
US 20070005852A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2007/0005852 A1

Armstead et al. (43) Pub. Date: Jan. 4, 2007

(54) GRAPHICAL VERIFICATION TOOL FOR (21) Appl. No.: 11/173,286
PACKET-BASED INTERCONNECT BUS

(22) Filed: Jun. 30, 2005
(75) Inventors: Thomas Michael Armstead, Rochester,

MN (US); Eldon Gale Nelson, Publication Classification
Rochester, MN (US); Paul Emery
Schardt, Rochester, MN (US); Corey (51) Int. Cl.
Virgil Swenson, Rochester, MN (US) G06F 3/00 (2006.01)

(52) U.S. Cl. .. 710/100
Correspondence Address:
IBM CORPORATION, INTELLECTUAL (57) ABSTRACT
PROPERTY LAW Methods, apparatus, and articles of manufacture that allow
DEPT 917, BLDG. 006-1 packet-based communication transactions between devices
3605 HIGHWAY 52 NORTH over an interconnect bus to be captured in a standardized
ROCHESTER, MN 55901-7829 (US) format are provided. The standardized format may enable

the display of the bus transactions via a graphical user
(73) Assignee: International Business Machines Cor- interface (GUI), which may greatly facilitate viewing and

poration, Armonk, NY analyzing the transactions when validating communications.

100

SIMULATOR r

103 OTHER
- I -

BUS MONITOR

SIMULATION
LOG

Patent Application Publication Jan. 4, 2007 Sheet 1 of 7 US 2007/000.5852 A1

100

f only
105

SIMULATION
OG

107

FIG. 1

200

CAPTURE EVENTS ON AN
INTERCONNECT BUS 202

GENERATE STANDARIZED 204
OUTPUT IDENTIFYING THE

CAPTURED EVENTS

GRAPHICALLY DISPLAY 206
PACKET TRAFFIC FOR
THE CAPTURED EVENTS

FIG. 2

Patent Application Publication Jan. 4, 2007 Sheet 2 of 7 US 2007/000.5852 A1

101 CPU

Trace Trace Log
File File

- 317
Standard

XML XML TraCe
Trace Trace Output

l S-----
303B

ASSOCiation Style
Definitions Trace Tool Package

306 304 307

Trace 110
Displays

FIG. 3

US 2007/000.5852 A1 Jan. 4, 2007 Sheet 3 of 7 Patent Application Publication

007

)

:81/0000 :99/0000 .09.10000

:Z980000 :9980000 -0980000

US 2007/000.5852 A1 Jan. 4, 2007 Sheet 4 of 7 Patent Application Publication

87 "SDI
007

© :81.10000
:Z110000 :0910000 :#900000

Boell X1 88kW

:8980000 :Z980000 :9980000 :0980000 :#ff80000

US 2007/000.5852 A1 Patent Application Publication Jan. 4, 2007 Sheet 5 of 7

(9

:0692400

Patent Application Publication Jan. 4, 2007 Sheet 6 of 7 US 2007/000.5852 A1

<?xml version="1.0" encoding="ISO-8859-1"?>
- <!--

File: trace5C TX.xml
Desc: This file is the xmi trace format of figure 4C (only the first few packets of TX).

This file also shows an event for the link going active (not shown in the
Screenshot).

Tag definitions:
<trace> - defines a trace window to add to the GUI with attributes:

name - name of the trace window
<event> - defines a non-packet event within a trace window with attributes and

tags:
time - time of the event
id - event id
<field> - descriptive data of the event

<packet - defines a packet with attributes and tags:
time - time of the packet
id - packet id
<field> - descriptive data of the packet

-->

- Ctrace name="TX Trace"> FIG. 5A
- <event time="13000" id-'0x022 507
Cfield name="State">ActiveC/field>
C/event> - - - 506

