a9 United States
a2y Patent Application Publication o) Pub. No.: US 2014/0006858 A1

Helfman et al.

20140006858A

43) Pub. Date: Jan. 2, 2014

(54)

(71)

(72)

@
(22)

UNIVERSAL PLUGGABLE CLOUD
DISASTER RECOVERY SYSTEM

Applicants:Noam Sid Helfman, Redmond, WA

Inventors:

Appl. No.:

Filed:

(US); Ken Hines, Kenmore, WA (US);
Reid Andrew Spencer, Mercer Island,
WA (US); Moshe Vainer, Redmond, WA
(US); Kalpana Narayanaswamy,
Redmond, WA (US); Przemyslaw
Pardyak, Seattle, WA (US); Ashutosh
Tiwary, Bellevue, WA (US)

Noam Sid Helfman, Redmond, WA
(US); Ken Hines, Kenmore, WA (US);
Reid Andrew Spencer, Mercer Island,
WA (US); Moshe Vainer, Redmond, WA
(US); Kalpana Narayanaswamy,
Redmond, WA (US); Przemyslaw
Pardyak, Seattle, WA (US); Ashutosh
Tiwary, Bellevue, WA (US)

13/706,198

Dec. 5, 2012

Related U.S. Application Data
(60) Provisional application No. 61/567,029, filed on Dec.

5, 2011.
Publication Classification

(51) Int.ClL

GO6F 11/14 (2006.01)
(52) US.CL

CPC oo, GO6F 11/1448 (2013.01)

USPC e 714/19
57 ABSTRACT

A method, implementable in a system coupled to a display
device and a network, includes generating in a first region of
a screen of the display device a user-interface portion associ-
ated with a first electronic destination address. The user-
interface portion is configured to receive from a second region
of the screen, in response to a command by a user of the
system, a first icon representing a data set. In response to the
user-interface portion receiving the first icon, a copy of the
data set, or the data set itself, is electronically transferred over
the network to the first destination address.

“Meladata

. Exhaction

Virtual Lab

Universal
Storan

(Execute,

.
i

1. Virualize
Network.

US 2014/0006858 A1

Jan. 2,2014 Sheet 1 of 15

Patent Application Publication

RN

N
R

e fenui

L 2anbi14

US 2014/0006858 A1

Jan. 2,2014 Sheet2 of 15

Patent Application Publication

Z 9anbB14

AOWH Tvd

yodsuel |
|esiBAIUN

abeicig
$5990Y pnojD4

qe1 WA Bj0UsY

pnog

US 2014/0006858 A1

Jan. 2,2014 Sheet 3 of 15

Patent Application Publication

€ 921nbB14

Patent Application Publication Jan. 2,2014 Sheet 4 of 15 US 2014/0006858 A1

N

.

.

S A TS

Figure 4

WWWW/////

A,
by / i,
7

R
e

G,
",
%,

Patent Application Publication Jan. 2,2014 Sheet 5 of 15 US 2014/0006858 A1

L

LISy
.
Z
Z

SN

Doyenz

i

£
Ix
“
i “v,,\('
,
e,

AN

7

Acks

T

g.

4 n
£ix o
= -
Lyx]
= =
5
= >
! 18
[}

]]
7 7
7 -
72

N

S

Agent

US 2014/0006858 A1

Jan. 2,2014 Sheet 6 of 15

Patent Application Publication

g 9.nb14

SJawoIsny JO #

P R
AjixaldwoD; paonpay .
Aonooby Joise .
s|qepIoye M pnojy «
1oy sew Buibuey)

o 0] dmjoed | HIYS -
ade; woi Aeme 1liys Big

5 aoueldwod Alojeinbay .
« suoneoydde |eopuo-ssauisng 210
spaau Bulbuey) .«

puadg ¥Q/ogd

N

Joydew ¥@/O9 9INS ul uondnisiq

US 2014/0006858 A1

Jan. 2,2014 Sheet 7 of 15

Patent Application Publication

L 9@.nb14

(O 1x) ABAcoay 0] Bl

S)I9M |BIDADS siype Sayetr siyy SIYT

oo ;
N R /,z,,,/V////
Sunsa o - |/MA0%3IeNUB - //
oyysiy] dmiRedieol - ,
| ¥asuew Jood
deog o T8
«9€9 9Yl, a
$324N0S3J Pa1eIPaq - L 4
CO_HMU__QQN_ sNnoNnuIuo) - //M//M/M Peee
24N12NJ1SEIJUI JUBPUNPSY - /
A13n029Y Ja)sesiq 1AIDS [N / v

sapljiqeded ¥yqa/og ul deg abie

US 2014/0006858 A1

Jan. 2,2014 Sheet 8 of 15

Patent Application Publication

g 2.nbi14

i

|

wsuAoidsn

SION3TTVHO 44 1539919

AoAINs 1oxIew JopuaA ‘sishjeue Allsnpul ‘MBIASAQ 1XMEIN GINS Sisuled |NY S894N0g

. Jej se jey yojens 0}
JuEM | PUB YQ/Dg 10§ Suew Jood
siejjop X Ajuo aney |,

~
ueo | se

. sesjuelend pasu |

5
~

ue Xz pJoye

kN

AN

9A|0S 0} Swiajgosd;
g|dnjnw aAey |;
ued |,

i

Xz Lo..up Aed ||

[

»

Kouepunpa |
| pUB |

dd

azIs aafojdwa
Aq sessauisng

SNio#

mgeg o00l> @S

 degayy,
N
NN
Ha M6 - 00g-00L PIN
oSS N4 S8 7 M1-o0s NS
X A< gsudisug

SP3°N J19)JeN y4a/09 dINS

US 2014/0006858 A1

Jan. 2,2014 Sheet 9 of 15

Patent Application Publication

Allenuue g82%

SI9AIBS NGS | «
syuow z| , JOAIRS/go 001 «
yuow/go/05°1$

SIOAJSS INSS' |

abelae U0 8zIs JaABS §HQ0L Pue aoud [1ejal §9/0G 1§ U0 paseq ajewnsy

6 0._50_"_ ABAINS Jo)IEW JOPUBA ‘S)sA|eue AliSnpul ‘MSIABAQ JedelN GINS Sisuled [INY :$82.n0g,
103301d 0} Bulim .dQ ela abeno
2./B $9559UISN J0 oedwi ssauppe o} _uonesauad

1By} SI9AISS JO 9, wmmcmc____>> ssauisng a.emyos Q:v_omm NS SN

Y% L9
N8E9
Bre) das
SioAIes 'R
‘BAL Ml6
Sianiss B diN

AlunuoddQ 39)Je|y ¥A 9GNS "S'N Jo 3zIs

US 2014/0006858 A1

Jan. 2,2014 Sheet 10 of 15

Patent Application Publication

0l @inbiy

pno|D zusAoQg

e EETEn

S /////ﬂ/////ﬂ/// NS ,/,7

Vil ey e
L dnman

W

7

.
L

R §

/
// //% /.. B 3 < B
EASDSY //W PAEA @W/J%am,,z” 3\
SR V// %M/A/r/f%fﬁ:a FINEER . W//%ﬁ/

Iv B 3
| v usumu
R atee auly
M%M%% -
W

Juaby zusioQq

= 33

L e
W.///////J%»f e da f%////V
L
Tl

R

S S ..

S R

L /////,,Wﬂ///ﬂ,w///,,w////,%%//

SIOPUBA JOSIA
JadAH g dnyoeg

agelols

/ ;mindwoy

Ajijigede) yYa WA uonijesauas }xaN

US 2014/0006858 A1

Jan. 2,2014 Sheet 11 of 15

Patent Application Publication

LI @inb1y
(O1) AlsAooay O] 8wl |

gy , et , vt Ay T

€

R ®

R o ////// ,//
wEwM_u“_MLWMH MHMMLW m_ %BWM//M//W////////// ,
J91UBWAS- : W

A _ JUBIIXY-
dnyoeg |ed07 - N

0lieQ-
agel01g pno|) - f_%w-

9auelddy dnyjoeg -

uozuaA ‘pJesuns :sajuedwod 3u1lso
OSOUDIA VI ‘@IepiIAIA ‘el 8|gnog ”co_pmu__o_mm_ shonunuoy -
SE1IDA ‘BUBAMIAIA "HOSOUDIA nmC_._mpms_U -

s191ua) eleq AQpuelS-10H - /

SI0PUSA ¥d/09 P9seq-pnoj)

US 2014/0006858 A1

Jan. 2,2014 Sheet 12 of 15

Patent Application Publication

2} ainbyy JOAJSES [BNLNA RIBID
T T e — ARALES UOIINDOL
S o [eomAUd YD
= By 190 ZUBAOQ
by oM 2uRhog =====

FETYCTN

N

S paje

wony

2

A

uI3uoy ssauisn

2

S)Y.IOM }I MOH

US 2014/0006858 A1

Jan. 2,2014 Sheet 13 of 15

Patent Application Publication

€1 @2anb1y

SoIsualo4/sonsoubelq ‘uonelbipy ‘uonusAald Jeisesiq ‘Ha/Dg -
U:O_O C_ wu_o_ ._DO> r_”__>> =2J0W O_u 0] ®3C_EOO .m

pnojo ajeAld 4o olignd ‘pabeuew 0] NA Aojda ‘ebeyoed ‘piing -
pPNOJO ay] ul couw>m>>_m O] JoA0|le) WOl 2

S92IAISS PNOJO [BUONIPPE JBAI[BP ¥ B)ep Jawolsnd alinboy -
pno|D ayj Joj 1sngy pjing ‘Aed o1 Alljige ‘pasu jusbin -
pPnojD & ¥sIg « ade] yiys whipeied -

JinJ} Buibuey-mo| sl ¥a/0g PnojD)

dwey-uQ pno|H :991A19S PPV anjea

US 2014/0006858 A1

Jan. 2,2014 Sheet 14 of 15

Patent Application Publication

1 94nbi4

slauped BuiAed JO spalpuny pue SISAISS Pa1oajo.d JO SPUBSNOY) YIIM UBAOLH »

Ajuaioiye Jayjeboi ylom 0] paubisap [je 90IA1eg @ ABojouyoa] ‘ssauisng .

12IEW HO/O8 PNOO 1]-gNS UlJopeadT] .
SpaouU JexJeW pUe 8se(Jawolsno Jo ebpamouy deaq
Ajuaioiye sqSN woddns pue ‘pieog-uo ‘[|9s ‘eoud ‘1oMJe|N .
salbojouyoe) aseq paalg-10-1saq ‘alempley AJIpowwon
wswabeuew ‘Buncjuocw ‘Ayoedes ‘suoneinbiyuod ‘sjusuodwod 9IBml0S pue SIempieH

1IN0-9|29S 9AI}09)J9-1S09 IO} 24NJ103)IYIJE 90USI9jaJ S)epl|eAa g juswsajdwi ‘ubisaq -«

BuipJeoq-uo ‘uoneyuowa|dwi ‘asn Jo ased ‘AJjIgels ‘eouewlopad ‘O|ROS
‘wiojield jeyl Uo paseq a2IAI8s ay) ajesado @ pjing .

Bulpused ueieq

sJosia-JadAy pue syonpoud dnyoeq sidinw woddns 03 wuoyeld 9|qISUdIxg

UOIJBWIOINE ‘ge| |BNLIA 4IBA0|IR) ‘AIDA0DDI POZIIBNLIA PajeWwOoine ‘Juaby
‘wuoeld g|gisuaixa pue Abojouyoss| anbiun .

d|-8100) YlIM IOPIAOId ©DIAI9G-B-SE UOljuanald Jaisesiq ® ¥Ma/Dg -

Auadouad jenjoaa|ajul

Patent Application Publication Jan. 2,2014 Sheet 15 of 15 US 2014/0006858 A1

Delivering Doyenz as a Service

- Replication to the cloud
- Recover in the cloud
- Automation in the cloud

- ASP: $10K — $12K first year
- Large opportunity: 50-80K MSPs
- Avg. # of customers per SP: 100

- ASP: $36K first year
- 2M customers between 5-99 empl

Figure 15

US 2014/0006858 Al

UNIVERSAL PLUGGABLE CLOUD
DISASTER RECOVERY SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Appl. No. 61/567,029 filed Dec. 5, 2011, which is hereby
incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] An embodiment relates generally to computer-
implemented processes.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

[0003] Preferred and alternative embodiments of the
present invention are described in detail below with reference
to the following drawings.

[0004] FIGS. 1-15 illustrate elements and/or principles of
at least one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0005] This patent application is intended to describe one
or more embodiments of the present invention. It is to be
understood that the use of absolute terms, such as “must,”
“will,” and the like, as well as specific quantities, is to be
construed as being applicable to one or more of such embodi-
ments, but not necessarily to all such embodiments. As such,
embodiments of the invention may omit, or include a modi-
fication of, one or more features or functionalities described
in the context of such absolute terms.

[0006] Embodiments of the invention may be operational
with numerous general purpose or special purpose computing
system environments or configurations. Examples of well
known computing systems, environments, and/or configura-
tions that may be suitable for use with the invention include,
but are not limited to, personal computers, server computers,
hand-held or laptop devices, multiprocessor systems, micro-
processor-based systems, set top boxes, programmable con-
sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above systems or devices, and the like.

[0007] Embodiments of the invention may be described in
the general context of computer-executable instructions, such
as program modules, being executed by a computer and/or by
computer-readable media on which such instructions or mod-
ules can be stored. Generally, program modules include rou-
tines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. The invention may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed computing environment,
program modules may be located in both local and remote
computer storage media including memory storage devices.
[0008] Embodiments of the invention may include or be
implemented in a variety of computer readable media. Com-
puter readable media can be any available media that can be
accessed by a computer and includes both volatile and non-
volatile media, removable and non-removable media. By way
of'example, and not limitation, computer readable media may
comprise computer storage media and communication
media. Computer storage media include volatile and nonvola-

Jan. 2, 2014

tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can accessed by computer.
Communication media typically embodies computer read-
able instructions, data structures, program modules or other
data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired connec-
tion, and wireless media such as acoustic, RF, infrared and
other wireless media. Combinations of the any of the above
should also be included within the scope of computer read-
able media.

[0009] According to one or more embodiments, the com-
bination of software or computer-executable instructions
with a computer-readable medium results in the creation of a
machine or apparatus. Similarly, the execution of software or
computer-executable instructions by a processing device
results in the creation of a machine or apparatus, which may
be distinguishable from the processing device, itself, accord-
ing to an embodiment.

[0010] Correspondingly, it is to be understood that a com-
puter-readable medium is transformed by storing software or
computer-executable instructions thereon. Likewise, a pro-
cessing device is transformed in the course of executing soft-
ware or computer-executable instructions. Additionally, it is
to be understood that a first set of data input to a processing
device during, or otherwise in association with, the execution
of software or computer-executable instructions by the pro-
cessing device is transformed into a second set of data as a
consequence of such execution. This second data set may
subsequently be stored, displayed, or otherwise communi-
cated. Such transformation, alluded to in each of the above
examples, may be a consequence of, or otherwise involve, the
physical alteration of portions of a computer-readable
medium. Such transformation, alluded to in each of the above
examples, may also be a consequence of, or otherwise
involve, the physical alteration of, for example, the states of
registers and/or counters associated with a processing device
during execution of software or computer-executable instruc-
tions by the processing device.

[0011] As used herein, a process that is performed “auto-
matically” may mean that the process is performed as a result
of machine-executed instructions and does not, other than the
establishment of user preferences, require manual effort.

[0012] Embodiments of the invention may be referred to
herein using the term “Doyenz rCloud.” Doyenz rCloud uni-
versal disaster recovery system utilizes a fully decoupled
architecture to allow backups or capture of different types of
data, e.g., files, or machines, using different sources and
source mechanisms of the data, and to restore them into
different types of data, e.g., files, or machines, using different
targets and target mechanisms for the data. rCloud may use

US 2014/0006858 Al

different types of transfer, transformation, or storage mecha-
nisms to facilitate the process.

