a9 United States

HASHIGUCHI

US 20140006759A1

a2y Patent Application Publication o) Pub. No.: US 2014/0006759 A1

(54)

(71)
(72)

(73)
@
(22)

(30)

Jun. 29, 2012

RECORDING MEDIUM STORING ADDRESS
MANAGEMENT PROGRAM, ADDRESS
MANAGEMENT METHOD, AND APPARATUS

Applicant:

Inventor:
(P

Assignee:

Appl. No.: 13/909,462

Filed: Jun. 4,2013

FUJITSU LIMITED, Kawasaki-shi (JP)

Masafumi HASHIGUCHI, Numazu

FUJITSU LIMITED, Kawasaki (JP)

Foreign Application Priority Data

(P)

2012-147262

Publication Classification

(51) Int.CL

43) Pub. Date: Jan. 2, 2014
(52) US.CL

CPC e, GO6F 9/30058 (2013.01)

USPC e 712/234
(57) ABSTRACT

A computer-readable recording medium stores a program for
causing an apparatus to execute an address managing process
including: associating information that identifies a branch
destination routine of a branch instruction with a jump
instruction in which a relative address to the branch destina-
tion routine, and generating the associated information and
jump instruction in a branch destination management entry
on a memory; setting a relative address to a position of the
jump instruction that corresponds to the information that
identifies the branch destination routine of the branch instruc-
tion, as a branch destination relative address of the branch
instruction; and changing the jump destination of the jump
instruction that corresponds to the information that identifies
the branch destination routine, to a relative address to a posi-
tion of the branch destination routine of the movement desti-
nation, with reference to the branch destination management

GOG6F 9/30 (2006.01) entry when the branch destination routine is moved.
<510 <52
METHOD A METHOD B Y
[INSTRUCTION1 | /J INSTRUCTION 1 |
| Y Il
| CALMETHODB | [INsTRUCTION? |
lll ‘514 l
| INSTRUCTION3 _jef._ [INSTRUCTION3 |
] (56] 5%
i1 JUMPMETHODC | i RETURN |
550
Y [BRANCH DESTINATION
L [MANAGEMENTTABLE 55y
\ | [BRUNCH DESTINATION 530
\ | |MANAGEMENT ENTRY B 532 METHOD C 5
INFORMATION /4 INSTRUCTION 1 |
INDICATING METHOD B T
5553 [INSTRUCTION2 |
M JUMPINSTRUCTION 1]
[INSTRUCTION3 |
555)
BRUNCH DESTINATION
MANAGEMENT ENTRY C 556 [INSTRUCTION4 |
INFORMATION
INDICATING METHOD C
(557 /
N JUMPINSTRUCTION H-1
LEGEND jymp CALL RETURN
— INSTRUCTION ~~=> INSTRUCTION "= INSTRUCTION

Patent Application Publication Jan. 2,2014 Sheet1 of 11 US 2014/0006759 A1

FIG. 1
ROUTINE A ROUTINE B
INSTRUCTION A1 ,I INSTRUCTION B1
A 4 1'/ A 4

ol]| | [oo

INSTRUCTION A3 "-, INSTRUCTION B3
Ot 1 | [v

INSTRUCTION A5~ fecf=mrmt RETURN INSTRUCHON)

Patent Application Publication Jan. 2,2014 Sheet2 of 11 US 2014/0006759 A1

FIG. 2

ANALYZE BYTE CODE OF METHOD THAT IS
COMPILATION TARGET AND GENERATE ~ ~202
INTERMEDIATE CODE

|

ANALYZE INTERMEDIATE CODE AND CONVERT
INTERMEDIATE CODE INTO MACHINE LANGUAGE [~ 204
ROUTINE OF HOST MACHINE

Y
OUTPUT MACHINE LANGUAGE ROUTINETO | 206
MACHINE LANGUAGE ROUTINE AREA

Patent Application Publication Jan. 2,2014 Sheet 3 of 11 US 2014/0006759 A1

FIG. 3
300
= S
3? T\
MEMORY REQUEST UNUSED MEMORY AREA
AREA | i

|:| MEMORY AREA IN USE

Patent Application Publication

NO

JUMP
INSTRUCTION

406
S

404
DETERMINE TYPE OF
BRANCH INSTRUCTION

Jan. 2,2014 Sheet 4 of 11 US 2014/0006759 Al

BRANCH INSTRUCTION?
YES

402

CALL
INSTRUCTION

408

DETERMINE OPERATION CODE OF

INSTRUCTION AS JUMP INSTRUCTION

DETERMINE OPERATION CODE OF BRANCH
INSTRUCTION AS CALL INSTRUCTION

BRANCH

YES

430
$

ADDRESS OF o

BRANCH DESTINATION IS FIXED? OR
BRANCH DESTINATION IS IN SAME
METHOD?

420

BRANCH DESTINATION
MANAGEMENT ENTRY EXIST?

NO 42

GENERATE NEW BRANCH DESTINATION MANAGENENT ENTRY
INCLUDING “INFORMATION INDICATING METHOD OF BRANCH
DESTINATION" AND "JUMP INSTRLCTION'

v 424

SET RELATIVE ADDRESS TO BRANCH DESTINATION, TO
QPERAND OF "JUMP INSTRUCTION" IN BRANCH
DESTINATION MANAGEMENT ENTRY

v 4%
SET NAME OF ERANCH DESTINATION METHOD, TO INFORMATION
NDICATING METHOD OF BRANCH DESTINATION" N BRANCH
DESTTRATION MANAGEMENT ENTRY

»

