
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

25
6

64
6

A
1

��&����������
(11) EP 2 256 646 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
01.12.2010 Bulletin 2010/48

(21) Application number: 10173160.2

(22) Date of filing: 03.01.2007

(51) Int Cl.:
G06F 17/30 (2006.01) H04L 29/08 (2006.01)

H04L 12/28 (2006.01)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR

(30) Priority: 11.05.2006 KR 20060042617
12.01.2006 US 758219 P

(62) Document number(s) of the earlier application(s) in
accordance with Art. 76 EPC:
07100066.5 / 1 808 789

(71) Applicant: SAMSUNG ELECTRONICS CO., LTD.
Suwon-si
Gyeonggi-do 442-742 (KR)

(72) Inventor: Kim, Yoon-soo
Gyeonggi-do (KR)

(74) Representative: D’Halleweyn, Nele Veerle Trees
Gertrudis et al
Arnold & Siedsma
Sweelinckplein 1
2517 GK The Hague (NL)

Remarks:
This application was filed on 18-08-2010 as a
divisional application to the application mentioned
under INID code 62.

(54) Improvements in and relating to remote user interfaces

(57) Provided are an apparatus and method of re-
storing a remote user interface (RUI) in a Universal Plug
and Play (UPnP) environment. In the apparatus and
method, an RUI client requests an external storage serv-
er to store the state information of the RUI by using a
Hypertext Transfer Protocol (HTTP) object processing a
HTTP request without reloading a web page, and re-

stores the original state of the RUI by using the stored
state information. Accordingly, it is possible to apply a
method of storing and restoring state information of a
remote user interface, in a UPnP environment, to a HT-
TP-based remote protocol model having stateless char-
acteristics which do not allow state information of a re-
mote user interface to be stored.

EP 2 256 646 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

[0001] Apparatuses and methods consistent with the
present invention relate to remote user interfaces (RUIs),
and more particularly but not exclusively related to RUIs
in a Universal Plug and Play (UPnP) environment.
[0002] FIG. 1 is a block diagram of a conventional Uni-
versal Plug and Play (UPnP)-based remote user inter-
face (RUI) network system ("the system"). Referring to
FIG. 1, the system includes an RUI control point (CP) 11,
an RUI client 12, and an RUI server 13. Here, the RUI
Control Point (CP) 11 corresponds to a UPnP CP sup-
porting a remote user interface, and the RUI client 12
and the RUI server 13 correspond to a UPnP controlled
device (CD) supporting the remote user interface.
[0003] According to UPnP, the RUI CP 11 discovers
and controls the RUI client 12 and the RUI server 13.
The RUI client 12 and the RUI server 13 that are con-
nected under the control of the RUI CP 11, process a
request and response received via an RUI according to
out-of-band remote protocol, such as remote desktop
protocol (RDP) and extended remote technology (XRT)
protocol.
[0004] FIG. 2 is a diagram illustrating a conventional
process of storing and restoring state information of an
RUI according to UPnP. In particular, the process of FIG.
2 is related to a case where a connection of a first RUI
client 22 to an RUI server 24 is changed to a connection
of a second RUI client 23 to the RUI server 24.
[0005] In operation 201, the RUI CP 21 searches for
RUI connections that are currently in progress by calling
GetCurrentConnection() to the first RUI client 22, and
learns of a connection to the RUI server 24 from the
searched RUI connections.
[0006] In operation 202, the RUI CP 21 calls SetUIL-
ifetime() to the RUI server 24 in order to instruct the RUI
server 24 to maintain the RUI connections that are cur-
rently in progress, for a predetermined time.
[0007] In operation 203, the RUI CP 21 calls Discon-
nect() to the first RUI client 22 in order to terminate the
RUI connections that are in progress.
[0008] In operation 204, the RUI CP 21 calls Connect
() to the second RUI client 23 in order to start the RUI
connections maintained according to the instructions giv-
en in operation 202.
[0009] However, as described above, the conventional
method of FIG. 2 is applicable only to a remote protocol
model which allows all state information of RUIs to be
stored in an RUI server. However, in the case of a Hy-
perText Transfer Protocol (HTTP)-based remote proto-
col model, when a transaction that processes a request
and a response is completed, the state information of a
remote interface is lost and is not stored due to the state-
less characteristics of the HTTP, and therefore, the RUI
client manages most of the state information.
[0010] Accordingly, the conventional process of stor-
ing and restoring state information of an RUI according
to UPnP is applicable to remote protocol models, such

as RDP and XRT, in which all state information of RUIs
is stored in an RUI server. However, the conventional
process has a problem in that it cannot be applied to
remote protocol models, such as HTTP, in which most
of the state information is managed by an RUI client. In
particular, binary protocol-based RDP and XRT need a
wider network bandwidth than HTTP.
[0011] Example embodiments of the present invention
provide methods and apparatus for allowing a process
of storing and restoring state information of a remote user
interface (RUI) in a Universal Plug and Play (UPnP) en-
vironment or the like, to be applied to a HyperText Trans-
fer Protocol (HTTP)-based remote protocol model or the
like, having stateless characteristics, that does not allow
state information of an RUI to be stored.
[0012] According to a first aspect of the present inven-
tion, there is provided a method of allowing a client, which
receives a remote user interface from a server, to request
state information of the remote user interface to be saved,
the method comprising: obtaining the state information
of the remote user interface, which is generated when
the remote user interface is used, by using an object
which processes a predetermined request without re-
loading the remote user interface; and requesting that
the obtained state information be stored.
[0013] According to preferred embodiments of the
present invention, the remote user interface is a web
page based on a stateless protocol which does not allow
the state information to be stored.
[0014] According to preferred embodiments of the
present invention the object is a Java script object which
processes the predetermined request without reloading
the web page.
[0015] According to preferred embodiments of the
present invention the obtaining comprises opening a new
socket, which is not a socket being used by the remote
user interface, and obtaining the state information via the
new socket.
[0016] According to preferred embodiments of the
present invention the requesting comprises opening a
new socket, which is not a socket being used by the re-
mote user interface, and requesting that the state infor-
mation be stored via the new socket.
[0017] According to preferred embodiments of the
present invention the requesting comprises transmitting
the request to a storage server providing a storage for
storing the state information.
[0018] According to preferred embodiments of the
present invention the method further comprises a user
selecting the storage server to store the state information,
wherein the requesting comprises transmitting the re-
quest to the storage server based on information regard-
ing the selected storage server.
[0019] According to preferred embodiments of the
present invention the obtaining comprises:

obtaining state information of the server, which is
generated when the remote user interface is used;

1 2

EP 2 256 646 A1

3

5

10

15

20

25

30

35

40

45

50

55

and
obtaining state information of the client, which is gen-
erated when the remote user interface is used.