[0013] As applied to disaster recovery, rCloud may include
but is not limited to the following functionality and applica-
tion:

[0014] Support for multiple sources and formats of data,
including but not limited to files, disks, blocks, backups,
virtual machines and changes to all of them,

[0015] Sources may include but are not limited to full,
incremental, and other forms of backups that are made at any
possible level, including but not limited to, at a file level,
block level, image level, application level, service level, mail-
box level, etc and may come from or be related to, directly or
indirectly, to any operating system, hypervisor, networking
environment, or other implementation or configuration, etc.
[0016] These sources can reside on different types of
media, including but not limited to disk, tape, cloud, on-
premise etc,

[0017] A simple pluggable universal agent that allows Doy-
enz or a third party to build a provider for each source of data
for a given source solution that allows us to consume that data,
[0018] The consumed data may be transported via the uni-
versal transport mechanism to the cloud where it could be (i)
either stored as the source and/or incremental change, (ii)
applied to a stored instance, (iii) applied to a running instance
at any given point in time

[0019] An universal restore mechanism that can take the
changes, apply them to the appropriate source data in the
cloud and enable rapid recovery, including but not limited to
machine and file level backup restore, direct replication to a
live instance of the data or machine, etc.

[0020] The recovery can be used for failover, DR testing
and other forms of production testing scenario

[0021] This approach allows the ability to provide a cloud-
based recovery service to a much larger portion of the market
segment.

[0022] While the language in this document uses Disaster
Recovery, backups, uploads and cloud as specific examples, it
applies equally to any system where different types of data or
machines are transferred between any number of sources and
targets of different types, for example, digital media instead
of machine backups, or two workgroup networks within the
same IT organization instead oflocal hosts and cloud provid-
ers.

[0023] Examples, of source and target data include physical
machines, virtual machines for different hypervisors or dif-
ferent cloud providers, files of different types, other data of
different types, backups of either physical or virtual machines
or files or other date provided by backup software or other
means. Source and target data may be stored on or transferred
through any media.

[0024] Any word such as machine, virtual machine, physi-
cal machine, VM, backup, instance, server, workstation, com-
puter, storage, system, data, media, database, file, disk, drive,
block, application data, application, raw blocks, running
machine, live machine, live data, or other similar or equiva-
lent terms may be used interchangeably to mean either source
or target or intermediate stage or representation data within
the system.

[0025] Any word such as backup, import, seeding, restore,
recover, capture, extract, save, store, reading, writing,
ingress, egress, mirroring, copying, live data updated, contin-
ues data protection, or other similar or equivalent terms may
be used interchangeably to mean adding of data into the

Jan. 2, 2014

system, moving it outside of the system, its internal transfer,
representation, transformation, or other usage or representa-
tion.

[0026] Any reference to block-based mechanism, opera-
tion, or system, or similar or equivalent may be used inter-
changeably to mean any of the following or their combina-
tion: fixed sized block based, flexible sized block based, non
block based, stream based, or other form of representation,
transfer, operation, transformation, or other as applicable in
the context it is used.

[0027] Any reference to block is equivalent to data, data set,
subset of data, fragment of data, representation of data, or
other as applicable in the context it is used.

[0028] Any reference to cloud, rCloud, system, product,
Doyenz, mechanism, service, services, invention, implemen-
tation, architecture, solution, software, backend, frontend,
agent, sender, receiver or other similar or equivalent term may
be used interchangeably to refer to overall system and set of
mechanisms being described. Doyenz rCloud may include
the following functionality in its implementation:

[0029] Read or write data
[0030] Read or write metadata
[0031] Discover sources, targets, their configuration, other

relevant configuration, including but not limited to network-
ing configuration

[0032] Transport mechanism of metadata, data, and con-
figurations
[0033] Machine execution, including but not limited to

rCloud or 3" party cloud environments, different hypervisors
or other virtualization platforms, or physical machines.

[0034] Data consumption, playback, or any other form of
utilization.

[0035] Backups of data, machine, media, file, database,
mailbox, etc

[0036] Restore of data, machine, media, file, database,
mailbox, etc

[0037] Failover of machine, service, environment, net-
work, etc.

[0038] Failback of machine, service, environment, net-
work, etc.

[0039] Networking, virtualized or other

[0040] Remote and local access

[0041] Storage, with optional provisions, for example, for

compaction, archiving, redundancy, etc.

[0042] Transformation, including but not limited to com-
pression, encryption, deduplication.

[0043] Conversion among different formats, including but
not limited to backup software backup file formats

[0044] Maintain and use multiple versions with ability to
select, delete, and use for other purposes.

[0045] Maintain and use history or logs of any operations of
changes within the system, including as related to any data it
maintains

[0046] Instrumentation, other form of interception, attach-
ment, API integration, other communication, for the purpose
of capturing it into the system or injecting it from the system
into other systems or other purposes

[0047] Doyenz achieves flexibility by decoupling and
allowing pluggable implementations that together collect and
upload to the cloud info about any machine or other data itself
and its configuration, including but not limited to its OS,
network configuration, hardware information, disk geometry,
etc, and independently allowing the translation thru utiliza-
tion of plugins of block-level data from any source that rep-

US 2014/0006858 Al

resents file or block information, (see universal agent archi-
tecture), and utilizing common or specific transport of the
data in to rCloud, where it is stored in the fully decoupled
storage solution, thus allowing Doyenz to break the depen-
dence between the source format, transport, storage format.
[0048] Alternatively, Doyenz stores the source data in the
format it originates from (for example, local backup files
stored in the cloud) and decouples the use of this data by
utilization either universal restore or pluggable translation
layers that translate source data in to block devices usable by
decoupled hypervisors utilized by Doyenz in its rCloud solu-
tion.

[0049] When customers come to utilize their machines (e.g.
in event of loss of the machine due to disaster event or hw/sw
failure, virus attack, etc) stored in the rCloud, this usually
means running the machine in the cloud, or failing-over
machine to the cloud, or receiving the machine to customer
premises, or a hosting provider of the client where the such
machine will be running, or receiving the machine in format
compatible with a local solution chosen by the customer, that
the customer later may restore from. Since Doyenz stores one
or more customer machines in the decoupled format that
represents metadata about the machine(s) and format that
represents customer disks that may be independent from the
source format in which machine was uploaded to the cloud.
Doyenz can utilize its pluggable restore architecture to con-
struct a target machine suitable to run in Doyenz cloud or
compatible to a format chosen by a customer or a format that
is compatible to a 3rd party cloud, and utilizing a transport
plugin to be downloaded to customer premises, or 3rd party
hosting provider chosen by a customer, or 3rd party cloud, or
through pluggable and decoupled LLab Manager solution run
in the hypervisor of choice in Doyenz rCloud. Additionally,
by utilizing decoupled network virtualization and fencing
solution, Doyenz rCloud can faithfully represent a network
compatible with the network described by a metadata col-
lected from a customer by the time machine was imported or
backed-up to the cloud, or a network configuration chosen by
aclient at the time of restore, or network configuration chosen
by the client when machine is running in rCloud, or net
configuration chosen by the client as a target network con-
figuration for transporting to the 3rd party cloud, or 3rd party
hosting provider, or any other place where the machine could
run.

[0050] Such flexible solution or implementation, that
allows any machine/source to be represented in the cloud, is
called X2C (Any To Cloud).

[0051] And the solution or implementation allowing such
machine representation to be executed on any target and/or
transferred to any target is called C2X (Cloud To Any).
[0052] rCloud allows conversions from many formats, rep-
resentations, etc. to many. For example, for backups, this may
include but is not limited to

[0053] P2x—from physical to same or different form
[0054] V2x—from virtual to same or different form
[0055] C2x—ifrom cloud to same or different form

[0056] B2x—from backup to same or different form
[0057] x2P—to physical from same or different form
[0058] x2V—to virtual from same or different form
[0059] x2C—to cloud from same or different form

[0060] x2B—to backup from same or different form
[0061] with example combinations of P2V, V2V, V2P, P2C,

V2C, B2C, C2C, C2V, C2B, C2P, efc.

Jan. 2, 2014

[0062] Blocks will be applied to a vimdk (or any disk format
we would like to support) (same as storage agnostic)
Preferably, all hypervisors can encapsulate entire server or
desktop environment in a file. Commonality of virtual
machine disk formats enables us to support wide area of
formats.

[0063] Failover to any Cloud

[0064] Doyenz’s DR solution (rCloud) allows a special
kind of restore—failover, where the customer’s machine is
made to be available and running in the cloud and accessible
by the customer. rCould solution decouples backup source,
storage, and virtual machine execution environment (Lab-
Manager). This approach allows Doyenz a greater flexibility
of failing back to any cloud solution as a target. As a result,
customer machine may start its life as physical machine, P2C
to Doyenz rCloud (or any other cloud-based storage, like S3)
then fail-over in to the instantly created virtual machine
instance in the ESX virtualized environment as an example
that Doyenz cloud currently utilizes, and then fail back to
customer environment as a Hyper-V appliance (C2V) or other
virtual solutions.

[0065] OS Agnostics

[0066] Doyenz’s DR solution works hand-in-hand with
hypervisor software and therefore any virtual machine type/
OS combination that is supported by a hypervisor is also
supported by our solution.

[0067] Single agent for One machine/Multiple machines/
Multiple types of machines One instance of the agent is
capable of handling multiple machines, both physical and
virtual machines, including hypervisors. In addition, multiple
physical (and virtual) machines, that are backed-up by a 3rd
party standalone backup agent(s), could be handled by the
same Doyenz’s Agent.

[0068] Storage Agnostic

[0069] Since Doyenz’s backup solution is based on storing
blocks of data, we are not limited by any storage provider, it
could be just a SAN storage, NAS storage, any storage cloud,
distributed storage solution, technically anything that is
capable of storing blocks reliably

[0070] Universal Restore

[0071] Doyenz Universal Storage stores data coming from
sources can be described as belonging to at least two different
types of formats—

[0072] storage formats that can be directly consumed as
block based devices

[0073] other possibly proprietary storage formats that for
example originate from 3rd party backup providers and are
stored unchanged or modified on Doyenz storage

[0074] other formats that may be translated to and from the
above
[0075] The act of restoring, failing over or otherwise

executing said machines in Doyenz or third party clouds may
involve one or more of the following steps:

1. Configuring a virtual or physical machine in the destination
lab to conform to the metadata configuration that was cap-
tured at the time of backup and describes the source machine
(e.g. amount of memory, number and type of disks, bios
configuration etc. . . .)

2. Exposing the stored disk data that corresponds to the
restore point in time in a format that is directly readable as
disk by the target lab.

Doyenz may utilize a plug-in that is aware of the target lab api
(either doyenz or third party) on one hand, and metadata
format stored in doyenz on another hand, and using the target

US 2014/0006858 Al

lab api can configure a virtual or physical machine that con-
forms to original source configuration.

Where the source data is stored on Doyenz storage as block
device, the block device may be directly attached as disks to
the target lab using standard lab apis and standard remote
disks protocols, e.g. iSCSI, NFS, NBD etc.

Where the lab is local to doyenz, such block devices can even
be represented as locally attached files, e.g. VirtualBox based
lab on ZFS based storage

Where the source data is stored not as a block device, e.g., in
a proprietary 3rd party format, Doyenz implements several
strategies to make the source data universally accessible by
the target lab including but not limited to:

[0076] 1. Using original 3rd party software to perform a
3rd party restore to a destination block device—in this
case the 3rd party software is either driven through an
API it makes accessible or Doyenz utilizes proprietary
doyenz automation (prey. patent) to functionally drive
the restore process through the Ul in a specially pur-
posed virtual machine.

[0077] 2. Where a 3rd party software provider provides
mount tools that can mount a backup file to a local
machine, such tools can be used to mount the backup file
and represent the resulting mounted disk as a remote or
local disk to the lab.

[0078] 3. Where a 3rd party backup software provider
provides mount tools that can mount a backup file to a
local machine, doyenz can utilize methods described in
universal agent disclosure to scan the mounted disk and
translate/copy the blocks to an intermediate destination
block level device that is compatible with destination lab

[0079] 4. Where a third party backup software provider
provides integration into a hypervisor, (e.g. storagecraft
virtaulboot), doyenz can utilize a version of doyenz lab
that is compatible with said 3rd party provider’s choice
of hypervisor and therefore make lab compatible with
the source.

[0080] 5. Otherwise any form of interception, integra-
tion, or instrumentation, or similar may be used to cap-
ture the needed data and configuration

[0081] Where any transformation is performed on the
stored disks, such that the target lab’s hardware differs from
hardware abstraction layer deployed in the guest operating
system on the source machine, and the operating system does
not support universal hardware (e.g. windows) a special pro-
cess of adjusting said source to be run in a lab with different
hardware or hypervisor is performed.

[0082] In those steps, the source disks in the target format
are mounted either locally in storage or in destination virtual
machine or in special virtual machine where a specially
designed piece of software replaces hardware abstraction
layer and installs drivers to make the machine compatible
with target lab.

[0083] Where 3rd party software used in restore process
already provides such functionality it can be used as part of
restore process by running the restore itself on the target
physical or virtual hardware to automatically convert restored
disks to be compatible with target physical or virtual hard-
ware.

[0084] Restore/recovery may be implemented for different
types and formats of data or machine, including but not lim-
ited to, file level, disk, machine, running machine, virtual
machine, recovery directly into a live running instance.

Jan. 2, 2014

[0085] Universal Failback

[0086] The act of failback differs from the act of restore or
failover in that Doyenz could provide a machine that is either
stored in doyenz storage or is running in Doyenz lab in a target
format and/or to a target destination of customer’s choosing
and doesn’t necessarily require running the machine in Doy-
enz or any other lab.

[0087] Incase where doyenz storage used for regular store
of the machine source or used as a transient translated format
for running machine in the lab is compatible with target
format required by customer, the source or transient storage is
then transfered to the customer or to 3rd party cloud w/o any
transformation applied to the data.

[0088] Where target format is different from the format that
the source is stored in the Doyenz storage, and Doyenz stores
the data in block-based format, and destination

[0089] In addition, any mechanism or method that applies
to a backup and restore may apply to failback.

[0090] Example transformations and usage depending on
available formats.

Doyenz format Target format Actions

same as target same as source Download

3rd party 3rd Party Mount and perform
mountable backup

3rd party 3rd Party Mount both and perform
mountable mountable block-level copy

3rd party 3rd Party Restore to a mounted
non-mountable mountable 3rd party target

3rd party 3rd Party Restore to Doyenz block-

non-mountable level storage and backup
from Doyenz storage using

3rd party’s backup software

non-mountable

Block level Block-level Transfrom header or
with different metadata and download
header or other
metadata
3rd party Block level Mount and perform
mountable any block-level copy
3rd party Block level Restore to a mounted
non-mountable any block-level
Block level Different perform block-level
block-level or copy
mountable 3rd
Block level Non-mountable ~ Mount and backup from Doyenz
3rd party storage using 3rd party’s
backup software
[0091] When the destination is a block-level format (or 3rd

party cloud) and as such where 3rd party software is not
required to perform transformation (if any), the actual target
data is not necessarily stored in Doyenz cloud but could be
stream directly

[0092] as downloadable stream to customer destination
[0093] or pushed as an upload stream to 3rd party cloud,
[0094] or downloaded by Doyenz Agent as any block-level

format, where the agent assumes responsibility to provision
set data either to locally available physical disks or directly to
the customer’s hypervisor of choice

[0095] Autoverified Backups

[0096] Doyenz may apply multiple levels of verification to
make sure that at any given point in time backups and or
imports and or other types of uploads into doyenz or any other
service that implements doyenz technology where such back-
ups uploads or imports in any way represent a machine are
recoverable back into a machine representation whether it is

US 2014/0006858 Al

a physical machine or virtual machine or a backup of such or
any other machine recovery type.

[0097] All verification steps are optional. All verification
steps may be performed before, during, or after the relevant
other steps of system’s operations. All verification steps may
be performed in their entirety or partially.

[0098] Upload verification, preferably:

[0099] a. Every upload may be broken down into blocks
ak.a chunks and each chunk may be assigned a crypto-
graphic or other hash value and/or checksum or finger-
print value.

[0100] b. A running checksum for the entire file/stream/
disk being uploaded can also be calculated

[0101] c. The server can validate that the hash/checksum
values for uploaded data can be independently recalcu-
lated and compared to the data calculated on the cus-
tomer side to ensure that no discrepancy occurs during
transmit.

