unit.

[0283] The method branches to step 454 when the process-
ing module determines not to rebuild the encoded data slice.
The processing module may determine not to rebuild the
encoded data slice based on one or more of receiving a mes-
sage, a predetermination, identifying a status of a write pro-
cess error, and identifying a performance issue. For example,
the processing module determines not to rebuild the encoded
data slice when detecting that a write process failed when a
write threshold number of write acknowledgment responses
were not received within a desired timeframe. The method
branches to step 450 when the processing module determines
to rebuild the encoded data slice (e.g., to attempt to rebuild the
encoded data slice). The determining to rebuild the encoded
data slice may be based on one or more of a predetermination,
identifying an error message pattern, and a data storage pri-
ority indicator.

[0284] The method branches to step 448 when the process-
ing module determines to send a resolution request to the
other entity of the DSN. The processing module may deter-
mine to send a resolution request based on one or more of a
loading indicator, an unfavorable access rights pattern, a
request, a predetermination, and a rebuilding resource avail-
ability indicator. For example, the processing module deter-
mines to send a resolution request to the other entity when the
loading indicator indicates that a loading level is greater than
a high loading threshold level. The method continues to step
446 when the processing module determines to re-issue the
write command. The determining to re-issue the write com-
mand may be based on one or more of availability of encoded
data slice and a local memory, a performance requirement, a
rebuilding resource availability indicator, and the status of the
write process. For example, the processing module deter-
mines to re-issue the write command when the encoded data
slice is available in the local memory.

[0285] When the encoded data slice is available in the local
memory, the method continues at step 446 where the process-
ing module determines the resolution further to include
requesting re-issuance of the write command regarding the
encoded data slice. For example, the processing module
issues a retry of a write request associated with the encoded
data slice. When rewriting is complete, the processing mod-
ule may branch to step 462. When the resolution includes
sending the resolution request to the other entity of the DSN,
the method continues at step 448 where the processing mod-
ule sends the resolution request regarding the resolution to at
least one of the entities of the DSN for execution of the
resolution.

[0286] When theresolution includes determining to rebuild
the encoded data slice, the method continues at step 450
where the processing module determines whether at least a
threshold number of encoded data slices of the set of encoded
data slices is stored in the DSN (e.g., A decode threshold
number). A data segment is dispersed storage error encoded
to produce the set of encoded data slices. The set of encoded
data slices includes the encoded data slice. The processing
module indicates that the encoded data slice can’t be rebuilt
when the at least a threshold number of encoded data slices of
the set of encoded data slices is not stored in the DSN. The
method branches to step 454 when less than the at least a
threshold number of encoded data slices of the set of encoded
data slices is stored in the DSN. The method continues to step

Dec. 5, 2013

452 when the at least a threshold number of encoded data
slices of the set of encoded data slices is stored in the DSN.

[0287] When the at least a threshold number of encoded
data slices is stored in the DSN; the method continues at step
452 where the processing module rebuilds the encoded data
slice using at least one of a partial rebuilding process and a
rebuilding process. When utilizing the partial rebuilding pro-
cess, the processing module obtains at least a decode thresh-
old number of partial rebuilt slices from the DSN and decodes
(e.g., performs an exclusive OR function) the atleast a decode
threshold number of partial rebuilt slices to reproduce the
encoded data slice. A storage unit of the DSN produces an
associated partial rebuilt slice by obtaining an encoding
matrix utilized to generate the encoded data slice to be rebuilt,
reducing the encoding matrix to produce a square matrix that
exclusively includes rows associated with the decode thresh-
old number of storage units, inverting the square matrix to
produce an inverted matrix, matrix multiplying the inverted
matrix by an encoded data slice (e.g., of the set of encoded
data slices) associated with the storage unit to produce a
vector, and matrix multiplying the vector by a row of the
encoding matrix corresponding to the encoded data slice to be
rebuilt to produce the partial rebuilt slice.

[0288] When utilizing the rebuilding process, the process-
ing module obtains at least a decode threshold number of
encoded data slices from the DSN and decodes the at least a
decode threshold number of encoded data slices using a dis-
persed storage error coding function to reproduce a data seg-
ment. Next, the processing module re-encodes the data seg-
ment using the dispersed storage error coding function to
reproduce the encoded data slice. The method branches to
step 462.

[0289] When less than the at least a threshold number of
encoded data slices of the set of encoded data slices is stored
in the DSN or when the determined resolution includes not to
rebuild the encoded data slice, the method continues at step
454 where the processing module determines the status of the
write process. The status of the write process includes an
initial write phase, a commit phase, and complete. The initial
write phase corresponds to write requests sent and awaiting
receipt of a write threshold number of write responses. The
commit phase corresponds to commit requests sent and await-
ing receipt of a write threshold number of commit responses.
Complete corresponds to finalize requests sent and write pro-
cess complete. The determining of the status of the write
process includes at least one of initiating a query, receiving a
response, performing a table lookup, receiving an error mes-
sage, and receiving a process status message. The method
branches to step 460 when the status of the write process is at
the initial write phase. The method branches to step 458 when
the status of the write process is at the commit phase. The
method continues to step 456 when the status of the write
phase is complete.

[0290] When the status of the write process is complete, the
method continues at step 456 where the processing module
issues the set of delete requests to the storage units (e.g., the
set of storage units) of the DSN to delete the set of encoded
data slices, which includes the encoded data slice. The set of
delete requests includes a set of slice names of the set of
encoded data slices and the revision number. The method
branches to step 462. When the status of the write process is
at the commit phase, the method continues at step 458 where
the processing module issues the set of undo requests to the
storage units of the DSN to undo storing the set of encoded

US 2013/0326264 Al

data slices, which includes the encoded data slice. The set of
undo requests includes a transaction number associated with
the storing the set of encoded data slices. The method
branches to step 462. When the status of the write process is
at the initial write phase, the method continues at step 460
where the processing module issues the set of roll-back
requests to the storage units of the DSN to retract the initial
write phase regarding storing the set of encoded data slices,
which includes the encoded data slice. The set of roll-back
requests includes a transaction number associated with the
initial write phase regarding storing the set of encoded data
slices. When the resolution for the error of the encoded data
slice has been executed, the method continues at step 462
where the processing module sends an unlock command to
the storage unit. The sending includes generating and output-
ting the unlock command. The unlock command includes one
or more of the slice name of the encoded data slice and
identity of the DS unit associated with the encoded data slice.
The unlock command instructs the DS unit to once again
accept all access requests associated with the slice name.

[0291] FIG. 42 is a flowchart illustrating an example of
synchronizing distributed storage and task (DSTN) network
data. The synchronizing may include generating a DSTN data
concurrency response message to support a checked read
response operation. The method begins with step 464 where a
processing module (e.g., of a distributed storage and task
(DST) execution unit) receives one of at least a threshold
number of DSTN concurrency requests that includes a header
section and a payload section, where the payload section
includes a transaction number, a last known slice revision
number, and a slice name section. The method continues at
step 466 where, in response to the one of at least the threshold
number of DSTN concurrency requests, the processing mod-
ule determines a most recent slice revision number based on
a slice name contained in the slice name section. For example,
the processing module accesses an associated memory based
on the slice name contained in the slice name section to
retrieve a list of slice revision numbers corresponding to the
slice name. Next, processing module identifies a greatest slice
revision number as the most recent slice revision number.