- <packet time="18526" id="Ox44">
<field name="Type">DATA RESP</field>N501
<field name="Sequence Count">0x08</fields N502
<field name="Trans ID">0x0e-fieldsn503
Cfield name="Status">ACCEPTED</fields N505
<field name="ASSembled Packet">0x0123456789abCodefaffielded
</packet

- <packet time="18628" id="Ox45">
<field name="Type">DATA RESP</field>
<field name="Sequence Count">0x09</field>
Cfield name="Trans D">0x01 </field>
Cfield name="Status">ACCEPTEDC/fieldD
<field name="ASSembled Packet">OXO123456789abCodefaffield>
<?packet)

- <packet time="18634" id="Ox46">
<field name="Type">READ 8</field>
<field name="Sequence Count">0x00</field>
Cfield name="TranSID">0x00C/field>
<field name="Status">ACCEPTED</field>
Cfield name="ASSembled Packet">OXO123456789abcdefa/field>
</packet>
</trace>

Patent Application Publication Jan. 4, 2007 Sheet 7 of 7 US 2007/000.5852 A1

<?xml version="1.0" encoding="ISO-8859-1"?>
- <!--

File: trace5C RX.xml
DeSC: This file is the xml trace format of figure 4C (only the first few packets of RX).

This file also shows an event for the link going active (not shown in the screenshot).

Tag definitions:
<trace> - defines a trace window to add to the GUI with attributes:

name - name of the trace Window
<event> - defines a non-packet event within a trace window with attributes and tags:

time - time of the event
id - event id
<field> - descriptive data of the event

<packet) - defines a packet with attributes and tags:
time - time of the packet
id - packet id
<field> - descriptive data of the packet

-->

- <trace name="RX Trace">
- Cevent time="13000" id="0x01">
Cfield name="State">Active C/field>
Clevent>

- <packet time="13690" id="Ox01">
<field name="Type">READ 128C?field>
<field name="Sequence Count">0x02</field>
Cfield name="TranSD"D0x0eC/field>
Cfield name="Status">ACCEPTEDC?field>
Cfield name="ASSembledpacket">0x0123456789abCodefa/fieldC.
<?packet

- <packet time="13696" id="Ox02">
<field name="Type">READ 1284/field>
<field name="Sequence Count">0x03<ffield>
Cfield name="TranSD">0x1 fa/field>
<field name="Status">ACCEPTED</field>
<field name="ASSembledpacket">0x0123456789abCodefgfields
<?packet>

- <packet time="13702" id="0x03">
<field name="Type">READ 128</field>
<field name="Sequence Count">0x04</field>
<field name="TranSID">0x15C/field>
<field name="Status">ACCEPTEDC?field>
<field name="Assembled Packet">0x0123456789abCodefa/fielde
-?packet)
altraCe>

FIG. 5B

US 2007/0005852 A1

GRAPHICAL VERIFICATION TOOL FOR
PACKET-BASED INTERCONNECT BUS

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 The present invention generally relates to exchang
ing packets of data on an interconnect bus between two
devices and, more particularly, to Verifying Such communi
cation.

0003 2. Description of the Related Art
0004. A system on a chip (SOC) generally includes one
or more integrated processor cores, some type of embedded
memory, such as a cache shared between the processors
cores, and peripheral interfaces, such as external bus inter
faces, on a single chip to form a complete (or nearly
complete) system. The external bus interface is often used to
pass data in packets over an external bus between these
systems and an external device. Such as an external memory
controller or graphics processing unit (GPU). To increase
system performance, the data transfer rates between Such
devices has been steadily increasing over the years.
0005. Unfortunately, as the data transfer rate between
devices increases, bytes of data transferred between devices
may become skewed for different reasons, such as internal
capacitance, differences in drivers and/or receivers used on
the different devices, different routing of internal bus paths,
and the like. Such skew may cause data transferred from one
device to be read erroneously by the other device. This
misalignment can lead to incorrectly assembled data fed into
the processor cores, which may have unpredictable results
and possibly catastrophic effects.
0006 Therefore, it is generally desirable to verify com
munications across packet-based interconnect buses by
monitoring traffic on the bus. Conventionally, monitored bus
traffic is captured during simulated operation on a system
under test. During simulation, a bus monitor tracks bus
activity with defined bus timing utilizing architected proto
col rules to identify and police bus events. Bus events are
captured in a simulation log. Error warning messages are
posted in the simulation log if any timing or bus-rules are
violated.

