
US010503892B2

(12) United States Patent (10) Patent No .: US 10,503,892 B2
(45) Date of Patent : Dec. 10 , 2019 Domke

(54) (56) References Cited REMOTE ATTESTATION FOR MULTI - CORE
PROCESSOR

U.S. PATENT DOCUMENTS
(71) Applicant : Microsoft Technology Licensing , LLC ,

Redmond , WA (US)
6,990,579 B1 * 1/2006 Herbert G06F 21/305

711/152
G06F 21/57

380/280
7,613,921 B2 * 11/2009 Scaralata

(72) Inventor : Felix Stefan Domke , Luebeck (DE)

(73) Assignee : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

8,397,299 B2
8,812,871 B2
9,348,997 B2
9,405,912 B2

3/2013 Herschaft
8/2014 Monclus et al .
5/2016 Schulz et al .
8/2016 Novak et al .

(Continued)
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days .

FOREIGN PATENT DOCUMENTS

WO 2014088239 Al 6/2014

(21) Appl . No .: 15 / 632,380
OTHER PUBLICATIONS

(22) Filed : Jun . 25 , 2017

(65) Prior Publication Data

" Secure Boot ” , In White Paper of Freescale , Dec. 13 , 2016 , 4 pages .
(Continued)

Primary Examiner Ghazal B Shehni
(74) Attorney , Agent , or Firm — Davin Chin ; Chin IP ,
PLLC

US 2018/0373863 A1 Dec. 27 , 2018

(51)

(52)

Int . Cl .
G06F 21/00 (2013.01)
G06F 21/44 (2013.01)
GO6F 21/57 (2013.01)
G06F 21/51 (2013.01)
H04L 9/32 (2006.01)
U.S. CI .
CPC GO6F 21/44 (2013.01) ; G06F 21/51

(2013.01) ; G06F 21/57 (2013.01) ; G06F
21/575 (2013.01) ; H04L 9/3236 (2013.01) ;
G06F 2221/2103 (2013.01) ; H04L 2209/12

(2013.01)
Field of Classification Search
??? GOOF 9/4401 ; G06F 9/4405 ; G06F 21/575 ;

G06F 9/4406 ; G06F 15/177
See application file for complete search history .

(57) ABSTRACT
The disclosed technology is generally directed to the authen
tication of software . In one example of the technology , a
private attestation key is stored in hardware . In some
examples , during a sequential boot process a hash is calcu
lated , in an order in which the software stages are sequen
tially booted , of each software stage of a plurality of
software stages . The hashes of each software stage of the
plurality may be cryptographically appended to an accumu
lation register . The accumulation register may be used to
attest to validity of the software stages . The plurality of
software stages may include a first bootloader , a runtime for
a first core of a multi - core processor , and a runtime for a first
execution environment for a second core of the multi - core
processor .

20 Claims , 6 Drawing Sheets

(58)

445

490

469
Radio

Firmware -491
470 470 Radio

460 460
NW User Apps 480 474

Security
Complex Runtime 463 NW User Svcs 473

Boot Loader MCU Apps 462 NW OS 482 472

ROM -461 SWRT 471 MCU Svcs 481

Secure MCU CPU I / O MCU

Multi - core processor

US 10,503,892 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

9,443,111 B2
9,594,927 B2
9,674,162 B1

2006/0031175 Al
2006/0179302 Al
2007/0192610 A1
2008/0256366 A1
2010/0031012 A1
2011/0040957 Al
2014/0157002 A1
2014/0195848 A1
2014/0281455 A1
2014/0325239 A1
2015/0036513 A1 *

9/2016 Offenberg et al .
3/2017 Zimmer et al .
6/2017 Miller et al .
2/2006 Sellars et al .
8/2006 Hatakeyama
8/2007 Chun et al .
10/2008 Dale et al .
2/2010 Rotondo et al .
2/2011 Berger et al .
6/2014 Grobman et al .
7/2014 Teli et al .
9/2014 Kochar

10/2014 Ghose
2/2015 Bukin HO4L 43/12

370/250
2015/0261950 A1
2015/0339129 A1
2016/0124481 Al
2016/0125187 Al
2017/0083707 A1
2017/0085383 A1
2017/0093800 A1
2017/0103209 Al
2017/0286279 Al
2018/0006815 Al
2018/0189493 A1
2018/0341620 Al
2018/0373878 A1
2018/0375662 A1

9/2015 Schulz et al .
11/2015 Divakaran et al .
5/2016 Avadhanam et al .
5/2016 Oxford
3/2017 Woolley et al .
3/2017 Rao et al .
3/2017 Wiseman et al .
4/2017 Wooten et al .

10/2017 Allison et al .
1/2018 Young et al .
7/2018 Schilder et al .

11/2018 Letey et al .
12/2018 Jung et al .
12/2018 Domke

Domke , Felix Stefan et al .; “ Secure Key Storage for Multi - Core
Processor ” ; U.S. Appl . No. 15 / 632,383 , filed Jun . 25 , 2017 ; 42
pages .
Jung , Jaeyeon et al .; " Secure Boot for Multi - Core Processor ” ; U.S.
Appl . No. 15 / 632,388 , filed Jun . 25 , 2017 ; 44 pages .
Presti , Stephane Lo , “ A Tree of Trust rooted in Extended Trusted
Computing ” , In Proceedings of the second conference on Advances
in Computer Security and Forensics Programme , Jul . 2007 , pp . 1-8 .
Yan , et al . , “ A software - based root - of - trust primitive on multicore platforms ” , In Proceedings of the 6th ACM Symposium on Infor
mation , Computer and Communications Security , Mar. 22 , 2011 , pp .
334-343 .
Jumelet , et al . , “ Control the health of Windows 10 - based devices ” ,
https://docs.microsoft.com/en-us/windows/device-security/protect
high - value - assets - by - controlling - the - health - of - windows - 10 - based
devices , Published on : Apr. 5 , 2017 , 42 pages .
Huang , et al . , “ An Effective Approach for Remote Attestation in
Trusted Computing ” , In Proceedings of the 2nd International Sym
posium on Web Information Systems and Applications , May 22 ,
2009 , pp . 80-81 .
Smeets , Ben , “ System Security II : Trusted Computing ” , https : //
www.ida.liu.se - TDDD17 / lecturesislides / tddd 17 - system - security - 2
trusted - computing - 2017.pdf , Published on : Feb. 11 , 2017 , 42 pages .
Vernon , Richard C. , “ A design for sensing the boot type of a trusted
platform module enabled computer ” , In Thesis of University of
Arkansas , Sep. 2005 , 69 pages .
“ Non Final Office Action Issued in U.S. Appl . No. 15 / 632,383 ” ,
dated Feb. 19 , 2019 , 11 Pages .
“ Notice of Allowance Issued in U.S. Appl . No. 15 / 632,388 ” , dated
Oct. 24 , 2018 , 9 Pages .
Czagan , David , “ Using Hashes in Securityhashes - in - Computer
Security ” , Retrieved from : << https://resources.infosecinstitute.com/
hashes - in - computer - security / # gref >> , Sep. 30 , 2013 , 3 Pages .
“ International Search Report and Written Opinion Issued in PCT
Application No. PCT / US2018 / 035236 ” , dated Aug. 13 , 2018 , 16
Pages .
“ International Search Report and Written Opinion Issued in PCT
Application No. PCT / US2018 / 035238 ” , dated Jul . 25 , 2018 , 15
Pages .
" Final Office Action Issued in U.S. Appl . No. 15 / 632,383 ” , dated
Jun . 25 , 2019 , 10 Pages .

OTHER PUBLICATIONS

“ Storing a secure key in an embedded device's memory ” , https : //
electronics.stackexchange.com/questions/198274/storing-a-secure
key - in - an - embedded - devices - memory , Retrieved on : Jun . 12 , 2017 ,
4 pages .
Arrag , et al . , “ Replace AES Key Expansion Algorithm by Modified
Genetic Algorithm ” , In Proceedings of Applied Mathematical Sci
ences , vol . 7 , No. 144 , 2013 , pp . 7161-7171 . * cited by examiner

100

U.S. Patent

External Network 140

Dec. 10 , 2019

120

120

wand

120

120

memerland

120a

120c

Sheet 1 of 6

120b

Network 130

112a

112c

1122

112b 110

1107

1107

Computing Devices

Computing Devices

Computing Devices

US 10,503,892 B2

FIG . 1

200

210

U.S. Patent

230

Processing Circuit

Memory Controller
220

250

Dec. 10 , 2019

Operating Memory

Data Storage Memory

Sheet 2 of 6

240

260

270

Input Interface

280

Output Interface

Network Adapter

Computing Device

US 10,503,892 B2

FIG . 2

300

U.S. Patent

Application back - end 313

IoT support service 351

Dec. 10 , 2019

Network 330

Sheet 3 of 6

Multi - core

Multi - core processor 345

processor 345

IOT Device 341

IoT Device 342

US 10,503,892 B2

FIG . 3

445

U.S. Patent

490

469

Radio Firmware
491

470 470

Radio

Dec. 10 , 2019

460

480

NW User Apps

474

Security Complex
Runtime
463

NW User Svcs

473

Boot Loader

Sheet 4 of 6

MCU Apps

NW OS

482

462

472 471

ROM

461

SW RT

MCU Svcs

481

Secure MCU

CPU

I / O MCU Multi - core processor

US 10,503,892 B2

FIG . 4

580

U.S. Patent

Start Store private attestation key

581

B

Dec. 10 , 2019

Read first software stage

582

Calculate hash of current software stage

583

Sheet 5 of 6

Cryptographically append hash to accumulation register

584

A

US 10,503,892 B2

FIG . 5A

580

U.S. Patent

A

N

Boot complete ?
585

Dec. 10 , 2019

586

Read next software stage

Receive challenge

587

Sheet 6 of 6

Generate signed response to challenge with DRO value

588

B

Send response to challenge

589

Return

US 10,503,892 B2

FIG . 5B

1

10

15

US 10,503,892 B2
2

REMOTE ATTESTATION FOR MULTI - CORE various examples of the technology . One skilled in the art
PROCESSOR will understand that the technology may be practiced with

out many of these details . In some instances , well - known
BACKGROUND structures and functions have not been shown or described

