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GENERATING SYNTHESIZED DIGITAL
IMAGES UTILIZING A
MULTI-RESOLUTION GENERATOR
NEURAL NETWORK

BACKGROUND

[0001] Advances in computer processing and machine
learning have led to significant advancements in the field of
digital image processing and generation. Specifically,
machine-learning models and neural networks provide many
different types of systems the ability to generate synthesized
digital images to imitate specific images such as real-world
images. For example, many systems utilize synthetic images
to augment image databases to use for improving machine-
learning models. Because the content of digital images in
image training datasets has such a significant impact on the
accuracy and performance of machine-learning models,
ensuring that synthetically generated digital images accu-
rately represent the intended content is an important aspect
of image dataset augmentation.

[0002] Some existing image generation systems utilize
generation neural networks (e.g., generative adversarial net-
works) to generate synthesized digital images in conditional
settings. Specifically, these image generation systems gen-
erate images based on an input conditioning signal such as
another image, a segmentation map, or other prior. For
example, some existing image generation systems utilize a
conditional generative adversarial network with spatially-
adaptive normalization to generate synthesized digital
images. While such systems can improve image quality
during semantic image generation, the resulting quality is
still inferior to the quality of unconditional generative adver-
sarial networks. Additionally, these existing systems also
typically generate synthesized digital images with limited
resolution sizes that are not useful for real-world applica-
tions.

SUMMARY

[0003] This disclosure describes one or more embodi-
ments of methods, non-transitory computer readable media,
and systems that solve the foregoing problems (in addition
to providing other benefits) by generating synthetized digital
images via multi-resolution generator neural networks. Spe-
cifically, the disclosed systems extract multi-resolution fea-
tures from a scene representation to condition a spatial
feature tensor and a latent code to modulate an output of a
generator neural network. For example, the disclosed sys-
tems utilize a base encoder of the generator neural network
to generate a feature set from a semantic label map of a
scene. The disclosed systems then utilize a bottom-up
encoder to extract multi-resolution features and generate a
latent code from the feature set. Furthermore, the disclosed
systems determine a spatial feature tensor by utilizing a
top-down encoder to up-sample and aggregate the multi-
resolution features. The disclosed systems then utilize a
decoder to generate a synthesized digital image based on the
spatial feature tensor and the latent code. Accordingly, the
disclosed systems provide improved accuracy in synthesized
digital images and efficiency in image synthesis neural
networks.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The detailed description refers to the drawings
briefly described below.
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[0005] FIG. 1 illustrates a block diagram of a system
environment in which a multi-resolution image generation
system is implemented in accordance with one or more
implementations.

[0006] FIG. 2 illustrate diagrams of the multi-resolution
image generation system generating synthesized digital
images in accordance with one or more implementations.
[0007] FIGS. 3A-3C illustrate diagrams of architecture of
generator neural networks and components of generator
neural networks in accordance with one or more implemen-
tations.

[0008] FIGS. 4A-4C illustrate comparisons between syn-
thesized digital images generated by a conventional system
and synthesized digital images generated by the multi-
resolution image generation system in accordance with one
or more implementations.

[0009] FIG. 5 illustrates a comparison of synthesized
digital images using multi-resolution features and synthe-
sized digital images without using multi-resolution features
in accordance with one or more implementations.

[0010] FIGS. 6A-6C illustrate synthesized digital images
for a plurality of different image datasets in accordance with
one or more implementations.

[0011] FIG. 7 illustrates a diagram of the multi-resolution
image generation system of FIG. 1 in accordance with one
or more implementations.

[0012] FIG. 8 illustrates a flowchart of a series of acts for
generating synthesized digital images utilizing multi-reso-
Iution features extracted from scene representations in
accordance with one or more implementations.

[0013] FIG. 9 illustrates a block diagram of an exemplary
computing device in accordance with one or more embodi-
ments.

DETAILED DESCRIPTION

[0014] This disclosure describes one or more embodi-
ments of a multi-resolution image generation system that
generates synthesized digital images utilizing a multi-reso-
Iution generator neural network. In one or more embodi-
ments, the multi-resolution image generation system utilizes
a bottom-up encoder of the multi-resolution generator neural
network to extract multi-resolution features based on a
semantic label map including a layout of a scene. The
multi-resolution image generation system also utilizes the
bottom-up encoder to generate a latent code from the
multi-resolution features. Additionally, the multi-resolution
image generation system utilizes a top-down encoder of the
multi-resolution generator neural network to determine a
spatial feature code by aggregating the multi-resolution
features. The multi-resolution image generation system then
generates a digital image from the spatial feature tensor and
the latent code. By generating the spatial feature tensor and
the latent code from multi-resolution features of scenes, the
multi-resolution image generation system generates synthe-
sized digital images with improved accuracy.

[0015] As mentioned, in one or more embodiments, the
multi-resolution image editing system extracts multi-reso-
Iution features from a semantic label map representing a
semantic layout of a scene. Specifically, the multi-resolution
image editing system utilizes a base encoder of the multi-
resolution generator neural network to generate a feature set
from the semantic label map. The multi-resolution image
editing system then utilizes a bottom-up encoder to extract
the multi-resolution features from the previously extracted
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feature set. In particular, the multi-resolution image editing
system utilizes a plurality of separate downsampling neural
network layers in series to extract a plurality of additional
feature sets at different resolutions.

[0016] Furthermore, in one or more embodiments, the
multi-resolution image editing system determines a latent
code from multi-resolution features extracted for a scene. In
particular, the multi-resolution image editing system utilizes
a set of fully connected neural network layers of the multi-
resolution generator neural network to generate the latent
code from a reduced resolution feature set. For instance, the
multi-resolution image editing system utilizes the fully
connected neural network layers to determine a statistical
distribution including a mean value and a variance value
based on the reduced resolution feature set. The multi-
resolution image editing system generates the latent code
based on the mean value and the variance value.

[0017] In one or more additional embodiments, the multi-
resolution image editing system determines a spatial feature
tensor for multi-resolution features extracted for a scene. For
example, the multi-resolution image editing system utilizes
a top-down encoder of the multi-resolution generator neural
network to aggregate the multi-resolution features extracted
by the bottom-up encoder. To illustrate, the top-down
encoder includes a plurality of upsampling neural network
layers that up-sample and aggregate, via lateral connections,
a plurality of feature sets at a plurality of different resolu-
tions. Accordingly, the multi-resolution image editing sys-
tem generates a single, two-dimensional spatial feature
tensor representing features of the scene at the different
resolutions.

[0018] After determining a spatial feature tensor and a
latent code from multi-resolution features of a semantic
label map, the multi-resolution image editing system gen-
erates a synthesized digital image. Specifically, the multi-
resolution image editing system utilizes a decoder of the
multi-resolution generator neural network to generate the
synthesized digital image from the spatial feature tensor and
the latent code. In one or more embodiments, the decoder
includes a mapping neural network layer to flatten and
modify a distribution of the latent code based on a distri-
bution of the decoder. The multi-resolution image editing
system utilizes the decoder to generate the synthesized
digital image based on the spatial feature tensor and the
modified latent code.

[0019] In one or more embodiments, the multi-resolution
image editing system utilizes a combined loss function to
learn parameters of a multi-resolution generator neural net-
work. In particular, the multi-resolution image editing sys-
tem determines an encoder loss by modifying a latent code
according to a reference distribution. The multi-resolution
image editing system also determines a perceptual loss by
comparing a synthesized digital image to a digital image
comprising the digital image scene. Furthermore, the multi-
resolution image editing system determines a generator loss
based on an adversarial loss and one or more regularization
losses associated with the decoder. The multi-resolution
image editing system then modifies parameters of a based
encoder, a bottom-up encoder, a top-down encoder, and a
decoder of the multi-resolution generator neural network
based on a combined loss including the encoder loss, the
perceptual loss, and the generator loss.

[0020] The disclosed multi-resolution image editing sys-
tem provides a number of benefits over conventional sys-
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tems. For example, the multi-resolution image editing sys-
tem improves the accuracy of computing systems that
generate synthesized digital images. Specifically, conven-
tional systems that utilize a generator neural network with
spatially-adaptive normalization tend to allocate resources
toward generating larger content such as background content
and neglect details of smaller objects in the foreground. By
generating a spatial feature tensor based on multi-resolution
features of a semantic layout of a scene, the multi-resolution
image editing system generates synthesized digital images.
More specifically, the multi-resolution image editing system
more accurately preserves spatial information due to the
two-dimensional spatial feature tensor than via simple learn-
able constants, as in conventional systems.

[0021] Furthermore, the multi-resolution image editing
system improves the flexibility of computing systems that
generate synthesized digital images. In particular, as previ-
ously mentioned, conventional systems that rely on a gen-
erator neural network with spatially-adaptive normalization
are limited to lower resolution image synthesis. The multi-
resolution image editing system, however, utilizes a modi-
fied generator neural network structure that generates higher
quality images that are easily scaled to high resolutions.
More specifically, the multi-resolution image editing system
utilizes an encoder to extract hierarchical feature represen-
tations at a plurality of different resolutions to modulate the
generator neural network. Additionally, the multi-resolution
image editing system utilizes the hierarchical feature repre-
sentations to synthesize details of different sizes of objects/
textures at different resolutions. Thus, the multi-resolution
image editing system provides improved flexibility in gen-
erating objects in out-of-distribution/context scene layouts
(e.g., by placing objects in locations those objects are not
typically found).

[0022] In addition, the multi-resolution image editing sys-
tem improves the efficiency of computing systems that train
and implement generator neural networks for generating
synthesized digital images. For example, conventional sys-
tems that utilize spatially-adaptive normalization to generate
synthesized digital images can require significant resources
and time to train generator neural networks. By utilizing an
encoder to extract hierarchical feature representations in
connection with generating a synthesized digital image (e.g.,
from a semantic label map) to modulate a generator neural
network, the multi-resolution image editing system also
results in a generator neural network that is less memory
intensive and faster to train than the conventional generator
neural networks.