0007. After the simulation has finished, a user can view
all the bus events or signals by looking at the waveforms
using a conventional waveform viewer. However, because
the trace information contained in the waveforms is rather
cryptic, significant effort may be required to manually
analyze and decipher meaningful information from the
waveforms. As a result, Verification of packet-based inter
connect buses is typically very time consuming, particularly
when trying to decipher complex scenarios, such as the
recovery of packet errors using complicated retry protocols
implemented in some serial interfaces.
0008 Accordingly, what is needed is improved methods
and apparatus for verifying packet-based communication
across interconnect buses.

SUMMARY OF THE INVENTION

0009 Embodiments of the present invention generally
provide methods and apparatus for verifying packet-based
communication between devices across an interconnect bus.

Jan. 4, 2007

0010. One embodiment provides a method of validating
communications between devices over an interconnect bus.
The method generally includes monitoring the interconnect
bus to detect bus events, capturing the bus events in a trace
log of standardized trace output, parsing the standardized
trace output to identify bus transactions, and displaying, to
a user, at least some of the identified bus transactions in a
graphical user interface.
0011) Another embodiment provides a computer readable
medium containing a program for validating communica
tions between devices over an interconnect bus When
executed by a processor, the program performs operations
generally including parsing standardized trace output con
taining bus events captured during operation of the devices
to identify individual packets exchanged between devices
over the bus and displaying, to a user, representations of at
least Some of the individual packets in a graphical user
interface.

0012 Another embodiment provides a system for vali
dating communications between devices across an intercon
nect bus. The system generally includes a bus monitor, a
converter component, and a graphical user interface. The
bus monitor is generally configured to monitor traffic across
the bus and generating a log of detected bus events. The
converter component is generally configured to convert the
log of detected bus events to generate standardized trace
output. The graphical user interface is generally configured
to display graphical representations of packets exchanged
between the devices across the interconnect bus extracted
from the standardized trace output.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 So that the manner in which the above recited
features, advantages and objects of the present invention are
attained and can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to the embodiments thereof which are
illustrated in the appended drawings.
0014. It is to be noted, however, that the appended
drawings illustrate only typical embodiments of this inven
tion and are therefore not to be considered limiting of its
Scope, for the invention may admit to other equally effective
embodiments.

0015 FIG. 1 illustrates an exemplary test environment in
accordance with one embodiment of the present invention;
0016 FIG. 2 is a flow diagram of exemplary operations
for capturing bus events as standardized trace language and
graphically presenting the same;
0017 FIG. 3 is a block diagram that illustrates compo
nents that may perform the operations shown in FIG. 2;
0018 FIGS. 4A-4C illustrate exemplary graphical user
interface (GUI) screens for presenting packet information;
and

0.019 FIGS.5A and 5B illustrate exemplary standardized
trace format, illustratively implemented in extensible
Markup Language (XML).

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0020 Embodiments of the present invention allow
packet-based communication transactions between devices

US 2007/0005852 A1

over an interconnect bus to be captured in a standardized
format. The standardized format may enable the display of
the bus transactions via a graphical user interface (GUI).
which may greatly enhance viewing and analyzing the
transactions when validating communications. By graphi
cally viewing the transactions and contents thereof, the
Source of communications problems (e.g., one of the devices
communicating over the bus, or the bus itself) may be
efficiently debugged.