BRANCH DESTINATION

SET OPERAND OF BRANCH INSTRUCTION AS Yy
RELATIVE ADDRESS TO INSTRUCTION OF

428

SET OPERAND OF BRANCH INSTRUCTION AS
RELATIVE ADDRESS TO "JUMP INSTRUCTION"

v

v

SPECIFY OPERATION CODE AND OPERAND AND
OUTPUT INSTRUCTION OF MACHINE LANGUAGE

~ 440

Patent Application Publication Jan. 2,2014 Sheet 5 of 11 US 2014/0006759 A1

FIG. 5
<510 <520
HOD B
METHOD A METHO 52
INSTRUCTION 1 /J INSTRUCTION 1
Y S512 4
| CALLMETHODB INSTRUCTION 2
ol v
(| INSTRUCTION3 . INSTRUCTION 3
2 5516 .\'\.) 2 5524
JUMP METHOD C ' RETURN
550
BRANCH DESTINATION
MANAGEMENT TABLE 551
BRUNCH DESTINATION £330
MANAGEMENT ENTRY B 352 METHOD C <532
INFORMATION /4 INSTRUCTION 1
INDICATING METHOD B)
5553 INSTRUCTION 2
ﬁ JUMPINSTRUCTION [T J
INSTRUCTION 3
555
BRUNCH DESTINATION v
MANAGEMENT ENTRY C 536 INSTRUCTION 4
INFORMATION
INDICATING METHOD C
\ 557
\1 JUMPINSTRUCTION H-1
LEGEND JUMP CALL RETURN
—> INSTRUCTION ~=-> INSTRUCTION ~~"> INSTRUCTION

Patent Application Publication Jan. 2,2014 Sheet 6 of 11 US 2014/0006759 A1

FIG. 6
(_START)

y
TERMINATE ALL THREADS - 602

A 4
SET FIRST ROUTINE INCLUDED IN ROUTINE AREA AS |_ 504
"TARGET ROUTINE"

606

"TARGET ROUTINE" EXISTS?

FREE SPACE EXISTS IN
AN AREA WITH ADDRESS SMALLER THAN ADDRESS OF "TARGET
ROUTINE" IN ROUTINE AREA?

NO

DETAILED FLOWCHART OF PROCESS THAT MOVES | L_ 61
ROUTINE (SEE FIG. 7)

) 4

612
WHETHER OR NOT
ROUTINE EXISTS IN AREA WITH ADDRESS
LARGER THAN ADDRESS OF "TARGET ROUTINE”
IN ROUTINE AREA?

SET NEXT ROUTINE, ADDRESS OF WHICH IS LARGER {_ 614
THAN "TARGET ROUTINE" AS "TARGET ROUTINE"
|

v
FLOWCHART OF PROCESS THAT ADJUSTS RETURN | |_ ¢4
ADDRESS OF RETURN INSTRUCTION (SEE FIG. 9)

Y

MOVE ALL THREADS THAT HAVE BEEN TERMINATED [~ 618

y

END

Patent Application Publication Jan. 2,2014 Sheet7 of 11

FIG. 7

S

US 2014/0006759 Al

CALCULATE MOVEMENT DESTINATION ADDRESS OF ROUTINE
THAT IS MOVEMENT TARGET

- 702

v

CREATE, IN ROUTINE MOVEMENT MANAGEMENT TABLE, ROUTINE MOVEMENT
MANAGEMENT ENTRY IN WHICH "ROUTINE ADDRESS OF THE MOVEMENT SOURCE', "SIZE',
AND "VALUE OBTAINED BY SUBTRACTING MOVEMENT SOURCE ADDRESS FROM MOVEMENT
DESTINATION ADDRESS" OF MOVEMENT TARGET ARE RESPECTIVELY SET AS "MOVEMENT

SOURCE ADDRESS", "ROUTINE SIZE', AND "0FFSET'

706
BRANCH DESTINATION
MANAGEMENT ENTRY CORRESPONDING TO ROUTINE OF MOVEMENT
TARGET EXISTS?

NO

CORRECT JUMP DESTINATION RELATIVE ADDRESS OF JUMP
INSTRUCTION IN BRANCH DESTINATION MANAGEMENT ENTRY

~-708

TO BE MOVEMENT DESTINATION ADDRESS

>

SET FIRST INSTRUCTION OF ROUTINE THAT IS MOVEMENT

~710

TARGET AS "CHECK TARGET INSTRUCTION"

- n

THECK TARGET NSTRUCTIONT
IS BRANCH INSTRUCTION TO OUTSIDE OF ROUTINE THATS
MOVENENT TARGET?

) 4

NO

SUBTRACT ADDRESS BEFORE MOVEMENT OF ROUTINE THAT IS MOVEMENT
TARGET, FROM ADDRESS AFTER MOVEMENT OF ROUTINE, AND SUBTRACT
CALQULATION RESULT FROM OPERAND OF "CHECK TARGET INSTRUCTION"

~714

b 4

716

INSTRUCTION NEXT TO "CHECK
TARGET INSTRUCTION" EXISTS?

COPY CONTENTS OF ROUTINE THAT IS MOVEMENT TARGET TO
MOVEMENT DESTINATION

718

Patent Application Publication Jan. 2,2014 Sheet 8 of 11 US 2014/0006759 A1

FIG. 8

800
s
ROUTINE MOVEMENT MANAGEMENT TABLE
<810
ROUTINE MOVEMENT MANAGEMENT ENTRY
<812 <814 <816
MOVEMENT SOURCE
DRSS ROUTINE SIZE OFFSET

ROUTINE MOVEMENT MANAGEMENT ENTRY

Patent Application Publication Jan. 2,2014 Sheet9 of 11 US 2014/0006759 A1

FIG. 9
(_START)

i

l

902
THREAD THAT IS NOT PROCESSED EXISTS?

NO

FRAME THAT IS NOT PROCESSED EXISTS?

RETURN ADDRESS
STORED IN FRAME IS INCLUDED
IN ANY RANGE OF "ROUTINE MOVEMENT
MANAGEMENT ENTRY" THAT EXISTS
IN "ROUTINE MOVEMENT
MANAGEMENT TABLE"?