5 in detail to avoid unnecessarily obscuring the description of The Internet of Things (“ IoT ”) generally refers to a
system of devices capable of communicating over a net examples of the technology . It is intended that the terminol
work . The devices can include everyday objects such as ogy used in this disclosure be interpreted in its broadest
toasters , coffee machines , thermostat systems , washers , dry reasonable manner , even though it is being used in conjunc
ers , lamps , automobiles , and the like . The network commu tion with a detailed description of certain examples of the
nications can be used for device automation , data capture , technology . Although certain terms may be emphasized
providing alerts , personalization of settings , and numerous below , any terminology intended to be interpreted in any
other applications . restricted manner will be overtly and specifically defined as

such in this Detailed Description section . Throughout the SUMMARY OF THE DISCLOSURE specification and claims , the following terms take at least the
meanings explicitly associated herein , unless the context This Summary is provided to introduce a selection of concepts in a simplified form that are further described dictates otherwise . The meanings identified below do not

below in the Detailed Description . This Summary is not necessarily limit the terms , but merely provide illustrative
intended to identify key features or essential features of the examples for the terms . For example , each of the terms
claimed subject matter , nor is it intended to be used to limit 20 “ based on ” and “ based upon ” is not exclusive , and is
the scope of the claimed subject matter . equivalent to the term “ based , at least in part , on ” , and

Briefly stated , the disclosed technology is generally includes the option of being based on additional factors ,
directed to the authentication of software . In one example of some of which may not be described herein . As another
the technology , a private attestation key is stored in hard example , the term “ via ” is not exclusive , and is equivalent
ware . In some examples , during a sequential boot process a 25 to the term “ via , at least in part ” , and includes the option of
hash is calculated , in an order in which the software stages being via additional factors , some of which may not be are sequentially booted , of each software stage of a plurality described herein . The meaning of “ in ” includes “ in ” and of software stages . The hashes of each software stage of the “ on . ” The phrase “ in one embodiment , ” or “ in one plurality may be cryptographically appended to an accumu
lation register . The accumulation register may be used to example , ” as used herein does not necessarily refer to the
attest to validity of the software stages . The plurality of 30 same embodiment or example , although it may . Use of
software stages may include a first bootloader , a runtime for particular textual numeric designators does not imply the
a first core of a multi - core processor , and a runtime for a first existence of lesser - valued numerical designators . For
execution environment for a second core of the multi - core example , reciting “ a widget selected from the group con
processor . sisting of a third foo and a fourth bar ” would not itself imply

Other aspects of and applications for the disclosed tech- 35 that there are at least three foo , nor that there are at least four
nology will be appreciated upon reading and understanding bar , elements . References in the singular are made merely
the attached figures and description . for clarity of reading and include plural references unless

plural references are specifically excluded . The term “ or ” is
BRIEF DESCRIPTION OF THE DRAWINGS an inclusive “ or ” operator unless specifically indicated oth

40 erwise . For example , the phrases “ A or B ” means “ A , B , or
Non - limiting and non - exhaustive examples of the present A and B. ” As used herein , the terms “ component ” and

disclosure are described with reference to the following " system ” are intended to encompass hardware , software , or
drawings . In the drawings , like reference numerals refer to various combinations of hardware and software . Thus , for
like parts throughout the various figures unless otherwise example , a system or component may be a process , a process
specified . These drawings are not necessarily drawn to scale . 45 executing on a computing device , the computing device , or

For a better understanding of the present disclosure , a portion thereof .
reference will be made to the following Detailed Descrip Briefly stated , the disclosed technology is generally
tion , which is to be read in association with the accompa directed to the authentication of software . In one example of
nying drawings , in which : the technology , a private attestation key is stored in hard

FIG . 1 is a block diagram illustrating one example of a 50 ware . In some examples , during a sequential boot process a
suitable environment in which aspects of the technology hash is calculated , in an order in which the software stages
may be employed ; are sequentially booted , of each software stage of a plurality

FIG . 2 is a block diagram illustrating one example of a of software stages . The hashes of each software stage of the
suitable computing device according to aspects of the dis plurality may be cryptographically appended to an accumu
closed technology ; 55 lation register . The accumulation register may be used to

FIG . 3 is a block diagram illustrating an example of a attest to validity of the software stages . A multi - core pro
system ; cessor may be used in IoT devices and in other contexts . In

FIG . 4 is a block diagram illustrating an example of the some examples , the multi - core processor may provide net
multi - core processor of FIG . 3 ; and work connectivity , for the IoT device , as well as various

FIGS . 5A - 5B are a flow diagram illustrating an example 60 other functions including hardware and software security , a
process for remote attestation for a multi - core processor in monitored operating system , cryptographic functions ,
accordance with aspects of the present disclosure . peripheral control , telemetry , and / or the like .

When the IoT device with a multi - core processor connects
DETAILED DESCRIPTION to a network to receive IoT services , the IoT services may

65 first request attestation in order to verify that the software on
The following description provides specific details for a the multi - core processor is not compromised . The IoT

thorough understanding of , and enabling description for , service may thereby issue a challenge .

US 10,503,892 B2
3 4

In some examples , the multi - core processor may include phones . However , in a data center environment , these com
an accumulation register having a value that is reset to zero puting devices may be server devices such as application
in response to a reboot , and modification of the value of the server computers , virtual computing host computers , or file
accumulation register is limited to operations that crypto server computers . Moreover , computing devices 110 may be
graphically append a value to the accumulation register , or 5 individually configured to provide computing , storage , and /
otherwise . For example , the cryptographic appending of the or other suitable computing services .
value replaces a current value of the register with a crypto In some examples , one or more of the computing devices
graphic hash calculated from , for example , a concatenation 110 is an IoT device , a device that comprises part or all of
or other combination of the " current " value of the register an IoT hub , a device comprising part or all of an application
and the “ to - be - appended data . ” This hash may be a one - way 10 back - end , or the like , as discussed in greater detail below .
hash , e.g. , such that the hash and part of the data for which Illustrative Computing Device
the hash is generated is generally insufficient to recover FIG . 2 is a diagram illustrating one example of computing
another part of the data for which the hash was generated . device 200 in which aspects of the technology may be

In some examples , during boot , software stages are practiced . Computing device 200 may be virtually any type
sequentially booted based on a chain of trust that corre- 15 of general- or specific - purpose computing device . For
sponds to a defense - in - depth hierarchy . In some examples , example , computing device 200 may be a user device such
as each software stage is sequentially booted , a hash is taken as a desktop computer , a laptop computer , a tablet computer ,
of the software stage , and the hash is cryptographically a display device , a camera , a printer , or a smartphone .
appended to the accumulation register . Likewise , computing device 200 may also be server device

The multi - core processor may respond to the attestation 20 such as an application server computer , a virtual computing
challenge with a response that includes the value of the host computer , or a file server computer , e.g. , computing
accumulation register . Additionally , in some examples , the device 200 may be an example of computing device 110 or
response to the challenge is signed with a private attestation network node 120 of FIG . 1. Computing device 200 may
key . The IoT services may receive the response to the also be an IoT device that connects to a network to receive
challenge , verify that that the value of the accumulation 25 IoT services . Likewise , computer device 200 may be an
register is correct , and validate the signature with the public example any of the devices illustrated in or referred to in
attestation key . FIGS . 3-5 , as discussed in greater detail below . As illustrated
Illustrative Devices / Operating Environments in FIG . 2 , computing device 200 includes processing circuit