[0292] The method continues at step 468 where the pro-
cessing module determines whether the last known revision
number is less than the most recent revision number. The
method branches to step 472 when the last known revision
number is not less than the most recent revision number. The
method continues to step 470 when the last known revision
number is less than the most recent revision number. When
the last known revision number is less than the most recent
revision number (e.g., the most recent revision number is
greater than the last known revision number), the method
continues at step 470 where the processing module generates
a DSTN concurrency response to return at least one slice of a
greater revision number than the last known revision number
of the request. The generating includes generating a header
section and a payload section, where the payload section
includes a revision mismatch status indication (e.g., indicat-
ing that the last known revision number is not current), the
slice revision count regarding the slice name (e.g., the number
of available encoded data slices associated with the slice
name), one or more slice revision numbers corresponding to
the slice name, one or more slice lengths corresponding to the
slice name, and one or more encoded data slices correspond-
ing to the slice name. The generating may further include
generating the payload section to include one or more of an

Dec. 5, 2013

encoded data slice corresponding to the most recent revision
number, all input data slices associated with revision numbers
that are greater than the last known revision number, and all
encoded data slices corresponding to the slice name. The
generating may further include determining which encoded
data slices to include in the payload section based on at least
one of a predetermination, a response type indicator of the
DSTN concurrency request, a difference between the most
recent revision number and the last known revision number,
and a system activity level indicator. The method branches to
step 474.

[0293] When the last known revision number is not less
than the most recent revision number (e.g., the most recent
revision number is less than or equal to the last known revi-
sion number), the method continues at step 472 where the
processing module generates the DSTN concurrency
response to indicate that an unfavorable revision mismatch
does not exist. The generating includes generating a header
section and a payload section, where the payload section
includes a favorable revision status indication (e.g., indicat-
ing that the last known revision number is current) and one or
more of the slice revision count regarding the slice name (e.g.,
the number of available encoded data slices associated with
the slice name) and one or more slice revision numbers cor-
responding to the slice name. As such, the processing module
does return encoded data slices when the most recent revision
number is less than or equal to the last known revision num-
ber. Each header section includes a payload length field and at
least one of an operation code field, a protocol class field, and
a protocol class version field, wherein, the payload length
field includes a length of the payload section, the operation
code field includes a concurrency response operation code,
the protocol class field includes a protocol class for the con-
currency response operation code, and the protocol class ver-
sion field includes a version of the concurrency response
operation code.

[0294] The method continues at step 474 where the pro-
cessing module determines whether an error condition exists
based on one or more of the slice name being associated with
a locked encoded data slice state, a transaction number error,
the slice name is associated with one or more encoded data
slices that are unavailable, and one of at least the threshold
number of DSTN concurrency requests is not authorized. The
method branches to step 478 when the error condition does
not exist. The method continues to step 476 when the error
condition exists. When the error condition exists, the method
continues at step 476 where the processing module discards
the DSTN concurrency response. The method continues at
step 478 where the processing module outputs the DSTN
concurrency response (e.g., to a requesting entity) when the
error condition does not exist.

[0295] FIG. 43 is a flowchart illustrating an example of
assigning an address range. The method begins at step 480
where a processing module (e.g., of a distributed storage and
task (DST) client module) detects commissioning of a new
DST execution unit. The detecting may be based on one or
more of receiving an activation message, receiving an error
message, and receiving a response to a query. The method
continues at step 482 where the processing module deter-
mines a performance level for the new DST execution unit.
The determining may be based on one or more of a test, a
query, retrieving the performance level, and a lookup based
on at least one of a DST execution unit model and configu-
ration information of the DST execution unit.

US 2013/0326264 Al

[0296] The method continues at step 484 where the pro-
cessing module determines a performance level for a current
DST execution unit. The determining may be based on one or
more of a test, a query, retrieving the performance level, and
a lookup based on at least one of a DST execution unit model
and configuration information of the current DST execution
unit. The method continues at step 486 where the processing
module determines a required performance level for slices
stored in the current DST execution unit. The determining
may be based on one or more of a query, retrieving the
required performance level, receiving the required perfor-
mance level, and accessing a service level agreement.
[0297] The method continues at step 488 where the pro-
cessing module determines whether to move the slices from
the current DST execution unit to the new DST execution unit
based on the performance level for the new DST execution
unit, the performance level for the current DST execution
unit, and the required performance level for the slices. The
processing module indicates to move the slices when the
performance level of the current DST execution unit does not
compare favorably with the required performance level for
the slices and the performance level of the new DST execu-
tion unit compares favorably to the required performance
level for the slices. The method loops back to step 484 when
the processing module determines not to move the slices. The
method continues to step 490 when the processing module
determines to move the slices.

[0298] The method continues at step 490 where the pro-
cessing module facilitates reassigning a distributed storage
and task network (DSTN) address range from the current
DST execution unit to the new DST execution unit, where the
DSTN address range corresponds to the slices. The facilitat-
ing includes one or more of updating a DSTN address to
physical location table, updating a DSTN registry, generating
and sending an address update message to the current DST
execution unit (e.g., to remove the DSTN address range), and
generating and sending an address range assignment to the
new DST execution unit (e.g., to add the DSTN address
range).

[0299] The method continues at step 492 where the pro-
cessing module facilitates transferring the slices from the
current DST execution unit to the new DST execution unit.
The facilitating includes sending a transfer request that
includes the DSTN address range and an identifier of the new
DST execution unit to the current DST execution unit. The
facilitating further includes retrieving the slices utilizing the
DSTN address range from the current DST execution unit
(e.g., generating and sending read slice requests) and storing
the slices utilizing the DSTN address range in the new DST
execution unit (e.g., generating and sending write slice
requests). The method loops back to step 480. Alternatively,
the processing module identifies another current DST execu-
tion unit as the new DST execution unit, where the other DST
execution unit is associated with a storage capacity level
greater than a capacity threshold.

[0300] FIG. 44A is a diagram illustrating an example of
matrix multiplication to encode a secret. A algebraic expres-
sion 500 of a form f(n)=r x*+r,x'+sx° is utilized to convey a
secret when storing or communicating at least a decode
threshold number of variants of the algebraic expression 500
(e.g., with different values for the variable x). The decode
threshold number is the number of terms of the algebraic
expression (e.g., 3). A width number of shares 498 may be
stored or communicated to include the at least the decode

Dec. 5, 2013

threshold number of variants of the algebraic expression 500
to improve a reliability level of decoding the decode threshold
number of variants of the algebraic expression 500 to repro-
duce the secret. Coefficients of the terms of the algebraic
expression 500 include the secret (e.g., s) and a decode thresh-
old minus one number of random coefficients (e.g., r; andr,).
[0301] The width number of shares 498 may be generated
by matrix multiplying an encoding matrix 494 by a vector
matrix 496. The vector matrix 496 includes generating a one
column matrix that includes the decode threshold number of
coefficients (e.g. s, r;, 1,). For example, the secret s is assigned
to a first row, coefficient r, is assigned to a second row, and
coefficient r, is assigned to a third row of the vector matrix
496. The encoding matrix 494 may be generated by generat-
ing a shortened identity matrix, generating a Vandermonde
matrix, and combining the shortened identity matrix and the
Vandermonde matrix to produce the encoding matrix 494.
The shortened identity matrix may be generated by generat-
ing an identity matrix with a decode threshold number of rows
and columns and deleting a row corresponding to a position of
the secret in the vector matrix 496. For example, a 3x3 iden-
tity matrix is generated and a first row is deleted correspond-
ing to the position of the secret in the vector matrix 496.
[0302] The Vandermonde matrix may be generated to
include a width minus a decode threshold number plus one
number of rows and a decode threshold number of columns.
Each row of the Vandermonde matrix includes a value for a
variable of the algebraic expression 500, where each row
includes a different value. The values are subsequently known
to a decoding process. For example, a first row includes a
value of a, a second row includes a value of b, and the third
row includes a value of c. Each column of the Vandermonde
matrix includes the value of the variable to a power repre-
sented in the algebraic expression 500. For example, a first
column includes a value of the variable to the zero power, the
second column includes a value of the variable to the first
power, and the third column includes a value of the variable to
the second power. In an example of matrix multiplying the
encoding matrix by the vector matrix, share 1=0s+1r0+
Orl=r0, share 2=0s+0rO+1rl=rl, share 3=sa’+r,a'+r a’,
share 4=sb®+r,b'+r,b?, and share 5=sc®+r,c'+r,c>.

