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57 ABSTRACT 

A computer System splits a data Space to partition data 
between processors or processes. The data Space may be 
Split into Sub-regions which need not be orthogonal to the 
axes defined by the data Space's parameters, using a decision 
tree. The decision tree can have neural networks in each of 
its non-terminal nodes that are trained on, and are used to 
partition, training data. Each terminal, or leaf, node can have 
a hidden layer neural network trained on the training data 
that reaches the terminal node. The training of the non 
terminal nodes neural networks can be performed on one 
processor and the training of the leaf nodes neural networks 
can be run on Separate processors. Different target values 
can be used for the training of the networks of different 
non-terminal nodes. The non-terminal node networks may 
be hidden layer neural networks. Each non-terminal node 
automatically may send a desired ratio of the training 
records it receives to each of its child nodes, So the leaf node 
networks each receives approximately the same number of 
training records. The System may automatically configures 
the tree to have a number of leaf nodes equal to the number 
of Separate processors available to train leaf node networkS. 
After the non-terminal and leaf node networks have been 
trained, the records of a large data base can be passed 
through the tree for classification or for estimation of certain 
parameter values. 

21 Claims, 8 Drawing Sheets 
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-BuildModel Master-89 
-make largest full binary tree having NoOfEndNets or less end nodes-90 
-add non-terminal nodes to lowest level until have NoOfEndNets end nodes-92 
-associate a RecordRatio of 1/NoOfEndNets with each end node-94 
-associate with each non-terminal node a Recordratio equal to the sum of the 
RecordRatios of its child nodes-96 
-supply a set of training records to rootnode-98 
-for each level of tree having non-terminal nodes, starting from the root down-100 

-for each non-terminal node in level-102 
-from a set of N record parameters, find the ParameterOfGreatest 
Spread taken over all record supplied to the tree node-104 
-Create a two level neural network having an input for each of the N 
record parameters and having one output-106 
-until training Converges-108 

-for each training record supplied to the tree node-109 
-train the Weights of the node's network's, appling the 
record's N parameters to the inputs of the net, and 
the record's ParameterOfCreatestSpread to its 
ouput-110 

-once the tree node's network has been trained, for each training 
record passed to the node-112 

-re-apply the record's N parameters to the network's 
inputs-114 
-order the record in a ScoreList by the value of net's output-116 

-Selecta Splitpoint such that the ratio of records above and below 
Splitpoint in ScoreList eduals the ratio between the RecordRatios of 
the node's two child nodes-118 
-send all records above Splitpoint to one child node, and all of those 
below to the other child node-120 

-Create a Compressed representation of the d-tree, including of the Weight vector and 
SplitPoint of each non-terminan node's neural net-122 
-for each successive one of the tree's end nodes-124 

-cyclically distribute the set of records supplied to that end node to a 
successive One of NOOfProcessors separate processors-126 

-have each of the NoOfPrOCeSSOrprOCeSSOrS execute BuildModel Slave for each set 
of end node records destributed to it-128 
-Once have received Compressed representations of the EndNet for each of the d 
tree's end nodes, append the Compressed representation of each such EndNet to its 
appropriate place in the Compressed d-tree representation, to Create a Compressed 
representation of the complete tree network-130 
-store compressed complete tree on disk-131 

FIG. 3 
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-BuildModel Slaver-148 
-Create EndNet, a hidden layer neural network, for the set of end node records having 
Specified list of input and JOutput parameters from the set of N parameters used in 
the d-tree-150 
-until training converges-151 

-for each record in the end node set-152 
-use the record to train the EndNet, appling the values of its and J 
parameters, respectively, to the EndNet's input and outputs.-154 

-Create a compressed representation of the EndNet-156 
-send the compressed representation to the Master processor-158 

FIG. 13 

ApplyModel Master-170 
-if the y data set has not previously been partioned into NoOfProcessors partions, 
do SOr 
-distribute a Copy of the Compressed complete tree network to each of the 
NoOfProcessor processors-174 
-CauSe each Such proCeSSOr to run ApplyModel Slave On its associated partion of the 
main data set-176 
-Once receive classification results from such processors, report them-178 

FIG. 16 

-ApplyModel Slave-190 
-for each record in processor's partion of the main data set-192 

-make the root of the Compressed Complete tree network the 
Currentnode-194 
-until the Currentnode is no longer a non-terminal node-196 

-multiply record's N parameters by the CurrentNode's associated 
weight vector to produce a network output value-198 
-Select One of the CurrentMode's two child nodes the new 
CurrentNode, depending On whether the node's network Output value 
for the record is greater than or less than the node's Splitpoint-200 

-apply the record's input parameters to the CurrentMode's Compressed 
EndNet-202 
-classify the record based on the value of the JOutputs of the EndNet, 
according to specified classification scheme-204 

-send specified results of classification to Master-206 

FIG. 17 
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COMPUTER SYSTEMAND COMPUTERIZED 
METHOD FOR PARTITIONING DATA FOR 

PARALLEL PROCESSING 

FIELD OF THE INVENTION 

The present invention relates to computer Systems for 
analyzing, and computing with, Sets of data, Such as, for 
example, extremely large data Sets. 

BACKGROUND OF THE INVENTION 

AS computing power has grown, it has become increas 
ingly practical to proceSS data, and, in particular, large 
amounts of data, in new and useful ways. For example, the 
term “data base mining” has been used to describe the 
practice of Searching vast amounts of data for commercially, 
medically, or otherwise important patterns, patterns which 
would probably have been impossible to find by human 
pattern matching, and which probably would have taken too 
long to have found with prior generations of computer 
equipment. 

For example, one common use of database mining is for 
corporations to Search through databases containing records 
of millions of customers or potential customers, looking for 
data patterns indicating which of those customers are Suf 
ficiently likely to buy a given product to justify the cost of 
Selecting them as targets of a direct marketing campaign. In 
Such Searches, not only are millions of records Searched, but 
hundreds, or even thousands of fields within each record. 
Such database mining has proven much more Successful in 
Selecting which customers are most likely to be interested in 
a given new product than prior methods. 

Similarly, data base mining can be used for Scanning vast 
numbers of medical records to look for subtle patterns 
asSociated with disease; for Scanning large numbers of 
financial transactions to look for behavior likely to be 
fraudulent, or to study Scientific records to look for new 
casual relationships. 

Because they often involve a tremendous number of 
records, and are often Seeking patterns between a large 
number of fields per record, data base mining operations 
tend to require huge amounts of computation. This, in 
combination with the fact that most data base mining 
operations can be easily partitioned to run on Separate 
processors, has made database mining one of the first major 
commercial uses of massively parallel computers. But even 
when run on most commercially available parallel Systems 
many database mining functions are relatively slow because 
of their tremendous complexity. Therefore there is a need to 
improve the Speed at which Such tasks can be performed. 

Neural nets are a well known device for automatically 
Selecting which patterns of values in certain Source fields of 
records are likely to be associated with desired values in one 
or more target fields. A neural network normally includes an 
input layer comprised of a plurality of input nodes, an output 
layer of one or more output nodes, and, in hidden-layer 
networks, one or more So-called hidden layers, each com 
prised of one or more nodes. Hidden layers are hidden in the 
Sense that they do not connect directly to any inputs or 
outputs. 

