«» UK Patent Application «GB 2284492 .. A

(43) Date of A Publication 07.06.1995

(21) Application No 9325002.5

(22) Date of Filing 06.12.1993

(71) Applicant(s)
Graeme Roy Smith
4 Bridgemere Close, Radcliffe, MANCHESTER,
M26 4FS, United Kingdom

(72) Inventor(s)
Graeme Roy Smith

(74) Agent and/or Address for Service
Graeme Roy Smith
4 Bridgemere Close, Radcliffe, MANCHESTER,
M26 4FS, United Kingdom

{51) INTCL®
GOGF 9/30

{52) UK CL (Edition N')
G4A AJR APX

(56) Documents Cited
GB 1529538 A

(58) Field of Search

US 5179680 A

UK CL (Edition M) G4A AJR APL APX

INT CL® GOBF 9/30 9/44
On-line database: WPI

(54) Data processor with instruction decompression unit

(57) A computer control unit used for instruction
sequencing in microprocessors, microcontrollers and
digital signal processors has or is used with an instruction
decompression unit 5. The unit 5 decompresses a
previously compressed instruction block and provides
sequential instructions to an instruction decode unit 7 at
the correct time. Decoded instructions are passed in turn
to instruction execution unit 8. A multiplexer 6 allows the
use of non-compressed instructions, by bypassing unit 5.

Method and apparatus are provided for source
code compilation, de-bug, code simulation and code
compression for use with a hardware instruction
decompression unit 5. A compressed program is loaded in
to the system main memory. Required and potentially
required instruction blocks are loaded in to an instruction
cache 3 by the computer control unit at run time.

Program compression allows for reduced memory
requirements and greater data and instruction
through-put, by reducing main memory accesses.

BUS |——» CcoNTROL
|——— ADDRESS
CONTROLLER gty
INSTRUCTION
FETCH CONTROL
\ N\
COMPRESSED
INTERRUPT INSTRUCTION 5
ROUTINES CACHE .
INSTRUCTION DECOMPRESSION
_ | pECOMPRESSION STACK
e
5 n
$ o
MUX MODE i
conrroL [TN'{
I
6 —]
10
Y
o g
/ DECODE UNIT UNIT
7 \
8 INSTRUCTION 9
\ EXECUTION UNIT
vy
FIG. 1.

Y ¢erv8C ¢ 99

1/2

~

BUS ——— CONTROL
[ADDRESS
CONTROLLER ADDK
INSTRUCTION
FETCH CONTROL
\ UNIT N
' l
COMPRESSED
INTERRUPT INSTRUCTION ,
ROUTINES CACHE -
12
A * /
L— | INSTRUCTION |g | DECOMPRESSION
DECOMPRESSION STACK
/
l r—-—a
9.0 Y
—» MUX le—| MODE |
CONTROL | {
6— e |
l 10
INSTRUCTION INTERRUPT
[&— CONTROL
DECODE UNIT
INSTRUCTION 9

8\ EXECUTION UNIT

'

FIG. 1.

2/2

13

SOURCE
PROGRAM

!

14—

LEXICAL
ANALYSIS

1<

!

PARSER

<

\ v

15

\ v

16

INTERMEDIATE
CODE

GENERATION

y

CODE
OPTIMIZATION

_y

19

!

Yy

ERROR
MANAGEMENT

17

CODE
GENERATION

>

20"

!

CODE

PARTITIONING

v 1

22\

CODE

COMPRESSION

!

—

23

COMPRESSED
PROGRAM

21

A 4

BOOKKEEPING
MANAGEMENT

N~

18

FIG. 1.

2284492

-1-
IMPROVEMENTS TO COMPUTER CONTROL UNITS
This invention relates to a computer control unit and source code compiler.