[0102] d.Incaseofdiscrepancy the agent may retransmit
the chunks where crc or checksum or fingerprint or hash
values are in a mismatch

[0103] e. Before applying incremental changes, doyenz
service responsible for copying uploaded bits may roll
back to a previously known good snapshot, thus ensur-
ing that any accidental writes or changes to the filesys-
tem can be removed prior to apply.

[0104] £ Upon apply a new filesystem snapshot can be
taken, thus ensuring that, preferably
[0105] 1. The data is safely committed to disk
[0106] 1ii. The data cannot be tampered with (or the

state before tampering is recoverable) once on disk
and next apply has a reliable base to apply to or such
base can be reconstructed.

[0107] Recovery verification, preferably:

[0108] g. Doyenz may employ a verification stage to
verify recovery of every upload or of selected uploads
(or backups or imports)

[0109] h. The verification stage is part of Doyenz plug-
gable architecture and backup providers (whether Doy-
enz or ThirdParty) can add verification steps

[0110] i. By default, generic verification step includes
attaching the uploaded disk to a virtual machine, and/or
verifying that it successfuly boots up and/or verifying
that the os is initialized. In case of need, hardware inde-
pendent adjustments are performed on the OS to ensure
its ability to boot (e.g. replacement of HAL and instal-
lation of drivers).

[0111] j. Any adjustments or changes to the disk as the
result of the boot can be discarded upon completion of
verification using a temporary snapshot of the target
filesystem (or other COW (here and elsewhere: copy on
write) or similar mechanisms, or otherwise by creating a
copy prior to verification)

[0112] k. In case verification fails, the backup can be
chosen to not be allowed to complete, or other remedia-
tion steps can be taken to ensure validity of backups and
if necessary can include notification of customers or of
staffetc. . . .

[0113] 1. In case a disk is not a block device, but the
backup provider provides a means by which the backup
files can be mounted as block device, the plug in for the
particular backup provider can be used to allow mount-
ing and performing similar verification as a block based
device

Jan. 2, 2014

[0114] m. In case a disk is not a block device but the
backup provider provides tools for chain verification,
verification plugin can perform chain verification as its
verification step

[0115] n. In case the backup provider provides other
means of backup correctness verification, the plug in
will utilize those in the same general flow of apply-
>verify->finish or wherever the verification plugin is
called, or on demand through the interface or through
public doyenz api to make sure that every backup (or any
particular backup) is recoverable

[0116] o. Inaddition, if no other verification is sufficient
or possible, Doyenz rCloud can perform an actual B2C
or V2C or any other type of conversion of the backup
files in question to mountable disk format to ensure
successful recovery and upon completion of B2C pro-
cess can perform a virtual machine verification.

[0117] p.Inaddition, Doyenz plug in architecture allows
Doyenz and 3rd party providers, including customers
themselves to provide verification scripts. E.g. if cus-
tomer has a line of business application and can provide
a script that will ensure that line of business app is
running upon system boot, doyenz verification process
will execute this script during verification stage to make
sure that the LOB application is performing properly
upon every backup

[0118] q. Additionally, by providing multi tier plug in
architecture to the verification process, Doyenz allows
for business to provide tiered pricing options for differ-
ent levels of verification, starting from basic—e.g. CRC/
Hash upload verification and all the way to LOB specific
verification scripts.

[0119] r. In addition, LOB specific verifications can be
produced by Doyenz for popular applications, e.g.
Exchange servers, SQL servers, CRM systems etc, to
verify commonly used software is functional in the
cloud version of the machine

[0120] s. In addition, those generic verification scripts
for popular or otherwise chosen applications can be
made customizable by customers, e.g. for exchange
server, customer may provide a particular contact to be
found, or a rule that a recent e-mail must exist etc. . . .

[0121] Fingerprint Map Reduction for Dedup

[0122] One of the ways to provide for uploads of large
amounts of data is to represent each block or chunk of data
being transferred with a unique hash or fingerprint or check-
sum value where such value is algorithmically calculated
from the source data or otherwise identifies with some cer-
tainty the source value and compare those fingerprint/hash/
cre etc values with a known list of previously transmitted or
otherwise already existing values on the server side. How-
ever, to provide a hash value that one can be confident enough
is truly unique; the hash values need to be significantly large.
[0123] It is usually accepted (though not required for the
purpose of current invention) that such values should be in the
order of 128 to 512 bits, or 16 to 64 bytes.

[0124] In addition, the likelihood of a block (or any other
piece of data) being found to already exist, thus making
deduplication efficient is in inverse proportion to the size of
the blocks being hashed/compared. That is the larger the
block, the more likely that every block in the transmit has
experienced some level of change and will therefore have to
be transmitted. On the other side, reducing the size of the
block can lead to an unfavorable relation between the size of

US 2014/0006858 Al

the hashed values compared to block sizes. For example, if
one were to choose blocks of 512 bytes for best deduplication
and 512 bytes hash size for best confidence and lack of col-
lisions, the size of the hash is equal to size of original data, and
therefore there is no advantage in using it at all.

[0125] Therefore, we propose a method of optimistic hash
size reduction for the purpose of deduplication of data
uploads.

[0126] In this scheme, the size of hash algorithm chosen
can be (though not required to be) optimistically small, e.g. a
standard CRC of 32 bit. This provides the benefit of fast
calculation of hash and small sizes of hash values, also pro-
viding for fast exchange of CRC maps between the server and
the client.

[0127] While this can lead to an increased rate of collisions,
if the CRC or the hash differ, we can be guaranteed that the
blocks are indeed different.

[0128] Given that they differ with mathematical certainty,
we can transfer those blocks to the server w/o incurring the
cost of storing and calculating larger hash values.

[0129] The rest of the blocks have the potential to exist on
the server, but can also be a collision that was otherwise
undetected because of relatively small size of the hash.
[0130] Next step of the process can now collect ranges of
data comprising of multiple blocks that are suspect to be the
same and perform validation of their equivalence either by
utilizing tree hash algorithm (see description of tree based
hashing dedup) or by calculating a single large size hash for
every range. Those ranges of blocks that prove to be equal
even after a significantly large hash comparison need not be
transmited, while blocks that have proven to contain at least
some collision using large block comparison need to be fur-
ther examined.

[0131] Depending on the size of the remaining ranges, one
can iterate through the process by using either next level in the
tree using tree based dedup or by increasing the hash size one
more step and repeating the entire process for each suspect
range.

[0132] This provides for minimal data to be calculated and
exchanged between the client and the server for the most
efficient transfer of incremental changes in large files.
[0133] Tree Based Hashing for Optimal Change Transfer
[0134] When using hash (aka fingerprint or checksum)
based fingerprint files to deduplicate transfer of large files, the
fingerprint files themselves can be of significant size. E.g.,
using a 256 bit hash algorithm, on a deduplication block of
e.g. 4 kbyte an example 2TB disk would produce a hash
fingerprint of 16 GB. Exchanging that much information for
the purpose of figuring out which blocks have changed can
potentially be larger than the entire change to be transferred.
[0135] One solutionto such problem is to hold alocal cache
of'the fingerprint file. As long as this file is kept up to date and
its validity can be verified (e.g. by exchanging a single hash
for the entire fingerprint file) the local copy can be used as a
true reference and blocks can be hashed and compared indi-
vidually to the local fingerprint file.

[0136] If however local cache space is limited, the entire
hash structure would need to be exchanged if each block is
represented by a single hash. Assuming a limited hash size
that can fit in memory, an alternative approach to identify
changed blocks is a tree of hashes. A tree of hashes is a tree
where each terminal node is a hash value of a particular block
(e.g. 4 k size block), and each parent node is either a hash of
the data of all its children or a hash of hashes of all its children.

Jan. 2, 2014

Hash of hashes differs from hash of all children by the fact
that the source data used to calculate the hash of the larger
block is the hash of the smaller blocks it is comprised of,
whereas in the other case, the entire larger block source data
is used to calculate the hash.

[0137] Taking forexample available in memory (or on disk)
buffer space of a little over 1 MB (and for example 4 kb
blocks), one can read 256 blocks of data and fit it entirely into
buffer. As they are read (or after they are read using a separate
scan), a tree of hash values can bebuilt such that the lowest
level of the tree contains hash values for each (e.g. 4 k) block,
next level up containing hash values for e.g. each 8 k of blocks
etc.

[0138] The overhead size of such hash tree would be (as-
suming binary tree, 256 bit hash 4 k block size) would be a
total of 16 kb, where the root node of the tree would be a hash
of the entire 1 MB.

[0139] This tree would correspond to a branch of a hash tree
of the entire disk (or source data) that resides on the server.
(e.g., in diagram below, the green subtree is for example a
branch that corresponds to the first buffer, purple branch
corresponds to next buffer read, where as all the nodes
together comprise the hash tree of the entire transmission (or
file/upload))

[0140] The branch location in the global tree is determined
by buffer size (e.g. Imb) and offset in the disk (e.g. the purple
branch is offset for example by lmb from the green branch in
the diagram above), thus each client can use different buffer
size depending on available memory and disk space and still
utilize the same generic branch exchange algorithm.

[0141] The branch (or a tree of the buffer) will then be
streamed to the server in BFS order. As the server starts
reading the stream, first bytes represent the hash of the entire
buffer. In case they are equal to the hash of the appropriate
root of a branch in full tree representation, the server can
immediately stop transmit with a response to the client stating
that the branches are equal and next buffer can be filled. Such
response can be done either synchronously (that is the client
waits for a response after each hash or several hashes being
transmitted, or after each bfs level, or any other number of
hashes, or as an asynchronously read response stream, that is
the server responds as the client uploads the hashes, w/o
waiting for the entire transmission to end, and potentially as
soon as the server has replies available after comparing with
a local representation of the hash tree)

[0142] In case hashes at the root of the branch differ, the
streaming continues, and the next two hash elements in the
stream each represent a hash ofhalf'the buffer size (assuming
binary tree) (the streaming does not necessarily need to wait
for response, but can continue independently). Once again,
the server continues to respond (either in line, or synchro-
nously). E.g. if the first half differ and the other is equal, the
server will respond instructing the client to continue traversal
only on the first half of the branch. Server responses can be as
short a single bit per each hash value. Continuing to go down,
a bitmap of all blocks that actually differ will be negotiated,
and the upload of actual data can begin (or be done in parallel
as the blocks are identified).

[0143] Worst case scenario overhead for such algorithm,
assuming the disk has completely changed is 2N where N is
the size of a flat fingerprint file. However, for buffers that have
not changed, the overhead is as low as a size of a single hash
each. Assuming 5 percent change on each backup, the infor-
mation that needs to be exchanged on a 2TB disk size to fully

US 2014/0006858 Al

identify changed blocks, w/o requiring significant buffer
space on the client side would amount to (assuming 256 bit
hash, 4 k blocks) is a mere 1.6 GB, whereas the changed data
size is 102 GB.

[0144] Plugin Based Cloud Architecture for Providers of
Specific Decoupled Functions such as Restore, Hir, Automa-
tion, Etc.

[0145] In rCloud, some of the goals include the support of
multiple representations of customer machines in the cloud,
backing them up (or otherwise uploading/transmitting) into
the cloud, verify such backups, run such machines in the lab,
fail over to the cloud in case of disaster recovery and fail back
to the customer environment when the event is over. In the
real world of IT, customers have a diverse multitude of
machine types and local backup providers that may be uti-
lized in the course of their IT operation. Those include but are
not limited to:

[0146] Physical machines with OS directly on the physical
hardware

[0147] Virtual machines running in a variety of hypervisors
[0148] Local backups by multitude of third party backup

providers with different backup strategies

[0149] Machines hosted in hosting environments
[0150] Virtual machines running in a third party cloud
[0151] Creating a regularly updated cloud based image of

such machine sources is a conversion to the cloud. (X2C).
[0152] Doyenz therefore performs standardized operations
on nonstandardized multiverse of sources.

[0153] By standardizing the operations, and then applying
aplugin api to each or some of the operations, we can support
the multiverse of sources by either minimal engineering
investment in each new source of machine coming into the
cloud, or allow third party providers to adjust their own solu-
tions to be compatible with Doyenz.

[0154] Thus doyen can decouple—Source from Transport
from Storage from Hypervisor from Lab Management etc. . .
. and each can be independently adapted.

[0155] This allows us to change e.g. the best available
hypervisor platform regardless of the type of VM customers
chose to run etc.

[0156] Taking for example the process of daily backups
[0157] The preferably generalized process comprises one
or more of the following—

[0158] If required, convert or transform the source where
blocks of data can be accessed or received from the source
[0159] Identify changed blocks on geometry adjusted
block disk representation of the source device

[0160] Upload changed blocks to Doyenz

[0161] Apply said changes to a snapshotted (or otherwise
differential, e.g. journal) version of raw disk representation in
the cloud

[0162] Verify that said machine contains a good backup.
[0163] In this case the identification and access to changed
blocks may differ between each source of machine coming
into the cloud, while the transport mechanism to the cloud
may remain the same.

[0164] Inaddition, inthe above example, each provider can
require different type of verification, e.g. to verify that a
StorageCraft backup is succesfull one needs to perform chain
verification, or boot a VM etc.

[0165] More so, each customer can utilize the pluggable
interface to provide specific verifications of their LOB appli-
cations or of (their) server functions. Such pluggable verifi-
cation can give customers the guarantee that their appliances

Jan. 2, 2014

are in good operating condition in case of need for failover.
That ability can also create a market for third party verifica-
tion providers, or third party providers of HAL/driver adjust-
ments for windows (a process required to boot a machine on
a hypervisor that was not originally built on same hypervisor
or is originally a physical machine).

[0166] The decoupled process of HAL/driver adjustments
allows us to match any source to any hypervisor, thus allow-
ing doyenz cloud itself be provided by a third party or on
different hypervisor or physical platform, e.g. if doyenz
wishes to run appliances on a foreign (non doyenz) cloud, the
pluggable nature of doyenz architecture allows us to replace
the plugin that adjusts windows machines to the target’s cloud
hypervisor and utilize it instead of local hypervisors.

[0167] Decoupling of storage and treating all/most sources
as block devices allows Doyenz the flexibility of failing back
to any target. That is a customer machine may start their life
as physical machine, P2C to doyenz, then failover in the cloud
and run in e.g. ESX virtualized environment that Doyenz
cloud currently utilizes, and then fail back to customer envi-
ronment as a Hyper-V appliance. (C2V)

[0168] Universal Prerestore

[0169] A restore of a source machine is a process by which
such machine becomes runnable in the cloud or otherwise
made executable and accessible by the user.

[0170] To run a machine in the cloud, when run on a hyper-
visor, the hypervisor (or physical machine if run on physical
machines) must be able to access a disk in a format it can
understand, e.g. raw block disk format, and the OS on this
machine needs to have appropriate hardware abstraction layer
and drives to be bootable.

[0171] Since Doyenz decouples the source format from the
storage format and from the execution environment, the
restore itself is the process of applying such HAL and driver
translation and then attaching the disk to a hypervisor VM (or
to physical machine) that can then execute it. Due to such
decoupling, the restore itself is uniformly applicable regard-
less of the source that provides the storage format that is
readable by the hypervisor (or other execution environment).
[0172] Supporting multiple sources universally for a pur-
pose of restore is therefore in part a process of providing a
common disk representation regardless of source.

[0173] This is obtained utilizing pluggable architecture.
For most providers, at the client side, changes on the source
machine or backup would be translated by the plug-in to a list
of changed blocks, and those changed blocks would then be
uploaded to rCloud to be applied to the common representa-
tion, thus making such sources restorable.

[0174] Alternatively, for sources that do not implement
such plug-ins at the client side, a doyenz side plug in can
provide a translation layer that will provide a mountable
block device representation of a backup source or an api that
the upload process can utilize to otherwise access blocks.

[0175] Such plug-in can utilize e.g. third party backup pro-
vider mount driver to present the chain of backup files as a
standard block based device, or alternatively do a full scan
read of such chain and write the results into a chosen doyenz
representation of a block device mountable by hypervisors/
execution environments. In addition, doyenz plug in can
accept both pull and push modes, and can therefore represent
itself as a destination for a third party restore or conversion, be
that destination a virtualization platform or a disk format,
whereas doyenz can read the data that is being pushed to itand

US 2014/0006858 Al

transfer as blocks of data, with or without necessitating any
changes in 3rd party software.