The knowledge in a neural net is contained in its weights. 
Each node in the input layer or hidden layer contains a 
weight associated with its connection with each node in the 
next layer. Thus, in a typical hidden-layer network, each 
node in the input layer has a separate weight for its con 
nection to each node in the hidden layer, and each node in 
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2 
the hidden layer has a Separate weight for its connection to 
each node in the output layer. The value Supplied to each 
given node in a given layer is Supplied to each individual 
node in the Successive layer, multiplied by the weight 
representing the connection between the given node and the 
individual node in the Successive layer. Each node receiving 
Such values generates an output, which is a function of the 
Sum of the values Supplied it. Usually the output is a 
non-linear function of the Sum of values Supplied to the 
node, Such as a Sigmoid function. The Sigmoid function has 
the effect of making the output operate like an on-off Switch 
whose output varies rapidly from a substantially “off” value 
to a substantially “on” value as the sum of the values 
Supplied to the node crosses a Small threshold region. 
A common way for training the weights of a neural 

network is to take each record in a training Set and apply the 
value of each of its Source fields to a corresponding input of 
the net. The network's weights are then modified to decrease 
the difference between the resulting values generated at the 
network's one or more outputs and the actual values for the 
outputs corresponding target fields in the record. There are 
a variety of well know methods for making Such weight 
modifications, including backprogation, conjugate gradient, 
and quick propagation. The training process is normally 
repeated multiple times for all the training records until the 
Sum of the difference between the generated and actual 
outputs approaches a relative minimum. 
One of the problems with neural nets is that the amount 

of time to appropriately train them to recognize all of the 
possible Source field patterns associated with desired target 
field values goes up very rapidly as the number of Source or 
target fields does, and as the number of different types of 
Source patterns which might be associated with a desired 
target does. Even with large parallel computer Systems the 
amount of time required to properly train Such networks to 
learn Such complex Sets of patterns is often prohibitive. 

In an attempt to improve the Speed at which neural 
networks can train, a new type of neural network has been 
proposed. These are So called neural tree networks. These 
are decision trees, a well known type of classifying tool, in 
which a neural network is placed at each of the network's 
non-terminal nodes. In Such trees, each non-terminal node is 
a two layer network, which trains much more rapidly than a 
hidden-layer network. The data applied to each non-terminal 
node is used to train up the node's neural net. This is done 
in a training proceSS which applies the Source fields used in 
the Overall classification process to the input nodes of the net 
and the one or more target fields used in that classification 
process to the output of the two layer net. Once the network 
has been trained over the training Set, the data objects are 
split between the node's child nodes based on whether the 
one or more Sigmoidal output of the trained net is “on” or 
“off” for each such data object. The data object reaching the 
tree's terminal, or leaf, nodes are considered classified by 
the identity of the particular leaf node they reached. 

Such neural tree networks have the advantage of training 
much more rapidly than traditional neural networks, par 
ticularly when dealing with large complex classification 
taskS. However, they are not as discriminating as might be 
desired. 

In general, a major issue in parallel computing is the 
division of the computational task So that a reasonable 
percentage of the computing power of multiple processor 
can be taken advantage of and So the analytical power of the 
process is as high as possible. This issue is particularly 
important when it comes to many data base mining 
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functions, Such the training of neural networks mentioned 
above or of other modeling taskS. 

SUMMARY OF THE INVENTION 

It is an object of the present invention to provide appa 
ratuses and methods for more efficiently computing large 
amounts of data. 

It is another object of the present invention to provide 
apparatuses and methods for efficiently finding patterns in 
data Sets, particularly large data Sets. 

It is still another object of the present invention to provide 
apparatuses and methods for efficiently using and training 
neural networks to find patterns in data Set. 

It is yet another object of the present invention to provide 
apparatuses and methods for more efficient parallel comput 
ing. 

According to one aspect of the present invention a com 
puter System with P processors receives data objects having 
N parameters. It divides an N-dimensional data Space 
defined by the N parameters into M sub-spaces, where M is 
greater than or equal to P. This is done in Such a manner that 
the boundaries between the resulting Sub-Spaces need not be 
orthogonal to the N-dimensions. The System asSociates a 
different set of one or more sub-spaces with each of the P 
processors. It distributes data objects located in each Sub 
Space to the Sub-Spaces associated processor and causes 
each processor to perform a computational proceSS on each 
of the data objects distributed to it. 

According to another aspect of the invention, a computer 
System with P processors receives a Set of data objects to be 
processed. A decision tree partitions the data Set into at least 
M data sub-sets, where M is equal or greater than P. A 
different set of one or more of the Sub-sets is associated with 
each processor, and the data objects in each Sub-Set are sent 
to the associated processor for processing. In Some 
embodiments, the process of using a decision tree to parti 
tion the data Set is performed on fewer than P processors. In 
many embodiments, the decision criteria of the non-terminal 
nodes of the decision tree are trained on the data Set, in a 
proceSS where each non-terminal node both trains on and 
then divides between its children the data supplied to it. 

In Some embodiments, the non-terminal nodes are neural 
nets having hidden layers. In Some embodiments, the deci 
Sion criteria of the non-terminal nets can be automatically 
Set to achieve a desired ratio between the number of data 
objects Sent to each of Such node's child nodes. In Some Such 
embodiments, the System automatically configures the deci 
Sion tree to have a number of leaf nodes which is an integer 
multiple of the number P of processors. 

According to another aspect of the invention, a computer 
System divides an N-dimensional data Space, having a 
Separate dimension for each of N parameters associated with 
the data Set, into M Sub-Spaces. It associates each of these M 
Sub-Spaces with a corresponding one of M hidden-layer 
neural networks, and uses the data objects in each of the M 
Sub-Spaces to train that Sub-Space's associated hidden-layer 
neural network. The resulting divisions need not be orthogo 
nal to the N dimensions of the Space. 

According to another aspect of the invention, a computer 
System creates a decision tree having a neural network for 
each of its nodes, including a hidden-layer network for each 
of its terminal, or leaf, nodes. Each of the tree's non-terminal 
nodes use the portion of the training data which is Supplied 
to it to train its associated neural network and then uses that 
neural network, once trained, to determining which of the 
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4 
training data object Supplied to it should be Supplied to each 
of its child nodes. In one embodiment, the net in each 
non-terminal node is trained to divide an N-dimensional 
Space defined by parameters from the training data Set into 
Sub-Spaces, and the data objects associated with each Sub 
Space are routed to a different one of that non-terminal 
node's child nodes. In Such an embodiment, each non 
terminal node can be a two layer neural network which 
defines a Single vector of weights in the N-dimensional 
Space, and the data Space is split by a plane perpendicular to 
that vector. 

The portion of the training Set Supplied by the decision 
tree to each of its terminal, or leaf, nodes is used to train that 
nodes corresponding neural network. In preferred 
embodiments, different leaf node networks are trained on 
different processors. In many embodiments, a copy of the 
entire decision tree, including the neural networks in both its 
non-terminal and leaf nodes, is Stored on each of a plurality 
of processors. Then a set of new data objectS is split into 
Separate data partitions, one for each of Such processor. 
Finally data objects from the partition associated with each 
processor are passed down through the copy of the complete 
decision tree Stored on that processor. This causes each Such 
data object to be routed to a given leaf node of the tree, at 
which point the hidden-layer neural network associated with 
the given leaf node will analyze the data object, Such as by 
classifying it, or recording an estimated value for each of its 
target fields. 

According to another aspect of the invention, a neural tree 
net has hidden-layer neural networks in it non-terminal 
nodes. 

According to another aspect of the invention, a computer 
System includes a neural network, Such as one in the nodes 
of one of the above mentioned decision trees, which auto 
matically causes a Selected percent of data objects applied to 
the neural network to be selected for a given purpose. 

DESCRIPTION OF THE DRAWINGS 

These and other aspects of the present invention will 
become more evident upon reading the following descrip 
tion of the preferred embodiment in conjunction with the 
accompanying drawings, in which: 

FIG. 1 is a Schematic representation of one type of parallel 
computing System which can be used with the present 
invention; 

FIG. 2 is a schematic representation of the BuildModel 
process for training a neural tree network which embodies 
the present invention; 

FIG. 3 illustrates BuildModel Master, a simplified 
pseudo-code representation of the proceSS run on one pro 
ceSSor to train the non-terminal nodes of the neural tree 
network as part of the training process shown in FIG. 2; 

FIG. 4 is a Schematic representation of a data Space 
defined by a portion of a training data Set Supplied to a 
non-terminal node of the neural tree network shown in FIG. 
2, and of the Selection of a parameter whose values have the 
greatest Spread in that portion of the data Set; 

FIG. 5 is a schematic representation of the process of 
training a non-terminal node in the tree of FIG. 2; 

FIG. 6 is a schematic representation of the vector of 
weights defined by the training process of FIG. 5; 

FIG. 7 is a schematic representation of the vector of FIG. 
6 shown in the spatial coordinates of FIG. 4; 

FIG. 8 is a schematic representation of the process of 
using the neural net of a non-terminal node of the tree shown 
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in FIG. 2 to split the training data object Supplied to it 
between that node's two child nodes; 

FIG. 9 is a schematic representation of the decision 
process shown in FIG. 8 represented in the spatial coordi 
nates of FIGS. 4 and 7; 

FIG. 10 is a Schematic representation of the data Space 
and data points of FIG. 4, as split by the process of FIGS. 
8 and 9 into two sub-spaces; 

FIG. 11 is a Schematic representation of the data Space of 
FIG. 10, indicating that the processes of FIGS. 5-9 are 
separately applied to each of Sub-spaces shown in FIG. 10. 

