
US 20140040890A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0040890 A1

NOVak et al. (43) Pub. Date: Feb. 6, 2014

(54) TRUSTED EXECUTION ENVIRONMENT (52) U.S. Cl.
VIRTUAL MACHINE CLONING USPC .. 718/1

(75) Inventors: Mark F. Novak, Newcastle, WA (US); (57) ABSTRACT
Andrew John Layman, Bellevue, WA
(US); Magnus Nyström, Sammamish,
WA (US); Stefan Thom, Snohomish,

Cloning of a virtual machine having a trusted executed envi
ronment Such as a Software-based trusted platform module. In
order to clone the virtual machine, the virtual machine state of

WA (US) the source virtual machine is copied to formulate a target
(73) Assignee: Microsoft Corporation, Redmond, WA virtual machine state that is to be associated with a target

(US) virtual machine. The target virtual machine is a clone of the
Source virtual machine state, and thus the storage hierarchy of

(21) Appl. No.: 13/566,250 the trusted execution environment may be the same for the
trusted execution environment in the source and target virtual

(22) Filed: Aug. 3, 2012 machine states. However, because the identity of the target
virtual machine is different than that of the source virtual

Publication Classification machine, the endorsement hierarchy of the target virtual
machine state is altered such that it is based on the identity of

(51) Int. Cl. the target virtual machine, rather than the source virtual
G06F 9/455 (2006.01) machine.

230A 230B 230C 230D 230E s s

23OF

US 2014/0040890 A1 Feb. 6, 2014 Sheet 1 of 11 Patent Application Publication

US 2014/0040890 A1 Feb. 6, 2014 Sheet 2 of 11 Patent Application Publication

Z ?un61-I

H08%

Patent Application Publication Feb. 6, 2014 Sheet 3 of 11 US 2014/0040890 A1

301

ACCeSS SOUrCe
VM State

Copy Source VM State To
Form Target VM State

Modify Target
Endorsement Hierarchy
To Match New Identity

Figure 3

Patent Application Publication Feb. 6, 2014 Sheet 4 of 11 US 2014/0040890 A1

State 411

Storage
413

Endorsement
414

Source State 411 Target State 421

Endorsement Endorsement
414 424

Figure 4B

Patent Application Publication Feb. 6, 2014 Sheet 5 of 11 US 2014/0040890 A1

SOUrCe State 411 Target State 421

Endorsement Endorsement
414 424

Figure 4C

Patent Application Publication Feb. 6, 2014 Sheet 6 of 11 US 2014/0040890 A1

TO

T1

Time

T2

Figure 5

Patent Application Publication Feb. 6, 2014 Sheet 7 of 11 US 2014/0040890 A1

TO

T1

Time

Figure 6

Patent Application Publication Feb. 6, 2014 Sheet 8 of 11 US 2014/0040890 A1

700

710

703

Key Derivation

702

Figure 7

US 2014/0040890 A1

SP

3.

l
N g
o

Feb. 6, 2014 Sheet 9 of 11

s

o

Patent Application Publication Feb. 6, 2014 Sheet 10 of 11 US 2014/0040890 A1

Immutable 901

Endorsement Key 911

Migratable Key 912

Other Data 913

Mutable 902

Migratable Key 921

Non-Migratable Key 922

COunter 923

Non-Volatile Memory 924

Figure 9

Patent Application Publication

T P

1021

Perform Operation

Feb. 6, 2014 Sheet 11 of 11

1000

SYSTEM

1011

Receive Command

1012

Identify ACCount

1013

Identify Data Set

1014

Identify Operation

1015

Instruct Processor

Figure 10

Intercept Command

Dispatch Command

US 2014/0040890 A1

1001

1002

1003

US 2014/0040890 A1

TRUSTED EXECUTION ENVIRONMENT
VIRTUAL MACHINE CLONING

BACKGROUND

0001 Trusted Platform Modules (or “TPMs) are trusted
execution environments that are isolated from the regular
operating environment of computing devices. Typically,
TPMs are implemented in the form of a chip that is physically
bound to a computing device. The regular computing envi
ronment may communicate with the TPM through an inter
face, an example of which being TPM Based Services (or
“TBS).
0002 TPMs provide a range of functions, the most com
monly used including cryptographic key generation, policy
driven key use, sealed storage, and attestation. TPMS have a
region of memory called a “protected area” that contains data
that cannot be read from outside the TPM, but nevertheless
operations may be performed using such data. Some of the
data is immutable and thus is read (but not changed) by the
operation that is being performed, and some of the data is
mutable and can be changed through Such operations. Note
that it is the operation that is being performed internal to the
TPM that is reading the data. The protected data is not read
able outside the TPM.
0003. Thus, the TPM has an operational component that
performs operations, and a memory component which retains
protected data that cannot be read outside of the TPM. The
operational speed of the TPM is limited to the capabilities of
the hardware within the TPM. Also, the size of the protected
area is limited to the space within the TPM.

BRIEF SUMMARY

0004 At least one embodiment described herein relates to
the cloning of a virtual machine whose state includes a trusted
execution environment, such as a software-based trusted plat
form module. In order to clone the virtual machine, the virtual
machine state of the source virtual machine is copied to
formulate a target virtual machine state that is to be associated
with a target virtual machine. The target virtual machine is a
clone of the source virtual machine state, and thus if there is
a storage hierarchy, the storage hierarchy of the trusted execu
tion environment may be the same in the source and target
virtual machines. However, because the identity of the target
virtual machine is different than that of the source virtual
machine, the endorsement hierarchy of the target virtual
machine state is altered such that it is based on the identity of
the target virtual machine, rather than the source virtual
machine.
0005. The cloning may be performed for any purpose,
Such as, for instance, to make a copy of the Source virtual
machine so that both virtual machines may continue to oper
ate from that point. Alternatively, the cloning may be per
formed in order to establish a rolled back state for the source
virtual machine state. Thus, cloning and rollback, two key
operations of virtualization, may be implemented in the con
text of a trusted execution environment that resists virtualiza
tion due to difficulties presented with cloning in that trusted
execution context. In one embodiment, each virtual machine
on a host computing system has an associated, software
based trusted execution environment, thereby allowing the
virtual machine to be migrated along with its trusted execu
tion environment. Thus, the principles described herein allow
trusted execution environments to be virtualized.

