

Patent Number:

Date of Patent:

[11]

[45]

United States Patent [19]

Peake et al.

- [75] Inventors: Clinton J. Peake, Trenton; Thomas G. Cullen, Milltown; Albert C. Lew, Princeton Junction, all of N.J.
- [73] Assignee: FMC Corporation, Philadelphia, Pa.
- [21] Appl. No.: 786,498
- [22] Filed: Nov. 1, 1991
- [51] Int. Cl.⁵ C07D 251/18; C07D 401/12; C07D 403/12; A01N 43/68
- [52] U.S. Cl. 514/245; 544/205;

[56] References Cited

U.S. PATENT DOCUMENTS

2,976,288	3/1961	Green et al 260/249.9	
3,105,074	9/1963	Mamalis 260/249.9	
3,660,394	5/1972	Mamalis 260/249.9	
3,682,912	8/1972	Mamalis et al 260/249.9	
3.723.429	3/1973	Mamalis et al 260/249.9	

FOREIGN PATENT DOCUMENTS

1053113	4/1963	United Kingdom .
1053307	4/1963	United Kingdom .
743964	6/1970	United Kingdom .
765176	8/1971	United Kingdom .
1297273	11/1972	United Kingdom .

OTHER PUBLICATIONS

Mamalis "Amino-oxy-derivatives. Part III. Dihydrotriazines and Related Heterocycles" J. Chem. Soc. (1962) 3915-26.

Mamalis "Aminooxy Derivatives. IV. Antimicrobial Activity of Some O-Ethers of 4,6-Diamino-1,2,-dihydro-1-hydroxy-2-substituted 1,3,5-Triazines" J. Med. Chem. (1965) 8, 684-91.

Mamalis "Amino-oxy-derivatives. Part V. Some O-Ethers of 2-Substituted 4,6-Diamino-1,2-dihydro-1-hydroxy-1,3,5-triazines" J. Chem. Soc. (1965) 1829-43.

5,300,503

Apr. 5, 1994

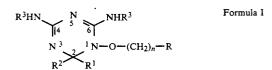
Knight "The antimalarial activity of N-benzyl-oxydihydrotriazines" Ann. Trop. Med. and Paras. (1982) 76, No. 1 (1-7).

Mamalis "Amino-oxy-derivatives Part II. Some Derivatives of N-Hydroxydiguanide" J. Chem. Soc. (1962) 229-238.

Blaney, Jeffrey M., et al., Chemical Reviews (A.C.S.), vol. 84, No. 4 (1984), pp. 333-407.

Manteuffel-Cymborowska, Malgorzata, et al., J. Insect. Physiol. vol. 16, (1970), pp. 1419-1428.

Baker, B. R., J. Med. Chem., vol. 10 (1967), pp. 912-917.


Chmurzynska, Wanda, et al., Acta Biochemica Polonica, vol. 21, No. 4 (1974), pp. 445-453.

Primary Examiner-John M. Ford

Attorney, Agent, or Firm—Stanford M. Back; Robert M. Kennedy

[57] ABSTRACT

Insects, and particularly the larvae of Lepidoptera and Coleoptera, are controlled by application of 4,6diamino-1,2-dihydro-dihydro-1,3,5-trazine derivatives, and agriculturally acceptable salts thereof, having the following structure;

when they are admixed with a compatible agricultural vehicle; additionally, certain related novel heterocyclyl, phenyl, and naphthyl triazines and their substituted counterparts are also taught.

40 Claims, No Drawings

INSECTICIDAL 4.6-DIAMINO-1.2-DIHYDRO-1.3.5-TRIAZINE DERIVATIVES

BACKGROUND OF THE INVENTION

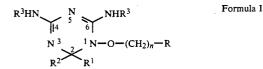
This invention relates to certain chemical compounds and compositions containing the same which are useful for controlling insects in agricultural crops. More particularly, this invention relates to certain 1,3,5-triazine¹⁰ and substituted aryl of the structure compounds and compositions, and their use as insecticides against a variety of insects, especially those of the order Lepidoptera and Coleoptera.

15 DESCRIPTION OF RELATED ART

Numerous of the triazine compounds employed in the compositions of this invention and their preparation, have been described in the literature for use in a variety of fields, but not as insecticides.

Thus, British Patents 1,053,113 and 1,053,307 disclose 20 wherein diamino-1,3,5-triazines as hypotensives, vasodilators, and CNS agents: British application BE 765,176 discloses like triazine derivatives as antimalarial or antimicrobial agents, as does BE 743,964.

Additionally, preparation and use of triazine compounds used in the compositions of this invention are disclosed in U.S. Pat. Nos. 2,976,288 (bactericides); 3,105,074 (bactericide intermediates); 3,660,394 (antiparasites); 3,682,912 (antimalarials); 3,723,429 (antima- 30 larials); and British Patent 1,297,273 (antimalarials).


Mamalis et al have also written extensively concerning the antimicrobial and antimalarial properties of these triazines and their derivatives. See, for example, Mamalis et al, "Dihydrotriazines and Related Hetero- 35 cycles", J. Chem. Soc. (London), 1962, 3915; "Antimicrobial Activity of Some O-Ethers of 4,6-Diamino-1,2dihydro-1-hydroxy-2-substituted 1,3,5-Triazines" J. Med. Chem., 8, 684-91 (1965); (ibid) J. Chem. Soc., 1829-43 (1965); and "The Anti-Malaria Activity of 40 N-Benzyloxy Dihydrctriazines", Annals of Tropical Medicine and parasitology, 76, No. 1 (1982).

See also, "Amino-Oxy Derivatives. Part III. Dihydrotriazines and Related Heterocycles", Mamalis et al., J. Chem. Soc. (London), 1962, p. 3915, and "Amino- 45 Oxy Derivatives. Part II. Some Derivatives of N-Hydroxydiguanide", Mamalis et al., J. Chem. Soc. (London), 1962, p. 229, which further disclose methods for making these compounds.

None of these patents or literature references sug- 50 gests the use of these dihydrotriazine derivatives as insecticides, some of which are effective in doses of as little as about 1 ppm.