FIG . 1 is a diagram of environment 100 in which aspects 210 , operating memory 220 , memory controller 230 , data
of the technology may be practiced . As shown , environment 30 storage memory 250 , input interface 260 , output interface
100 includes computing devices 110 , as well as network 270 , and network adapter 280. Each of these afore - listed
nodes 120 , connected via network 130. Even though par components of computing device 200 includes at least one
ticular components of environment 100 are shown in FIG . 1 , hardware element .
in other examples , environment 100 can also include addi Computing device 200 includes at least one processing
tional and / or different components . For example , in certain 35 circuit 210 configured to execute instructions , such as
examples , the environment 100 can also include network instructions for implementing the herein - described work
storage devices , maintenance managers , and / or other suit loads , processes , or technology . Processing circuit 210 may
able components (not shown) . Computing devices 110 include a microprocessor , a microcontroller , a graphics
shown in FIG . 1 may be in various locations , including on processor , a coprocessor , a field - programmable gate array , a
premise , in the cloud , or the like . For example , computer 40 programmable logic device , a signal processor , or any other
devices 110 may be on the client side , on the server side , or circuit suitable for processing data . Processing circuit 210 is
the like . an example of a core . The aforementioned instructions ,
As shown in FIG . 1 , network 130 can include one or more along with other data (e.g. , datasets , metadata , operating

network nodes 120 that interconnect multiple computing system instructions , etc.) , may be stored in operating
devices 110 , and connect computing devices 110 to external 45 memory 220 during run - time of computing device 200 .
network 140 , e.g. , the Internet or an intranet . For example , Operating memory 220 may also include any of a variety of
network nodes 120 may include switches , routers , hubs , data storage devices / components , such as volatile memories ,
network controllers , or other network elements . In certain semi - volatile memories , random access memories , static
examples , computing devices 110 can be organized into memories , caches , buffers , or other media used to store
racks , action zones , groups , sets , or other suitable divisions . 50 run - time information . In one example , operating memory
For example , in the illustrated example , computing devices 220 does not retain information when computing device 200
110 are grouped into three host sets identified individually as is powered off . Rather , computing device 200 may be
first , second , and third host sets 112a - 112c . In the illustrated configured to transfer instructions from a non - volatile data
example , each of host sets 112a - 112c is operatively coupled storage component (e.g. , data storage component 250) to
to a corresponding network node 120a - 120c , respectively , 55 operating memory 220 as part of a booting or other loading
which are commonly referred to as “ top - of - rack ” or “ TOR ” process . In some examples , other forms of execution may be
network nodes . TOR network nodes 120a - 120c can then be employed , such as execution directly from data storage
operatively coupled to additional network nodes 120 to form memory 250 , e.g. , eXecute In Place (XIP) .
a computer network in a hierarchical , flat , mesh , or other Operating memory 220 may include 4th generation double
suitable types of topology that allows communications 60 data rate (DDR4) memory , 3rd generation double data rate
between computing devices 110 and external network 140 . (DDR3) memory , other dynamic random access memory
In other examples , multiple host sets 112a - 112c may share (DRAM) , High Bandwidth Memory (HBM) , Hybrid
a single network node 120. Computing devices 110 may be Memory Cube memory , 3D - stacked memory , static random
virtually any type of general- or specific - purpose computing access memory (SRAM) , magnetoresistive random access
device . For example , these computing devices may be user 65 memory (MRAM) , pseudostatic random access memory
devices such as desktop computers , laptop computers , tablet (PSRAM) , or other memory , and such memory may com
computers , display devices , cameras , printers , or smart prise one or more memory circuits integrated onto a DIMM ,

US 10,503,892 B2
5 6

SIMM , SODIMM , Known Good Die (KGD) , or other signals per se . However , the term “ processor - readable stor
packaging . Such operating memory modules or devices may age media ” does encompass processor cache , Random
be organized according to channels , ranks , and banks . For Access Memory (RAM) , register memory , and / or the like .
example , operating memory devices may be coupled to Computing device 200 also includes input interface 260 ,
processing circuit 210 via memory controller 230 in chan- 5 which may be configured to enable computing device 200 to
nels . One example of computing device 200 may include receive input from users or from other devices . In addition ,
one or two DIMMs per channel , with one or two ranks per computing device 200 includes output interface 270 , which
channel . Operating memory within a rank may operate with may be configured to provide output from computing device
a shared clock , and shared address and command bus . Also , 200. In one example , output interface 270 includes a frame
an operating memory device may be organized into several 10 buffer , graphics processor , graphics processor or accelerator ,
banks where a bank can be thought of as an array addressed and is configured to render displays for presentation on a
by row and column . Based on such an organization of separate visual display device (such as a monitor , projector ,
operating memory , physical addresses within the operating virtual computing client computer , etc.) . In another example ,
memory may be referred to by a tuple of channel , rank , bank , output interface 270 includes a visual display device and is
row , and column . 15 configured to render and present displays for viewing . In yet

Despite the above - discussion , operating memory 220 another example , input interface 260 and / or output interface
specifically does not include or encompass communications 270 may include a universal asynchronous receiver / trans
media , any communications medium , or any signals per se . mitter (“ UART ”) , a Serial Peripheral Interface (“ SPI ”) ,
Memory controller 230 is configured to interface process Inter - Integrated Circuit (“ 12C ") , a General - purpose input /

ing circuit 210 to operating memory 220. For example , 20 output (GPIO) , and / or the like . Moreover , input interface
memory controller 230 may be configured to interface 260 and / or output interface 270 may include or be interfaced
commands , addresses , and data between operating memory to any number or type of peripherals .
220 and processing circuit 210. Memory controller 230 may In the illustrated example , computing device 200 is con
also be configured to abstract or otherwise manage certain figured to communicate with other computing devices or
aspects of memory management from or for processing 25 entities via network adapter 280. Network adapter 280 may
circuit 210. Although memory controller 230 is illustrated as include a wired network adapter , e.g. , an Ethernet adapter , a
single memory controller separate from processing circuit Token Ring adapter , or a Digital Subscriber Line (DSL)
210 , in other examples , multiple memory controllers may be adapter . Network adapter 280 may also include a wireless
employed , memory controller (s) may be integrated with network adapter , for example , a Wi - Fi adapter , a Bluetooth
operating memory 220 , or the like . Further , memory con- 30 adapter , a ZigBee adapter , a Long Term Evolution (LTE)
troller (s) may be integrated into processing circuit 210 . adapter , SigFox , LoRa , Powerline , or a 5G adapter .
These and other variations are possible . Although computing device 200 is illustrated with certain

In computing device 200 , data storage memory 250 , input components configured in a particular arrangement , these
interface 260 , output interface 270 , and network adapter 280 components and arrangement are merely one example of a
are interfaced to processing circuit 210 by bus 240. 35 computing device in which the technology may be
Although , FIG . 2 illustrates bus 240 as a single passive bus , employed . In other examples , data storage memory 250 ,
other configurations , such as a collection of buses , a collec input interface 260 , output interface 270 , or network adapter
tion of point to point links , an input / output controller , a 280 may be directly coupled to processing circuit 210 , or be
bridge , other interface circuitry , or any collection thereof coupled to processing circuit 210 via an input / output con
may also be suitably employed for interfacing data storage 40 troller , a bridge , or other interface circuitry . Other variations
memory 250 , input interface 260 , output interface 270 , or of the technology are possible .
network adapter 280 to processing circuit 210 . Some examples of computing device 200 include at least

In computing device 200 , data storage memory 250 is one memory (e.g. , operating memory 220) adapted to store
employed for long - term non - volatile data storage . Data run - time data and at least one processor (e.g. , processing
storage memory 250 may include any of a variety of 45 unit 210) that is adapted to execute processor - executable
non - volatile data storage devices / components , such as non code that , in response to execution , enables computing
volatile memories , disks , disk drives , hard drives , solid - state device 200 to perform actions .
drives , or any other media that can be used for the non Illustrative Systems
volatile storage of information . However , data storage FIG . 3 is a block diagram illustrating an example of a
memory 250 specifically does not include or encompass 50 system (300) . System 300 may include network 330 , IoT
communications media , any communications medium , or support service 351 , IoT devices 341 and 342 , and applica
any signals per se . In contrast to operating memory 220 , data tion back - end 313 , which all connect to network 330. The
storage memory 250 is employed by computing device 200 term " IoT device ” refers to a device intended to make use of
for non - volatile long - term data storage , instead of for run IoT services . An IoT device can include virtually any device
time data storage . 55 that connects to the cloud to use IoT services , including for

Also , computing device 200 may include or be coupled to telemetry collection or any other purpose . IoT devices
any type of processor - readable media such as processor include any devices that can connect to a network to make
readable storage media (e.g. , operating memory 220 and use of IoT services . IoT devices can include everyday
data storage memory 250) and communication media (e.g. , objects such as toasters , coffee machines , thermostat sys
communication signals and radio waves) . While the term 60 tems , washers , dryers , lamps , automobiles , and the like . IoT
processor - readable storage media includes operating devices may also include , for example , a variety of devices
memory 220 and data storage memory 250 , the term “ pro in a “ smart ” building including lights , temperature sensors ,
cessor - readable storage media , ” throughout the specification humidity sensors , occupancy sensors , and the like . The IoT
and the claims whether used in the singular or the plural , is services for the IoT devices can be used for device automa
defined herein so that the term " processor - readable storage 65 tion , data capture , providing alerts , and / or personalization of
media ” specifically excludes and does not encompass com settings . However , the foregoing list merely includes some
munications media , any communications medium , or any of the many possible users for IoT services . Such services

US 10,503,892 B2
7 8

may be employed for , or in conjunction with , numerous In essence , network 330 includes any communication
other applications , whether or not such applications are method by which information may travel between IoT
discussed herein . support service 351 , IoT devices 341 and 342 , and applica