Feb. 6, 2014

0006. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed Subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0007. In order to describe the manner in which the above
recited and other advantages and features can be obtained, a
more particular description of various embodiments will be
rendered by reference to the appended drawings. Understand
ing that these drawings depict only sample embodiments and
are not therefore to be considered to be limiting of the scope
of the invention, the embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:
0008 FIG. 1 illustrates an example computing system that
may be used to employ embodiments described herein and
which includes an administration level and a local trusted
execution environment level;
0009 FIG. 2 illustrates a host computing system that runs
multiple virtual machines, some of which having their own
trusted execution environment;
0010 FIG.3 illustrates a flowchart of a method for cloning
a source virtual machine to form a target virtual machine in
the context of those virtual machines having a trusted execu
tion environment;
0011 FIG. 4A illustrates situation in which there is a
trusted execution environment associated with a source Vir
tual machine;
0012 FIG. 4B illustrates a situation in which the trusted
execution environment of the Source virtual machine is cop
ied to create a trusted execution environment of a target
virtual machine;
0013 FIG. 4C illustrates a situation in which the endorse
ment hierarchy of the trusted execution environment of the
target virtual machine is modified to be based on the identity
of the target virtual machine;
0014 FIG. 5 illustrates a process in which the source
virtual machine is cloned twice to form two target virtual
machines;
0015 FIG. 6 illustrates a process in which the source
virtual machine is cloned to create a target virtual machine,
and then that target virtual machine becomes a source virtual
machine for another cloning;
0016 FIG. 7 illustrates a specific architecture for the gen
eration and structure of a trusted execution environment that
allows the method of FIG. 3 to be performed;
0017 FIG. 8 illustrates an environment in which multiple
clients, some of which utilize a Trusted Platform Module
(TPM) interface with a system over a network;
0018 FIG. 9 abstractly illustrates protected data set as
including immutable data and mutable data; and
0019 FIG. 10 illustrates a flowchart of a method for man
aging a trusted execution environment command.

DETAILED DESCRIPTION

0020. In accordance with at least one embodiment
described herein, the cloning of a virtual machine is
described. The virtual machine includes a trusted execution
environment, such as a software-based trusted platform mod
ule. In order to clone the virtual machine, the virtual machine

US 2014/0040890 A1

state of the source virtual machine is copied to formulate a
target virtual machine state that is to be associated with a
target virtual machine. The target virtual machine is a clone of
the source virtual machine state, and thus the storage hierar
chy of the trusted execution environment may be the same for
the trusted execution environment in the source virtual
machine state and the target virtual machine State. However,
because the identity of the target virtual machine is different
than that of the source virtual machine, the endorsement
hierarchy of the target virtual machine state is altered such
that it is based on the identity of the target virtual machine,
rather than the Source virtual machine.

0021. In some embodiments, each virtual machine is pro
vided with its own migratable software-based trusted execu
tion environment. Thus, at least Some embodiments described
herein allow virtualization of trusted execution environments
by allowing virtual machines to be cloned, rolled back, and
migrated along with the trusted execution environment.
0022 Computing systems are now increasingly taking a
wide variety of forms. Computing systems may, for example,
be handheld devices (such as Smartphones), appliances, lap
top computers, desktop computers, mainframes, distributed
computing systems, or even devices that have not convention
ally been considered a computing system (such as wrist
watches, kitchen appliances, automobiles, medical implants,
and so forth). In this description and in the claims, the term
“computing system’ is defined broadly as including any
device or system (or combination thereof) that includes at
least one physical and tangible processor, and a physical and
tangible memory capable of having thereon computer-ex
ecutable instructions that may be executed by the processor.
The memory may take any form and may depend on the
nature and form of the computing system.
0023. As used herein, the term “module' or “component'
can refer to software objects or routines that execute on the
computing system. The different components, modules,
engines, and services described herein may be implemented
as objects or processes that execute on the computing system
(e.g., as separate threads).
0024. Embodiments described herein may comprise or

utilize a special purpose or general-purpose computer includ
ing computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail
below. Embodiments described herein also include physical
and other computer-readable media for carrying or storing
computer-executable instructions and/or data structures.
Such computer-readable media can be any available media
that can be accessed by a general purpose or special purpose
computer system. Computer-readable media that store com
puter-executable instructions or data are physical storage
media. Computer-readable media that carry computer-ex
ecutable instructions or data are transmission media. Thus, by
way of example, and not limitation, embodiments of the
invention can comprise at least two distinctly different kinds
of computer-readable media: computer storage media and
transmission media.

0025 Computer storage media includes RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store desired program code
means in the form of computer-executable instructions or
data structures and which can be accessed by a general pur
pose or special purpose computer.

Feb. 6, 2014

0026 A“network” is defined as one or more data links that
enable the transport of electronic data between computer
systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
transmission medium. Transmissions media can include a
network and/or data links which can be used to carry or
desired program code means in the form of computer-execut
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer. Combina
tions of the above should also be included within the scope of
computer-readable media.
0027. Further, upon reaching various computer system
components, program code means in the form of computer
executable instructions or data structures can be transferred
automatically from transmission media to computer storage
media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data
link can be buffered in RAM within a network interface
module (e.g., a “NIC), and then eventually transferred to
computer system RAM and/or to less volatile computer stor
age media at a computer system. Thus, it should be under
stood that computer storage media can be included in com
puter system components that also (or even primarily) utilize
transmission media.
0028 Computer-executable instructions comprise
instructions and data which, when executed at a processor,
cause a general purpose computer, special purpose computer,
or special purpose processing device to perform a certain
function or group of functions. The computer executable
instructions may be, for example, binaries, intermediate for
mat instructions such as assembly language, or even source
code. Although the subject matter has been described in lan
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the
described features or acts described above. Rather, the
described features and acts are disclosed as example forms of
implementing the claims.
0029. Those skilled in the art will appreciate that the
invention may be practiced in network computing environ
ments with many types of computer system configurations,
including, personal computers, desktop computers, laptop
computers, message processors, hand-held devices, multi
processor Systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main
frame computers, mobile telephones, PDAs, pagers, routers,
switches, and the like.
0030. In this description and in the claims, a “device' is
defined as any computing system that is not distributed. How
ever, the invention may also be practiced in distributed system
environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless data
links, or by a combination of hardwired and wireless data
links) through a network, both perform tasks. In a distributed
system environment, program modules may be located in
both local and remote memory storage devices.
0031. In the description that follows, embodiments are
described with reference to acts that are performed by one or
more computing systems. If such acts are implemented in
Software, one or more processors of the associated computing
system having executed computer-executable instructions.

US 2014/0040890 A1

An example of such an operation involves the manipulation of
data. The computer-executable instructions (and the manipu
lated data) may be stored in the memory of the computing
system.