SUMMARY OF THE INVENTION

In accordance with the present invention it has been found that 4,6-diamino-1,2-dihydro-1,3,5-triazine derivatives, and agriculturally acceptable salts thereof, which are useful as active ingredients in the compositions and methods of this invention, may be represented 60 by the following structure:

wherein R is selected from the group consisting of hydrogen, straight or branched chain alkyl, haloalkyl, (substituted aryl)haloalkyl, arylalkyl, (substituted aryl)alkyl, (α -cycloalkyl)arylalkyl, cycloalkyl, arylcycloalkyl, (substituted aryl)cycloalkyl, alkenyl, cycloalkenyl, arylalkenyl, (substituted aryl)alkenyl, alkynyl, arylalkynyl, (substituted aryl)alkynyl, alkoxy, (substituted aryl-)alkoxy, aryl, aryloxy, (substituted aryl)oxy, arylthio, (substituted aryl)thio, heterocyclyl, alkoxycarbonyl,

V, W, X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, lower alkyl, haloalkyl, cycloalkyl, arylalkyl, alkoxy, haloalkoxy, arylalkoxy, aryl (e.g. biphenyl), substituted aryl (e.g. 25 substituted biphenyl), aryloxy, (substituted aryl)oxy,

alkylthio, alkylsulfoxy, alkylsulfonyl, cyano, and nitro; V and W, or W and X, when taken together, comprise the ring-forming group

(such as naphthyl or substituted naphthyl), wherein V', W', X' and Y' have the same definition as V, W, X, and Y (above);

n is 1 to 5;

- R¹ is selected from the group consisting of lower alkyl, arylalkyl, arylalkenyl, and alkoxyaryl;
- R² is selected from the group consisting of hydrogen, and lower alkyl, preferably methyl;
- R¹ and R² may be taken together to form a spirocycloalkane ring;
- \mathbf{R}^3 is selected from the group consisting of hydrogen, lower alkylcarbonyl, cyclopropylcarbonyl, methoxymethylcarbonyl, and 2-furanylcarbonyl;

and agriculturally acceptable salts thereof. It will be understood that where applicable, these compounds also encompass their cis- and trans- forms.

Of these compounds, among the more preferred ones for use in the compositions and methods of this invention are those wherein R is cycloalkyl (including adamantyl); aryl (such as naphthyl); substituted phenoxy (preferably alkyl); substituted phenylthio (preferably 55 halo); or substituted phenyl of the structure

65 wherein

V, W, X, Y, and Z are independently halogen, or alkoxy, wherein at least one of V to Z is not hydrogen; n is 1 to 4;

55

 \mathbf{R}^{1} is methyl or ethyl;

 R^2 is methyl; and R^3 is hydrogen,

or acid salts thereof.

Particularly preferred amongst the above compounds which may be employed in this invention are those 5 which correspond to certain of the numbered compounds in Table 1 below; i.e., those where R is di- or tri-alkylphenoxy, such as Compounds 124, 191, 192 and 196 of Table 1 below; halophenyl such as Compounds 144, 146, 147, 205, and 217; or halophenylthio, such as 10 Compound 127.

Also preferred are those where R is cycloalkyl, (e.g. Compound 113 or 201); 1-alkoxyphenyl(alkyl), (e.g. Compound 116); or aryl (e.g. Compound 166).

Illustrative of the more preferred of these com- 15 pounds, corresponding to those of Table 1 below, are the following:

Cmpd 113	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-
	cycloheptylmethoxy-1,3,5-triazine
	hydrobromide;
Cmpd 116	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(4-
	methoxyphenyl)butoxy]-1,3,5-triazine
	hydrobromide;
Cmpd 124	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-
	(2,4,6-trimethylphenoxy)propoxy]-1,3,5-
	triazine hydrobromide;
Cmpd 127	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(4-
-	chlorophenylthiomethoxy)-1,3,5-triazine
	hydrochloride;
Cmpd 144	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-
•	(2,6-dichlorophenyl)propoxy]-1,3,5-triazine
	hydrobromide;
Cmpd 146	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(2,4,5-
•	trichlorophenylmethoxy)-1,3,5-triazine, pamoic
	acid salt;
Cmpd 147	4,6-diamino-1,2-dihvdro-2,2-dimethyl-1-(5-
•	bromo-2,4-dichlorophenylmethoxy)-1,3,5-
	triazine, pamoic acid salt;
Cmpd 166	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-
•	(naphth-1-ylmethoxy)-1,3,5-triazine, pentanoic
	acid salt;
Cmpd 191	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-
•	(2,4-dimethylphenoxy)propoxy]-1,3,5-triazine
	hydrobromide;
Cmpd 192	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-
-	(2,5-dimethylphenoxy)propoxy]-1,3,5-triazine
	hydrobromide;
Cmpd 196	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-
	(2,3,5-trimethylphenoxy)propoxy]-1,3,5-
	triazine hydrobromide;
Cmpd 201	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-
	(adamant-1-yl)ethoxy]-1,3,5-triazine
	hydrobromide;
Cmpd 205	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(4-
	bromophenylmethoxy)-1,3,5-triazine
	hydrobromide;
Cmpd 217	4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2-
	bromo-4,5-dichlorophenyl)propoxy]-1,3,5-
	triazine hydrochloride.
•	

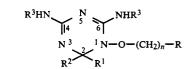
aryl include phenyl, naphthyl, and phenanthryl, preferably phenyl or substituted phenyl. The term substituted aryl includes those aryl groups substituted with one or more alkyl, halo, alkoxy, cycloalkyl, aryl, haloalkyl, haloalkoxy, cyano, nitro, dialkylamino, thioalkyl, or like moieties. The terms arylalkyl, arylcycloalkyl, and $(\alpha$ -cycloalkyl)arylalkyl, particularly as applied to the R group, include phenylalkyl, where the alkyl group may

be straight or branched; and phenylcycloalkyl. Illustra-

tions of these compounds include Compounds 117, 171,

178, 179 and 180 of Table 1 (below). The term heterocyclic as employed herein includes thienyl, furyl, pyranyl, triazinyl, pyrrolyl, imidazolyl, pyridyl, pyridazinyl, isoxazolyl groups, and the like. Also included in the definition of heterocyclic substituents are those 5- and 6-member rings which are fused 20 with an aryl group, typically phenyl, to form such heterocyclic groups as benzothienyl, isobenzofuranyl, indolyl, quinolyl, and the like. In addition, as shown in the examples below, R may also include such heterocyclic substituents as phthalimido, benzodioxolyl, benzodioxa-25 nyl, benzofuranyl, and benzopyranyl triazine deriva-