[0023] Turning now to the figures, FIG. 1 includes an
embodiment of a system environment 100 in which a
multi-resolution image editing system 102. In particular, the
system environment 100 includes server device(s) 104 and
a client device 106 in communication via a network 108.
Moreover, as shown, the server device(s) 104 include a
digital image system 110, which includes the multi-resolu-
tion image generation system 102. Furthermore, FIG. 1
illustrates that the multi-resolution image generation system
102 includes a multi-resolution generator neural network
112. Additionally, the client device 106 includes a digital
image application 114, which optionally includes the digital
image system 110, the multi-resolution image generation
system 102, and the multi-resolution generator neural net-
work 112.
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[0024] As shown in FIG. 1, the server device(s) 104
includes or hosts the digital image system 110. Specifically,
the digital image system 110 includes, or is part of, one or
more systems that implement digital image processing and/
or digital image generation. For example, the digital image
system 110 provides tools for viewing, generating, editing,
and/or otherwise interacting with digital images (e.g., via the
digital image application 114 of the client device 106). In
one or more embodiments, the digital image system 110
processes digital content items including digital images
and/or digital videos. To illustrate, the digital image system
110 utilizes neural networks to generate and/or modify
synthesized digital images. In one or more embodiments, the
digital image system 110 generates datasets of synthesized
digital images or digital videos in connection with training
neural networks or machine-learning models (e.g., segmen-
tation neural networks, generator neural networks). In one or
more additional embodiments, the digital image system 110
processes digital images in connection with one or more
additional systems such as cloud-storage systems.

[0025] In connection with generating or modifying digital
images, the digital image system 110 includes the multi-
resolution image generation system 102 to generate synthe-
sized digital images. In particular, the multi-resolution
image generation system 102 utilizes the multi-resolution
generator neural networks 112 to generate a synthesized
digital image utilizing multi-resolution features of a scene.
For example, the multi-resolution image generation system
102 generates a synthesized digital image by utilizing a
plurality of network layers to extract and modify a plurality
of multi-resolution features associated with a scene.

[0026] More specifically, the multi-resolution image gen-
eration system 102 utilizes an encoder of the multi-resolu-
tion generator neural network 112 to extract features at
different resolutions based on a semantic label map or other
prior that indicates a structure or layout of objects in the
scene. Additionally, the multi-resolution image generation
system 102 utilizes the encoder of the multi-resolution
generator neural network 112 to determine a spatial feature
tensor and a latent code based on the multi-resolution
features. The multi-resolution image generation system 102
then utilizes a decoder of the multi-resolution generator
neural network 112 to synthesize a digital image from the
spatial feature tensor and the latent code. Accordingly, the
multi-resolution image generation system 102 generates a
synthesized digital image to include foreground and back-
ground objects organized in a semantic layout based on the
semantic label map.

[0027] In one or more embodiments, a synthesized digital
image includes a digital image that is at least partially
generated by a neural network. In particular, a synthesized
digital image includes a digital image created from one or
more priors indicating positions and classes of objects. For
instance, a synthesized digital image is a digital image
generated by a generator neural network based on a semantic
label map. In one or more embodiments, a generator neural
network further generates a synthesized digital image based
on an edge map indicating edges of objects. According to
some embodiments, a synthesized digital image includes a
digital image representation of a real-world scene generated
by a neural network.

[0028] Inone or more embodiments, a semantic label map
includes a representation of labels for a plurality of objects
within a digital image. To illustrate, a semantic label map
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includes a plurality of values indicating object classes for a
plurality of pixels in a digital image. Thus, a semantic label
provides information indicating positions and classes of a
plurality of background and/or foreground objects within a
digital image.

[0029] In one or more embodiments, a neural network
includes a computer representation that is tunable based on
inputs to approximate unknown functions. In particular, a
neural network includes one or more layers (i.e., artificial
neurons) that utilize algorithms to learn from, and make
predictions on, known data by analyzing the known data to
learn to generate outputs that reflect patterns and attributes
of the known data. For example, a neural network makes
high-level abstractions in data by generating data-driven
predictions or decisions from the known input data. In some
embodiments, a neural network includes, but is not limited
to, a convolutional neural network, a recurrent neural net-
work, a residual neural network, or an adversarial neural
network. To illustrate, a neural network includes a generator
neural network for generating synthesized digital images. In
one or more embodiments, a generator neural network
includes a generative adversarial network with one or more
encoders or decoders including residual neural network
layers, linear neural network layers, rectified linear unit
neural network layers, and/or other neural network layers.
Accordingly, generator neural networks described herein
provide operations for generating synthesized digital images
and/or portions of synthesized digital images.

[0030] Furthermore, in one or more embodiments, an
object includes a visible item with a definable boundary
relative to other visible items in a scene. For example, an
object includes an item in a foreground of a scene including,
but not limited to, real-world items such as furniture, people,
faces, clothing, buildings, vehicles, or the like. Additionally,
in one or more embodiments, an object includes a portion of
a larger object (i.e., a subcomponent of an object) such as a
particular body part or a vehicle component. In some
embodiments, a digital image includes a plurality of fore-
ground objects presented according to a particular perspec-
tive such that one or more of the objects overlap one or more
other objects in a scene.

[0031] Additionally, as mentioned, each object in a digital
image corresponds to an object class indicated by a semantic
label map. In one or more embodiments, an object class
includes a particular category of object. For instance, an
object class includes a label or description indicating the
category of the object from a plurality of possible categories.
To illustrate, an object class includes, but is not limited to,
a particular real-world item such as furniture, person, face,
clothing item, building, vehicle, etc. In additional embodi-
ments, an object class corresponds to a particular subcom-
ponent of another object such as a particular body part (e.g.,
face or limb) or a particular clothing item.

[0032] In one or more embodiments, the server device(s)
104 include a variety of computing devices, including those
described below with reference to FIG. 9. For example, the
server device(s) 104 includes one or more servers for storing
and processing data associated with synthesized digital
images. In some embodiments, the server device(s) 104 also
include a plurality of computing devices in communication
with each other, such as in a distributed storage environ-
ment. In some embodiments, the server device(s) 104
include a content server. The server device(s) 104 can also
include an application server, a communication server, a
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web-hosting server, a social networking server, a digital
content campaign server, or a digital communication man-
agement server.

[0033] In addition, as shown in FIG. 1, the system envi-
ronment 100 includes the client device 106. In one or more
embodiments, the client device 106 includes, but is not
limited to, a mobile device (e.g., smartphone or tablet), a
laptop, a desktop, including those explained below with
reference to FIG. 9. Furthermore, although not shown in
FIG. 1, the client device 106 can be operated by a user (e.g.,
a user included in, or associated with, the system environ-
ment 100) to perform a variety of functions. In particular, the
client device 106 performs functions such as, but not limited
to, accessing, generating, viewing, modifying, and otherwise
interacting with digital images or datasets of digital images
via the digital image application 114. The client device 106
also performs functions for generating, capturing, or access-
ing data to provide to the digital image system 110 and the
multi-resolution image generation system 102 in connection
with generating and modifying digital images. For example,
the client device 106 communicates with the server device
(s) 104 via the network 108 to provide digital images to the
server device(s) 104 or receiving digital images from the
server device(s) 104. Although FIG. 1 illustrates the system
environment 100 with a single client device 106, the system
environment 100 can include a different number of client
devices.

[0034] Additionally, as shown in FIG. 1, the system envi-
ronment 100 includes the network 108. The network 108
enables communication between components of the system
environment 100. In one or more embodiments, the network
108 may include the Internet or World Wide Web. Addition-
ally, the network 108 can include various types of networks
that use various communication technology and protocols,
such as a corporate intranet, a virtual private network
(VPN), alocal area network (LLAN), a wireless local network
(WLAN), a cellular network, a wide area network (WAN),
a metropolitan area network (MAN), or a combination of
two or more such networks. Indeed, the server device(s) 104
and the client device 106 communicates via the network
using one or more communication platforms and technolo-
gies suitable for transporting data and/or communication
signals, including any known communication technologies,
devices, media, and protocols supportive of data communi-
cations, examples of which are described with reference to
FIG. 9.

[0035] Although FIG. 1 illustrates the server device(s) 104
and the client device 106 communicating via the network
108, in alternative embodiments, the various components of
the multi-resolution image generation system 102 commu-
nicate and/or interact via other methods (e.g., the server
device(s) 104 and the client device 106 can communicate
directly). Furthermore, although FIG. 1 illustrates the multi-
resolution image generation system 102 being implemented
by a particular component and/or device within the system
environment 100, the multi-resolution image generation
system 102 can be implemented, in whole or in part, by other
computing devices and/or components in the system envi-
ronment 100 (e.g., the client device 106). Additionally, the
server device(s) 104 and/or the client device 106 may access
synthesized digital images from a third-party system via the
network 108.

[0036] In particular, in some implementations, the multi-
resolution image generation system 102 on the server device
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(s) 104 supports the multi-resolution image generation sys-
tem 102 on the client device 106. For instance, the multi-
resolution image generation system 102 on the server device
(s) 104 learns parameters for the multi-resolution generator
neural network 112. The multi-resolution image generation
system 102 then, via the server device(s) 104, provides the
multi-resolution generator neural network 112 to the client
device 106. In other words, the client device 106 obtains
(e.g., downloads) the multi-resolution generator neural net-
work 112 with the learned parameters from the server
device(s) 104. Once downloaded, the client device 106 can
utilize the multi-resolution generator neural network 112 to
perform one or more image editing tasks independent from
the server device(s) 104.

[0037] In alternative implementations, the multi-resolu-
tion image generation system 102 includes a web hosting
application that allows the client device 106 to interact with
content and services hosted on the server device(s) 104. To
illustrate, in one or more implementations, the client device
106 accesses a web page supported by the server device(s)
104. The client device 106 provides input to the server
device(s) 104 to perform an image generation task utilizing
the multi-resolution image generation system 102, and, in
response, the multi-resolution image generation system 102
on the server device(s) 104 performs the task. The server
device(s) 104 then provides the output or results of the
image generation task to the client device 106.