0032 FIG. 1 illustrates an example of a computing system
100. The computing system 100 represents a physical
machine that includes a trusted execution environment. The
principles described herein provide a trusted execution envi
ronment in the context of a virtual machine. However,
because trusted execution environments are conventionally
used for physical machines, FIG. 1 is included to describe
principles of a trusted execution environment.
0033. The computing system 100 includes an administra
tion domain 110 (or “administration level”) and a local
trusted execution environment domain 120 (or “local trusted
execution environment level). The administration domain
110 includes a processor 111 and a main memory 112. The
main memory 112 is accessible to an administrator of the
computing system 100 via the use of processor 111. The main
memory 112 may be physical system memory, which may be
volatile, non-volatile, or some combination of the two. The
term “memory” may also be used herein to refer to non
Volatile mass storage Such as physical storage media.
0034. The local trusted execution environment domain
120 cannot be accessed directly even by a human administra
tor. The local trusted execution environment domain 120
includes a Trusted Platform Module (TPM) 121 that includes
cryptographic functions 122 and protected area 123. If there
were any possible way to directly access the content of the
TPM, that method would involve actually physically slicing
or otherwise breaking apart the TPM and using complex
equipment to physically examine the contents. Thus, the con
tents of the local trusted execution environment domain 120
are secure. The protected area 123 includes at least some
content that is unreadable outside of the TPM. The crypto
graphic functions 122 can, however, operate using the content
of the protected area 123. The protected area includes immu
table data 123A and mutable data 123B. Both types of data
can be read by the cryptographic functions 122. However,
only the mutable data 123B can be written to by the crypto
graphic functions 122.
0035 An example of immutable data is an endorsement
key, which acts as a passport for the TPM, providing manu
facturer-level security in the identity of the TPM. Further
more, since conventional TPMs are physically attached to the
computing system, the endorsement key also securely iden
tifies the computing system 100, and thus may serve as a trust
foundation for the computing system 100.
0036) Examples of mutable data include other keys,
monotonic counters, and non-volatile memory. The other
keys may be constructed on the request of the processor 111.
A monotonic counter is incremented when requested by the
processor 111, or in response to certain events (such as pow
ering on the system). Keys may be migratable or non-migrat
able. Migratable keys may be used in any TPM with proper
authorization, whereas non-migratable keys may only be
used in the TPM 121.

0037. The computing system 100 includes an interface
130 for communicating between the processor 111 to the
TPM 121. An example of a conventional interface 130 is a
TPM Based Services module (TBS) that provides TPM com
mands from the processor 111 to the TPM 121, and if appro

Feb. 6, 2014

priate, provides results of the cryptographic processing (but
of course not the content of the TPM 121) back to the pro
cessor 111.
0038. The computing system 100 represents a physical
machine that has a trusted execution environment. FIG. 2, on
the other hand, illustrates a host computing system 200 (here
inafter referred to simply as “host’) that runs multiple virtual
machines, Some of which having their own trusted execution
environment. The host 200 is illustrated as operating three
virtual machines 210 including virtual machines 210A, 210B
and 210C. However, the ellipses 210D represents that the
principles described herein are not limited to the number of
virtual machines running on the host 200.
0039. Some of the virtual machines 210A and 210B have
their own trusted execution environment. For instance, virtual
machine 210A has an associated trusted execution environ
ment 211A, and virtual machine 210B has an associated
trusted execution environment 211B. The virtual machine
210C does not have a trusted execution environment to illus
trate that the principles described herein are not limited to the
context in which all virtual machine each have their own
trusted execution environment, so long as at least one virtual
machine has its own trusted execution environment.
0040. The trusted execution environments 211A and 211B
are each implemented in software by a hypervisor 220 in a
manner that the trusted execution environments are not
directly readable by the respective virtual machines. Alterna
tively, as described before with respect to FIGS. 8through 10,
the trusted execution environments may be implemented by a
cloud service outside the hypervisor 220. Comparing FIGS. 1
and 2, the combination of the virtual machine 210A and the
trusted execution environment 211A emulates the computing
system 100 of FIG. 1, with the administration domain 110
being emulated by the virtual machine 210A, and with the
trusted execution environment domain 120 being emulated
by the software-based trusted execution environment 211A
managed by the hypervisor 220. Likewise, the combination of
the virtual machine 210B and the trusted execution environ
ment 211B also emulates the computing system 100 of FIG.
1, with the administration domain 110 being emulated by the
virtual machine 210B, and with the trusted execution envi
ronment domain 120 being emulated by the software-based
trusted execution environment 211B also managed by the
hypervisor 220.
0041. During operation, the virtual machines 210 each
emulate a fully operational computing system including at
least an operating system, and perhaps one or more other
applications as well. Each virtual machine is assigned to a
particular client, and is responsible for Supporting the desktop
environment for that client. In some cases, such as when the
virtual machine is a virtual server, the virtual machine may be
assigned to one or multiple clients. The virtual machine gen
erates a desktop image or other rendering instructions that
represent a current state of the desktop, and then transmits the
image or instructions to the client for rendering of the desk
top.
0042. As the user interacts with the desktop at the client,
the user inputs are transmitted from the client to the virtual
machine. The virtual machine processes the user inputs and,
if appropriate, changes the desktop state. If Such change in
desktop state is to cause a change in the rendered desktop,
then the virtual machine alters the image or rendering instruc
tions, if appropriate, and transmits the altered image or ren
dered instructions to the client computing system for appro

US 2014/0040890 A1

priate rendering. From the perspective of the user, it is as
though the client computing system is itself performing the
desktop processing.
0043. In addition to managing the trusted execution envi
ronments 211A and 211B, the hypervisor 220 emulates vir
tual resources for the virtual machines 210 using physical
resources 230 that are abstracted from view of the virtual
machines 210. The hypervisor 220 also provides proper iso
lation between the virtual machines 210. Thus, from the per
spective of any given virtual machine, the hypervisor 220
provides the illusion that the virtual machine is interfacing
with a physical resource, even though the virtual machine
only interfaces with the appearance (e.g., a virtual resource)
of a physical resource, and not with a physical resource
directly. Thus, the hypervisor 220 intermediates between the
virtual machines 210 and the physical resources 230. In FIG.
2, the physical resources 230 are abstractly represented as
including resources 230A through 230F. Examples of physi
cal resources 230 include processing capacity, memory, disk
space, network bandwidth, media drives, and so forth.
0044 FIG. 3 illustrates a flowchart of a method 300 for
cloning a source virtual machine to form a target virtual
machine in the context of those virtual machines having a
trusted execution environment. The method 300 may be per
formed by, for example, the host computing system 200 of
FIG. 2. For instance, suppose the host 200 is to clone virtual
machine 210A. The method 300 may be performed in the
context of the sequence of situations (or states) illustrated
with respect to FIGS. 4A through 4C, and thus FIG. 3 will be
described with frequent reference to FIGS. 4A through 4C, as
well as FIG. 2.

