
United States Patent (19)
Passera et al.

USOO5909681A

11 Patent Number: 5,909,681
(45) Date of Patent: *Jun. 1, 1999

54

(75)

73)

56)

COMPUTER SYSTEMAND COMPUTERIZED
METHOD FOR PARTITIONING DATA FOR
PARALLEL PROCESSING

Inventors: Anthony Passera, Watertown, Mass.;
John R. Thorp, Columbia, Md.,
Michael J. Beckerle, Needham;
Edward S. A. Zyszkowski, Newton,
both of Mass.

Assignee: Torrent Systems, Inc., Cambridge,
Mass.

Notice: This patent issued on a continued pros
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).

Appl. No.: 08/624,844
Filed: Mar. 25, 1996

Int. Cl. ... G06F 15/163
U.S. Cl. 707/8; 707/3; 707/6; 707/10;

704/232; 706/16
Field of Search 395/603, 604,

395/608, 610, 613; 707/3, 6, 8, 10; 704/232;
706/16

References Cited

U.S. PATENT DOCUMENTS

4,760,604 7/1988 Cooper et al. 382/15
4,870,568 9/1989 Kahle et al. 364/200
4,876,643 10/1989 McNeill et al. 364/200
4,975,975 12/1990 Filipski 382/38
5,060,278 10/1991 Fukumizu 382/14
5,095,443 3/1992 Watanabe 395/11
5,095,522 3/1992 Fujita et al. 395/200
5,179,683 1/1993 Murakami et al. 395/425
5,239,594 8/1993 Yoda ... 382/15

(List continued on next page.)
FOREIGN PATENT DOCUMENTS

WO 94/O1823 1/1994 WIPO GO6F 15/18

82
84

Training Data Set l/

Master Processor

OTHER PUBLICATIONS

Hedberg, “Parallelism speeds data mining". IEEE, Vol. 3,
issue 4, pp. 3-6, Dec. 24, 1995.
Mesrobian et al., “Exploratory Data Mining and Analysis
Using Conquest', IEEE. pp. 281-286, 1995.
Gerber, Bob, “Informix Online XPS.” p. 463, SIGMOD
1995.
Baru, Chaitanya, et al., “An Overview of DB2 Parallel
Edition.” pp. 460–462, SIGMOD 1995.
Anselm Blumer et al., “Learnability and the Vapnik-Cher
vonenkis Dimension,” Oct. 1989, vol. 36, No. 4, pp.
929-965.

(List continued on next page.)
Primary Examiner Thomas G. Black
ASSistant Examiner-Jean R. Homere
Attorney, Agent, or Firm Wolf, Greenfield & Sacks, P.C.
57 ABSTRACT

A computer System splits a data Space to partition data
between processors or processes. The data Space may be
Split into Sub-regions which need not be orthogonal to the
axes defined by the data Space's parameters, using a decision
tree. The decision tree can have neural networks in each of
its non-terminal nodes that are trained on, and are used to
partition, training data. Each terminal, or leaf, node can have
a hidden layer neural network trained on the training data
that reaches the terminal node. The training of the non
terminal nodes neural networks can be performed on one
processor and the training of the leaf nodes neural networks
can be run on Separate processors. Different target values
can be used for the training of the networks of different
non-terminal nodes. The non-terminal node networks may
be hidden layer neural networks. Each non-terminal node
automatically may send a desired ratio of the training
records it receives to each of its child nodes, So the leaf node
networks each receives approximately the same number of
training records. The System may automatically configures
the tree to have a number of leaf nodes equal to the number
of Separate processors available to train leaf node networkS.
After the non-terminal and leaf node networks have been
trained, the records of a large data base can be passed
through the tree for classification or for estimation of certain
parameter values.

21 Claims, 8 Drawing Sheets

12

R -- s E.

w y

systs
$3:ssor s esso $3:so S35ssor $38ssor rocessor Processor

a
OC

VJ 75 V.

5,909,681
Page 2

U.S. PATENT DOCUMENTS

5,261,065 11/1993 Urabe et al. 395/425
5,307,485 4/1994 Bordonaro et al. ... 395/600
5,428,783 6/1995 Lake 395/650
5,495,606 2/1996 Borden et al. 395/600
5,515,531 5/1996 Fujiwara et al... ... 395/600
5,537,593 7/1996 Diamond et al. 395/650
5,615,127 3/1997 Beatty et al. 364/489

OTHER PUBLICATIONS

Wei-Ming Lin et al., “Algorithmic Mapping of Neural
Network Models Onto Parallel SIMD Machines,” IEEE
Transactions on Computers, Dec. 1991, vol. 40, No. 12, pp.
1390-1401.
S.T. Kim et al., “Algorithmic Transformations for Neural
Computing and Performance of Supervised Learning on a
Dataflow Machine,” IEEE Transactions on Software Engi
neering, Jul. 1992, vol. 18, No. 7, pp. 613-623.

Jeffrey Scott Vitter et al., “Learning in Parallel.” Information
and Computation, Brown University, 1992, pp. 179-202.

Ananth Sankar et al., “Neural Tree Networks, CAIP Center
and Dept. of Electrical Engineering, Rutgers University,
1991, pp. 281-302.

Manavendra Misra, “Parallel Environments for Implement
ing Neural Networks,” Neural Computing Surveys, vol. 1,
1997, pp. 48–60.

Ananth Sankar et al., “Combining Networks and Decision
Trees.” Proceedings of SPIE Int’l Symp. on Optical Eng.

unknown. and Photonics in Aerospace, date

?, "5D1=|

99999999
5,909,681 U.S. Patent

5,909,681 U.S. Patent

U.S. Patent Jun. 1, 1999 Sheet 3 of 8 5,909,681

-BuildModel Master-89
-make largest full binary tree having NoOfEndNets or less end nodes-90
-add non-terminal nodes to lowest level until have NoOfEndNets end nodes-92
-associate a RecordRatio of 1/NoOfEndNets with each end node-94
-associate with each non-terminal node a Recordratio equal to the sum of the
RecordRatios of its child nodes-96
-supply a set of training records to rootnode-98
-for each level of tree having non-terminal nodes, starting from the root down-100

-for each non-terminal node in level-102
-from a set of N record parameters, find the ParameterOfGreatest
Spread taken over all record supplied to the tree node-104
-Create a two level neural network having an input for each of the N
record parameters and having one output-106
-until training Converges-108

-for each training record supplied to the tree node-109
-train the Weights of the node's network's, appling the
record's N parameters to the inputs of the net, and
the record's ParameterOfCreatestSpread to its
ouput-110

-once the tree node's network has been trained, for each training
record passed to the node-112

-re-apply the record's N parameters to the network's
inputs-114
-order the record in a ScoreList by the value of net's output-116

-Selecta Splitpoint such that the ratio of records above and below
Splitpoint in ScoreList eduals the ratio between the RecordRatios of
the node's two child nodes-118
-send all records above Splitpoint to one child node, and all of those
below to the other child node-120

-Create a Compressed representation of the d-tree, including of the Weight vector and
SplitPoint of each non-terminan node's neural net-122
-for each successive one of the tree's end nodes-124

-cyclically distribute the set of records supplied to that end node to a
successive One of NOOfProcessors separate processors-126

-have each of the NoOfPrOCeSSOrprOCeSSOrS execute BuildModel Slave for each set
of end node records destributed to it-128
-Once have received Compressed representations of the EndNet for each of the d
tree's end nodes, append the Compressed representation of each such EndNet to its
appropriate place in the Compressed d-tree representation, to Create a Compressed
representation of the complete tree network-130
-store compressed complete tree on disk-131

FIG. 3

U.S. Patent Jun. 1, 1999 Sheet 4 of 8 5,909,681

83A a

U.S. Patent Jun. 1, 1999 Sheet 5 of 8 5,909,681

-BuildModel Slaver-148
-Create EndNet, a hidden layer neural network, for the set of end node records having
Specified list of input and JOutput parameters from the set of N parameters used in
the d-tree-150
-until training converges-151

-for each record in the end node set-152
-use the record to train the EndNet, appling the values of its and J
parameters, respectively, to the EndNet's input and outputs.-154

-Create a compressed representation of the EndNet-156
-send the compressed representation to the Master processor-158