[0038] In one or more embodiments, the multi-resolution
image generation system 102 accurately, flexibly, and effi-
ciently generates synthesized digital images. Specifically,
the multi-resolution image generation system 102 generates
synthesized digital images based on multi-resolution fea-
tures of objects in a scene. FIG. 2 illustrates that the
multi-resolution image generation system 102 utilizes a
multi-resolution generator neural network to extract multi-
resolution features from a semantic label map and then
generate a synthesized digital image.

[0039] As mentioned, FIG. 2 illustrates that the multi-
resolution image generation system 102 utilizes a multi-
resolution generator neural network 200 to generate a syn-
thesized digital image 202 from one or more priors. In one
or more embodiments, the multi-resolution image genera-
tion system 102 utilizes the multi-resolution generator neu-
ral network 200 to generate the synthesized digital image
202 from a semantic label map 204. For instance, the
semantic label map 204 includes a plurality of semantic
labels indicating object classes for a plurality of objects at
locations in a two-dimensional space for a scene.

[0040] In one or more additional embodiments, the multi-
resolution image generation system 102 further generates
the synthesized digital image 202 based on an edge map 206
in connection with the semantic label map 204. Specifically,
the edge map 206 includes edges of objects determined
using one or more edge detection techniques. Thus, in one
or more embodiments, the multi-resolution generator neural
network 200 utilizes the edge map 206 in connection with
the semantic label map 204 to generate the synthesized
digital image 202 with improved accuracy over the semantic
label map 204 alone.

[0041] According to one or more embodiments, the
semantic label map 204 includes semantic information that
indicates a position and class of one or more objects for
generating the synthesized digital image 202. In particular,
the multi-resolution generator neural network 200 utilizes
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labels of the semantic label map 204 to determine object
classes corresponding to a plurality of pixels for generating
the synthesized digital image 202. For instance, the semantic
label map 204 includes groups of pixels associated with a
particular object class indicating a location and a category of
an object. Additionally, in one or more embodiments, the
multi-resolution generator neural network 200 utilizes the
edge map 206 including edges of objects in connection with
the semantic label map 204 to generate the synthesized
digital image 202 with improved accuracy over the semantic
label map 204 alone. Although FIG. 2 illustrates that the
multi-resolution image generation system 102 utilizes the
multi-resolution generator neural network 200 to generate
the synthesized digital image 202 from the semantic label
map 204 and the edge map 206, in other embodiments, the
multi-resolution image generation system 102 generates the
synthesized digital image 202 from another prior, such as
another digital image (e.g., a photograph).

[0042] In one or more embodiments, the multi-resolution
image generation system 102 utilizes the multi-resolution
generator neural network 200 to synthesize a plurality of
foreground and background objects in a scene corresponding
to a layout of the semantic label map 204. For example, the
multi-resolution image generation system 102 utilizes the
multi-resolution generator neural network 200 to generate
features for objects such as furniture (e.g., a bed) in a scene
that includes one or more additional objects in the fore-
ground and/or background of the scene. Accordingly, the
multi-resolution image generation system 102 utilizes the
multi-resolution generator neural network 200 to generate
the synthesized digital image 200 to include objects corre-
sponding to the scene in the semantic label map 204.
[0043] As mentioned, the multi-resolution image genera-
tion system 102 utilizes the multi-resolution generator neu-
ral network 200 to generate features corresponding to
objects in a scene. In particular, as illustrated in FIG. 2, the
multi-resolution generator neural network 200 includes an
encoder 208a to encode information about the objects from
the semantic label map 204 and the edge map 206. For
instance, the multi-resolution generator neural network 200
utilizes the encoder 208a to extract multi-resolution features
from the semantic label map 204 and the edge map 206.
Furthermore, in one or more embodiments, the multi-reso-
Iution generator neural network 200 includes a decoder 2085
to decode the encoded information about objects in the scene
corresponding to the semantic label map 204 and generate
the synthesized digital image 202.

[0044] As shown, the multi-resolution image generation
system 102 utilizes a conditional GAN (as the multi-reso-
Iution generator neural network) that utilizes a neural net-
work encoder 208a to convert a prior (e.g., a semantic label
map 204 and optionally an edge map 206) into a latent code
and a spatial feature tensor. Subsequently, in some embodi-
ments, the multi-resolution image generation system 102
uses a neural network decoder 2085 to convert the latent
code and spatial feature tensor into a synthesized digital
image.

[0045] Moreover, as used herein, the term latent code
refers to data that embeds latent (or hidden) features that,
when processed by the decoder 2085, converts into a digital
image depicting a scene based on the prior used to generate
the latent code. For instance, a latent code includes one or
more latent-feature vectors or one or more noise maps that,
when utilized by the multi-resolution generator neural net-
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work 200, convert into a synthesized digital image. In some
instances, a latent code includes a Z-vector of a GAN as
described by R. Abdal et al. in A4 Style-Based StyleFlow:
Attribute-conditioned Exploration of StyleGAN-Generated
Images using Conditional Continuous Normalizing Flows,
arXiv:2008.02401, (2020), the content of which is hereby
incorporated by reference in its entirety (hereinafter 4
Style-Based StyleFlow); or as described by T. Karras et al. in
A Style-Based Generator Architecture for Generative Adver-
sarial Networks, In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4401-
4410, 2019, the content of which is hereby incorporated by
reference in its entirety (hereinafter Karras). In addition, in
one or more embodiments, a latent code includes a latent-
feature vector and/or a noise map from a latent-noise space
as described by R. Abdal et al. in /mage2StyleGAN. How to
embed images into the stylegan latent space?, In Proceed-
ings of the IEEE International Conference on Computer
Vision, pages 4432-4441, 2019, the content of which is
hereby incorporated by reference in its entirety (hereinafter
Image2StyleGAN). Furthermore, in certain instances, a
latent code is within a latent space (WN latent-noise space
and/or W*N latent-noise space) as described by R. Abdal et
al. in Image2StyleGAN++: How to edit the embedded
images?, In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 8296-8305, 2020, the
content of which is hereby incorporated by reference in its
entirety (hereinafter /mage2Style GAN++). Moreover, in one
or more embodiments, the multi-resolution image genera-
tion system 102 generates a latent code by projecting a prior
into a latent space.

[0046] In one or more embodiments, as illustrated in FIG.
2, the multi-resolution image generation system 102 utilizes
the encoder 208a of the multi-resolution generator neural
network 200 to generate a representation of the multi-
resolution features of the semantic label map 204 and the
edge map 206. For example, the encoder 208a extracts a
plurality of different feature sets based on the semantic label
map 204 and the edge map 206 at a plurality of different
resolutions. The encoder 2084 utilizes the multi-resolution
features to generate a spatial feature tensor 210 and a latent
code 212 via a plurality of different neural network layers.
The multi-resolution image generation system 102 then
utilizes the decoder 2085 to generate the synthesized digital
image 202 based on the spatial feature tensor 210 and the
latent code 212.

[0047] In addition, FIGS. 3A-3C illustrate detailed dia-
grams of architectures of a multi-resolution generator neural
network and components of the multi-resolution generator
neural network. Specifically, FIG. 3A illustrates a diagram of
a multi-resolution generator neural network that the multi-
resolution image editing system 102 utilizes to process
priors 300 (e.g., a semantic label map) to generate a syn-
thesized digital image 302 consistent with a semantic layout
of objects in a scene. FIG. 3B illustrates a diagram of
components of an encoder of the multi-resolution generator
neural network. Furthermore, FIG. 3C illustrates a diagram
of a decoder of the multi-resolution generator neural net-
work.

[0048] In one or more embodiments, as illustrated in FIG.
3A, a multi-resolution generator neural network includes an
encoder 304 and a decoder 306. As shown, the encoder 304
includes a plurality of components, and the decoder 306 also
includes a plurality of components. According to one or
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more embodiments, the encoder 304 encodes information
and generates one or more signals (e.g., a spatial feature
tensor and a latent code) based on the priors 300. For
instance, the priors 300 include object labels and positions
to provide a semantic layout of a scene to the encoder 304.
Furthermore, the decoder 306 utilizes the signals generated
by the encoder 304 to generate the synthesized digital image
302.

[0049] As illustrated in FIG. 3A, the encoder 304 includes
a base encoder 308a (“E2”) to determine an initial repre-
sentation based on the priors 300. In one or more embodi-
ments, the base encoder 308a includes one or more neural
network layers to convert the priors 300 into a feature vector
of a fixed length by extracting feature sets based on the
priors 300. For example, the base encoder 3084 includes one
or more neural network layers to downscale a resolution of
the feature vector to a first lowered resolution.

[0050] FIG. 3A further illustrates that the encoder 304
includes a bottom-up encoder 30856 (“E2;,”) and a top-
down encoder 308¢ (“E2.,,”). According to one or more
embodiments, the bottom-up encoder 3085 further lowers a
resolution of the feature vector extracted from the priors
300. In particular, the bottom-up encoder 3085 receives the
output of the base encoder 3084 and then utilizes one or
more neural network layers in a “bottom-up” configuration
to reduce the resolution of the feature vector to a second
lowered resolution. For example, the bottom-up encoder
3085 generates a plurality of feature vectors with sequen-
tially lowered resolutions (e.g., stepping a resolution down
in several increments of neural network layers). Further-
more, the bottom-up encoder 3085 also utilizes one or more
neural network layers to generate a latent code based on a
feature vector with a lowered resolution.

[0051] In one or more embodiments, the top-down
encoder 308c of the encoder 304 utilizes a plurality of
feature vectors at a plurality of different resolutions to
generate a spatial feature tensor ¢ based on the priors 300.
For instance, the top-down encoder 308¢ includes a plurality
of neural network layers in a “top-down” configuration for
upsampling by aggregating a plurality of feature vectors or
feature sets at different resolutions (e.g., by merging features
from E2,,, with the feature maps of the same spatial dimen-
sion from E2;,). The top-down encoder 308¢ thus incor-
porates information for generating the synthesized digital
image 302 at a plurality of different resolutions to capture
different levels of details. To illustrate, lower resolution
features are semantically stronger and have more global
information about all classes present in the priors 300, while
higher resolutions features are more accurately aligned to
the input layout.