0021. In the following, reference is made to embodiments
of the invention. However, it should be understood that the
invention is not limited to specific described embodiments.
Instead, any combination of the following features and
elements, whether related to different embodiments or not, is
contemplated to implement and practice the invention. Fur
thermore, in various embodiments the invention provides
numerous advantages over the prior art. However, although
embodiments of the invention may achieve advantages over
other possible solutions and/or over the prior art, whether or
not a particular advantage is achieved by a given embodi
ment is not limiting of the invention. Thus, the following
aspects, features, embodiments and advantages are merely
illustrative and are not considered elements or limitations of
the appended claims except where explicitly recited in a
claim(s). Likewise, reference to “the invention' shall not be
construed as a generalization of any inventive subject matter
disclosed herein and shall not be considered to be an element
or limitation of the appended claims except where explicitly
recited in a claim(s).

An Exemplary Test System

0022 FIG. 1 illustrates an exemplary testing system in
which a simulator 100 comprises a CPU 101 and a GPU 102,
communicating over an interconnect bus 104 (e.g., com
monly referred to as a front side bus). A bus monitor 103 is
configured to monitor events on the bus 104 and capture the
events in a simulation log 107. For some embodiments, the
bus 104 may be a bidirectional multi-bit bus, for example,
having eight or more lines for communication from the CPU
to the GPU and another eight or more lines for communi
cations from the GPU to the CPU.

0023 For some embodiments any number of other hard
ware devices 105 (e.g., memory controllers, direct memory
access units, I/O controllers, and the like) may also com
municate with the CPU and/or GPU over the same inter
connect bus 104 or a different bus. While embodiments are
described herein with reference to communications between
a CPU and GPU, the techniques described herein may be
applied in a similar manner to validation communications
between various other devices. Further, the devices do not
need to be on the same bus and the techniques described
herein may be generally applied to associate packets
between any traceable interface (e.g., including interrupt
lines).
0024. The bus monitor 103 generally includes any suit
able combination of hardware and software configured to
detect bus events. For example, the bus monitor 103 may
include hardware configured to sample data signal lines in
conjunction with a clock signal. Driver Software may be
configured to gather sampled data and apply a set of proto
col/timing rules 106 to detect and police bus events. For
example, one rule may define the timing of a start bit

Jan. 4, 2007

indicating the beginning of a packet. The driver software
may store detected bus events, including errors detected due
to violation of rules 106, in a simulation log 107. The
simulation log 107 may be any suitable format, such as a
binary file or a text file viewable through a text editor or a
waveform viewer.

Standardize Trace Output
0025 For some embodiments, to facilitate validating bus
communications, information in the simulation log 107 may
be processed to generate standardized trace output identify
ing bus events and individual packets. This standardized
trace output may be viewed, for example, using available
debugger software. For some embodiments, however, the
standardized trace output may be presented graphically in a
Graphical User Interface (110) tailored to validating bus
communications by displaying graphical representations of
individual packets 111 and corresponding information. As
will be described in greater detail below, with reference to
FIGS. 4A-4C, the packets 111 may be displayed in the GUI
in separate columns representing a particular device con
nected to the bus (e.g., one column for packets originating
at the GPU and one column for packets originating at the
CPU).
0026 FIG. 2 is a flow diagram of exemplary operations
200 for capturing and displaying bus events in accordance
with embodiments of the present invention. The operations
may be performed, for example, by components illustrated
in FIG. 3, while a specific simulation program designed to
emulate normal system operation (and produce typical bus
traffic) is being executed. Therefore, to facilitate understand
ing, FIGS. 2 and 3 may be described together. However,
those skilled in the art will recognize that the operations of
FIG.2 may be performed by other components and, further,
that the components illustrated in FIG.3 may be capable of
performing other operations.
0027. The operations 200 begin, at step 202, by capturing
events on the bus. As previously described, the bus monitor
103 may detect events indicating transactions between the
CPU 101 and GPU 102 and store captured events in a
simulation log 107. For some embodiments, detected events
in the simulation log 107 may be divided into a receive (RX)
trace log 302A and a transmit trace log (TX) 302B, for
example, from the CPU perspective. Arbitrarily, the RX
trace log 302A may contain bus transactions received by the
CPU, while the TX trace log 302B may contain bus trans
actions transmitted by the CPU.
0028. At step 204, information in the simulation log 107