FIG. 13

ApplyModel Master-170
-if the y data set has not previously been partioned into NoOfProcessors partions,
do SOr
-distribute a Copy of the Compressed complete tree network to each of the
NoOfProcessor processors-174
-CauSe each Such proCeSSOr to run ApplyModel Slave On its associated partion of the
main data set-176
-Once receive classification results from such processors, report them-178

FIG. 16

-ApplyModel Slave-190
-for each record in processor's partion of the main data set-192

-make the root of the Compressed Complete tree network the
Currentnode-194
-until the Currentnode is no longer a non-terminal node-196

-multiply record's N parameters by the CurrentNode's associated
weight vector to produce a network output value-198
-Select One of the CurrentMode's two child nodes the new
CurrentNode, depending On whether the node's network Output value
for the record is greater than or less than the node's Splitpoint-200

-apply the record's input parameters to the CurrentMode's Compressed
EndNet-202
-classify the record based on the value of the JOutputs of the EndNet,
according to specified classification scheme-204

-send specified results of classification to Master-206

FIG. 17

U.S. Patent Jun. 1, 1999 Sheet 6 of 8 5,909,681

FIG. 14

U.S. Patent Jun. 1, 1999 Sheet 7 of 8 5,909,681

Apply Model

160

Preprocess

Apply Model 182

U.S. Patent Jun. 1, 1999 Sheet 8 of 8 5,909,681

i i

i
5
A)

EEE -D 3) e cuS2

i

5,909,681
1

COMPUTER SYSTEMAND COMPUTERIZED
METHOD FOR PARTITIONING DATA FOR

PARALLEL PROCESSING

FIELD OF THE INVENTION

The present invention relates to computer Systems for
analyzing, and computing with, Sets of data, Such as, for
example, extremely large data Sets.

BACKGROUND OF THE INVENTION

AS computing power has grown, it has become increas
ingly practical to proceSS data, and, in particular, large
amounts of data, in new and useful ways. For example, the
term “data base mining” has been used to describe the
practice of Searching vast amounts of data for commercially,
medically, or otherwise important patterns, patterns which
would probably have been impossible to find by human
pattern matching, and which probably would have taken too
long to have found with prior generations of computer
equipment.

For example, one common use of database mining is for
corporations to Search through databases containing records
of millions of customers or potential customers, looking for
data patterns indicating which of those customers are Suf
ficiently likely to buy a given product to justify the cost of
Selecting them as targets of a direct marketing campaign. In
Such Searches, not only are millions of records Searched, but
hundreds, or even thousands of fields within each record.
Such database mining has proven much more Successful in
Selecting which customers are most likely to be interested in
a given new product than prior methods.

Similarly, data base mining can be used for Scanning vast
numbers of medical records to look for subtle patterns
asSociated with disease; for Scanning large numbers of
financial transactions to look for behavior likely to be
fraudulent, or to study Scientific records to look for new
casual relationships.

Because they often involve a tremendous number of
records, and are often Seeking patterns between a large
number of fields per record, data base mining operations
tend to require huge amounts of computation. This, in
combination with the fact that most data base mining
operations can be easily partitioned to run on Separate
processors, has made database mining one of the first major
commercial uses of massively parallel computers. But even
when run on most commercially available parallel Systems
many database mining functions are relatively slow because
of their tremendous complexity. Therefore there is a need to
improve the Speed at which Such tasks can be performed.

Neural nets are a well known device for automatically
Selecting which patterns of values in certain Source fields of
records are likely to be associated with desired values in one
or more target fields. A neural network normally includes an
input layer comprised of a plurality of input nodes, an output
layer of one or more output nodes, and, in hidden-layer
networks, one or more So-called hidden layers, each com
prised of one or more nodes. Hidden layers are hidden in the
Sense that they do not connect directly to any inputs or
outputs.

The knowledge in a neural net is contained in its weights.
Each node in the input layer or hidden layer contains a
weight associated with its connection with each node in the
next layer. Thus, in a typical hidden-layer network, each
node in the input layer has a separate weight for its con
nection to each node in the hidden layer, and each node in

15

25

35

40

45

50

55

60

65

2
the hidden layer has a Separate weight for its connection to
each node in the output layer. The value Supplied to each
given node in a given layer is Supplied to each individual
node in the Successive layer, multiplied by the weight
representing the connection between the given node and the
individual node in the Successive layer. Each node receiving
Such values generates an output, which is a function of the
Sum of the values Supplied it. Usually the output is a
non-linear function of the Sum of values Supplied to the
node, Such as a Sigmoid function. The Sigmoid function has
the effect of making the output operate like an on-off Switch
whose output varies rapidly from a substantially “off” value
to a substantially “on” value as the sum of the values
Supplied to the node crosses a Small threshold region.
A common way for training the weights of a neural

network is to take each record in a training Set and apply the
value of each of its Source fields to a corresponding input of
the net. The network's weights are then modified to decrease
the difference between the resulting values generated at the
network's one or more outputs and the actual values for the
outputs corresponding target fields in the record. There are
a variety of well know methods for making Such weight
modifications, including backprogation, conjugate gradient,
and quick propagation. The training process is normally
repeated multiple times for all the training records until the
Sum of the difference between the generated and actual
outputs approaches a relative minimum.
One of the problems with neural nets is that the amount

of time to appropriately train them to recognize all of the
possible Source field patterns associated with desired target
field values goes up very rapidly as the number of Source or
target fields does, and as the number of different types of
Source patterns which might be associated with a desired
target does. Even with large parallel computer Systems the
amount of time required to properly train Such networks to
learn Such complex Sets of patterns is often prohibitive.

In an attempt to improve the Speed at which neural
networks can train, a new type of neural network has been
proposed. These are So called neural tree networks. These
are decision trees, a well known type of classifying tool, in
which a neural network is placed at each of the network's
non-terminal nodes. In Such trees, each non-terminal node is
a two layer network, which trains much more rapidly than a
hidden-layer network. The data applied to each non-terminal
node is used to train up the node's neural net. This is done
in a training proceSS which applies the Source fields used in
the Overall classification process to the input nodes of the net
and the one or more target fields used in that classification
process to the output of the two layer net. Once the network
has been trained over the training Set, the data objects are
split between the node's child nodes based on whether the
one or more Sigmoidal output of the trained net is “on” or
“off” for each such data object. The data object reaching the
tree's terminal, or leaf, nodes are considered classified by
the identity of the particular leaf node they reached.

Such neural tree networks have the advantage of training
much more rapidly than traditional neural networks, par
ticularly when dealing with large complex classification
taskS. However, they are not as discriminating as might be
desired.

In general, a major issue in parallel computing is the
division of the computational task So that a reasonable
percentage of the computing power of multiple processor
can be taken advantage of and So the analytical power of the
process is as high as possible. This issue is particularly
important when it comes to many data base mining

5,909,681
3

functions, Such the training of neural networks mentioned
above or of other modeling taskS.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide appa
ratuses and methods for more efficiently computing large
amounts of data.

It is another object of the present invention to provide
apparatuses and methods for efficiently finding patterns in
data Sets, particularly large data Sets.

It is still another object of the present invention to provide
apparatuses and methods for efficiently using and training
neural networks to find patterns in data Set.

It is yet another object of the present invention to provide
apparatuses and methods for more efficient parallel comput
ing.

According to one aspect of the present invention a com
puter System with P processors receives data objects having
N parameters. It divides an N-dimensional data Space
defined by the N parameters into M sub-spaces, where M is
greater than or equal to P. This is done in Such a manner that
the boundaries between the resulting Sub-Spaces need not be
orthogonal to the N-dimensions. The System asSociates a
different set of one or more sub-spaces with each of the P
processors. It distributes data objects located in each Sub
Space to the Sub-Spaces associated processor and causes
each processor to perform a computational proceSS on each
of the data objects distributed to it.

According to another aspect of the invention, a computer
System with P processors receives a Set of data objects to be
processed. A decision tree partitions the data Set into at least
M data sub-sets, where M is equal or greater than P. A
different set of one or more of the Sub-sets is associated with
each processor, and the data objects in each Sub-Set are sent
to the associated processor for processing. In Some
embodiments, the process of using a decision tree to parti
tion the data Set is performed on fewer than P processors. In
many embodiments, the decision criteria of the non-terminal
nodes of the decision tree are trained on the data Set, in a
proceSS where each non-terminal node both trains on and
then divides between its children the data supplied to it.