[0052] As illustrated in FIG. 3A, the decoder 306 includes
a mapping component 310a to transform a latent code z
generated by the encoder 304. For example, the mapping
component 310q utilizes one or more neural network layers
to modify the latent code while maintaining the same
dimensionality. Additionally, the mapping component 310a
transforms the latent code to convert a normal distribution
(or other distribution resulting from generating the latent
code from the priors 300) to a distribution that better
matches a training dataset associated with training the
decoder 306. The multi-resolution image generation system
102 thus ensures that a decoder component 3105 accurately
interprets the encoded data associated with the priors 300.
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[0053] Additionally, FIG. 3A illustrates that the decoder
306 includes a decoder component 3105 to generate the
synthesized digital image 302. In one or more embodiments,
the decoder component 3105 generates the synthesized
digital image 302 from the spatial feature tensor generated
by the encoder 304. Furthermore, the decoder component
3105 utilizes the modified latent code from the mapping
component 310a to generate the synthesized digital image
302 according to the modified distribution, thereby aligning
the data in the spatial feature tensor to the training data
associated with the generator neural network. In some
embodiments, the decoder component 3105 generates the
synthesized digital image 302 as a base synthesized digital
image for use in one or more additional image synthesis
processes or other image modification processes.

[0054] As mentioned, FIG. 3B illustrates additional detail
associated with the architecture of the encoder 304 of the
multi-resolution generator neural network. Specifically,
FIG. 3B illustrates that the base encoder 3084 includes a
plurality of neural network layers for generating an initial
feature set based on an input. For instance, the base encoder
308a includes a convolutional neural network layer 312
(e.g., a 1x1 convolutional neural network layer) to convert
a semantic label map, edge map, and/or other prior including
a semantic layout of a scene into a fixed feature set. To
illustrate, the convolutional neural network layer 312 (and/
or one or more additional neural network layers) converts
the prior(s) into a 64-channel feature set representing the
visual features from the prior(s).

[0055] In one or more embodiments, after generating a
feature set with reduced resolution via the convolutional
neural network layer 312, the base encoder 3084 includes a
series of residual blocks 314a-314c¢ of residual neural net-
work layers. In particular, as shown in FIG. 3B, the series of
residual blocks 314a-314¢ to further encode information
from the feature set generated by the convolutional neural
network layer 312 into a plurality of feature sets with
reduced resolutions. More specifically, the base encoder
utilizes the convolutional neural network layer 312 and the
series of residual blocks 314a-314¢ to generate the initial
(e.g., 64-channel) feature set from the input to the base
encoder 308a.

[0056] Additionally, FIG. 3B illustrates a detailed view of
a residual block 3144 including a plurality of neural network
layers for use within the multi-resolution generator neural
network. For example, the residual block 3144 corresponds
to each of the residual blocks in the series of residual blocks
3144-314c¢. In one or more embodiments, the residual block
314d includes at least one 3x3 leaky rectified linear unit
layer 316a (“LRelu”) and a 1x1 LRelu downsampling layer
3165 in series with an additional 1x1 downsampling layer
316c¢ in parallel to generate a feature set down-sampled from
the input to the residual block 314d. Thus, the series of
residual blocks 314a-314¢ reduce the resolution of the
feature set from the convolutional neural network layer 312
via a plurality of sequential downsampling layers to generate
an initial feature set.

[0057] Additionally, as illustrated in FIG. 3B, the bottom-
up encoder 3085 utilizes the initial feature set generated via
the base encoder 308a to generate multi-resolution feature
sets. Specifically, FIG. 3B illustrates that the bottom-up
encoder 3085 includes an additional series of residual blocks
318a-318d to generate additional feature sets at a plurality of
resolutions. For instance, the bottom-up encoder 3085
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includes a first residual block 3184, a second residual block
318b, a third residual block 318¢, and a fourth residual block
3184 in series.

[0058] In one or more embodiments, the first residual
block 318a generates a first feature set at a first reduced
resolution based on the initial feature set generated by the
base encoder 308a. Additionally, the second residual block
3186 generates a second feature set at a second reduced
resolution based on the first feature set generated by the first
residual block 318a. Similarly, the third residual block 318¢
generates a third feature set based on the second feature set,
and the fourth residual block 3184 generates a fourth feature
set based on the third feature set in sequence. Thus, in one
or more embodiments, the bottom-up encoder 3085 utilizes
a plurality of neural network layers (or neural network
blocks) to extract a plurality of different features at different
resolutions.

[0059] Furthermore, in one or more embodiments, the
bottom-up encoder 3085 also includes a plurality of neural
network layers to generate a latent code in connection with
the multi-resolution features. In particular, as illustrated in
FIG. 3B, the bottom-up encoder 3085 includes an additional
residual block 318e, a linear LRelu layer, and a plurality of
additional linear neural network layers 322a-322b in paral-
lel. According to one or more embodiments, the bottom-up
encoder utilizes the additional residual block 318e, the linear
LRelu layer 320, and the plurality of additional linear neural
network layers 322a-3225b to generate the latent code cap-
turing distribution information associated with a semantic
layout of a scene. In some embodiments, the additional
residual block 318e, the linear L.Relu layer 320, and the
plurality of additional linear neural network layers 322a-
3225 include fully connected layers to capture the distribu-
tion information.

[0060] For instance, the multi-resolution generator neural
network utilizes the additional residual block 318¢ and the
linear LRelu layer 320 to flatten a feature set with a lowest
resolution from the series of residual blocks 3184-3184. The
multi-resolution generator neural network then utilizes a first
linear neural network layer 322a to generate a mean value
associated with the reduced resolution feature set (e.g., a 4x4
feature set). The multi-resolution generator neural network
also utilizes a second linear neural network layer 3225 to
generate a variance value associated with the reduced reso-
Iution feature set. Accordingly, the multi-resolution genera-
tor neural network generates the mean value and the vari-
ance value to represent the distribution of features
determined from the semantic label map.

[0061] As illustrated in FIG. 3B, the top-down encoder
308¢ of the multi-resolution generator neural network
includes a plurality of neural network layers to up-sample
and aggregate multi-resolution features. In one or more
embodiments, the top-down encoder 308¢ includes a series
of LRelu layers 324a-324d that combine and up-sample the
multi-resolution features extracted by the bottom-up
encoder 308b. According to one or more embodiments, the
series of LRelu layers 324a-324d include upsampling neural
network layers to up-sample feature sets. To illustrate, the
top-down encoder 308¢ includes a first LRelu layer 3244, a
second LRelu layer 3245, a third LRelu layer 324¢, and a
fourth LRelu layer 324d.

[0062] In one or more embodiments, as illustrated in FIG.
3B, the first LRelu layer 324a generates a first up-sampled
feature set at a first up-sampled resolution based on the
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fourth feature set from the bottom-up encoder 3085. Addi-
tionally, the second LRelu layer 3245 generates a second
up-sampled feature set at a second up-sampled resolution
based on the third feature set aggregated with the first
up-sampled feature set (e.g., via lateral connections). Also,
the third LRelu layer 324¢ generates a third up-sampled
feature set at a third up-sampled resolution based on the
second feature set aggregated with the second up-sampled
resolution. Furthermore, the fourth L.Relu layer 3244 gen-
erates a fourth up-sampled feature set at a fourth up-sampled
resolution based on the first feature set aggregated with the
third up-sampled feature set.

[0063] FIG. 3B illustrates that the top-down encoder 308¢
thus generates an up-sampled feature set utilizing the series
of LRelu layers 324a-324d that up-sample and aggregate
multi-resolution features captured for a semantic layout of a
scene. Accordingly, in one or more embodiments, the multi-
resolution generator neural network captures different
details of objects in a scene by leveraging the different
feature resolutions. As mentioned, for example, the multi-
resolution generator neural network captures global infor-
mation about object classes from lower resolution features
and localized features from the higher resolution features.

[0064] Although FIG. 3B illustrates that the components
of the multi-resolution generator neural network include a
particular number of neural network layers, in other embodi-
ments, a multi-resolution generator neural network include
a different number or type of neural network layers in one or
more components. In additional embodiments, the encoder
components include different types of neural network layers
(e.g., different downsampling or upsampling neural network
layers) with various activation layers.

[0065] As previously mentioned, FIG. 3C illustrates an
embodiment of an architecture of a decoder of a multi-
resolution generator neural network. In particular, as illus-
trated, the decoder receives the latent code z and the spatial
feature tensor ¢ generated by the encoder of the multi-
resolution generator neural network. In one or more embodi-
ments, the decoder processes the latent code via a mapping
component 310q and the spatial feature tensor via a series of
modulated blocks 326a-3264 to generate a synthesized
digital image.

[0066] Specifically, FIG. 3C illustrates that the mapping
component 310a processes the latent code to generate a
plurality of signals to provide to each of the modulated
blocks 326a-3264. In one or more embodiments, the map-
ping component 310a includes a normalization layer and a
plurality of linear layers (e.g., eight fully connected layers)
to transform the latent code. Accordingly, the mapping
component 310a modifies a distribution of the latent code
according to learned parameters of the decoder. The map-
ping component 310a then passes the modified latent code
to each of the modulated blocks 326a-326d.

[0067] Furthermore, the modulated blocks 326a-326d
modulate and up-sample the spatial feature tensor in a
plurality of sequential operations based on the signals pro-
vided by the mapping component 310a. For example, each
modulated block includes a modulation layer, a convolu-
tional layer, and a normalization layer. In one or more
embodiments, a first modulated block 326a receives the
spatial feature tensor and then generates a first up-sampled
feature representation with modulated features, a second
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modulated block 3265 generates a second up-sampled fea-
ture representation based on the first up-sampled feature
representation, etc.