[0303] Subsequent decoding of the secret includes retriev-
ing the shares associated with the random coefficients and at
least one other share, directly extracting the values of the
random coefficients from the shares associated with the ran-
dom coefficients, and solving an algebraic expression 500 of
the other share for the secret utilizing the values of the random
coefficients. For example, decoding of the secret includes
retrieving shares 1 and 2, extracting the random coefficients
directly from shares 1 and 2, retrieving at least one share of
shares 3-5, and solving and algebraic expression of the at least
one share to reproduce the secret. As such, solving simulta-
neous linear equations is not required when a decode thresh-
old number minus one number of random coefficients are
directly available via the shares associated with the random
coefficients and a decoding loading efficiency improvement
is provided.

[0304] FIG. 44B is a flowchart illustrating an example of
encoding a secret. The method begins at step 502 where a
processing module (e.g., of a distributed storage and task
(DST) client module) receives a secret for storage in a dis-
tributed storage and task network (DSTN) module. The
method continues at step 504 where the processing module
obtains an algebraic expression that includes a decode thresh-

US 2013/0326264 Al

old number of terms. The obtaining includes at least one of
retrieving and generating based on the decode threshold num-
ber. The processing module may obtain the decode threshold
number based on at least one of generating based on a security
requirement, retrieving the decode threshold number, and a
predetermination. For example, processing module obtains
the algebraic expression to include f(n)—ex?+fx'+gx°.
[0305] The method continues at step 506 where the pro-
cessing module assigns the secret to a first term of the decode
threshold number of terms (e.g., sx°=gx°. The method con-
tinues at step 508 where the processing module generates a
random coefficient value for each of the other terms of the
decode threshold number of terms (e.g., r;x*+r,x"). The
method continues at step 510 where the processing module
generates an encoding matrix that includes a partial identity
matrix and a Vandermonde matrix such that the encoding
matrix includes a decode threshold number of columns and a
width number of rows. The method continues at step 512
where the processing module generates a vector matrix that
includes the secret and each random coefficient. The method
continues at step 514 where the processing module matrix
multiplies the encoding matrix by the vector matrix to pro-
duce a shares matrix. The method continues at step 516 where
the processing module facilitates storing a width number of
shares of the shares matrix in the DSTN module. The facili-
tating includes, for each share, generating a write slice
request that includes the share and sending the write slice
request to the DSTN module for storage therein.

[0306] FIG. 45 is a flowchart illustrating another example
of assigning an address range. The method begins at step 518
where a processing module (e.g., of a distributed storage and
task (DST) client module) detects a newly commissioned
DST execution unit of a plurality of DST execution units of a
distributed storage and task network (DSTN) module. The
detecting includes at least one of receiving a commissioning
message, a query, receiving an authentication request, and
detecting a reset of a new DST execution unit. The method
continues at step 520 where the processing module identifies
at least some of the plurality of DST execution units. The
identifying includes at least one of a lookup, a query, receiv-
ing a list, and accessing registry information.

[0307] The method continues at step 522 where the pro-
cessing module identifies a DSTN module topology of the at
least some of the plurality of DST execution units. The iden-
tifying includes at least one of a lookup, a query, a ping test,
obtaining an internet protocol address, identifying common
router identifiers, measuring a level of bandwidth, estimating
a distance to each of the at least some of the plurality of DST
execution units, and estimating an access latency to the at
least some of the plurality of DST execution units. The DSTN
module topology indicates one or more of a physical and a
virtual layout of the at least some of the plurality of DST
execution units with respect to each other and to the newly
commissioned DST execution unit.

[0308] The method continues at step 524 where the pro-
cessing module selects a subset of the at least some of the
plurality of DST execution units based on the DSTN module
topology such that a favorable condition exists with regards to
the newly commissioned DST execution unit and the subset.
The favorable condition includes at least one of a close physi-
cal proximity, a close virtual proximity, bandwidth availabil-
ity greater than the bandwidth threshold, and a performance
level greater than the performance threshold. For example,
the processing module selects the subset to include DST

Dec. 5, 2013

execution units associated with a lowest access latency
between each DST execution unit of the subset and the newly
commissioned DST execution unit.

[0309] The method continues at step 526 where the pro-
cessing module obtains DSTN address range assignments of
the subset of the at least some of the plurality of DST execu-
tion units. The obtaining includes at least one of a lookup,
receiving the assignments, and querying at least one of the
subset of DST execution units. The method continues at step
528 where the processing module facilitates assignment of a
DSTN address range for the newly commissioned DST
execution unit based on the DSTN address range assignments
of the subset of the at least some of the plurality of DST
execution units. The facilitating includes one or more of
selecting an available address range with regards to the subset
of DST execution units, issuing a range assignment request
that includes the selected address range, receiving a favorable
address range assignment response, storing the selected
address range, and sending the selected address range to a
subset of DST execution units.

[0310] FIG. 46A is a diagram illustrating an example of a
site mapping that includes a plurality of sites of a distributed
storage and task network (DSTN) module, where each site
includes a plurality of distributed storage and task (DST)
execution units. The plurality of sites are associated with an
overall DSTN address range. The overall DSTN address
range includes a DSTN address range of each of the sites. The
DSTN address range of each of the sites includes a DSTN
address range of each of the DST execution units. Each DST
execution unit is associated with a DSTN address range such
that adjacent DST execution units include DSTN address
ranges that are adjacent and contiguous. For example, DST
execution unit 2 has a DSTN address range of 200-300 and
DST execution units 3 has a DSTN address range o 301-400.
[0311] From time to time, a number of sites may change
(e.g., adding a site, deleting a site). Typically the overall
DSTN address range does not change when the number of
sites changes. When the number of sites changes, the DSTN
address range of each of the sites may change and the DSTN
address range of each of the DST execution units may change.
The DST execution units facilitate storage of slices associated
with the DSTN address range of the DST execution unit. A
system performance level improvement may be provided
when changing the number of sites when DST execution units
are moved from one site to another without changing the
DSTN address range associations. A method to facilitate
moving DST execution units to support adding a site is dis-
cussed in greater detail with reference to FIGS. 46B to 46E.
[0312] FIG. 468 is a diagram illustrating another example
of a site mapping that includes a plurality of sites of a distrib-
uted storage and task network (DSTN) module, where an
additional site has been added with reference to the three sites
depicted in FIG. 46A. Distributed storage and task (DST)
execution units of FIG. 46 A may be redeployed to facilitate
the addition of a fourth site. Typically a similar number of
DST execution units are deployed at each site. A target num-
ber of DST execution units per site may be determined by
dividing a number of DST execution units of a starting point
configuration by a number of sites of the target configuration.
For example, 12/4=three DST execution units per site for the
target configuration (e.g., depicted in FIG. 46D).