In Some embodiments, the non-terminal nodes are neural
nets having hidden layers. In Some embodiments, the deci
Sion criteria of the non-terminal nets can be automatically
Set to achieve a desired ratio between the number of data
objects Sent to each of Such node's child nodes. In Some Such
embodiments, the System automatically configures the deci
Sion tree to have a number of leaf nodes which is an integer
multiple of the number P of processors.

According to another aspect of the invention, a computer
System divides an N-dimensional data Space, having a
Separate dimension for each of N parameters associated with
the data Set, into M Sub-Spaces. It associates each of these M
Sub-Spaces with a corresponding one of M hidden-layer
neural networks, and uses the data objects in each of the M
Sub-Spaces to train that Sub-Space's associated hidden-layer
neural network. The resulting divisions need not be orthogo
nal to the N dimensions of the Space.

According to another aspect of the invention, a computer
System creates a decision tree having a neural network for
each of its nodes, including a hidden-layer network for each
of its terminal, or leaf, nodes. Each of the tree's non-terminal
nodes use the portion of the training data which is Supplied
to it to train its associated neural network and then uses that
neural network, once trained, to determining which of the

15

25

35

40

45

50

55

60

65

4
training data object Supplied to it should be Supplied to each
of its child nodes. In one embodiment, the net in each
non-terminal node is trained to divide an N-dimensional
Space defined by parameters from the training data Set into
Sub-Spaces, and the data objects associated with each Sub
Space are routed to a different one of that non-terminal
node's child nodes. In Such an embodiment, each non
terminal node can be a two layer neural network which
defines a Single vector of weights in the N-dimensional
Space, and the data Space is split by a plane perpendicular to
that vector.

The portion of the training Set Supplied by the decision
tree to each of its terminal, or leaf, nodes is used to train that
nodes corresponding neural network. In preferred
embodiments, different leaf node networks are trained on
different processors. In many embodiments, a copy of the
entire decision tree, including the neural networks in both its
non-terminal and leaf nodes, is Stored on each of a plurality
of processors. Then a set of new data objectS is split into
Separate data partitions, one for each of Such processor.
Finally data objects from the partition associated with each
processor are passed down through the copy of the complete
decision tree Stored on that processor. This causes each Such
data object to be routed to a given leaf node of the tree, at
which point the hidden-layer neural network associated with
the given leaf node will analyze the data object, Such as by
classifying it, or recording an estimated value for each of its
target fields.

According to another aspect of the invention, a neural tree
net has hidden-layer neural networks in it non-terminal
nodes.

According to another aspect of the invention, a computer
System includes a neural network, Such as one in the nodes
of one of the above mentioned decision trees, which auto
matically causes a Selected percent of data objects applied to
the neural network to be selected for a given purpose.

DESCRIPTION OF THE DRAWINGS

These and other aspects of the present invention will
become more evident upon reading the following descrip
tion of the preferred embodiment in conjunction with the
accompanying drawings, in which:

FIG. 1 is a Schematic representation of one type of parallel
computing System which can be used with the present
invention;

FIG. 2 is a schematic representation of the BuildModel
process for training a neural tree network which embodies
the present invention;

FIG. 3 illustrates BuildModel Master, a simplified
pseudo-code representation of the proceSS run on one pro
ceSSor to train the non-terminal nodes of the neural tree
network as part of the training process shown in FIG. 2;

FIG. 4 is a Schematic representation of a data Space
defined by a portion of a training data Set Supplied to a
non-terminal node of the neural tree network shown in FIG.
2, and of the Selection of a parameter whose values have the
greatest Spread in that portion of the data Set;

FIG. 5 is a schematic representation of the process of
training a non-terminal node in the tree of FIG. 2;

FIG. 6 is a schematic representation of the vector of
weights defined by the training process of FIG. 5;

FIG. 7 is a schematic representation of the vector of FIG.
6 shown in the spatial coordinates of FIG. 4;

FIG. 8 is a schematic representation of the process of
using the neural net of a non-terminal node of the tree shown

5,909,681
S

in FIG. 2 to split the training data object Supplied to it
between that node's two child nodes;

FIG. 9 is a schematic representation of the decision
process shown in FIG. 8 represented in the spatial coordi
nates of FIGS. 4 and 7;

FIG. 10 is a Schematic representation of the data Space
and data points of FIG. 4, as split by the process of FIGS.
8 and 9 into two sub-spaces;

FIG. 11 is a Schematic representation of the data Space of
FIG. 10, indicating that the processes of FIGS. 5-9 are
separately applied to each of Sub-spaces shown in FIG. 10.

FIG. 12 is a Schematic representation of the Space of data
points of FIG. 10, with each of the two sub-spaces shown in
FIG. 10 having been sub-divided into two Sub-Sub-spaces.

FIG. 13 illustrates BuildModel Slave, a simplified
pseudo-code representation of the process run on each of a
plurality of processors to train the hidden-layer neural
networks associated with the leaf nodes of the neural tree
network shown in FIG. 2;

FIG. 14 is a schematic representation of the ApplyModel
proceSS in which a large Apply data Set is partitioned, and
each Separate partition is run through a copy of the neural
tree network trained in FIG. 2 on a separate processor,

FIG. 15 is a schematic representation of the copy of the
neural tree network contained in each processor in FIG. 14,
and of the data records passing through that tree;

FIG. 16 illustrates ApplyModel Master, a simplified
pseudo-code representation of the process run on a single
processor to control the ApplyModel process shown Sche
matically in FIG. 14;

FIG. 17 illustrates ApplyModel Slave, a simplified
pseudo-code representation of the process run on each of a
plurality of Separate processor nodes in the ApplyModel
process shown in FIGS. 14 and 15;

FIG. 18 is a schematic representation of the ApplyModel
proceSS when it is Supplied with un-partitioned data;

FIG. 19 is a schematic representation of the ApplyModel
proceSS when it is used in conjunction with another com
putational process which Supplies it with data that is already
partitioned;

FIG. 20 illustrates an alternate embodiment of the Apply
Model process in which the neural tree network includes
hidden-layer networks in its non-terminal nodes.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 1 shows one type of parallel computer system 50
which can be used to create an embodiment of the present
invention. In this System, each of eight processors 52 are
connected together through a high Speed computer network
54. Also connected to this computer network is a WorkSta
tion 56 which enables a user to control the system and to
receive Selective output from it. Each processor 52 includes
a central processing unit, or CPU, 58, which executes
instructions Stored in, and reads and writes data from and to,
the random access memory, or RAM 60. A network interface
62 performs the function of reading and writing data over the
network between processors. A disk interface 64 enables
each processor to read and write data to one or more hard
diskS 66 connected to each processor.

The computer programs and data Structures described in
the following application are Stored in one or more of the
random access memories 60 or hard disks 66, and are
executed or manipulated by one or more of the processors

5

15

25

35

40

45

50

55

60

65

6
CPUs. For example, in FIG. 1 the BuildModel Master
program code 89 and the neural tree network data Structure
70 are shown stored in the RAM 60 of the master processor
52A, and BuildModel Slave process 148 and the leaf node
neural network 75 are showed stored in the RAM of each
Slave processor 52. When Such programs and data Structures
are Stored in RAM or hard disk memory and are processed
by CPUs they convert the computing system 50 into a
System for performing the present invention's functions.

In FIG. 1, one of the processor nodes 52A is labeled a
“master'. The other of the processor nodes are labeled
“slave'. In the parallel processing Scheme used in a pre
ferred embodiment of the invention, certain computational
processes are best performed on one machine. Also there is
a benefit in having one machine tell the others what to do.
This one machine is called the Master, since it controls the
operation of other, Slave, processors. In the embodiment
shown in the figures, the master runs on a different machine
than any of the Slaves. In other embodiments, a Single
processor can act as both a master and a slave.