[0068] As illustrated in FIG. 3C, the modulated blocks
326a-326d generate a plurality of up-sampled feature rep-
resentations to provide to color conversion layers (“tRGB”)
328a-328d that generate per-pixel color data for synthesiz-
ing a digital image. Furthermore, the decoder utilizes a
plurality of upsampling layers 330a-330c to up-sample the
resolution of the per-pixel color data at each stage for
aggregating at a final up-sampled resolution. The decoder
thus generates a synthesized digital image at the final
up-sampled resolution according to the per-pixel color data
generated at each stage of the decoder, which captures
various features based on the incoming styles indicated via
the spatial feature tensor and according to the latent code.
[0069] Although FIG. 3C illustrates a specific embodi-
ment of a decoder for a multi-resolution generator neural
network, in one or more other embodiments, the multi-
resolution image generation system 102 utilizes decoders
with different architectures. For instance, the decoder
includes more or fewer modulated blocks or more or fewer
layers within a mapping component. Additionally, in some
embodiments, the decoder combines one or more of the
layers with other layers (e.g., by combining aggregation
processes into modulated blocks) or separates one or more
layers into one or more additional components.

[0070] In one or more embodiments, the multi-resolution
image generation system 102 utilizes one or more instances
of a generator neural network to generate base synthesized
digital images. For example, a base generator neural net-
work receives a segmentation map S (e.g., a semantic label
map) and an instance edge map E to generate a base image
1, that covers a scene. More specifically, I,=G,(cat(S, E)),
where cat(*,*) is a channel-wise concatenation. Furthermore,
G, represents the base generator neural network including an
encoder and decoder architecture, for example, as illustrated
in FIG. 5. The multi-resolution image generation system 102
utilizes a spatial feature tensor as input to the decoder to
provide the generator neural network with guidance on the
generated spatial structure. By sampling different latent
codes z, the generator neural network generates different
results given the same segmentation map.

[0071] According to one or more embodiments, the multi-
resolution image generation system 102 trains the multi-
resolution generator neural network utilizing a plurality of
losses. For instance, the multi-resolution image generation
system 102 utilizes the multi-resolution generator neural
network to generate a base image I, from a real image
1 ens scene @nd its segmentation map S. In one or more
embodiments, the multi-resolution image generation system
102 utilizes an adversarial loss, R, regularization, and path

length regularization referred to as £ gan- FOr the adversarial
loss, the real distributions are {1,.,; ;.ene) (@ real image) for
the base generator neural network. The multi-resolution
image generation system 102 also regularizes the encoder by
applying KL-Divergence to the output of the encoder (e.g.,
the latent code z), thus forcing the latent code to follow a
normal distribution to support multi-modal synthesis during

inference, £ ,,. The multi-resolution image generation sys-

tem 102 utilizes the perceptual loss: £ porcoptuar 2V il)—
Villear scene)lli» Wwhere V(*) represents the output of the i,
layer of a pretrained convolutional neural network. Accord-
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ingly, the overall training loss is L£=L gan+7»1*£ P
L

and the frequency of regularization within £ gan are prede-
termined values (e.g., 0.01 and 1 for A, and A,, respectively).

[0072] FIGS. 4A-4C illustrate a plurality of comparisons
of digital images synthesized by the multi-resolution image
generation system 102 utilizing a multi-resolution generator
neural network and digital images synthesized by a conven-
tional system. More specifically, the conventional system
utilizes a generator neural network with spatially-adaptive
normalization, as described by Taesung Park, Ming-Yu Liu,
Ting-Chun Wnag, and Jun-Yan Zhu in “Semantic image
synthesis with spatially-adaptive normalization” in Confer-
ence on Computer Vision and Pattern Recognition (2019)
(“SPADE”), to generate synthesized digital images based on
semantic label maps. Furthermore, the multi-resolution
image generation system 102 and the conventional system
generate synthesized digital images based on semantic label
maps for a plurality of different scenes of a plurality of
different datasets.

[0073] For instance, FIG. 4A illustrates a first semantic
label map 400 corresponding to a scene in a bedroom
dataset, a synthesized digital image 402 generated by the
conventional system based on the first semantic label map
400, and a synthesized digital image 404 generated by the
multi-resolution image generation system 102 based on the
first semantic label map 400. FIG. 4B illustrates a second
semantic label map 406 corresponding to a scene in a person
dataset, a synthesized digital image 408 generated by the
conventional system based on the second semantic label
map 406, and a synthesized digital image 410 generated by
the multi-resolution image generation system 102 based on
the second semantic label map 406. FIG. 4C illustrates a
third semantic label map 412 corresponding to a scene in a
cityscape dataset, a synthesized digital image 414 generated
by the conventional system based on the third semantic label
map 412, and a synthesized digital image 416 generated by
the multi-resolution image generation system 102 based on
the third semantic label map 412. As illustrated in FIGS.
4A-4C, the multi-resolution image generation system 102
provides more accurate and more varied details of individual
objects during image synthesis than the conventional sys-
tem.

[0074] FIG. 5 illustrates a comparison of synthesized
digital images generated by the multi-resolution image gen-
eration system 102 with multi-resolution features via a
multi-resolution generator neural network and synthesized
digital images generated without use of the multi-resolution
features in an ablation study. In particular, FIG. 5 illustrates
a semantic label map 500 for a scene in a bedroom dataset,
a synthesized digital image 502 generated without multi-
resolution features, and a synthesized digital image 504
generated with multi-resolution features. More specifically,
the synthesized digital image 502 generated without multi-
resolution features is a result of using the initial feature set
of the base encoder 3084 of FIG. 3A (i.e., a 512x32x32
feature from the last residual block in the base encoder 308a)
as the starting feature for the decoder 306. As illustrated, the
image quality without using multi-resolution features is
lower than the image quality using multi-resolution features.
The ablation study determined that the Frechet Inception
Distance (“FID”) score of the synthesized digital images

In one or more embodiments, the loss weights

perceptual*
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without multi-resolution features (40.88) is higher than the
FID score of the synthesized digital images with multi-
resolution features (33.17).

[0075] FIGS. 6A-6C illustrate a plurality of synthesized
digital images utilizing a multi-resolution generator neural
network from semantic label maps of a plurality of different
datasets. Specifically, FIG. 6A illustrates multi-modal syn-
thesized digital images for scenes in a bedroom dataset (e.g.,
by sampling different latent codes). For example, the multi-
resolution image generation system 102 utilizes a first
semantic label map 600 including a bedroom scene to
generate a plurality of synthesized digital images 602a-602d
with varied synthesized details for bedroom furniture
objects. FIG. 6B illustrates multi-modal synthesized digital
images for scenes in a person dataset. For instance, the
multi-resolution image generation system 102 utilizes a
second semantic label map 604 including a person scene to
generate a plurality of synthesized digital images 606a-606d4
with varied synthesized details for a person object. FIG. 6C
illustrates multi-modal synthesized digital images for scenes
in a cityscape dataset. To illustrate, the multi-resolution
image generation system 102 utilizes a third semantic label
map 608 including a cityscape scene to generate a plurality
of synthesized digital images 610a-610d4 with varied syn-
thesized details for objects in a cityscape.

[0076] According to an embodiment, experimental data
includes quantitative and qualitative evaluations comparing
results of a multi-resolution generator neural network that
the multi-resolution image generation system 102 utilizes to
generate synthesized digital images and a generator neural
network that a conventional system (SPADE) utilizes to
generate synthesized digital images. For example, the
experimental data includes comparisons based on a bedroom
dataset, a full human body dataset, and a cityscape dataset.
In particular, the bedroom dataset combines two datasets
including images according to a “bedroom” category and a
“hotel room™ category. Furthermore, the full human body
dataset includes high resolution images of full human bodies
with blurred backgrounds and annotated with 24 classes
such as faces, upper-cloths, left shoes, and right shoes. The
cityscapes dataset includes street scene images. The multi-
resolution image generation system 102 trained the base
generator neural networks to generate 512x512 resolution
images for the bedroom and full human body datasets and
1024x512 images for the cityscapes dataset.

[0077] Table 1 illustrates FID scores of the multi-resolu-
tion image generation system 102 (“System 102”) compared
to scores of results from a conventional system using
SPADE and two variants of SPADE—“LGGAN” as
described by Hao Tang, Dan Xu, Yan Yan, Philip H. S. Torr,
and Nicu Sebe in “Local class-specific and global image-
level generative adversarial networks for semantic-guided
scene generation” in Conference on Computer Vision and
Pattern Recognition (2020); and “OASIS” as described by
Vadim Sushko, Edgar Schonfeld, Dan Zhang, Juergen Gall,
Bernt Schiele, and Anna Khoreva in “You only need adver-
sarial supervision for semantic image synthesis” in Interna-
tional Conference on Learning Representations (2021). The
experimental data includes generator neural networks for the
conventional systems trained at higher resolution (with
default parameters) and provided with an instance map for
fair comparison. SPADE and OASIS resulted in significant
memory usage (i.e., ~16 GB per image to train 512x512
bedroom images), while the object editing system 102 used
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~4 GB per such image. LGGAN was incapable of fitting a
single image on a 32 GB V100 GPU for the bedroom dataset
due to the large number of parameters and separate convo-
Iutional layers for each class and resulted in slow training for
the other datasets with fewer classes.

TABLE 1
Datasets SPADE OASIS LGGAN System 102
Bedroom 44.38 39.21 N/A 33.17
Human 38.53 8.65 N/A 7.22
Cityscapes 59.68 50.90 61.46 47.07

The experimental data utilizes FID scores to measure the
distance between a distribution of real images and synthe-
sized digital images in the feature space. As illustrated
above, the multi-resolution image generation system 102
achieves lower (better) FID scores than the conventional
system utilizing SPADE.

[0078] Furthermore, Table 2 below illustrates the results of
a user study that requested a plurality of users to evaluate
image quality. In particular, in the experimental embodi-
ment, users viewed synthesized digital images side-by-side
in connection with a segmentation map and then selected
which image looked more realistic. As indicated below, the
results indicate that users strongly favored the results of the
multi-resolution image generation system 102 utilizing
multi-resolution features over the conventional system that
utilized SPADE, OASIS, and LGGAN.