[0020] According to preferred embodiments of the
present invention, when a command to store the state
information of the server is received from the user, further
comprising requesting the server to provide the state in-
formation thereof,
wherein the obtaining the state information of the storage
server comprises obtaining the state information of the
server from a response to the request.
[0021] According to preferred embodiments of the
present invention the obtaining the state information of
the client comprises reading the state information of the
client from the remote user interface in order to obtain
the state information of the client.
[0022] According to a second aspect of the present
invention, there is provided a computer readable medium
having recorded thereon a program for executing the
method of the first aspect of the present invention.
[0023] According to preferred embodiments of the
present invention an apparatus is disclosed, which uses
a remote user interface provided from a server for allow-
ing a client, to request storage of state information of the
remote user interface, the apparatus comprising:

a remote user interface control point module (41)
which obtains information regarding a storage server
(10) which provides storage for storing the state in-
formation; and
a web browser module (43) which requests the stor-
age server to store the state information by using an
object which processes a predetermined request
without reloading the remote user interface, based
on the information regarding the storage (10) server
obtained by the remote user interface control point
module (41).

[0024] According to preferred embodiments of the
present invention the web browser module (43) obtains
state information, which is generated when the client us-
es the remote user interface, by using the object, and
requests that the obtained state information be stored.
[0025] According to preferred embodiments of the
present invention the remote user interface control point
module (43) obtains the information of the storage server
(10) during universal plug and play discovery.
[0026] According to a third aspect of the present in-
vention, there is provided an apparatus for allowing a
client, which uses the remote user interface provided
from a server, to request storage of state information of
a remote user interface, the apparatus comprising a re-
mote user interface control point module obtaining infor-
mation regarding a storage server which provides stor-
age for storing the state information; and a web browser
module requesting the storage server to store the state
information by using an object processing a predeter-

mined request without reloading the remote user inter-
face, based on the information regarding the storage
server obtained by the remote user interface control point
module.
[0027] According to a fourth aspect of the present in-
vention, there is provided a method of allowing a client,
which receives the remote user interface from a server,
to restore state information of a remote user interface,
the method comprising obtaining state information, which
is generated when the remote user interface is used, by
using an object which processes a predetermined re-
quest without reloading the remote user interface; and
reflecting the obtained state information in the remote
user interface.
[0028] According to a fifth aspect of the present inven-
tion, there is provided a computer readable medium hav-
ing recorded thereon a program for executing the method
of the fourth aspect of the present invention.
[0029] According to a sixth aspect of the present in-
vention, there is provided an apparatus for allowing to a
client, which receives the remote user interface from a
server, to restore state information of a remote user in-
terface, the apparatus comprising: a remote user inter-
face control point module which obtains information re-
garding a storage server providing storage for storing the
state information; and a web browser module which ob-
tains the state information from the storage server by
using an object processing a predetermined request with-
out reloading the remote user interface, based on the
information regarding the storage server obtained by the
remote user interface control point module; and reflecting
the obtained state information in the remote user inter-
face.
[0030] According to the present invention there is pro-
vided an apparatus and method as set forth in the ap-
pended claims. Preferred features of the invention will
be apparent from the dependent claims, and the descrip-
tion which follows.
[0031] For a better understanding of the invention, and
to show how embodiments of the same may be carried
into effect, reference will now be made, by way of exam-
ple, to the accompanying diagrammatic drawings in
which:

FIG. 1 is a block diagram of a conventional Universal
Plug and Play (UPnP)-based remote user interface
(RUI) network system;
FIG. 2 is a diagram illustrating a conventional proc-
ess of storing and restoring state information of an
RUI according to UPnP;
FIG. 3 is a block diagram of a UPnP-based RUI net-
work system in which exemplary embodiments of
the present invention may be applied;
FIG. 4 is a block diagram of an RUI client according
to an exemplary embodiment of the present inven-
tion;
FIG. 5 illustrates syntax representing an interface of
a State Storage (SS) handler for use in exemplary

3 4

EP 2 256 646 A1

4

5

10

15

20

25

30

35

40

45

50

55

embodiments of the present invention;
FIG. 6 illustrates syntax representing an interface of
a Transmission Control Protocol (TCP) connection
object for use in exemplary embodiments of the
present invention;
FIG. 7 is a block diagram of an RUI server according
to an exemplary embodiment of the present inven-
tion;
FIGS. 8A and 8B illustrate syntax representing a sav-
able page for use in exemplary embodiments of the
present invention;
FIGS. 9A and 9B illustrate syntax representing an-
other exemplary savable page represented by the
syntax shown in FIGS. 8A and 8B;
FIG. 10 is a block diagram of an SS server according
to an exemplary embodiment of the present inven-
tion;
FIG. 11 illustrates the format of a GETSTATES re-
quest message for use in an exemplary embodiment
of the present invention;
FIG. 12 illustrates the format of a GETSTATES re-
sponse message for use in exemplary embodiments
of the present invention;
FIG. 13 illustrates the format of a SAVE request mes-
sage for use in exemplary embodiments of the
present invention;
FIG. 14 illustrates the format of a restoring page re-
quest message for use in exemplary embodiments
of the present invention;
FIG. 15 illustrates the format of a restoring page re-
sponse message for use in exemplary embodiments
of the present invention;
FIG. 16 illustrates the format of a restoring request
message for use in exemplary embodiments of the
present invention;
FIG. 17 illustrates syntax representing a savable
page corresponding to a restoring response docu-
ment for use in exemplary embodiments of the
present invention;
FIG. 18 is a timing diagram of a method of storing
state information of an RUI according to an exem-
plary embodiment of the present invention;
FIG. 19 is a timing diagram of a method of restoring
state information of an RUI according to an exem-
plary embodiment of the present invention; and
FIG. 20 is a timing diagram of an apparatus that is
a combination of the RUI server of FIG. 7 and the
SS server of FIG. 10 according to an exemplary em-
bodiment of the present invention.

[0032] Hereinafter, exemplary embodiments of the
present invention will be described in detail with refer-
ence to the accompanying drawings. In this disclosure,
a remote user interface (RUI) based on a HyperText
Transfer Protocol (HTTP) which is a stateless protocol
that does not store state information, will be described
with respect to a web page containing a HTTP object
which is a Java script object that processes a HTTP re-