FIG. 12 is a Schematic representation of the Space of data 
points of FIG. 10, with each of the two sub-spaces shown in 
FIG. 10 having been sub-divided into two Sub-Sub-spaces. 

FIG. 13 illustrates BuildModel Slave, a simplified 
pseudo-code representation of the process run on each of a 
plurality of processors to train the hidden-layer neural 
networks associated with the leaf nodes of the neural tree 
network shown in FIG. 2; 

FIG. 14 is a schematic representation of the ApplyModel 
proceSS in which a large Apply data Set is partitioned, and 
each Separate partition is run through a copy of the neural 
tree network trained in FIG. 2 on a separate processor, 

FIG. 15 is a schematic representation of the copy of the 
neural tree network contained in each processor in FIG. 14, 
and of the data records passing through that tree; 

FIG. 16 illustrates ApplyModel Master, a simplified 
pseudo-code representation of the process run on a single 
processor to control the ApplyModel process shown Sche 
matically in FIG. 14; 

FIG. 17 illustrates ApplyModel Slave, a simplified 
pseudo-code representation of the process run on each of a 
plurality of Separate processor nodes in the ApplyModel 
process shown in FIGS. 14 and 15; 

FIG. 18 is a schematic representation of the ApplyModel 
proceSS when it is Supplied with un-partitioned data; 

FIG. 19 is a schematic representation of the ApplyModel 
proceSS when it is used in conjunction with another com 
putational process which Supplies it with data that is already 
partitioned; 

FIG. 20 illustrates an alternate embodiment of the Apply 
Model process in which the neural tree network includes 
hidden-layer networks in its non-terminal nodes. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

FIG. 1 shows one type of parallel computer system 50 
which can be used to create an embodiment of the present 
invention. In this System, each of eight processors 52 are 
connected together through a high Speed computer network 
54. Also connected to this computer network is a WorkSta 
tion 56 which enables a user to control the system and to 
receive Selective output from it. Each processor 52 includes 
a central processing unit, or CPU, 58, which executes 
instructions Stored in, and reads and writes data from and to, 
the random access memory, or RAM 60. A network interface 
62 performs the function of reading and writing data over the 
network between processors. A disk interface 64 enables 
each processor to read and write data to one or more hard 
diskS 66 connected to each processor. 

The computer programs and data Structures described in 
the following application are Stored in one or more of the 
random access memories 60 or hard disks 66, and are 
executed or manipulated by one or more of the processors 
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6 
CPUs. For example, in FIG. 1 the BuildModel Master 
program code 89 and the neural tree network data Structure 
70 are shown stored in the RAM 60 of the master processor 
52A, and BuildModel Slave process 148 and the leaf node 
neural network 75 are showed stored in the RAM of each 
Slave processor 52. When Such programs and data Structures 
are Stored in RAM or hard disk memory and are processed 
by CPUs they convert the computing system 50 into a 
System for performing the present invention's functions. 

In FIG. 1, one of the processor nodes 52A is labeled a 
“master'. The other of the processor nodes are labeled 
“slave'. In the parallel processing Scheme used in a pre 
ferred embodiment of the invention, certain computational 
processes are best performed on one machine. Also there is 
a benefit in having one machine tell the others what to do. 
This one machine is called the Master, since it controls the 
operation of other, Slave, processors. In the embodiment 
shown in the figures, the master runs on a different machine 
than any of the Slaves. In other embodiments, a Single 
processor can act as both a master and a slave. 

FIG. 2 illustrates BuildModel, a process of training a 
neural tree network 70 used in one embodiment of the 
present invention. The tree network 70 contains a plurality 
of non-terminal nodes 72 and terminal, or leaf, nodes, each 
of which is represented by a bin for data records 74 and a 
hidden-layer neural network 75. Each non-terminal node 
contains a two layer neural network 76. Each such two layer 
network, itself, contains a layer of input nodes 78 and one 
output node 80. 
The non-terminal nodes of the tree are trained, and 

records 82 of a training data set 84 are divided into leaf node 
bins 74 on the master processor 52A. The training records 
routed to each terminal, or leaf, node by the non-terminal 
nodes of the tree are then used to train the hidden-layer 
neural network associated with that leaf node. This training 
process is performed on one of the Slave processors 52. 

FIG. 3 illustrates BuildModel Master, a highly simpli 
fied pseudo-code representation of the process which is run 
on the master to build and train the tree's non-terminal nodes 
and to Select which records should be associated with each 
of the leaf node bins 74. 

In this simplified description, BuildModel Master starts 
with steps 90-96 which create the basic tree topology of the 
neural network decision tree 70. Step 90 creates the largest 
balanced binary tree topology which has a number of 
temporary leaf nodes fitting within NoOfEndNets, the 
desired number of leaf nodes specified by a user. This 
balanced tree will have a number of leaf nodes correspond 
ing to the largest full power of two which fits within 
NoOfEndNets. In the example shown in FIG. 2, NoOfEnd 
NetS has been Set to Seven, So there will be a separate leaf 
node for each of the seven slave processors 52 shown in that 
figure. In this example, Step 90 will create a tree having the 
top three non-terminal nodes 72 shown in FIG. 2, starting 
with the root node 72A. At this point the incomplete tree 
topology will have room for four temporary leaf nodes, Since 
four is the largest power of two fitting within Seven. 

Next step 92 adds non-terminal nodes to the bottom level 
of the nascent tree until there are NoOfEndNets leaf nodes. 
In the example of FIG. 2, the bottom most three non 
terminal nodes 72 are added in this step. This causes the total 
number of leaf nodes 74 to equal seven, the desired number 
indicated by the user. 

Next step 94 associates a Record Ratio value equal to one 
divided by NoOfEndNets with each leaf node 74. In our 
example this causes a number of /7 to be associated with 
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each leaf node 74. This is done as part of an effort to ensure 
that each leaf node 74 will have a substantially equal number 
of records Supplied to it in the training process. Then Step 96 
goes up the tree one level at a time, associating a Recor 
dRatio value with each non-terminal node equal to the Sum 
of the Record Ratios of that node's two child nodes. Once 
this is done, each non-terminal node will know what percent 
of the records Supplied to it are to be Supplied to each of its 
two child nodes, based on the ratio of the RecordRatio 
values of those two child nodes. 

Next a step 98 Supplies all the records 82 of the training 
set 84 to the root non-terminal node 72A of the tree. Once 
this is done, a step 100 performs a loop for each horizontal 
level of the tree. This is the basic loop in the training process, 
and once it has been completed for all Such levels, all of the 
tree's non-terminal nodes will have been trained and all of 
the training records will have been routed to one of the leaf 
node bins 74. 

For each horizontal level of the tree containing non 
terminal nodes, loop 100 performs a sub-loop for each 
non-terminal node in that level. Each Such loop consists of 
steps 104-120. 

Step 104 selects from the N parameters of the training 
records used in the non-terminal node networks, the 
ParameterOfGreatestSpread, that is, that one of the N 
parameters over which the training records Supplied to the 
current node have the greatest Spread. The N parameters 
used for Such purposes will normally comprise all of the I 
Source fields to be used in training the leaf node hidden-layer 
neural networkS 75, and perhaps also the Jone or more target 
fields to be used on that training. For purposes of step 104, 
Spread is best measured by a Statistical measurement of 
Spread, Such as Standard deviation. 