ADD "OFFSET" OF CORRESPONDING "ROUTINE
MOVEMENT MANAGEMENT ENTRY" TO RETURN ADDRESS (~- 908
STORED IIN FRAME

v
DELETE ALL "ROUTINE MOVEMENT MANAGEMENT
ENTRIES" INCLUDED IN "ROUTINE MOVEMENT 910
MANAGEMENT TABLE"

US 2014/0006759 Al

Jan. 2,2014 Sheet 10 of 11

Patent Application Publication

A 4

ANLLNOY

A

1INN ONILL3S
NOLLOMYLSNI
HONVE

p10T>

LINN NOLLY3IND
AYINT INJWOVNYI

NOLIVNILS3d HONYYE

S
0T~ yT1IdWoD LI

091> 1
TINN NOLLYNIWYAL3q
5SSy AIINT INTWEOWNYI |
INLLYITY NI NOLLYNLIS3q HONYAg
6507~ ecor” 1
1INY NOTLOBO0 SS34aaY IALLYTR NYnLH
8507 >
AIING INFWIDWNYIA
LNGWZNOW INTLNOY
[501° 1IN NOLD3340)
NOLLDMYLSNI 1IN NOLLDTN0D
LINN NOLLVN3D HONY¥g NOILYNILS3A dWne
AN INTWAOYNVA v ——y1
Hzmzm\,oz INLLNOY
9301 LINN TOYLNOD INIWIAOW
0501 >
OlL BId

ot01>

Patent Application Publication Jan. 2,2014 Sheet 11 of 11 US 2014/0006759 A1
FIG. 11
1116
51104 1118 51114
MEMORY HARD DISK DRIVE DEVICE
1120
§
51102 1106 51110 1112
DISPLAY COMMUNICATION
PROCESSOR | | controLunrr| [INPUTDEVICE | | conrmoL N
51108
DISPLAY
DEVICE

US 2014/0006759 Al

RECORDING MEDIUM STORING ADDRESS
MANAGEMENT PROGRAM, ADDRESS
MANAGEMENT METHOD, AND APPARATUS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the ben-
efit of priority from the prior Japanese Patent Application No.
2012-147262 filed on Jun. 29, 2012, the entire contents of
which are incorporated herein by reference.

FIELD

[0002] The embodiments discussed herein are related to a
recording medium storing a program that manages a branch
address in computer software, an address management
method, and an apparatus.

BACKGROUND

[0003] A program in a computer system operates when a
processor processes a routine that is written in machine lan-
guage. One or more codes written in the machine language
are herein referred to as “routines”.

[0004] Instructions included in the routine are processed by
a processor in order one by one. However, a routine in most
programs includes an instruction that changes one instruction
to be processed next, to an instruction other than the one
instruction, or to an instruction in another routine, depending
on a condition. Such an instruction that changes an address of
an instruction to be processed next is generally called a
“branch instruction”.

[0005] FIG. 1 illustrates an example in which the order of
processes is changed by a branch instruction. The name of a
branch instruction and a code of an instruction vary depend-
ing on a processor. In an instruction set for a common pro-
cessor, there are a jump instruction and a call and return
instruction as the branch instruction. The call and return
instruction may be divided into a call instruction and a return
instruction. Hereinafter, the branch instruction is used as a
term that collectively refers to the jump instruction, the call
and return instructions, or the like.

[0006] As illustrated in FIG. 1, when an instruction A2 is a
jump instruction, instead of an instruction A3 next to the
instruction A2, an instruction A4 may be set as an instruction
to be processed after the instruction A2. In addition, when the
instruction A4 is a call instruction to call a routine B, the
process proceeds to an instruction B1 in the routine B after
execution of the instruction A4. After that, instructions B2 to
B4 in the routine B are processed in order. In addition, when
an instruction BS is a return instruction, the process returns to
an instruction A5 next to the instruction A4 in the routine A.
The call instruction is used with the return instruction. When
the return instruction is executed, a stack pointer is, for
example, set up in order to hold a return address. Generally,
the jump instruction is often used to branch in the same
routine, and the call and return instructions are often used to
branch to an instruction in another routine.

[0007] An individual instruction in a routine mainly
includes an “operation code” that indicates the type of the
instruction and an “operand” that indicates a value that is a
calculation target of the instruction. Each operand of the jump
instruction and the call instruction stores an address in which
an instruction of the branch destination exists. In most cases,

Jan. 2, 2014

the address is represented by a relative address from the
instruction of the branch source.

[0008] An address that is used in the embodiments may be
a virtual address or may be a real address. In addition, in the
embodiments, Java (registered trademark) may be used as an
example, however, the embodiment is not limited to the use of
Java.

[0009] A program that is written in Java is converted into
byte code. The byte code is executed by a Java virtual
machine (Java VM). Therefore, the program that is written in
Java operates regardless of CPU as long as the computer
supports the Java VM. Thus, Java has an advantage of oper-
ating in multiple platforms. A common Java VM sequentially
converts “byte code” into machine language that is specific to
a processor, and causes the processor to process the machine
language. However, in the sequential conversion of the byte
code, the processing costs often increase.

[0010] Therefore, there is a technology to convert byte code
into a routine of the machine language, for each method,
during program execution. Such technology is generally
called “Just in time (JIT) compilation”.

[0011] FIG. 2 illustrates a process of a common JIT com-
piler. In Step 202, the JIT compiler converts a byte code of a
method, which is a compilation target, into an intermediate
code that is independent of a host machine. In Step 204, the
JIT compiler converts the intermediate code into a machine
language routine of the host machine. In Step 206, the
machine language routine is written in a machine language
routine area on a memory. As a result, all of the compiled
methods are represented by the machine language routine that
is specific to a processor, so that the processor may process
the machine language routine directly. Hereinafter, a memory
area to store a machine language routine that is generated by
the JIT compiler is referred to as a “routine area”.

[0012] Whenthe process ofthe program proceeds, aroutine
that is not used may occur, so that the routine area varies with
time. That is, the number of routines and usage of the memory
vary. The unused routine is open for another routine by
executing garbage collection. However, there is a problem
such as occurrence of fragments when the garbage collection
is simply executed.

[0013] FIG. 3 illustrates the occurrence of fragments on the
memory. A routine of methods includes a branch instruction
in most cases. In a case in which an operand that indicates the
branch destination is a relative address, when the routine that
includes the branch instruction is simply moved, the branch
instruction is issued to a wrong branch destination, undesir-
ably. In addition, the above-described case is also applied to a
case in which the branch destination is moved. Therefore,
even when the unused routine increases and free spaces
appear in the routine area, it is difficult to move the routine
and collects the free memory areas. Therefore, the fragments
remain.