quest without reloading the web page. However, it will
be apparent to those skilled in the technical field to which
the present invention pertains when presented with this
document that the exemplary embodiments of the
present invention are applicable to other types of remote
user interfaces, and not just the web page as described
herein by way of example.
[0033] FIG. 3 is a block diagram of a Universal Plug
and Play (UPnP)-based RUI network system ("the sys-
tem"). Referring to FIG. 3, the system includes RUI client
31 and an Nth RUI client 32, RUI server 33 and an Nth
RUI server 34, and a State Storage (SS) server 35. In
particular, the SS server 35 is a server that provides a
state storage for storing the state information of a web
page corresponding to an RUI. Also, the RUI client 31,
Nth RUI client 32, and the RUI servers 33 and 34 are 2-
box models, each having a built-in RUI control point (CP)
module for acquiring information regarding the SS server
35 during UPnP discovery. However, the RUI clients 31
and 32 and the RUI servers 33 and 34 do not need to
have the built-in RUI CP module, and can receive the
information regarding the SS server 35 from another
node in such a case.
[0034] FIG. 4 is a block diagram of an RUI client 4
according to an exemplary embodiment of the present
invention. Referring to FIG. 4, the RUI client 4 includes
an RUI CP module 41, an RUI controlled device (CD)
module 42, and a web browser module 43. In particular,
the RUI CP module 41 and the RUI CD module 42 are
optional modules needed when the RUI client 4 is located
in an autonomous network, such as a home network, to
which UPnP is applicable. Also, the RUI CP module 41
may be located outside the RUI client 4, instead of inside
thereof.
[0035] The RUI CP module 41 acts as a UPnP CP that
discovers and controls UPnP CDs. In particular, accord-
ing to an exemplary embodiment of the present invention,
the RUI CP module 41 acquires information regarding
an SS server 10, based on UPnP, during discovery of an
RUI server 7 and an SS server 10 which are CDs based
on UPnP. Also, the RUI CP module 41 provides the in-
formation regarding the SS server 10 to an SS handler
431 in order to request that state information of a remote
interface, i.e., a web page, be stored.
[0036] The RUI client 4 may include "<hasControl-
Point>true</ hasControlPoint>", indicating that it has the
RUI CP module 41, in a HTTP header.
[0037] The RUI CD module 42 advertises that it is a
UPnP CD, and acts as a UPnP CD to be controlled by a
UPnP CP that discovers the RUI CD module 42 in re-
sponse to the advertisement.
[0038] The web browser module 43 acts as a HTTP-
based general web browser. That is, the web browser
module 43 is a client module that receives a request for
the web page corresponding to the remote user interface
from a user, transmits the request to the RUI server 7
having a web server, and renders the web page acquired
in response to the request, so as to display the rendering

5 6

EP 2 256 646 A1

5

5

10

15

20

25

30

35

40

45

50

55

result.
[0039] In particular, the web browser module 43 may
include the SS handler 431 therein or in the form of a
plug-in. The SS handler 431 is an optional module need-
ed only when the RUI CP module 41 is present. The RUI
CP module 41 and the SS handler 431 are capable of
establishing internal communications via interprocess
communication (IPC) or a UNIX domain socket. When
receiving the HTTP header and realizing that the RUI
client 4 includes the RUI CP module 41, the RUI server
7 may provide a savable page, represented by the syntax
shown in FIGS. 8A and 8B, which contains a Java script
using the SS handler 431 to obtain the information re-
garding the SS server 10. That is, when the Java script
is executed, the SS handler 431 obtains the information
regarding the SS server 10 from the RUI CP module 41
and provides the savable page with the obtained infor-
mation.
[0040] FIG. 5 illustrates syntax representing an inter-
face of the SS handler 431 illustrated in FIG. 4 according
to an exemplary embodiment of the present invention.
Referring to FIG. 5, the interface of the SS handler 431
provides properties representing uniform resource loca-
tors (URLs) (array URLs) of SS servers providing a state
storage that stores state information of a web page cor-
responding to an RUI, and the names of the SS servers
(array names).
[0041] Also, the web browser module 43 includes the
HTTP object 432 in the form of a native object or plug-
in. The HTTP object 432 is a Java script object that proc-
esses a request for HTTP without reloading the web
page. The HTTP object 432 may be an XMLHttpRequest
or a Transmission Control Protocol (TCP) connection ob-
ject.
[0042] FIG. 6 illustrates syntax representing an inter-
face of a TCP connection object according to an exem-
plary embodiment of the present invention. Referring to
FIG. 6, the interface of the TCP connection object pro-
vides a callback regarding an event notifying a change
in the state of a TCP connection, a callback regarding an
event notifying the arrival of data, a callback regarding
an event notifying that a data transfer error occurs, a
method of opening a TCP/IP connection, a method of
acquiring the data, a method of transmitting the data, etc.
[0043] The web browser module 43 receives the sav-
able page represented by the syntax shown in FIGS. 8A
and 8B from the RUI server 7. Also, when receiving from
the user a command to save state information regarding
an RUI, that is, when the user clicks a "SAVE" button on
the savable page, the web browser module 43 requests
the state information regarding the RUI server 7, which
is generated when the user uses the web page, in the
case where a Java script included in the web page is
executed to generate the state information of the RUI
server 7. That is, the web browser module 43 transmits
a GETSTATES request message illustrated in FIG. 11
to the RUI server 7.
[0044] Also, the web browser module 43 acquires the

state information of the RUI server 7 in response to the
request. That is, the web browser module 43 receives
from the RUI server 7 a GETSTATES response message
illustrated in FIG. 12 in response to the GETSTATES
request message, and obtains the state information of
the RUI server 7 by executing the Java script included in
the web page. If the user uses a web page regarding
product sales, information regarding a product that the
user selects remains in the RUI server 7. Also, if the user
uses a web page regarding user authentication, informa-
tion regarding a result of user authentication remains in
the RUI server 7. Such items of information are examples
of the state information of the RUI server 7.
[0045] Also, the web browser module 43 executes the
Java script included in the web page to read the state
information of the RUI client 4, which is generated when
the user uses the web page, from the web page. While
the user is using the web page, form input information,
cookie information, and state information of an audio/
visual (AV) object corresponding to an input value from
the user are generated. Such items of information are
examples of the state information of the RUI client 4.
[0046] In order to request the SS server 10 to save the
above generated information and the obtained state in-
formation of the web page, that is, the state information
of the RUI client 4 and the RUI server 7, the web browser
module 43 receives information regarding the SS server
10 from the RUI CP module 41 or an RUI CP module 71
of the RUI server 7. More specifically, the web browser
module 43 may execute the Java script included in the
web page in order to display the information of the SS
server 10 to the user so that the user can select the SS
server 10 as a storage server for storing the state infor-
mation of the web page. Otherwise, the web browser
module 43 may request the SS handler 431 to provide
the information of the SS server 10, and display the ob-
tained information to the user so that the user can select
the SS server 10 as a storage server for storing the state
information of the web page.
[0047] Also, the web browser module 43 executes the
Java script in the web page in order to request the SS
server 10 to save the state information of the web page
by using the information of the SS server 10 selected by
the user, i.e., a URL of the SS server 10. That is, the web
browser module 43 transmits a SAVE request message
illustrated in FIG. 20 to the SS server 10.
[0048] Also, when receiving from the user a command
to display a list of web pages that can be restored ac-
cording to the user’s selection, i.e., a list of restorable
pages, the web browser module 43 receives the infor-
mation of the SS server 10 from the RUI CP module 41
or the RUI CP module 71 of the RUI server 7. Also, the
web browser module 43 requests the SS server 10 to
provide the list of restoring pages by using the information
of the SS server 10, i.e., the URL of the SS server 10.
That is, the web browser module 43 transmits a restoring
page request message illustrated in FIG. 14 to the SS
server 10.