FIG. 2 illustrates BuildModel, a process of training a
neural tree network 70 used in one embodiment of the
present invention. The tree network 70 contains a plurality
of non-terminal nodes 72 and terminal, or leaf, nodes, each
of which is represented by a bin for data records 74 and a
hidden-layer neural network 75. Each non-terminal node
contains a two layer neural network 76. Each such two layer
network, itself, contains a layer of input nodes 78 and one
output node 80.
The non-terminal nodes of the tree are trained, and

records 82 of a training data set 84 are divided into leaf node
bins 74 on the master processor 52A. The training records
routed to each terminal, or leaf, node by the non-terminal
nodes of the tree are then used to train the hidden-layer
neural network associated with that leaf node. This training
process is performed on one of the Slave processors 52.

FIG. 3 illustrates BuildModel Master, a highly simpli
fied pseudo-code representation of the process which is run
on the master to build and train the tree's non-terminal nodes
and to Select which records should be associated with each
of the leaf node bins 74.

In this simplified description, BuildModel Master starts
with steps 90-96 which create the basic tree topology of the
neural network decision tree 70. Step 90 creates the largest
balanced binary tree topology which has a number of
temporary leaf nodes fitting within NoOfEndNets, the
desired number of leaf nodes specified by a user. This
balanced tree will have a number of leaf nodes correspond
ing to the largest full power of two which fits within
NoOfEndNets. In the example shown in FIG. 2, NoOfEnd
NetS has been Set to Seven, So there will be a separate leaf
node for each of the seven slave processors 52 shown in that
figure. In this example, Step 90 will create a tree having the
top three non-terminal nodes 72 shown in FIG. 2, starting
with the root node 72A. At this point the incomplete tree
topology will have room for four temporary leaf nodes, Since
four is the largest power of two fitting within Seven.

Next step 92 adds non-terminal nodes to the bottom level
of the nascent tree until there are NoOfEndNets leaf nodes.
In the example of FIG. 2, the bottom most three non
terminal nodes 72 are added in this step. This causes the total
number of leaf nodes 74 to equal seven, the desired number
indicated by the user.

Next step 94 associates a Record Ratio value equal to one
divided by NoOfEndNets with each leaf node 74. In our
example this causes a number of /7 to be associated with

5,909,681
7

each leaf node 74. This is done as part of an effort to ensure
that each leaf node 74 will have a substantially equal number
of records Supplied to it in the training process. Then Step 96
goes up the tree one level at a time, associating a Recor
dRatio value with each non-terminal node equal to the Sum
of the Record Ratios of that node's two child nodes. Once
this is done, each non-terminal node will know what percent
of the records Supplied to it are to be Supplied to each of its
two child nodes, based on the ratio of the RecordRatio
values of those two child nodes.

Next a step 98 Supplies all the records 82 of the training
set 84 to the root non-terminal node 72A of the tree. Once
this is done, a step 100 performs a loop for each horizontal
level of the tree. This is the basic loop in the training process,
and once it has been completed for all Such levels, all of the
tree's non-terminal nodes will have been trained and all of
the training records will have been routed to one of the leaf
node bins 74.

For each horizontal level of the tree containing non
terminal nodes, loop 100 performs a sub-loop for each
non-terminal node in that level. Each Such loop consists of
steps 104-120.

Step 104 selects from the N parameters of the training
records used in the non-terminal node networks, the
ParameterOfGreatestSpread, that is, that one of the N
parameters over which the training records Supplied to the
current node have the greatest Spread. The N parameters
used for Such purposes will normally comprise all of the I
Source fields to be used in training the leaf node hidden-layer
neural networkS 75, and perhaps also the Jone or more target
fields to be used on that training. For purposes of step 104,
Spread is best measured by a Statistical measurement of
Spread, Such as Standard deviation.

FIG. 4 illustrates three dimensions 128A-128C of the
N-dimensional space 130 defined by the N parameters 83
used in training the non-terminal nodes. The Set of N
parameters used by the non-terminal nodes can include
parameters integer and binary values, as well as real number
values. FIG. 4 shows the records 82 of the training set as data
points in that N-dimensional Space. In this example shown
in FIG. 4 the parameter 83A, that corresponding to the
Vertical axis 128C, has the greatest spread of values.

Once Step 104 has selected the ParameterOfGreat
estSpread for the current node, step 106 creates a two layer
neural network for it, with a separate input node for each of
the remaining N parameters to be used in training the
non-terminal nodes and one output node.
Then a step 108 repeatedly performs a training loop 109

until the node's network appears to have been properly
trained.

FIG. 5 provides a Schematic representation of the training
process. Each iteration of the training loop 109 performs a
step 110 for each training record 82 supplied to the current
node. This Step Supplies the values in each of the current
training records N parameters 83 to a corresponding input 76
of the non-terminal node's neural net. It also Supplies the
ParameterOfGreatestSpread 83A to the network's output 80.
It compares the generated value produced at the output node
in response the values Supplied to the inputs 76 to the value
Supplied to the output by the training record. It then modifies
the weight 132 associated with each input 76 so as to reduce
that difference, by using one of the well known Schemes for
training the weights of neural networks. FIG. 6 illustrates the
set of weights Wassociated with each of the inputs 76 as a
vector 134, having the form W., W., W., . . . W.

Normally the loop 108 stops training when either a certain
number of training loops have been exceeded or when the

15

25

35

40

45

50

55

60

65

8
reduction, between Successive training loops, in the Sum,
taken over each training cycle 109, of the differences
between generated and training record values for the output
80 drops below a given level.

FIG. 7 illustrates that once the current non-terminal
node's neural network has been trained by multiple itera
tions of the loop 108, the vector 134 defined by the net’s
weights will have a direction generally corresponding to the
direction of greatest spread of the distribution of records 82
in the N-dimensional space 130. It should be noted that this
vector will not be parallel to any parameter axis of the
N-dimensional Space, except in the unusual case in which
the axis of maximum spread of the node's training data is
also parallel to Such an axis.
Once the current non-terminal node's network has been

trained, a loop 112, comprised of sub-steps 114 and 116, is
performed for each record in the node's training data.

FIG. 8 schematically represents the loop 112 and the
functions of its sub-steps. For each of the records 82, step
114 applies the records N parameters 83 to the inputs 76 of
the node's network and step 116 uses the resulting value 138
produced at the net's output as a Score. It indexes the current
record in a ScoreList 140, ordered by such scores.

For purposes of step 114, the value of the output node 80
is just the Sum of each input times its associated weight.
There is no need to put that Sum through the Sigmoid
function. As a result, each Score 138 corresponds to perpen
dicular projection of each data point 82 onto the vector 134,
as shown in FIG. 9.
Once all the records have been ordered, based on their

outputs, step 118 selects a SplitPoint 139 in the ScoreList
130 having the same ratio of records scored above and below
it as the ratio between the Record Ratios of the current
non-terminal node's two child nodes. Moving this SplitPoint
up and down the ScoreList corresponds to translating a plane
of split 142, perpendicular to the vector 134, in a direction
parallel to that vector. As indicated schematically in FIG. 10,
once a Splitpoint is Selected, the corresponding plane of Split
142 will divide the distribution of data records supplied to
the node. It will do So in a manner that associates a desired
ratio of training records with each of the non-terminal
node's two child nodes.
Once step 118 has split the current node's training

records, Step 102 sends the training records on each side of
the SplitPoint to a respective one of the current node's two
child nodes.

It can be seen that each iteration of the loop 100 will cause
the non-terminal nodes to split the data space 130 of the
training records Supplied to it into SubspaceS 130A and
130B, as shown schematically in FIG. 10. As indicated in
FIG. 11, in the next iteration of loop 100, the process of
finding the vector of maximum spread shown in FIGS. 5-7
and projecting all of the data in a given portion of the data
Space onto that vector will be repeated for each Such
subspace 130A and 130B. As indicated in FIG. 12, this will
result in the sub-space 130A being divided into Sub-Sub
spaces 130AA and 130AB, and the Sub-space 130B being
divided into the sub-sub-spaces 130BA and 130BB. This
process of division and Sub-division will be repeated in each
horizontal layer of leaf nodes until the data Space has been
divided into a number of Sub-Space regions equal to to the
number of the tree's leaf nodes. Not only that, but when the
process is completed each leaf node bin 74 will end up
having approximately the same number of records.

Returning now to FIG. 3, once the loop 100 has been
completed for all of the tree's non-terminal nodes, the neural

5,909,681

network's associated with all of the tree's non-terminal
nodes will have been trained up and all of the training
records will have been distributed to the leaf node bin's 74.
At this point Step 122 creates a compressed representation of
the tree network. In this representation, each non-terminal
node's neural net is represented by its weight vector 134 and
its Split Point 139.