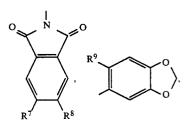
tives. Spirocycloalkanes include those having from 3 to 9 carbon atoms in their cycloalkane group, for example,


spirocyclohexane. As aforestated, the present 1,3,5-triazine compounds, 30 when admixed with suitable carriers and applied to insect-infected crops such as cotton, tobacco, corn, and cole, are highly effective in controlling such insects as the larvae of the order Lepidoptera and Coleoptera, for

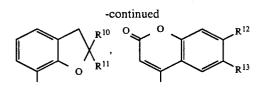
35 example the tobacco budworm, beet armyworm, cabbage looper, corn earworm, diamondback moth, Mexican bean beetle, and the like. Uniquely, many of these compositions are highly effective at very low dosages, in contrast to known insecticides for this purpose, such

⁴⁰ as methomyl, which latter compound must be applied in higher amounts to provide equal effect.

In a further embodiment of this invention there are also contemplated certain classes of novel compounds per se which fall within the scope of Formula I (above),


45 and which have insecticidal activity as described above. Amongst them are included substituted triazine compounds of the formula

Each of these above compounds is preferred because they were all highly effective at low dosages.


For purposes of this invention, as regards the above substituent groups, the following definitions apply. The term alkyl includes straight or branched chain alkyl of from 1 to 13 carbon atoms, preferably 4 to 8 carbon atoms; alkenyl includes 2 to 13 carbon atoms, preferably 60 4 to 8 carbon atoms; while halogen includes chlorine, bromine, and fluorine atoms. The terms haloalkyl and haloalkoxy include branched or straight chain C₁₋₁₃ alkyl groups wherein one or more hydrogen atoms have been replaced with halogen atoms. The cycloalkyl 65 groups, including any cis and trans forms, and which may be saturated or unsaturated, as for example hexyl or hexenyl, desirably contain from 3 to 7 carbon atoms

and agriculturally acceptable salts thereof, wherein R is a heterocyclyl moiety selected from the following

and may be substituted by halogen, alkyl, substituted

aryl, cyano, or the like. The terms aryl and substituted

5

wherein

- R¹ is selected from the group consisting of lower 10 alkyl, arylalkyl, arylalkenyl, and alkoxyaryl;
- \mathbf{R}^2 is selected from the group consisting of hydrogen and methyl, and
- R¹ and R² may be taken together to form a spirocycloalkane ring;
- R³ is selected from the group consisting of hydrogen, lower alkylcarbonyl, cyclopropylcarbonyl, methoxymethylcarbonyl, and 2-furanylcarbonyl; and
- R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , and R^{13} are independently hydrogen, halogen, alkyl, or alkoxy with the proviso that both of R^7 and R^8 may not be hydrogen and with the further proviso that R^9 may not be hydrogen.

Typical illustrations of these novel compounds are 25 the heterocyclyl- and substituted heterocyclyl-triazines exemplified by Compounds 35–37, and 130–132 of Table I below.

In yet another embodiment there are also contemplated certain other novel derivatives of the 1,3,5-tria- 30 zines within Formula I (above) which are also useful as insecticides in the manner described below, and as antimalarial and antimicrobial compounds. Illustrative of these are Compounds 114–117, and 171–180 of Table I, 35 below, and which have the formula

$$\begin{array}{c} R^{3}HN \underbrace{\downarrow}_{||4}^{N} \underbrace{\stackrel{N}{5}}_{6} \underbrace{\stackrel{NHR^{3}}{6}}_{R^{2}} \\ N^{3} \underbrace{\stackrel{1}{5}_{R^{2}} \underbrace{\stackrel{N-O-(CH_{2})_{n}-R}{R^{1}}}_{R^{1}} \end{array}$$

and agriculturally acceptable salts thereof, wherein R is selected from phenyl or naphthyl, phenylalkyl, phenyl-⁴⁵ methylalkyl, (α -cycloalkyl)phenylmethyl, or (phenylsubstituted)cycloalkyl wherein each phenyl or naphthyl group may optionally be substituted with lower alkyl, halogen, and lower alkoxy and each alkyl may be 50 straight or branched;

n is 1 to 5;

- R¹ is selected from the group consisting of lower alkyl, arylalkyl, arylalkenyl, and alkoxyaryl;
- \mathbb{R}^2 is selected from the group consisting of hydrogen 55 and methyl, and
- R¹ and R² may be taken together to form a spirocycloalkane ring; and
- R^3 is selected from the group consisting of hydrogen, lower alkylcarbonyl, cyclopropylcarbonyl, methoxymethylcarbonyl, and 2-furanylcarbonyl, with the proviso that R^3 is not hydrogen or lower alkylcarbonyl when R is (optionally substituted)phenyl, (optionally substituted)naphthyl, or phenylalkyl. 65

Each of the novel compounds of these additional embodiments may be prepared in the same or similar manner as those compounds of Formula I above.

DETAILED DESCRIPTION OF THE INVENTION

Synthesis of The Compounds

The compounds employed as insecticides in accordance with this invention are generally known to those skilled in the art, or may readily be prepared from these compounds by known methods. See, for example, the Mamalis et al. articles above. These and other methods are described in further detail in the examples below.

Thus, for example, using modified methods of Mamalis et al. (supra), 1-(alkoxy or arylalkoxy)diguanide may be prepared. Cyclization of this diguanide with an aldehyde or a ketone, e.g., acetone, in the presence of concentrated hydrochloric acid gives the corresponding dihydrotriazine hydrochloride. Examples of this salt prepared in this manner are 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine hydrochloride (Compound 92 below) and 4,6-diamino-1,2dihydro-2,2-dimethyl-1-phenylmethoxy-1,3,5-triazine hydrochloride (Compound 37 below). This procedure is outlined in detail in Example 1.

The compounds of the present invention may conveniently be prepared in the form of the mono-acid addition salts which may be formed from a wide range of acids. When this occurs, the acid is usually an inorganic acid such as a hydrohalic acid, sulfuric acid, nitric acid and the like, preferably hydrochloric or hydrobromic acid. The acid addition salts tend to be greater in stability than the parent free-base, and so may be made with advantage.