7 8

EP 2 256 646 A1

6

5

10

15

20

25

30

35

40

45

50

55

[0049] Also, the web browser module 43 obtains the
list of restoring pages from a response to the request.
That is, the web browser module 43 receives from the
SS server 10 a restoring page response message, illus-
trated in FIG. 15, in response to the restoring page re-
quest message, and obtains from the restoring page re-
sponse message the URLs of web pages corresponding
to the list of restoring pages (RUIs), the state information
of the RUI server 7, and the URL which is location infor-
mation of a site that stores the state information of the
RUI client 4. Also, the web browser module 43 displays
the list of restoring pages to the user, and receives a
selection from the user who views the displayed list of
restoring pages. That is, the web browser module 43 is
given the URL of a web page that the user desires to
restore.
[0050] Also, the web browser module 43 requests the
RUI server 7 to restore the web page selected by the
user. That is, the web browser module 43 requests the
RUI server 7 to start execution of an RUI application by
providing the RUI server 7 with a restoring request mes-
sage, illustrated in FIG. 16, which contains the state in-
formation of the RUI server 7 and the URL which is the
location information of the site storing the state informa-
tion of the RUI client 4.
[0051] Also, the web browser module 43 transmits the
restoring request message illustrated in FIG. 16 to the
RUI server 7, and receives as a response to the restoring
request message a savable page, represented by the
syntax shown in FIG. 17, which contains a Java script
allowing the state information of the RUI client 4 to be
received using the URL which is the location information
of the site storing the state information of the RUI client 4.
[0052] Also, the web browser module 43 executes the
Java script in the savable page represented by the syntax
shown in FIG. 17 in order to obtain from the SS server
10 the state information of the RUI client 4, which is need-
ed to recover the selected web page by using the URL
which is the location information of the site storing the
state information of the RUI client 4.
[0053] Also, the web browser module 43 executes the
Java script in the savable page to reflect the state infor-
mation of the RUI client 4 into the savable page, thereby
restoring the state of the RUI client 4 in the web page.
[0054] FIG. 7 is a block diagram of the RUI server 7 of
FIG. 4 according to an exemplary embodiment of the
present invention. Referring to FIG. 7, the RUI server 7
includes an RUI CP module 71, an RUI CD module 72,
a web server module 73, an RUI application module 74,
a state manager 75, and an SS server selector 76. In
particular, the RUI CP module 71 and the RUI CD module
72 are optional modules needed when the RUI server 7
is located in an autonomous network, such as a home
network to which UPnP is applicable. Also, the RUI CP
module 71 may be located outside the RUI server 7, in-
stead of inside thereof.
[0055] The RUI CP module 71 acts as a UPnP CP that
discovers and controls UPnP CDs. In particular, accord-

ing to an exemplary embodiment of the present embod-
iment, when the RUI client 4 does not include the RUI
CP module 41, the RUI CP module 71 obtains information
of the SS server 10 during discovery of the SS server 10
according to UPnP and provides it to the SS server se-
lector 76.
[0056] The RUI CD module 72 advertises that it is a
UPnP CD, and acts as a UPnP CD controlled by a UPnP
CP that discovers the RUI CD module 72 according to
the advertisement.
[0057] The web server module 73 acts as a HTTP-
based general web server. That is, the web server mod-
ule 73 is a HTTP server module that receives a request
for an application from the RUI client 4, processes the
application, and provides the result of processing, in re-
sponse to the request. In particular, when receiving a
request for a general web page from the RUI client 4, the
web server module 73 creates and provides a web page
in response to the request.
[0058] The state manager 75, which manages the
state information of the RUI server 7, is an optional mod-
ule needed only when the state information of the RUI
server 7 is generated when a user of the RUI client 4
uses a web page corresponding to an RUI provided by
the RUI server 7. More specifically, when receiving from
the RUI client 4 a request for the state information of the
RUI server 7, generated when the user of the RUI client
4 uses a web page provided from the RUI server 7, the
state manager 75 provides the state information of the
RUI server 7 to the RUI client 4. That is, upon receiving
the GETSTATES request message illustrated in FIG. 11
via the web server module 73, the state manager 75
transmits a GETSTATES response message illustrated
in FIG. 12 in response to the GETSTATES request mes-
sage.
[0059] Also, when receiving the state information of
the RUI server 7 from the RUI client 4, the state manager
75 restores the state of the RUI server 7 based on the
received information. That is, when receiving "Server-
StatesString" in a restoring request message illustrated
in FIG. 16 from the RUI client 4, the state manager 75
restores the state of the RUI server 7 based on the
"ServerStatesString".
[0060] The RUI application module 74 performs an ap-
plication for a web page corresponding to an RUI remote
user interface. More specifically, when receiving a re-
quest for a web page from the RUI client 4 via the web
server module 73, the RUI application module 74 creates
a savable page providing a unit, e.g., a "SAVE" button,
via which the user can instruct that the state information
of the web page be saved, and provides the savable page
to the RUI client 4.
[0061] Also, when receiving from the RUI client 4 a
request to restore a web page selected by the user, the
RUI application module 74 creates a savable page con-
taining a Java script allowing the RUI client 4 to acquire
the state information of the RUI client 4, by using the URL
which is the location information of the site storing the

9 10

EP 2 256 646 A1

7

5

10

15

20

25

30

35

40

45

50

55

state information of the RUI client 4, and provides the
savable page to the RUI client 4.
[0062] The SS server selector 76 is an optional module
needed only when the RUI CP module 71 is present. The
SS server selector 76 creates a representation page dis-
playing the information about the SS server 10 obtained
by the RUI CP module 71 to a user, and provides the
information to the RUI client 4. Also, as described above,
when the user who recognizes the representation page
selects the SS server 10, the SS server selector 76 pro-
vides a call window (not shown) with the information
about the SS server 10 by using an opener object of the
Java script.
[0063] FIGS. 8A and 8B illustrate syntax representing
a savable page according to an exemplary embodiment
of the present invention. Referring to FIGS. 8A and 8B,
the savable page is a HyperText Markup Language
(HTML) document. As illustrated in FIGS. 8A and 8B, the
savable page provides a "SAVE" button to a user, and
the Java script in the savable page, which is returned
from the RUI server 7 through an on-click event callback
for the "SAVE" button, is executed to perform a GET-
STATES command and a SAVE command by using XM-
LHttpRequest or a TCP connection object. In order to
perform the GETSTATES command and the SAVE com-
mand based on a HTTP by using the TCP connection
object, a request for HTTP is directly constructed as
shown in a HTTP a getserverstate() function or a save()
function, which are illustrated in FIGS. 8A and 8B, and
the request for HTTP is transmitted by sendData(). When
an XMLHttpRequest is used without the TCP connection
object, the request for HTTP may be processed by using
"open(), onreadystatechange property, responseText
property, send method()". After opening a blank window
in "startSelectingSSS()" shown in FIGS. 8A and 8B, hy-
perlinks are created based on URLs and the names, and
the href properties of each hyperlink are connected to an
opener.save(url) callback.
[0064] More specifically, the web browser module 43
transmits a GETSTATES request message by using the
HTTP object 432 and "getserverstate()" so as to request
the state information of the RUI server 7. That is, the web
browser module 43 requests the state information of the
RUI server 7 by opening a new socket, i.e., not a socket
that is being used by a web page corresponding to an
RUI, and transmitting the GETSTATES request message
via the new socket.
[0065] Also, the web browser module 43 receives a
GETSTATES response message by using the HTTP ob-
ject 432 and "setserverstate()", and obtains the state in-
formation of the RUI server 7 from the GETSTATES re-
sponse message. That is, the web browser module 43
receives the GETSTATES response message via the
new socket, and obtains the state information of the RUI
server 7.
[0066] In particular, the web browser module 43 trans-
mits a SAVE request message by using the HTTP object
432 and "save(url)" to request the SS server 10 to save