FIG. 4 illustrates three dimensions 128A-128C of the 
N-dimensional space 130 defined by the N parameters 83 
used in training the non-terminal nodes. The Set of N 
parameters used by the non-terminal nodes can include 
parameters integer and binary values, as well as real number 
values. FIG. 4 shows the records 82 of the training set as data 
points in that N-dimensional Space. In this example shown 
in FIG. 4 the parameter 83A, that corresponding to the 
Vertical axis 128C, has the greatest spread of values. 

Once Step 104 has selected the ParameterOfGreat 
estSpread for the current node, step 106 creates a two layer 
neural network for it, with a separate input node for each of 
the remaining N parameters to be used in training the 
non-terminal nodes and one output node. 
Then a step 108 repeatedly performs a training loop 109 

until the node's network appears to have been properly 
trained. 

FIG. 5 provides a Schematic representation of the training 
process. Each iteration of the training loop 109 performs a 
step 110 for each training record 82 supplied to the current 
node. This Step Supplies the values in each of the current 
training records N parameters 83 to a corresponding input 76 
of the non-terminal node's neural net. It also Supplies the 
ParameterOfGreatestSpread 83A to the network's output 80. 
It compares the generated value produced at the output node 
in response the values Supplied to the inputs 76 to the value 
Supplied to the output by the training record. It then modifies 
the weight 132 associated with each input 76 so as to reduce 
that difference, by using one of the well known Schemes for 
training the weights of neural networks. FIG. 6 illustrates the 
set of weights Wassociated with each of the inputs 76 as a 
vector 134, having the form W., W., W., . . . W. 

Normally the loop 108 stops training when either a certain 
number of training loops have been exceeded or when the 
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8 
reduction, between Successive training loops, in the Sum, 
taken over each training cycle 109, of the differences 
between generated and training record values for the output 
80 drops below a given level. 

FIG. 7 illustrates that once the current non-terminal 
node's neural network has been trained by multiple itera 
tions of the loop 108, the vector 134 defined by the net’s 
weights will have a direction generally corresponding to the 
direction of greatest spread of the distribution of records 82 
in the N-dimensional space 130. It should be noted that this 
vector will not be parallel to any parameter axis of the 
N-dimensional Space, except in the unusual case in which 
the axis of maximum spread of the node's training data is 
also parallel to Such an axis. 
Once the current non-terminal node's network has been 

trained, a loop 112, comprised of sub-steps 114 and 116, is 
performed for each record in the node's training data. 

FIG. 8 schematically represents the loop 112 and the 
functions of its sub-steps. For each of the records 82, step 
114 applies the records N parameters 83 to the inputs 76 of 
the node's network and step 116 uses the resulting value 138 
produced at the net's output as a Score. It indexes the current 
record in a ScoreList 140, ordered by such scores. 

For purposes of step 114, the value of the output node 80 
is just the Sum of each input times its associated weight. 
There is no need to put that Sum through the Sigmoid 
function. As a result, each Score 138 corresponds to perpen 
dicular projection of each data point 82 onto the vector 134, 
as shown in FIG. 9. 
Once all the records have been ordered, based on their 

outputs, step 118 selects a SplitPoint 139 in the ScoreList 
130 having the same ratio of records scored above and below 
it as the ratio between the Record Ratios of the current 
non-terminal node's two child nodes. Moving this SplitPoint 
up and down the ScoreList corresponds to translating a plane 
of split 142, perpendicular to the vector 134, in a direction 
parallel to that vector. As indicated schematically in FIG. 10, 
once a Splitpoint is Selected, the corresponding plane of Split 
142 will divide the distribution of data records supplied to 
the node. It will do So in a manner that associates a desired 
ratio of training records with each of the non-terminal 
node's two child nodes. 
Once step 118 has split the current node's training 

records, Step 102 sends the training records on each side of 
the SplitPoint to a respective one of the current node's two 
child nodes. 

It can be seen that each iteration of the loop 100 will cause 
the non-terminal nodes to split the data space 130 of the 
training records Supplied to it into SubspaceS 130A and 
130B, as shown schematically in FIG. 10. As indicated in 
FIG. 11, in the next iteration of loop 100, the process of 
finding the vector of maximum spread shown in FIGS. 5-7 
and projecting all of the data in a given portion of the data 
Space onto that vector will be repeated for each Such 
subspace 130A and 130B. As indicated in FIG. 12, this will 
result in the sub-space 130A being divided into Sub-Sub 
spaces 130AA and 130AB, and the Sub-space 130B being 
divided into the sub-sub-spaces 130BA and 130BB. This 
process of division and Sub-division will be repeated in each 
horizontal layer of leaf nodes until the data Space has been 
divided into a number of Sub-Space regions equal to to the 
number of the tree's leaf nodes. Not only that, but when the 
process is completed each leaf node bin 74 will end up 
having approximately the same number of records. 

Returning now to FIG. 3, once the loop 100 has been 
completed for all of the tree's non-terminal nodes, the neural 
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network's associated with all of the tree's non-terminal 
nodes will have been trained up and all of the training 
records will have been distributed to the leaf node bin's 74. 
At this point Step 122 creates a compressed representation of 
the tree network. In this representation, each non-terminal 
node's neural net is represented by its weight vector 134 and 
its Split Point 139. 

Once this is done, a loop 124 performs a step 126 for each 
leaf node 74 in the tree. Step 126 distributes the set of 
training records 82 routed to each such leaf node bin 74 to 
a successive one of the slave processors 52 shown in FIG. 
2. This can be done in a cyclical, or round robin manner, So 
that if there are more leaf nodes than Slave processors, once 
all the Slave processors have received the Set of training 
records for a first leaf node, step 126 will start successively 
distributing a Second Set of leaf node records to the Slave 
processors, and So on. This is done to attempt to distribute 
the computation of training leaf node neural nets relatively 
evenly among the processors. It can be seen that the non 
terminal nodes of the neural tree network function to parti 
tion the data used by the Slave processors in training the 
hidden-layer neural nets 75. 

Once the record Set associated with each leaf node has 
been distributed by the master processor to an associated 
slave processor, step 128 of BuildModel Master causes 
each of the slave processors to execute BuildModel Slave, 
the Slave proceSS for using the Set of training records 
asSociated with each leaf node to train that node's associated 
hidden-layer neural network. 

Once the master instructs the Slaves to train the leaf node 
neural networks, it waits in step 130 for each such slave to 
Send back a compressed representation of the neural net 
Works it has trained. The master then attaches each Such 
compressed leaf node network to the place corresponding to 
its leaf node in the compressed tree representation formed by 
step 122. Once this has been done for all of the leaf nodes, 
a compressed representation of the fill, trained neural tree 
network will have been completed. Once step 131 has stored 
this complete tree network on hard disk, the BuildModel 
Master process will be complete, and will Stop execution. 

FIG. 13 illustrates BuildModel Slave 148, a highly sim 
plified pseudo-code representation of the proceSS which is 
run on each of the Slave processor's to train the tree's leaf 
node neural networks. A separate instance of this process is 
run for each leaf node which has been associated with a 
given slave processor. 

Each instance of BuildModel Slave starts with step 150, 
which creates a hidden-layer neural network 75, indicated 
schematically in FIG. 2, for its associated leaf node. This 
network has an input for each of I Source fields, and an 
output for each of J target fields, where the integer values I 
and Jhave been previously specified by a user of the System, 
and where at least the I fields are included in the N 
parameters used to train the non-terminal nodes. The neural 
network will also include a hidden layer which contain a 
number of nodes Specified by the user. 