However, salts may be made by simple reaction of the parent compounds with acid subsequent to their formation and isolation. Inorganic acids (such as those above) or organic acids may be used. Suitable organic acids include picric, acetic, maleic, phthalic, succinic, paranitrobenzoic, stearic, mandelic, pamoic, citric, tartaric, alkylsulphonic, barbituric, or gluconic acid; (see e.g., 40 Example 8), or sulfamethoxypyridazine salts.

The free-base may optionally be reacted with a saltforming acid, for example, nonanoic acid, yielding the corresponding salt. Examples of such salts prepared in this manner are 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine nonanoic acid salt (Compound 93 below) and the corresponding tetradecanoic acid salt (Compound 94 below).

In a method for preparing 4,6-di(substituted amino) derivatives of the hydrochloride salt, the free-base of 50 the salt may be prepared by reaction of the salt with sodium carbonate in an appropriate solvent. The freebase may then in turn be reacted in-situ with two equivalents of an acid halide, for example, 2-furanoyl chloride, in the presence of an acid acceptor, yielding the 55 corresponding 4,6-di(substituted-amino) derivatives of the hydrochloride salt. An example of the 4,6-di(substituted-amino) derivative of the salt is 4,6-di(furan-2ylcarbonylamino)-1,2-dihydro-2,2-dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine (Compound 106 below). 60 The preparation of the corresponding 4,6-di(substituted amino) derivatives is presented in detail in Example 7.

Where the salt is obtained first, the free-base of the salt may also be obtained by its treatment with a strongly basic gel-type resin in ethanol and water. An example of the free-base is 4,6-diamino-1,2-dihydro-2,2 -dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine (Compound 95 below). This procedure to the free-base is presented in detail in Example 2.

Additional dihydrotriazine hydrohalide salts are prepared using a method described in U.S. Pat. No. 3,723,429. Using this method, a 1-(arylalkoxy)triazine hydrochloride, for example, 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-phenylmethoxy-1,3,5-triazine hydro- 5 chloride (Compound 37 below) is prepared, as previously described, and hydrogenolyzed in ethanol in the presence of 10% platinium oxide on charcoal, affording the corresponding 1-hydroxytriazine hydrochloride. The 1-hydroxytriazine hydrochloride, for example 4,6- 10 diamino-1,2-dihydro-1-hydroxy-2,2-dimethyl-1,3,5-triazine hydrochloride is then converted to the free-base by methods previously described and in turn may be reacted with an appropriately substituted halide, for example, 2,4,5-trichlorophenylmethyl bromide, in dimeth- 15 thylethyl N-(naphth-1-ylmethoxy)carbamate in 30 ml of ylformamide, yielding the corresponding dihydrotriazine hydrohalide. The halide moiety of the substituted halide chosen to react with the 1-hydroxytriazine governs which hydrohalide salt is obtained. Examples of salts prepared in this manner are 4,6-diamino-1,2-dihy- 20 dro-1-(2,4,5-trichlorophenylmethoxy)-2,2-dimethyl-1,3,5-triazine hydrobromide (Compound 60 below), and 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-(naphth-1yl)ethoxy]-1,3,5-triazine hydrobromide (Compound 98 below). The procedure described in U.S. Pat. No. 25 3,723,429 is presented in detail in Examples 3 and 4.

The following examples, which disclose the preparation of representative compounds of this invention (Table 1, Compounds 92, 95, 60, 98, 99, 16, 106, and 146 corresponding to Examples 1-8, respectively), are for 30 the purpose of illustrating known methods for the preparation of the compounds employed in the methods and formulations of this invention.

EXAMPLE 1

SYNTHESIS OF

4,6-DIAMINO-1,2-DIHYDRO-2,2-DIMETHYL-1-(NAPHTH-1-YLMETHOXY)-1,3,5-TRIAZINE HYDROCHLORIDE (COMPOUND 92)

Step A: Synthesis of 1,1-dimethylethyl N-hydrox- 40 ycarbamate as an intermediate

A mixture of 49.1 grams (0.225 mole) of di(1,1-dimethylethyl) dicarbonate and 15.6 grams (0.225 mole) of hydroxylamine in 150 ml of methanol was stirred, and a solution of 32.9 ml (0.236 mole) of triethylamine in 60 45 ml of methanol was added dropwise. Upon completion of addition, the reaction mixture was stirred for one hour and then was concentrated under reduced pressure to a residue. The residue was extracted with 300 ml of diethyl ether. The ether extract was washed with 50 ml 50 of aqueous 1N hydrochloric acid and then with two 50 ml portions of water. The organic layer was concentrated under reduced pressure, yielding 22.9 grams of 1,1-dimethylethyl N-hydroxycarbamate. The NMR spectrum was consistent with the proposed structure.

Step B: Synthesis of 1,1-dimethylethyl N-(naphth-1ylmethoxy)carbamate as an intermediate

Under a nitrogen atmosphere, a suspension of 1.6 grams (0.041 mole) of 60% sodium hydride (in mineral oil) in dimethylformamide was stirred, and 5.4 grams 60 (0.041 mole) of 1,1-dimethylethyl N-hydroxycarbamate was carefully added portionwise. Upon completion of the evolution of hydrogen, 5.8 grams (0.032 mole) of naphth-1-ylmethyl chloride was added. Upon completion of addition, the reaction mixture was stirred for 65 about 30 minutes. After this time the reaction mixture was poured into 200 ml of water. The mixture was extracted with 200 ml of diethyl ether. The ether extract

was washed with three 50 ml portions of water. The organic layer was concentrated under reduced pressure to a residual oil. The oil was purified by column chromatography on silica gel. Elution was accomplished with mixtures of 5% to 20% diethyl ether in petroleum ether. The appropriate fractions were combined and concentrated under reduced pressure, yielding 3.4 grams of 1,1-dimethylethyl N-(naphth-1-ylmethoxy)carbamate. The NMR spectrum was consistent with the proposed structure.

Step C: Synthesis of (naphth-1-ylmethoxy)amine hydrochloride as an intermediate

A solution of 3.4 grams (0.012 mole) of 1,1-dimeethanol was stirred, and dry hydrogen chloride gas was bubbled into the solution during a 1 minute period. After this time, thin layer chromatographic analysis of the reaction mixture indicated that the reaction had gone to completion. The reaction mixture was concentrated under reduced pressure, yielding 2.5 grams of hydrochloride; (naphth-1-ylmethoxy)amine m.p. 193°-195° C. (Lit. m.p. 198° C.).