the state information of the web page. That is, the web
browser module 43 requests the SS server 10 to save
the state information of the web page by opening a new
socket, i.e., not the socket that is being used by a web
page corresponding to an RUI and transmitting the SAVE
request message via the new socket.
[0067] In particular, the web browser module 43 ob-
tains the state information of the RUI client 4 from the SS
server 10 by using HTTP object 432 and "checkSav-
eResult()". That is, the web browser module 43 opens a
new socket, i.e., not the socket that is being used by the
web page corresponding to the RUI, requests the SS
server 10 to provide the state information of the RUI client
4 via the new socket, and obtains the state information
of the RUI client 4 in response to the request from the
SS server 10 via the new socket.
[0068] If the RUI client 4 does not include the RUI CP
module 41 and the SS handler 431, and the RUI server
7 includes the RUI CP module 71 and the SS server
selector 76, the RUI server 7 provides a savable page
represented by the syntax shown in FIGS. 9A and 9B,
for example, which is different from the savable page
represented by the syntax shown in FIGS. 8A and 8B.
[0069] FIGS. 9A and 9B illustrate syntax representing
another exemplary embodiment of the savable page rep-
resented by the syntax shown in FIGS. 8A and 8B ac-
cording to the present invention. The savable page rep-
resented by the syntax shown in FIGS. 9A and 9B is in
the form of a HTML document when the RUI server 7
includes the RUI CP module 71 and the SS server se-
lector 76. When a "SAVE" button in the savable page is
clicked, Java scripts "getserverstate()", "setserverstate
()", and "startSelectingSSS()" in a savable page are se-
quentially executed, and "startSelectingSSS()" executes
"window.open()". Thus, the SS server selector 76 pro-
vides a list of SS servers in the form of hyperlinks, and
an on-click event handler for each of the hyperlinks cor-
responding to the SS servers is set to "opener.save(url)".
As a result, a " save() function is called to execute
a "SAVE" command.
[0070] FIG. 10 is a block diagram of the SS server 10
according to an exemplary embodiment of the present
invention. Referring to FIG. 10, the SS server 10 includes
an RUI CD module 101, a web server module 102, a save
handler 103, an RUI restoring unit 104, and a state stor-
age unit 105.
[0071] The RUI CD module 101 advertises that it is a
UPnP CD, and acts as a UPnP CD controlled by either
the UPnP CP module 41 of the RUI client 4 or the UPnP
CP module 71 of the RUI server 7, which discovers the
RUI CD module 101 according to the advertisement. That
is, the RUI CD module 101 may include information, such
as <hasStatesStorage>true</hasStatesStorage>, in a
description of the RUI CD module 101 in order to adver-
tise that the SS server 10 has the state storage unit 105
capable of storing state information of a remote interface,
i.e., a web page.
[0072] The web server module 102 acts as a HTTP-

11 12

EP 2 256 646 A1

8

5

10

15

20

25

30

35

40

45

50

55

based general web server. That is, the web server mod-
ule 102 is a HTTP server module that receives a request
for an application from the RUI client 4, and processes
the application and provides the processing result in re-
sponse to the request. In particular, the web server mod-
ule 102 receives and processes commands to save and
restore the state information of a web page, which is re-
ceived from the RUI client 4.
[0073] When receiving a SAVE request message illus-
trated in FIG. 13 via the web server module 102, the save
handler 103 stores all state information of the web page,
which is contained in the SAVE request message, i.e.,
the state of the RUI client 4 and the state information of
the RUI server 7, in the state storage unit 105.
[0074] The RUI restoring unit 104 allows the RUI client
4 to select and restore state information of the web page
desired by a user. More specifically, when receiving a
request for a list of restoring pages from the RUI client
4, the RUI restoring unit 104 provides the URLs of re-
storing pages stored in the state storage unit 105 (web
pages corresponding to RUIs), the state information of
the RUI server 7, and the URL which is location informa-
tion of a site storing the state information of a first RUI
client 401, as illustrated in FIG. 18. That is, when receiv-
ing the restoring page request message illustrated in FIG.
14 from the RUI client 4 via the web server module 102,
the RUI restoring unit 104 transmits a restoring page re-
sponse message illustrated in FIG. 15 in response to the
message. Also, if the user selects one of the restoring
pages, upon receiving a request for the selected restoring
page, the RUI restoring unit 104 creates a savable page
containing a Java script enabling the state information of
the RUI client 4 to be obtained by using the URL which
is the location information of the site storing the state
information of the RUI client 4, and returns the savable
page to a second RUI client 402 as illustrated in FIG. 18.
That is, when receiving a restoring request page illustrat-
ed in FIG. 16 via the web server module 102, the UI re-
storing unit 104 transmits a savable page represented
by the syntax shown in FIG. 17 to the RUI client 4 in
response to the received page.
[0075] Also, when receiving a request for the state in-
formation of the RUI client 4, which is needed to restore
the savable page provided to the RUI client 4, the RUI
restoring unit 104 reads the state information of the RUI
client 4 from the state storage unit 105 and provides it to
the RUI client 4.
[0076] The state storage unit 105 stores all the state
information of the web page which is received from the
RUI client 4, e.g., the state information of the RUI client
4 and the state information of the RUI server 7, such as
information regarding cookies generated when the user
used RUIs, information regarding forms, AV object infor-
mation.
[0077] FIG. 11 illustrates the format of a GETSTATES
request message according to an exemplary embodi-
ment of the present invention. The GETSTATES request
message of FIG. 11 is a type of HTTP GET request mes-

sage. Referring to FIG. 11, in order to request the state
information of the RUI server 7, the name "GETSTATES"
that is the URL of the state information of the RUI server
7 is input in a GET request line. However, it would be
apparent to those of ordinary skill in the art that a name
other than "GETSTATES" may also be used. Also, a user
agent header contains "Protocol/version(capability_
string)" indicating that the RUI client 4 can support a HT-
TP-based remote user interface, and may contain ">
hasControlPoint>ture;>/hasControlPoint>" indi-
cating that the RUI client 4 includes the RUI CP module
41 although it is not shown in FIG. 11. In particular, ">
hasControlPoint>ture>/hasControlPoint>" is a
string allowing an XML fragment, such as "<hasControl-
Point>ture</hasControlPoint>", to be escaped from a
URL.
[0078] FIG. 12 illustrates the format of a GETSTATES
response message according to an exemplary embodi-
ment of the present invention. The GETSTATES re-
sponse message of FIG. 12 is a type of HTTP GET re-
sponse message. Referring to FIG. 12, a content type
field in the GETSTATES response message records the
content type value of the state information of the RUI
server 7. The content type value may be text/plain or
application/x-www-url-encoded. Also, a field containing
a string of server states in the GETSTATES response
message records a state information value of the RUI
server 7. Here, the state information value of the RUI
server 7 must be determined in order to be interpreted
by a Java script in a web page, which is provided by the
RUI application module 74 of the RUIS server 7.
[0079] FIG. 13 illustrates the format of a SAVE request
message according to an exemplary embodiment of the
present invention. The SAVE request message of FIG.
13 is a type of HTTP GET request message. Referring
to FIG. 13, "/SAVE" of a "POST /SAVE?_name_=Name-
ForToBeSaved States" field is a command to save the
state information of an RUI, which is generated by the
RUI application module 74.
[0080] A "?_name_=NameForToBeSavedStates" of
the "POST /SAVE?_name_=NameForToBeSaved-
States" field indicates the name of a web page to be
stored in the SS server 10 and must be set to have a
unique value. For example, the unique name may be
"<title> tag + saved time". If a web page having the same
name as the indicated name has already been stored in
the state storage unit 105 of the SS server 10 receiving
this message, the indicated name is renamed and stored.
[0081] A "Content-Type: application/x-www-form-ur-
lencoded" field represents a multipurpose Internet mail
extensions (MIME) type of body content of the SAVE
request message, the format of which should be fixed so
that the SS server 10 can understand it. Also, a "_
url=URLForTheOriginalPageToBeSaved&_
serverStates_opaque_server _ states_string..." field,
which is a part of the body of the SAVE request message,
indicates the URL of a web page generated by the RUI
application module 74 of the RUI server 7, and the state