0045. The source virtual machine state of a source virtual
machine is accessed (act 301). For instance, in the situation
400A of FIG. 4A, the source virtual machine state 411 of a
source virtual machine 410 is accessed. The source virtual
machine state 411 includes a trusted execution environment
412 that has at least an endorsement hierarchy 414, but may
also have a storage hierarchy 413. The storage hierarchy 413
may be used by the virtual machine to access storage (e.g.,
stored data and/or code). The endorsement hierarchy 414 has
a signing portion 415, which allows the Source virtual
machine or its authenticated user to sign statements. The
endorsement hierarchy 414 is based on the identity of the
Source virtual machine 410. In one embodiment, the signing
portion 415 of the endorsement hierarchy 414 is only enabled
if the endorsement hierarchy is present in the trusted execu
tion environment 412 of the source virtual machine 410. In
the example in which the virtual machine 210A of FIG. 2 is to
be cloned, the virtual machine 410 is an example of the virtual
machine 210A, and the trusted execution environment 412 is
an example of the trusted execution environment 211A.
0046) Next, the source virtual machine state is copied (act
302) to formulate a target virtual machine state. For instance,
referring to situation 400B of FIG. 4B, the source virtual
machine state 411 is copied (as represented by arrow 401) to
formulate the target virtual machine state 421. The target
virtual machine state 421 includes a target trusted execution
environment 422, which may be a copy of the source trusted
execution environment 412. The target trusted execution
environment 422 includes a storage hierarchy 423 which may
be a copy of the storage hierarchy 413 that is in the source
trusted execution environment 412, and an endorsement hier
archy 424 which may be a copy of the endorsement hierarchy
414 that is in the source trusted execution environment 412.

Feb. 6, 2014

0047. The signing portion 425 in the target endorsement
hierarchy, however, is disabled as a result of the copying (as
represented by the “x” in the lower left corner of the box 425
representing the signing portion). This is because the target
endorsement hierarchy 425 is a copy of the source endorse
ment hierarchy 415, which is based on the identity of the
source virtual machine 410, and not based on the target virtual
machine 420.
0048. The method 300 then includes modifying the target
virtual machine state such that the endorsement hierarchy of
the target virtual machine state is based on the identity of the
target virtual machine, rather than the source virtual machine
(act303). For instance, in the situation 400C of FIG. 4C, note
that the signing portion 425 has been altered to portion 425'.
However, the 'x' in the lower left corner of the box has been
removed to reflect that the endorsement hierarchy 424 is now
based on the identity of the target virtual machine 420, and not
the source virtual machine 410. Accordingly, the signing
portion 425 is now enabled to sign on behalf of the target
virtual machine 420 and/or its authenticated user. Note that
because the signing portion 425 is changed, those portions
that contain the signing portion 425 are also shown as
changed. For instance, endorsement hierarchy 424 becomes
endorsement hierarchy 424', target trusted execution environ
ment 422 becomes target trusted execution environment 422,
and target virtual machine State 421 becomes target virtual
machine state 421".
0049. This cloning operation may be used to roll back the
state of the virtual machine 410, or to copy the virtual
machine 410 so that both copies 410 and 420 continue opera
tion initially based on the same virtual machine state (though
the states will presumably diverge from that point due to
different operations being performed on each virtual machine
410 and 420).
0050 For instance, in the case of roll back, the source
virtual machine 410 was operating when, at Some point, a
Snapshot was taken of the source virtual machine state 411.
There may be a number of Such Snapshots taken as the source
virtual machine 410 was operating. Now, Suppose that the
user decides to roll back the source virtual machine 410 to a
prior time corresponding to a Snapshot. In this case, the clon
ing method 300 would be performed on a source virtual
machine state 411 that represents the state of that source
virtual machine 410 that was previously captured at that point
in time. In this case, the source virtual machine 410 would no
longer operate, but the target virtual machine 420 would
continue as the rolled back version of the source virtual
machine 410.
0051 Alternatively, the cloning method 400 may be per
formed on a current state of the source virtual machine 410. In
this case, when Such duplication is to occur, the source virtual
machine 410 is paused, and the current virtual machine State
is captured, resulting in the Source virtual machine state 411.
The cloning method occurs resulting in the target virtual
machine state 421, which has an endorsement hierarchy that
is modified to be based on the new identity of the target virtual
machine 420. Thus, in this case, after duplication occurs, the
Source virtual machine 410 continues to operate beginning
with the source virtual machine state 411, and the target
virtual machine 420 begins operation using the target virtual
machine state 421.

0052 FIG. 5 illustrates a process 500 in which the source
virtual machine 510 is cloned twice. The source virtual
machine 510 begins operation at time T0. Then, at time T1,

US 2014/0040890 A1

the source virtual machine 510 is cloned to form the first
target virtual machine 511. From time T1, the target virtual
machine 511 may begin operation. Also from time T1, the
source virtual machine 510 continues to operate until time T2.
At time T2, the source virtual machine 510 is again cloned to
form the second target virtual machine 512. Accordingly,
multiple target virtual machines may be cloned from a single
Source virtual machine, whether at the same time, or at dif
ferent times. For instance, as an alternative, target virtual
machines 511 and 512 may both be cloned from source virtual
machine 510 at time T1. Furthermore, in FIG. 5, note that in
one embodiment, the source virtual machine 510 may con
tinue operating from time T2, but in case of a rollback, the
rollback causes the continued execution of the source virtual
machine 510 after time T2 to be abandoned in favor of con
tinued execution via the target virtual machine 512. Also, note
that since method 300 was applied, the endorsement hierar
chy for the trusted execution environments for each of the two
target virtual machines will be based on their respective iden
tities.

0053 FIG. 6 illustrates a process 600 in which the source
virtual machine 610 is cloned to create a target virtual
machine 611, and then that target virtual machine 611
becomes a source virtual machine for another cloning of a
second target virtual machine 612. The source virtual
machine 610 begins operation at time T0. Then, at time T1,
the source virtual machine 610 is cloned to form the first
target virtual machine 611. From time T1, the target virtual
machine 611 may begin operation until time T2. At timeT2,
the target virtual machine 611 is cloned to form the second
target virtual machine 612. Accordingly, cloning of a target
virtual machine is also possible. Note that the source virtual
machine 610 may continue operating from time T1, but in
case of a roll back, the roll back may cause the continued
execution of the source virtual machine 610 after time T1 to
be abandoned in favor of continued execution via the target
virtual machine 611. Similarly, the target virtual machine 611
may continue operating from time T2, but in case of a roll
back, the roll back may cause the continued execution of the
target virtual machine 611 after time T2 to be abandoned in
favor of continued execution via the target virtual machine
612.

0054 FIG. 7 illustrates a specific architecture 700 for the
generation and structure of a trusted execution environment
that allows the method 300 to be performed. This specific
implementation may use, for instance, TPM version 2.0, as
specified by the Trusted Computing Group organization. In
that standard, a seed value 701 may be fed into a key deriva
tion function 702 to generate an endorsement key 703, which
is contained within the endorsement hierarchy of the trusted
execution environment 710.