Step D: Synthesis of 1-(naphth-1-ylmethoxy)diguanide as an intermediate

Under a nitrogen atmosphere, a stirred solution of 2.5 grams (0.012 mole) of (naphth-1-ylmethoxy)amine hydrochloride and 1.2 grams (0.014 mole) of cyanoguanidine in 15 ml of ethanol was heated at reflux during a 2 hour period. To promote purification, the dihydrochloride salt of the reaction product was prepared by bubbling hydrogen chloride gas into the reaction mixture during a 30 second period. The reaction mixture was then taken up in an additional 7 ml of ethanol and 75 ml of diethyl ether. The resultant solid was collected by filtration and dried. The solid was dissolved in water and treated with a solution of 2.8 grams (0.020 mole) of potassium carbonate in 10 ml of water. The resultant solid was collected by filtration and dried under vacuum, yielding 1.9 grams of 1-(naphth-1-ylmethoxy)diguanide; m.p. 147°-149° C. (lit. m.p. 145° C.). The NMR spectrum was consistent with the proposed structure.

Step E: Synthesis of 4,6-diamino-1,2-dihydro-2,2dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine hydrochloride (Compound 92)

Under a nitrogen atmosphere, a stirred solution of 1.3 grams (0.005 mole) of 1-(naphth-1-ylmethoxy) diguanide and 0.42 ml (0.005 mole) of concentrated hydrochloride acid in 150 ml of acetone was heated at reflux for six hours. After this time the reaction mixture was concentrated under reduced pressure to a residual oil. Following unsuccessful attempts to crystallize the oil, it was redissolved in 150 ml of acetone, and 0.42 ml of concentrated hydrochloric acid was added. The solution slowly became cloudy and some crystals formed. The mixture was briefly heated to reflux, and then it was allowed to cool to ambient temperature where it was stirred for about 60 hours. The resultant solid was collected by filtration, yielding 1.3 grams of 4,6diamino-1,2-dihydro-2,2-dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine hydrochloride; m.p. 217°-218° C.

(lit. m.p. 215° C.). The NMR spectrum was consistent with the proposed structure.

EXAMPLE 2

SYNTHESIS OF 4,6-DIAMINO-1,2-DIHYDRO-2,2-DIMETHYL-1-(NAPHTH-1-YLMETHOXY)-1,3,5-TRIAZINE (COMPOUND 95)

A solution of 0.8 gram (0.002 mole) of 4,6-diamino-1,2-dihydro-1-(naphth-1-ylmethoxy)-2,2-dimethyl-1,3,5-triazine hydrochloride in about 10 ml of 1:1-waterethanol was passed slowly though a 2.25 cm diameter ¹⁰ column containing 10 ml of a strongly basic gel-type ion-exchange resin (sold under the trademark Amberlite (R) IRA-400 (OH) ion-exchange resin). An additional 25 ml of 1:1-water-ethanol was passed through the column to remove the maximum amount of product. The 15 combined eluants were cooled in a freezer, and the resultant solid was collected by filtration. The solid was dried, yielding 0.3 gram of 4,6-diamino-1,2-dihydro-2,2dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine; m.p. 170°-171° C. (lit. m.p. 168°-170° C.). The NMR spec- 20 37.9 grams of 4,6-diamino-1,2-dihydro-1-hydroxy-2,2trum was consistent with the proposed structure.

EXAMPLE 3

SYNTHESIS OF 4,6-DIAMINO-1,2-DIHYDRO-2,2-DIMETHYL-1-(2,4,5-TRICHLOROPHENYLMETHOXY)-2,2-DIMETHYL-1,3,5-TRIAZINE HYDROBROMIDE (COMPOUND 60)

Step A Synthesis of 1-phenylmethoxydiguanide as an 30 intermediate

This compound was prepared in a manner analogous to that of Example 1, Step D, using 100 grams (0.63) mole) of phenylmethoxyamine hydrochloride (commercially available) and 65 grams (0.77 mole) of cyanoguanidine in 200 ml of ethanol. This procedure differed from 35Example 1, Step D, in that the dihydrochloride salt was not prepared. Following treatment with potassium carbonate in water, the reaction mixture was extracted with 300 ml of ethyl acetate. The extract was concentrated under reduced pressure, yielding 120.1 grams of 40 1-phenylmethoxydiguanide; m.p.; 95°-100° C.

Step B: Synthesis of 4,6-diamino-1,2-dihydro-1phenylmethoxy-2,2-dimethyl-1,3,5-triazine hydrochloride (Compound 37) for insecticidal testing and as an intermediate

This compound was prepared in a manner analogous to that of Example 1, Step E, using 120.1 grams (0.58 mole) of 1-phenylmethoxydiguanide, 95 ml of concentrated hydrochloric acid, and 400 ml of acetone in 400 ml of ethanol. The reaction mixture was concentrated 50under reduced pressure to near-dryness. The concentrate was mixed with a hot mixture of 50 ml of ethanol in 400 ml of acetone. The resultant solid was collected by filtration, yielding 96.5 grams of 4,6-diamino-1,2-55 dihydro-1-phenylmethoxy-2,2-dimethyl-1,3,5-triazine hydrochloride, m.p. 218°-219° C. The NMR spectrum was consistent with the proposed structure.

Step C: Synthesis of 4,6-diamino-1,2-dihydro-1hydroxy-2,2-dimethyl-1,3,5-triazine hydrochloride as an intermediate

A solution of 10.0 grams (0.035 mole) of 4,6-diamino-1,2-dihydro-1-phenylmethoxy-2,2-dimethyl-1,3,5-triazine hydrochloride and 20 ml of water in 30 ml of ethanol was hydrogenated in the presence of 1.0 gram of 5% palladium on charcoal using a Parr hydrogenator. Upon 65 completion of the uptake of the theoretical amount of hydrogen, the reaction mixture was filtered. The filtrate was concentrated under reduced pressure to a residual

solid. The solid was recrystallized from ethanol, yielding 4.7 grams of 4,6-diamino-1,2-dihydro-1-hydroxy-2,2-dimethyl-1,3,5-triazine hydrochloride, m.p. 241° C. (dec.). The NMR spectrum was consistent with the proposed structure. The reaction was repeated several times to provide sufficient material for the next step.