13 14

EP 2 256 646 A1

9

5

10

15

20

25

30

35

40

45

50

55

information of the RUI server 7. In particular, the value
of "_serverStates_" is interpreted by the SS server 10
and thus may be set as the RUI server 7 desires. How-
ever, keys of the "_url_=URLForTheOriginalPageTo-
BeSaved&_serverStates_=opaque_server _ states
_string..." field, i.e., "_url_" and "_serverStates_", must
be predetermined between the RUI server 7 and the SS
server 10 so that the SS server 10 can understand the
keys.
[0082] An "Opaque strings for any RUIC states" field
represents the state information of RUI client 4, e.g.,
cookie information, form input information, AV object
state information. Since these strings are also the state
information of the RUI client 4, key values of these strings
need not be set to be understood by the SS server 10,
unlike "_url_" and "_serverStates_". That is, the key val-
ues of these strings may be set such that only the RUI
server 7 can understand them.
[0083] FIG. 14 illustrates the format of a restoring page
request message according to an exemplary embodi-
ment of the present invention. The restoring page request
message of FIG. 14 is a type of HTTP GET request mes-
sage. A "/UI_restore_page" field representing a list of
restoring pages may be provided in the form of an XML-
based list included in the description of the SS server 10.
For example, the XML-based list may be described in
the form of "A_ARG_TYPE_CompatibleUIs" that is a re-
turn value of "GetCompatibleAction()" of the RUI server
7. In this case, one of the restoring pages may be rec-
ognized from an "<uri>" element following a protocol el-
ement of each state information element of "A_ARG_
TYPE_CompatibleUIs".
[0084] FIG. 15 illustrates the format of a restoring page
response message according to an exemplary embodi-
ment of the present invention. The restoring page re-
sponse message of FIG. 15 is a type of HTTP GET re-
sponse message. Referring to FIG. 15, a document list-
ing hyperlinks of restoring URLs is returned in response
to the restoring page response message. Each of the
restoring URLs has the following elements. "http://RUIS-
IP-ADDR:PORT/RUIAppPath" indicates the path of an
RUI application, i.e., the URL of the original RUI applica-
tion page of the RUI server 7. "ServerSideStates" repre-
sents the URL of the state information of a server side
of the original RUI server when an RUI has been stored.
"_savedstatesurL =AURLForSavedStates" represents
the URL of location information of the state information
of an RUI of RUI client 4, which is stored in the SS server
10.
[0085] When a user selects one of the hyperlinks, the
RUI server 7 requests an application selected by the orig-
inal RUI server. In this case, as described above, the
state information of the RUI of the RUI server 7 and the
location information of the state information of the RUI
of the RUI client 4, which is stored in the SS server 7,
are transmitted together.
[0086] FIG. 16 illustrates the format of a restoring re-
quest message according to an exemplary embodiment

of the present invention. The restoring request message
of FIG. 16 is a type of HTTP GET request message. Re-
ferring to FIG. 16, the value of "/RUIAppPath" of a GET
request line must be the same as a path component of
"_url_key" in the SAVE command shown in FIG. 8A.
"ServerStatesString" is optional and must have the same
value as "_serverStates_key" in the SAVE command. "_
savedstatesurl_" indicates the URL which is the location
information of the state information of the RUI of the RUI
client 4, which is stored in the SS server 10.
[0087] FIG. 17 illustrates syntax of a savable page cor-
responding to a restoring response document according
to an exemplary embodiment of the present invention.
The savable page represented by the syntax shown in
FIG. 17 is obtained by reading the stage information of
an RUI from the SS server 10, and adding a Java script
restoring the state of the RUI into the original savable
page represented by the syntax shown in FIGS 8A and
8B.
[0088] More specifically, the web browser module 43
acquires the state information of the first RUI client 401
from the SS server 10 by using the HTTP object 432,
"startRestoringUIStates(URLForSavedStates)", and "re-
storeUIStates()". That is, the web browser module 43
opens a new socket, not a socket being used by a web
page corresponding to the RUI, and requests the SS
server 10 to provide the state information of the first RUI
client 401 via the new socket. Next, the web browser
module 43 receives a response to the request via the
new socket, and obtains the state information of the first
RUI client 401 from the SS server 10 by using the re-
ceived response.
[0089] A TCP connection object may be used to read
the state information of an RUI from the SS server 10.
FIG. 14 illustrates a scheme of reading the state infor-
mation of an RUI from the SS server 10 via the interface
of the TCP connection object illustrated in FIG. 6. Oth-
erwise, it is possible to read the state information of the
RUI from the SS server 10 by using the XMLHttpRequest,
such as "open()", "send()", "onreadystatuschange", and
"responseText", and then restore the RUI.
[0090] FIG. 18 is a timing diagram of a method of stor-
ing the state information of an RUI according to an ex-
emplary embodiment of the present invention. The meth-
od of FIG. 18 is comprised of timing operations performed
by the RUI client 4 illustrated in FIG. 4, the RUI server 7
illustrated in FIG. 7, and the SS server 10 illustrated in
FIG. 10. Therefore, although not described here, the
above operations of the RUI client 4 illustrated in FIG. 4,
the RUI server 7 illustrated in FIG. 7, and the SS server
10 illustrated in FIG. 10 are also applicable to the method
illustrated in FIG. 18.
[0091] However, since a method of storing an RUI ac-
cording to an exemplary embodiment of the present in-
vention is applied to two RUI clients, the RUI client 4
illustrated in FIG. 4 will be divided into the first RUI client
401 and the second RUI client 402 for convenience. The
first RUI client 401 and the second RUI client 402 are