[0014] Even when a virtual memory is used, the size of the
routine area is limited. This is because the virtual memory
area is not unlimited. Thus, the fragments may remain and
weigh on the virtual memory resource even in the virtual
memory space.

[0015] As a technology to defragment the memory area,
there is compaction-type garbage collection to collect free
memory areas. However, as described above, a routine that
branches using a relative address is not allowed to be moved.
Therefore, itis difficult to apply the compaction-type garbage
collection for the routine area.

US 2014/0006759 Al

[0016] The minimum unit of the JIT compilation is a sub-
routine that is called a method. When fragments occur, for
example, amemory area that is used for a routine compiled by
the JIT compiler might not be allocated because the size of the
individual free memory areas is small even in a situation in
which there is an enough room when all free memory areas
are combined. When a memory is not allocated to a routine
area, an application may terminate. In order to avoid such
termination, the JIT compiler may stop compiling the method
at the time. Alternatively, an optimization level of the JIT
compiler may be reduced and the operation is switched to
compilation that consumes a smaller memory area.

[0017] Inthe related art, a technology is discussed in which
unauthorized memory access during memory compaction is
avoided by starting garbage collection while blocking a user
program by an /O process or the like, and ending the I/O
blocking before the garbage collection ends to restart the user
program. Japanese Laid-open Patent Publication No. 2000-
181723 is an example of the related art.

[0018] In addition, in the related art, a technology is dis-
cussed in which whether or not a method, on which the JIT
compilation is performed, is allowed to be executed without
generating a frame (area to store a local variable) is deter-
mined, a native code that is executed without generating a
frame is generated for such a method, and a call of the method
is streamlined. Japanese Laid-open Patent Publication No.
2005-284729 is an example of the related art.

SUMMARY

[0019] According to an aspect of the invention, a computer-
readable recording medium storing a program for causing an
apparatus to execute an address managing process. The
address managing process includes: associating information
that identifies a branch destination routine of a branch instruc-
tion with a jump instruction in which a relative address to the
branch destination routine is set as a jump destination, and
generating the associated information and jump instruction in
a branch destination management entry on a memory; setting
a relative address to a position of the jump instruction that
corresponds to the information that identifies the branch des-
tination routine of the branch instruction, as a branch desti-
nation relative address of the branch instruction; and chang-
ing the jump destination of the jump instruction that
corresponds to the information that identifies the branch des-
tination routine, to a relative address to a position of the
branch destination routine of the movement destination, with
reference to the branch destination management entry when
the branch destination routine is moved.

[0020] The object and advantages of the invention will be
realized and attained by means of the elements and combina-
tions particularly pointed out in the claims.

[0021] Itisto be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF DRAWINGS

[0022] FIG.1isadiagram illustrating a process by a branch
instruction;
[0023] FIG. 2 is a diagram illustrating a process of a com-

mon JIT compiler;
[0024] FIG. 3 is a diagram illustrating occurrence of frag-
ments on a memory;

Jan. 2, 2014

[0025] FIG. 4 is a diagram illustrating a process of JIT
compilation according to an embodiment;

[0026] FIG. 5 is a diagram illustrating a branch using a
branch destination management entry that is stored in a
branch destination management table according to the
embodiment;

[0027] FIG. 6 is a flowchart illustrating the overview of a
process that moves a routine, according to the embodiment;
[0028] FIG. 7 is a flowchart illustrating the detail of the
process that moves the routine, according to the embodiment;
[0029] FIG. 8 is a diagram illustrating a routine movement
management table according to the embodiment;

[0030] FIG. 9 is a flowchart illustrating a return address
adjustment process of a return instruction, according to the
embodiment;

[0031] FIG. 10 is a functional block diagram according to
the embodiment; and

[0032] FIG. 11 is a diagram illustrating an example of a
hardware configuration according to the embodiment.

DESCRIPTION OF EMBODIMENTS

[0033] Theembodiments are described in detail below with
reference to drawings. In order to facilitate the understanding
of the disclosure, the embodiments are described below, and
the scope of the present disclosure is not limited to the
embodiments. In addition, the embodiments described below
are not mutually exclusive. Thus, it is intended that elements
of the embodiments are combined to each other unless there
is a conflict. In addition, in the method and the program
according to the disclosure, order of the processes may be
changed unless there is a conflict, and alternatively, the pro-
cesses may be executed at the same time. Such embodiments
are also included in the technical scope of the disclosure.
[0034] Functions of the embodiments described below are
realized by executing a program code that is read by a com-
puter. In addition, another program such as an OS that oper-
ates on the computer may execute a part or all of actual
processes on the basis of an instruction of the program code,
thereby realizing the functions of the embodiments by such
processes.

[0035] Inthe embodiments, it is assumed that the JIT com-
pilation is performed in units of a method. In addition, in the
embodiments, a set of pieces of machine language that is
obtained by performing the JIT compilation on methods is
referred to as a routine. The embodiments are not limited to
these cases.

[0036] FIG. 4 is a diagram illustrating a process of the JIT
compilation according to an embodiment. In JIT compilation
processes, processes loosely related to the embodiments are
omitted in order to facilitate the understanding.

[0037] Intheembodiments, the process illustrated in FIG. 4
is described as the process in the JIT compilation. However, a
part of or all of the process may be executed after the JIT
compilation has completed and a machine language routine
has been generated. In the embodiments, the process may be
executed in the JIT compilation and may not be executed in
the JIT compilation.

[0038] In Step 402, it is checked whether or not an instruc-
tion code to be compiled is a branch instruction. When the
instruction code is not a branch instruction, the process pro-
ceeds to Step 440. When the instruction code is a branch
instruction, the process proceeds to Step 404.

US 2014/0006759 Al

[0039] In Step 440, an operand and an operation code of
machine language are specified, and an instruction of the
machine language is output.