Step D: Synthesis of 4,6-diamino-1,2-dihydro-1hydroxy-2,2,-dimethyl-1,3,5-triazine as an intermediate This compound was prepared in a manner analogous to that of Example 2, using 47.9 grams (0.247 mole) of 4,6-diamino-1,2-dihydro-1-hydroxy-2,2-dimethyl-1,3,5triazine hydrochloride in 100 ml of water and a 3.5 cm - diameter column containing 350 ml of a strongly basic gel-type ion-exchange resin. An additional 500 ml of water was passed through the column to remove the maximum amount of product. The combined eluants were concentrated under reduced pressure, yielding dimethyl-1,3,5-triazine; m.p. 211°-212° C. (dec). The NMR spectrum was consistent with the proposed structure.

Step E: Synthesis of 2,4,5-trichlorophenylmethyl bromide as an intermediate

Under a nitrogen atmosphere, a stirred solution of 5.0 grams (0.026 mole) of 2,4,5-trichlorotoluene and 5.3 grams (0.030 mole) of N-bromosuccinimide in 30 ml of carbon tetrachloride was heated to reflux and then was irradiated with a sun lamp during a 10 minute period. The reaction mixture was allowed to cool to ambient temperature at which time it was filtered to remove excess succinimide. The filtrate was concentrated under reduced pressure to a residual oil. The oil was distilled under vacuum, yielding four fractions in the boiling point range of 130°-152° C./5 mm Hg. NMR analysis of the fractions indicated that two fractions, boiling point 140°-150° C./5 mm Hg., contained the majority of the reaction product. The two fractions were combined and diluted with 1 ml of petroleum ether. The mixture was filtered to remove unreacted starting material. The filtrate was diluted with 12 ml of petroleum ether, and 45 the solution was cooled in dry-ice. The solvent was removed from the resultant solid by pipette. The solid was dried under reduced pressure, yielding 2.7 grams of 80% pure 2,4,5-trichlorophenylmethyl bromide. The NMR spectrum was consistent with the proposed structure.

Step F: Synthesis of 4,6-diamino-1,2-dihydro-1-(2,4,5trichlorophenylmethoxy)-2,2-dimethyl-1,3,5-triazine hydrobromide (Compound 60)

A solution of 0.6 gram (0.004 mole) of 4,6-diamino-1,2-dihydro-1-hydroxy-2,2-dimethyl-1,3,5-triazine and 1.6 grams (0.006 mole) of 2,4,5-trichlorophenylmethyl bromide in 5 ml of dimethylformamide was stirred in a closed reaction vessel during about an 18 hour period. After this time the reaction mixture was concentrated under reduced pressure to a residual solid. The solid was washed with 50 ml of acetone. The dried solid was recrystallized from 125 ml of water, yielding 1.1 grams of 4,6-diamino-1,2-dihydro-1-(2,4,5-trichlorophenylmethoxy)-2,2-dimethyl-1,3,5-triazine hydrobromide, m.p. 247°-248° C. The NMR spectrum was consistent with the proposed structure.

60

11

EXAMPLE 4

SYNTHESIS OF 4,6-DIAMINO-1,2-DIHYDRO-2,2-DIMETHYL-1-[2-(NAPHTH-1-YL)ETHOXY]-1,3,5-TRIAZINE HYDROBROMIDE (COMPOUND 98)

This compound was prepared in a manner analogous to that of Example 3, Step F, using 0.8 gram (0.005 4,6-diamino-1,2-dihydro-1-hydroxy-2,2mole) of dimethyl-1,3,5-triazine (prepared in Example 3) and 1.3 ¹⁰ grams (0.006 mole) of 2-(naphth-1-yl)ethyl bromide (commercially available) in 15 ml of dimethylformamide. The reaction product was recrystallized from water, yielding 0.4 gram of 4,6-diamino-1,2-dihydro-2,2hy- 15 dimethyl-1-[2-(naphth-1-yl)ethoxy]-1,3,5-triazine drobromide. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 5

SYNTHESIS OF 4,6-DIAMINO-2-ETHYL-1,2-DIHYDRO-2-METH-YL-1-(NAPHTH-1-YLMETHOXY)-1,3,5-TRIA-ZINE HYDROCHLORIDE (COMPOUND 99)

This compound was prepared in a manner analogous 25 to that of Example 1, Step E, using 1.0 gram (0.004 mole) of 1-(naphth-1-ylmethoxy)diguanide (prepared in Example 1, steps A-D), and 0.8 ml of concentrated hydrochloric acid in 20 ml of ethyl methyl ketone. The yield of 4,6-diamino-2-ethyl-1,2-dihydro-2-methyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine hydrochloride was 0.9 gram; m.p. 206°-208° C. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 6

SYNTHESIS OF

4,6-DIAMINO-1,2-DIHYDRO-2,2-DIMETHYL-1-[2,3-DIBROMO-3-(3,4-DICHLOROPHENYL)-PROPOXY]-1,3,5-TRIAZINE HYDROCHLORIDE (COMPOUND 16)

A stirred suspension of 0.8 gram (0.002 mole) of 4,6diamino-1,2-dihydro-2,2-dimethyl-1-[3-(3,4-dichlorophenyl)prop-2-enoxy]-1,3,5-triazine hydrochloride (Compound 20 - prepared in a manner analogous to that of Example 3) in 10 ml of acetic acid was cooled in an 45 ice-water bath. The reaction vessel was covered with aluminum foil to maintain darkness, and then 0.1 ml (0.002 mole) of bromine in 10 ml of acetic acid was added dropwise. Upon completion of addition, the reaction mixture was stirred about 1 hour until the bromine 50 color had disappeared. The reaction mixture was then concentrated under reduced pressure to a residue. The residue was stirred in 25 ml of boiling water containing 1 ml of aqueous 6N hydrochloric acid. The mixture was cooled, and a solid was collected by filtration. The solid 55 about 15 minutes. The reaction mixture was concenwas dried, yielding 0.5 gram of 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2,3-dibromo-3-(3,4-dichlorophenyl)propoxy]-1,3,5-triazine hydrochloride. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 7