There are several forms of VLSI (Very Large Scale Integration) silicon computer
devices available today, namely CISC (Complex Instruction Set Computers) and RISC
(Reduced Instruction Set Computers) microprocessors, microcontrollers, and digital
signal processors or DSP's. These integrated circuit devices are used to execute
various instructions which manipulate binary data, arithmetically and logically in an
arithmetic logic unit (ALU).

Each manufacturers computing device has its own dedicated instruction set. To
perform any useful function, individual instructions are concatenated in a structured
and coherent way to form a program. This program is stored in main memory. To
execute a program, the computer loads these instructions one at a time into its
instruction register, either directly or via an instruction cache. The instructions are then
decoded and executed accordingly. The instruction cache allows groups of sequential
instructions to be stored locally so the instruction execution unit can access individual
instructions quickly without having to perform time consuming external memory read
operations. This mechanism therefore increases system performance by reducing main
memory accesses and allows instructions to be executed at a faster rate.

Many programs are thousands of instructions long and require large memory arrays to
store them. These requirements can range from several kilo-bytes to many mega-bytes
of memory. The instruction caching requirements also become more complex and
involve sophisticated cache hit, cache miss and cache/main memory consistency
control mechanisms. This includes cache write-through, write-back and snoop
mechanisms. The instruction cache stores groups or lines of instructions that are
regularly used or have a high chance of being required by the instruction execution
unit. By making more of the program software directly available to the computer
control unit and reducing main memory accesses, through the use of software
compression algorithms and hardware decompression techniques, program execution
rates can be increased and the size of the memory required to store the programs can
be reduced.

With today's high gate densities, it is possible to fabricate three to four million
transistors on a single silicon die. These densities allow for increased device
functionality, system performance, data and instruction through-put and can be used to
integrate hardware instruction decompression units either on the same silicon die or as
a separate CO-processor.

According to the present invention there is a computer control unit comprising a bus
controller, an instruction fetch control unit, an instruction cache to store likely required
groups of instructions, an instruction decompression unit which decompresses a block
of compressed data from the instruction cache, an instruction decode unit together
with a multiplexer to select the instruction source, an instruction execution unit, an

-2-

interrupt control unit and an compressed interrupt routine memory which stores
compressed interrupt service routines.

Apparatus and method for optimizing the source program into compressed target code
are also provided. A compiler will first be used to check the source code (program)
for correctness. Error free code will then be compressed by the compiler before being
loaded into main memory for execution by the host processor. The compression
algorithm can be a lossless compression technique or compression algorithm that
allows some loss. In the latter case, the instruction decompression unit can regenerate
the instruction codes from the 'lossy' compression block due to code redundancy, in a
similar fashion to that performed by error correcting codes.

Due to program compression the program memory requirements are reduced because
the program can be stored in a significantly smaller memory. As blocks of the program
are compressed, more sections of the program can be loaded in to the computer
control unit's cache memory. This increases the chance of a cache hit and hence
processor performance. At the correct time, appropriate compressed instruction blocks
are loaded in to the instruction decompression unit. The instruction decompression unit
implements a decompression algorithm which decompresses the compressed
instruction block. Sequential instructions are then generated at the output of the
instruction decompression unit which are passed to the instruction decoder.

Compressed interrupt routines are stored in the local compressed interrupt routine
memory. When an interrupt occurs instruction execution is halted at an appropriate
time and the corresponding compressed interrupt routine loaded in to the instruction
decompression unit for execution. Upon completion of the interrupt routine the
computer control unit returns to normal program execution, unless there is another
interrupt of less priority waiting to be serviced. Program flow integrity and
decompression parameter maintenance is achieved via a stack associated with the
instruction decompression unit which stores and retrieves parameters used by the
instruction decompression unit as necessary.

A specific embodiment of the invention will now be described by the way of example
with reference to the accompanying drawings in which:-

Drawing 1/2 figure 1 shows a block diagram of the computer control unit
implementing an instruction decompression unit;

Drawing 2/2 figure 1 illustrates the program compilation process and target program
compression by use of a flow diagram.