[0040] In Step 404, the type of the branch instruction is
determined. When the branch instruction is a jump instruc-
tion, the process proceeds to Step 406. When the branch
instruction is a call instruction, the process proceeds to Step
408.

[0041] In Step 406, the operation code of the machine lan-
guage to be generated is determined as the jump instruction.
[0042] In Step 408, the operation code of the machine lan-
guage to be generated is determined as the call instruction.
[0043] In Step 410, it is determined whether or not an
address of the branch destination is fixed, or whether or not
the branch destination is in the same method. When a routine
of the branch destination is coded, for example, by C lan-
guage or the like, and is statically compiled machine language
(when the routine of the branch destination is not moved), a
“branch destination management entry” that is described later
may not be generated. When the branch destination is in the
same method, the “branch destination management entry”
that is described later may not be generated. When the deter-
mination result in Step 410 is “Yes”, the process proceeds to
Step 430. When the determination result is “No”, that is, when
the branch destination address is not fixed and is an address in
amethod other than the same method, the process proceeds to
Step 420.

[0044] In Step 430, the operand of the branch instruction is
set as a relative address to an instruction of the branch desti-
nation. That is, a difference between an address in which the
instruction of the branch destination is located and an address
in which the branch instruction is located may be stored in the
operand.

[0045] In Step 420, it is checked whether or not the branch
destination management entry exists. The branch destination
management entry includes information to identify a branch
destination and a newly generated jump instruction. As the
information to identify a branch destination, for example, a
method name ofthe branch destination may be employed, and
alternatively, an address of the branch destination may be
used. In the newly generated jump instruction, a jump desti-
nation may be replaced in accordance with movement of a
routine of the branch destination when the routine of the
branch destination is moved on the memory. Therefore, the
generated jump instruction may jump to the moved branch
destination. When the branch destination management entry
exists, the process proceeds to Step 428. When the branch
destination management entry does not exist, the process
proceeds to Step 422. In order to determine whether or not the
branch destination entry exists, whether or not both of the
information to identify a branch destination and the newly
generated jump instruction exist may be checked. Alterna-
tively, when the branch destination management entry may be
uniquely identified merely using the information to identify
the branch destination, the mere information to identify the
branch destination may be checked. For example, when a
plurality of jump destinations may exist in a single routine
and the information to identify the branch destination is the
name of the routine, it is desirable that both of the information
to identify the branch destination (the name of the routine)
and a branch destination relative address in the operand of the
jump instruction are checked. Alternatively, when an absolute
address of the branch destination is used as the information to
identify the branch destination, the mere information to iden-

Jan. 2, 2014

tify the branch destination (the absolute address of the branch
destination) may be checked. When the absolute address of
the branch destination is used as the information to identify
the branch destination, the information to identify the branch
destination (the absolute address of the branch destination) of
the branch destination management entry is rewritten in
accordance with the movement of the branch destination.
[0046] In Step 422, a new branch destination management
entry is generated. As described above, the branch destination
management entry includes “information that indicates a
method of a branch destination” and a “jump instruction”.
[0047] In Step 424, a relative address to the branch desti-
nation is set to the operand of a “jump instruction” of the
branch destination management entry. By such setting, the
generated “jump instruction” may jump to the branch desti-
nation.

[0048] In Step 426, the name of the branch destination
method is set to “information that indicates a method of a
branch destination” of the branch destination management
entry. The information that is stored in the “information that
indicates a method of a branch destination” is not limited to
the name of the branch destination method. As long as the
branch destination method is identified, any information may
be employed. For example, an absolute address of the branch
destination of the routine in which a branch destination
method is compiled may be employed.

[0049] In Step 428, the operand of the machine language of
the branch instruction is set as a relative address to the gen-
erated “jump instruction”. By such process, the branch
instruction may jump to the generated “jump instruction”. By
executing such process, the branch instruction may proceed
to an instruction of a target branch destination through the
generated “jump instruction”.

[0050] In the generated “jump instruction”, there is no
operation such as change of the stack pointer, so that the
process may return to the branch source method when a return
instruction is executed in a branch destination method even in
a case in which an instruction of the branch source is a call
instruction.

[0051] In Step 440, an operation code and an operand are
specified, and an instruction of the machine language is out-
put.

[0052] FIG. 5 is a diagram illustrating a branch using the

branch destination management entry that is stored in a
branch destination management table according to the
embodiment.

[0053] In a method A (510), an instruction of a CALL
method B (512) is an instruction to call a method B. The
instruction might not call the method B directly. That is, the
process proceeds to a jump instruction 553 that exists in a
branch destination management entry B (551) in a branch
destination management table 550. An instruction 1 (522) in
the method B (520) is called through the jump instruction
553. In addition, due to a return instruction RETURN (524),
the process returns to an instruction 3 (514) in the method A
(510).

[0054] InFIG.5, when a jump instruction JUMP method C
(516) in the method A (510) is executed, the process may
jump to an instruction 1 (532) in a method C (530) through a
jump instruction 557 that exists in a branch destination man-
agement entry C (555) in the branch destination management
table 550.

[0055] As described above, the call instruction and the
jump instruction cause a process to proceed to a branch des-

US 2014/0006759 Al

tination through a jump instruction that exists in a branch
destination management entry in the branch destination man-
agement table 550.

[0056] In addition, referring to FIG. 5, in the branch desti-
nation management entry B, there exists information 552 that
indicates the method B that is a branch destination. In addi-
tion, in the branch destination management entry C, there
exists information 556 that indicates the method C that is a
branch destination. The information 552 and the information
556 are used when the branch destination is moved. The detail
of the process when the branch destination is moved is
described later.

[0057] FIG. 6 is a flowchart illustrating the overview of a
process that moves a routine, according to the embodiment.
Here, an example of the process is illustrated in which one or
more routines are moved to increase a successive free
memory area.

[0058] In Step 602, all threads are terminated. When a
thread is moved, it is probable that a new routine is dynami-
cally generated in a memory area. Thus, it is desirable that all
of'the threads are terminated when such a process is executed.