[0176] Individual File Restores on a Block Based Backup

[0177] Since doyenz utilizes decoupled storage, all backup
sources are stored in a mountable block based device repre-
sentation.

[0178] As long as the storage system has the appropriate
file system drivers (NTFS for windows etc), the device can be
mounted locally for individual file extraction.

[0179] A listing of files in the file system can either be
pre-opbtained at the time of backup, or be retrieved on the
cloud after the device was mounted.

[0180] A web based interface provides the listing of the
files in a searchable or browsable format, where such listing is
sourced either from a pre-obtained listing or online from the
file system.

[0181] A usercan chose afile or a directory he is interested
in and the file is accessed from the mounted disk and provided
in a downloadable format to the user.

[0182] Instant Availability of Backed Up Machines

[0183] Every machine in the cloud can be stored in a snap-
shotted chain of raw block devices, thus a restore can be a
process of mounting such file system, adjusting it’s hardware
abstraction layer and then mounting it on a hypervisor/execu-
tion platform to become accessible.

[0184] Notably, none of the processes described above
require time or processing that is necessarily related in any
way to the size of the backup or source machine, and can
therefore be done in constant or close to constant time, as
opposed to a traditional full backup restore, the length of
which is dependent on the size of the source machine or the
backup files.

[0185] In addition, utilizing a cloneable COW file system,
such mounting can be performed on a clone of a snapshot,
thus allowing simultaneous restore from multiple restore
points, simultaneous concurrent restores from the same
restore point all the while continually providing new backups
or other services (e.g. compaction) on the source snapshotted
file systems w/o interfering with restores or requiring the
restores to be queued in line past for other operations to
complete

[0186] Instant Failover

[0187] A failoveris a special kind of restore where machine
is made to be available and running in the cloud and acces-
sible by the customer.

[0188] Utilizing instant restore and availability, instant
failover is made possible

[0189] Snapshot of the Applied Blocks Will Allow Point in
Time Recovery Point

[0190] Usage of Snapshot/Clone/Copy on Write (COW)
Based File Systems for Compaction/Retention Policy/Instant
Spinoff of Multiple Instances for Block Based

[0191] Doyenz represents each individual volume on the
source machine (or a volume on a source machine backed up
by a local backup third party provider) as a single block
device (or virtual disk format) accessible and mountable to a
hypervisor.

[0192] Doyenz can utilize snapshot based file system, such
that each backup is signified with a snapshot. When previous
backup has a snapshot, we can overwrite blocks directly on
the block device representation, w/o changing or modifying
snapshots in any way since each change is using a COW and
effectively creates a branch of the original during writes.
Therefore, when a customer wants to restore, each and every

Jan. 2, 2014

saved restore point is individually available for mounting on
the target hypervisor or the local OS (for e.g. file based
restores).

[0193] To allow write modifications on the restored
machine, Doyenz clones said FS snapshot instead of mount-
ing it directly. Such clone operation performs another branch
creation, so writes going to the block device representation
can be seen in the target clone, but do not change the data on
the original snapshot.

[0194] Thus an unlimited number of clones can be per-
formed on an unlimited number of snapshots (restore points)
all to be simultaneously restored.

[0195] Same mechanism allows for a deletion of individual
restore points, thus compacting the space used by the chain
without the need to do a full re-chain or rebasing of the
backups. It is achieved by collapsing a snapshot that repre-
sents an older (or undesirable) restore point. Such operation
on COW file system will cause the branched changes to be
collapsed down to the previous snapshot. In case there is no
difference, the change that no longer exists will not utilize any
space. Since Doyenz can assign restore points to individual
snapshots, a compaction is as simple as removing an indi-
vidual file system snapshot on a COW file system.

[0196] Alternatives to Snapshot/COW Approach

[0197] Here and in every other parts where snapshot/COW
file system is mentioned, other alternatives to achieve change
tracking can also be used. For example, where snapshots are
used to allow access to individual restore points, the same can
be achieved by utilizing journaling mechanisms, or writing
each difference in a separately named file etc.

[0198] While utilizing snapshot/COW file system may give
an advantage of constant time execution on certain operation,
it is not a necessary requirement for the invention, as long as
each difference in restore point and in restored/executed
machine representation can be individually accessed. Thus
any mechanism allowing for branching of writes, including
but not limited to version control systems, file systems, data-
bases etc. can be utilized to achieve same goals.

[0199] Blocks Provider can be Generic

[0200] The Doyenz DR solution can be based on a defined
generic programmatic interface which provides blocks to a
consumer.

[0201] Different implementations of blocks providers can
be implemented by different backup software vendors.
[0202] The blocks provider can provides a list of blocks
which are the disk blocks that should be backed up and
represent a point in time state of a disk

[0203] The list of blocks may be provided in the following
forms:
[0204] t. Full disk backup blocks
[0205] . Full disk used backup blocks
[0206] v. Incremental changes blocks from previous
backup
[0207] Ablockin the provided list of block may contain the

following information

[0208] w. Block offset on original disk
[0209] x. Block length
[0210] y. Block bytes (or enough context information to

retrieve the bytes from a different location)

[0211] The blocks provider should be able to provide
disk geometry information (cylinders, heads, sectors,
sector size)

US 2014/0006858 Al

[0212] Block size may be dynamic

[0213] =z For optimized performance the block size pro-
vided may be different and change based on various
characteristics

[0214] Doyenz may accept non-block, e.g., stream based,
data, i.e., any data format that otherwise can be utilized by the
rest of the system.

[0215] Blocks can be pushed to a different cloud storage
provider (e.g., S3, EBS)

[0216] The storage of the blocks file can be at any cloud
provider which supports storage of raw files or other formats
supported by the system.

[0217] The backup agent can push the raw blocks to a
storage cloud and notify Doyenz DR platform to pull the
backup

[0218] Doyenz DR platform can pull the blocks files from
that cloud storage and perform the x2C process.

[0219] Blocks Provider can be Developed by 3rd Party and
Hook into Doyenz DR Platform.

[0220] Block providers can hook to Doyenz backup agent
by using defined interfaces the agent provides

[0221] This particularly means that the base agent distrib-
utable binary does not have to contain the blocks providers for
a certain backup solution.

[0222] The3rd party backup product may allow the Doyenz
agent to discover it and dynamically transfer the needed
binary code for the blocks provider.

[0223] Some code authenticity check can be made to ensure
code validity and safety and to prevent malwares from affect-
ing the backup.

[0224] Blocks Provider May Push/Pull the Blocks Based
on Schedule or Continuously

[0225] The programmatic interface used by blocks pro-
vider can be support both pull/push:

[0226] aa. Pull: the provider can returns blocks to the
consumer when requested. It can be implemented in
such a way that every call returns the next block.

[0227] bb. Push: the provider can send all of the blocks to
the consumer when they are available.

[0228] For resume use case—the provider can start provid-
ing the blocks from different block offset

[0229] Conversion of Other Formats, Including Tape
Based, to Block Based Backups

[0230] The provider can provide blocks which are not
explicitly originated from a disk based format (for example
3RD PARTY BACKUP3rd Party Backup file format).
[0231] The provided blocks can appear as if they originated
from a disk based format, e.g.: have block offset, length.
[0232] Converting Backups to Raw Disk Block Devices
(Online and Offline)

[0233] Processing the blocks from the backup in prepara-
tion to DR VM usually means converting them to a certain
Virtual Disk format (e.g. vindk, vhd, ami . . .)

[0234] A more generic approach is to write the blocks to a
raw blocks file format based on the blocks offset.

[0235] Different hypervisors can then mount the blocks file
asadevice ifit is expose to them in a format they support (e.g.:
iSCSI,NBD, . ..)

[0236] File Formats for Multi Block Sources

[0237] Thebackup solution can use a file format to describe
all of the blocks that needed to be applied to target VM in the
cloud

[0238] That file may refer blocks from multiple sources
(e.g.: raw block file, previous backup disk etc.)

Jan. 2, 2014

[0239] This can reduces the need to upload blocks which
were previously uploaded to the cloud if there is a way to
identify them.

[0240] Hypervisor Agnostic Cloud

[0241] The DR solution can recover backups of machines
on any hypervisor by using standard interfaces to manage the
VMs (e.g. Rackspace Could API)

[0242] This can be achieved for example by using the disk
blocks devices mentioned above

[0243] Plugin Based Architecture (Agent)

[0244] The agent can be based on plugins which provide
dynamic capabilities to different type of agents.

[0245] The plugins can define support for different blocks
provider and other capabilities and behaviors of the agent

[0246] Universal Agent with Block Providers
[0247] Somewhat covered by previous items
[0248] The agent can be shipped with predefined set of

blocks providers

[0249] The agent can be remotely upgraded to support
additional blocks provider based on identified machines that
needed to be backed up.

[0250] 3rd part backup products can interface directly with
the agent and push the blocks provider dynamically as
needed.

[0251] Automatic Failback of Protected VMs (Reverse
Backup, C2V)

[0252] Failback can be requested by user or otherwise ini-
tiated

[0253] Backend prepares a VM to be downloaded for fail-
back

[0254] Agent can then downloads the VM and deploys to
specified target

[0255] Agent may coordinates with backend to automati-

cally provide deltas of the running DR VM to complete the
failback on customer site.

[0256] Backend shuts down the DR VM when it has the
right conditions have met (e.g. can determine that the time to
transfer the next delta went under a certain threshold)
[0257] Agent can applies the deltas at customer at start the
VM back on customer site

[0258] Files Block Based Backup

[0259] Block based backup concept should not be limited
to full disk backups

[0260] It can be possible to implement block based backup
for specific files/paths on a file system

[0261] Using file system driver the backup provider can
trace write to certain files and save changed blocks informa-
tion

[0262] Backup blocks provider for file based backups pro-
vides the blocks of the changed files

[0263] There could be additional mechanism tracks file
meta data changes like ACLs, attributes etc.

[0264] Change Blocks Detection
[0265] Significance
[0266] Cloud DR solution may upload backups of incre-

mental changes based on the customer recovery point sched-
ule.

[0267] Since in many cases only a WAN link is available
between the customer and the Cloud datacenter minimizing
the uploaded size can significantly improve SLA (for
example—meet a daily recovery point protected in the
cloud).

[0268] Inorderto upload only incremental block changes a
block change detection mechanism can be implemented.

US 2014/0006858 Al

[0269] Some of the approaches for detecting changed
blocks are described below.

[0270] Using Backup Product Changed Blocks Tracking
APIs
[0271] Some backup products provide APIs which can be

used to retrieve a list of changed blocks from a certain point in
time.

[0272] Forexample VMWare provides a set of APIs (vStor-
age API, CBT) for that purpose

[0273] Evenwhen such specific APIs exists—limitations to
their functionality may cause them to provide a super-set of
all changed blocks (e.g.: vStorage API CBT might in some
cases provide a list of all blocks on disk instead of just the
blocks which were changed). Therefore in order to minimize
upload size a dedup mechanism can be applied as well.
[0274] Comparing Mounted Recovery Point to Signature
[0275] Insome cases the information of which blocks have
changed on a disk is not directly available to Doyenz backup
agent (e.g. StorageCraft ShadowProtect backup files, Acronis
True Image backup files, backups which create VMWare
vmdks etc). This is because the blocks information is stored in
proprietary backup files with no programmatic which support
accessing the changed blocks directly.

[0276] In many of those cases it may be possible to mount
the recovery point file chain as raw blocks device (e.g. for
StorageCraft ShadowProtect it is possible to use SBMount
command, VM Ware vmware-mount.exe can mount different
vmdk types).

[0277] As mentioned above—if a signature file is created
for a backup it can be possible to perform changed blocks
detection by comparing all blocks on a mounted raw disk it is
wished to be backed up.

[0278] Since this involve scanning of all disk sectors the
process will be dependent on fast IO available to the scanning
code.

[0279] An optimization for this could be scanning only
sectors that contains used data. This could be obtained by
accessing specific file system APIs and retrieve used blocks
information (e.g. for NTFS it is possible to use $Bitmap file as
a source for used blocks).

[0280] Tracing Writes to Virtual Disk

[0281] Some disk backup products have the capability of
generation VM virtual disks (e.g. ShadowProtect’s Head-
Start)

[0282] This capability can be used by Doyenz agent to trace
information about the blocks as they are written to the virtual
disk by the backup product. Example of such information can
be block offset, block length or even the blocks data.

[0283] Capturing blocks as they are written can be done in
different way. Following are examples:

[0284] cc. Using file system filter driver which traces the
write to certain destination

[0285] dd. Create a custom virtual file system and direct
the Virtual Disk generation to it.

[0286] The virtual file system will proxy writes to the des-
tination file while capturing the blocks information.

[0287] ee. Hook the backup product APIs used to write to
the Virtual Disk and capture block information during
the write.

[0288] In case block data (the actual bytes) were not cap-
tured—a secondary phase can be used to read the blocks from
the Virtual Disk by mounting it using Virtual Disk mounting
tools (for example VM Ware VDDK).

Jan. 2, 2014

[0289] Changed block detection in this case can be done for
example by utilizing a previous backup signature file (com-
pare digest of block against digest at signature file offset) or
any other more sophisticated de-duplication technique men-
tioned in other documents.

[0290] Tracing Reads from Mounted Backup Files Chain
[0291] One of the challenges is determining the changed
blocks in proprietary backup files chain (like for example a
chain of backups from ShadowProtect, Acronis True image)
[0292] A possible approach could be to use a backup chain
mounting tool to mount the chain as a raw disk device
[0293] The next step then can be to perform a scanning of
the new device by reading each block on the disk

[0294] Using a file system filter driver to trace all reads
from the file it may be possible to correlate between the
blocks read from the disk to a backup files in the backup chain
[0295] Once the blocks for each file have been detected
they can be used as blocks for a blocks provider

[0296] The agent can then upload only the blocks that are
referenced by an incremental backup file

[0297] Emulating a Hypervisor Product

[0298] Some backup products have the capability of creat-
ing a VM by connecting to a Hypervisor3RD PARTY.
[0299] Inorderto perform changed blocks detection it may
be possible to emulate the Hypervisor by creating a process
which implements the protocol the Hypervisor uses. For
example ESX emulation can implement the vSphere APIs
and VDDK network calls in order to intercept the calls from
the backup software.

[0300] The emulator can either simulate results to the caller
or to proxy the calls to a real Hypervisor and proxy back the
reply from the Hypervisor.

[0301] While the backup product performs writes to Virtual
Disks—the emulator can capture the block information and
written data in order to generate changed block detection.
[0302] The blocks can by de-dupped to avoid capture of
pre-uploaded blocks to Doyenz datacenter.

[0303] Many of the different mentioned dedup techniques
can be used in this case as well.

[0304] Other Methods

[0305] Other methods of obtaining change data, including
but not limited to interception, integration, introspection, or
instrumentation may be used.

[0306] Allorsome ofthe data may be obtained using any of
the alternative methods.

[0307] Any number of the alternative methods may be com-
bined and used together or alternatively.

[0308] Transmission Layer Deduplication

[0309] Transmission layer deduplication is an approach
where there may be a sender and a receiver of a file, whereby
the sender knows something about data that is already present
on the receiver, and as a result, may only need to send:

[0310] Data that represents something unknown to the
receiver
[0311] Data location information such that the receiver

knows where to place blocks of data (either received from the
sender, or retrieved locally) in order to reconstitute the target
file.

[0312] The idea is that the file (or files) may be either lazily
or eagerly reconstituted at some point in time after the trans-
mission is complete. In the case of eager reconstitution, the
file may be reconstituted prior to saving and reading (al-
though it may be reconstituted into a reduplicated storage). In
the case of lazy reconstitution, only the new block and loca-

US 2014/0006858 Al

tion information data may be saved, and the file may be
dynamically reconstituted from the original sources as the file
is read.

[0313] Block Level Deduplication and Block Alignment
[0314] Deduplication may be performed on the basis of
blocks within the file. In this approach, a fingerprint may be
computed for each block, and this fingerprint may be com-
pared to the fingerprints of every other block in the file, and to
fingerprints of every file in the reference set of files. With a
naive and rigid fixed size block approach, it is possible to miss
exact matches because the reference block may be aligned
against a different block boundary. Although choosing a
smaller block size may remedy this in some cases, another
approach is to use semantic knowledge of how blocks are laid
out in the files to adjust block alignment as necessary. For
example, if the target and reference files represent disk
images, and the block size is based on file system clusters, the
alignment should be adjusted to start at each of the disk
image’s file system’s cluster pools. This may cause smaller
blocks just prior to a change in alignment.