is parsed to generate standardized trace output identifying
the captured events. As illustrated, for Some embodiments,
an XML converter 310 may be configured to generate
standardized trace output 317 in extensible Markup Lan
guage (XML) format. The XML converter may generate
separate XML trace logs 303A and 303B for the CPU and
GPU, respectively, corresponding to the trace logs 302A and
302B. XML is just one example of a suitable type standard
format in which bus events may be captured.
0029 While the standardized trace output may facilitate
the display of captured bus events with a standard debugging
tool. Such as a waveform viewer, analyzing the displayed
bus events (e.g., as bit streams on various bus lines or
channels) may still prove a difficult and time consuming

US 2007/0005852 A1

task. Therefore, for some embodiments, a tracer tool 304
may be provided to analyze (pre-process) information in the
standardized trace output 317 to identify and classify indi
vidual packets.
0030. At step 206, packet traffic is graphically displayed.
The displayed traffic may include representation of indi
vidual packets and corresponding packet types. For
example, the tracer tool 304 may employ a classification
method to analyze information in the standardized trace
output 317 to identify and classify individual packets. For
example, a definitions library accessible by the tracer tool
304 may include a set of definitions or templates identifying
particular packet types. For example, the definitions may
identify fields contained in particular packet types, as well as
command codes (e.g., read/write requests, response packets,
and the like) identifying the packet type.
0031. The tracer tool 304 may also identify bus events
(e.g., a change in bus state to/from inactive, training, or
active states) based on captured trace information. Different
definitions or event classifications may be provided to
correspond to particular packet traffic related to various
devices found on the bus, such as bridge chips, memory
controllers, and host channel adapters. These definitions
may be included in a library with common event codes (e.g.,
indicating the occurrence of start bits, etc.).
0032. The tracer tool 304 may also associate packets
together, based on information in an association component
307. As an example, the association component may include
definitions that correlate response packets to request packets
(e.g., based on a transaction and/or sequence code). As will
be described in greater detail below. Such associations may
allow packet traffic in a particular bus scenario to be
organized directionally (with associated packages aligned),
as well as chronologically. Attributes for how packets are
represented may be controlled by style definitions 306,
which may specify, for example, a display format (colors,
etc.) which packet fields to display or hide, and the like. For
Some embodiments, the style definitions may be user con
figurable, for example, allowing user-defined style defini
tions to be applied/overlayed on displayed bus events.

0033 FIGS. 4A-4C illustrate example GUI screens 400
for graphically displaying standardized trace output as pack
ets exchanged between devices (e.g., with RX and TX
representing bus events received at, or originating from, one
of the devices. Referring first to FIG. 4A, the GUI screen
400 includes two columns 410A and 410B, each column
depicting packets driven by a different one of the devices. As
illustrated, each packet may be identified by a type (e.g.,
Read Request, Read Response, Phy Sync, etc.).
0034). Each packet displayed in the columns 410A and
410B may have a set of corresponding information dis
played adjacent the packet. Illustratively, a cycle time the
packet was detected (SimTime 411), as well as a state of the
bus at that time (shown as radio buttons 412), may be
displayed adjacent each packet. Exemplary bus states
include, but are not limited to inactive (devices not com
municating), active (devices communicating), and training
states. For some embodiments, radio buttons 412 represent
ing the states may be color coded to allow the user to easily
identify the state of the device. For example, the active state
may be represented by a green button, the inactive state by
a red button, and the training state by a yellow button.