[0059] In Step 604, a first routine included in the routine
area is set as a “target routine”. The process is a process that
first identifies a routine currently focused so as to process the
one or more routines in order from the first routine.

[0060] In Step 606, it is checked whether or not a “target
routine” exists. When the determination result is “No”, the
process proceeds to Step 616. When the determination result
is ““Yes”, the process proceeds to Step 608.

[0061] InStep 608, itis checked whether or not a free space
exists in an area with an address smaller than the address of
the “target routine” in the routine area. When the determina-
tion result is “No”, the process proceeds to Step 612. When
the determination resultis “Yes”, the process proceeds to Step
610. When the determination result is “Yes”, it is indicated
that the free space exists in the area with the address, which is
smaller than the address of the “target routine”, and the free
space may be used when the target routine is moved in a
direction to the area with the address, which is smaller than
the address of the “target routine”.

[0062] In Step 610, the movement of the routine is
executed. The process is described later with reference to the
detailed flowchart of the process that moves the routine (FIG.
D.

[0063] InStep 612, itis determined whether or not aroutine
exists in an area with an address larger than the address of the
“target routine” in the routine area. When the determination
result is “No”, the process proceeds to Step 616. When the
determination result is “Yes”, the process proceeds to Step
614.

[0064] In Step 614, a next routine the address of which is
larger than the “target routine” is set as a “target routine”. By
such a process, a routine to be moved next is identified as a
focused routine. The process then returns to Step 608.

[0065] InStep 616, aprocess is executed for a case in which
a return instruction that corresponds to a call instruction is
executed and all of the threads are terminated before the
return instruction is executed. That is, in the series of pro-
cesses, it is probable that a return destination of the return
instruction is moved. In this case, a process that adjusts a
return address of the return instruction is executed so that the
return operation is appropriately performed. The detail of the

Jan. 2, 2014

process is described later with reference to a flowchart of the
process that adjusts the return address of the return instruction
(FIG. 9).

[0066] In Step 618, all of the threads that have been termi-
nated are moved. By the above-described process, one or
more routines are moved, and a successive free memory area
is increased, so that the fragmentation of the memory may be
removed.

[0067] FIG. 7 is a flowchart illustrating the detail of the
process that moves a routine, according to the embodiment.

[0068] In Step 702, a movement destination address of a
routine that is a movement target is calculated. In such cal-
culation, the movement destination address may be deter-
mined so that the routine is moved by the size of the free area
that exists in an area with the small address.

[0069] InStep 704, it is desirable to create a routine move-
ment management entry in a routine movement management
table. In the routine movement management entry, “routine
address of the movement source”, “size”, and “value obtained
by subtracting a movement source address from the move-
ment destination address” of the movement target are respec-
tively set as “movement source address”, “routine size”, and
“offset”. The information is created when the call instruction
is executed and all of the threads are terminated in Step 602
before the return instruction is executed, so as to store infor-
mation that is used to adjust the return address when the return
address is moved due to the movement of the routine of the
return destination. The detail of the process using such infor-
mation is described later.

[0070] InStep 706, it is determined whether or not a branch
destination management entry that corresponds to the routine
that is a movement target exists. When the determination
result is “No”, the process proceeds to Step 710. When the
determination result is “Yes”, the process proceeds to Step
708.

[0071] In Step 708, a jump destination relative address of
the jump instruction in the branch destination management
entry is corrected to be the movement destination address.
The existence of the branch destination management entry
indicates that a routine to be moved is a routine that is a target
branched from another routine by the jump instruction or the
call instruction. Thus, the jump destination of the jump
instruction that exists in the branch destination management
entry is adjusted in accordance with the movement of the
routine.

[0072] InStep 710, the first instruction of the routine that is
a movement target is referred to as a “check target instruc-
tion”. By such a process, the first instruction of the routine is
first identified as a focused instruction in the routine.

[0073] InStep 712,itis determined whether or nota “check
target instruction” is a branch instruction to the outside of the
routine that is a movement target. When the determination
result is “No”, the process proceeds to Step 716. When the
“check target instruction” is a branch instruction to an address
within the routine that is a movement target, it is not desired
to correct address information in the operand of the branch
instruction. When the determination result is “Yes”, the pro-
cess proceeds to Step 714.

[0074] In Step 714, a process is executed in which the
movement source address of the routine that is a movement
target is subtracted from a movement destination address of
the routine, and the calculation result is subtracted from the
operand of the “check target instruction”. In the process, a
relative address stored in the operand of the “check target

US 2014/0006759 Al

instruction” is adjusted so that the operand corresponds to the
jump instruction of the branch destination management entry.
[0075] In Step 716, it is determined whether or not there
exists an instruction next to the “check target instruction”.
When the determination result is “No”, the process proceeds
to Step 718. When the determination result is “Yes”, the
process returns to Step 712.

[0076] By the above-described process, when the branch
destination management entry exists, a jump destination of
the corresponding jump instruction is adjusted to be an
address of the movement destination of the movement target
routine. In addition, contents of operands of all branch
instructions that exist in the movement target routine are
appropriately adjusted to correspond to an address in which
the jump instruction of the branch destination management
entry exists.

[0077] InStep 718, a process is executed in which contents
of the routine that is a movement target are copied to the
movement destination.

[0078] FIG. 8 is a diagram illustrating a routine movement
management table according to the embodiment. A routine
movement management table 800 includes a routine move-
ment management entry 810. The routine movement manage-
ment entry 810 includes a routine address 812 of the move-
ment source, a routine size 814, and an offset 816 that is an
address movement amount of the routine. The routine address
812 of the movement source may be, for example, a first
address of the routine. A range of the address that the routine
has occupied before movement is found out from the routine
address 812 of the movement source and the routine size 814.
When such a range of the address includes a return address of
the return instruction, the return address is adjusted on the
basis of the offset value. Even when a routine of a return
destination is moved, the return instruction is appropriately
executed by the adjustment of the return address.

[0079] FIG. 9 is a flowchart illustrating the process that
adjusts the return address of the return instruction, according
to the embodiment.