[0313] The additional site is inserted between two of the
existing sites to facilitate contiguous DSTN addressing. For
example, site 4 is inserted between sites 2 and 3. As a first step

US 2013/0326264 Al

of a migration of DST execution units, one or more DST
execution units are moved from at least one adjacent site of an
adjacent site pair to the additional site in accordance with the
target configuration. For example, DST execution units 7 and
8 are moved from site 2 to site 4. The one or more DST
execution units are selected for moving such that DSTN
address ranges associated with the one or more DST execu-
tion units are to be included in the additional site and are
adjacent to a DSTN address range associated with a remain-
ing DST execution unit of the at least one adjacent site. When
the one or more DST execution units are moved, DSTN
address range assignments associated with the one or more
DST execution units remain with the DST execution units and
are now associated with the additional site and disassociated
with the at least one adjacent site. For example, DSTN
address ranges associated with DST execution units 7 and 8
remain associated with DST execution units 7 and 8 and now
are associated with site 4.

[0314] FIG. 46C is a diagram illustrating another example
of'a site mapping that includes a plurality of sites of a distrib-
uted storage and task network (DSTN) module, where an
additional site has been added with reference to the three sites
depicted in FIG. 46 A and a migration started with reference to
FIG. 46B. Distributed storage and task (DST) execution units
of FIG. 46B may be further redeployed to facilitate the addi-
tion of a fourth site, wherein a similar number of DST execu-
tion units are deployed at the fourth site and at each other site
when the target configuration has been achieved (e.g.,
depicted in FIG. 46D).

[0315] The additional site has been inserted between two of
the existing sites to facilitate contiguous DSTN addressing
(e.g., site 4 has been inserted between sites 2 and 3). As a
second step of a migration of DST execution units, one or
more DST execution units are moved from another adjacent
site of an adjacent site pair to the additional site in accordance
with the target configuration, wherein one or more other DST
execution units were moved from a first adjacent site of the
adjacent site pair to the additional site in a previous step (e.g.,
depicted in FIG. 46B). For example, DST execution unit 9 is
moved from site 3 to site 4. The one or more DST execution
units are selected for moving such that DSTN address ranges
associated with the one or more DST execution units are to be
included in the additional site and are adjacent to a DSTN
address range associated with a remaining DST execution
unit of the other adjacent site. When the one or more DST
execution units are moved, DSTN address range assignments
associated with the one or more DST execution units remain
with the DST execution units and are now associated with the
additional site and disassociated with the other adjacent site.
For example, DSTN address ranges associated with DST
execution unit 9 remains associated with DST execution unit
9 and is now associated with site 4 (e.g., and not with site 3).

[0316] FIG. 46D is a diagram illustrating another example
of'a site mapping that includes a plurality of sites of a distrib-
uted storage and task network (DSTN) module, where an
additional site has been added with reference to the three sites
depicted in FIG. 46 A and a migration executed with reference
to FIGS. 46B-C. Distributed storage and task (DST) execu-
tion units of FIG. 46C may be further redeployed to facilitate
the addition of a fourth site, where a similar number of DST
execution units are deployed at the fourth site and at each
other site when the target configuration has been achieved
(e.g., as depicted in FIG. 46D).

Dec. 5, 2013

[0317] The additional site has been inserted between two of
the existing sites to facilitate contiguous DSTN addressing
(e.g., site 4 has been inserted between sites 2 and 3). As a third
step of a migration of DST execution units, one or more DST
execution units are moved from one or more sites adjacent to
a DST execution unit adjacent site pair to one or more DST
executionunits of the adjacent site pair in accordance with the
target configuration, where one or more other DST execution
units were moved from at least one DST execution unit of the
DST execution unit adjacent site pair to the additional site in
a previous step (e.g., depicted in FIGS. 46B-C).

[0318] For example, DST execution unit 4 is moved from
site 1 to site 2. The one or more DST execution units are
selected for moving such that DSTN address ranges associ-
ated with the one or more DST execution units are to be
included in the at least one of the DST execution units of the
DST execution unit adjacent site pair. When the one or more
DST execution units are moved, DSTN address range assign-
ments associated with the one or more DST execution units
remain with the DST execution units and are now associated
with the adjacent site and disassociated with the site adjacent
to the adjacent site. For example, DSTN address ranges asso-
ciated with DST execution unit 4 remains associated with
DST execution unit 4 and is now associated with site 2 (e.g.,
and not with site 1).

[0319] FIG. 46F is a flowchart illustrating an example of
migrating distributed storage and task (DST) execution units.
The method begins at step 530 where a processing module
(e.g., of a distributed storage and task (DST) client module)
determines to reposition DST execution units of a distributed
storage and task network (DSTN) module storage pool
located at a current number of sites to an updated number of
sites. The determining may be based on one or more of receiv-
ing a request, receiving a message, detecting a current site
failure, detecting a newly commissioned site, receiving an
updated DSTN topology, and determining the updated num-
ber of sites based on at least one of a request, an updated
reliability requirement, a measured reliability level, an
updated performance requirement, and a measured perfor-
mance level.

[0320] The method continues at step 532 where the pro-
cessing module determines whether the updated number of
sites is greater than the current number of sites. The method
branches to step 542 when the updated number of sites is not
greater than the current number of sites. The method contin-
ues to step 534 when the processing module determines that
the updated number of sites is greater than the current number
of'sites. The method continues at step 534 where the process-
ing module identifies a first site and a second site of an
adjacent site pair for a new site insertion when the updated
number of sites is greater than the current number of sites. The
identifying may be based on at least one of selecting the
adjacent site pair at an end of a plurality of sites, selecting the
adjacent site pair when the adjacent site pair indicates a favor-
ably low level of system activity, receiving a selection, the
predetermination, and a lookup.

[0321] The method continues at step 536 where the pro-
cessing module facilitates repositioning one or more DST
executionunits from the first site to a new site. The facilitating
includes one or more of determining a target number of DST
execution units per site including the new site, establishing a
new site address range, selecting the one or more DST execu-
tion units to move that have an adjacent address range to the
new site address range, indicating which DST execution units

US 2013/0326264 Al

to move, and updating site address range tables when confir-
mation of moving the DST execution units has been received.
The method continues at step 538 where the processing mod-
ule facilitates repositioning one or more DST execution units
from the second site to the new site. The facilitating includes
one or more of selecting the one or more DST execution units
to move that have an adjacent address range to the new site
address range, indicating which DST execution units to
move, and updating site address range tables when confirma-
tion of moving the DST execution units has been received.
The method continues at step 540 where the processing mod-
ule facilitates repositioning one or more DST execution units
from one or more other sites that are further adjacent to the
adjacent site pair. The facilitating includes one or more of
selecting the one or more DST execution units to move that
have an adjacent address range to an address range of at least
one of the adjacent site pair, indicating which DST execution
units to move, and updating site address range tables when
confirmation of moving the DST execution units has been
received. The method may repeat for each new site to insert.

[0322] The method continues at step 542 where the pro-
cessing module identifies a site (e.g., a site to be eliminated)
to reposition all DST execution units to one or more other
adjacent sites when the updated number of sites is not greater
than the current number of sites. The identifying may include
selecting the site to eliminate based on at least one of a
request, an error message, a site plan, and a site performance
level. The method continues at step 544 where the processing
module identifies a first site and a second site of an adjacent
site pair to reposition the DST execution units. The identify-
ing includes identifying DST execution units with an adjacent
address range. The method continues at step 546 where the
processing module facilitates repositioning one or more of
the DST execution units to the first site. The facilitating
includes one or more of determining a target number of DST
execution units per site excluding the site to be eliminated,
obtaining site address range information and determining
redistribution of an address range associated with the site to
be eliminated, selecting the one or more DST execution units
to move that have an adjacent address range to the first site
address range, indicating which DST execution units to
move, and updating site address range tables when confirma-
tion of moving the DST execution units has been received.