15 16

EP 2 256 646 A1

10

5

10

15

20

25

30

35

40

45

50

55

generally separate RUI clients, but they may be regarded
as a single RUI client. For example, in the former case,
a user uses a web page in a plurality of RUI clients, and
in the latter case, the user sequentially uses a first web
page, a second web page, and the first web page in only
a single RUI client.
[0092] In operation 181, the first RUI client 401 re-
ceives a request for a web page corresponding to an RUI
from a user.
[0093] In operation 182, the first RUI client 401 re-
quests the RUI server 7 to provide the web page request-
ed in operation 181.
[0094] In operation 183, the RUI server 7 provides the
first RUI client 401 with the web page requested in op-
eration 182. Here, the web page provided by the RUI
server 7 is a savable page containing a unit, i.e., a SAVE
button, whereby the user can save the state information
of the web page.
[0095] In operation 184, the first RUI client 401 re-
ceives a command to save the state information of the
web page, when the user clicks the save button.
[0096] In operation 185, the first RUI client 401 trans-
mits a GETSTATES request message to the RUI server
7 in order to request the RUI server 7 to provide the state
information. Next, the RUI server 7 receives the GET-
STATES request message, and transmits a GET-
STATES response message in response to the GET-
STATES request message. Next, the first RUI client 401
receives the GETSTATES response message, and ob-
tains the state information of the RUI server 7 contained
in the GETSTATES response message. Operation 185
is optional and is needed when the RUI server 7 manages
the state information of RUI.
[0097] In particular, in operation 185, the first RUI client
401 requests the state information of the RUI server 7
by transmitting the GETSTATES request message by
using HTTP object 432. Also, in operation 185, the first
RUI client 401 receives the GETSTATES response mes-
sage by using HTTP object 432, and obtains the state
information of the RUI server 7 from the GETSTATES
response message.
[0098] That is, in operation 185, the first RUI client 401
opens a new socket, i.e., not a socket being used by the
RUI, and transmits the GETSTATES request message
via the new socket in order to request the state informa-
tion of the RUI server 7. Also, in operation 185, the first
RUI client 401 receives the GETSTATES response mes-
sage via the new socket, and obtains the state informa-
tion of the RUI server 7 from the GETSTATES response
message.
[0099] In operation 186, the first RUI client 401 reads
from the web page the state information of the first RUI
client 404, which is generated when the user uses the
web page.
[0100] In operation 187, the first RUI client 401 trans-
mits a SAVE request message to the SS server 10 to
request the SS server 10 to save the state information
of the web page. In particular, in operation 187, the first

RUI client 401 requests the SS server 10 to save the
state information of the web page by transmitting the
SAVE request message using the HTTP object 432.
[0101] That is, in operation 187, the first RUI client 401
opens a new socket, i.e., not the socket being used by
the web page corresponding to the RUI, and transmits
the SAVE request message via the new socket in order
to request the SS server 10 to save the state information
of the web page.
[0102] In operation 188, the SS server 10 receives the
SAVE request message, and stores the state information
of the web page, which is included in the SAVE request
message, in the state storage unit 105.
[0103] FIG. 19 is a timing diagram of a method of re-
storing the state information of an RUI according to an
exemplary embodiment of the present invention. The
method of FIG. 19 is comprised of timing operations per-
formed by the RUI client 4 illustrated in FIG. 4, the RUI
server 7 illustrated in FIG. 7, and the SS server 10 illus-
trated in FIG. 10. Therefore, although not described here,
the above operations of the RUI client 4 illustrated in FIG.
4, the RUI server 7 illustrated in FIG. 7, and the SS server
10 illustrated in FIG. 10 are also applicable to the method
illustrated in FIG. 18. In particular, the method illustrated
in FIG. 19 is performed after all the operations of the
method illustrated in FIG. 18 are completed.
[0104] In operation 191, the second RUI client 402 re-
ceives from a user a command to display a list of restoring
pages.
[0105] In operation 192, the second RUI client 402
transmits a restoring page request message to the SS
server 10 in order to request the list of restoring pages.
Next, the SS server 10 receives the restoring page re-
quest message, and transmits a restoring page response
message in response to the restoring page request mes-
sage. Next, the second RUI client 402 receives the re-
storing page response message, and obtains from the
received message the list of restoring pages, i.e., the
URLs of web pages corresponding to RUIs, the state
information of the RUI server 7, and the URL which is
the location information of a site storing the state infor-
mation of the first RUI client 401. Next, the second RUI
client 402 displays the list of restoring pages to the user.
[0106] In operation 193, the second RUI client 142 re-
ceives the user’s input indicating that one of the restoring
pages from the list of restoring pages has been selected
by the user. That is, the second RUI client 142 is informed
of the URL of a web page that the user desires to restore.
[0107] In operation 194, the second RUI client 402 re-
quests the RUI server 7 to restore the selected web page.
That is, the second RUI client 402 provides the RUI server
7 with the state information of the RUI server 7, and the
URL which is the location information of the site storing
the state information of the first RUI client 401 in order
to request the RUI server 7 to start execution of an ap-
plication for the RUI.
[0108] In operation 195, the RUI server 7 restores the
state of the RUI 7 in the web page by using the state

17 18

EP 2 256 646 A1

11

5

10

15

20

25

30

35

40

45

50

55

information of the RUI server 7 provided in operation 194.
Next, the RUI server 7 creates a savable page containing
a Java script allowing the state information of the first
RUI client 401 to be obtained, by using the URL which
is the location information of the site storing the state
information of the first RUI client 401, which is provided
by the second RUI client 402 in operation 194, and re-
turns the savable page to the second RUI client 402.
[0109] In operation 196, the second RUI client 402 ex-
ecutes the Java script in the savable page returned in
operation 195 so as to obtain the state information of the
first RUI client 401, which is needed to restore the se-
lected web page, from the SS server 10 by using the URL
which is the location information of the site storing the
state information of the first RUI client 401. In particular,
in operation 196, the second RUI client 402 obtains the
state information of the first RUI client 401 from the SS
server 10 by using the HTTP object 432.
[0110] That is, in operation 196, the second RUI client
402 opens a new socket, i.e., not a socket being used
by a web page corresponding to an RUI, and requests
the SS server 10 to provide the state information of the
first RUI client 401 via the new socket. Next, in operation
196, the second RUI client 402 receives a response to
the request via the new socket, and obtains the state
information of the first RUI client 401 contained in the
response from the SS server 10.
[0111] In operation 197, the second RUI client 402 ex-
ecutes the Java script in the savable page returned from
the RUI server 7 in order to reflect the state information
of the first RUI client 401, which is obtained in operation
196, in the savable page, thereby restoring the state of
the first client 401 in the web page.
[0112] FIG. 20 is a block diagram of an apparatus that
is a combination of the RUI server 7 illustrated in FIG. 7
and the SS server 10 illustrated in FIG. 10 according to
an exemplary embodiment of the present invention. The
apparatus of FIG. 20 includes an RUI CD module 201, a
web server module 202, an RUI application module 203,
a state manager 204, a save handler 205, an RUI restor-
ing unit 206, and a state storage unit 207. Since the func-
tions of the RUI server 7 and the SS server 10 are com-
bined in the apparatus of FIG. 20, a process of selecting
an SS server is not needed, and thus, the SS server
selector 76 of FIG. 7 is not included in the apparatus of
FIG. 20. That is, it is possible to directly call a save()
function by using the URL of the apparatus illustrated in
FIG. 20 as an argument without calling "startSelect-
ingSSS()" in the "setserverstate()" field of the savable
page represented by the syntax shown in FIGS. 8A and
8B or FIGS. 9A and 9B.
[0113] It would be apparent to those of ordinary skill in
the art that the present invention is not limited to the con-
struction of the apparatus of FIG. 20, that is, it is possible
to design the apparatus in various ways based on the
above described exemplary embodiments of the present
invention.
[0114] The above exemplary embodiments of the