[0315] File Change Representation is Calculated Before
Uploading and Verified when Applied

[0316] A file’s signature itself does not need to be trans-
ferred as part of the upload. Since the sender knows some-
thing about the files on the receiver (through the signature), it
can build a change representation that only:

[0317] Contains new data
[0318] References existing data on existing files
[0319] This representation can be computed and trans-

ferred on the fly. This means that the representation may not
be known before the transfer begins.

[0320] The integrity of the representation can be verified
by:

[0321] sprinkling checksums within the representation
[0322] appending the representation with an information

block that contains:

[0323] {f. A magic number

[0324] gg. The size of the representation

[0325] hh. The checksum of the representation
[0326] or other means.

[0327] On apply, (assuming the starting file is a clone of the
previous version of the same file) the representation may
instruct the receiver to do a combination of one or more of the
following steps

[0328] Leave a block in place

[0329] Replace a block with an existing block from a dif-
ferent file

[0330] Replace a block with an existing block from the
same file

[0331] Replace a block with another from the representa-
tion itself

[0332] Signature Calculation

[0333] File Signatures may be calculated in many different

fashions. For example, signatures can be computed for blocks
in flight, or they may be computed on blocks laying static on
a disk. Also, they may be represented in many different fash-
ions. For example, they may be represented as a flat file, a
database table, or in optimized hybrid data structures.
[0334] Canonical Compacted Signature Computation
[0335] A compacted signature includes a fingerprint and an
offset for each non-zero block in the file being fingerprinted.
In this case, the block size can be omitted because it is
implicit.

Jan. 2, 2014

[0336] One possible approach to computing a compacted
signature is to start from the beginning of the file, and, using
whatever semantic knowledge that is available, align with
logical blocks in the file. For each logical block, compute the
fingerprint. If the fingerprint matches the fingerprint of a zero
block, do nothing. If it matches the fingerprint of a non-zero
block, write out the start of block offset, and the given finger-

print.
[0337] Dynamic Fingerprinting
[0338] Fingerprints can be computed for individual blocks,

or for runs of blocks. A fingerprint for a run of blocks is the
fingerprint of the fingerprints of the blocks. This can be used
to identify common runs between two files that are larger than
the designated block.

[0339] An example of this approach:

[0340] When a match found, store the fingerprint, and track
the offset and size

[0341] Ifthe next block constitutes a match, check to see if
it matches the next block in the previous version. If so incre-
ment the size and incorporate the next block’s fingerprint into
the larger fingerprint

[0342] Continue until a next block in the current file no
longer matches a next block in the previous file.

[0343] Concurrent Signature Calculation on Sender and
Receiver Sides
[0344] Both the sender and the receiver can have a repre-

sentation of the final target file (such as a bootable disk image)
on the completion of a transfer. In the case of the receiver, the
representation can be the file itself. In the case of the sender,
the representation can be the signature of the previous file,
together with the changes made to the signature with the
uploaded data. With this data, an identical signature of the
final file can be computed on both sides, without having to
transfer any additional data. On the sender’s side, the signa-
ture can be computed by starting with the original signature,
and modifying it with the fingerprints of the uploaded blocks.
In the case of the receiver, the signature can be computed the
same way, but it can also be periodically computed by the
canonical algorithm of walking the file. In any case, it is
valuable to have a compact method for determining that the
signatures on both sides are identical. This can be done by
computing strong hash (such as MD5 or SHA) on segments of
both signatures, and comparing them.

[0345] Generational Signatures for Reliable Sender Side
Signature Recovery

[0346] During an upload, a sender may deal with two sig-
natures for each file:

[0347] The signature of the previous version of the file
[0348] The signature of the new version of the file
[0349] The sender may use the signature of the previous

version to identify matches that do not need to be uploaded,
and generate the signature of the current version to assist in
the nextupload. On completion of anupload, the receiver may
need to verify the integrity of the uploaded data. Once it is
verified, the sender can delete the signature of the previous
version and replace it with the signature of the current ver-
sion. Ifanything goes wrong with verification, the sender may
need to use the signature of the previous version to re-upload
data.

[0350] The sender may verify afile’s signature before using
it (by comparing strong hashes as described above). If the
signature is incorrect, it can be supplied by the receiver, either
in part, or in its entirety. In some cases, the on the receiver side
may be reorganized (for example, by changing the finger print

US 2014/0006858 Al

approach, or fingerprint granularity), which would invalidate
all existing signatures. In any such cases, a correct signature
can be re-computed on the receiver via the canonical
approach.

[0351] Generational Signatures for Reliable Agent Side
Signature Recovery

[0352] The agent may store a local copy of fingerprint file
which it scans to determine which blocks require to be
uploaded. However, when uploading blocks, the client may
need to updated said file. In case of transmission error or a full
upload failure, the client may then need to recover itself back
to a state that is comparable to that of the server. This will be
achieved by one of two approaches:

[0353] 1. The updated hashes that may be transferred to
the server may be kept in a local (client side) journal and
only applied to the main file once a validation of suc-
cessful upload has been received from the server

[0354] 2. A new full fingerprint file may be created for
each or some uploads. Old file may be deleted upon
receiving a confirmation from the server that the upload
is successtful and current full hash on the server matches
that on the client. (Generational)

[0355]

[0356] In most cases, uploads may be for small changes to
very large files. Since the files may be very large, their signa-
tures may be too large to be read into physical memory in their
entirety. In order to balance memory usage, a single strategy
my work, but a hybrid approach may be also used for finger-
print lookup. For example, an approach might involve a com-
bination of:

Efficient Signature Lookup

[0357] Caching the signature of a zero block

[0358] Caching the signature of commonly referenced
blocks

[0359] Optimistic signature prefetching

[0360] Tree based random lookup

[0361] Optimistic Signature Prefetching

[0362] In most cases, the next version of the file being

uploaded will share much of the same layout as the previous
version. This means that in the common case, the signature of
the current may be very similar to the signature of the previ-
ous version. To leverage this, the representation builder may
fetch signatures for comparison (from the signature of the
previous version of the file), from the portion representing the
fingerprints of blocks slightly before the current checked
offset, through blocks that fall a small delta beyond this. The
representation builder can maintain a moving window, and
fetch chunks of fingerprints as needed front he previous ver-
sion In most cases, a fingerprint should match either a zero
fingerprint, or a fingerprint in this prefetch cache. When there
is no match, the new blocks fingerprint can be, or may need to
be, checked against some or all fingerprints for the previous
version.

[0363]
[0364] In cases where a random fingerprint lookup is

required, the representation builder can use a tree based
approach. An example of this:

Tree Based Random Lookup

[0365] The signature file is sorted
[0366] Duplicate fingerprints are eliminated
[0367] Aninmemory datastructure is built that contains the

first n bytes of a signature, and the offset in the file where
fingerprints with this prefix begin.

Jan. 2, 2014

Lookup then amounts to:

[0368] Do a hash lookup on the first n bytes of the target
fingerprint against the above data structure (if there is no
match, then the signature doesn’t match any in the previous
version)

[0369] Load the segment of the file that represents finger-
prints with this prefix into memory

[0370] Do a lookup against the loaded segment.
[0371] Secure Multihost Deduped Storage/Transport
[0372] Blocks may be encrypted as they are written to

storage. An index may be maintained to map the fingerprint of
an unencrypted logical block to its encrypted block on a file
system. Blocks can be distributed among storage facilities at
various levels of granularity

[0373] Block by block

[0374] Logical files remain in place on a single storage host
[0375] Logical groups of files remain in place on a single
storage host.

[0376] Unlimited Scalability

[0377] Storage in such a fashion can be scaled without

limit. With a block level granularity, each new block can be
written to a storage host with the most available space. With
less granularity (i.e., files) data sets can be migrated to differ-
ent storage hosts.

[0378] Pre-Balancing Larger Grained Distribution

[0379] In the case of larger grained distribution (e.g. file
based) the load balancer may not know how large the unit will
end up in advance. Series of uploads can grow a distribution
unit well beyond its initial size. This means that a pre-balanc-
ing storage allocator for this level of granularity may make
predictions about how large each unit will grow before allo-
cating storage to it.

[0380] migrations

[0381] Insome cases, larger grained distribution units may
grow to be too large for their allocated host. In this case, they
may be migrated to a different host, and metadata referring to
them may be updated.

[0382] Service/ Application Level/Grain Restore on Block
Based Backup
[0383] To restore a service based on a block based backup

the following steps may be used

[0384] Apply the backup to a disk image

[0385] Mount the disk image and collect the files and meta-
data representing data for the given service

[0386] Perform any necessary transformations to the files
to make them compatible with a target service (e.g., different
versions of the same service, or different services performing
similar functionality)

[0387] Instantiate the new service with the previously col-
lected files and meta-data

[0388] Block Based Backup Using Command Line Tools
[0389] Blocks for a backup may be obtained using com-
mand line tools such as dd, which can be used to read seg-
ments of raw disk images as files. One approach to this would
be to have the backup sender either resident on the system, or
remotely logged in to the system that has the target files (for
example, the supervisor of a virtualization host, such as
ESX). The command line tool would then be run to read
blocks to the sender. This could be optimized through a multi-
phase approach such that the command line tool is actually a
script that invokes a checksum tool on each block, and makes
decisions on whether to transfer blocks based on whether the
sender might need them. For example, the script could have

US 2014/0006858 Al

some minimal awareness of the signature used by the client
(e.g., fingerprints for zero blocks, and a few common blocks).
[0390] An advantage of this approach is that it can be used
in environments where the system that has direct access to the
files to be transferred does not have the resources to run a full
sender.

[0391] An alternative includes naive implementation of a
signature file. Le.: flat file of digest per block offset (including
empty blocks). The file size is the (disk size/block size)*
digest size.

[0392] Blocked Based Architecture

[0393] The goal is to build a generic architecture which can
enable cloud recovery in a generic way independent of the
backup provider.

[0394] A backup provider provides blocks to backup per
backed up disk (ideally only changed blocks)

[0395] Blocks source dedups the blocks and upload them to
the cloud

[0396] Upload servicestores the blocks on LBS in a generic
file format

[0397] Store Service applies the blocks to a vindk when
backup is complete

[0398] VMDK can be booted in an ESX hypervisor
[0399] Future strategy could even abstract the persistent file
format and store everything as raw disk bytes and then it will
become hypervisor neutral.

[0400] Goal

[0401] Define file formats to be used for block based back-
ups, transfer and apply. The files will be effectively used to
ensure minimum number of blocks will be uploaded by using
signatures and other dedup techniques.

[0402] Note: current focus is not deduping since this may
be required only for 3RD PARTY Windows backup altough
the proposed design addresses this but does not give full
details for implementation.3RD PARTY.

[0403] Approach for Block Based File Format

[0404] This format may include one or more of the follow-
ing:

[0405] Have a reference file

[0406] Have multiple sources of blocks

[0407] Describe only the blocks that are different (or in

different positions) than they are in the reference file

[0408] Describe, for each block in the target file that is
different, where to find the block in one of the block sources.
[0409] Include internal validation (i.e., if a file becomes
corrupted, there should be a check that finds this without
requiring any external data)

[0410] Ensure integrity of the source files

[0411] Incrementally transferred while reading from
sources (no need to buffer it before uploading)

[0412] Support version to allow file format changes and
extensions
[0413] Should be compact (significantly smaller than

uploaded blocks)

[0414] Support upload resuming in case of interruption
[0415] Files Usage Scenario

[0416] We need to be able to handle the following example
cases:

[0417] current—the file being backed up from the client

and is written to the primary storage (usually vimdk)

case 1:// block is same as previous at the same offset
current | ta! |

Jan. 2, 2014
-continued
previous | tal |
case 2: // block was seen at a different offset in previous
current |----fat------m-momcommme oo |
previous |----!b!----- L |
case 3: // block wasn’t seen at all in previous
current |----{cl--mmm-m-momemo oo |
previous |----!b!----- L |

[0418] previous—the previous version ofthe file backed up
and snapshotted on the primary storage
[0419] Example pseudo code for usage on client agent side

prep:

// is the current signature valid?

if (no local signature or signature.hash != backend.signature.hash)
get fresh signature from backend;

for (block : blocksFromProvider)

{
handle(block);
¥
handle(block)

{
h =md5(block.data);
if (signature.getHash At(block.offset) == h)

// nothing to do - block is the same as previous one
(update stats and progress only)

else

// check if we have seen this block earlier
prev = blocksIndex.get(h);
if (prev !=null)

assert (prev.offset != block.offset); / if false then blockIndex is out of sync
// we have seen this block in a different offset

write block meta to BU_token.blkinfo;

signature.update (block.offset, h);

else // this is a new unseen block

write block meta to BU_token.blkinfo;

signature.update (block.offset, h);

blocksIndex.update (h, block.offset);

write raw block bytes to upload stream file (BU_token.blkraw);

}
}
¥
Upload BU_token.blkinfo
Design
Terms Definition
[0420] Reference file—a file which represents the currently

backed up disk device in the cloud (e.g. “/NE_token/diskl.
vmdk™)
[0421] Blocks Source file—a file which contains blocks

used as source of block information in the blocks file (e.g. the
previous vimdk, “/NE_token/diskl.vmdk@BU_token™)

[0422] High level
[0423] The solution may use several files:
[0424] Raw Blocks File
[0425] ii. Contains consecutive raw blocks that needed to

be applied to the current backup.
[0426] jj. The file can be generated and uploaded directly
without being persisted to the local customer storage.

US 2014/0006858 Al

[0427] kk. For manual import the file can be generated
into the import local drive
[0428] Block Changes Info File
[0429] 11. meta information about each block uploaded in
the Raw blocks file
[0430] mm. Will be used by the backend to apply
uploaded blocks to the correct target location.
[0431] Blocks Signature File
[0432] nn. A file which contains a checksum (md5) for
each 4K block offset on the disk
[0433] o©o0. Used to check existence of a block before
uploading it to reduce upload size in the common case
[0434] Blocks Hash Index File (Aka “Transport Dedup”,
“Rsync with Moving Blocks™, “d-Sync”, “Known Blocks™)
[0435] pp. In order to determine if block bytes needed to
be uploaded a fast index of block hashes is required.
[0436] qq. The index may be big and not fit in customer
memory and therefore needs to backed by a disk file.
[0437] rr. The index will be cached locally at the cus-
tomer and can be recreated from the signature file if
needed.

[0438] Example Raw Blocks File Format
[0439] File name suffix
[0440] blkraw
[0441] Binary format
[0442] The file is a binary file
[0443] Byte ordering—Network Byte Ordering (Big-En-
dian)
[0444] File structure
[0445] Simple raw blocks laid out consecutively in the file.
[0446] I- - blockO- -1- -block1- -I- -block2- -| . . . |- -blockN-
-l
[0447] 4KB4KB4KB4KB
[0448] Example Block Changes Info Format
[0449] File name suffix
[0450] blkinfo
[0451] Binary format
[0452] The file is a binary file
[0453] Byte ordering—Network Byte Ordering (Big-En-
dian)
[0454] File structure
[0455] General Layout
w |--header--|--src file/s info--[------------- changed blocks
info-------e-memme |
[0456] Header
Length:16B

|--magic--|--version--|

int64 int64

magic: 0xd04e2b10cdeed009

version: 0x0001

Jan. 2, 2014
[0457] Source Files Information
Length:4B + N*1KB
- |--files count--|--filel |--file2 [....|--fileN:
L
- int32 1KB 1KB 1KB
[0458] Source File Info Block
Length:1KB
- |--file md5--|--file ID--|--file name---------------------
- 16B int32 1004B
[0459] Block Information
Length:36B

= |--src file ID--|--offset src--|--offset ref--|--block md5--1

int32 int64 int64 16B

src file ID: the ID of the file defined after the header

offset src: offset in bytes on the source file (usually the raw blocks file)

offset ref: offset in bytes on the reference (target) file.