Once the leaf node's neural network has been created, a 
loop 151 causes a training loop 152 to be repeated until the 
percentage change in the Sum of the differences between 
generated and actual outputs between training loops is below 
a given level. The expanded view of the leaf node net shown 
in the lower right hand corner of FIG. 2 schematically 
represents this training process. In each iteration of the 
training loop 152, a step 154 uses each record in the leaf 
node's training Set to train the leaf node's neural network. AS 
indicated in FIG. 2, during training each record has each of 
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10 
its I source field 83' connected to a corresponding one of the 
network's inputs and each of its J target fields 83" connected 
to a corresponding one of the networks outputs. The dif 
ference between the value generated at the network's J 
outputs and the training records values for the correspond 
ing J target fields is used to train the network's weights, Such 
as by backpropagation or any other method for training 
hidden-layer neural networks. 
Once loop 151 has determined that the neural network has 

undergone enough training loops to be properly trained, Step 
156 creates a compressed representation of the leaf node's 
neural net. This compressed representation consists of a 
matrix for the input layer having a row for each hidden-layer 
node and a column for each input layer node. Each entry in 
the matrix contains the weight value of the connection 
between its corresponding input and hidden-layer nodes. 
The compressed representation also includes a correspond 
ing matrix having a row for each output node and a column 
for each hidden-layer node. Where there is only one output 
node, this matrix will reduce to a vector. 
Once a compressed representation has been made for the 

leaf node's trained hidden-layer neural network, that com 
pressed representation is sent back to the master processor 
So that it can be put into its proper place on the complete 
neural tree network, as described above with regard to Step 
130 of FIG. 3. Once this has been done BuildModel Slave 
is complete and its execution terminates. 

Turning now to FIGS. 14-19, the ApplyModel process 
will be described. 

FIG. 14 is a Schematic graphical representation of the 
overall ApplyModel process. In this process, a large apply 
data set 160 is split into Sub-sets, or partitions, 162, if it is 
not already So partitioned. Each Such partition is Supplied to 
a separate slave processor 52, and each data record in that 
partition is passed through a copy of the compressed neural 
tree net 164 created by the BuildModel process which is 
Stored on that processor. 
The records 82 of the apply data set will normally include 

all of the N parameters used as inputs to neural nets of the 
non-terminal nodes. In Some instances they might not yet 
have any values for the J target fields of the leaf node neural 
networks, Since, in many instances, it is the purpose of the 
neural tree network to predict the values in those fields 
before actual values for those fields have been determined. 
Often the apply database is huge, containing many millions 
of records. 

FIG. 16 illustrates ApplyModel Master 170, a simplified 
pseudo-code representation of the proceSS run on the master 
processor 52A to control the ApplyModel process shown 
schematically in FIG. 14. In this simplified illustration this 
process is shown including steps 172-178. 

Step 172 tests to see if the apply data set has already been 
partitioned, and, if not, it partitions it. Since each Slave 
processor will have an identical copy of the compressed 
neural tree network 164, it makes no difference into which 
processor's partition a particular record is sent. Thus, any 
partitioning Scheme, Such as a simple round-robin Scheme, 
which distributes records between partitions in a roughly 
equally manner, and which executes relatively quickly, will 
work well for this purpose. 

In the embodiment of the invention described, the Apply 
Model proceSS is one of a Set of modular computing pro 
cesses 180 which can be run on a parallel computer. If the 
ApplyModel process 180A is being run without any preced 
ing modular process, as shown Schematically in FIG. 18, or 
with an immediately preceding modular process which does 
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not produce a separate partition for each of the processors to 
be used in the ApplyModel process, the partitioning proceSS 
182 which is part of the module 180A will have to partition 
the apply data base, as indicated in Step 172. 

If, on the other hand, the ApplyModel proceSS is being 
performed immediately after a proceSS which has already 
partitioned the apply data Set, then the partitioning proceSS 
182 will merely pass through the previously made partitions. 
An example of this is represented in FIG. 19, in which the 
ApplyModel proceSS is shown following a preprocessing 
process 180B, which is used to remove duplicate records and 
to reduce the number of fields in each record to those 
necessary for the ApplyModel process. 

Returning now to FIG. 16, once step 172 has ensured the 
apply data Set is partitioned, Step 174 distributes a copy of 
the compressed complete neural tree network 164 to each 
Slave processor node. Then Step 176 causes each processor 
to run the ApplyModel Slave process 190 on its associated 
data partition. Then step 178 receives all of the records 
Selected by all of the leaf node neural networks running on 
all of the Slave processors, and reports them to the user's 
workstation 56 shown in FIG. 1. Once this is done the 
ApplyModel Master proceSS is complete, and it terminates 
execution. 

FIG. 17 provides a highly simplified pseudo-code illus 
tration of the ApplyModel Slave process 190. FIG. 15 
illustrates this process graphically. 

Loop 192 of ApplyModel Slave is performed for each 
record 82" in the data partition Supplied to the individual 
processor on which ApplyModel Slave is running. This 
loop causes each record to be appropriately routed down 
through the compressed neural tree 164. It starts with a step 
194 which makes the root node 72A, the initial CurrentNode 
for the current record. Then a loop 196, comprised of steps 
198 and 200, is repeated until the record's Current node is 
no longer a non-terminal node. Step 198 applies each of the 
current records N parameter values to the corresponding 
inputs of the node's two layer neural network. Then, depend 
ing on whether or not the output of the neural network, as 
determined by multiplying the vector formed by the input 
fields of the current record by the nodes associated weight 
vector, is above or below the node's SplitPoint 139, step 200 
Selects one of the CurrentNode's two child nodes as the new 
CurrentNode. Thus, the loop 196 routes a given record from 
the root node all the way down to that one of the tree's leaf 
nodes 75' corresponding to its associated portion of the 
N-dimensional space defined in the BuildModel training 
proceSS. 

Once the current record has reached a given leaf node, 
step 202 applies the records I source fields, to the inputs of 
the leaf node's hidden-layer neural network. Then step 204 
classifies the record depending upon the output of that neural 
network, normally treating the record as a Selected record 
82" if the leaf node networks output for it is above a 
threshold value 208, and discarding the record if it is not. In 
other embodiments of the invention the estimated values 
produced at the outputs of a leaf node's neural network for 
each record are recorded in that records target fields, and 
Saved as part of the record for later use. Such later use can 
include Statistical or data base analysis of the estimated 
fields of the apply data Set. 

Once the loop 192 has routed each record to the appro 
priate leaf node net and caused that leaf node net to classify 
the record, step 206 sends the results of the classification to 
the master processor, and execution of ApplyModel Slave 
terminates. 
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12 
The neural tree network produced by the above method 

has the advantage of performing better analysis for a given 
level of computation than prior neural networks or prior 
neural tree networks. By dividing the N-dimensional data 
Space into Sub-Spaces and using each Such Sub-Space to train 
a separate end-node hidden-layer neural network, the dis 
tribution of training Samples fed to each Such end net are 
much more similar. This results in three advantages: 1) it 
takes fewer hidden-layer nodes to accurately model the data 
Supplied to each network: 2) it takes fewer training cycles to 
train each hidden-layer networks; and 3) each training cycle 
has fewer training records. Each of these three factorS alone 
results in computational Savings. Their combination results 
in a much greater one. 

FIG. 20 illustrates another embodiment of invention 
which is similar to that described above with regard to FIGS. 
1-19, except that the non-terminal nodes 72" of its neural 
tree network 70" contain hidden-layer neural networks 76", 
instead of two layer networks 76 shown in FIG. 2. 
AS is indicated in the expanded view of the non-terminal 

node 72" shown in the right upper corner of FIG. 20, the 
training of Such non-terminal nets in the embodiment of 
FIG. 20 is very similar to that used in the embodiment of 
FIG. 2. During the training loop 108" and 109", which 
corresponds to the training loop 108 and 109 shown in FIGS. 
2 and 3, the hidden-layer net is trained in the same manner 
as stated in step 110 of FIG. 3, that is, by applying each of 
the N parameters of each training record to the net’s inputs 
and supplying the ParameterOfGreatestSpread to the net’s 
output and using a training algorithm to modify the net’s 
weights to reduce the difference. The only difference is that 
the application of the training algorithm has to update more 
weights, since there is a hidden layer. 
The selection of which records are sent to each child node 

of a given non-terminal node 72" is basically the same as 
that described above with regard to steps 112-120 of FIG. 3. 
The training records to be Supplied to the non-terminal node 
are ordered on a ScoreList 140 in terms of their correspond 
ing outputs on the neural net once it has been trained. A 
SplitPoint 139 is chosen on the ScoreList such that there is 
a desired ratio of records above and below it. And the 
records above the SplitPoint are sent to one child node and 
those below it are sent to the other. 