Referring to drawing figure 1 the computer control unit comprises a bus controller 1
which is used to gain access of the local bus, a memory address register to hold the
address of the memory location to be accessed and a bi-directional data bus on which
data is read from or written to main memory or external cache memory. The
appropriate control signals are also provided to access peripheral functions.

)

-3-

As a program is executed the instruction fetch control unit 2 loads blocks of program
data into the instruction cache 3. This program data can be compressed data or
uncompressed data. The mode of operation is dictated by a mode bit in a control
register 10, an I/O pin 11 of the device or the output of the instruction decode unit 7.
This allows the computer control unit to run either uncompressed programs in the
conventional sense, a compressed programs 23 which have been previously
compressed by an appropriate compression algorithm 21, 22, or a program which is a
mixture of both compressed and non-compressed code. If the program data is not
compressed then the instruction decompression unit 5 is bypassed and instructions
from the instruction cache memory 3 are input to the instruction decode unit 7 via the
instruction source multiplexer 6. The instructions are decoded and transferred to the
instruction execution unit 8 where appropriate actions are taken.

In program compression mode, the source program must first have been compiled,
checked and edited for correctness and then compressed as outlined in the flow
diagram shown in figure 2. Target program code generated by the code generation
function 20 of the compiler is passed to the code partitioning function 21 which divides
the program into manageable sections of code. This partitioning phase is dependent on
the compression algorithm implemented by the code compression 22 section of the
compiler 14, 15, 16, 17, 18, 19, 20, the code size and the occurrence of
Branch/Call/Goto or Jump type instructions. The decision to perform a branch in the
instruction flow is taken by the instruction execution unit 8. If the instruction flow of
the program dictates that a branch occurs to an area of code not contained by the
current instruction block in the instruction decompression unit 5, then the appropriate
instruction block will have to be fetched from the instruction cache 3 or main memory
and loaded in to the instruction decompression unit 5. A successful branch to an area
of code within the current compressed instruction block, contained in the instruction
decompression unit 5, will cause the instruction decompression unit 5 to be initialised
with parameters that will allow the instruction decompression unit 5 to generate
instructions and permit a continuation in the program flow. The location of code
pointed to by a branch type instruction is identified and marked by the code
partitioning function 21. Code implemented at these potential branch destinations is
coded in such a way by the code compression function 22 that the instruction
decompression unit 5 is able to initialise the instruction decompression unit 5 and allow
the continuation of program flow.

Compressed instruction blocks 23 are fetched from main memory by the instruction
fetch control unit 2 via the bus controller 1 and stored in the instruction cache 3. If the
required instruction block is stored in the instruction cache 3 then this block of data is
pre-loaded in to instruction decompression unit 5. The instruction block can be pre-
fetched and initialised in the instruction decompression unit 5 before the instructions
are required to be decoded. This is due to the multi-stage pipelining provided in the
instruction execution unit 8. If the required instruction block is not available in the
instruction cache 3, that is, there is a cache miss, then the instruction block is fetched

-4-

directly from main memory by the instruction fetch unit 2 and loaded into both the
instruction cache 3 and the instruction decompression unit 5.

When activated by the decompression mode control bit 10, the I/O pin 11 or the
output from the instruction decode unit 7, the instruction decompression unit 5 will
decompress the loaded instruction data block and generate sequential instruction op-
codes. These op-codes are passed to the instruction decode unit 7 via the instruction
source multiplexer 6. By being able to select between the output of the instruction
decompression unit 5 and the instruction cache 3, the computer control unit can
execute instructions that are compressed or non-compressed. This scope allows for
mixed mode programs 23 where a program 23 is constructed from both compressed
instruction blocks and non-compressed instruction blocks. The output from the
instruction decode unit 7 is transferred to the instruction execution unit 8 at the
appropriate time. Output control fields from the instruction execution unit 8 are used
to control peripheral logic which performs the desired function.