SYNTHESIS OF

4,6-DI(FURAN-2-YLCARBONYLAMINO)-1,2-DIHYDRO-2,2-DIMETHYL-1-(NAPHTH-1-YLME-THOXY)-1,3,5-TRIAZINE (COMPOUND 106)

To a stirred mixture of 0.7 gram (0.002 mole) of 4,6diamino-1,2-dihydro-2,2-dimethyl-1-(naphth-1-ylme-

thoxy)-1,3,5-triazine hydrochloride (prepared in a manner analogous to that of Example 1) and 0.9 gram (0.009) mole) of sodium carbonate in 30 ml of methylene chloride was added 0.6 gram (0.005 mole) of 2-furanoyl chloride, followed by 1 ml of triethylamine. Upon completion of addition, the reaction mixture was stirred for about 18 hours after which time it was concentrated under reduced pressure to a residue. The residue was taken up in 100 ml of ethyl acetate and 100 ml of water. An insoluble material was removed by filtration. The organic layer was washed with 500 ml of an aqueous solution saturated with sodium chloride. The organic layer was then dried with sodium sulfate and filtered through a layer of silica gel. The filtrate was concentrated under reduced pressure to a residue. This residue was stirred with a solution of 20 ml of diethyl ether and 0.5 ml of methylene chloride. The solid was collected by filtration and was washed with ethanol, yielding, 20 when dried, 0.4 gram of 4,6-di(furan-2-ylcarbonylamino)-1,2-dihydro-2,2-dimethyl-1-(naphth-1ylmethoxy)-1,3,5-triazine; m.p. 173°-177° C. The NMR spectrum was consistent with the proposed structure.

EXAMPLE 8

SYNTHESIS OF 4,6-DIAMINO-1,2-DIHYDRO-2,2-DIMETHYL-1-(2,4,5-TRICHLOROPHENYLMETHOXY)-1,3,5-TRIAZINE, PAMOIC ACID SALT (COMPOUND 146)

Step A Synthesis of 4,6-diamino-1,2-dihydro-2,2dimethyl-1-(2,4,5-trichlorophenylmethoxy)-1,3,5-tria-35 zine as an intermediate

A solution of 0.5 gram (0.001 mole) of 4,6-diamino-1,2-dihydro 2,2-dimethyl-1-(2,4,5-trichlorophenylmethoxy)-1,3,5-triazine hydrobromide (Compound 60 -Prepared in Example 3) in 30 ml of water was stirred and 1 ml (0.007 mole) of triethylamine was added. The resultant solid was collected by filtration and dried, yielding 0.4 gram of 4,6-diamino-1,2-dihydro-2,2dimethyl-1-(2,4,5-trichlorophenylmethoxy)-1,3,5-triazine. The NMR spectrum was consistent with the pro-

posed structure. Step B Synthesis of 4,6-diamino-1,2-dihydro-2,2dimethyl-1-(2,4,5-trichlorophenylmethoxy)-1,3,5-triazine, pamoic acid salt (Compound 146)

A solution of 0.4 gram (0.001 mole) of 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(2,4,5-trichlorophenylmethoxy)-1,3,5-triazine and 0.2 gram (0.0005 mole) of pamoic acid in 50 ml of tetrahydrofuran was stirred for trated under reduced pressure to a residual solid. The solid was dried under high vacuum, yielding 0.6 gram of 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(2,4,5-tri-

chlorophenylmethoxy)-1,3,5-triazine, pamoic acid salt, m.p. 180° C., dec. The NMR spectrum was consistent with the proposed structure.

Appended TABLE 1 lists 229 species of triazines and salts thereof falling within Formula I (supra) of this 65 invention, the preparation of certain of which species are illustrated in accordance with foregoing Examples 1-8. TABLE 1-a provides the melting point and emperical formula of the majority of these species.

TABLE	1
-------	---

4,6-DIAMINO-1,2-DIHYDRO-1,3,5-TRIAZINE DERIVATIVES

R ³ HN	NHR ³
TI4	61
N ³ 2	$^{1}N-O-(CH_{2})_{n}-R$
₽ 2	pl

wherein \mathbb{R}^1 , \mathbb{R}^2 are -CH ₃ and	R ³ is hydr	ogen:	
Compound Number	n	R	
1	1	— СН ₃	
2	1	-Ç2H5	
3	1	-C ₃ H ₇	
4	1	$-C_5H_{11}$	
5	1	$-C_8H_{17}$	
6	1	$-C_8H_{17}$	
7	1	-C9H19	
8	1	$-C_{10}H_{21}$	
9	1	$-C_{11}H_{23}$	
40		A W	

2	1	C8111/	
6	1	-C ₈ H ₁₇	
7	1	-C ₉ H ₁₉	HBr
8	1	$-C_{10}H_{21}$	HBr
9	1	$-C_{11}H_{23}$	HBr
10	1	$-C_{12}H_{25}$	HBr
11	1	$-C_{13}H_{27}$	HBr
12	2	-CH(CH ₃) ₂	HBr
13	1	$-CH(C_2H_5)_2$	HBr
14	1	Cyclopropyl	HBr
15	1	Cyclobutyl	HBr
16	1	1,2-Dibromo-2-	HCl
		(3,4-dichlorophenyl)-	
		ethyl	
17	1	-CH=CH ₂	HBr
18	2	$-CH=CH_2$	HBr
19	1	2-Phenylethenyl	HBr
20	1	2-(3,4-dichloro-	HCl
		phenyl)ethenyl	
21	1	-CECH	HBr
22	3	-CECCH3	HCl
23	3 3	$-C \equiv CC_2H_5$	HCl
24	3	$-C \equiv CC_3H_7$	HCl
25	1	2-(3,4-Dichloro-	HCI
		phenyl)ethynyl	
26	1	-CH ₂ F	HBr
27	2	$-OC_2H_5$	HBr
28	3	- Οφ;	HBr
		2,4,5-Cl ₃	
29	3	- Οφ;	
		2,4,5-Cl ₃	
30	1	-CO ₂ CH ₃	HBr
31	. 2	pyridin-2-yl	
32	2	0 0	HBr

Ш

|| O

СН₃

0 СН3

.

33

1

1

34

35

HBr

HBr

HBr

.