[0080] In Step 902, it is determined whether or not a thread
that is not processed exists. It is probable that, for a thread that
is in the middle of processing when all of the threads are
terminated, the return instruction is not executed after execu-
tion of the call instruction. When the determination result is
“No”, the process proceeds to Step 910. When the determi-
nation result is “Yes”, the process proceeds to Step 904.
[0081] In Step 904, it is determined whether or not a frame
that is not processed exists. In Java, the call and return instruc-
tions are managed in a stack for each thread, and information
about the stack is treated in units of a frame. Thus, when a
frame exists, it is found that the return instruction has not been
executed. When the determination result is “No”, the process
returns to Step 902, and the other threads are checked. When
the determination resultis “Yes”, the process proceeds to Step
906.

[0082] In Step 906, it is determined whether or not a return
address that is stored in the frame is included in any range of
a “routine movement management entry” that exists in the
“routine movement management table”. That is, it is deter-
mined whether or not the return address is in an address range
in which the routine of the movement source exists. When the
determination result is “No”, the return address might not be
adjusted. Therefore, the process returns to Step 904, and the
other frames are checked. When the determination result is
“Yes”, the process proceeds to Step 908.

Jan. 2, 2014

[0083] In Step 908, an “offset” of the corresponding “rou-
tine movement management entry” is added to the return
address that is stored in the frame. By such a process, the
return address is corrected to an address of the routine of the
movement destination, so that the return address is adjusted
appropriately.

[0084] In Step 910, all “routine movement management
entries” that are included in the “routine movement manage-
ment table” are deleted. The deletion is executed because
adjustment of all return addresses is completed and informa-
tion about all of “routine movement management entries” that
are included in the “routine movement management table” is
not used. In addition, in order to execute a process that moves
a new routine appropriately, it is desirable to remove such
information.

[0085] FIG. 10 is a functional block diagram according to
the embodiment.

[0086] The functional block diagram according to the
embodiment illustrated in FIG. 10 includes a JIT compiler
1010, a movement control unit 1050, and one or more rou-
tines 1060. The JIT compiler 1010 includes a branch desti-
nation management entry generation unit 1012 and a branch
instruction setting unit 1014. The branch destination manage-
ment entry generation unit 1012 may generate, for example, a
branch destination management entry 1053. When the branch
destination management entry 1053 already exists, the same
entry might not be created. Two or more branch instructions
that indicate the same branch destination may share one
branch destination management entry as long as the one
branch destination management entry exists.

[0087] The branch instruction setting unit 1014 stores an
address in which the jump instruction 553 exists, in an oper-
and of a branch instruction on which the JIT compilation is
performed. Therefore, the branch instruction on which the
JIT compilation is performed may be branched, for example,
to the method B (520) through the jump instruction 553 in the
branch destination management entry B (551) in FIG. 5.
[0088] InFIG.10,the movement control unit 1050 includes
a jump destination correction unit 1052, a branch instruction
correction unit 1054, a routine movement management entry
generation unit 1056, a return relative address correction unit
1058, and a return relative address determination unit 1059.
[0089] The jump destination correction unit 1052 corrects
an operand of a jump instruction in the branch destination
management entry 1053 when the routine of the branch des-
tination is moved.

[0090] The branch instruction correction unit 1054 corrects
an operand of a branch instruction when the branch instruc-
tion is moved.

[0091] The routine movement management entry genera-
tion unit 1056 generates the routine movement management
entry 1057. The return relative address determination unit
1059 determines whether or not a return address of a return
instruction is in the address range of the routine of the move-
ment source, with reference to the contents of the routine
movement management entry 1057. When the determination
result is “Yes”, the return relative address correction unit
1058 corrects the return address so that the return instruction
returns to the routine of the movement source. The routine
1060, the branch destination management entry 1053, and the
routine movement management entry 1057 may exist in the
memory.

[0092] FIG. 11 is a diagram illustrating an example of a
hardware configuration of the according embodiment. In the

US 2014/0006759 Al

embodiment, hardware includes a processor 1102 such as a
central processing unit (CPU), a memory 1104 such as a
random access memory (RAM), a display control unit 1106
such as a graphic card, a display device 1108, an input device
1110 such as a keyboard and a mouse, a communication
control unit 1112 such as a network interface card (NIC), a
drive device 1114, and a hard disk 1118. In addition, the
pieces of hardware are coupled to each other through a bus
1120. In addition, the drive device 1114 may read from and
write to a portable recording medium 1116. In addition, a
network (not illustrated) may be coupled to the communica-
tion control unit 1112.

[0093] The Java VM and the JIT compiler that operates on
the Java VM according to the embodiment are stored in the
memory 1104, the hard disk 1118, and the like, and operate by
the processor 1102. The compiled machine language routine
may be arranged on the memory 1104 through a virtual
memory architecture.

[0094] All or a part of the embodiments are implemented
by a program. The program may be stored in the portable
recording medium 1116. The portable recording medium
1116 is one or more non-transitory tangible storage mediums
each of which has a structure. As the portable recording
medium 1116, a magnetic recording medium, an optical disk,
an optical magnetic recording medium, a non-volatile
memory, and the like may be employed. Examples of the
magnetic recording medium include a hard disk drive (HDD),
a flexible disk (FD), a magnetic tape (MT). Examples of the
optical disk include a digital versatile disc (DVD), a digital
versatile disc-read only memory (DVD-RAM), a compact
disc-read only memory (CD-ROM), a compact disc record-
able (CD-R), a compact disc rewritable (RW). In addition,
examples of the optical magnetic recording medium include
a magneto-optical disk (MO). The program stored in the
portable recording medium is read and executed by the pro-
cessor, thereby implementing all or a part of the embodi-
ments.