present invention can be embodied as a program that
can be executed by a computer system, and executed
by a general digital computer via a computer readable
medium. Also, data constructions used in the above ex-
emplary embodiments can be recorded in a computer
readable medium via various devices.
[0115] Examples of the computer readable medium in-
clude a magnetic recording medium (a ROM, a floppy
disk, a hard disk, etc.), an optical recording medium (a
CD-ROM, a DVD, etc.), or carrier waves (such as in trans-
mission over the Internet).
[0116] According to example embodiments of the
present invention, an RUI client requests an external stor-
age server to store the state information of an RUI by
using an HTTP object that processes an HTTP request
without reloading a web page, and restores the original
state of the RUI by using the stored state information.
Accordingly, a method of storing and restoring the state
information of an RUI according to UPnP according to
embodiments of the present invention, is applicable to a
HTTP-based remote protocol model having stateless
characteristics that do not allow the state information of
an RUI to be saved.
[0117] In particular, as described above, use of the HT-
TP object that processes an HTTP request without re-
loading a web page removes the need for a complicated
interaction procedure of reloading the web page, thereby
restoring an RUI, which is based on a HTTP having state-
less characteristics, with a very simple interaction proce-
dure.
[0118] Further, according to example embodiments of
the present invention, information regarding storage
servers is displayed in order to allow a user to select a
desired storage server to store the state information of
an RUI. Also, according to example embodiments of the
present invention, a list of restoring pages is displayed
in order to allow the user to select a web page to be
restored from the list of restoring pages, the state infor-
mation of which is stored in a storage server.
[0119] While this invention has been particularly
shown and described with reference to exemplary em-
bodiments thereof, it will be understood by those skilled
in the art that various changes in form and details may
be made therein without departing from the scope of the
invention as defined by the appended claims.
[0120] Attention is directed to all papers and docu-
ments which are filed concurrently with or previous to this
specification in connection with this application and which
are open to public inspection with this specification, and
the contents of all such papers and documents are in-
corporated herein by reference.
[0121] All of the features disclosed in this specification
(including any accompanying claims, abstract and draw-
ings), and/or all of the steps of any method or process
so disclosed, may be combined in any combination, ex-
cept combinations where at least some of such features
and/or steps are mutually exclusive.
[0122] Each feature disclosed in this specification (in-

19 20

EP 2 256 646 A1

12

5

10

15

20

25

30

35

40

45

50

55

cluding any accompanying claims, abstract and draw-
ings) may be replaced by alternative features serving the
same, equivalent or similar purpose, unless expressly
stated otherwise. Thus, unless expressly stated other-
wise, each feature disclosed is one example only of a
generic series of equivalent or similar features.
[0123] The invention is not restricted to the details of
the foregoing embodiment(s). The invention extends to
any novel one, or any novel combination, of the features
disclosed in this specification (including any accompa-
nying claims, abstract and drawings), or to any novel one,
or any novel combination, of the steps of any method or
process so disclosed.

Claims

1. A method of allowing a client, which receives a re-
mote user interface from a server, to restore state
information of the remote user interface, the method
comprising:

obtaining state information, which is generated
when the remote user interface is used, by using
an object which processes a predetermined re-
quest without reloading the remote user inter-
face; and
reflecting the obtained state information in the
remote user interface.

2. The method of claim 1, wherein the remote user in-
terface is a web page based on a stateless protocol
which does not allow the state information to be
stored.

3. The method of claim 1 or 2, wherein the object is a
Java script which processes the predetermined re-
quest without reloading the web page.

4. The method of claim 1, 2 or 3, wherein the obtaining
the state information comprises opening a new sock-
et, which is not a socket being used by the remote
user interface, and obtaining the state information
via the new socket.

5. The method of claim 1, 2, 3 or 4, wherein the obtain-
ing the state information comprises obtaining the
state information from a storage server which pro-
vides storage for storing the state information.

6. The method of claim 15, 16, 17, 18 or 19, wherein
the obtaining the state information comprises obtain-
ing state information of the client, which is generated
when the remote user interface is used, and
the reflecting the obtained state information compris-
es reflecting the obtained state information of the
client in the remote user interface.

7. The method of any one of claims 1-16, wherein the
obtaining the state information further comprises:

obtaining state information of the server, which
is generated when the remote user interface is
used; and
providing the obtained state information of the
server to the server.

8. The method of any one of claims 1-17, further com-
prising displaying a list of web pages, which are
restorable when a user selects them, to a user, and
allowing the user who recognizes the displayed list
of web pages to select one from the list of web pages,
wherein the obtaining the state information compris-
es obtaining state information needed to restore the
selected web page.

9. A computer readable recording medium having re-
corded thereon a program for executing a method
of allowing a client, which receives a remote user
interface from a server, to restore state information
of the remote user interface, the method comprising:

obtaining state information, which is generated
when the remote user interface is used, by using
an object which processes a predetermined re-
quest without reloading the remote user inter-
face; and
reflecting the obtained state information in the
remote user interface.

10. An apparatus for allowing to a client, which receives
a remote user interface from a server, to restore state
information of the remote user interface, the appa-
ratus comprising:

a remote user interface control point module (41)
which obtains information regarding a storage
server (10) providing storage for storing the state
information; and
a web browser module (43) which obtains the
state information from the storage server by us-
ing an object which processes a predetermined
request without reloading the remote user inter-
face, based on the information regarding the
storage server (10) obtained by the remote user
interface control point module (41); and reflects
the obtained state information in the remote user
interface.

11. The apparatus of claim 10, wherein the web browser
module (43) requests the storage server (10) to pro-
vide state information, which is generated when the
client uses the remote user interface, by using the
object; and obtaining the state information in re-
sponse to the request.

21 22

EP 2 256 646 A1

13

5

10

15

20

25

30

35

40

45

50

55

12. The apparatus of claim 10 or 11, wherein the remote
user interface control point module (41) obtains the
information of the storage server during universal
plug and play discovery.

23 24

EP 2 256 646 A1

14

EP 2 256 646 A1

15

EP 2 256 646 A1

16

EP 2 256 646 A1

17

EP 2 256 646 A1

18

EP 2 256 646 A1

19

EP 2 256 646 A1

20

EP 2 256 646 A1

21

EP 2 256 646 A1

22

EP 2 256 646 A1

23

EP 2 256 646 A1

24

EP 2 256 646 A1

25

EP 2 256 646 A1

26

EP 2 256 646 A1

27

EP 2 256 646 A1

28

EP 2 256 646 A1

29

EP 2 256 646 A1

30

EP 2 256 646 A1

31

EP 2 256 646 A1

32

	bibliography
	description
	claims
	drawings
	search report