The use of such hidden-layer neural networks has the 
effect of recursively splitting the N-dimensional Space 
defined by the records of the training Set into Sub-Spaces, as 
does the embodiment of the invention using two layer nets. 
The difference is that the boundaries of the sub-spaces 
created with hidden-layer nets in the non-terminal tree nodes 
of FIG. 20 are curved in N-dimensional space, allowing for 
a division of records between leaf nodes which is more 
likely to group together into a common leaf node records 
which are Similar for purposes of the analysis task. This 
further improves the accuracy of the neural tree network's 
analysis. 

It should be understood that the foregoing description and 
drawings are given merely to explain and illustrate the 
invention and that the invention is not limited thereto, except 
insofar as the interpretation of the appended claims are So 
limited. Those skilled in the art who have the disclosure 
before them will be able to make modifications and varia 
tions therein without departing from the Scope of the inven 
tion. 

For example, the functions or devices for performing 
them, described in the claims below can be realized by many 
different programming and data Structures, and by using 
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different organization and Sequencing. This is because pro 
gramming is an extremely flexible art form in which a given 
idea of any complexity, once understood by those skilled in 
the art, can be manifested in a virtually unlimited number of 
ways. 

Furthermore, it should be understood that the invention of 
the present application, as broadly claimed, is not limited to 
use with any one type of operating System or computer 
hardware. For example, many of the functions shown being 
performed in Software in the Specification could be per 
formed in hardware in other embodiments, and vica Versa. 

Similarly, the neural tree network processes described 
above could all be run on one processor. Or if run on 
multiple processors, they could be run on multiple proces 
sors of many different kinds, including SMP, or symmetric 
multi-processing Systems; massively parallel Systems simi 
lar to that in FIG. 1 but having many more processors, or 
more loosely coupled networks of computers, Such as net 
Works of computer WorkStations. 

Similarly, many embodiments of the invention will not 
use the master and Slave paradigm described above. 
Furthermore, in many embodiments of the invention the 
tasks described above as being performed on only one 
processor could be run on multiple processors. For example, 
the task of training non-terminal nodes and using them to 
partition data for the training of leaf node neural networks 
should be parallelized if it will significantly increase the 
speed with which the tree can be built and trained. This 
would be the case if the number of non-terminal nodes 
becomes very large, or if the amount of computation asso 
ciated with training each of them becomes large. For 
example, when the non-terminal nodes have hidden layers, 
as in FIG. 20, parallelization will tend to be more appropri 
ate. 

It should be understood that in embodiments of the 
invention running on Symmetric multiprocessing, or SMP, 
Systems there will be no need to Store a separate copy of the 
neural network tree for each processor, Since all the proces 
Sors will share a common memory, and there will be no need 
for one processor to transfer the records associated with a 
given leaf node to the processor which is going to train that 
leaf node, since they will be distributed to the processor that 
is going to train their associated leaf node when that fetches 
them from memory, itself. 

It should also be understood that, in Some embodiments of 
the invention, neural tree networks similar to those shown in 
FIGS. 2 and 20 can be used to partition data for multiple 
processors which are using the data for purposes other than 
training hidden-layer neural networks. For example, Such 
neural network trees can be used to partition data for parallel 
processors performing other types of modeling or analysis 
techniques, Such as multi-dimensional Statistical modeling, 
Kohonen networks, and discrimination trees. Similarly in 
Some embodiments of the invention, the decision tree part of 
the entire neural tree network is replaced by another type of 
analytical classification algorithm, Such as a Kohonen 
network, and the Subsets of training data or apply data 
created by Such a Kohonen network would be Supplied to 
hidden layer neural networks. When used in a parallel 
environment the Kohonen network could be used to partition 
a training Set into Subsets, each representing classes of 
record. 

In other embodiments of the invention, a neural tree 
network of the type shown in FIGS. 2 and 20 could be 
applied in a proceSS Similar to that shown in FIG. 14, except 
that the partitioner 182, shown in FIG. 18, associated with 
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the Apply Model object would pass records through the 
compressed representation of the decision tree part of the 
neural tree network, and the individual parallel processors 
receiving a partition of data Set record Sent to it by the tree 
partitioner would pass those records through the compressed 
representation of the corresponding hidden layer neural 
network. In Such an embodiment, the decision tree parti 
tioner would decide which of the processors executing the 
hidden layer neural networks a given record should be sent 
to, based on which of the decision tree's leaf nodes the 
record is routed to. If the System is running more than one 
hidden layer neural network on any processor node, the 
partitioner must label records Sent to Such nodes, indicating 
which leaf node the record has been associated with. 

One alternate embodiment of the hybrid tree network 
described in the above Specification is described in a patent 
application (the “sibling patent”) entitled "Apparatus And 
Methods For Programming Parallel Computers' filed on the 
Same day as this patent application, on behalf of the intended 
assignee of the present application. This sibling patent, 
which has as named inventors, Michael J. Beckerle, James 
Richard Burns, Jerry L. Callen, Jeffrey D. Ives, Robert L. 
Krawitz, Daniel L. Leary, Steven Rosenthal, and Edward S. 
A. Zyszkowski, and having Ser. No. 08/627,801, filed Mar. 
25, 1996, and is hereby incorporated herein by reference in 
its entirety. 
What we claim is: 
1. A computer System comprising: 
P processors, where P is an integer greater than one; 
means for receiving a data Set of data objects having N 

parameters, where N is an integer greater than one; 
means for dividing an N-dimensional data Space having a 

Separate dimension of each of Said N parameters into M 
Sub-Spaces, each corresponding to a region of Said 
N-dimensional Space, where M is an integer greater 
than or equal to P. So each of Said data Set's data objects 
is located in one of Said M Sub-Spaces, Said means for 
dividing including means for dividing Said Space along 
boundaries which are non-Orthogonal to Said N dimen 
Sions, and 

means for associating different ones of Said Sub-Spaces 
with different ones of Said processors, Such that each of 
said P processors has a different set of one or more of 
Said Sub-Spaces associated with it, including: 
means for distributing the Sub-set of data objects 

located in each Sub-Space to the processor associated 
with that Sub-Space; and 

means for causing each processor to perform a com 
putational proceSS on each of the data objects So 
distributed to Said processor. 

2. A computer System comprising: 
P parallel processors, where P is greater than one; 
means for receiving a first data Set of data objects to be 

processed; 
d-tree means including: 
means for Storing a decision tree data Structure having 

a plurality of non-terminal nodes, including a root 
node, and terminal nodes, wherein each of Said 
non-terminal nodes has a plurality of child nodes, 
each of which is either one of Said non-terminal or 
terminal nodes, 

means for Storing a trainable decision criterion for each 
of Said non-terminal nodes, and 

means for training Said decision tree including: 
means for Supplying a Second Set of Said data objects 

to Said root node as a training Set, wherein Said 
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Second Set can either be equal to or different than 
Said first Set, and 

means for performing the following operation for 
each given non-terminal node in Said tree; 
causing each given non-terminal node to use 

those of Said training Set data objects Supplied 
to it to train Said given node's decision crite 
rion; and 

Supplying each training Set data object Supplied 
to the given node to one of the given node's 
child nodes based on the application of the 
given node's decision criteria to the data 
object, once the given node's decision criteria 
has been trained; and 

means for using Said decision tree to partition Said first 
data Set into at least M data Sub-sets, where M is equal 
or greater than P; 

means for associating a different Set of one or more of Said 
data Sub-sets with each of Said P processors, 

means for distributing the data objects in each data Sub-set 
to the processor associated with that Sub-Set, and 

means for causing each of Said processors to perform a 
computational proceSS on each of Said data objects So 
distributed to the processor. 