[0323] The method continues at step 548 where the pro-
cessing module facilitates repositioning one or more of the
DST execution units to the second site. The facilitating
includes one or more of obtaining site address range infor-
mation and determining redistribution of an address range
associated with the site to be eliminated, selecting the one or
more DST execution units to move that have an adjacent
address range to the second site address range, indicating
which DST execution units to move, and updating site
address range tables when confirmation of moving the DST
execution units has been received. The method continues at
step 550 where the processing module facilitates reposition-
ing one or more DST execution units from the adjacent site
pair to one or more other sites that are further adjacent to the
adjacent site pair. The facilitating includes one or more of
selecting the one more DST execution units to move that have
an adjacent address range to the further adjacent site address
ranges in accordance with the target number of units per site,
indicating which DST execution units to move, and updating
site address range tables when confirmation of moving the
DST execution units has been received.

Dec. 5, 2013

[0324] FIG. 47A is a schematic block diagram of another
embodiment of a distributed computing system that includes
aclient 552 and a plurality of controllers 554-560. The client
552 may be implemented utilizing at least one of a user
device, a distributed storage and task (DST) processing unit,
a DST execution unit, a distributed storage and test network
(DSTN) managing unit, and a storage integrity processing
unit. Each controller 554-560 may be implemented utilizing
at least one of a DST processing unit, a dispersed storage
processing unit, a dispersed storage unit, and a DST execution
unit. Each controller 554-560 may include one or more of a
computing core, memory for storing one or more of'slices and
error coded slices, and a DST client module.

[0325] The plurality of controllers 554-560 may be
arranged in a plurality of levels, where each level includes one
or more groups of peer controllers, where each group of
controllers shares a common parent controller at a higher
level. A controller may function as a parent controller when
the controller is associated with one or more child controllers
at a lower level. The plurality of controllers 554-560 may be
utilized to access a plurality of sets of slices including access-
ing slices within a controller and facilitating access of slices
in another controller. Each slice of the plurality of sets of
slices is associated with a slice name. Each level of the plu-
rality of levels may utilize a unique naming scheme for slice
names such that a parent controller and a group of children
controllers utilize a common naming scheme. A child con-
troller of the group of children controllers may utilize a sec-
ond unique naming scheme with reference to a further group
of children controllers with respect to the child controller
when the child controller is also a parent controller for next
level of the plurality of levels.

[0326] Each controller of the plurality controllers 554-560
may execute naming scheme translation to facilitate slice
access and to facilitate data migration. Each controller of the
plurality controllers 554-560 may maintain an address trans-
lation table that includes one or more of a parent level address,
an equivalent child level address, and a child level address to
child controller identifier (ID) affiliation. In an example of
accessing data, the client 552 sends a system request 562 to a
first level controller 554, where the system request 562
includes a data ID of the data. The first level controller 554
accesses an associated address translation table utilizing the
data ID to identify an equivalent child level address utilizing
the data ID as a parent level address. Next, the first level
controller 554 identifies one or more child controllers based
on the child level address. The first level controller 554 trans-
lates the system request to a level 1 request 566, where the
level 1 request 566 includes the child level address and an
identifier of the one or more child controllers. The first level
controller 554 sends the level 1 request 566 to the one or more
child controllers. A second level controller 556 of the one or
more child controllers accesses an associated address trans-
lation table utilizing the child level address to identify an
equivalent further child level address utilizing the child level
address as a parent level address. Next, the second level
controller 556 identifies one or more further child controllers
based on the further child level address. The second level
controller 556 translates the level 1 request to alevel 2 request
570, where the level 2 request 570 includes the further child
level address and an identifier of the one or more further child
controllers. The second controller 556 sends the level 2
request 570 to the one or more further child controllers. The
process continues (e.g., through controller 558, via a level 111

US 2013/0326264 Al

request 574 to controller 560, etc.) until a controller that is
associated with the slice of the data receives an access request
and generates and sends an access response back up through
the levels to the client, where the controllers at each level
retranslate child level addresses into parent level addresses
etc. For example, controller 560 issues a level 3 response 576
to controller 558, controller 558 issues a level 2 response 572
to controller 556, controller 556 issues a level 1 response 568
to controller 554, and controller 554 issues a system response
564 to the client 552. Each controller of the plurality control-
lers at any level may be associated with a slice of a data access
request. The controller may respond (e.g., process the
request, generate a response, and output the response) to a
slice access request when the controller is associated with the
slice. The controller forwards a request when the controller is
not associated with the slice.

[0327] A parent controller at any level of the plurality of
levels may facilitate migrating data (e.g., one more slices)
from one or more source child controllers to one or more
destination child controllers without notifying or updating
controllers at other levels. For example, a third level parent
controller facilitates moving a first group of slices from a
second child controller to a fourth child controller. The facili-
tating includes one or more of moving the group of slices
from the second child controller to the fourth child controller
and updating an associated address translation table to indi-
cate that the first group of slices are associated with the fourth
child controller and disassociated with the second child con-
troller. The third level parent controller subsequently facili-
tates access to the first group of slices by utilizing the fourth
child controller.

[0328] FIG. 47B is a flowchart illustrating an example of
migrating data. The method begins at step 578 where a pro-
cessing module (e.g., of a distributed storage and task (DST)
client module of a controller) determines to move data from a
first controller to a second controller, where the first and
second controllers are affiliated with a common controller
level. The determination may be based on one or more of
receiving a data migration request, detecting a migration,
receiving an error message, receiving a rebuilding request,
and detecting a unfavorable capacity utilization level associ-
ated with the first controller.

[0329] The method continues at step 580 where the pro-
cessing module facilitates moving the data from the first
controller to the second controller. The facilitating includes at
least one of generating and sending a data transfer request and
migrating the data. The migrating the data includes one or
more of retrieving the data from the first controller and send-
ing the data to the second controller for storage therein. The
method continues at step 582 where the processing module
identifies address to container location table updates. The
identifying includes identifying the first controller, identify-
ing the second controller, and identifying one or more
addresses associated with the data. The method continues at
step 583 where the processing module facilitates updating the
address to container location table of a parent level controller
based on the updates. The facilitating includes identifying the
parent level controller (e.g., a query, a lookup) retrieving at
least a portion of the address to container location table,
modifying the at least the portion based on the updates to
produce a modified portion, and storing the modified portion
in the address to container location table of the identified
parent level controller.

Dec. 5, 2013

[0330] FIG. 47C is a flowchart illustrating an example of
facilitating access of data. The method begins at step 584
where a processing module (e.g., of a distributed storage and
task (DST) client module of a controller) receives a request
from a higher level controller, where the request includes a
higher level addressing (e.g., of a parent controller). When the
request is not directly serviced by a present controller, the
method continues at step 586 where the processing module
translates a higher level address to a lower level address to
produce a translated request. The processing module may
determine whether the present controller shall service the
request based on an address to container location table
lookup. For example, processing module indicates that the
request is not directly serviced by the present controller when
the address to container location table lookup indicates that
the lower-level address associated with a higher level address
of'the request is not affiliated with the present controller (e.g.,
affiliated with a controller on a still further lower-level). The
translating includes accessing the address to container loca-
tion table to extract the lower-level address associated with
the higher level address generating the translated request to
include the lower-level address.

[0331] The method continues at step 588 where the pro-
cessing module identifies a lower-level controller associated
with the lower-level address. The identifying includes access-
ing the address to container location table to extract a lower-
level container identifier affiliated with the lower-level
address. The method continues at step 590 where the process-
ing module sends the translated request to the lower-level
controller. For example, the processing module outputs the
translated request utilizing the lower-level container identi-
fier.