Jan. 4, 2007

0035) In the training state, one device may repetitively
transmit packets of known content (shown as Phy Sync
packets 414) to the other device. During training, the other
device may adjust internal “deskew circuitry until it cor
rectly receives the Phy Sync packet. Once one device is
trained, it may provide an indication to the other device that
it is trained, for example, via a status bit in a transmitted
packet. These operations may be repeated to train the other
device in a similar manner. This training process may also be
repeated as necessary to “retrain the devices, for example,
based on a checksum-based monitored error rate.

0036) As illustrated, various types of information may be
displayed with each non-training packet type. Such as a
transaction ID (TransD) and sequence count. The sequence
count may indicate an order in which packets are dispatched
and may be used as flow control to limit the number of
outstanding (non acknowledged/responded to) packets at
any given time. A response to a request may be identified by
a packet with the same transaction ID as the request packet
and a later sequence count.
0037 Different types of packets may be displayed dif
ferently in the GUI to allow the user to easily distinguish
between the packet types. For example, in FIG. 4A, a
PHYSYNC packet 414 has a different background color
and is of a different size compared to CONTROL packet
415. The data contained in the packets may also be displayed
in a clear, concise manner. For example, CONTROL packet
consists of fields Type, ReqAckSC, RespAckSC, LS, RS and
status. The values in these fields are displayed in the packet.
As described above, display attributes for a packet may be
defined by corresponding style definitions.
0038 For some embodiments, a user may control exactly
what packet information is displayed. For example, the user
may normally choose to display only basic information,
Such as the packet Type, while hiding other fields. During
debugging, however, if the user would like to retrieve other
packet information that is not displayed, he may be allowed
to expand the information displayed, for example, by select
ing (e.g., via a mouse click) the packet of interest. FIG. 4B
illustrates an example where the user has selected packet
416 to display expanded packet contents that were not
displayed in the GUI initially.
0039. As illustrated, this expanded information may
include various fields, such as a checksum (CRC), as well as
the entire “assembled' packet, from which the detailed fields
are extracted. The information may also include a field that
indicates whether a particular packet was accepted by a
given device. There may be many factors that cause a packet
to not be accepted. For example, if a device expects packets
in a certain order indicated by a sequence count, the device
may reject any packet that is not in the expected order. Such
a packet will have to be retransmitted in the correct order.
For some embodiments, corrupted packets (e.g., as indicated
by a bad checksum) may be displayed in the GUI with the
packet type (if recognizable). In some cases, if the packet
type is not recognizable, simple raw data for the corrupt
packets may be displayed.

0040. The user may also have some control over the
organization of packets in the GUI 400. As an example, for
Some embodiments, the user may organize the display of
packets in the device columns in Such a way that packets
related to the same transaction (e.g., a request and response

US 2007/0005852 A1

pair) are aligned in the same row. This is illustrated in FIG.
4C, wherein a read request packet 417 is aligned with the
corresponding response packet 418, that may occur at a later
time, and after several other intermediate packets have been
transmitted. This may be useful because, if the packets are
ordered chronologically, it may be difficult to find related
packets because several other packets may have been
exchanged between the read request and the response. As
illustrated, for some embodiments, a user may be able to
toggle between chronological and “matched transaction'
organization via buttons 420 and 422.
0041 FIGS.5A and 5B illustrate exemplary XML output
that may be captured during simulation and used to create
(populate) the GUI screens 400 shown in FIGS. 4A-4C. FIG.
5A illustrates an exemplary XML portion that may be
contained in the TX trace portion of standardized trace
output 317 (shown in FIG. 3), while FIG. 5B illustrates an
exemplary RX trace portion. The information contained
therein corresponds packets illustrated in FIGS. 4A-4C.
0042. As illustrated, the trace information may include
fields for non-packet events (transition to the Active state
and given time), as well as fields for individual packets.
Individual packet fields may include packet times, transac
tion type, transaction id, sequence count, and transaction
status, as well as the entire assembled packet. As previously
described, additional information may be extracted from the
assembled packet.