Compressed interrupt routines are stored in the local compressed interrupt routine
memory 4. When an interrupt occurs instruction execution is halted at an appropriate
time and the corresponding compressed interrupt routine loaded in to the instruction
decompression unit 5 for execution. Upon completion of the interrupt routine the
computer control unit returns to normal program execution, unless there is another
interrupt of less priority waiting to be serviced. Program flow integrity and
decompression parameter maintenance is achieved via a decompression stack 12
associated with the instruction decompression unit 5 which stores and retrieves
parameters used by the instruction decompression unit 5 as necessary.

v

CLAIMS

1 A computer control unit comprising an instruction decompression unit for
decompressing program instructions previously compressed on a compiler suitable for
compressing the program source code in to compressed instruction blocks, the
instruction decompression unit implements a decompression algorithm, this algorithm
performs the inverse function of either a lossless compression algorithm or a
compression algorithm that allows limited code loss, the original code being
regenerated by the instruction decompression unit due to redundancy in the instruction
codes used by the computer control unit, means for fetching the required compressed
instruction blocks from main memory or cache memory to an instruction cache by the
computer control unit, a means for transferring the compressed instruction blocks from
the instruction cache to the instruction decompression unit, so a sequence of individual
instructions can be generated from the compressed code for input in to the instruction
decode unit via an instruction source multiplexer which can select between
decompressed instructions from the instruction decompression unit or non-compressed
instructions from the instruction cache, thus allowing the computer control unit to run
either compressed programs, non-compressed programs or a program that contains
both compressed and non-compressed instructions, the control of the instruction
source multiplexer being determined by an input pin to the computer control unit, a
code pattern written to a mode register or the output from the instruction execution
unit, the decompressed instructions being transferred to the instruction decode unit at
the correct time, before being passed to the instruction execution unit which performs
the intended function, associated with the instruction decompression unit is the
decompression stack for storing intermediate decompression parameters if interrupts
occur and ensuring instruction decompression unit parameter maintenance and
integrity, these parameters being restored into the instruction decompression unit in
reverse order to enable continuation of program flow after an interrupt has been
serviced, unless another lower priority interrupt is pending.

2 An instruction decompression unit which is separate to the main computer
control unit and is employed as a computer control unit co-processor for the sole
purpose of performing instruction decompression and transferring the individual
decompressed instructions to the instruction decode unit in the computer control unit.

3 A computer control unit substantially as described herein with reference to
Figures 1-2 of the accompanying drawing.

A RLLVILLD LAVE A ST r\})yll\v“l‘\lll L il ol

Examiner’s report to the Comptroller under Section 17 GB 9325002.5
(" < Search report)
levant Technical Fields Search Examiner
B G WESTERN

() UK Cl (Bd.M) G4A (AJR, APL, APX)

(ii) Int CI (Ed.5) GOG6F (9/30, 9/44) .| Date of completion of Search
3 FEBRUARY 1994

Databases (see below) Documents considered relevant
(1) UK Patent Office collections of GB, EP, WO and US patent following a search in respect of
specifications. Claims :-

1-3

(ii) ONLINE DATABASES: WPI

Categories of documents

X: Document indicating lack of novelty or of inventive step. P: Document published on or after the declared priority date
but before the filing date of the present application.
Y: Document indicating lack of inventive step if combined with
one or more other documents of the same category. E: Patent documeni published on or after, but with priority date
carhier than, the fiing date of the present application.
A: Document indicating technological background and/or state
of the art. &: Member of the same patent family, corresponding docurment.
Category Identity of document and relevant passages Relevant to
claim(s)
X GB 1529538 A (IBM) see whole document. but espccially page 5 2
lines 52-55
X US 5179680 A (COLWELL ET AL) N B columns 15-21 2

Databases:The UK Patent Office database comprises classified collections of GB, EP. WO and US patent specifications as outlined periodically in the Official Journal
(Patents). The on-line databases considered for search are also listed periodically in the Official Journal (Patents).

T10 - 3380 Page 1 of +