0055. The endorsement key 703 includes a signing portion
704 that may be used to sign new statements on behalf of the
virtual machine (or its authenticated user) that the trusted
execution environment serves. For instance, the signing por
tion 704 may be the private portion of the endorsement key
703. The endorsement key 703 also includes a verifying por
tion 705 that may be used to verify previous statements made
by the virtual machine (or its authenticated user) that the
trusted execution environment serves.

0056 TPM version 2.0 allows policy to be attached to the
use of the endorsement key. In FIG. 7, policy 706 is assigned
to the use of the signing portion 704 of the endorsement key
703. Specifically, the signing portion 704 is enabled on the

Feb. 6, 2014

condition on that the identity of the associated virtual
machine has not changed from the identity that forms the
basis of the endorsement hierarchy. For instance, in the
example of FIG. 4A, the signing portion 415 of the endorse
ment key is conditioned on the identity of the corresponding
virtual machine (i.e., source virtual machine 410) being the
basis of the endorsement hierarchy 414. Since the execution
environment 412 was created with the endorsement hierarchy
414 being based on the identity of the source virtual machine
410, the signing portion 415 is enabled. However, in FIG. 4B,
since the signing portion 425 is a copy of the signing portion
415, the signing portion 425 is not enabled until the signing
portion is modified to be based on the new identity of the
target virtual machine as illustrated and described with
respect to FIG. 4C.
0057. In some embodiments, the proof of whether or not
the endorsement hierarchy is based on the identity of the
virtual machine is provided with a value in persistent memory
711 (e.g., a PCR value), and with a monotonic counter 712.
When the trusted execution environment 710 is copied as part
of the cloning of a virtual machine, the value of the PCR 711
would remain the same also. However, in conjunction with
the copying operation, the value of the PCR 711 associated
with target virtual machine is altered as compared to the value
of the PCR 711 still associated with the source virtual
machine. For instance, the PCR 711 value may be altered in a
manner that the information regarding the cloning is deriv
able from the new value. Thus, the PCR 711 of any given
virtual machine may be referenced to view the cloning history
that created the given virtual machine.
0.058 Alternatively or in addition, the proof of whether or
not the endorsement hierarchy is based on the identity of the
virtual machine is provided using a value of a persistent
monotonic counter 712 of the trusted execution. For instance,
in conjunction with the copying operation, the counter 712
may be incremented. Thus, the counter 712 within the target
virtual machine State will be incremented by one as compared
to the counter 712 in the source virtual machine state. Thus,
the PCR value 711 and the counter 712 may uniquely identify
any cloned virtual machines as having a distinct identity as
compared to the source virtual machine. Also in conjunction
with the copying operation, a new endorsement key is created
that is bound to the new PCR value 711 and the new counter
value 712. This allows the endorsement hierarchy that is
founded on the endorsement key to be based on the new
identity. In one embodiment, the creation of the new endorse
ment key is performed by creating a master key that issues a
master certificate at the time that the original source virtual
machine was created. This master certificate may be used to
verify that the target virtual machine is indeed a clone of the
Source virtual machine, thereby allowing the hypervisor to
confidently issue a new endorsement key to the target virtual
machine.

0059. Thus, what is described is a mechanism for allowing
virtual machines to operate with a trusted execution environ
ment (such as a software-based trusted platform module)
while allowing the virtual machine to be cloned, rolled back
and migrated, without adversely affecting the security pro
vided by the trusted execution environment.
0060 Referring to FIG. 2, the trusted execution environ
ments are illustrated as operating on the same host computing
system 200. However, the principles described herein are not
limited to the location of the trusted execution environment as
compared to the location of the virtual machine. As an

US 2014/0040890 A1

example, the trusted execution environment might be, for
example, a cloud based trusted execution environment Such
as is described hereinafter.
0061 FIG. 8 illustrates an environment 800 in which the
principles described herein may be employed. Specifically,
the environment 800 includes multiple client computing sys
tems 801 (hereinafter referred to as “clients 801). Each of the
clients 801 may be, for example, a virtual machine such as the
virtual machines 210 of FIG. 2. The principles described
herein allow at least some local trusted execution environ
ment functionality to be offloaded from the clients over a
network 803 into the system 810. This is counterintuitive as
traditionally TPM modules operate at the local trusted execu
tion environment level, and thus are physically tied to the
client. In the case of FIG. 8, multiple clients are able to offload
TPM functionality to the system 810. An example of the
network 803 is the Internet, although the principles described
herein may also be applied to other networks, such as perhaps
an enterprise network.
0062. The functionality of the TPM is offloaded by having
the system 810 emulating the protected area and its non
readability feature. For instance, whereas a traditional TPM
has a protected area that includes data that cannot be read
outside of the TPM, the system 810 has a protected area for
each entity, and the protected area is not readable from out
side of the system, or from outside of the account, except by
the a security processor 813. Since the system 810 is not
easily breached to thereby allow another entity to read the
protected data, the system 810 provides an equivalent of local
trusted execution environment security in creating a signifi
cant barrier to discovery of the content of the protected area.
0063. Furthermore, a security processor 813 may respond
to the trusted execution environment commands in the same
manner that a local TPM would normally respond to such
trusted execution environment commands. For instance the
security processor 813 may perform cryptographic and/or
security processing on keys and/or protected data sets. This
allows much of the functionality of the TPM to be emulated.
If a client is destroyed, the TPM is still available in the system
810, and thus keys and other data (Such as monotonic
counters, non-volatile RAM contents, and so forth, associated
with the TPM) that were generated from the TPM may still be
used.

0064. In FIG. 8, there are six clients 801A through 801F
illustrated. However, the ellipses 801G represents that the
principles described herein are not limited to the particular
number of clients 801 connected to the system 810. There
may be as few as one, but potentially many, especially if the
network 803 is the Internet and/or the system 810 is a cloud
computing environment. Furthermore, the number of clients
801 may change over time. For instance, if the system 810
were a cloud computing environment, the number of clients
801 could vary by the second or minute.
0065. In this description and the following claims, “cloud
computing is defined as a model for enabling on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services). The definition of "cloud computing is not limited
to any of the other numerous advantages that can be obtained
from Such a model when properly deployed.
0066 For instance, cloud computing is currently
employed in the marketplace so as to offer ubiquitous and
convenient on-demand access to the shared pool of config
urable computing resources. Furthermore, the shared pool of

Feb. 6, 2014

configurable computing resources can be rapidly provisioned
via virtualization and released with low management effort or
service provider interaction, and then scaled accordingly.
0067. A cloud computing model can be composed of vari
ous characteristics such as on-demand self-service, broad
network access, resource pooling, rapid elasticity, measured
service, and so forth. A cloud computing model may also
come in the form of various service models such as, for
example, Software as a Service (“SaaS), Platform as a Ser
vice (“PaaS), and Infrastructure as a Service (IaaS). The
cloud computing model may also be deployed using different
deployment models such as private cloud, community cloud,
public cloud, hybrid cloud, and so forth. In this description
and in the claims, a "cloud computing environment is an
environment in which cloud computing is employed.
0068. Some of the clients 801 might include a TPM, and
some might not. For instance, in the case of FIG. 8, client
801A has TPM 802A, client 801B has TPM 802B, and client
801E has client 802E. Others of the clients including clients
801C, 801D or 801F do not have a TPM. The presence of a
TPM allows some machine specific functionality of the TPM
to be offloaded (such as the ability to provide a trusted event
history associated with the machine) as will be explained
below, even though the local client TPM might not be fully
performing as a TPM. However, even without a TPM, some of
the TPM functionality may still be offloaded as described
below.