TABLE 2
System 102 System 102 System 102
Datasets vs SPADE vs OASIS vs LGGAN
Bedroom 90.0% 73.2% N/A
Human 82.4% 63.2% N/A
Cityscapes 59.2% 35.2% 62.0%
[0079] FIG. 7 illustrates a detailed schematic diagram of

an embodiment of the multi-resolution image generation
system 102 described above. As shown, the multi-resolution
image generation system 102 is implemented in a digital
image system 110 on computing device(s) 700 (e.g., a client
device and/or server device as described in FIG. 1, and as
further described below in relation to FIG. 9). Additionally,
in one or more embodiments, the multi-resolution image
generation system 102 includes, but is not limited to, a
feature extraction manager 702, a feature tensor manager
704, a latent code manager 706, an image generation man-
ager 708, and a data storage manager 710. The multi-
resolution image generation system 102 can be implemented
on any number of computing devices. In one or more
embodiments, the multi-resolution image generation system
102 is implemented in a distributed system of server devices
for synthetic digital image generation. In alternative
embodiments, the multi-resolution image generation system
102 is implemented within one or more additional systems.
Alternatively, the multi-resolution image generation system
102 may be implemented on a single computing device such
as a single client device.

[0080] In one or more embodiments, each of the compo-
nents of the multi-resolution image generation system 102 is
in communication with other components using any suitable
communication technologies. Additionally, in some embodi-
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ments, the components of the multi-resolution image gen-
eration system 102 are in communication with one or more
other devices including other computing devices of a user,
server devices (e.g., cloud storage devices), licensing serv-
ers, or other devices/systems. It will be recognized that
although the components of the multi-resolution image
generation system 102 are shown to be separate in FIG. 7,
any of the subcomponents may be combined into fewer
components, such as into a single component, or divided
into more components as may serve a particular implemen-
tation. Furthermore, although the components of FIG. 7 are
described in connection with the multi-resolution image
generation system 102, in one or more embodiments, at least
some of the components for performing operations in con-
junction with the multi-resolution image generation system
102 described herein are implemented on other devices
within the environment.

[0081] In some embodiments, the components of the
multi-resolution image generation system 102 include soft-
ware, hardware, or both. For example, the components of the
multi-resolution image generation system 102 include one or
more instructions stored on a computer-readable storage
medium and executable by processors of one or more
computing devices (e.g., the computing device(s) 700).
When executed by the one or more processors, the com-
puter-executable instructions of the multi-resolution image
generation system 102 can cause the computing device(s)
700 to perform the operations described herein. Alterna-
tively, the components of the multi-resolution image gen-
eration system 102 can include hardware, such as a special
purpose processing device to perform a certain function or
group of functions. Additionally, or alternatively, the com-
ponents of the multi-resolution image generation system 102
can include a combination of computer-executable instruc-
tions and hardware.

[0082] Furthermore, the components of the multi-resolu-
tion image generation system 102 performing the functions
described herein with respect to the multi-resolution image
generation system 102 may, for example, be implemented as
part of a stand-alone application, as a module of an appli-
cation, as a plug-in for applications, as a library function or
functions that may be called by other applications, and/or as
a cloud-computing model. Thus, the components of the
multi-resolution image generation system 102 may be
implemented as part of a stand-alone application on a
personal computing device or a mobile device. Alternatively,
or additionally, the components of the multi-resolution
image generation system 102 may be implemented in any
application that provides digital image modification, includ-
ing, but not limited to ADOBE® PHOTOSHOP®,
ADOBE® AFTER EFFECTS®, ADOBE® ILLUSTRA-
TOR®, ADOBE® PHOTOSHOP® ELEMENTS, and
ADOBE® CREATIVE CLOUD® software. “ADOBE,”
“PHOTOSHOP,” “AFTER EFFECTS,” “ILLUSTRATOR,”
and “CREATIVE CLOUD?” are either registered trademarks
or trademarks of Adobe Inc. in the United States and/or other
countries.

[0083] In one or more embodiments, the feature extraction
manager 702 provides feature extraction for scenes during
digital image synthesis. For example, the feature extraction
manager 702 extracts a plurality of feature sets at a plurality
of different resolutions. To illustrate, the feature extraction
manager 702 utilizes a plurality of neural network layers of
the multi-resolution generator neural network 701 such as
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convolutional neural network layers and a plurality of
residual blocks to extract feature sets from a semantic label
map at the different resolutions. In some embodiments, the
feature extraction manager 702 also utilizes additional priors
such as an edge map to extract feature sets at a plurality of
resolutions.

[0084] According to one or more embodiments, the fea-
ture tensor manager 704 utilizes multi-resolution features to
generate a spatial feature tensor representing features of a
scene. For instance, the feature tensor manager 704 aggre-
gates a plurality of feature sets at a plurality of different
resolutions to generate a two-dimensional spatial feature
tensor. In one or more embodiments, the feature tensor
manager 704 generates the spatial feature tensor by upsam-
pling and aggregating a plurality of different feature sets at
different resolutions from the feature extraction manager
702 utilizing a plurality of neural network layers (e.g.,
residual blocks) with lateral connection in the multi-resolu-
tion generator neural network 701.

[0085] Additionally, in one or more embodiments, the
latent code manager 706 generates a latent code from
extracted features of a scene. Specifically, the latent code
manager 706 utilizes a reduced resolution feature set
extracted by the feature extraction manager 702 to generate
the latent code. To illustrate, the latent code manager 706
utilizes a plurality of neural network layers in the multi-
resolution generator neural network 701 to flatten the
reduced resolution feature set and then determine distribu-
tion values such as via a mean value and a variance value for
the features.

[0086] Inone or more embodiments, the image generation
manager 708 provides generation and management of syn-
thesized digital images. For example, the image generation
manager 708 utilizes a decoder to generate synthesized
digital images with multi-resolution features based on the
spatial feature tensor and the latent code generated by the
feature tensor manager 704 and the latent code manager 706,
respectively. To illustrate, the image generation manager
708 utilizes a plurality of neural network layers in the
multi-resolution generator neural network 701 to modulate
and up-sample features from the spatial feature tensor
according to the distribution information encoded in the
latent code. In one or more embodiments, the image gen-
eration manager 708 also generates variations of synthesized
digital images from the same semantic label map.

[0087] The multi-resolution image generation system 102
also includes a data storage manager 710 (that comprises a
non-transitory computer memory/one or more memory
devices) that stores and maintains data associated with
processing digital images. For example, the data storage
manager 710 stores data associated with generating synthe-
sized digital images. To illustrate, the data storage manager
710 stores information associated with semantic label maps,
edge maps, multi-resolution features, spatial feature tensors,
latent codes, and a multi-resolution generator neural net-
work.

[0088] Turning now to FIG. 8, this figure shows a flow-
chart of a series of acts 800 of generating synthesized digital
images utilizing multi-resolution features extracted from
scene representations. While FIG. 8 illustrates acts accord-
ing to one embodiment, alternative embodiments may omit,
add to, reorder, and/or modify any of the acts shown in FIG.
8. The acts of FIG. 8 can be performed as part of a method.
Alternatively, a non-transitory computer readable medium
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can comprise instructions, that when executed by one or
more processors, cause a computing device to perform the
acts of FIG. 8. In still further embodiments, a system can
perform the acts of FIG. 8.

[0089] As shown, the series of acts 800 includes an act 802
of extracting multi-resolution features from a scene repre-
sentation. For example, act 802 involves extracting, utilizing
a first set of encoder neural network layers, a plurality of
feature sets at a plurality of different resolutions from a
semantic label map representing a layout of a scene.
[0090] In one or more embodiments, act 802 involves
utilizing a base encoder that generates a feature set from a
semantic label map via a first subset of encoder neural
network layers. For example, act 802 involves extracting the
plurality of feature sets based on a plurality of object labels
in the semantic label map and a plurality of object edges in
an edge map associated with the semantic label map. Act
802 then involves utilizing a bottom-up encoder that extracts
multi-resolution features from the semantic feature set of the
base encoder via a second subset of encoder neural network
layers. Act 802 can involve generating a plurality of feature
sets at a plurality of different resolutions by utilizing a
plurality of downsampling neural network layers in series.
[0091] For example, act 802 can involve generating a first
feature set based on an initial feature representation of the
semantic label map by utilizing a first downsampling neural
network layer of the first set of encoder neural network
layers. Act 802 can also involve generating a second feature
set from the first feature set by utilizing a second downsam-
pling neural network layer of the first set of encoder neural
network layers. In one or more, embodiments, the first
downsampling neural network layer comprises a first
residual neural network layer, and the second downsampling
neural network layer comprises a second residual neural
network layer. Act 802 can also involve generating a third
feature set from the second feature set by utilizing a third
downsampling neural network layer of the first set of
encoder neural network layers.

[0092] The series of acts 800 also includes an act 804 of
determining a spatial feature tensor by aggregating the
multi-resolution features. For example, act 804 involves
determining, utilizing a second set of encoder neural net-
work layers, a spatial feature tensor by aggregating the
plurality of feature sets at the plurality of different resolu-
tions.

[0093] In one or more embodiments, act 804 can involve
utilizing a top-down encoder to determine a two-dimen-
sional spatial feature tensor. For example, act 804 can
involve generating modified feature sets from the plurality
of feature sets by utilizing a plurality of upsampling neural
network layers in series. Act 804 can then involve aggre-
gating the modified feature sets with the lateral connections
between the plurality of downsampling neural network
layers and the plurality of upsampling neural network layers
at the plurality of different resolutions. Specifically, act 804
can involve determining a two-dimensional spatial feature
tensor for the plurality of feature sets by aggregating the
plurality of feature sets via a plurality of sequential upsam-
pling neural network layers and feature combination layers.
[0094] Act 804 can involve generating a modified second
feature set from the second feature set by utilizing a first
upsampling neural network layer of the second set of
encoder neural network layers. Act 804 can also involve
generating an aggregated feature set by combining the first
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feature set and the modified second feature set at a resolution
of' the first feature set. Act 804 can then involve determining
the spatial feature tensor from the aggregated feature set. In
one or more embodiments, the top-down encoder includes a
leaky rectified linear unit neural network layer to generate
the two-dimensional spatial feature tensor from the aggre-
gated feature set at the first down-sampled resolution cor-
responding to the feature set generated by the base encoder.