Once this is done, a loop 124 performs a step 126 for each
leaf node 74 in the tree. Step 126 distributes the set of
training records 82 routed to each such leaf node bin 74 to
a successive one of the slave processors 52 shown in FIG.
2. This can be done in a cyclical, or round robin manner, So
that if there are more leaf nodes than Slave processors, once
all the Slave processors have received the Set of training
records for a first leaf node, step 126 will start successively
distributing a Second Set of leaf node records to the Slave
processors, and So on. This is done to attempt to distribute
the computation of training leaf node neural nets relatively
evenly among the processors. It can be seen that the non
terminal nodes of the neural tree network function to parti
tion the data used by the Slave processors in training the
hidden-layer neural nets 75.

Once the record Set associated with each leaf node has
been distributed by the master processor to an associated
slave processor, step 128 of BuildModel Master causes
each of the slave processors to execute BuildModel Slave,
the Slave proceSS for using the Set of training records
asSociated with each leaf node to train that node's associated
hidden-layer neural network.

Once the master instructs the Slaves to train the leaf node
neural networks, it waits in step 130 for each such slave to
Send back a compressed representation of the neural net
Works it has trained. The master then attaches each Such
compressed leaf node network to the place corresponding to
its leaf node in the compressed tree representation formed by
step 122. Once this has been done for all of the leaf nodes,
a compressed representation of the fill, trained neural tree
network will have been completed. Once step 131 has stored
this complete tree network on hard disk, the BuildModel
Master process will be complete, and will Stop execution.

FIG. 13 illustrates BuildModel Slave 148, a highly sim
plified pseudo-code representation of the proceSS which is
run on each of the Slave processor's to train the tree's leaf
node neural networks. A separate instance of this process is
run for each leaf node which has been associated with a
given slave processor.

Each instance of BuildModel Slave starts with step 150,
which creates a hidden-layer neural network 75, indicated
schematically in FIG. 2, for its associated leaf node. This
network has an input for each of I Source fields, and an
output for each of J target fields, where the integer values I
and Jhave been previously specified by a user of the System,
and where at least the I fields are included in the N
parameters used to train the non-terminal nodes. The neural
network will also include a hidden layer which contain a
number of nodes Specified by the user.

Once the leaf node's neural network has been created, a
loop 151 causes a training loop 152 to be repeated until the
percentage change in the Sum of the differences between
generated and actual outputs between training loops is below
a given level. The expanded view of the leaf node net shown
in the lower right hand corner of FIG. 2 schematically
represents this training process. In each iteration of the
training loop 152, a step 154 uses each record in the leaf
node's training Set to train the leaf node's neural network. AS
indicated in FIG. 2, during training each record has each of

15

25

35

40

45

50

55

60

65

10
its I source field 83' connected to a corresponding one of the
network's inputs and each of its J target fields 83" connected
to a corresponding one of the networks outputs. The dif
ference between the value generated at the network's J
outputs and the training records values for the correspond
ing J target fields is used to train the network's weights, Such
as by backpropagation or any other method for training
hidden-layer neural networks.
Once loop 151 has determined that the neural network has

undergone enough training loops to be properly trained, Step
156 creates a compressed representation of the leaf node's
neural net. This compressed representation consists of a
matrix for the input layer having a row for each hidden-layer
node and a column for each input layer node. Each entry in
the matrix contains the weight value of the connection
between its corresponding input and hidden-layer nodes.
The compressed representation also includes a correspond
ing matrix having a row for each output node and a column
for each hidden-layer node. Where there is only one output
node, this matrix will reduce to a vector.
Once a compressed representation has been made for the

leaf node's trained hidden-layer neural network, that com
pressed representation is sent back to the master processor
So that it can be put into its proper place on the complete
neural tree network, as described above with regard to Step
130 of FIG. 3. Once this has been done BuildModel Slave
is complete and its execution terminates.

Turning now to FIGS. 14-19, the ApplyModel process
will be described.

FIG. 14 is a Schematic graphical representation of the
overall ApplyModel process. In this process, a large apply
data set 160 is split into Sub-sets, or partitions, 162, if it is
not already So partitioned. Each Such partition is Supplied to
a separate slave processor 52, and each data record in that
partition is passed through a copy of the compressed neural
tree net 164 created by the BuildModel process which is
Stored on that processor.
The records 82 of the apply data set will normally include

all of the N parameters used as inputs to neural nets of the
non-terminal nodes. In Some instances they might not yet
have any values for the J target fields of the leaf node neural
networks, Since, in many instances, it is the purpose of the
neural tree network to predict the values in those fields
before actual values for those fields have been determined.
Often the apply database is huge, containing many millions
of records.

FIG. 16 illustrates ApplyModel Master 170, a simplified
pseudo-code representation of the proceSS run on the master
processor 52A to control the ApplyModel process shown
schematically in FIG. 14. In this simplified illustration this
process is shown including steps 172-178.

Step 172 tests to see if the apply data set has already been
partitioned, and, if not, it partitions it. Since each Slave
processor will have an identical copy of the compressed
neural tree network 164, it makes no difference into which
processor's partition a particular record is sent. Thus, any
partitioning Scheme, Such as a simple round-robin Scheme,
which distributes records between partitions in a roughly
equally manner, and which executes relatively quickly, will
work well for this purpose.

In the embodiment of the invention described, the Apply
Model proceSS is one of a Set of modular computing pro
cesses 180 which can be run on a parallel computer. If the
ApplyModel process 180A is being run without any preced
ing modular process, as shown Schematically in FIG. 18, or
with an immediately preceding modular process which does

5,909,681
11

not produce a separate partition for each of the processors to
be used in the ApplyModel process, the partitioning proceSS
182 which is part of the module 180A will have to partition
the apply data base, as indicated in Step 172.

If, on the other hand, the ApplyModel proceSS is being
performed immediately after a proceSS which has already
partitioned the apply data Set, then the partitioning proceSS
182 will merely pass through the previously made partitions.
An example of this is represented in FIG. 19, in which the
ApplyModel proceSS is shown following a preprocessing
process 180B, which is used to remove duplicate records and
to reduce the number of fields in each record to those
necessary for the ApplyModel process.

Returning now to FIG. 16, once step 172 has ensured the
apply data Set is partitioned, Step 174 distributes a copy of
the compressed complete neural tree network 164 to each
Slave processor node. Then Step 176 causes each processor
to run the ApplyModel Slave process 190 on its associated
data partition. Then step 178 receives all of the records
Selected by all of the leaf node neural networks running on
all of the Slave processors, and reports them to the user's
workstation 56 shown in FIG. 1. Once this is done the
ApplyModel Master proceSS is complete, and it terminates
execution.

FIG. 17 provides a highly simplified pseudo-code illus
tration of the ApplyModel Slave process 190. FIG. 15
illustrates this process graphically.

Loop 192 of ApplyModel Slave is performed for each
record 82" in the data partition Supplied to the individual
processor on which ApplyModel Slave is running. This
loop causes each record to be appropriately routed down
through the compressed neural tree 164. It starts with a step
194 which makes the root node 72A, the initial CurrentNode
for the current record. Then a loop 196, comprised of steps
198 and 200, is repeated until the record's Current node is
no longer a non-terminal node. Step 198 applies each of the
current records N parameter values to the corresponding
inputs of the node's two layer neural network. Then, depend
ing on whether or not the output of the neural network, as
determined by multiplying the vector formed by the input
fields of the current record by the nodes associated weight
vector, is above or below the node's SplitPoint 139, step 200
Selects one of the CurrentNode's two child nodes as the new
CurrentNode. Thus, the loop 196 routes a given record from
the root node all the way down to that one of the tree's leaf
nodes 75' corresponding to its associated portion of the
N-dimensional space defined in the BuildModel training
proceSS.

Once the current record has reached a given leaf node,
step 202 applies the records I source fields, to the inputs of
the leaf node's hidden-layer neural network. Then step 204
classifies the record depending upon the output of that neural
network, normally treating the record as a Selected record
82" if the leaf node networks output for it is above a
threshold value 208, and discarding the record if it is not. In
other embodiments of the invention the estimated values
produced at the outputs of a leaf node's neural network for
each record are recorded in that records target fields, and
Saved as part of the record for later use. Such later use can
include Statistical or data base analysis of the estimated
fields of the apply data Set.