[0095] In the embodiments, the case in which an relative
address is used for a branch instruction, and alternatively, the
embodiments may be applied to a case in which an absolute
address is used for the branch instruction. For example, an
absolute address may be used for the branch instruction
because an absolute address of a branch destination (includ-
ing a return destination of a return instruction) varies when
the branch destination is moved on the memory. It is desirable
to execute processes according to the embodiments regarding
this aspect. However, the absolute address may not be used for
the branch instruction regarding this aspect in some cases
because the absolute address of the branch destination (in-
cluding the return destination of the return instruction) does
not vary even when a branch source (including the return
instruction) is moved on the memory. Note that it is probable
that the above-described two aspects occur at the same time
because the routine may be the branch source and also the
branch destination when the routine is moved on the memory.
[0096] All examples and conditional language recited
herein are intended for pedagogical purposes to aid the reader
in understanding the invention and the concepts contributed
by the inventor to furthering the art, and are to be construed as
being without limitation to such specifically recited examples
and conditions, nor does the organization of such examples in
the specification relate to a showing of the superiority and
inferiority of the invention. Although the embodiments of the
present invention have been described in detail, it should be

Jan. 2, 2014

understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.

What is claimed is:

1. A computer-readable recording medium storing a pro-
gram for causing an apparatus to execute an address manag-
ing process, the address managing process comprising:

associating information that identifies a branch destination

routine of a branch instruction with a jump instruction in
which a relative address to the branch destination routine
is set as a jump destination, and generating the associ-
ated information and jump instruction in a branch des-
tination management entry on a memory;

setting a relative address to a position of the jump instruc-

tion that corresponds to the information that identifies
the branch destination routine of the branch instruction,
as a branch destination relative address of the branch
instruction; and

changing the jump destination of the jump instruction that

corresponds to the information that identifies the branch
destination routine, to a relative address to a position of
the branch destination routine of the movement destina-
tion, with reference to the branch destination manage-
ment entry when the branch destination routine is
moved.

2. The computer-readable recording medium according to
claim 1, the address managing process further comprising:

changing the branch destination relative address of the

branch instruction to the relative address to the position
of the jump instruction that corresponds to the informa-
tion that identifies the branch destination routine of the
branch instruction when the branch instruction is
moved.

3. The computer-readable recording medium according to
claim 1, wherein

the generating the associated information and jump

instruction is not executed when the information that
identifies the branch destination routine already exists in
the branch destination management entry.

4. The computer-readable recording medium according to
claim 1, the address managing process further comprising:

changing based on a certain offset a return relative address

of a return instruction in a case in which the branch
instruction is a call instruction, when an instruction that
is located in the return relative address of the return
instruction that corresponds to the call instruction is
moved by the certain offset before the return instruction
is executed after the call instruction is executed.

5. The computer-readable recording medium according to
claim 4, the address managing process further comprising:

storing a range of an address of the routine of the movement

source in the memory, and

determining whether or not the return relative address

before the changing is within the stored range of the
address of the routine of the movement source.

6. An address managing method comprising:

associating information that identifies a branch destination

routine of a branch instruction with a jump instruction in
which a relative address to the branch destination routine
is set as a jump destination, and generating the associ-
ated information and jump instruction in a branch des-
tination management entry on a memory;

setting a relative address to a position of the jump instruc-

tion that corresponds to the information that identifies

US 2014/0006759 Al

the branch destination routine of the branch instruction,
as a branch destination relative address of the branch
instruction; and
changing the jump destination of the jump instruction that
corresponds to the information that identifies the branch
destination routine, to a relative address to a position of
the branch destination routine of the movement destina-
tion, with reference to the branch destination manage-
ment entry when the branch destination routine is
moved.
7. The address managing method according to claim 6,
further comprising:
changing the branch destination relative address of the
branch instruction to the relative address to the position
of the jump instruction that corresponds to the informa-
tion that identifies the branch destination routine of the
branch instruction when the branch instruction is
moved.
8. The address managing method according to claim 6,
wherein
the generating the associated information and jump
instruction is not executed when the information that
identifies the branch destination routine already exists in
the branch destination management entry.
9. The address managing method according to claim 6,
further comprising:
changing based on a certain offset a return relative address
of a return instruction in a case in which the branch
instruction is a call instruction, when an instruction that
is located in the return relative address of the return
instruction that corresponds to the call instruction is
moved by the certain offset before the return instruction
is executed after the call instruction is executed.
10. The address managing method according to claim 9,
further comprising:
storing a range of an address of the routine of the movement
source in the memory, and
determining whether or not the return relative address
before the changing is within the stored range of the
address of the routine of the movement source.
11. An apparatus comprising:
a memory; and
a processor coupled to the memory and configured to:
associate information that identifies a branch destination
routine of a branch instruction with a jump instruction

Jan. 2, 2014

in which a relative address to the branch destination
routine is set as a jump destination, and generates the
associated information and jump instruction in a
branch destination management entry on a memory,
set arelative address to a position of the jump instruction
that corresponds to the information that identifies the
branch destination routine of the branch instruction,
as a branch destination relative address of the branch
instruction, and
change the jump destination of the jump instruction that
corresponds to the information that identifies the
branch destination routine, to a relative address to a
position of the branch destination routine of the move-
ment destination, with reference to the branch desti-
nation management entry when the branch destina-
tion routine is moved.
12. The apparatus according to claim 11, wherein
the processor is further configured to change the branch
destination relative address of the branch instruction to
the relative address to the position of the jump instruc-
tion that corresponds to the information that identifies
the branch destination routine of the branch instruction
when the branch instruction is moved.
13. The apparatus according to claim 11, wherein
the processor is further configured not to execute the gen-
eration operation to the branch destination management
entry when the information that identifies the branch
destination routine already exists in the branch destina-
tion management entry.
14. The apparatus according to claim 11, wherein
in a case in which the branch instruction is a call instruc-
tion, when an instruction that is located in a return rela-
tive address of a return instruction that corresponds to
the call instruction is moved by a certain offset before the
return instruction is executed after the call instruction is
executed, the processor is further configured to change
the return relative address of the return instruction based
on the certain offset.
15. The apparatus according to claim 14, wherein
the processor is further configured to store a range of an
address of the routine of the movement source in the
memory, and determine whether or not the return rela-
tive address before changing is within the stored range of
the address of the routine of the movement source.

#* #* #* #* #*