[0095] In one or more embodiments, act 804 involves
generating a modified third feature set from the third feature
set by utilizing a second upsampling neural network layer of
the second set of encoder neural network layers. Act 804 can
then involve generating the modified second feature set from
the second feature set aggregated with the modified third
feature set at the resolution of the first feature set.

[0096] Additionally, the series of acts 800 includes an act
806 of determining a latent code from a reduced resolution
feature set. For example, act 806 involves determining,
utilizing a third set of encoder neural network layers, a latent
code from a reduced resolution feature set of the plurality of
feature sets. Act 806 can involve determining a mean value
and a variance value based on the reduced resolution feature
set. For instance, act 806 can involve flattening the reduced
resolution feature set to generate a flattened feature set
representing the reduced resolution feature set by utilizing a
reshape neural network layer of the third set of encoder
neural network layers. Act 806 can also involve determining
the mean value and the variance value from the flattened
feature set by utilizing a plurality of fully connected neural
network layers of the third set of encoder neural network
layers. Act 808 can then involve determining the latent code
from the mean value and the variance value of the reduced
resolution feature set.

[0097] Furthermore, the series of acts 800 includes an act
808 of generating a synthesized digital image from the
spatial feature tensor and the latent code. For example, act
808 involves generating, utilizing a generator neural net-
work, a synthesized digital image comprising the scene
based on the spatial feature tensor and the latent code. In one
or more embodiments, act 808 involves utilizing a decoder
that generates a digital image from the spatial feature tensor
and the latent code to generate a synthesized digital image
with a semantic layout of the semantic label map.

[0098] In one or more embodiments, act 808 involves
generating a transformed latent code by utilizing a mapping
neural network layer of the decoder to modify a feature
distribution of the latent code based on a feature distribution
associated with the decoder. Act 808 can then involve
generating the synthesized digital image with the semantic
layout of the semantic label map based on the two-dimen-
sional spatial feature tensor and the transformed latent code.

[0099] According to one or more embodiments, the series
of acts 800 includes determining an encoder loss by modi-
fying the latent code according to a reference distribution.
The series of acts 800 can also include determining a
perceptual loss by comparing the synthesized digital image
to a digital image comprising the digital image scene. The
series of acts 800 can include determining a generator loss
based on an adversarial loss and one or more regularization
losses associated with the decoder. Additionally, the series of
acts 800 can include modifying parameters of the bottom-up
encoder, the top-down encoder, and the decoder based on the
encoder loss, the perceptual loss, and the generator loss.
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[0100] Embodiments of the present disclosure may com-
prise or utilize a special purpose or general-purpose com-
puter including computer hardware, such as, for example,
one or more processors and system memory, as discussed in
greater detail below. Embodiments within the scope of the
present disclosure also include physical and other computer-
readable media for carrying or storing computer-executable
instructions and/or data structures. In particular, one or more
of the processes described herein may be implemented at
least in part as instructions embodied in a non-transitory
computer-readable medium and executable by one or more
computing devices (e.g., any of the media content access
devices described herein). In general, a processor (e.g., a
microprocessor) receives instructions, from a non-transitory
computer-readable medium, (e.g., a memory, etc.), and
executes those instructions, thereby performing one or more
processes, including one or more of the processes described
herein.

[0101] Computer-readable media can be any available
media that can be accessed by a general purpose or special
purpose computer system. Computer-readable media that
store computer-executable instructions are non-transitory
computer-readable storage media (devices). Computer-read-
able media that carry computer-executable instructions are
transmission media. Thus, by way of example, and not
limitation, embodiments of the disclosure can comprise at
least two distinctly different kinds of computer-readable
media: non-transitory computer-readable storage media (de-
vices) and transmission media.

[0102] Non-transitory computer-readable storage media
(devices) includes RAM, ROM, EEPROM, CD-ROM, solid
state drives (“SSDs”) (e.g., based on RAM), Flash memory,
phase-change memory (“PCM”), other types of memory,
other optical disk storage, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store desired program code means in the form of
computer-executable instructions or data structures and
which can be accessed by a general purpose or special
purpose computer.

[0103] A “network” is defined as one or more data links
that enable the transport of electronic data between com-
puter systems and/or modules and/or other electronic
devices. When information is transferred or provided over a
network or another communications connection (either
hardwired, wireless, or a combination of hardwired or
wireless) to a computer, the computer properly views the
connection as a transmission medium. Transmissions media
can include a network and/or data links which can be used
to carry desired program code means in the form of com-
puter-executable instructions or data structures and which
can be accessed by a general purpose or special purpose
computer. Combinations of the above should also be
included within the scope of computer-readable media.
[0104] Further, upon reaching various computer system
components, program code means in the form of computer-
executable instructions or data structures can be transferred
automatically from transmission media to non-transitory
computer-readable storage media (devices) (or vice versa).
For example, computer-executable instructions or data
structures received over a network or data link can be
buffered in RAM within a network interface module (e.g., a
“NIC”), and then eventually transferred to computer system
RAM and/or to less volatile computer storage media (de-
vices) at a computer system. Thus, it should be understood
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that non-transitory computer-readable storage media (de-
vices) can be included in computer system components that
also (or even primarily) utilize transmission media.

[0105] Computer-executable instructions comprise, for
example, instructions and data which, when executed at a
processor, cause a general-purpose computer, special pur-
pose computer, or special purpose processing device to
perform a certain function or group of functions. In some
embodiments, computer-executable instructions are
executed on a general-purpose computer to turn the general-
purpose computer into a special purpose computer imple-
menting elements of the disclosure. The computer execut-
able instructions may be, for example, binaries, intermediate
format instructions such as assembly language, or even
source code. Although the subject matter has been described
in language specific to structural features and/or method-
ological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to
the described features or acts described above. Rather, the
described features and acts are disclosed as example forms
of implementing the claims.

[0106] Those skilled in the art will appreciate that the
disclosure may be practiced in network computing environ-
ments with many types of computer system configurations,
including, personal computers, desktop computers, laptop
computers, message processors, hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers, mobile telephones, PDAs, tablets, pagers,
routers, switches, and the like. The disclosure may also be
practiced in distributed system environments where local
and remote computer systems, which are linked (either by
hardwired data links, wireless data links, or by a combina-
tion of hardwired and wireless data links) through a network,
both perform tasks. In a distributed system environment,
program modules may be located in both local and remote
memory storage devices.

[0107] Embodiments of the present disclosure can also be
implemented in cloud computing environments. In this
description, “cloud computing” is defined as a model for
enabling on-demand network access to a shared pool of
configurable computing resources. For example, cloud com-
puting can be employed in the marketplace to offer ubiqui-
tous and convenient on-demand access to the shared pool of
configurable computing resources. The shared pool of con-
figurable computing resources can be rapidly provisioned
via virtualization and released with low management effort
or service provider interaction, and then scaled accordingly.
[0108] A cloud-computing model can be composed of
various characteristics such as, for example, on-demand
self-service, broad network access, resource pooling, rapid
elasticity, measured service, and so forth. A cloud-comput-
ing model can also expose various service models, such as,
for example, Software as a Service (“SaaS”), Platform as a
Service (“PaaS”), and Infrastructure as a Service (“laaS™). A
cloud-computing model can also be deployed using different
deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description
and in the claims, a “cloud-computing environment” is an
environment in which cloud computing is employed.
[0109] FIG. 9 illustrates a block diagram of exemplary
computing device 900 that may be configured to perform
one or more of the processes described above. One will
appreciate that one or more computing devices such as the
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computing device 900 may implement the system(s) of FIG.
1. As shown by FIG. 9, the computing device 900 can
comprise a processor 902, a memory 904, a storage device
906, an I/O interface 908, and a communication interface
910, which may be communicatively coupled by way of a
communication infrastructure 912. In certain embodiments,
the computing device 900 can include fewer or more com-
ponents than those shown in FIG. 9. Components of the
computing device 900 shown in FIG. 9 will now be
described in additional detail.

[0110] In one or more embodiments, the processor 902
includes hardware for executing instructions, such as those
making up a computer program. As an example, and not by
way of limitation, to execute instructions for dynamically
modifying workflows, the processor 902 may retrieve (or
fetch) the instructions from an internal register, an internal
cache, the memory 904, or the storage device 906 and
decode and execute them. The memory 904 may be a
volatile or non-volatile memory used for storing data, meta-
data, and programs for execution by the processor(s). The
storage device 906 includes storage, such as a hard disk,
flash disk drive, or other digital storage device, for storing
data or instructions for performing the methods described
herein.

[0111] The I/O interface 908 allows a user to provide input
to, receive output from, and otherwise transfer data to and
receive data from computing device 900. The /O interface
908 may include a mouse, a keypad or a keyboard, a touch
screen, a camera, an optical scanner, network interface,
modem, other known I/O devices or a combination of such
1/0O interfaces. The 1/O interface 908 may include one or
more devices for presenting output to a user, including, but
not limited to, a graphics engine, a display (e.g., a display
screen), one or more output drivers (e.g., display drivers),
one or more audio speakers, and one or more audio drivers.
In certain embodiments, the I/O interface 908 is configured
to provide graphical data to a display for presentation to a
user. The graphical data may be representative of one or
more graphical user interfaces and/or any other graphical
content as may serve a particular implementation.

[0112] The communication interface 910 can include
hardware, software, or both. In any event, the communica-
tion interface 910 can provide one or more interfaces for
communication (such as, for example, packet-based com-
munication) between the computing device 900 and one or
more other computing devices or networks. As an example,
and not by way of limitation, the communication interface
910 may include a network interface controller (NIC) or
network adapter for communicating with an Ethernet or
other wire-based network or a wireless NIC (WNIC) or
wireless adapter for communicating with a wireless net-
work, such as a WI-FI.