Once the loop 192 has routed each record to the appro
priate leaf node net and caused that leaf node net to classify
the record, step 206 sends the results of the classification to
the master processor, and execution of ApplyModel Slave
terminates.

15

25

35

40

45

50

55

60

65

12
The neural tree network produced by the above method

has the advantage of performing better analysis for a given
level of computation than prior neural networks or prior
neural tree networks. By dividing the N-dimensional data
Space into Sub-Spaces and using each Such Sub-Space to train
a separate end-node hidden-layer neural network, the dis
tribution of training Samples fed to each Such end net are
much more similar. This results in three advantages: 1) it
takes fewer hidden-layer nodes to accurately model the data
Supplied to each network: 2) it takes fewer training cycles to
train each hidden-layer networks; and 3) each training cycle
has fewer training records. Each of these three factorS alone
results in computational Savings. Their combination results
in a much greater one.

FIG. 20 illustrates another embodiment of invention
which is similar to that described above with regard to FIGS.
1-19, except that the non-terminal nodes 72" of its neural
tree network 70" contain hidden-layer neural networks 76",
instead of two layer networks 76 shown in FIG. 2.
AS is indicated in the expanded view of the non-terminal

node 72" shown in the right upper corner of FIG. 20, the
training of Such non-terminal nets in the embodiment of
FIG. 20 is very similar to that used in the embodiment of
FIG. 2. During the training loop 108" and 109", which
corresponds to the training loop 108 and 109 shown in FIGS.
2 and 3, the hidden-layer net is trained in the same manner
as stated in step 110 of FIG. 3, that is, by applying each of
the N parameters of each training record to the net’s inputs
and supplying the ParameterOfGreatestSpread to the net’s
output and using a training algorithm to modify the net’s
weights to reduce the difference. The only difference is that
the application of the training algorithm has to update more
weights, since there is a hidden layer.
The selection of which records are sent to each child node

of a given non-terminal node 72" is basically the same as
that described above with regard to steps 112-120 of FIG. 3.
The training records to be Supplied to the non-terminal node
are ordered on a ScoreList 140 in terms of their correspond
ing outputs on the neural net once it has been trained. A
SplitPoint 139 is chosen on the ScoreList such that there is
a desired ratio of records above and below it. And the
records above the SplitPoint are sent to one child node and
those below it are sent to the other.

The use of such hidden-layer neural networks has the
effect of recursively splitting the N-dimensional Space
defined by the records of the training Set into Sub-Spaces, as
does the embodiment of the invention using two layer nets.
The difference is that the boundaries of the sub-spaces
created with hidden-layer nets in the non-terminal tree nodes
of FIG. 20 are curved in N-dimensional space, allowing for
a division of records between leaf nodes which is more
likely to group together into a common leaf node records
which are Similar for purposes of the analysis task. This
further improves the accuracy of the neural tree network's
analysis.

It should be understood that the foregoing description and
drawings are given merely to explain and illustrate the
invention and that the invention is not limited thereto, except
insofar as the interpretation of the appended claims are So
limited. Those skilled in the art who have the disclosure
before them will be able to make modifications and varia
tions therein without departing from the Scope of the inven
tion.

For example, the functions or devices for performing
them, described in the claims below can be realized by many
different programming and data Structures, and by using

5,909,681
13

different organization and Sequencing. This is because pro
gramming is an extremely flexible art form in which a given
idea of any complexity, once understood by those skilled in
the art, can be manifested in a virtually unlimited number of
ways.

Furthermore, it should be understood that the invention of
the present application, as broadly claimed, is not limited to
use with any one type of operating System or computer
hardware. For example, many of the functions shown being
performed in Software in the Specification could be per
formed in hardware in other embodiments, and vica Versa.

Similarly, the neural tree network processes described
above could all be run on one processor. Or if run on
multiple processors, they could be run on multiple proces
sors of many different kinds, including SMP, or symmetric
multi-processing Systems; massively parallel Systems simi
lar to that in FIG. 1 but having many more processors, or
more loosely coupled networks of computers, Such as net
Works of computer WorkStations.

Similarly, many embodiments of the invention will not
use the master and Slave paradigm described above.
Furthermore, in many embodiments of the invention the
tasks described above as being performed on only one
processor could be run on multiple processors. For example,
the task of training non-terminal nodes and using them to
partition data for the training of leaf node neural networks
should be parallelized if it will significantly increase the
speed with which the tree can be built and trained. This
would be the case if the number of non-terminal nodes
becomes very large, or if the amount of computation asso
ciated with training each of them becomes large. For
example, when the non-terminal nodes have hidden layers,
as in FIG. 20, parallelization will tend to be more appropri
ate.

It should be understood that in embodiments of the
invention running on Symmetric multiprocessing, or SMP,
Systems there will be no need to Store a separate copy of the
neural network tree for each processor, Since all the proces
Sors will share a common memory, and there will be no need
for one processor to transfer the records associated with a
given leaf node to the processor which is going to train that
leaf node, since they will be distributed to the processor that
is going to train their associated leaf node when that fetches
them from memory, itself.

It should also be understood that, in Some embodiments of
the invention, neural tree networks similar to those shown in
FIGS. 2 and 20 can be used to partition data for multiple
processors which are using the data for purposes other than
training hidden-layer neural networks. For example, Such
neural network trees can be used to partition data for parallel
processors performing other types of modeling or analysis
techniques, Such as multi-dimensional Statistical modeling,
Kohonen networks, and discrimination trees. Similarly in
Some embodiments of the invention, the decision tree part of
the entire neural tree network is replaced by another type of
analytical classification algorithm, Such as a Kohonen
network, and the Subsets of training data or apply data
created by Such a Kohonen network would be Supplied to
hidden layer neural networks. When used in a parallel
environment the Kohonen network could be used to partition
a training Set into Subsets, each representing classes of
record.

In other embodiments of the invention, a neural tree
network of the type shown in FIGS. 2 and 20 could be
applied in a proceSS Similar to that shown in FIG. 14, except
that the partitioner 182, shown in FIG. 18, associated with

15

25

35

40

45

50

55

60

65

14
the Apply Model object would pass records through the
compressed representation of the decision tree part of the
neural tree network, and the individual parallel processors
receiving a partition of data Set record Sent to it by the tree
partitioner would pass those records through the compressed
representation of the corresponding hidden layer neural
network. In Such an embodiment, the decision tree parti
tioner would decide which of the processors executing the
hidden layer neural networks a given record should be sent
to, based on which of the decision tree's leaf nodes the
record is routed to. If the System is running more than one
hidden layer neural network on any processor node, the
partitioner must label records Sent to Such nodes, indicating
which leaf node the record has been associated with.

One alternate embodiment of the hybrid tree network
described in the above Specification is described in a patent
application (the “sibling patent”) entitled "Apparatus And
Methods For Programming Parallel Computers' filed on the
Same day as this patent application, on behalf of the intended
assignee of the present application. This sibling patent,
which has as named inventors, Michael J. Beckerle, James
Richard Burns, Jerry L. Callen, Jeffrey D. Ives, Robert L.
Krawitz, Daniel L. Leary, Steven Rosenthal, and Edward S.
A. Zyszkowski, and having Ser. No. 08/627,801, filed Mar.
25, 1996, and is hereby incorporated herein by reference in
its entirety.
What we claim is:
1. A computer System comprising:
P processors, where P is an integer greater than one;
means for receiving a data Set of data objects having N

parameters, where N is an integer greater than one;
means for dividing an N-dimensional data Space having a

Separate dimension of each of Said N parameters into M
Sub-Spaces, each corresponding to a region of Said
N-dimensional Space, where M is an integer greater
than or equal to P. So each of Said data Set's data objects
is located in one of Said M Sub-Spaces, Said means for
dividing including means for dividing Said Space along
boundaries which are non-Orthogonal to Said N dimen
Sions, and

means for associating different ones of Said Sub-Spaces
with different ones of Said processors, Such that each of
said P processors has a different set of one or more of
Said Sub-Spaces associated with it, including:
means for distributing the Sub-set of data objects

located in each Sub-Space to the processor associated
with that Sub-Space; and

means for causing each processor to perform a com
putational proceSS on each of the data objects So
distributed to Said processor.