Application back - end 313 refers to a device , or multiple tion back - end 313. Although each device or service is shown
devices such as a distributed system , that performs actions 5 connected as connected to network 330 , that does not mean
that enable data collection , storage , and / or actions to be that each device communicates with each other device
taken based on the IoT data , including user access and shown . In some examples , some devices / services shown
control , data analysis , data display , control of data storage , only communicate with some other devices / services shown
automatic actions taken based on the IoT data , and / or the via one or more intermediary devices . Also , other network
like . In some examples , at least some of the actions taken by 10 330 is illustrated as one network , in some examples , network
the application back - end may be performed by applications 330 may instead include multiple networks that may or may
running in application back - end 313 . not be connected with each other , with some of the devices

The term “ IoT support service ” refers to a device , or shown communicating with each other through one network
multiple devices such as a distributed system , to which , in of the multiple networks and other of the devices shown
some examples , IoT devices connect on the network for IoT 15 communicating with each other with a different network of
services . In some examples , the IoT support service is an IoT the multiple networks .
hub . In some examples , the IoT hub is excluded , and IoT As one example , IoT devices 341 and 342 are devices that
devices communicate with an application back - end , directly are intended to make use of IoT services provided by the IoT
or through one or more intermediaries , without including an support service , which , in some examples , includes one or
IoT hub , and a software component in the application 20 more IoT support services , such as IoT support service 351 .
back - end operates as the IoT support service . IoT devices Application back - end 313 includes a device or multiple
receive IoT services via communication with the IoT support devices that perform actions in providing a device portal to
service . users of IoT devices .

Each of the IoT devices 341 and 342 , and / or the devices In some examples , IoT support service 351 may request
that comprise IoT support service 351 and / or application 25 and / or require an IoT device attempting to connect to IoT
back - end 313 may include examples of computing device support service 351 to remotely attest to the validity of the
200 of FIG . 2. The term “ IoT support service ” is not limited software running on the IoT device as part of the connection
to one particular type of IoT service , but refers to the device process , and / or before any further messages , work , or infor
to which the IoT device communicates , after provisioning , mation may be exchanged . Remote attestation may be used
for at least one IoT solution or IoT service . That is , the term 30 to verify that , at the moment attestation is completed , the
“ IoT support service , " as used throughout the specification software in the multi - core processor in the IoT device is
and the claims , is generic to any IoT solution . The term IoT valid .
support service simply refers to the portion of the IoT System 300 may include more or less devices than
solution / IoT service to which provisioned IoT devices com illustrated in FIG . 3 , which is shown by way of example
municate . In some examples , communication between IoT 35 only .
devices and one or more application back - ends occur with Also , FIG . 3 illustrates one example application for a
an IoT support service as an intermediary . The IoT support multi - core processor , namely , use in an IoT device . Multi
service is in the cloud , whereas the IoT devices are edge core processors 345 may also be used in various other
devices . FIG . 3 and the corresponding description of FIG . 3 suitable applications and contexts other than in an IoT
in the specification illustrates an example system for illus- 40 device and / or in an IoT context .
trative purposes that does not limit the scope of the disclo Illustrative Multi - Core Processor

FIG . 4 is a diagram illustrating an example of a multi - core
One or more of the IoT devices 341 and 342 may include processor 445 with defense - in - depth architecture . FIG . 4 and

a multi - core processor 345. Each multi - core processor 345 the corresponding description of FIG . 4 in the specification
may have a secure boot mechanism using cross - core vali- 45 illustrate an example processor for illustrative purposes that
dation and multiple mutations of a secret device key , with do not limit the scope of the disclosure .
sequentially booting using a chain of trust that corresponds In some examples , multi - core processor 445 enables a
to a defense - in - depth hierarchy of multi - core processor 345 , device in which multi - core processor 445 is included to
as discussed in greater detail below . operate as an IoT device , such as IoT device 341 or 342 of
Network 330 may include one or more computer net- 50 FIG . 3. In some examples , multi - core processor 445 may

works , including wired and / or wireless networks , where have at least 4 MB of RAM and at least 4 MB of flash
each network may be , for example , a wireless network , local memory . However , this is merely an example of one possible
area network (LAN) , a wide - area network (WAN) , and / or a implementation . Other processors may include various com
global network such as the Internet . On an interconnected set binations of less , or more , RAM and / or flash memory . In
of LANs , including those based on differing architectures 55 some examples , multi - core processor 445 provides not just
and protocols , a router acts as a link between LANs , network connectivity , but various other functions including
enabling messages to be sent from one to another . Also , hardware and software security , a monitored operating sys
communication links within LANs typically include twisted tem , cryptographic functions , peripheral control , telemetry ,
wire pair or coaxial cable , while communication links and / or the like . In addition , multi - core processor 445 may
between networks may utilize analog telephone lines , full or 60 include technology for allowing the device to be booted in
fractional dedicated digital lines including T1 , T2 , T3 , and a secure manner , allowing the device to be securely updated ,
T4 , Integrated Services Digital Networks (ISDNs) , Digital ensuring that proper software is running on the device ,
Subscriber Lines (DSLs) , wireless links including satellite allowing the device to function correctly as an IoT device ,
links , or other communications links known to those skilled and / or the like .
in the art . Furthermore , remote computers and other related 65 Multi - core processor 445 is arranged as follows in some
electronic devices could be remotely connected to either examples . Multi - core processor 445 includes security com
LANs or WANs via a modem and temporary telephone link . plex 469 , secure microcontroller (MCU) 460 , general pur

sure .

US 10,503,892 B2
9 10

pose CPU 470 , at least one input / output (I / O) MCU 480 , and employed . Management operations may include booting and
radio core 490. Secure MCU 460 may include secure MCU resuming the target environment , monitoring and handling
read - only memory (ROM) 461 , secure MCU first boot resets in the target environment , and configuring access
loader 462 , and secure MCU runtime 463. CPU 470 may be policy for the target environment . In some cases , certain
an application processor that includes Secure World (SW) 5 management operations are performed by a component other
runtime 471 , Normal World operating system (OS) 472 that than a parent . For instance , in some examples , CPU's
operates in supervisor mode , Normal World user - mode Normal World is the environment that manages I / O MCU
services 473 , and Normal World user - mode applications 480 , but receives assistance from CPU Secure World run
474. Each I / O MCU 480 may include MCU services 481 and time 471 to do so (e.g. to configure firewalls , and to program
MCU applications 482. Radio core 490 may include radio 10 the starting instructions of the I / O MCU 480) .
firmware 491 . For instance , in some examples , secure MCU runtime 473

In some examples , security complex 469 is the hardware manages Secure World runtime 472 , a component in Secure
root of trust in multi - core processor 469. In some examples , World runtime 471 manages Normal World OS 472 , a
security complex 469 is directly connected to secure MCU component in Normal World OS 472 manages Normal
460. In some examples , secure MCU 460 has a very high 15 World user - mode services 473 and applications 474 , and
degree of trust , but is less trusted than security complex 469 . Normal World user - mode services 473 manages the I / O
In these examples , secure MCU 460 controls one or more MCU 480 and the radio core 490 .
functions that require a very high degree of trust . In one In some examples , not only are independent execution
example , secure MCU 460 controls power for multi - core environments managed by a software component from a
processor 445 and / or an IoT device . 20 more trusted execution environment , but different functions

In some examples , CPU 470 runs a high - level operating are assigned to the different independent execution environ
system . In some examples , CPU 470 has two independent ments , with more sensitive functions assigned to more
execution environments : a Secure World (SW) runtime 471 trusted independent execution environments . In one particu
and a Normal World execution environment . The term lar example , independent execution environments less
“ Secure World ” is used broadly to refer to a trusted envi- 25 trusted than the independent execution environment to
ronment and is not limited to a particular security feature . In which it is assigned are restricted from having access to the
some examples , the Secure World runtime 471 of CPU 470 function . In this way , the independent execution environ
is also part of the trusted computing base of the system . In ments achieve defense - in - depth based on a hierarchy of
some examples , the Secure World runtime 471 of CPU 470 trust . In other examples , other suitable means of security
does not , however , have access to the internals of core 30 may be employed .
security complex 469 and relies on secure MCU runtime 463 For instance , in some examples , security complex 469 is
for particular security - sensitive operations . at the top of the hierarchy and is assigned to secrets (e.g. ,

The Normal World execution environment of the CPU encryption keys) , secure MCU runtime 463 is next in the
470 may be configured to have limited access to such hierarchy and is assigned to controlling power , Secure World
on - chip resources as memories . In some examples , the code 35 runtime 471 is next in the hierarchy and is assigned to
running in this environment must still meet certain (e.g. , storage and to write access to a real time clock (RTC) ,
relatively high) standards of security and quality but is less Normal World OS 472 is next in the hierarchy and is
trusted than either the code running on the secure MCU 460 assigned to managing radio functionality , Normal World
or the code running in Secure World runtime 471 on the CPU user - mode applications 474 is next in the hierarchy and is
470 . 40 assigned to applications , and the I / O MCU 480 are at the