3. A computer System as in claim 2 wherein Said d-tree 
means performs the process of partitioning Said first data Set 
on less than one half the P processors when P is more than 
2. 

4. A computer System as in claim 2 wherein Said training 
data Set is a Sub-set of Said first data Set. 

5. A computer System as in claim 2 wherein Said decision 
criterion associated with one or more of Said non-terminal 
nodes is a neural network. 

6. A computer System comprising: 
P parallel processors, where P is greater than one; 
means for receiving a first data set of data objects to be 

processed; 
d-tree means for using a decision tree to partition Said first 

data Set into at least M data Sub-sets, where M is equal 
or greater than P; 

means for associating a different Set of one or more of Said 
data Sub-sets with each of Said P processors, 

means for distributing the data objects in each data Sub-set 
to the processor associated with that Sub-Set, and 

means for causing each of Said processors to perform a 
computational proceSS on each of Said data objects So 
distributed to the processor; 

wherein Said d-tree means includes: 
means for Storing a decision tree data structure having 

a plurality of non-terminal nodes, including a root 
node, and terminal nodes, wherein each of Said 
non-terminal nodes has a plurality of child nodes, 
each of which is either one of Said non-terminal or 
terminal nodes, 

means for Storing a trainable decision criterion for each 
of Said non-terminal nodes, and 

means for training Said decision tree including: 
means for Supplying a Second Set of Said data objects 

to Said root node as a training Set, wherein Said 
Second Set can either be equal to or different than 
Said first Set, and 

means for performing the following operation for 
each given non-terminal node in Said tree; 
causing each given non-terminal node to use 

those of Said training Set data objects Supplied 
to it to train Said given node's decision crite 
r1On, 
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Supplying each training Set data object Supplied 

to the given node to one of the given node's 
child nodes based on the application of the 
given node's decision criteria to the data 
object, once the given node's decision criteria 
has been trained; and 

wherein the decision criterion associated with one or more 
of Said non-terminal nodes is a neural network and the 
decision criterion associated with at least one of Said 
non-terminal node has a hidden layer. 

7. A computer System as in claim 2 wherein the d-tree 
means further includes means for automatically Setting the 
decision criteria of individual non-terminal nodes of the 
decision tree So as to achieve a desired ratio between the 
number of data objects Supplied to each Such node's child 
nodes. 

8. A computer System comprising: 
P parallel processors, where P is greater than one; 
means for receiving a first data Set of data objects to be 

processed; 
d-tree means for using a decision tree to partition Said first 

data Set into at least M data Sub-sets, where M is equal 
or greater than P; 

means for associating a different Set of one or more of Said 
data Sub-sets with each of Said P processors, 

means for distributing the data objects in each data Sub-set 
to the processor associated with that Sub-Set, and 

means for causing each of Said processors to perform a 
computational proceSS on each of Said data objects So 
distributed to the processor, 

wherein Said d-tree means includes: 
means for Storing a decision tree data Structure having 

a plurality of non-terminal nodes, including a root 
node, and terminal nodes, wherein each of Said 
non-terminal nodes has a plurality of child nodes, 
each of which is either one of Said non-terminal or 
terminal nodes, 

means for Storing a trainable decision criterion for each 
of Said non-terminal nodes, 

means for training Said decision tree including: 
means for Supplying a Second Set of Said data objects 

to Said root node as a training Set, wherein Said 
Second Set can either be equal to or different than 
Said first Set, and 

means for performing the following operation for 
each given non-terminal node in Said tree; 
causing each given non-terminal node to use 

those of Said training Set data objects Supplied 
to it to train Said given node's decision crite 
rion; 

Supplying each training Set data object Supplied 
to the given node to one of the given node's 
child nodes based on the application of the 
given node's decision criteria to the data 
object, once the given node's decision criteria 
has been trained; and 

means for automatically Setting the decision criteria of 
individual non-terminal nodes of the decision tree So 
as to achieve a desired ratio between the number of 
data objects Supplied to each Such node's child 
nodes, and 

means for automatically configuring the decision tree 
used so that it has P times I end nodes, where I is an 
integer, each of which end nodes defines one of Said 
data Sub-sets. 
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9. A computer System comprising: 
means for receiving a data Set of data objects having N 

parameters associated with them, where N is an integer 
greater than one, 

means for dividing an N-dimensional data Space having a 
Separate dimension for each of Said N parameters into 
M Sub-Spaces, each corresponding to a region of Said 
N-dimensional Space, where M is an integer greater 
than one, So each of Said data Set's data objects is 
located in one of Said M Sub-Spaces, 

means for representing each of M hidden layer neural 
networks, 

means for associating each of the M Sub-Spaces with one 
of Said M neural networks; and 

means for using the data objects in each of Said M 
Sub-Spaces to train that Sub-Space's associated hidden 
layer neural network. 

10. A computer system as in claim 9 wherein said means 
for dividing including means for dividing Said Space along 
boundaries which are non-Orthogonal to Said N dimensions. 

11. A computerized method including: 
receiving a first data Set comprised of a plurality of data 

objects, and 
creating a decision tree data Structure having a plurality of 

non-terminal nodes, including a root node, and terminal 
nodes, wherein each of Said non-terminal nodes has a 
plurality of child nodes, each of which is either one of 
Said non-terminal or terminal nodes, Said creating of a 
decision tree including: 
creating for each non-terminal node a neural network; 
creating for each terminal node a neural network con 

taining at least one hidden layer; 
Supplying a Second data Set of data objects to Said root 

node as a training Set, wherein Said Second data Set 
can either be equal to or different than Said first data 
Set, 

performing the following operation for each given 
non-terminal node in Said tree; 
using the training Set data objects Supplied to the 

given non-terminal node to train the given node's 
neural network, and 

Supplying each data object of Said first and Second 
data Sets Supplied to the given node to one of the 
given node's child nodes based on the output of 
the given node's neural network for the data 
object, once the given node's neural net has been 
trained; and 

using Said data objects of the first data Set Supplied to 
a given terminal node to train the given terminal 
node's hidden layer neural network. 

12. A computerized method as in claim 11 wherein: 
the data objects have N parameters associated with them, 
where N is an integer greater than one; 

Said using of training Set data objects Supplied to the given 
non-terminal node includes using Said data objects to 
train the given non-terminal node's neural network to 
develop Spatial criteria for dividing an N-dimensional 
data Space having a separate dimension for each of Said 
N parameters into a separate Sub-Space for each of the 
given non-terminal node's child nodes, each of which 
Sub-Spaces corresponds to a region of Said 
N-dimensional Space, So that each of Said data objects 
Supplied to the given node is located in one of Said 
Sub-Spaces, and 

Said Supplying of data objects to a one of a given node's 
child nodes is based on the given node's neural net 
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work's Spatial criteria, Such that data objects from 
different Sub-Spaces of Said N-dimensional Space are 
Supplied to different ones of the given node's child 
nodes. 