2. A computer System comprising:
P parallel processors, where P is greater than one;
means for receiving a first data Set of data objects to be

processed;
d-tree means including:
means for Storing a decision tree data Structure having

a plurality of non-terminal nodes, including a root
node, and terminal nodes, wherein each of Said
non-terminal nodes has a plurality of child nodes,
each of which is either one of Said non-terminal or
terminal nodes,

means for Storing a trainable decision criterion for each
of Said non-terminal nodes, and

means for training Said decision tree including:
means for Supplying a Second Set of Said data objects

to Said root node as a training Set, wherein Said

5,909,681
15

Second Set can either be equal to or different than
Said first Set, and

means for performing the following operation for
each given non-terminal node in Said tree;
causing each given non-terminal node to use

those of Said training Set data objects Supplied
to it to train Said given node's decision crite
rion; and

Supplying each training Set data object Supplied
to the given node to one of the given node's
child nodes based on the application of the
given node's decision criteria to the data
object, once the given node's decision criteria
has been trained; and

means for using Said decision tree to partition Said first
data Set into at least M data Sub-sets, where M is equal
or greater than P;

means for associating a different Set of one or more of Said
data Sub-sets with each of Said P processors,

means for distributing the data objects in each data Sub-set
to the processor associated with that Sub-Set, and

means for causing each of Said processors to perform a
computational proceSS on each of Said data objects So
distributed to the processor.

3. A computer System as in claim 2 wherein Said d-tree
means performs the process of partitioning Said first data Set
on less than one half the P processors when P is more than
2.

4. A computer System as in claim 2 wherein Said training
data Set is a Sub-set of Said first data Set.

5. A computer System as in claim 2 wherein Said decision
criterion associated with one or more of Said non-terminal
nodes is a neural network.

6. A computer System comprising:
P parallel processors, where P is greater than one;
means for receiving a first data set of data objects to be

processed;
d-tree means for using a decision tree to partition Said first

data Set into at least M data Sub-sets, where M is equal
or greater than P;

means for associating a different Set of one or more of Said
data Sub-sets with each of Said P processors,

means for distributing the data objects in each data Sub-set
to the processor associated with that Sub-Set, and

means for causing each of Said processors to perform a
computational proceSS on each of Said data objects So
distributed to the processor;

wherein Said d-tree means includes:
means for Storing a decision tree data structure having

a plurality of non-terminal nodes, including a root
node, and terminal nodes, wherein each of Said
non-terminal nodes has a plurality of child nodes,
each of which is either one of Said non-terminal or
terminal nodes,

means for Storing a trainable decision criterion for each
of Said non-terminal nodes, and

means for training Said decision tree including:
means for Supplying a Second Set of Said data objects

to Said root node as a training Set, wherein Said
Second Set can either be equal to or different than
Said first Set, and

means for performing the following operation for
each given non-terminal node in Said tree;
causing each given non-terminal node to use

those of Said training Set data objects Supplied
to it to train Said given node's decision crite
r1On,

15

25

35

40

45

50

55

60

65

16
Supplying each training Set data object Supplied

to the given node to one of the given node's
child nodes based on the application of the
given node's decision criteria to the data
object, once the given node's decision criteria
has been trained; and

wherein the decision criterion associated with one or more
of Said non-terminal nodes is a neural network and the
decision criterion associated with at least one of Said
non-terminal node has a hidden layer.

7. A computer System as in claim 2 wherein the d-tree
means further includes means for automatically Setting the
decision criteria of individual non-terminal nodes of the
decision tree So as to achieve a desired ratio between the
number of data objects Supplied to each Such node's child
nodes.

8. A computer System comprising:
P parallel processors, where P is greater than one;
means for receiving a first data Set of data objects to be

processed;
d-tree means for using a decision tree to partition Said first

data Set into at least M data Sub-sets, where M is equal
or greater than P;

means for associating a different Set of one or more of Said
data Sub-sets with each of Said P processors,

means for distributing the data objects in each data Sub-set
to the processor associated with that Sub-Set, and

means for causing each of Said processors to perform a
computational proceSS on each of Said data objects So
distributed to the processor,

wherein Said d-tree means includes:
means for Storing a decision tree data Structure having

a plurality of non-terminal nodes, including a root
node, and terminal nodes, wherein each of Said
non-terminal nodes has a plurality of child nodes,
each of which is either one of Said non-terminal or
terminal nodes,

means for Storing a trainable decision criterion for each
of Said non-terminal nodes,

means for training Said decision tree including:
means for Supplying a Second Set of Said data objects

to Said root node as a training Set, wherein Said
Second Set can either be equal to or different than
Said first Set, and

means for performing the following operation for
each given non-terminal node in Said tree;
causing each given non-terminal node to use

those of Said training Set data objects Supplied
to it to train Said given node's decision crite
rion;

Supplying each training Set data object Supplied
to the given node to one of the given node's
child nodes based on the application of the
given node's decision criteria to the data
object, once the given node's decision criteria
has been trained; and

means for automatically Setting the decision criteria of
individual non-terminal nodes of the decision tree So
as to achieve a desired ratio between the number of
data objects Supplied to each Such node's child
nodes, and

means for automatically configuring the decision tree
used so that it has P times I end nodes, where I is an
integer, each of which end nodes defines one of Said
data Sub-sets.

5,909,681
17

9. A computer System comprising:
means for receiving a data Set of data objects having N

parameters associated with them, where N is an integer
greater than one,

means for dividing an N-dimensional data Space having a
Separate dimension for each of Said N parameters into
M Sub-Spaces, each corresponding to a region of Said
N-dimensional Space, where M is an integer greater
than one, So each of Said data Set's data objects is
located in one of Said M Sub-Spaces,

means for representing each of M hidden layer neural
networks,

means for associating each of the M Sub-Spaces with one
of Said M neural networks; and

means for using the data objects in each of Said M
Sub-Spaces to train that Sub-Space's associated hidden
layer neural network.

10. A computer system as in claim 9 wherein said means
for dividing including means for dividing Said Space along
boundaries which are non-Orthogonal to Said N dimensions.

11. A computerized method including:
receiving a first data Set comprised of a plurality of data

objects, and
creating a decision tree data Structure having a plurality of

non-terminal nodes, including a root node, and terminal
nodes, wherein each of Said non-terminal nodes has a
plurality of child nodes, each of which is either one of
Said non-terminal or terminal nodes, Said creating of a
decision tree including:
creating for each non-terminal node a neural network;
creating for each terminal node a neural network con

taining at least one hidden layer;
Supplying a Second data Set of data objects to Said root

node as a training Set, wherein Said Second data Set
can either be equal to or different than Said first data
Set,

performing the following operation for each given
non-terminal node in Said tree;
using the training Set data objects Supplied to the

given non-terminal node to train the given node's
neural network, and

Supplying each data object of Said first and Second
data Sets Supplied to the given node to one of the
given node's child nodes based on the output of
the given node's neural network for the data
object, once the given node's neural net has been
trained; and

using Said data objects of the first data Set Supplied to
a given terminal node to train the given terminal
node's hidden layer neural network.

12. A computerized method as in claim 11 wherein:
the data objects have N parameters associated with them,
where N is an integer greater than one;

Said using of training Set data objects Supplied to the given
non-terminal node includes using Said data objects to
train the given non-terminal node's neural network to
develop Spatial criteria for dividing an N-dimensional
data Space having a separate dimension for each of Said
N parameters into a separate Sub-Space for each of the
given non-terminal node's child nodes, each of which
Sub-Spaces corresponds to a region of Said
N-dimensional Space, So that each of Said data objects
Supplied to the given node is located in one of Said
Sub-Spaces, and

Said Supplying of data objects to a one of a given node's
child nodes is based on the given node's neural net

15

25

35

40

45

50

55

60

65

18
work's Spatial criteria, Such that data objects from
different Sub-Spaces of Said N-dimensional Space are
Supplied to different ones of the given node's child
nodes.