0069. A system 810 includes a reception module 811 that
receives trusted execution environment commands issued by
the clients 801. The trusted execution environment com
mands that would normally be issued to a TPM using a TPM
software interface (such as TBS) are instead intercepted, and
dispatched to the system 810 to thereby be received by the
reception module 811. For instance, clients 801A through
801F dispatch such trusted execution environment com
mands as represented by corresponding arrows 805A through
805F. Each trusted execution environment command is a
command to operate on a security context (e.g., a key or data)
that corresponds to an entity that issued the command. The
system includes a security processor 813 that performs cryp
tographic and security functions in response to the trusted
execution environment commands received by the reception
module 811.

0070 The system 810 also includes an account manage
ment module 812 that includes multiple protected accounts
821. In FIG. 8, the accounts includes three accounts 821A,
821B and 821C, although the ellipses 821D represents that
there may be any number of accounts managed by the system
810. Each account corresponds to one or more of the clients
801 and includes a protected data set corresponding to each
client. Each protected data set emulates what a protected area
of a TPM would look like for each client. However, since the
protected data set is not limited to the small area of the TPM,
the protected data set may be much larger, perhaps in the
megabyte, gigabyte, or terabyte ranges.
0071. In FIG. 8, the account 821A has a protected data set
822A that corresponds to the client 801A. The account 821B
has a protected data set 822B that corresponds to the client
801B, and a protected data set 822C that corresponds to the
client 801C. The respective clients for the account 821B are
encompassed by a dotted-lined box. The account 821C has a
protected data set 822D that corresponds to the client 801D, a
protected data set 822E that corresponds to the client 801 E.

US 2014/0040890 A1

and a protected data set 822F that corresponds to the client
801F. The respective clients for the account 821C are encom
passed by a dashed-lined box.
0072. The protected data sets 822 are “protected” in the
sense that their contents are not readable outside of the con
text of the system, and perhaps not readable outside of the
corresponding account, except perhaps by the security pro
cessor 813. In one embodiment, an instance of the security
processor 813 is run inside of the context of the account. In
that case, there would be a security processor 813 inside the
account 821A, another security processor 813 inside the
account 821B, and another security processor 813 inside the
account 821C.

0073. Each data set emulates an example of what the cor
responding client 801 might have in its TPM if there were no
memory restrictions to that TPM. For instance, FIG. 9 illus
trates a particular data set 900 that includes immutable data
901 and mutable data 902. For instance, immutable data 901
includes an endorsement key 911, which is non-migratable.
The immutable data 901 also includes a migratable key 912,
and other immutable data 913. The mutable data 902 includes
a migratable key 921, a non-migratable key 922, a monotonic
counter 923, and non-volatile memory 924.
0074 All of the data set 900 is protected as mentioned
above. However, immutable data 901 cannot be changed,
even by the security processor 813. Mutable data 902 can be
changed, but only in response to execution of the security
processor 813. An endorsement key 911 is a non-migratable
key in that it can only be used inside the account correspond
ing to the data set. However, the migratable key 912 can be
used outside of the account, but only under protected circum
stances (such as in another TPM or another similarly config
ured account) that prevents reading the migratable key in the
clear. The immutable data 901 also may include other data
913. The mutable data 902 may also have migratable and
non-migratable keys such as migratable key 921 and non
migratable key 922. The mutable data 902 may also include a
monotonic counter that irreversibly increments in response to
a request to increment, and/or in response to another event
(such as a powering up of the machine). The mutable data 902
also may include non-volatile memory.
0075 Optionally, each protected account 821A through
821C may further include a corresponding account-level data
set 823A through 823C. For instance, account 821A has
account-level data set 823A, account 821B has account-level
data set 823B, and account 821C has account-level data set
823C. Each account-level data set is not specific to any of the
entities associated with the account, but is general to the
account itself. As an example, using existing TPM commu
nication protocols, upper level PCRs (such as PCR 24 and
above) may be used for Such account-level data.
0076. As an example, suppose the account 821B corre
sponds to a particular user, the account-level data set 823B
might list user passwords. The account-level data set 823B
might also be used to record immutable events associated
with the account. For instance, the account-level data set
823B might store a record of high-sensitivity functions (such
as account and session management) in the operating system.
Furthermore, being able to tie an account to other trusted
platform module (TPM) properties, like PCRs for example,
allows implicit attestation of the system for a user to be
Successfully authenticated and operational. As another
example, the user might store a sequence of licenses that the
user has signed up for. Again, this sequence could be immu

Feb. 6, 2014

table, and perhaps made using a single entry from which the
sequence of licenses can be mathematically derived. In that
case, if the question ever came up as to whether the user had
a license to a particular product, the user may concretely
know the answer.

0077 Accordingly, what is described is an effective way to
offload guaranteed immutability of a content of a protected
area from a local TPM to a service over a network, such as in
a cloud computing environment. This is accomplished by
intercepting trusted execution environment commands that
are issued from a client processor to a TPM, and redirecting
them over a network to a system that has a security processor
that is capable of interpreting the trusted execution environ
ment commands, and a data set for each client the includes
data that is to be protected.
0078. This preserves the security of a local trusted execu
tion environment layer since the protected area (e.g., the data
set) would be extremely difficult or impossible to breach,
essentially requiring a breach of the system 810 in order to
access the protected data. Since the system 810 might be quite
Sophisticated and have high levels of security, breaching of
the system 810 would be extremely difficult or impossible.
Such difficulty or impossibility might even exceed that of
attempting to breach a client TPM on the client machine itself.
Accordingly, local trusted execution environment security is
preserved. Although information may be communicated from
the client to the system, 810, such information is only the
trusted execution environment commands, not the actual data
being protected in the data set. Accordingly, even if someone
could read such traffic, the protected data remains protected.
In some embodiment, even the network traffic may be
encrypted if a trust relationship exists between the client
processor and the system 810. Such might be helpful in the
case of there being security issues associated with transmit
ting commands in the clear. Sucha trust relationship could be,
for example, bootstrapped at the time the client is provi
Sioned.