In some examples , the I / O MCU cores 480 are less trusted bottom of the hierarchy and are assigned to peripherals . In
than the secure MCU 460 and CPU 470 , and as such , in other examples , functions are assigned to independent
some examples the CPU's Secure World environment is execution environments in a different manner .
responsible for configuring the firewalls of multi - core pro In some examples , each level of the hierarchy of trust
cessor 445 to limit the access of I / O MCU 480 to on - chip 45 except for the bottom (i.e. , least trusted) level of the hier

archy has complete control to accept or reject any requests
In some examples , radio core 490 executes vendor - pro from a less trusted level , e.g. , in terms of implementing

vided firmware . The radio core 490 may provide radio support for the software they handle , and have the ability to
functionality and connectivity to the Internet and cloud rate limit or audit the requests from less trusted levels and to
services such as IoT services . In some examples , radio core 50 validate requests from lower levels to ensure that the
490 may provide communications via Wi - Fi , Bluetooth , requests correct and true . Also , as previously discussed , in
and / or other connectivity technology . But as with the I / O some examples , each level of hierarchy except the top (i.e. ,
MCU 480 , in some examples , the CPU 470 is responsible for most trusted) level has a parent that is responsible for
configuring the firewalls to limit the access of radio core 490 managing the lower (i.e. , less trusted) level , including moni
to on - chip resources . In some examples , radio core 490 does 55 toring the software of the lower level and ensuring that the
not have any access to unencrypted secrets , and is not software on the lower level is running correctly .
capable of compromising the execution of secure MCU 460 In some examples , the layers of the hierarchy make use of
or the CPU 470 . secure communications channels and firewalls . For instance ,

In some examples , each independent execution environ in some examples , secure MCU runtime 471 has two mes
ment is managed by a single software component executing 60 sage queues , configured such that , based on the hardware ,
in a separate execution environment that is referred to the one of the queues can only be used in Secure World , and one
“ parent ” of the execution environment . In such examples , that can be used from Normal World . In one particular
one exception may be that the hardware root of trust example , if a message comes from the Secure World queue ,
(security complex 469 in this example) has no parent . In one then based on the hardware the message must have come
particular example , each parent executes in an environment 65 from the Secure World , and is therefore more trusted than a
that is at least as trusted as the environments it manages . In message that came from Normal World . In other examples ,
other examples , other suitable means of security may be other suitable means of security may be employed .

resources .

US 10,503,892 B2
11 12

Additionally , in some examples , apart from the highest examples , the ROM code validates the code , and loads it into
layer of the hierarchy , no layer of the hierarchy starts without the private SRAM of secure MCU 460. In some examples ,
a higher level of the hierarchy having validated the layer secure MCU boot loader 462 contains the first instruction of
and , after validating the layer , allowed the layer to start . non - ROM code executed on Multi - core processor 445 , and
Also , in these examples , a layer of the hierarchy has the 5 is a fixed size (e.g. , 16 k) raw binary . In some examples ,
ability to stop any lower level of hierarchy , for example , at secure MCU boot loader 462 is responsible for loading ,
any time . Accordingly , in these examples , multi - core pro validating , and transferring control to the secure MCU
cessor 445 has the software capability of each layer of the Runtime 463 , setting up the device's software key store ,
hierarchy having complete dominance over lower (i.e. , less implementing a low - level “ recovery mode ” for re - program
trusted) levels of the hierarchy in terms of stopping and 10 ming flash (used for development purposes , and possibly
starting and running of the lower levels of the hierarchy . also for in - the - field updates - appropriately secured) , apply

In some examples , security complex 469 is the hardware ing updates / rollbacks , and configuring and kicking a secure
root of trust and the highest , most trusted level of the watchdog timer in secure MCU 460 (until the secure MCU
defense - in - depth trust hierarchy . In some examples , security runtime 463 takes control) .
complex 469 contains keys , secrets , encryption engines , 15 Much like the ROM code before it , in these examples ,
and / or the like . In some examples , security complex 469 secure MCU boot loader 462 locates the secure MCU
stores secrets , performs functions such as key generation , runtime code in flash , validates the code , loads the code into
encryption , decryption , hashing , other cryptographic func the private SRAM of secure MCU 460 , and transfers control
tions , other security - related functions , and / or the like . In to the code . In some examples , once secure MCU boot
some examples , security complex 469 is able to check the 20 loader 462 has transferred execution in this way , secure
secret value stored in a one - way writable memory such as an MCU boot loader 462 will not regain control , and secure
e - fuse , one time programmable element , and / or the like . MCU boot loader 462 will not remain resident in the SRAM

In some examples , when multi - core processor 445 is of secure MCU 460 after secure MCU boot loader 462 has
powered on and its power management unit (PMU) has finished executing .
stable power , the PMU releases the security complex 469 25 In some examples , secure MCU runtime 463 is respon
from reset . In some examples , the security complex 469 is sible for managing the CPU's Secure World environment . In
at the core of multi - core processor 445's trusted computing some examples , secure MCU is also responsible for man
base . In some examples , core security complex 469 drives aging and controlling power domains and other critical
the secure boot process . In one particular example , cores are components , e.g. , properly setting up debug enabling signals
restricted from executing code until the security complex 30 for other cores , powering on or off different domains on
469 has enabled it to do so . In other examples , other suitable multi - core processor 445 , re - configuring and kicking the
means of security may be employed . own watchdog timer of secure MCU 460 (taking over for

In some examples , execute in place (XiP) is not used on secure MCU boot loader) , configuring the watchdog timer of
the secure MCU 460 , in order to avoid the possibility of CPU 470 and responding to its reset interrupt , and waking
undetected runtime writes to flash resulting in untrusted 35 up a core (CPU 470 or I / O MCU 480) that has been powered
code executing on secure MCU 460. In one particular off but received an interrupt . In some examples , secure MCU
example , the ROM 461 and runtime 463 instead ensure that runtime 463 is responsible for monitoring Secure World
code executing on secure MCU 460 is copied into the private runtime 471 of the CPU 470 to ensure that Secure World
SRAM of secure MCU 460 from flash and validated before runtime 471 is running correctly and to reset Secure World
executing . In other examples , other suitable means of secu- 40 runtime 471 .
rity may be employed . Secure MCU runtime 463 interacts with security complex

In some examples , the secure MCU 460 does not contain 469 to request that core security complex 469 perform tasks
a memory management unit (MMU) , but does contain a associated with core security complex 469. For instance ,
memory protection unit (MPU) that can be used to provide secure MCU runtime 463 may request security complex 469
some safeguards - such as controlling the readability , writ- 45 to extract keys , or to request that security complex 469 do
ability , and executability of portions of the physical address something with the extracted keys , to request that security
space . The MPU may be used in this fashion , e.g. marking complex 469 generate a pin number , to request that some
stacks and memory - mapped flash as no - execute . thing be encrypted by security complex 469 and the

In some examples , secure MCU ROM 461 is responsible encrypted version returned to secure MCU runtime 463 ,
for initializing enough of multi - core processor 445 so that 50 and / or the like . In some examples , secure MCU runtime 463
the first piece of software stored in flash can securely acts in essence as the operating system for security complex
execute on the secure MCU 460 . 469 .

In some examples , upon entry , the code in secure MCU Secure World on the CPU 470 may have a trust zone that
ROM 461 waits for indication that the secure MCU 460 has creates a private independent execution environment that is
completed initialization , reads the e - fuse indicating the 55 hardware - protected from the rest of multi - core processor
device's security state , configures Phase Locked Loops 445. Secure World may have a runtime , Secure World
(PLLs) to set the desired steady - state , clock frequency , and runtime 471. In some examples , the Secure World environ
enables memory mapping of flash (e.g. , for all cores) . In ment on the CPU 470 is part of multi - core processor 445's
some examples , although the secure MCU 460 does not trusted computing base , and as such does not execute
execute code directly from flash , it does leverage this 60 third - party code . For example , Secure World may have its
mechanism to read and copy data from flash to its SRAM . own kernel and user mode processes . Secure World runtime

In these examples , after it has completed this configura 471 may be responsible for protecting security - sensitive
tion , the code in ROM 461 is responsible for loading and hardware resources on multi - core processor 445 , safely
transferring control to secure MCU boot loader 462 , which exposing limited access to these resources , and acting as a
is the first - level boot loader of secure MCU 460. In some 65 watchdog for the CPU 470's Normal World environment of
examples , secure MCU boot loader 462 is found in flash , Normal World OS 472 , Normal World user services 473 , and
both encrypted and signed , at known locations . In these Normal World applications 474. For instance , in some

US 10,503,892 B2
13 14

examples , Secure World runtime 471 is responsible for OS 472 do not have direct access to radio functionality , but
monitoring Normal World OS 472 , ensuring the Normal instead access radio functionality indirectly via Normal
World OS 472 is running correctly , and resetting Normal World OS 472 .
World OS 472. In some examples , Secure World runtime In some examples , in CPU Normal World user - space , a
471 is responsible for forwarding requests to secure MCU 5 set of user services 473 are run that are responsible for :
463 runtime from layers that do not have access to secure booting I / O MCU 480 (with assistance from Secure World
MCU 463 runtime . runtime 471) , booting the radio core 490 (with assistance