13. A computerized method including:
receiving a first data Set comprised of a plurality of data

objects, and
creating a decision tree data Structure having a plurality of

non-terminal nodes, including a root node, and terminal
nodes, wherein each of Said non-terminal nodes has a
plurality of child nodes, each of which is either one of
Said non-terminal or terminal nodes, Said creating of a
decision tree including:
creating for each non-terminal node a neural network;
creating for each terminal node a neural network con

taining at least one hidden layer;
Supplying a Second data Set of data objects to Said root

node as a training Set, wherein Said Second data Set
can either be equal to or different than Said first data
Set,

performing the following operation for each given
non-terminal node in Said tree;
using the training Set data objects Supplied to the

given non-terminal node to train the given node's
neural network, and

Supplying each data object of Said first and Second
data Sets Supplied to the given node to one of the
given node's child nodes based on the output of
the given node's neural network for the data
object, once the given node's neural net has been
trained; and

using Said data objects of the first data Set Supplied to
a given terminal node to train the given terminal
node's hidden layer neural network; wherein:

the data objects have N parameters associated with
them, where N is an integer greater than one;

Said using of training Set data objects Supplied to the
given non-terminal node includes using Said data
objects to train the given non-terminal node's neural
network to develop spatial criteria for dividing an
N-dimensional data Space having a separate dimen
Sion for each of Said N parameters into a separate
Sub-Space for each of the given non-terminal node's
child nodes, each of which Sub-Spaces corresponds
to a region of Said N-dimensional Space, So that each
of Said data objects Supplied to the given node is
located in one of Said Sub-Spaces,

Said Supplying of data objects to a one of a given node's
child nodes is based on the given node's neural
network's Spatial criteria, Such that data objects from
different Sub-Spaces of Said N-dimensional Space are
Supplied to different ones of the given node's child
nodes;

Said creating of a neural network for each non-terminal
node includes creating a two layer neural network for
Such a non-terminal node, each of which has a
plurality of inputs, no hidden layers, an output, and
a Series of weights between each input and Said
output, which weights define a vector in Said
N-dimensional Space; and

Said Supplying of each given one of a plurality of
training Set data objects to one of a given non
terminal node's child nodes is based on which side of
an N-dimensional plan perpendicular to Said vector
in Said N-dimensional Space that a given data object
is located.

14. A computerized method as in claim 11 wherein said
using of training Set data objects Supplied to a given terminal

5,909,681
19

node includes using Such data objects Supplied to each of a
plurality of Said terminal nodes to train Said terminal node's
asSociated hidden layer neural network on a different par
allel processor.

15. A computerized method including:
receiving a first data Set comprised of a plurality of data

objects, and
creating a decision tree data Structure having a plurality of

non-terminal nodes, including a root node, and terminal
nodes, wherein each of Said non-terminal nodes has a
plurality of child nodes, each of which is either one of
Said non-terminal or terminal nodes, Said creating of a
decision tree including:
creating for each non-terminal node a neural network;
creating for each terminal node a neural network con

taining at least one hidden layer;
Supplying a Second data set of a data objects to Said root

node as a training Set, wherein Said Second data Set
can either be equal to or different than Said first data
Set, and

performing the following operation for each given
non-terminal node in Said tree;
using the training Set data objects Supplied to the

given non-terminal node to train the given node's
neural network, and

Supplying each data object of Said first and Second
data Sets Supplied to the given node to one of the
given node's child nodes based on the output of
the given node's neural network for the data
object, once the given node's neural net has been
trained;

using Said data objects of the first data Set Supplied to
a given terminal node to train the given terminal
node's hidden layer neural network, including using
Such data objects Supplied to each of a plurality of
Said terminal nodes to train Said terminal node's
asSociated hidden layer neural network on a different
parallel processor,

Storing a copy of Said decision tree, including the neural
networks in its non-terminal and terminal nodes on
each of a plurality of processors,

dividing a set of data objects not in Said training Set into
a plurality of data partitions, for each of Said proces
Sors, and

passing the data objects in each given processor's asso
ciated partition down the copy of the decision tree
Stored on the given processor, So each given one of Said
processor's associated data objects is routed by the
neural network in each of a Succession of one or more
non-terminal nodes to a respective child node, until the
given data object is routed to a given terminal node in
the processor's copy of the tree, after which the hidden
layer neural network associated with Said given termi
nal node is used to analyze the given data object.

16. A computerized method as in claim 11 wherein one or
more of Said non-terminal node's neural networks have
hidden layers.

17. A computerized method including:
receiving a data Set comprised of a plurality of data

objects, and
creating a decision tree data Structure having a plurality of

non-terminal nodes, including a root node, and terminal
nodes, wherein each of Said non-terminal nodes has a
plurality of child nodes, each of which is either one of
Said non-terminal or terminal nodes, Said creating of a
decision tree including:

1O

15

25

35

40

45

50

55

60

65

20
creating for each non-terminal node a neural network,

at least Some of which include hidden layers,
creating for each terminal node a neural network;
Supplying a plurality of Said data objects to Said root

node as a training Set, and
performing the following operation for each given

non-terminal node in Said tree;
using the training Set data objects Supplied to the

given non-terminal node to train given node's
neural network, and

Supplying each training Set data object Supplied to
the given node to one of the given node's child
nodes based on the output of the given node's
neural network for the data object, once the neural
net has been trained.

18. A computer System including:
means for Storing a representation of a neural network

capable of calculating the values of J output parameters
given the value of I input parameters, where I is an
integer greater than one and J is an integer greater than
Zero,

means for receiving a data Set comprised of a plurality of
data objects, Said data Set having N parameters, where
N is an integer equal to or greater than I and where the
N parameters include at least the I parameters, and

means for associating a Score, from a one dimensional
range of values, with each given one of Said data
objects as a function of the values of the one or more
J parameters calculated by Said neural network for the
values of Said given data object's I parameters,
means for Selecting a continuous range of Said Scores

having a predetermined percent of the data objects
asSociated with Said range, and

means for Selecting the Set of data objects associated
with Said Selected range.

19. A computerized method including:
receiving a data Set comprised of a plurality of data

objects, each of which includes a corresponding Set of
parameters, and

creating a decision tree data Structure having a plurality of
non-terminal nodes, including a root node, and terminal
nodes, wherein each of Said non-terminal nodes has a
plurality of child nodes, each of which is either one of
Said non-terminal or terminal nodes, Said creating of a
decision tree including:
creating for each non-terminal node a neural network,

having a set of input nodes, a Set of one or more
output nodes, and a set of weights determining which
values will be produced at each output node when a
given Set of parameter values are Supplied to the
network's input nodes,

Supplying a plurality of Said data objects to Said root
node as a training Set, and

performing the following operation for each given
non-terminal node in Said tree;
using the training Set data objects Supplied to the

given non-terminal node to train the given node's
neural network by applying, for each data object,
to each of the neural network's input nodes the
value from a corresponding input Subset of Said
data objects associated parameters, and using the
difference between the resulting Set of values
produced at the neural networks one or more
output nodes and the values of a corresponding
output Subset of Said data object's parameters to
update the neural network's weights So as to

5,909,681
21

reduce that difference; wherein Said training
includes Selecting for each given non-terminal
node which of the parameters associated with the
data objects Supplied to the given non-terminal
node are to be as Said output Subset as a function
of the data objects Supplied to that node, and

Supplying each data object Supplied to the given
node to one of the given node's child nodes based
on the output of the given node's neural network
for the data object, once the given node's neural
net has been trained.

20. A computer-implemented method for parallel process
ing of data, comprising:

determining from the data at least one principle axis of the
data;

partitioning the data into a plurality of convex Sets of data
alone at least one plane orthogonal to each determined
principle axis of the data corresponding to a number of
processors, and

5

15

22
in parallel, processing the convex Sets of data using a

plurality of analytic models on the processors, wherein
each processor receives one of the convex sets of data
and uses one of the plurality of analytical models.

21. A computer System method for parallel processing of
a data, comprising:
means for determining from the data at least one principle

axis of the data;
means for partitioning the data into a plurality of convex

Sets of data along at least one plane orthogonal to each
determined principle axis of the data corresponding to
a number of processors, and

for processing the convex Sets of data using a plurality of
analytical models in parallel on the plurality of
processors, wherein each processor receives one of the
convex Sets of data and uses of the plurality of ana
lytical models.