[0460] Sizing

[0461] Assume:

cluster size of backed up disk: 4 KB

Hash: MDS5 (128 bit/16B)

Block info size: 36B

[0462] Uploaded size per 1 GB

1 GB/4 KB->262144 blocks->

blockInfoSize * 262144=36B * 262144=9437184B=9 MB
per GB

[0463] 100 GB used space would max to 900 MB (max
because dedup would reduce it)

[0464] Example Signature File Format
[0465] File name suffix
[0466] blksig
[0467] Binary format
[0468] The file is a binary file
[0469] Byte ordering—Network Byte Ordering (Big-En-
dian)
[0470] Format options:
[0471] Flat Signature File
[0472] ss. Just mdS5 at corresponding offset that can be

directly accessed by calculating offset in the file

[0473] tt. Unused zero blocks will also contain the sig-
nature
[0474] uu. Pros: very simple to implement and maintain

(create, read, write)

[0475] wvv. Cons: file size is big (4 MB per 1 GB of
volume size) since it must contain all empty blocks.

US 2014/0006858 Al

[0476] Sparse Signature File
[0477] ww. Like the flat file but empty blocks hashes are
not stored
[0478] xx. Pros: the file takes small amount of disk
space—only the used blocks hashes. (4 MB per 1 GB of
used size)
[0479] yy. Cons: implementation complexity—down-

loading the file from backend may require sparse down-
load.
[0480] Compact Signature File

[0481] =zz. File is compressed by containing offset:md5
pairs where zero blocks are skipped

[0482] aaa. Pros: the file is very small and compresses
well on consecutive equal data and zeros.

[0483] bbb. Cons: no way to write into the file of new
block since it will affect the compaction, therefore dur-
ing backup a new delta signature file must be created and
post backup will have to collapse the original with the
delta to be the new signature. This process will have to
accurately repeated on the backend side.

[0484] Example Index File Format

[0485] The requirement is to be able to do fast lookup of
block offset given an md5 hash.

[0486] Possible Data Structures

[0487] B+Tree or a just use a database which effectively
creates a B/B+tree on a table index.

[0488] Disk based hash table—{flat file with hash collission
buckets at constant offsets which need to be resized when a
bucket gets full. The file should be mmap-ed for better per-
formance.

[0489]
[0490] B-tree drawback is that is suffer from fragmentation
for the type of data we intend to use.

[0491] A mitigation strategy for this is creating pages with
small fill factor which should reduce fragmentation till pages
start to get full.

[0492] The hash table suffers from the need to rehashing
when buckets get full.

[0493] So essentially both solutions suffer from similar
problem and the choice should most likely be based on ease of
implementation.

Issues

[0494] Design

[0495] Create an empty index

[0496] Insert/lookup index during backup

[0497] If need rebuild parts of the index while waiting for

chunk upload to complete or rebuild all if must.

[0498] On the post backup signature processing—while
rebuilding the new signature from repopulate the index with
big fill factor so it would be ready for next backup.

[0499] Notes

[0500] If index get corrupted/missing—it can be rebuilt
from the signature file like in step 4.

[0501] An optimization would be seed an index at the back-
end with known blocks for target OS/apps and send to client
before backup start. This might have potential to reduce initial
upload size by 10-20 GB per server.

[0502] We can consider thinking if there is a similar data
structure or enhancement to the current 2 options which will
allow partial rebuilding of the index instead of full rebuild
every time it is needed.

15

Jan. 2, 2014

[0503] Alternative Approach

[0504] Create a file with sorted blocks hashes (md5) from
the signature file

[0505] Build a Trie on top of the sorted hashes file

[0506] Maintain an in-memory block index (hash table or
such) for new blocks

[0507] During backup lookup block in in-mem storage and
then in the Trie.
[0508] Post backup processing will have to rebuild the

sorter blocks hashes files by doing a merge from original file
and the in-mem structure.
[0509] Design and Implementation Notes

[0510] ccc. the block info may be combined with raw
bytes upload for simplicity (it was debated if that really
is simpler or not)

[0511] ddd. Alternatives to MDS5 as the fingerprinting
algorithm can be used. SHA-X may be better for perfor-
mance reasons (although the hashing is the least of the
problem from time consumption perspective, JO is
much bigger).

[0512] eee. support for different blocks sizes from the
same block provider is an option

[0513] {ff. For recoverability—generational signature
files may be used. This may be needed in case backup
gets aborted before completion—without it the sig file
may become out of sync.

[0514] ggg. The support for multiple files may be an
optional optimization initially.

[0515] Default single block source and since default target
(e.g.: previous vmdk and single raw blocks source) may be
used as an option.

[0516] hhh. “capabilities APIs” may be used where the
blocks provider will have to match to certain backup
capabilities (sending different block sizes, non-block
aligned offsets, etc)

[0517] iii. The terms reference file, source file may alter-
natively be replaced by
[0518] 1. reference file->destination file
[0519] ii. source file->server blocks file

[0520] BlocksTool

[0521] example utility

[0522] Blocks tool is a tool that used to test block based
operations that are performed by the block based framework.
[0523] As new functionality is created and added to block
based backup the new code could be tested using this tool.
[0524] Usage

§$ java -jar Blocks Tool.jar
Usage: java -jar BlocksTool.jar <action™> <options>
--backup -cbt <cbt_xml_file> -srevmdk <vmdk_file>
[-sig signature_file] [-path

files_path]
--apply -srcraw <source_blkraw_file> -srcinfo
<source_blkinfo_file> -target

<target_vmdk>

[0525] backup input file:

[0526] cbt_xml_file: CBT info file in the format created by
3RD PART Yagent

[0527] vmdk_file: flat ESX vmdk file used as source for
point in time backup

[0528] backup output files:

[0529] blkraw: raw blocks to upload

[0530] blkinfo: blocks information (refers to the blkraw file
[0531] blksig: blocks signature file of backed up disk.

US 2014/0006858 Al Jan. 2, 2014

16

[0532] Example:
blockstool.sh --backup chgtrkinfo-b-
w2k8std_12_x64_1.xml w2k&std_r2_x64-
flat.vimdk
[0533] Backup
[0534] Creates block based backup files from source flat

ESX vmdk (not the one created by 3™ party!) and a CBT
information in XML format that 3RD PART Yagent gener-
ates. Additional signature file is created unless passed a spe-
cific signature file from previous backup.

[0535] Apply

[0536] Performs blocks based copy from the block based
backup files of all blocks into a target destination flat ESX
vmdk file.

[0537] Example Usage

$ java -jar Blocks Tool.jar --backup -cbt
F\\tmp©iblocks\\full\chgtrkinfo-b-
w2k8std_r2_x64-000001-28-11-2011-09-59.xml -srevimdk F:\\tmp\\b
locks\\full\\'w2k8&std_12_x64-flat.vindk -path f:\tmp\\blocks
Performing Backup:
cbtXmlFile = F:\tmp\blocks\full\chgtrkinfo-b-w2k8std_12_x64-000001-
28-11-
2011-09-59.xmlsourceVmdkFile = F:\tmp\blocks\full\w2k8std_r2_x64-fl
at.vmdk
sigFile = f\tmp\blocks\7¢537730-3615-476d-aa96-03b6dcc1f3cb.blksig
rawBlocksFile = f\tmp\blocks\7¢537730-3615-476d-aa96-
03b6dcelf3ch.blkraw
blocksInfoFile = fi\tmp\blocks\7¢537730-3615-476d-aa96-
03b6dcelf3ch.blkinfo

$ java -jar BlocksTool.jar --apply -sreraw F:\tmptiblockst
11ff07ad-87b6-4db6-
872f-b33{f01c48bb.blkraw -srcinfo F:\tmp\\blocks\\11ff07ad-87b6-
4db6-8721-
b33ff01c48bb.blkinfo -target F:\tmp\\blocks\\target_restored.vidk

[0538] Example Generic Block Based Agent Class Design

Example implementation:
- class BlockInfo

o long offset,

= long length;
byte[] data;
¥

= interface BlocksReader

= BlockInfo readBlock (long offset, long length);

-)
// reads blocks from a vindk using vddk
class VddkBlocksReader implements BlocksReader

= // reads blocks from ESX cbt snapshot point
= class VadpBlocksReader implements BlocksReader

- // reads blocks from raw mounted windows disk block device
= class RawDeviceBlocksReader implements BlocksReader

interface BlocksProvider implements Iterable<Blocklnfo>

-

-continued

Tterator<BlockInfo>iterator();

}

// opens vimdk from IMG*x backup path and uses change blocks
xml from 3" party3RD PARTY
class 3rdPartyVmdkBlocksProvider implements BlocksProvider

3rdPartyVmdkBlocksProvider (
String vmdk,

String changedBlocksXmlFile,

VddkBlocksReader reader)

// opens local vindk generated by 3rd Party convert and reads blocks
class BeWinVmdkBlocksProvider implements BlocksProvider

BeWinVmdkBlocksProvider (

String vmdk,
byte[] writtenBlocksBitmap, // captured using vddk hooking
VddkBlocksReader reader)

¥
// uses VADP APIs to get the changed blocks from ESX vindk
class VADPBlocksProvider implements BlocksProvider

IVADPBIlocksProvider (

ESXConnection con,

String vmdk,

BackupContext ctx // the snapshot sequence id etc.
)

¥

// mount v2i files chain and reads blocks from mount
class 3RDPARTYv2iBlocksProvider implements BlocksProvider

3RDPARTYBlockProvider (
String v2iFile,
byte[] writtenBlocksBitmap,

RawDeviceBlocksReader reader)

}

// mount tib files chain and reads blocks from mount
class AcronisBlocksProvider implements BlocksProvider

AcronisBlocksProvider (
String tibFile,

byte[] writtenBlocksBitmap,
RawDeviceBlocksReader reader)

.}.
// sbmount sp files chain and reads blocks from mount
class SPBlocksProvider implements BlocksProvider
SPBlocksProvider (

String spFile

byte[] writtenBlocksBitmap,
RawDeviceBlocksReader reader)

¥
// mounts VSS snapshot and read blocks from mount
class VSSBlocksProvider implements BlocksProvider

{

US 2014/0006858 Al

-continued

VSSBlocksProvider (

Guid shadowld,

byte[] writtenBlocksBitmap, // captured somehow, VSSProvider?
RawDeviceBlocksReader reader)

¥
// mounts VHD and reads blocks from mount / use hv snapshots?
class HyperVBlocksProvider implements BlocksProvider

HyperVBlocksProvider(
?
)

-

[0539] Example Usage3RD PARTY:

BlocksProvider p = new 3rdPartyVmdkBlocksProvider (
“e\backups\IMGO0002\disk1.vimdk”,

“cbt_file.xml”,

new VddkBlocksReader(“.\vddkBlocksTool.exe”, cmdExecutor),

1 1 11 A rN H H N

)
Tterator<BlockInfo> it = p.iterator();
while (it.hasNext())
BlockInfo b = it.next();
® blocksHandler.handle (b);
) ¥
[0540] Manual Onboarding
[0541] Intake Device
[0542] As one of the steps of transferring machine sources

from the customer and to the cloud, Doyenz have developed
a method and built an apparatus that can be used to transfer
customer (or any other) source machines on physical media.
[0543] Inoneexample embodiment of the intake apparatus,
the physical media is standard hard drives.
[0544] The Copy Agent
[0545] In this device, the doyenz agent can utilize it’s plu-
gin architecture to perform all standard steps of identifying
machine configuration, getting source blocks or source files
etc, but where a transfer plugin differs from a standard plug-
in. This “manual intake” aka “drive intake” transfer plug in
substitutes uploading of the data to the cloud with copying the
data to a destination disk. The plug in can be a meta-plug in
that has two functionalities combined—on one hand the
copying of the data to a physical media, and on another hand
a plug in used usually on the cloud side of the Doyenz cloud
that can ensure that the data written to disk can be formatted
and stored in the same way a doyenz upload service in the
cloud would have stored it in the transient live backup storage
(a transient storage that can be used to store uploads before
they complete and ready for application to the main storage)
[0546] The agent further comprises
[0547] an integration service that upon request from the
user can generate a shipping label using either user’s or
Doyenz shipping account with a standard shipping ser-
vice, update the disk with the shipping number and
unique id that would allow Doyenz to identify the disk
with the shipping.

17

Jan. 2, 2014

[0548] anintegration service that integrates with Doyenz
(or the business that operates doyenz based cloud) CRM
and sales system thus tying in and referencing the sup-
port/crm/sales ticket with the process of manual
onboarding and putting enough identification informa-
tion on the shipped disk to make such integration iden-
tifiable by the intake apparatus

[0549] The act of copying the data to the disk, shipping it
and then copying to the cloud is generally faster than a direct
upload (depending on bandwidth and other factors.), how-
ever, it introduces a delay for the time that the disk is in the
shipping and processing. The agent may be able to utilize
such delay by starting an upload of next backups even before
the original on disk backup was applied in Doyenz. This can
be achieved by maintaining ordered list of backups and cor-
responding files and sources and being able to reorder the
application of such uploads on the cloud side.

[0550] The Drive Intake Apparatus

[0551] Onthe cloud side, the drive intake apparatus may be
comprised of a computer system with a hot-swappable drive
bays attached to disc controllers. On said device, a special
intake service is running. The service comprises of the fol-
lowing mechanisms:

[0552] 2. A detection mechanism can beused to detect
drives as they are inserted into the bays

[0553] 3. A mechanism can beused to identify drives and
the backups on them, and thus know whether the drive
was already processed or not

[0554] 4. A mechanism that can transition or trigger the
rest of the system to think that the backup or upload are
fully uploaded and are ready to be applied to the main
storage

[0555] 5. A mechanism that can forensically or simply
wipe the disk and make it available for reuse upon
completion of the “upload”.

[0556] 6. A monitoring console that displays all existing
drive bays and displays whether they contain valid
uploads, whether those uploads are in the process of
being applied to the main storage and whether the intake
apparatus is done with a particular drive. A user of the
console has indication whether the drive is ready to be
taken back into circulation (or sent back to customer if
originated from the customer) and which bays are avail-
able for use.

[0557] 7. A database structure (or other configuration
structure) that presents each bay as a standard doyen live
backup system and therefore allows the rest of the sys-
tem be decoupled and not require specific knowledge
whether the source came from upload or was sent in a
mail by a customer

[0558] Backup Software Integration

[0559] This entire section of the document is one possible
implementation of the general system. The section refers to
specific 3"/ party software as examples only. Other combina-
tions of software and alternative implementations exist.

Solution Proposals

[0560] Customer side Incremental VMDK based: Note: we
have since learned that they pulled support for vimdk genera-
tion without a esx host
[0561] jjj. Snapshot Approach:
[0562] 1. Artificially set snapshot before writing incre-
mental to VMDK (by altering text in VMDK file) so
that writes go to a delta file instead of the flat file

US 2014/0006858 Al

[0563] ii. Send the deltas to doyenz,

[0564] iii. Fake a vimsd

[0565] iv. Perform apply as with esx/vsphere backups
[0566] v. Collapse snapshot at client side via one of

many possible fragile approaches:
[0567] 1. Get change blocks from DC
[0568] 2. Mount vimdk twice—once with the delta
and once without. Merge changes from the delta
mounted one to the non-delta mounted one. Needs
validation to ensure that the same flat file can be
mounted from two different vmdks without caus-
ing problems.
[0569] kkk. File tracing approach
[0570] 1i. Trace writes to the VMDK to identify the
change blocks.
[0571] Dedup server based & Doyenz side incremental
VMDK or traditional restore
[0572] 1ll. Synchronize a dedup server at customer site
and at doyenz, and try to generate incremental vmdks
from that server
[0573] mmm. Run 3" party+Dedup server at Doyenz,
none at customer site, and have customer site agents
send directly to doyenz (using client side dedup)
[0574] nnn. Use client side dedup, client side 3"¢ Party
(for local backups) and set Doyenz up as an OST dedup
server, try to generate incremental VMDKs from that.
[0575] oo0o0. Syncronize 3rd Party/Dedup at customer site
with a Doyenz build 3rd Party dedup solution receptical
(to make it multi-tenanted and reduce the memory
requirements—it doesn’t need to dedupe amongst cli-
ents) and feed this data to a 3" party server to do VMDK
based restores.

[0576] 3RD PARTY 3’4 Party Approach Investigation and
Progress

[0577] Basic Technical Requirements

[0578] Online seeding

[0579] Backup Upload

[0580] Manual seeding

[0581] Storage/Storage management

[0582] Trial restores

[0583] Failover

[0584] Failback.