In some examples , the CPU 470 does not contain ROM from Secure World runtime 471) , publishing device telem
code ; instead , CPU 470 contains an 8 - byte volatile memory etry to IoT services , publishing diagnostic information to
that contains the first instruction (s) for it to execute upon 10 IoT services , receiving and applying software updates from
being taken out of reset . In these examples , before the CPU IoT services , and handling reset interrupts from I / O MCU
470 is taken out of reset , the 8 - byte volatile memory is 480 watchdog timers .
programmed by the secure MCU 460 to contain a branch to In some examples , the CPU Device API internally lever
the first instruction of the CPU Secure World runtime 471 , ages Normal World user Runtime Services 473 , and
executing from shared SRAM . In some examples , CPU 470 15 abstractly provides third - party application Code hosted on
is configured such that the code that executes in Secure the CPU (in Normal World) with access to the following
World runtime 471 executes from a range of SRAM that is functionality : publishing device telemetry , publishing diag
configured to be inaccessible to Normal World 472-474 . nostic information , communicating with I / O MCU 480 ,

In some examples , Secure World runtime 471 is also controlling and issuing I / O to peripheral , and application
responsible for booting Normal World environment on the 20 Code . In some examples , product manufacturers and other
CPU 470 , exposing runtime services to software running in customers of multi - core processor 445 may author third
Normal World , access to real - time clock (RTC) , I / O MCU party code to execute on the CPU 470 in Normal World . In
480 management API , radio core 490 management API , some examples , the code is able to use the CPU Device API ,
managing silicon components not accessible to Normal and may coordinate with I / O runtimes executing on I / O
World (and which do not need to be managed by the secure 25 MCU 480 .
MCU 460) , interacting with the flash controller in macro In some examples , multi - core processor 445 contains two
mode , programming a direct memory access (DMA) engine “ I / O ” MCUS 480 intended for sensing and actuation . In
of CPU Secure World 471 , configuration of all firewalls , some of these examples , neither I / O MCU 480 contains any
configuration of the core I / O mapping , handling interrupts ROM code . Instead , in these examples , each I / O MCU 480
indicating firewall violations , taking I / O MCU 480 and radio 30 contains an 8 - byte volatile memory mapped at a particular
490 cores out of reset , configuring watchdog timers for I / O physical address . When an I / O MCU 480 starts executing , it
MCU 480 cores , configuring the Real - time clock (RTC) , and may fetch its initial instructions from this address . Before
managing updates for certain software components . Because each I / O MCU 480 is taken out of reset , the 8 - byte volatile
Secure World also contains multiple hardware modes (i.e. memory may be programmed by the CPU 470 to contain a
supervisor mode , user mode) , the Secure World runtime 471 35 branch to the first instruction of an I / O MCU Loader , XiP
may internally span multiple modes for additional defense from flash .
in - depth . In some examples , a company can use the I / O MCU 480

In some examples , Secure World runtime 471 operates microcontrollers to include the code that is on their existing
below secure - MCU runtime 463 in the trust / defense - in microcontrollers , which may allow a company to replace
depth hierarchy , but above Normal World OS 472 in the 40 their existing microcontroller functionality with multi - core
hierarchy . In these examples , whereas secure - MCU runtime processor 445 .
463 can , for instance , request that core security complex 469 In some examples , multi - core processor 445's radio stack
generate a pin number , Secure World runtime 471 cannot . executes on radio core 490 programmed by the silicon
Also , in these examples , whereas secure - MCU runtime 463 vendor producing the chip .
has access to power , Secure World runtime 471 does not . 45 While FIG . 4 illustrates a particular example of multi - core
However , in these examples , Secure World runtime 471 is in processor 445 , many other examples of multi - core processor
charge of managing storage , and layers of the hierarchy 445 are possible . For instance , the number and type of
below Secure World runtime 471 do not have access to independent execution environments may vary in different
storage . examples . In some examples , multi - core processor 445 has
As discussed , in some examples , the Secure World envi- 50 at least two general purpose cores with differing capabilities ,

ronment of CPU 470 is a hardware - protected private execu so that multi - core processor 445 has heterogeneous cores .
tion environment of CPU 470. The rest of the software The at least two general purpose cores with differing capa
environment of CPU 470 , other than the Secure World bilities may be at least a microcontroller and a CPU in one
environment , is the Normal World environment . There are example , while other general purpose cores with different
registers that the Secure World can read but the Normal 55 capabilities are used in other examples . The two cores are
World cannot in some examples . The Normal World envi general purpose in that any suitable code can be run on the
ronment may include a supervisor mode and a user mode . cores . For example , the MCU microcontroller and the CPU
The supervisor mode of the Normal World environment of are general purpose cores , whereas a graphic processing unit
CPU 470 may include Normal World OS 472. The user (GPU) is not a general - purpose core ; rather , a GPU is used
mode of the Normal World environment of CPU 470 may 60 to process specific types of calculations , and can runs certain
include Normal World user services 473 and Normal World types of executions . While the two cores in multi - core
user applications 474 . processor 445 are both general purpose and each can run any

In some examples , Normal World OS 472 is responsible suitable code , they have differing capabilities from each
for managing the resources for Normal World user applica other . Although the CPU and the MCU microcontroller are
tions 474. In some examples , Normal World OS 472 is 65 both general - purpose cores , the CPU is generally more
responsible for managing radio functionality , and layers powerful than the MCU and can execute instructions that the
hierarchically below (i.e. , less trusted than) Normal World MCU microcontroller cannot . This is but one example of

US 10,503,892 B2
15 16

two general purpose cores with differing capabilities . While In some examples , each multi - core processor 445 has a
specific cores are discussed herein , such as the CPU and the secret , unique , per - device key . In some examples , the per
MCU , in other examples , other general purpose cores may device key is an Advanced Encryption Standard (AES) key
be employed such as any general purpose CPU , microcon that is stored in hardware . In some examples , the per - device
troller , or the like . Also , various quantities of cores may be 5 key can be used in particular authorized ways , including to
employed in various examples . generate a mutation of the per - device key , but software may

Also , in various examples , different functions may be be disallowed from reading the per - device key itself , e.g. ,
assigned to different levels of the hierarchy . For instance , in because the hardware that stores the per - device key does not
the example of multi - core processor 445 illustrated in FIG . allow software to read the per - device key . Instead the
4 , the function of controlling power is assigned to a more 10 hardware may allow the particular authorized actions to be
trusted level of the hierarchy than the function of managing performed . In some examples , after booting the first boot

loader , secure MCU ROM 460 mutates the per - device key storage . However , in other examples , the function of man based on the hash of the first boot loader to derive a first aging storage is assigned to a more trusted level of the mutated key . Secure MCU ROM 460 may cause the first hierarchy than the function of controlling power . 15 mutated key to be stored in the private SRAM of secure Multi - core processor 445 may use a secure key store to MCU ROM 460. Mutating a key may interchangeably be
store keys and other secrets . For examples , some of the keys referred to as key derivation or performing a key derivation
in the secure key store may be used for validating signatures function . The first mutated key may be deterministic because
to software , e.g. , to ensure that the software is genuine and it is generated from the first boot loader , which , in some
valid . 20 examples , does not change during the lifetime of multi - core

In some examples , when multi - core processor 445 is processor 445 .
powered on and its PMU has stable power , the PMU releases Next , in some examples , the first bootloader is booted .
the security complex 469 from reset . In some examples , The first bootloader may generate a second mutated key
secure MCU ROM 461 is responsible for initializing enough based on the first mutated key and a random seed . The
of multi - core processor 445 so that the first piece of software 25 second mutated key may be used for the encryption , decryp
stored in flash can securely execute on the secure MCU 460 . tion , signing , and / or validation of the secure key store .
In some examples , the ROM code on secure MCU ROM 461 On an initial / first boot of a device , keys , hashes , and other
waits for indication that the secure MCU 460 has completed secrets may be determined and stored in the secure key store
initialization , reads the e - fuse indicating the device's secu flash memory , and encrypted and / or signed with the second
rity state , configures PLLs to set a clock frequency , and 30 mutated key . Among other things , the keys used for valida
enables memory mapping of flash (e.g. , for all cores) . tion the software stages that boot after the secure MCU

In these examples , after it has completed this configura runtime may be stored in the secure key store . Accordingly ,
tion , the code in MCU ROM 461 is responsible for loading on initial boot , the secure key store may be created on flash
and transferring control to secure MCU boot loader 462 , memory and encrypted and / or signed with the second
which is the first - level boot loader of secure MCU 460. In 35 mutated key . In some examples , as discussed above , the
some examples , the first boot loader is stored in flash . In random seed is used to derive the second mutated key on the
some examples , the first boot loader is encrypted and signed initial boot , and the random seed is stored and is not secret .
with a global private key that is part of a public / private key Accordingly , in some examples , on subsequent boots , the
pair . In some examples , the code in MCU ROM 461 reads flash memory contains a secure key store that can be
the first boot loader . In some examples , the ROM code in 40 decrypted and / or validated with the second mutated key .
MCU ROM 461 calculates a hash of the first boot loader and Also , in some examples , on subsequent boots , the same
verifies the first boot loader with a global public key . In some second mutated key should be generated as the initial boot ,
examples , in response to verification , the code in MCU because the per - device key should be the same as the initial
ROM 461 causes the first boot loader to be loaded into the boot and the hash of the first boot loader should be the same
private SRAM of secure MCU ROM 460 and booted . 45 as the initial boot , and the same random seed is used .