[0332] FIG. 48A is a diagram illustrating an example of an
address range mapping for a set of distributed storage and task
(DST) execution units of a common site. For example, a
common site includes DST execution units 1-3. The address
range of the address range mapping includes a distributed
storage and task network (DSTN) address range including at
least one of a source name range and a slice name range. The
address range mapping may include a site address range
mapping (e.g., for a pillar of a particular vault) and for each
DST execution unit of the set of DST execution units, a DST
execution unit address range mapping. For example, a site
address range mapping includes a slice name address range of
101-400 for a first vault and each of three DST execution units
are mapped to an equal amount of address range space of the
site address range. For instance, DST execution unit 1 is
mapped to slice name address range 101-200, DST execution
unit 2 is mapped to slice name address range 201-300, and
DST execution unit 3 is mapped to slice name address range
301-400.

[0333] Address range mapping of a DST execution unit
enables subsequent slice access for one or more slices asso-
ciated with one or more addresses of the address range of the
DST execution unit. At a first point in time, DST execution
unit 2 may store 1 gigabytes (GB) of slices within its address
range utilizing one fourth of a 4 GB capacity. Ata subsequent
point in time, DST execution unit 2 may store 3 GB of slices
within its address range utilizing three fourths of the 4 GB
capacity. As time goes on, an unfavorable capacity utilization
level may be reached such that an additional DST execution
unit may be required to facilitate storing more data within the
same site address range. FIG. 48 A represents a starting con-
figuration of an example of redistributing the address range

US 2013/0326264 Al

mapping when an additional DST execution unit is added to
the common site and is affiliated with one or more other DST
execution units at the common site (e.g., of a common vault).
FIGS. 48B-C represent successive steps in the example of
redistributing the address range mapping.

[0334] FIG. 48B is a diagram illustrating another example
of an address range mapping for a set of legacy distributed
storage and task (DST) execution units 1-3 of a common site
where additional DST execution unit 4 is added in a first
address range migration step to the common site providing
additional storage capacity within a site address range. In the
first address range migration step, a common address range
magnitude to transfer from each of the legacy DST execution
units is determined as a per-unit address range divided by a
total number of units (e.g., including the legacy DST execu-
tion units and the additional DST execution unit). For
example, the common address range magnitude to transfer is
determined as 100 addresses/4 units=25 addresses per unit.
[0335] The first address range migration step further
includes transferring the common address range magnitude to
transfer of addresses from each of the legacy DST execution
units to the additional DST execution unit. The transferring of
addresses includes selecting addresses of the addresses to be
transferred. The selecting may be based on one or more of a
predetermination, a selection scheme, selecting a high end,
selecting the low end, selecting the middle portion, selecting
a contiguous portion, and selecting random addresses. For
example, contiguous addresses at a high-end of each of the
DST execution unit address ranges are selected when the
selection scheme indicates to contiguously select high-end
addresses. For instance, address range 176-200 is selected
from DST execution unit 1, address range 276-300 is selected
from DST execution unit 2, and address range 376-400 is
selected from DST execution unit 3.

[0336] The transferring of addresses further includes asso-
ciating the addresses to be transferred with the additional
DST execution unit and disassociating the addresses to be
transferred from the legacy DST execution units. The first
address range migration step further includes transferring
slices associated with the transfer addresses. The transferring
of slices includes retrieving slices from the legacy DST
execution units and storing slices in the additional DST
execution unit. Migration of the address range mapping may
end with the first step and alternatively may continue with a
second step of optimization as discussed in greater detail with
reference to FIG. 48C.

[0337] FIG. 48C is a diagram illustrating another example
of an address range mapping for a set of legacy distributed
storage and task (DST) execution units 1-3 of a common site
where additional DST execution unit 4 is added in a second
address range migration step to the common site providing
additional storage capacity within a site address range. In the
second address range migration step, an insertion point for the
additional DST execution unit is identified to facilitate more
contiguous address range assignments per DST execution
unit. For example, the additional DST execution unit 4 is
inserted between DST execution units 2 and 3 and address
swaps are identified between DST execution units 3 and 4
such that DST execution unit 3 is assigned a contiguous block
of addresses at an operand of the site address range. For
instance, address range 301-325 of DST execution unit 3 is
identified to be transferred to DST execution unit 4 and
address range 376-400 of DST execution unit 4 is identified to
be transferred to DST execution unit 3. As such, inserted DST

Dec. 5, 2013

execution unit 4 is assigned to a contiguous address range
(e.g., 276-325) between DST execution units 2 and 3 and a
contiguous address range (e.g., 176-200) between DST
execution units 1 and 2. Alternatively, a still further DST
execution unit may be subsequently inserted between DST
execution units 1 and 2 and assigned address range 176-200
when capacity utilization becomes unfavorable.

[0338] FIG. 48D is a flowchart illustrating an example of
updating an address range assignment. The method begins at
step 592 where a processing module (e.g., of a distributed
storage and task (DST) client module) determines to add a
DST execution unit to a site that contains at least two legacy
DST execution units. The determining may be based on one
ormore of receiving a request, detecting anew DST execution
unit activation, and detecting an unfavorable storage capacity
utilization level. The method continues at step 594 where the
processing module obtains address range assignments for the
at least two legacy DST execution units. The obtaining
includes at least one of initiating a query, a lookup, and
receiving the address range assignments.

[0339] The method continues at step 596 where the pro-
cessing module determines a common address range magni-
tude to transfer from each of the at least two legacy DST
execution units as a legacy DST execution unit address range
divided by a total number of units. For each legacy DST
execution unit, the method continues at step 598 where the
processing module selects an address range to transfer in
accordance with the common address range magnitude to
transfer (e.g., in accordance with selection scheme). For each
legacy DST execution unit, the method continues at step 600
where the processing module facilitates transferring slices
and address range assignments for corresponding address
range to transfer from the legacy DST execution unit to the
DST execution unit (e.g., move slices, update address tables).
The method continues at step 602 where the processing mod-
ule identifies a further optimization insertion point for the
DST execution unit. For example, the processing module
identifies the insertion point between two legacy DST execu-
tion units associated with an upper end of a common site
address range. The method continues at step 604 where the
processing module facilitates the optimization. For example,
the processing module facilitates an address range swap and
a slice swap between the DST execution unit and at least one
adjacent DST execution unit associated with the insertion
point.

[0340] FIG. 49A is a diagram illustrating another example
of an address range mapping for a plurality of distributed
storage and task (DST) execution units of a common site. For
example, a common site includes DST execution units 1-6.
The address range of the address range mapping includes a
distributed storage and task network (DSTN) address range
including at least one of a source name range and a slice name
range. The address range mapping may include a site address
range mapping (e.g., for a pillar of a particular vault) and for
each DST execution unit of the plurality of DST execution
units, a DST execution unit address range mapping. For
example, a site address range mapping includes a slice name
address range of 101-700 for a first vault and each of six DST
execution units are mapped to an equal amount of address
range space of the site address range. For instance, DST
execution unit 1 is mapped to slice name address range 101-
200, DST execution unit 2 is mapped to slice name address
range 201-300, DST execution unit 3 is mapped to slice name
address range 301-400 etc.

US 2013/0326264 Al

[0341] Address range mapping of a DST execution unit
enables subsequent slice access for one or more slices asso-
ciated with one or more addresses of the address range of the
DST execution unit. At a first point in time, DST execution
unit 5 may store 1 gigabytes (GB) of slices within its address
range utilizing one fourth of a 4 GB capacity. Ata subsequent
point in time, DST execution unit 5 may store 3 GB of slices
within its address range utilizing three fourths of the 4 GB
capacity. As time goes on, an unfavorable capacity utilization
level may be reached such that an additional DST execution
unit may be required to facilitate storing more data within the
same site address range. FIG. 49A represents a starting con-
figuration of an example of redistributing the address range
mapping when a set of new DST execution units is added to
the common site and is affiliated with the plurality of DST
execution units. FIG. 49B represents a an example of redis-
tributing the address range mapping across the set of new
DST execution units from the plurality of DST execution
units.