[0585] Complications in Backing Up from 3rd Party
[0586] Backups areall written in tape format, to actual tape,

or to 3RD PARTY BACKUP if the data is written to disk
[0587] The tapes represent files, not disk images

[0588] Incremental 3RD PARTY BACKUPs are big
because they contain the entire contents of any files that were
changed.

[0589] Lack of 3 Party deletion tracking requires frequent
rebasing
[0590] Customer upload bandwidth is not expected to be

significantly better than the current approach

[0591] Solutions Diagram

[0592] Transport Options

[0593] Direct Upload of 3RD PARTY BACKUPs

[0594] We can build a custom agent that uploads 3RD

PARTY BACKUP files. Implementation may involve detect-
ing the 3rd Party Backup files that correspond to a specific
backup, This could be handled through the powershell api.
This may also require re-cataloging on or side.

18

Jan. 2, 2014

[0595] Customer-side Implications Customer must have
sufficient bandwidth to upload ~200 GB/wk/server (assum-
ing each server is approximately 120 GB).

[0596] Datacenter Implications Doyenz must provide suf-
ficient bandwidth to upload all customer data on a regular
basis.

[0597] Data Encryption Data can be stored encrypted
[0598] Restore Implications Does not provide instant
restores. Requires 3’7 Party in the Doyenz datacenter to per-
form restores

[0599] Development cost™ *Small in comparison to others
[0600] Supportability* *Uncertain. Biggest support risk
involves the restore using 3rd Party.

[0601] Storage implications Similar to our current storage
for shadow protect—without the snapshots per backup.
[0602] Storage management Requires rebasing and delet-
ing a prior series of backup sets.

[0603] Machine management Machines would have to be
co-managed by Doyenz and by 3rd Party. Doyenz would need
to keep track of each one for backup purposes, and 3’7 party
would need to track them for restore purposes.

[0604] Pros simplest solution, should be easy to create
agent plugins to handle this.

[0605] Cons Large amount of data upload, requires a lot of
bandwidth in order to meet our SLAs. Slow restores that have
lots of moving parts

[0606] 37“Partyto 3RDPARTY STORAGE APPLIANCESs
[0607] Approach outline: Customer does not have 3RD
PARTY STORAGE SOLUTION on site. Customer either
schedules backups to go directly to a 3RD PARTY STOR-
AGE APPLIANCE running in Doyenz’s cloud, or schedules
a set-copy following standard backups to transfer them to a
3RD PARTY STORAGE APPLIANCE running in Doyenz’s
cloud. The Doyenz side 3RD PARTY STORAGE APPLI-
ANCE is started at the beginning of the backup or set-copy
job, and closes down on the completion of the job. This
requires re-cataloging on our side.

[0608] Customer-side Implications Customer must either
give up local copies, or must add a set copy to their existing
schedule.

[0609] Datacenter Implications Doyenz must providea VM
running 3RD PARTY STORAGE APPLIANCE, with~4 G of
memory for each customer for the duration of upload. SSH
tunneling will be required or a dedicated public IP per cus-
tomer will be required

[0610] Data Encryption Setcopy will store unencrypted
data locally.
[0611] Restore Implications Requires 3’7 Party in the Doy-

enz datacetenter to perform restores

[0612] Storage implications Servers backed up by a single
instance of 37 Party are stored together in the VMDK corre-
sponding to their instance of 3RD PARTY STORAGE
APPLIANCE.

[0613] Storage Management Each 3RD PARTY STOR-
AGE APPLIANCE instance is stored in ZFS in a similar
fashion to our current machine storage. A snapshot is taking
following each 3rd Party dedup solution, and snapshots are
backed up via zfs sends to an archive.

[0614] Machine Management Machines are stored together
for a customer, and are not separable without a 3RD PARTY
STORAGE APPLIANCE instance.

[0615] Supportability and Operations cost Unknown. It
may require 3rd Party help to sort out corrupted repositories.

US 2014/0006858 Al

So far, there are lots of ways setting up a3RD PARTY STOR-
AGE APPLIANCE and getting 3rd Party Dedup Solution to
work to it can fail.

[0616] Pro Uses a “proven” deduplication solution
[0617] Cons
[0618] ppp. Requires 3RD PARTY STORAGE APPLI-

ANCE to backup and recover data

[0619] qqq.3RD PARTY STORAGE APPLIANCE3RD
PARTY STORAGE APPLIANCELots of moving patts,
fragility

[0620] rrr. 3RD PARTY STORAGE APPLIANCE does
not communicate internal problems

[0621] Risks

[0622] sss. 3RD PARTY STORAGE APPLIANCE’s are
touchy about configuration, and when misconfigured,
they don’t give clear indications about what needs to
change.

[0623] ttt. We don’t have a robust, mechanical, way of
spinning up 3RD PARTY STORAGE APPLIANCEs
that leads to simple instructions for automation

[0624] wuuu. Lots of moving parts that are out of our
hands
[0625] vvv. We don’t know the traffic compression rate

of'this approach.

[0626] www. We don’t know how robust the storage on
3RD PARTY STORAGE APPLIANCES will be at this
point

[0627] Solution Cost Development, operations and support
costs are high

[0628] 3Rd Party Storage Solution 3rd Party Dedup Solu-
tion

[0629] Approach outline: Customer installs 3RD PARTY
STORAGE SOLUTION on their site, schedules an 3rd Party
Dedup Solution job with each that synchronizes their reposi-
tory with a3RD PARTY STORAGE APPLIANCE running in
Doyenz’s cloud. The Doyenz side 3RD PARTY STORAGE
APPLIANCE is started at the beginning of the 3rd Party
Dedup Solution job, and closes down on the completion of the
job. This requires re-cataloging on our side.

[0630] Customer-side Implications Customer must have
3RD PARTY STORAGE SOLUTION installed.

[0631] Datacenter Implications Doyenz must provide aVM
running 3RDPARTY STORAGE APPLIANCE, with2t0 4G
of memory for each customer for the duration of upload. 3rd
Party storage solution to 3RD PARTY STORAGE APPLI-
ANCE communication will require a VPN connection

[0632] Data Encryption Data is store and transmitted
encrypted
[0633] Restore Implications Requires 3rd Party in the Doy-

enz datacetenter to perform restores

[0634] Supportability *and Operations *Unknown. It may
require 3rd Party help to sort out corrupted repositories. So
far, there are lots of ways setting up a 3RD PARTY STOR-
AGE APPLIANCE and getting 3rd Party Dedup Solution to
work to it can fail.

[0635] Storage implications Servers backed up by a single
instance of 3rd Party are stored together in the VMDK corre-
sponding to their instance of 3RD PARTY STORAGE
APPLIANCE.

[0636] Storage Management Each 3RD PARTY STOR-
AGE APPLIANCE instance is stored in ZFS in a similar
fashion to our current machine storage. A snapshot is taking
following each 3rd Party dedup solution, and snapshots are
backed up via zfs sends to an archive.

Jan. 2, 2014

[0637] Machine Management Machines are stored together
for a customer, and are not separable without a 3RD PARTY
STORAGE APPLIANCE instance.

[0638] Pros Uses a “proven” deduplication solution
[0639] Cons
[0640] xxx. Requires 3RD PARTY STORAGE APPLI-

ANCE to backup and recover data

[0641] yyy.3RD PARTY STORAGE APPLIANCE3RD
PARTY STORAGE APPLIANCELots of moving parts,
fragility

[0642] zzz.3RD PARTY STORAGE APPLIANCE does
not communicate internal problems

[0643] Risks

[0644] aaaa. 3RD PARTY STORAGE APPLIANCE’s
are touchy about configuration, and when misconfig-
ured, they don’t give clear indications about what needs
to change.

[0645] Dbbbb. We don’t have a robust, mechanical, way of
spinning up 3RD PARTY STORAGE APPLIANCEs
that leads to simple instructions for automation

[0646] cccc. Lots of moving parts that are out of our
hands
[0647] dddd. We don’t know the traffic compression rate

of this approach.

[0648] eeee. We don’t know how robust the storage on
3RD PARTY STORAGE APPLIANCES will be at this
point

[0649] Solution Cost Development Cost Development,
operations and support costs are high

[0650] VSS Snapshots of Local 3RD PARTY STORAGE
SOLUTION
[0651] Approach outline: Customer installs 3RD PARTY

STORAGE SOLUTION and a Doyenz agent on their site.
Customer schedules backups to run against the 3RD PARTY
STORAGE SOLUTION, with a post command to notify the
agent of completion. Following each backup, the Doyenz
agent performs a VSS snapshot, and sends the file changes
since the last backup to Doyenz. This requires re-cataloging
on our side.

[0652] Customer side implications May require a custom
VSS provider to capture changes in data.

[0653] OpenDedup Synchronization

[0654] Approachoutline: Customer installs a Doyenz agent
and sets 3rd Party up to do incremental VM generation (either
to ESX or Hyper-V). The Doyenz agent sets up a file system
on top of OpenDedup to receive the generated VMs, and
uploads the deduped VM via OpenDedup’s synchronization
mechanism.

[0655] Storage implications Storage can becompletely
managed by OpenDedup

[0656] Storage Management Storage management is
mostly out of our hands.

[0657] Machine Management Potentially, manage
machines as a root directory with each backup being a sub
directory.

[0658] Customer-side Implications Customer should pref-
erablyt be running a hypervisor that mounts an OpenDedup
volume.

[0659] Datacenter Implications Doyenz should preferably
establish and maintain one or more OpenDedup services.
[0660] Restore Implications If we are backing up vmdks,
we get instant restore. OpenDedup provides an NFS service,
which we just mount from the ESX host.

US 2014/0006858 Al

[0661] Supportability*. Although OpenDedup can beopen
source
[0662] Pros
[0663] {tff. Gives us control of the dedup solution
[0664] gggg. Provides for the potential of instant
restores.
[0665] Cons
[0666] hhhh. Immature and somewhat complex dedup
platform.
[0667] Lightweight Dedup Transmission (Much Like

Rsync with Block Motion)

[0668] Approach outline: Customer installs a Doyenz
agent. The Doyenz datacenter and the customer agent share a
dedup fingerprint for some number of previous uploads.
Agent uses this to map blocks of next upload, uploads a new
fingerprint and any require changes. Doyenz writes new
blocks and rearranges existing blocks in storage to match the
dedup fingerprint. The effect is that this dedups transmission,
but not necessarily storage.

[0669] Use for VMDKs

[0670] The previous VMDK should be adequate for pro-
viding the fingerprint for the next upload.

[0671] Experimental results show that this works fairly
well with 4 k blocks.

[0672] Better results may be obtained by utilizing VMDK
structures for exact block alignment.

[0673] Use for 3RD PARTY BACKUPs

[0674] This approach requires a number of prior 3RD
PARTY BACKUPs for fingerprint matching, and somewhat

more complex data structures for keeping track of which file
contains which block.

[0675] It also requires parsing of the 3RD PARTY BACK-
UPs to achieve any reasonable block alignment.

[0676] Need the 3RD PARTY BACKUPs to be stored
unencrypted.
[0677] Need to go back to every and look at every incre-

mental until a rebase.

[0678] Needa file system equivalent to track the authoritive
source of specific blocks

[0679] Backup Capture Alternatives
[0680] Capture 3RD PARTY BACKUPs
[0681] Approach outline
[0682] iiii. Customer points a Doyenz agent at a storage

facility for 3RD PARTY BACKUPs

[0683] jjjj- Agent performs some sort of chain analysis
and uploads 3RD PARTY BACKUPs as necessesary.

[0684] Transmission implications Not really feasible with-
out some sort of dedup.

[0685] ESX Host
[0686] Approach outline:
[0687] kkkk. Customer has an ESX host.

[0688] 111 3rd Party is configured to perform incremen-
tal P2V restores to this host at each backup

[0689] mmmm. Doyenz captures the changed blocks and
either uploads them as they are, or does a transmission
level dedup/redup

Jan. 2, 2014

[0690] Transmission Implications Not particularly feasible
without block level dedup

[0691] Customer Implications Requires an ESX host
[0692] Restore Implications HIR is already completed. Can
be handled in a similar fashion to ESX backups.
[0693] Hyper-V Host
[0694] Approach outline:

[0695] nnnn. Customer has an Hyper-V host.

[0696] o0000. 3rd Party is configured to perform incre-

mental P2V restores to this host at each backup

[0697] pppp. Doyenz captures the changed blocks and
either uploads them as they are, or does a transmission
level dedup/redup

[0698] Transmission Implications Not particularly feasible
without block level dedup

[0699] Customer Implications Requires Hyper-V (comes
with SBS 2008 R2)

[0700] Restore implications Can be handled in a similar
fashion to ESX backups. Requires HIR at restore time
[0701] ESX Stub

[0702] Approach outline:

[0703] qqqq. Doyenz agent will run a local web server
which mocks vSphere API calls.

[0704] rrrr. Customer starts 3rd Party incremental con-
vert to ESX VM which the ESX stub intercepts and
return proper responses to 3rd Party.

[0705] 1. Intercepting vSphere API calls can be done
using a web server

[0706] ii. Intercepting vStorage API calls can be done
by hooking VDDK library or implementing a TCP
based mock server.

[0707] ssss. Write requests to the vmdk will be
de-dupped and written locally.

[0708] tttt. Doyenz agent will upload the de-dupped VM
and apply to a VM stored in the cloud.

[0709] Customer-side Implications: has to allow the local
web server to run and bind to ESX ports and have enough
memory and storage for efficient dedup.
[0710] Storage implications: re-dupped VM will take sig-
nificant storage unless dedupped again in a dedup enabled file
system.
[0711] Restoreimplications: restore is immediate and simi-
lar to current ESX/vSphere restore
[0712] Pros:

[0713] uuuu. Low customer requirements

[0714] wvvvv. Instant restore
[0715] Cons:

[0716] wwww. Slightly invasive if we are replacing all
ESX calls made to go through a stub

[0717] xxxx. Need to deal with fragility and complexity
of the vSphere APIs

[0718] yyyy. Need to deal with cases where customer has
web server which listens on the same port

[0719] zzzz. High cost in development and handling
edge cases

[0720] Variation of this idea which could be used as a more
expensive but incremental path towards this solution is to
implement a reverse proxy to a real running ESX instance at
Doyenz DC and de-dup only the writes transport calls.

[0721] Restore Alternatives
[0722] Run 3rd Party in the Doyenz Datacenter
[0723] Approach outline: 3rd Party starts, updates its cata-

log from the repository, and performs the following steps:
[0724] B2V restore of the system full, without applications

US 2014/0006858 Al

[0725] Simultaneous restore of applications, system incre-
mentals, and application incrementals.

[0726] Customer Implications Restores might be very slow.
[0727] Datacenter Implications Fither need to take a large
additional hit for cataloging at restore time, or the data center
needs to re-catalog frequently. If we re-catalog frequently, we
need to manage a large number of 3rd Party instances (on the
order of 1 for every 25 to 100 customers uploading VMs).
[0728] Receive VMs from Customer

[0729] Approach outline: Data uploaded corresponds to
hard drive blocks and possibly VM meditate files. These are
applied to a VMDK on the Doyenz side following receipt.
Restore is a matter of starting up the given VM on an ESX host
in the datacenter.

[0730] Customer Implications The customer may need to
do some additional configuration to set up the VM generation
on their side. Restores seem nearly instantaneous.

[0731] Datacenter Implications Depending on how they are
generated, we may need to run HIR on VMs at restore time.

[0732] Storage alternatives

[0733] Storage inside of a dedup repository

[0734] Storage as VMs in ZFS snapshots

[0735] Storage as raw 3RD PARTY BACKUPs

[0736] Failback alternatives

[0737] Send VM back to customer

[0738] Update a dedup repository and synchronize this

back to the customer

[0739] Perform a full 3RD PARTY BACKUP backup and
send 3RD PARTY BACKUPs back to customer

[0740] Full Solution Proposals

[0741] 3RD PARTY STORAGE SOLUTION to 3RD
PARTY STORAGE APPLIANCE

[0742] 3rd Party to 3RD PARTY STORAGE APPLIANCE
Approach

[0743] Basic Approach

[0744] Customer does not have 3RD PARTY STORAGE

SOLUTION onsite. Customer either schedules backups to go
directly to a 3RD PARTY STORAGE APPLIANCE running
in Doyenz’s cloud, or schedules a set-copy following stan-
dard backups to transfer them to a 3RD PARTY STORAGE
APPLIANCE running in Doyenz’s cloud. The Doyenz side
3RD PARTY STORAGE APPLIANCE is started at the
beginning of the backup or set-copy job, and closes down on
the completion of the job.