In some examples , the validation of the signature of the In addition to generating the second mutated key as
first boot loader provides assurance that the first boot loader discussed above , the first bootloader may generate one or
is genuine and / or valid . Although the first boot loader may more additional mutated keys from the first key and a
be signed with the global private key , for a number of separate corresponding persistent and validated random
reasons , including exposure risk , it is not necessarily desir- 50 number . Next , in some examples , the first boot loader locates
able for all software to be signed with the global private key . the secure MCU runtime 463 code in flash , reads the secure
Further , some devices are designed such that the first boot MCU runtime 463 code , and calculates a hash of the secure
loader should not be altered during the device lifetime . MCU runtime 463 code . In some examples , secure MCU
However , other software may be designed to be updated , runtime 463 calculates a hash of Secure World runtime 471 .
e.g. , in the field , after deployment , etc. , and the updating of 55 In some examples , the first boot loader encrypts and / or signs
this other software may be associated with a new signature (using the second mutated key) and stores in flash memory
for such updated software . Accordingly , instead of using the the hash of the secure MCU runtime 463 code in the secure
global private key to sign all software , a number of different key store in flash memory . In some examples , the first
keys may be used . However , in some examples , secure MCU bootloader than finishes execution . The first mutated key is
ROM 461 stores the global public key , but does not store all 60 not available after the first bootloader finishes execution
of the additional keys that would be needed to validate the until multi - core processor 445 reboots .
software . In some examples , the Secure World runtime 471 encrypts

Accordingly , a secure key store may be used to secure the and / or signs (using the second mutated key) and stores in
other keys used for validation of signatures of software . In flash memory the hash of the Normal World OS in the secure
some examples , the secure key store is on flash memory . In 65 key store flash memory .
some examples , the secure key store is encrypted and / or In some examples , the Normal World OS 472 encrypts
signed with a mutated key that may be derived as follows . and / or signs (using the second mutated key) and stores in

US 10,503,892 B2
17 18

flash memory the hash of Normal World user applications the Normal World OS 472. In some examples , in response to
474 from the secure key store in flash memory . validation of the Normal World OS 472 , the Secure World

In some examples , the hash calculation and signing of the runtime 471 loads the Normal World OS 472 into SRAM for
current software stage continues for the remaining stages in the Secure World of CPU 470 and causes the Normal World
a similar manner . 5 OS 472 to be booted .
On subsequent boots , as previously discussed , in some In some examples , the sequential validation and booting

examples , the second mutated key is regenerated and used to continues for the remaining stages to be booted in a similar
decrypt the secure key store . In some examples , after the manner , with each stage being sequentially validated and
second mutated key is regenerated , the first boot loader booted by its parent in the trust hierarchy , and with the
locates the secure MCU runtime 463 code in flash , reads the 10 mutated key being read from the secure key store and then
secure MCU runtime 463 code , and calculates a hash of the decrypted and / or validated with the second mutated key .
secure MCU runtime 463 code . During any of the validation stages , validation may pos

In some examples , on subsequent boots after the first boot sibly fail because the software is not genuine , because the
loader has calculated the hash of the secure MCU runtime software was corrupted , because an attacker is trying to
463 code , the first boot loader reads from the secure key 15 break into the device , and / or the like . In some examples , if
store in flash memory and decrypts and / or validates the hash validation fails at any stage , then neither that stage nor any
of the secure MCU runtime 463 code stored in the secure subsequent stages are booted , and any keys , hashes , and / or
key storage . In some examples , the first boot loader then secrets in memory (SRAM) are erased . Use of the first
validates secure MCU runtime 463. The validation may mutated key may also be restricted , e.g. , to use for genera
include comparing the hash of the MCU runtime 463 code 20 tion of other key (s) . In this example , once the other key (s)
calculated during this boot with the stored hash of the secure are generated , the first mutated key may be erased , e.g. , by
MCU runtime 463 code , and using a public key for the a clearing of the register in which it is stored
secure MCU runtime 463 to validate the signature of the In some examples , a device may be designed such that the
secure MCU runtime 463. In some examples , the public key secure MCU 460 ROM code and the first bootloader are not
for the secure MCU runtime 463 is stored in hardware , and 25 intended to be updated . Other software / stages however , may
the public key for subsequent software stages are stored in be updated one or more times during the device lifetime , and
the secure key store . In some examples , in response to some may be updated frequently . In some examples , during
validation of the secure MCU runtime 463 , the first boot an update , prior to the update itself , the Secure World first
loader loads the secure MCU runtime 463 into private verifies the pending update , and hashes the updated code . In
SRAM and transfers control to the secure MCU runtime 463 30 some examples , the secure MCU runtime 463 then updates ,
code , causing the secure MCU runtime 463 to be booted . in the flash memory , the hashes and keys for any stage that

In some examples , each subsequent stage boots sequen are to be updated , and generates a signature for any updated
tially in a similar manner , with each stage being sequentially stages .
validated and booted by its parent in the trust hierarchy . For In some examples , the secure key store may also be used
example , the MCU runtime 463 may be responsible for 35 to store other secrets , including user - provided secrets such
validating and booting the Secure World runtime 471 , the as network credentials , or other information to be protected
Secure World runtime 471 may be responsible for validating from potential attackers . In some examples , these additional
and booting the Normal World OS 472 , the Normal World secrets may be stored on the secure key store in flash
OS 472 may be responsible for validating and booting the memory may also be encrypted and / or signed with the
Normal World user applications 474 , and the Normal World 40 second mutated key .
user applications 474 may be responsible for validating one After boot is complete , multi - core processor 445 may
or more I / O MCUS 480 . communicate over a network for IoT services , for example ,

For instance , in some examples , secure MCU runtime 463 via communication with an IoT support service such as IoT
calculates a hash of Secure World runtime 471. In some support service 351 of FIG . 3. In some examples , IoT
examples , the secure MCU runtime 463 reads from the 45 support service 351 may request and / or require the IoT
secure key store in flash memory and decrypts and / or device containing multi - core processor 445 to remotely
validates the public Secure World runtime public key and the attest to the validity of the software running on the IoT
hash of the Secure World runtime 471 code . The secure device or multi - core processor 445 as part of the connection
MCU runtime 463 may then validate Secure World runtime process , and / or before any further messages , work , or infor
471. The validation may include comparing the hash of the 50 mation may be exchanged . Remote attestation may be used
Secure World runtime 471 calculated during this boot with to verify that the software in the IoT device / executing on the
the stored hash of the Secure World runtime 471 code , and multi - core processor is valid . As one example , IoT support
using the secure MCU runtime public key to validate the service 351 may send a challenge over the network to
signature of the Secure World runtime 471. In some multi - core processor 445 in response to a connection
examples , in response to validation of the Secure World 55 request , a request for IoT services , or other communication
runtime 471 , the secure MCU runtime 463 loads the Secure from the IoT device .
World runtime 471 into private SRAM and causes the In some examples , hardware in secure MCU 460 gener
Secure World runtime 471 to be booted . ates a response to the challenge , making use of , among other

In some examples , the Secure World runtime 471 reads things , a private attestation key store in hardware in secure
from the secure key store in flash memory and decrypts 60 MCU 460 , and two registers in secure MCU 460 that may
and / or validates the Normal World OS public key and the be referred as DRO and DR1 in some examples .
hash of the Normal World OS 472 code . In some examples , In some examples , the private attestation key is stored in
the Secure World runtime 471 then validates Normal World hardware by secure MCU 460 and access is restricted to
OS 472. The validation may include comparing the hash of secure MCU 460. In some examples , the private attestation
the Normal World OS 472 calculated during this boot with 65 key is part of a public / private key pair , and IoT support
the stored hash of the Normal World OS 472 code , and using service 351 has the public attestation key that corresponds to
the Normal World OS public key to validate the signature of the private attestation key .

US 10,503,892 B2
19 20

In some examples , register DR1 is a fully readable and way of example . Remote attestation may also be employed
writable register . In some examples , register DRO is an for other examples of multi - core processors . FIG . 4 illus
accumulation register . In some examples , the value of DRO trates an example that includes a secure MCU with the
is readable and is not secret . In some examples , the value of hardware root of trust , a CPU executing a Secure World
DRO is reset to zero (or some other default value) on device 5 environment and a Normal World environment , and other
reboot . In some examples , modification of the value of the MCUs with a lower level of trust . In this example , the secure
DRO register is limited to operations that cryptographically MCU is the first core that is booted , followed by a CPU
append a value to the DRO register . (with the Secure World execution environment booted