[0342] FIG. 49B is a diagram illustrating another example
of an address range mapping for a plurality of legacy distrib-
uted storage and task (DST) execution units 1-6 of a common
site where a set of new DST execution units 7-10 are added to
the common site providing additional storage capacity within
a site address range. The adding of the set of new DST
execution units includes determining a common address
range magnitude to transfer from each of the legacy DST
execution units 1-6 as a per-unit address range divided by a
total number of units (e.g., including the plurality of legacy
DST execution units and the set of new DST execution units).
For example, the common address range magnitude to trans-
fer is determined as 100 addresses/10 units=10 addresses per
unit such that each legacy unit contributes 10 addresses of the
100 addresses to each of the other 9 units so that each unit
receives 60 addresses. Alternatively, an amount of addresses
per unit after the transfer is determined is the address range of
the site address range divided by the total number of units
(e.g., 600/10=60).

[0343] The set of new DST execution units are inserted
amongst the plurality of legacy DST execution units utilizing
aeven distribution approach. For example, a new DST execu-
tion unit is inserted approximately after every two legacy
DST execution units (e.g., 10/4=2.5). For instance, DST
execution unit 7 precedes DST execution unit 1, DST execu-
tion unit 8 is inserted between DST execution units 2 and 3,
DST execution unit 9 is inserted between DST execution
units 4 and 5, and DST execution unit 10 follows DST execu-
tion unit 6. The transferring of the address ranges includes
transferring the common address range magnitude to transfer
of'addresses from each of the legacy DST execution units to
the set of new DST execution units.

[0344] The transferring of address ranges includes select-
ing addresses of the addresses to be transferred. The selecting
may be based on one or more of a predetermination, a selec-
tion scheme, selecting a high end, selecting the low end,
selecting the middle portion, selecting a contiguous portion,
and selecting random addresses. For example, contiguous
addresses are selected across the site address range such that
each DST execution unit receives an equal amount of con-
tiguous address range space. For instance, address range 101-
160 is selected from DST execution unit 1 to be transferred to
DST execution unit 7, address range 201-220 is selected from
DST execution unit 2 to be transferred to DST execution unit
1, address range 281-300 is selected from DST execution unit

Dec. 5, 2013

2 to be transterred to DST execution unit 8, address range
301-340 is selected from DST execution unit 3 to be trans-
ferred to DST execution unit 8, etc. as illustrated in F1G. 49B.
[0345] The transferring of addresses further includes asso-
ciating the addresses to be transferred with DST execution
units to receive the addresses and disassociating the addresses
to be transferred from DST execution units originating the
addresses. The transferring of addresses further includes
transferring slices associated with the transfer addresses. The
transferring of slices includes retrieving slices from an origi-
nating DST execution unit and storing slices in a receiving
DST execution unit.

[0346] FIG.49C s a flowchart illustrating another example
of'updating an address range assignment. The method begins
at step 606 where a processing module (e.g., of a distributed
storage and task (DST) client module) determines to add a set
of new DST execution units to a site that contains a plurality
of legacy DST execution units. The determining may be
based on one or more of receiving a request, detecting a set of
new DST execution units activation, and detecting an unfa-
vorable storage capacity utilization level associated with the
plurality of legacy DST execution units. The method contin-
ues at step 608 where the processing module obtains address
range assignments for the plurality of legacy DST execution
units. The obtaining includes at least one of initiating a query,
a lookup, and receiving the address range assignments.
[0347] The method continues at step 610 of the processing
module determines a common address range magnitude for
each of the set of new DST execution units and the plurality of
legacy DST execution units as a total address space of the
plurality of legacy DST execution units divided by a total
number of units including the plurality of DST execution
units and the set of new DST execution units. For example,
the common address range magnitude is determined as 600/
10=60 when the common address range is 600 and a total
number of units is 10.

[0348] For each DST execution unit of the set of new DST
execution units, the method continues at step 612 where the
processing module identifies an insertion point of a set of
insertion points based on a number of total units and a number
of units of the set of new DST execution units to facilitate
contiguous addressing. For each legacy DST execution unit
of the plurality of legacy DST execution units, the method
continues at step 614 where the processing module deter-
mines an address range to transfer in accordance with the
common address range magnitude and the set of insertion
points. The determining includes determining the address
range to transfer such that each DST execution unit of the total
number of DST execution units includes the common address
range magnitude number of addresses and includes a contigu-
ous address range with regards to an adjacent pair of DST
execution units. For each legacy DST execution unit, the
method continues at step 616 where the processing module
facilitates transferring slices and address range assignments
for a corresponding address range to transfer from the legacy
DST execution unit to a corresponding new DST execution
unit in accordance with the insertion points.

[0349] As may be used herein, the terms “substantially”
and “approximately” provides an industry-accepted tolerance
for its corresponding term and/or relativity between items.
Such an industry-accepted tolerance ranges from less than
one percent to fifty percent and corresponds to, but is not
limited to, component values, integrated circuit process varia-
tions, temperature variations, rise and fall times, and/or ther-

US 2013/0326264 Al

mal noise. Such relativity between items ranges from a dif-
ference of a few percent to magnitude differences. As may
also be used herein, the term(s) “operably coupled to”,
“coupled to”, and/or “coupling” includes direct coupling
between items and/or indirect coupling between items via an
intervening item (e.g., an item includes, but is not limited to,
a component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc., to
perform, when activated, one or more its corresponding func-
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably”, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than

that of signal 1.
[0350] As may also be used herein, the terms “processing
module”, “processing circuit”, and/or “processing unit” may
be a single processing device or a plurality of processing
devices. Such a processing device may be a microprocessor,
micro-controller, digital signal processor, microcomputer,
central processing unit, field programmable gate array, pro-
grammable logic device, state machine, logic circuitry, ana-
log circuitry, digital circuitry, and/or any device that manipu-
lates signals (analog and/or digital) based on hard coding of
the circuitry and/or operational instructions. The processing
module, module, processing circuit, and/or processing unit
may be, or further include, memory and/or an integrated
memory element, which may be a single memory device, a
plurality of memory devices, and/or embedded circuitry of
another processing module, module, processing circuit, and/
or processing unit. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-vola-
tile memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa-
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro-
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net-
work and/or a wide area network). Further note that if the
processing module, module, processing circuit, and/or pro-
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/

Dec. 5, 2013

or processing unit executes, hard coded and/or operational
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.

[0351] The present invention has been described above
with the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundaries
and sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per-
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func-
tionality. To the extent used, the flow diagram block bound-
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter-
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the scope and
spirit of the claimed invention. One of average skill in the art
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate software and the like or any combination thereof.
[0352] The present invention may have also been
described, at least in part, in terms of one or more embodi-
ments. An embodiment of the present invention is used herein
to illustrate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manufac-
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

[0353] While the transistors in the above described figure
(s) is/are shown as field effect transistors (FETs), as one of
ordinary skill in the art will appreciate, the transistors may be
implemented using any type of transistor structure including,
but not limited to, bipolar, metal oxide semiconductor field
effect transistors (MOSFET), N-well transistors, P-well tran-
sistors, enhancement mode, depletion mode, and zero voltage
threshold (VT) transistors.