[0745] Backup Path

[0746] From the customer perspective:

[0747] Customer installs the Doyenz agent.

[0748] Customer adds a Doyenz based 3RD PARTY

STORAGE APPLIANCE as an OST target. This is done
through either a customer specific public IP, or through tun-
neling from a local interface to Doyenz.

[0749] Customer either makes this the target of the backup
for a Doyenz managed machine, or, if the customer wants a
local copy of the backup data, the customer makes this the
target of a set-copy following the backup.

[0750] Ifthebackupto Doyenz, orset-copy to Doyenz fails,
3rd Party will try again on the next scheduled backup.
[0751] The customer willhave a web interface, provided by
Doyenz, to which he or she can connect, and view backups
that have been stored. The customer can use this interface to
perform test restores and fail-overs.

[0752] Technical implications:

[0753] Doyenz will need to set up a 3RD PARTY STOR-
AGE APPLIANCE for each customer

Jan. 2, 2014

[0754] aaaaa. Need to determine how many of these can
run simultaneously on an ESX host

[0755] bbbbb. Stored as VMs on a store service
[0756] Customer will need to install Doyenz agent, which
may configure tunneling in order to connect to a cloud based
3RD PARTY STORAGE APPLIANCE
[0757] Doyenz will need to make 3RD PARTY STORAGE
APPLIANCE available for initial connection.

[0758] Restore Path

[0759] From the customer perspective:

[0760] Customer connects to Doyenz application website
[0761] Customer selects machine to restore

[0762] Customer clicks restore and after some amount of

time, machine is restored.

[0763] Customer has VNC connection with restored
machine.

[0764] Technical implications:

[0765] Doyenz will need to spin up the appropriate 3RD

PARTY STORAGE APPLIANCE and a 3rd Party instance to
perform the restore.
[0766] Doyenzwill haveto make the restore in several steps
(in addition to the standard routing issues, etc.)
[0767] cccce. B2V ofthe most recent full backup, system
only
[0768] ddddd. Log into restored VM
[0769] eeece. Perform an application, system incremen-
tal, and application incremental backup all at once.
[0770] ESX Stub Approach
[0771] Basic Approach
[0772] Customer server will reside a doyenz agent which
will handle ESX VMDK generation, detect the change
blocks, dedup to reduce size of transmission and upload the
change blocks to the Doyenz data center. The change blocks
will be applied to a VMDK which then gets stored for instant
restore

[0773] Backup Path

[0774] From the Customer Perspective:

[0775] Customer installs the Doyenz agent.

[0776] Customers sets up the backup schedule—full and

incremental backups

[0777] Customer enables simultaneous convert o esx vim on
that schedule
[0778] Customer sets pre and post command to trigger our

agent Customer needs to change malware detection policies
to exclude Doyenz agent and/or 3RD PARTY—Needs inves-
tigation if this is needed
[0779] Customer may need doyenz agent with every ber-
emote.exe which is likely to mean that it will need to reside on
every machine. Pending investigation
[0780] The customer can use Doyenz web user interface to
acces the cloud backups and/or perform test restores and
fail-overs.
[0781] Technical Implications:
[0782] Doyenz agent will run a local web server which
mocks vSphere API calls.
[0783] Customer starts 3rd Party incremental convert to
ESX VM which the ESX stub intercepts and return proper
responses to 3rd Party.

[0784] {fttf. Intercepting vSphere API calls can be done

using a web server
[0785] ggggg. Intercepting vStorage API calls can be
done by hooking VDDK library.

[0786] Write requests to the vndk will be de-dupped and
written locally.

US 2014/0006858 Al

[0787] Wewill require buffer the writes to make sure we are
only writing the final changes. Will require extra disk space
on the client proportional to the change data size

[0788] May need extra memory requirements—need to
investigate

[0789] Doyenz agent will upload the de-dupped

[0790] VM and apply to a VM stored in the cloud.

[0791] Restore Path

[0792] From the Customer Perspective:

[0793] Customer connects to Doyenz application website
[0794] Customer selects machine, backup and a restore
point to restore

[0795] Customer clicks restore and after some amount of

time, machine is restored.

[0796] Customer has VNC connection with restored
machine.

[0797] Technical Implications:

[0798] We need a redup service that runs writes reduped
blocks to a mounted VMDK

[0799] Step to Conform the VMX

[0800] Higher storage requirements than our existing ESX

implementation. Guess is 10%. The arises as the blocks might
be in different places and ZFS does not deal with that

[0801] Archiving needs to be adapted to handle consolida-
tion
[0802] Failback—Option 1—VMDK, Option 2—Run 3rd

Party and send them a 3RD PARTY BACKUP backup
[0803] Issues Encountered/Concerns

[0804] May be perceived invasive if we are replacing all
ESX calls in runtime to go through a stub

[0805] Need to deal with fragility and complexity of the
vSphere APIs
[0806] Need to deal with cases where customer has web

server which listens on the same port

[0807] High cost in development and handling edge cases
[0808] If a incremental backup fails, 3rd Party will require
arebase. We need to understand how likely we are to cause an
incremental to fail. This is likely even in the 3rd Party to 3RD
PARTY STORAGE APPLIANCE case.

[0809] Hyper-V Approach
[0810] Basic approach
[0811] Customer server will reside a doyen agent that will

use a hyper-V VHD generation to detect the change blocks,
dedup to reduce size of transmission and upload the change
blocks to the Doyenz data center. The change blocks will be
applied to a VMDK which then gets stored and restored as a
HIR instant restore

[0812] Backup Path

[0813] From the Customer Perspective:

[0814] Customer installs the Doyenz agent.

[0815] Customers sets up the backup schedule—full and

incremental backups
[0816] Customer enables simultaneous convert to hyper-v
vm on that schedule

[0817] Customer sets pre and post command to trigger our
agent
[0818] Customer needs to change malware detection poli-

cies to exclude Doyenz agent and/or 3RD PARTY—Needs
investigation if this is needed

[0819] The customer can use Doyenz web user interface to
access the cloud backups and/or perform test restores and
fail-overs.

Jan. 2, 2014

[0820] Technical Implications:
[0821] Customer starts 3rd Party incremental convert to

Hyper-V VM which the doyenz agent will intercept writes to
the VHD.

[0822] Write requests to the vindk will be de-dupped and
written locally.
[0823] We will require buffer the writes to make sure we are

only writing the final changes. Will require extra disk space
on the client proportional to the change data size

[0824] May need extra memory requirements—need to
investigate

[0825] Doyenz agent will upload the de-dupped

[0826] Blocks will be applied to a VM stored in the cloud.
[0827] Restore Path

[0828] From the Customer Perspective:

[0829] Customer connects to Doyenz application website

[0830] Customer selects machine, backup and a restore

point to restore
[0831] Customer clicks restore and after some amount of
time, machine is restored.

[0832] Customer has VNC connection with restored
machine.

[0833] Technical Implications:

[0834] We need a redup service that runs writes reduped
blocks to a mounted VMDK

[0835] Step to perform HIR

[0836] Step to create and conform the VM configurations
[0837] Higher storage requirements than our existing ESX

implementation. Guess is 10%. The arises as the blocks might
be in different places and ZFS does not deal with that

[0838] Archiving needs to be adapted to handle consolida-
tion
[0839] Failback—Option 1—VMDK, Option 2—Run 3rd

Party and send them a 3RD PARTY BACKUP backup

[0840] Issues Encountered/Concerns
[0841] Need to get the feature to work
[0842] Potentially bottleneck in file system interception—

need to do it efficiently

[0843] High cost in development and handling edge cases
[0844] If a incremental backup fails, 3rd Party will require
arebase. We need to understand how likely we are to cause an
incremental to fail. This is likely even in the 3rd Party to 3RD
PARTY STORAGE APPLIANCE case.

[0845] vSphere Spoofing (for Example Using Public APIs)
[0846] Preparation steps.
[0847] 1. It’s require to hack Download Service to anal-

yse http post/get command.
[0848] a. Download and apply the batch file under
attachment

[0849] b. buildall.bat DownloadService
[0850] c. deployDownloadService.bat
[0851] The Download Service can act as a proxy to record

all the traffic between 3rd Party and ESX.
[0852] 2.copyaVM with3RD PARTY installed, move that
vm to any esx host, power it up, run 3RD PARTY, change the
ESX address to your DownloadService. eg“10.20.11.12:
30111~
[0853] Founding so far.
[0854] doGet command is hacked. A standard response of
doGet is in ESXResponseTemplate
[0855] doPost:

[0856] 2. RetrieveServiceContent is hacked, it returns

the same response on every call.
[0857] 3. Logout is hacked.

US 2014/0006858 Al

[0858] 4. These command are preferably called in this
order: CreateContainerView, CreateFilter, WaitForUp-
dateEx, DestroyPropertyFilter

[0859] 5. Above sequence is called multiple times on
each backup.

[0860] 6. CreateContainerView is called slightly differ-
ent. on (DataCenter, DataStore, VirtualMachine)

[0861] 7. CreateContainerView preferably returns a ses-
sion id.

[0862] Advise on further research.

[0863] 8. Instead of analyzing the doGet/doPost alone,
write a simple java class to call the vSphere api. Then
compare the log file between 3RD PARTY and that
temporary java class.

[0864] VSphere Agent
[0865] Goals
[0866] The goal is to integrate the VSphere agent with the

ACU code base to leverage:
[0867] Server side configuration management
[0868] UploadService based uploads
[0869] DFT upload mechanic
[0870] Common code maintenance.
[0871] Components
[0872] The common backup worker currently used by the
SP agent
[0873]
[0874]
[0875]
[0876]
palive
[0877] A virtual machine to host the agent. Options under
consideration:
[0878] kkkkk Windows—to leverage the existing C#
updater
[0879] 1llll. Linux—to leverage leverage free licensing
and the lower disk space requirement
[0880] Configuration pages to handle the new VSphere
configuration options
[0881] Design Considerations
[0882] The http file access is fragile, and the cost of losing
it with ESX 4.1 and greater is high. We need to continuously
explore other options, and design VSphere interaction with
this fragility in mind.
[0883] VMDKs are usually very sparse, and we should
consider this in the upload and in the LBS storage. This may
involve detecting runs of zeros and marking them

A VSphere plugin, comprising:
hhhhh. A VSphere specific machine abstraction

[0884] Concurrence limitation can be important.
[0885] Example Solution Research
[0886] 3RD PARTY Backups ideas
[0887] Upload 3RD PARTY backup files similar to SP
backup files
[0888] mmmmm. Restore backups on demand using

3RD PARTY convert to ESX vmdk
[0889] nnnnn (or) Restore backups on demand using
3RD PARTY WinPE restore disk
[0890] Client side changed block detection
[0891] oo0000. vindk approach—Configure 3RD PARTY
to perform “convert to open vimdk™ at the end of daily
backup
[0892] i. When backup convert completes—identity
changed blocks from previous day vmdk
[0893] ii. Main problem with this approach is how to
perform diff of changed blocks. Couple of options to
address that:

23

Jan. 2, 2014

[0894] 1. Option 1: Perform a binary diff on the 2
files—expensive from 10 bandwidth and storage
(research)

[0895] 2. Option 2: Identify changed blocks using
3rd party tools which can open 3RD PARTY
backup files

[0896] 3. Option 3: Mount backup files and identify
changed blocks using VSS snapshots—initial
investigation turned out that this may be non-trivial
since they use custom device snapshots which are
not easily accesible

[0897] 4. Option 4: Mount backup files and identify
changed files (and then blocks) by comparing
NTFS MFTs

[0898] 5. Option 5: Detect mapping between
backup files to blocks by mounting backup chain
and detecting system io calls from it while reading
the disk

[0899] 6. Option 6: User 3RD PARTY APIs to
determine changed blocks (not sure if it even sup-
ports this)

[0900] ppppp. Detect changed blocks directly from 3RD

PARTY backup files

[0901] i. Using 3¢ party APIs/documentation about
backup file structure

[0902] ii. Trace reads from mounted backup files (re-
search)
[0903]
[0904]

block

[0905] 3. Intercepting block reads using a filesys-
tem filter driver

[0906] 4. Map block read to chain files that were not
uploaded

[0907] 1iii. Mount latest backup chain and previous
backup chain file and run binary diff on block level—
[0908] 1. pro: very reliable
[0909] 2. con: may be expensive from JO band-

width point of view.

[0910] iv. Mount only the latest backup chain and scan
disk against previous md5 log of previous chain

[0911] qqqqq. Upload changed blocks only

[0912] rrrrr. Apply only changed blocks to zfs dataset
mounted ESX vmdk on backend and take zfs snapshot—
this takes care of consolidation (research)

[0913] sssss. When doing restore—perform necessary

HIR operations

[0914] 1. Using SP restore HIR

[0915] 1ii. By running HIR scripts on the mounted
vmdk

[0916] ttttt. Boot vimdk in an Hypervisor:

[0917] 1. ESX—will require conversion to ESK vmdk
for openvmdk approach mentioned above which is an
expensive operation in terms of JO bandwidth

[0918] ii. VirtualBox/VMWare Server/XEN—no cur-
rent platform support for this—expensive from dev
time

[0919] Concerns

[0920] Is a disk scanning on a customer like physical
machine is fast enough?

[0921] Scanning mounted chain method may not be reli-
able. Is there a reliable way to detect the changed blocks
consistently?

1. Mount backup chain at last restore point
2. Scan the mounted disk device block after

US 2014/0006858 Al

[0922] How many concurrent vddks mounts to vmdk can
we maintain on a single box?

[0923] Thoughts on Block Hash Lookup Index

[0924] TI'dfirst like to say that I don’t think this is a must for
3RD PARTY since the signature file could be sufficient (al-
though sub optimal) initial phase. The lookup which is used
for the “d-sync” could be added later without changing the
backend given the current design. It will certainly be a must
for 3rd Party Windows agent.

[0925] So there are couple of approaches [was thinking
about but probably none is simple in terms of development
effort.

[0926] The requirement is to be able to do fast lookup of
block offset given an md5 hash.

[0927] Data structures to support that:

[0928] 1. B+Tree or a just use a database which effec-
tively creates a B/B+tree on a table index.

[0929] 2. Disk based hash table—{flat file with hash col-
lision buckets at constant offsets which should be
resized when a bucket gets full. The file should be
mmap-ed for better performance.

[0930] B-tree drawback is that is suffer from fragmentation
for the type of data we intend to use. A mitigation strategy for
this is creating pages with small fill factor which should
reduce fragmentation till pages startto get full. The hash table
suffers from the need for rehashing when buckets get full. So
essentially both solutions suffer from similar problem and the
choice should most likely be based on ease of implementa-
tion.

Jan. 2, 2014

[0931] Theideais as follows (assuming index structure was
selected):

[0932] 3. Create an empty index

[0933] 4. Insert/lookup index during backup

[0934] 5. Ifneed rebuild parts of the index while waiting

for chunk upload to complete or rebuild all if must.
[0935] 6. On the post backup signature processing—
while rebuilding the new signature from repopulate the
index with big fill factor so it would be ready for next
backup.
[0936] If index get corrupted/missing—it can be rebuilt
from the signature file like in step 4.
[0937] Anoptimization would be seed an index at the back-
end with known blocks for target OS/apps and send to client
before backup start. This might have potential to reduce initial
upload size by 10-20 GB per server.
[0938] We can consider thinking if there is a similar data
structure or enhancement to the current 2 options which will
allow partial rebuilding of the index instead of full rebuild
every time it is needed.
[0939] While a preferred embodiment of the invention has
been illustrated and described, as noted above, many changes
can be made without departing from the spirit and scope of the
invention. Instead, the invention should be determined
entirely by reference to the claims that follow.
The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as follows:
1. A system comprising elements described above herein.
2. A method comprising steps described above herein.

#* #* #* #* #*