0079. As an additional benefit, since the memory space is
no longer limited to a small chip, the amount of available
memory may be significantly increased. Furthermore, since
processing power is no longer limited to a small TPM chip,
cryptographic processes may be much more efficiently
executed and/or made more complex. Also, since the pro
tected area is no longer physical coupled to the client, if the
client is destroyed, the keys that were constructed using data
from the protected area may still be used.
0080. Before further aspects are described, a general pro
cessing flow associated with the processing of a trusted
execution environment command will be further described
herein. In particular, FIG. 10 illustrates a flowchart of a
method 1000 for processing a trusted execution environment
command. As an example, the trusted execution environment
command may be any TPM command, whether conforming
to any existing protocol (such as TPM version 2.0) or whether
conforming to a future TPM protocol or any protocol that
facilitates communication with a local trusted execution envi
ronment layer. Some of the acts of the method 1000 are
performed by the client (e.g., client 801A) as illustrated in the
right column of FIG. 10 under the header“CLIENT. Others
of the acts are performed by the system 810 as illustrated in
the middle column of FIG. 10 under the header “SYSTEM.
Other acts are performed by the security processor 813 as
illustrated in the left column of FIG. 10 under the header
“TPM.

US 2014/0040890 A1

0081. The process begins when the client issues a trusted
execution environment command (act 1001). Rather, or in
addition to, being dispatched to a local TPM on the client, the
trusted execution environment comment is intercepted (act
1002), and dispatched to the system (act 1003).
0082. The system then receives the trusted execution envi
ronment command (act 1011), identifies an account associ
ated with the client that issued the trusted execution environ
ment command (act 1012), identifies a data set associated
with the client (act 1013), and identifies the operation to be
performed (act 1014). The security processor is then
instructed to perform the operation (act 1015), and the secu
rity processor then performs the operation (act 1021) on the
identified data set of the identified account.

I0083. One of the functions of a TPM not yet mentioned
relies on the ability to detect a power cycle of the correspond
ing client. This is one of the reasons why the TPM is bound
within the corresponding client, and hardwired to the power
supplies of the client, so that the TPM can detect a loss of
power, and a recovery of power. One of the reasons for detect
ing a power cycle is so that the TPM can reset some of the data
within the protected data upon experiencing a loss and recov
ery of power. In some cases, the reliability of some of the
machine-specific data within the TPM relies on knowing
about power cycles.
0084. One example of data that should be reset upon a
power cycle is a platform event log. In a typical TPM, the
event log is represented as a single entry. Whenever a new
event of interest occurs (e.g., a loading of a piece of software,
or a start of execution of a piece of software), that event is
concatenated with the previous entry, hashed, and then stored
as a new value of the entry. If this is done in a manner that the
information (i.e., the previous events) from the old entry is
preserved, then the entry can be mathematically evaluated to
play back the sequence of events that have occurred in the
platform. From this, platform integrity can be proved.
0085. However, since the system 810 is not physically
bound to any of the clients 801, but instead communicates
over a network, it is difficult for the system 810 to determine
whether any of the respective clients 801 have experienced a
power cycle. Nevertheless, if the client does have a TPM, that
TPM might track just enough information to be able to infer
that a power cycle has occurred. This is possible even if the
local client TPM is not fully functioning given that the trusted
execution environment commands may not be given to the
local TPM, but rather are intercepted and dispatched to the
system 810. For instance, in FIG. 8, client 801A is illustrated
as including TPM 802A, client 801B is illustrated as includ
ing TPM 802B, and client 801E is illustrated as including
TPM8O2E.

I0086. In this case, the account management module 812
and/or the system 810 as a whole may detect that a given
client has been rebooted by communicating with the local
client TPM installed in that client (e.g., communicating with
TPM 802A in the case of client 801A). For instance, the
system 810 may receive a cryptographic Statement from the
client 801A indicating that a power cycle has occurred. There
are a number of ways that this might happen.
0087. In a first example, the system 810 and local client
TPM may communicate so that the system 810 receives PCR
values associated with registers that would be reset upon a
power cycle. The system 810 then compares the current value

Feb. 6, 2014

of the PCR in the protected data at the system with the value
of the PCR in the local client TPM, and can infer whether a
power cycle has occurred.
I0088. In a second example, local client TPM may establish
an ephemeral key upon every power up of the client, and then
negotiate with the client processor the use of this ephemeral
key in order to communicate. The system 810 has awareness
of this ephemeral key since it is tracking communications. If
the system 810 detects that it is no longer able to understand
the communications, then the ephemeral key must have
changed, implying that the client has experienced a power
cycle.
I0089. In an alternative embodiment, a power cycle of the
system 810 may be detected even without a TPM on the
system 810. For instance, this could be accomplished by
having a system monitor which is capable of monitoring
power cycling of client systems. A non-limiting example of
such a system monitor is the MICROSOFTR) System Center
Virtual Machine Monitor (or SCVMM).
0090 The system 810 may add protected data sets to a
given account whenever a new client is added to the account.
For instance, when a communication is detected associated
with a particular account, and that communication somehow
indicates that this is from an unrecognized client, then a new
data set may be added to that account. Thus, for instance,
assuming the client uses an encryption key to communicate
with the system, if a communication arrives that uses an
unrecognized encryption key, then perhaps a new client has
been added. Likewise, a protected data set for an account may
be deleted after a corresponding client is no longer operating
on the account. For instance, there may be a garbage collec
tion action in which protected data sets that have not been
used for some period of time (perhaps years) are deleted from
the account.

0091 A policy module 814 may serve to allow actions by
a client depending on whether criteria have been satisfied
with respect to one or more data fields of the protected data set
corresponding to the client. Alternatively or in addition, the
policy module 814 may serve to allow actions by any client
associated with an account depending on whether criteria
have been satisfied with respect to one or more data fields of
the account-level data sets. Combined with the fact that the
memory associated with a protected data set could be signifi
cantly augmented as compared to a local TPM, this enables
significant possibilities.
0092. For instance, suppose that the protected data set for
a given client includes an entire image of a restore state of the
client (e.g., the operating system, any standard applications,
standard configuration settings, and so forth). If that client has
been lost or damaged, another client on the account may
access the image and install the image on the new client
provided that certain policy is met, such policy intended to be
protected against improperly obtaining the restore state of the
client. Alternatively, the key could be held in the protected
data set, and the key protects the restore state somewhere else.
In that case, the key would be made accessible only if policies
are met.

0093. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be consid
ered in all respects only as illustrative and not restrictive. The
scope of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes

US 2014/0040890 A1

which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.
What is claimed is:
1. A method for cloning Source virtual machine state hav

ing an associated trusted execution environment to formulate
a target virtual machine state, the method comprising:

an act of accessing a source virtual machine state of a
Source virtual machine having an identity, the Source
virtual machine state including a trusted execution envi
ronment that has at least an endorsement hierarchy, the
endorsement hierarchy based on the identity of the
Source virtual machine;

an act of copying the source virtual machine state to for
mulate a target virtual machine State that is to be asso
ciated with a target virtual machine having an identity
that is different than that of the source virtual machine,
wherein a signing portion of the copied endorsement
hierarchy is disabled; and

an act of modifying the target virtual machine state Such
that the endorsement hierarchy of the target virtual
machine state is based on the identity of the target virtual
machine.