CONCLUSION

0043. By converting captured bus events into a standard
ized format, embodiments of the present invention may
enable the display of the bus transactions via a graphical user
interface (GUI). As a result, viewing and analyzing the bus
transactions when validating communications may be facili
tated, which may reduce debug time.
0044) While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:
1. A method of validating communications between

devices over an interconnect bus, comprising:
monitoring the interconnect bus to detect bus events;
capturing the bus events in a trace log of Standardized

trace output;

parsing the standardized trace output to identify bus
transactions; and

displaying, to a user, at least some of the identified bus
transactions in a graphical user interface.

2. The method of claim 1, wherein the standardized trace
output comprises extensible Markup Language (XML) code.

3. The method of claim 1, wherein bus transactions
comprise the exchange of data packets.

4. The method of claim 3, wherein displaying at least
Some of the identified bus transactions in the graphical user
interface comprises:

displaying a limited portion of information contained in a
data packet; and

Jan. 4, 2007

in response to a request from the user, displaying an
additional portion of information contained in the data
packet.

5. The method of claim 3, wherein displaying at least
Some of the identified bus transactions in the graphical user
interface comprises:

in response to a request from the user, reorganizing
packets graphically represented in the graphical user
interface.

6. The method of claim 5, wherein reorganizing packets
graphically represented in the graphical user interface com
prises aligning request packets with corresponding response
packets.

7. The method of claim 3, wherein displaying at least
Some of the identified bus transactions in the graphical user
interface comprises:

graphically representing, with color, a state of a device
relative to the bus at the time a corresponding packet
Was Sent.

8. A computer readable medium containing a program for
validating communication between devices over an inter
connect bus which, when executed, performs operations,
comprising:

parsing standardized trace output containing bus events
captured during operation of the devices to identify
individual packets exchanged between devices over the
bus; and

displaying, to a user, representations of at least some of
the individual packets in a graphical user interface.

9. The computer readable medium of claim 8, wherein the
standardized trace output comprises eXtensible Markup
Language (XML) code.

10. The computer readable medium of claim 8, wherein:
parsing standardized trace output comprises classifying

each identified packet as being one of a plurality of
packet types; and

displaying representations of at least Some of the indi
vidual packets in the graphical user interface comprises
indicating the corresponding packet types.

11. The computer readable medium of claim 10, wherein
indicating the corresponding packet types comprises:

displaying different packet types using different discern
able display attributes.

12. The computer readable medium of claim 8, wherein:

displaying representations of at least Some of the indi
vidual packets comprises displaying a limited portion
of packet information for a packet.

13. The computer readable medium of claim 12, wherein
the operations further comprise:

in response to a request from the user, displaying addi
tional portions of packet information for the packet.

14. The computer readable medium of claim 8, wherein
the operations further comprise:

in response to a request from the user, reorganizing
packets graphically represented in the graphical user
interface.

US 2007/0005852 A1

15. The computer readable medium of claim 14, wherein
reorganizing packets graphically represented in the graphi
cal user interface comprises aligning request packets with
corresponding response packets.

16. A system for validating communications between
devices across an interconnect bus, comprising:

a bus monitor for monitoring traffic across the bus and
generating a log of detected bus events;

a converter component for converting the log of detected
bus events to generate standardized trace output; and

a graphical user interface for displaying graphical repre
sentations of packets exchanged between the devices
across the interconnect bus extracted from the stan
dardized trace output.

Jan. 4, 2007

17. The system of claim 16, wherein the converter com
ponent generates standardized trace output as extensible
Markup Language format.

18. The system of claim 16, wherein the graphical user
interface allows a user to reorganize graphically represented
packets by matching request packets with corresponding
response packets.

19. The system of claim 16, wherein the graphical user
interface allows the user to control the amount of informa
tion displayed for one or more of the graphically represented
packets.

20. The system of claim 16, wherein the devices comprise
a central processing unit (CPU) and a graphics processing
unit (GPU).