13. A computerized method including: 
receiving a first data Set comprised of a plurality of data 

objects, and 
creating a decision tree data Structure having a plurality of 

non-terminal nodes, including a root node, and terminal 
nodes, wherein each of Said non-terminal nodes has a 
plurality of child nodes, each of which is either one of 
Said non-terminal or terminal nodes, Said creating of a 
decision tree including: 
creating for each non-terminal node a neural network; 
creating for each terminal node a neural network con 

taining at least one hidden layer; 
Supplying a Second data Set of data objects to Said root 

node as a training Set, wherein Said Second data Set 
can either be equal to or different than Said first data 
Set, 

performing the following operation for each given 
non-terminal node in Said tree; 
using the training Set data objects Supplied to the 

given non-terminal node to train the given node's 
neural network, and 

Supplying each data object of Said first and Second 
data Sets Supplied to the given node to one of the 
given node's child nodes based on the output of 
the given node's neural network for the data 
object, once the given node's neural net has been 
trained; and 

using Said data objects of the first data Set Supplied to 
a given terminal node to train the given terminal 
node's hidden layer neural network; wherein: 

the data objects have N parameters associated with 
them, where N is an integer greater than one; 

Said using of training Set data objects Supplied to the 
given non-terminal node includes using Said data 
objects to train the given non-terminal node's neural 
network to develop spatial criteria for dividing an 
N-dimensional data Space having a separate dimen 
Sion for each of Said N parameters into a separate 
Sub-Space for each of the given non-terminal node's 
child nodes, each of which Sub-Spaces corresponds 
to a region of Said N-dimensional Space, So that each 
of Said data objects Supplied to the given node is 
located in one of Said Sub-Spaces, 

Said Supplying of data objects to a one of a given node's 
child nodes is based on the given node's neural 
network's Spatial criteria, Such that data objects from 
different Sub-Spaces of Said N-dimensional Space are 
Supplied to different ones of the given node's child 
nodes; 

Said creating of a neural network for each non-terminal 
node includes creating a two layer neural network for 
Such a non-terminal node, each of which has a 
plurality of inputs, no hidden layers, an output, and 
a Series of weights between each input and Said 
output, which weights define a vector in Said 
N-dimensional Space; and 

Said Supplying of each given one of a plurality of 
training Set data objects to one of a given non 
terminal node's child nodes is based on which side of 
an N-dimensional plan perpendicular to Said vector 
in Said N-dimensional Space that a given data object 
is located. 

14. A computerized method as in claim 11 wherein said 
using of training Set data objects Supplied to a given terminal 
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node includes using Such data objects Supplied to each of a 
plurality of Said terminal nodes to train Said terminal node's 
asSociated hidden layer neural network on a different par 
allel processor. 

15. A computerized method including: 
receiving a first data Set comprised of a plurality of data 

objects, and 
creating a decision tree data Structure having a plurality of 

non-terminal nodes, including a root node, and terminal 
nodes, wherein each of Said non-terminal nodes has a 
plurality of child nodes, each of which is either one of 
Said non-terminal or terminal nodes, Said creating of a 
decision tree including: 
creating for each non-terminal node a neural network; 
creating for each terminal node a neural network con 

taining at least one hidden layer; 
Supplying a Second data set of a data objects to Said root 

node as a training Set, wherein Said Second data Set 
can either be equal to or different than Said first data 
Set, and 

performing the following operation for each given 
non-terminal node in Said tree; 
using the training Set data objects Supplied to the 

given non-terminal node to train the given node's 
neural network, and 

Supplying each data object of Said first and Second 
data Sets Supplied to the given node to one of the 
given node's child nodes based on the output of 
the given node's neural network for the data 
object, once the given node's neural net has been 
trained; 

using Said data objects of the first data Set Supplied to 
a given terminal node to train the given terminal 
node's hidden layer neural network, including using 
Such data objects Supplied to each of a plurality of 
Said terminal nodes to train Said terminal node's 
asSociated hidden layer neural network on a different 
parallel processor, 

Storing a copy of Said decision tree, including the neural 
networks in its non-terminal and terminal nodes on 
each of a plurality of processors, 

dividing a set of data objects not in Said training Set into 
a plurality of data partitions, for each of Said proces 
Sors, and 

passing the data objects in each given processor's asso 
ciated partition down the copy of the decision tree 
Stored on the given processor, So each given one of Said 
processor's associated data objects is routed by the 
neural network in each of a Succession of one or more 
non-terminal nodes to a respective child node, until the 
given data object is routed to a given terminal node in 
the processor's copy of the tree, after which the hidden 
layer neural network associated with Said given termi 
nal node is used to analyze the given data object. 

16. A computerized method as in claim 11 wherein one or 
more of Said non-terminal node's neural networks have 
hidden layers. 

17. A computerized method including: 
receiving a data Set comprised of a plurality of data 

objects, and 
creating a decision tree data Structure having a plurality of 

non-terminal nodes, including a root node, and terminal 
nodes, wherein each of Said non-terminal nodes has a 
plurality of child nodes, each of which is either one of 
Said non-terminal or terminal nodes, Said creating of a 
decision tree including: 
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creating for each non-terminal node a neural network, 

at least Some of which include hidden layers, 
creating for each terminal node a neural network; 
Supplying a plurality of Said data objects to Said root 

node as a training Set, and 
performing the following operation for each given 

non-terminal node in Said tree; 
using the training Set data objects Supplied to the 

given non-terminal node to train given node's 
neural network, and 

Supplying each training Set data object Supplied to 
the given node to one of the given node's child 
nodes based on the output of the given node's 
neural network for the data object, once the neural 
net has been trained. 

18. A computer System including: 
means for Storing a representation of a neural network 

capable of calculating the values of J output parameters 
given the value of I input parameters, where I is an 
integer greater than one and J is an integer greater than 
Zero, 

means for receiving a data Set comprised of a plurality of 
data objects, Said data Set having N parameters, where 
N is an integer equal to or greater than I and where the 
N parameters include at least the I parameters, and 

means for associating a Score, from a one dimensional 
range of values, with each given one of Said data 
objects as a function of the values of the one or more 
J parameters calculated by Said neural network for the 
values of Said given data object's I parameters, 
means for Selecting a continuous range of Said Scores 

having a predetermined percent of the data objects 
asSociated with Said range, and 

means for Selecting the Set of data objects associated 
with Said Selected range. 

19. A computerized method including: 
receiving a data Set comprised of a plurality of data 

objects, each of which includes a corresponding Set of 
parameters, and 

creating a decision tree data Structure having a plurality of 
non-terminal nodes, including a root node, and terminal 
nodes, wherein each of Said non-terminal nodes has a 
plurality of child nodes, each of which is either one of 
Said non-terminal or terminal nodes, Said creating of a 
decision tree including: 
creating for each non-terminal node a neural network, 

having a set of input nodes, a Set of one or more 
output nodes, and a set of weights determining which 
values will be produced at each output node when a 
given Set of parameter values are Supplied to the 
network's input nodes, 

Supplying a plurality of Said data objects to Said root 
node as a training Set, and 

performing the following operation for each given 
non-terminal node in Said tree; 
using the training Set data objects Supplied to the 

given non-terminal node to train the given node's 
neural network by applying, for each data object, 
to each of the neural network's input nodes the 
value from a corresponding input Subset of Said 
data objects associated parameters, and using the 
difference between the resulting Set of values 
produced at the neural networks one or more 
output nodes and the values of a corresponding 
output Subset of Said data object's parameters to 
update the neural network's weights So as to 
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reduce that difference; wherein Said training 
includes Selecting for each given non-terminal 
node which of the parameters associated with the 
data objects Supplied to the given non-terminal 
node are to be as Said output Subset as a function 
of the data objects Supplied to that node, and 

Supplying each data object Supplied to the given 
node to one of the given node's child nodes based 
on the output of the given node's neural network 
for the data object, once the given node's neural 
net has been trained. 

20. A computer-implemented method for parallel process 
ing of data, comprising: 

determining from the data at least one principle axis of the 
data; 

partitioning the data into a plurality of convex Sets of data 
alone at least one plane orthogonal to each determined 
principle axis of the data corresponding to a number of 
processors, and 
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in parallel, processing the convex Sets of data using a 

plurality of analytic models on the processors, wherein 
each processor receives one of the convex sets of data 
and uses one of the plurality of analytical models. 

21. A computer System method for parallel processing of 
a data, comprising: 
means for determining from the data at least one principle 

axis of the data; 
means for partitioning the data into a plurality of convex 

Sets of data along at least one plane orthogonal to each 
determined principle axis of the data corresponding to 
a number of processors, and 

for processing the convex Sets of data using a plurality of 
analytical models in parallel on the plurality of 
processors, wherein each processor receives one of the 
convex Sets of data and uses of the plurality of ana 
lytical models. 