2. The method in accordance with claim 1, wherein the
Source virtual machine State represents the virtual machine
state at a prior state of time, wherein the cloning is performed
in order to perform a rollback of the source virtual machine so
that the target virtual machine may continue as the rolled back
version of the source virtual machine, and Such that the Source
virtual machine itself no longer operates.

3. The method in accordance with claim 1, wherein the
Source virtual machine state represents a paused State of the
Source virtual machine Such that after the cloning, the Source
virtual machine continues to operate beginning with the
Source virtual machine state, and Such that the target virtual
machine begins operation using the target virtual machine
State.

4. The method inaccordance with claim 1, wherein enable
ment of a signing portion of the endorsement hierarchy is
conditioned on that the identity of the associated virtual
machine not having been changed from the identity that forms
the basis of the endorsement hierarchy.

5. The method in accordance with claim 4, wherein a value
in a persistent portion of the trusted execution environment
changes as a result of the act of copying such that a value of
the persistent portion of the trusted execution environment is
different in the source virtual machine state as compared to
the target virtual machine state, and wherein the value in the
persistent portion is used to at least partially prove whether or
not the identity of the associated virtual machine has changed
from the identity that forms the basis of the endorsement
hierarchy in the associated virtual machine.

6. The method in accordance with claim 5, wherein the
changed value of the persistent portion identifies that cloning
event.

7. The method in accordance with claim 4, wherein a value
of a persistent monotonic counter of the trusted execution is
incremented in the target virtual machine state as compared to
the source virtual machine state, and wherein the value of the
monotonic counter is used to at least partially prove whether
or not the identity of the associated virtual machine has
changed from the identity that forms the basis of the endorse
ment hierarchy in the associated virtual machine.

8. The method in accordance with claim 1, wherein the
Source virtual machine state is first Source virtual machine

Feb. 6, 2014

state, the target virtual machine is a first target virtual
machine, and the target virtual machine state is a first target
virtual machine state, the method further comprising:

an act of accessing second source virtual machine state of
the source virtual machine after the source virtual
machine continued operating from the first source Vir
tual machine State, the second source virtual machine
state also including the endorsement hierarchy based on
the identity of the source virtual machine;

an act of copying the second source virtual machine state to
formulate a second target virtual machine state that is to
be associated with a second target virtual machine hav
ing an identity that is different than that of the source
virtual machine, wherein a signing portion of the
endorsement hierarchy that is copied to the second target
virtual machine state is disabled; and

an act of modifying the second target virtual machine state
Such that the endorsement hierarchy of the second target
virtual machine state is based on the identity of the
second target virtual machine.

9. The method in accordance with claim 1, wherein the
Source virtual machine is a first source virtual machine, the
target virtual machine is a second source virtual machine, the
method further comprising:

an act of accessing second source virtual machine state of
the second source virtual after the second source virtual
machine continued operating from the first target virtual
machine state, the second source virtual machine state
also including the endorsement hierarchy based on the
identity of the second source virtual machine;

an act of copying the second source virtual machine state to
formulate a second target virtual machine state that is to
be associated with a second target virtual machine hav
ing an identity that is different than that of the second
Source virtual machine, wherein a signing portion of the
endorsement hierarchy that is copied to the second target
virtual machine state is disabled; and

an act of modifying the second target virtual machine state
Such that the endorsement hierarchy of the second target
virtual machine state is based on the identity of the
second target virtual machine.

10. The method in accordance with claim 1, wherein the
trusted execution environment is a software-based trusted
execution environment.

11. The method in accordance with claim 10, wherein the
Software-based trusted execution environment is present on a
host computing system that hosts the source virtual machine.

12. The method in accordance with claim 1, wherein the
trusted execution environment is at least partially present in a
cloud computing environment.

13. The method in accordance with claim 1, wherein a new
endorsement key is created for the trusted execution environ
ment present within the target virtual machine state.

14. The method in accordance with claim 13, wherein
enablement of a signing portion of the new endorsement key
is conditioned upon the identity of the target virtual machine.

15. A computer program product comprising one or more
computer storage media having thereon computer-executable
instructions that, when executed by one or more processors of
the computing system, cause the computing system to a clon
ing component that performs the following:

an act of detecting that cloning of a source virtual machine
is to occur;

US 2014/0040890 A1

in response to detecting, an act of accessing a source virtual
machine state of the source virtual machine having an
identity, the Source virtual machine state including a
trusted execution environment that has an endorsement
hierarchy, the endorsement hierarchy based on the iden
tity of the source virtual machine;

an act of copying the accessed source virtual machine state
to formulate a target virtual machine state that is to be
associated with a target virtual machine having an iden
tity that is different than that of the source virtual
machine;

an act of ensuring that at least a signing portion of the
endorsement hierarchy is enabled prior to copying but
temporarily disabled after copying:

an act of creating a new endorsement key that is bound to
the copied endorsement hierarchy in a manner that the
copied signing portion of the endorsement hierarchy is
again enabled on the target virtual machine; and

an act of modifying the target virtual machine state Such
that the endorsement hierarchy of the target virtual
machine state is based on the identity of the target virtual
machine.

16. The computer program product in accordance with
claim 15, wherein the source virtual machine state represents
the virtual machine state at a prior state of time, wherein the
cloning is performed in order to perform a rollback of the
Source virtual machine so that the target virtual machine may

Feb. 6, 2014

continue as the rolled back version of the source virtual
machine, and Such that the Source virtual machine itself no
longer operates.

17. The computer program product in accordance with
claim 15, wherein the source virtual machine state represents
a paused State of the source virtual machine Such that after the
cloning, the source virtual machine continues to operate
beginning with the Source virtual machine state, and Such that
the target virtual machine begins operation using the target
virtual machine state.

18. The computer program product in accordance with
claim 14, wherein the trusted execution environment is a
Software-based trusted execution environment that is present
on a host computing system that hosts the Source virtual
machine.

19. The computer program product in accordance with
claim 14, wherein the trusted execution environment is at
least partially present in a cloud computing environment.

20. A host computing system having running thereon at
least the following:

physical resources including at least one or more physical
processors and physical memory;

a plurality of virtual machines that includes at least a first
virtual machine associated with a first software-based
trusted execution environment, and a second virtual
machine associated with a second software-based
trusted execution environment; and

a hypervisor that intermediates between the plurality of
virtual machines and the physical resources.

k k k k k