In some examples , during the secure boot of multi - core before the Normal World execution environment) , followed
processor 445 , as previously discussed , various stages are 10 by the other MCUs . Other examples may include other cores
sequentially booted , with each stage being validated and and / or other trust hierarchies than the specific example of
booted by its parent in the trust hierarchy . For instance , in FIG . 4 , which is given by way of example only .
some examples , as discussed above , secure ROM 461 is In some examples , multi - core processor 445 includes at
responsible for booting the first boot loader , the first boot least two cores including at least a first general purpose core
loader is responsible for booting the MCU runtime 463 , the 15 and a second general purpose core in which the first and
MCU runtime 463 may be responsible for next booting the second general purpose cores have different capabilities , and
Secure World runtime 471 , the Secure World runtime 471 which boot sequentially according to a chain of trust that
may be responsible for next booting the Normal World OS corresponds to a hierarchy of trust in which one of the
472 , the Normal World OS 472 may be responsible for next general purpose cores is more trusted than the other general
booting the Normal World user applications 474 , and the 20 purpose core , with the more trusted general purpose core
Normal World user applications 474 may be responsible for being validated and booted before and the less trusted
next booting one or more I / O MCUS 480 . general purpose core . The cores need not correspond to the
As discussed above , prior to or in conjunction with particular cores illustrated in FIG . 4 , which is but one

booting each software stage , a hash may be taken of that example .
software stage . For example , a hash may be generated of the 25 FIGS . 5A - 5B are a flow diagram illustrating an example
first boot loader prior to , or in conjunction with , booting the process for remote attestation for a multi - core processor , that
first boot loader , a hash of the MCU runtime 463 may be may be performed by the multi - core processor , such as the
generated prior to , or in conjunction with , booting the MCU multi - core processor of FIG . 3 and / or FIG . 4 .
runtime 463 , a hash of the Secure World runtime 471 may In the illustrated example , step 581 occurs first . At step
be generated prior to , or in conjunction with , booting the 30 581 , in some examples , a private attestation key is stored in
Secure World runtime 471 , a hash of the Normal World OS hardware . As shown , step 582 occurs next in some
472 may be generated prior to , or in conjunction with , examples . At step 582 , in some examples , a first software
booting the Normal World OS 472 , and so on . Hashes may stage is read . As shown , step 583 occurs next in some
also be generated for the subsequent software stages that are examples . At step 583 , in some examples , a hash of the
booted during the secure boot process . In some examples , as 35 current software stage is calculated . As shown , step 584
a hash is generated for each software stage , the hash of that occurs next in some examples . At step 584 , in some
software stage is cryptographically appended to accumula examples , the calculated hash of the current software stage
tion register DRO . is cryptographically appended to an accumulation register to

After booting , multi - core processor 445 may attempt to update a value of the accumulation register .
communicate with IoT services , and may receive a challenge 40 As shown decision step 585 occurs next in some
in response . In some examples , in response to a challenge , examples . At decision step 585 , in some examples , a deter
multi - core processor 445 hardware in secure MCU 460 mination is made as to whether all of the software stages
generates a response to the challenge . The challenge may be have been booted . If not , the process proceeds to step 586 in
stored in register DR1 . In some examples , the response to some examples . At step 586 , in some examples , the next
the challenge includes the DRO value and the DR1 value , 45 software stage to be booted is read . As shown , the process
where the DR1 value is the challenge . In some examples , the then moves to step 583 in some examples . In some
response to the challenge is also signed by the hardware in examples , the software stages to be booted include at least
secure MCU 460 with the private attestation key for the a first bootloader , a runtime for a first core , and a runtime for
device . In some examples , the response to the challenge a first execution environment for a second core .
generated by hardware in secure MCU 460 is then sent from 50 If instead the determination at decision step 585 is posi
multi - core processor 445 to the IoT support service . tive , step 587 occurs next in some examples . At step 587 , in

The IoT support service may verify the response to the some examples , a challenge is received . As shown , step 588
challenge , including verifying the values and validating the occurs next in some examples . At step 588 , in some
signature . The DRO value from the response may be used to examples , a response to the challenge is generated ,
verify that the multi - core processor 445 has the software that 55 the response to the challenge includes the challenge and the
the IoT support service expects that device to be executing . value of the accumulation register , and such that the
In some examples , the IoT support service has the correct response is signed by the private attestation key . As shown ,
value that corresponds the hash of each software stage that step 589 occurs next in some examples . At step 589 , in some
multi - core processor should be executing . The signature examples , the response to the challenge is sent . The process
may be validated to verify that the response came from the 60 may then proceed to the return block , where other process
multi - core processor , rather than another party ing is resumed .

In some examples , if the signature is valid , it may be taken
as a verification that the DRO value in the response to the CONCLUSION
challenge was calculated , as expected , by cryptographically
appending a hash of each booted software stage . While the above Detailed Description describes certain

FIG . 4 illustrates one specific example of a multi - core examples of the technology , and describes the best mode
processor for which remote attestation may be employed , by contemplated , no matter how detailed the above appears in

65

15

US 10,503,892 B2
21 22

text , the technology can be practiced in many ways . Details cryptographically appending the hash of that software
may vary in implementation , while still being encompassed stage to a register as an update of a value of the
by the technology described herein . As noted above , par register , wherein the plurality of software stages
ticular terminology used when describing certain features or includes a first bootloader , a runtime for a first core aspects of the technology should not be taken to imply that 5 of the multi - core device , and a runtime of first
the terminology is being redefined herein to be restricted to execution environment for a second core of the
any specific characteristics , features , or aspects with which multi - core device , wherein the first core is a physical that terminology is associated . In general , the terms used in core , and wherein the second core is another physical the following claims should not be construed to limit the core that is separate from the first core . technology to the specific examples disclosed herein , unless 10 10. The method of claim 9 , wherein the plurality of the Detailed Description explicitly defines such terms . software stages further includes an operating system for a Accordingly , the actual scope of the technology encom second execution environment for the second core . passes not only the disclosed examples , but also all equiva
lent ways of practicing or implementing the technology . 11. The method of claim 9 , further comprising storing the

I claim : challenge in another register .
1. An apparatus , comprising : 12. The method of claim 9 , further compromising making
a multi - core processor , including a first core , a second a request to an IoT support service , wherein the challenge is

core , and at least one memory adapted to store run - time received in response to the request .
data , wherein the first core is a physical core , the 13. The method of claim 9 , wherein the first core and the
second core is another physical core that is separate 20 second core are general purpose cores with differing capa
from the first core , and wherein the first core is adapted bilities , and wherein the first core and the second core are
to execute processor - executable code that , in response configured to have a defense - in - depth hierarchy in which the
to execution , enables the apparatus to perform opera first re is above the second core in the defense - in - depth
tions , the operations including : hierarchy .
sequentially booting a plurality of software stages for 25 14. The method of claim 9 , wherein the order of the

the apparatus , including , for each software stage of sequential boot corresponds to a defense - in - depth hierarchy .
the plurality of software stages : 15. A method , comprising :
calculating a hash of that software stage ; and receiving , by a network connected device , a request to cryptographically appending the hash of that soft attest to validity of a plurality of software stages ware stage to an accumulation register as an 30 executing on the network connected device ; and update of a value of the accumulation register , in response to the request , transmitting a cryptographi wherein the plurality of software stages includes a cally signed value representing the plurality of software first bootloa a runtime for the first core of the
multi - core processor , and a runtime of a first stages , the value having been generated by a sequential
execution environment for the second core of the 35 appending of a hash of each software stage of the
multi - core processor . plurality of software stages , wherein the plurality of

2. The apparatus of claim 1 , wherein the plurality of software stages includes a runtime for a first core of the
software stages further includes an operating system of a network connected device , and an operating system for
second execution environment for the second core . an execution environment for a second core of the

3. The apparatus of claim 1 , the operations further com- 40 network connected device ; the first core is a physical
prising storing the challenge in another register . core ; and wherein the second core is another physical

4. The apparatus of claim 1 , wherein the accumulation core that is separate from the first core .
register is arranged such that the value of the accumulation 16. The method of claim 15 , wherein the plurality of
register is limited , by hardware , to being changed in one of software stages further includes a bootloader for the network
the following enumerated manners : being reset to a default 45 connected device .
value in response to a reboot of the multi - core processor , and 17. The method of claim 15 , wherein the cryptographi being changed by cryptographical appending of a hash to a cally signed value was generated in conjunction with a
current value of the accumulation register . sequential booting of the plurality of software stages , and

5. The apparatus of claim 1 , the operations further com wherein at least one of the plurality of software stages was promising making a request for an IoT service , wherein the 50 booted by another of the plurality of software stages .
challenge is received in response to the request . 18. The method of claim 15 , the further compromising : 6. The apparatus of claim 1 , wherein the first core and the making a request for an IoT service , wherein the request second core are general purpose cores with differing capa to attest to the validity is received in response to the bilities , and wherein the first core and the second core are request for the IoT service . configured to have a defense - in - depth hierarchy in which the 55 19. The method of claim 15 , wherein the network con first core is above the second core in the defense - in - depth nected device includes a first core and a second core , hierarchy .

wherein the first core and the second core are general 7. The apparatus of claim 1 , wherein the order of the
sequential boot corresponds to a defense - in - depth hierarchy . purpose cores with differing capabilities , and wherein the

8. The apparatus of claim 1 , wherein the first core is a 60 first core and the second core are configured to have a
secure microcontroller , and wherein the second core is a defense - in - depth hierarchy in which the first core is above

the second core in the defense - in - depth hierarchy . central processing unit .
9. A method , comprising : 20. The method of claim 15 , wherein the order of the
sequentially booting a plurality of software stages for a sequential appending corresponds to a defense - in - depth
multi - core computing device , including , for each soft- 65 hierarchy for execution environments of the network con

nected device . ware stage of the plurality of software stages :
calculating a hash of that software stage ; and