[0113] Additionally, the communication interface 910
may facilitate communications with various types of wired
or wireless networks. The communication interface 910 may
also facilitate communications using various communica-
tion protocols. The communication infrastructure 912 may
also include hardware, software, or both that couples com-
ponents of the computing device 900 to each other. For
example, the communication interface 910 may use one or
more networks and/or protocols to enable a plurality of
computing devices connected by a particular infrastructure
to communicate with each other to perform one or more
aspects of the processes described herein. To illustrate, the
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digital content campaign management process can allow a
plurality of devices (e.g., a client device and server devices)
to exchange information using various communication net-
works and protocols for sharing information such as elec-
tronic messages, user interaction information, engagement
metrics, or campaign management resources.

[0114] In the foregoing specification, the present disclo-
sure has been described with reference to specific exemplary
embodiments thereof. Various embodiments and aspects of
the present disclosure(s) are described with reference to
details discussed herein, and the accompanying drawings
illustrate the various embodiments. The description above
and drawings are illustrative of the disclosure and are not to
be construed as limiting the disclosure. Numerous specific
details are described to provide a thorough understanding of
various embodiments of the present disclosure.

[0115] The present disclosure may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be con-
sidered in all respects only as illustrative and not restrictive.
For example, the methods described herein may be per-
formed with less or more steps/acts or the steps/acts may be
performed in differing orders. Additionally, the steps/acts
described herein may be repeated or performed in parallel
with one another or in parallel with different instances of the
same or similar steps/acts. The scope of the present appli-
cation is, therefore, indicated by the appended claims rather
than by the foregoing description. All changes that come
within the meaning and range of equivalency of the claims
are to be embraced within their scope.

What is claimed is:

1. A non-transitory computer readable storage medium
comprising instructions that, when executed by at least one
processor, cause a computing device to:

extract, utilizing a first set of encoder neural network

layers, a plurality of feature sets at a plurality of
different resolutions from a semantic label map repre-
senting a layout of a scene;

determine, utilizing a second set of encoder neural net-

work layers, a spatial feature tensor by aggregating the
plurality of feature sets at the plurality of different
resolutions;

determine, utilizing a third set of encoder neural network

layers, a latent code from a reduced resolution feature
set of the plurality of feature sets; and

generate, utilizing a generator neural network, a synthe-

sized digital image comprising the scene based on the
spatial feature tensor and the latent code.

2. The non-transitory computer readable storage medium
as recited in claim 1, further comprising instructions that,
when executed by the at least one processor, cause the
computing device to extract the plurality of feature sets at
the plurality of different resolutions by:

generating a first feature set based on an initial feature

representation of the semantic label map by utilizing a
first downsampling neural network layer of the first set
of encoder neural network layers; and

generating a second feature set from the first feature set by

utilizing a second downsampling neural network layer
of the first set of encoder neural network layers.

3. The non-transitory computer readable storage medium
as recited in claim 2, wherein the first downsampling neural
network layer comprises a first residual neural network
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layer, and the second downsampling neural network layer
comprises a second residual neural network layer.

4. The non-transitory computer readable storage medium
as recited in claim 2, further comprising instructions that,
when executed by the at least one processor, cause the
computing device to determine the spatial feature tensor by:

generating a modified second feature set from the second

feature set by utilizing a first upsampling neural net-
work layer of the second set of encoder neural network
layers;

generating an aggregated feature set by combining the

first feature set and the modified second feature set at
a resolution of the first feature set; and

determining the spatial feature tensor from the aggregated

feature set.

5. The non-transitory computer readable storage medium
as recited in claim 4, further comprising instructions that,
when executed by the at least one processor, cause the
computing device to:

extract the plurality of feature sets at the plurality of

different resolutions by generating a third feature set
from the second feature set by utilizing a third down-
sampling neural network layer of the first set of encoder
neural network layers;

generate a modified third feature set from the third feature

set by utilizing a second upsampling neural network
layer of the second set of encoder neural network
layers; and

generate the modified second feature set from the second

feature set aggregated with the modified third feature
set at the resolution of the first feature set.

6. The non-transitory computer readable storage medium
as recited in claim 1, further comprising instructions that,
when executed by the at least one processor, cause the
computing device to determine the latent code by:

determining a mean value and a variance value based on

the reduced resolution feature set; and

determining the latent code from the mean value and the

variance value of the reduced resolution feature set.
7. The non-transitory computer readable storage medium
as recited in claim 1, further comprising instructions that,
when executed by the at least one processor, cause the
computing device to determine the mean value and the
variance value by:
flattening the reduced resolution feature set to generate a
flattened feature set representing the reduced resolution
feature set by utilizing a reshape neural network layer
of the third set of encoder neural network layers; and

determining the mean value and the variance value from
the flattened feature set by utilizing a plurality of fully
connected neural network layers of the third set of
encoder neural network layers.

8. The non-transitory computer readable storage medium
as recited in claim 1, further comprising instructions that,
when executed by the at least one processor, cause the
computing device to extract the plurality of feature sets at
the plurality of resolutions by extracting the plurality of
feature sets based on a plurality of object labels in the
semantic label map and a plurality of object edges in an edge
map associated with the semantic label map.

9. A system comprising:

one or more memory devices comprising a multi-resolu-

tion generator neural network comprising:
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a base encoder that generates a feature set from a
semantic label map;

a bottom-up encoder that extracts multi-resolution fea-
tures and generates a latent code from the feature set;

a top-down encoder that determines a two-dimensional
spatial feature tensor for the multi-resolution fea-
tures by aggregating the multi-resolution features
with lateral connections;

a decoder that generates a digital image from the
two-dimensional spatial feature tensor and the latent
code; and

one or more processors configured to cause the system to

generate, utilizing the multi-resolution generator neural

network, a synthesized digital image with a semantic
layout of the semantic label map.

10. The system as recited in claim 9, wherein the bottom-
up encoder extracts the multi-resolution features by gener-
ating a plurality of feature sets at a plurality of different
resolutions by utilizing a plurality of downsampling neural
network layers in series.

11. The system as recited in claim 10, wherein the
top-down encoder determines the two-dimensional spatial
feature tensor by:

generating modified feature sets from the plurality of

feature sets by utilizing a plurality of upsampling

neural network layers in series; and

aggregating the modified feature sets with the lateral

connections between the plurality of downsampling

neural network layers and the plurality of upsampling
neural network layers at the plurality of different reso-
lutions.

12. The system as recited in claim 11, wherein:

the bottom-up encoder:

extracts a first feature set of the plurality of feature sets
at a first down-sampled resolution by utilizing a first
downsampling neural network layer; and

extracts a second feature set of the plurality of feature
sets at a second down-sampled resolution by utiliz-
ing a second downsampling neural network layer;
and

the top-down encoder:

generates a modified feature set from the second feature
set at the first down-sampled resolution by utilizing
a first upsampling neural network layer; and

generates an aggregated feature set by combining the
first feature set and the modified feature set at the
first down-sampled resolution.

13. The system as recited in claim 12, wherein the
top-down encoder comprises a leaky rectified linear unit
neural network layer to generate the two-dimensional spatial
feature tensor from the aggregated feature set at the first
down-sampled resolution.

14. The system as recited in claim 9, wherein the one or
more processors are further configured to cause the system
to generate the synthesized digital image by:

generating a transformed latent code by utilizing a map-

ping neural network layer of the decoder to modify a

feature distribution of the latent code based on a feature

distribution associated with the decoder; and

generating the synthesized digital image with the seman-
tic layout of the semantic label map based on the
two-dimensional spatial feature tensor and the trans-
formed latent code.
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15. The system as recited in claim 9, wherein the one or
more processors are further configured to cause the system
to:

determine an encoder loss by modifying the latent code

according to a reference distribution;

determine a perceptual loss by comparing the synthesized

digital image to a digital image comprising the digital
image scene;

determine a generator loss based on an adversarial loss

and one or more regularization losses associated with
the decoder; and

modify parameters of the bottom-up encoder, the top-

down encoder, and the decoder based on the encoder
loss, the perceptual loss, and the generator loss.
16. The system as recited in claim 9, wherein the bottom-
up encoder determines the latent code from a mean value
and a variance value corresponding to the reduced resolution
feature set at the reduced resolution.
17. A computer-implemented method comprising:
extracting, by at least one processor, a plurality of feature
sets at different resolutions from a semantic label map
comprising a plurality of labeled objects via a plurality
of sequential downsampling neural network layers;

determining, by the at least one processor, a two-dimen-
sional spatial feature tensor for the plurality of feature
sets by aggregating the plurality of feature sets via a
plurality of sequential upsampling neural network lay-
ers and feature combination layers;

determining, by the at least one processor, a latent code

from a reduced resolution feature set of the plurality of
feature sets via a plurality of fully connected neural
network layers;

transforming, by the at least one processor, the latent code

corresponding to the reduced resolution feature set
based on a feature distribution associated with learned
parameters of a generator neural network; and
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generating, by the at least one processor utilizing the
generator neural network, a synthesized digital image
based on the two-dimensional spatial feature tensor and
the transformed latent code.

18. The computer-implemented method as recited in
claim 17, wherein extracting the plurality of feature sets
comprises:

generating a first feature set based on the semantic label

map at a first resolution by utilizing a first subset of
encoder neural network layers of the first set of encoder
neural network layers;

generating a plurality of additional feature sets from the

first feature set at a plurality of additional resolutions
lower than the first resolution by utilizing a second
subset of encoder neural network layers of the first set
of encoder neural network layers.

19. The computer-implemented method as recited in
claim 18, wherein determining the spatial feature tensor
comprises determining the spatial feature tensor by utilizing
the second set of encoder neural network layers to aggregate
the plurality of additional feature sets.

20. The computer-implemented method as recited in
claim 17, wherein determining the latent code from the
reduced resolution feature set comprises:

generating a flattened feature set by utilizing a reshape
neural network layer to modify the reduced resolution
feature set;

determining a mean value from the flattened feature set by
utilizing a first linear neural network layer;

determining a variance value from the flattened feature set
by utilizing a second linear neural network layer; and

determining the latent code based on the mean value and
the variance value.

#* #* #* #* #*
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