[0354] Unless specifically stated to the contra, signals to,
from, and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. Forinstance, if
a signal path is shown as a single-ended path, it also repre-
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple-
mented that use one or more data buses not expressly shown,

US 2013/0326264 Al

direct connectivity between elements, and/or indirect cou-
pling between other elements as recognized by one of average
skill in the art.

[0355] The term “module” is used in the description of the
various embodiments of the present invention. A module
includes a processing module, a functional block, hardware,
and/or software stored on memory for performing one or
more functions as may be described herein. Note that, if the
module is implemented via hardware, the hardware may
operate independently and/or in conjunction software and/or
firmware. As used herein, a module may contain one or more
sub-modules, each of which may be one or more modules.
[0356] While particular combinations of various functions
and features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by a rebuilding module of a
computing device within a dispersed storage network (DSN),
the method comprises:

identifying an encoded data slice having an error, wherein

the encoded data slice has a slice name and a revision
number and wherein a storage unit of the DSN stores the
encoded data slice;
sending a lock command to the storage unit, wherein the
lock command instructs the storage unit to ignore access
requests regarding the encoded data slice from other
entities of the DSN and to ignore write-related requests
and delete-related requests regarding other encoded data
slices from the other entities of the DSN and wherein the
other encoded data slices have the slice name but differ-
ent revision numbers than the encoded data slice; and

in response to a lock acknowledgement from the storage
unit, determining resolution for the error of the encoded
data slice, wherein the resolution includes one or more
of: rebuilding the encoded data slice, issuing a set of
delete requests to storage units of the DSN regarding a
set of encoded data slices, issuing a set of undo requests
to the storage units of the DSN regarding the set of
encoded data slices, and issuing a set of roll-back
requests to the storage units ofthe DSN regarding the set
of encoded data slices, wherein the set of encoded data
slices includes the encoded data slice and the storage
units of the DSN includes the storage unit.

2. The method of claim 1 further comprises:

when the resolution for the error of the encoded data slice

has been executed, sending an unlock command to the
storage unit.

3. The method of claim 1, wherein the identifying the
encoded data slice having the error comprises at least one of:

identifying the encoded data slice via a rebuilding detec-

tion process;

receiving a message indicating the error; and

receiving a response to a query regarding the encoded data

slice.

4. The method of claim 1, wherein determining to rebuild
the encoded data slice comprises:

determining whether at least a threshold number of

encoded data slices of the set of encoded data slices is
stored in the DSN, wherein a data segment is dispersed
storage error encoded to produce the set of encoded data

Dec. 5, 2013

slices, and wherein the set of encoded data slices
includes the encoded data slice; and

when the at least a threshold number of encoded data slices

is stored in the DSN, rebuilding the encoded data slice
using at least one of a partial rebuilding process and a
rebuilding process.
5. The method of claim 1, wherein determining to issue the
set of delete requests comprises:
when a determination is made not to rebuild the encoded
data slice, determining status of a write process; and

when the status of the write process is complete, issuing the
set of delete requests to the storage units of the DSN to
delete the set of encoded data slices, which includes the
encoded data slice.
6. The method of claim 1, wherein determining to issue the
set of undo requests comprises:
when a determination is made not to rebuild the encoded
data slice, determining status of a write process; and

when the status of the write process is at a commit phase,
issuing the set of undo requests to the storage units ofthe
DSN to undo storing the set of encoded data slices,
which includes the encoded data slice.
7. The method of claim 1, wherein determining to issue the
set of roll-back request comprises:
when a determination is made not to rebuild the encoded
data slice, determining status of a write process; and

when the status of the write process is at an initial write
phase, issuing the set of roll-back requests to the storage
units of the DSN to retract the initial write phase regard-
ing storing the set of encoded data slices, which includes
the encoded data slice.

8. The method of claim 1, wherein the determining the
resolution further comprises:

requesting re-issuance of a write command regarding the

encoded data slice.

9. The method of claim 1 further comprises:

sending a resolution request regarding the resolution to at

least one of the other entities of the DSN for execution of
the resolution.

10. A dispersed storage (DS) module of a computing
device within a dispersed storage network (DSN), the DS
module comprises:

afirst module, when operable within the computing device,

causes the computing device to:

identify an encoded data slice having an error, wherein
the encoded data slice has a slice name and a revision
number and wherein a storage unit of the DSN stores
the encoded data slice;

a second module, when operable within the computing

device, causes the computing device to:

send a lock command to the storage unit, wherein the
lock command instructs the storage unit to ignore
access requests regarding the encoded data slice from
other entities of the DSN and to ignore write-related
requests and delete-related requests regarding other
encoded data slices from the other entities of the DSN
and wherein the other encoded data slices have the
slice name but different revision numbers than the
encoded data slice; and

a third module, when operable within the computing

device, causes the computing device to:

in response to a lock acknowledgement from the storage
unit, determine resolution for the error of the encoded
data slice, wherein the resolution includes one or

US 2013/0326264 Al

more of: rebuilding the encoded data slice, issuing a
set of delete requests to storage units of the DSN
regarding a set of encoded data slices, issuing a set of
undo write requests to the storage units of the DSN
regarding the set of encoded data slices, and issuing a
set of roll-back write requests to the storage units of
the DSN regarding the set of encoded data slices,
wherein the set of encoded data slices includes the
encoded data slice and the storage units of the DSN
includes the storage unit.

11. The DS module of claim 10 further comprises:

when the resolution for the error of the encoded data slice

has been executed, the third module further functions to
send an unlock command to the storage unit.

12. The DS module of claim 10, wherein the first module
functions to identify the encoded data slice having the error
by at least one of:

identifying the encoded data slice via a rebuilding detec-

tion process;

receiving a message indicating the error; and

receiving a response to a query regarding the encoded data

slice.

13. The DS module of claim 10, wherein the third module
further functions to determine to rebuild the encoded data
slice by:

determining whether at least a threshold number of

encoded data slices of the set of encoded data slices is
stored in the DSN, wherein a data segment is dispersed
storage error encoded to produce the set of encoded data
slices, and wherein the set of encoded data slices
includes the encoded data slice; and

when the at least a threshold number of encoded data slices

is stored in the DSN, rebuilding the encoded data slice
using at least one of a partial rebuilding process and a
rebuilding process.

36

Dec. 5, 2013

14. The DS module of claim 10, wherein the third module
further functions to determine to issue the set of delete
requests by:
when a determination is made not to rebuild the encoded
data slice, determining status of a write process; and

when the status of the write process is complete, issuing the
set of delete requests to the storage units of the DSN to
delete the set of encoded data slices, which includes the
encoded data slice.
15. The DS module of claim 10, wherein the third module
further functions to determine to issue the set of undo requests
by:
when a determination is made not to rebuild the encoded
data slice, determining status of a write process; and

when the status of the write process is at a commit phase,
issuing the set of undo requests to the storage units ofthe
DSN to undo storing the set of encoded data slices,
which includes the encoded data slice.
16. The DS module of claim 10, wherein the third module
further functions to determine to issue the set of roll-back
request by:
when a determination is made not to rebuild the encoded
data slice, determining status of a write process; and

when the status of the write process is at an initial write
phase, issuing the set of roll-back requests to the storage
units of the DSN to retract the initial write phase regard-
ing storing the set of encoded data slices, which includes
the encoded data slice.

17. The DS module of claim 10, wherein the third module
further functions to determine the resolution further by:

requesting re-issuance of a write command regarding the

encoded data slice.

18. The DS module of claim 10 further comprises:

the third module further functions to send a resolution

request regarding the resolution to at least one of the
other entities of the DSN for execution of the resolution.

#* #* #* #* #*