Salt

HBr HCl HCl HBr HBr

wherein R^1 , R^2 are -CH₃; R^3 is hydrogen; and R is,

\checkmark	v L	w
z	Y	x

Compound Number	n	v	w	х	Y	Z	Salt
38	1	Н	н	н	Н	н	HCI
39	3	н	Н	Н	н	н	HBr
40	1	CI	Н	н	н	н	HCl
41	1	Н	Cl	н	н	н	HBr
42	1	н	Н	Cl	н	н	HCl
43	2	н	H .	Cl	н	н	HCl
44	1	F	Н	н	н	н	HCl
45	1	н	н	F	H	н	HBr `
46	1	Cl	Cl	Н	н	н	HBr
47	1	Cl	н	Cl	н	н	HCl
48	1	Cl	н	н	Cl	н	HCl
49	1	Cl	н	н	Cl	н	HBr
50	1	Cl	н	н	Н	Cl	HCl
51	1	н	Cl	Cl	Н	н	HCl
52	1	Н	Cl	Cl	н	н	_
53	2	н	Cl	Cl	н	н	HCl
54	3	н	Cl	Cl	н	н	HCl
55	4	н	Cl	Cl	н	н	HCl
56	1	н	Cl	н	Cl	н	HCI
57	1	F	Н	н	н	F	HBr
58	1	C1	Cl	н	Cl	н	HBr
59	1	н	Cl	Cl	Cl	н	HCl
60	1	Cl	Н	Cl	Cl	Н	HBr
61	1	Cl	Н	Cl	Cl	н	_
62	1	F	н	F	н	F	HBr
63	1	Cl	н	Cl	Br	н	HBr
64	1	F	F	F	F	F	HBr
65	1	F	F	— СН ₃	F	F	HBr
66	1	Cl	н	Cl	ф	н	HBr
67	1	-CH3	н	н	н	— СН ₃	HBr
68	1	н	cyclohexyl	н	н	н	HI
69	2	н	н	$-OCH_3$	н	Н	HBr
70	1	н	-OC7H15	н	н	Н	HBr
71	1	Н	-O(CH ₂) ₃ φ	H	н	н	HBr
72	1	Н	$-NO_2$	н	н	н	HBr
73	1	н	н	-NO2	н	Н	HBr
74	1	н	н	$-CF_3$	н	н	HBr
75	1	Н	-OCF ₃	н	н	н	HBr
76	1	Н	-OCF2CHF2	н	н	н	HCl
77	1	φ	н	н	н	н	HCl
78	1	н	ф Н	н	н	Н	HBr
79	1	н		ф	н	н	HBr
80	1	-CH3	φ	н	н	н	HCl
81	1	$-CH_3$	ф	н	н	— СН ₃	HBr
82	1	Н	φ;	н	н	н	HBr
			4-C1				
83	1	н	φ;	н	н	н	HBr
			4-F				

16

– HCi

.

HBr HCl HCl — — —

_

.

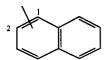
		17		5,300,:	503		
				-continued			
	ות			3,5-TRIAZINE DER	VATIV	/ES	
	-01					н	HCI
84 85		1 H 1 H	ф Н	н ф	н н	H	HCI
86		i H	¢	F	Н	н	HBr
		R ³ HN	✓ ^N ⇒	NHR ³			
			<u> </u> ₄ ⁵ 6	Ý			
			•	$N - O - (CH_2)_n - R$			
			К- К	•			
wherein R is							
			1				
				\checkmark			
			·				
			•	•			
						oint of	
				D .2		achment	Salt
Compound Number	n	R1	R2	R3	on I	Naphthyl	Salt
87	1	-сн3	H H	H H		1 1	HCI HCI
88 89	1 1	-С ₂ H ₅ -СH ₂ CH ₂ ф	н Н	н		1	HCI
89 90	1	$-CH_2CH_2\phi$ $-CH=CH\phi$	н	H		1	HCI
90	1	-cn-cny	a Hydrate			•	
91	1	ф;	H	Н		1	2HCl
	-	2-OCH ₃					
		-		anol Complex			
92	1	-CH3	$-CH_3$	н		1	HCI
93	1	—CH ₃	$-CH_3$	Н		1	Nonanoic Acid
94	1	-CH3	-СН3	н		1	Tetradecan-
74	1	CH3	Chij	**		•	oic Acid
05	1	-64	-CH	н		1	_

-CH3	-СН3	н	1
-CH3	-CH3	Н	1
-CH3	$-CH_3$	H	2
-CH ₃	CH3	Н	2
-CH ₃	$-CH_3$	Н	1
$-C_2H_5$		н	1
-CH2CH2CH	2CH2CH2-	н	1
-CH ₃	-CH ₃	-C(O)CH ₃	1
-CH ₃	-CH ₃	$-C(O)C_2H_5$	1
-CH ₃	-CH ₃	$-C(O)CH(CH_3)_2$	1
-CH ₃	-CH ₃	Cyclopropyl-	1
eng	0.1.3	carbonyl	
-CH3	-CH3	$-C(O)CH_2OCH_3$	1
$-CH_3$	-CH3	Furan-2-	1
Chig	City	ylcarbonyl	
R ³ HN	$\bigvee_{N}^{N}\bigvee_{N}^{N}$	NHR^3 -O-(CH ₂) _n -R	

$$R^2 \xrightarrow{R^1} R^1$$
 wherein R^1 , R^2 are -CH₃ and R^3 is hydrogen.

105 106

ł 1 1


Compound Number	i Number n R		Salt	
107	1	Н	HBr	
108	1	C ₆ H ₁₃	HBr	
109	1	C7H15	HBr	
110	3	CH(CH ₃) ₂	HBr	
111	1	Cyclohexyl	HBr	
112	1	Cyclohex-3-ene	HBr	
113	1	Cycloheptane	HBr	
114	1	1-(2-Fluorophenyl)- propan-2-yl	HBr	
115	1	1-(4-Methoxyphenyl)- propan-2-yl	HBr	
116	2	1-(4-Methoxyphenyl)- ethyl	HBr	
117	2	(Cyclopropyl)(phenyl)- methyl	HBr	
118	1	2-(2,4,5-Trichloro- phenyl)ethenyl	HC	
119	1	2-(2,5-dichloro-4- methylphenyl)ethenyl	HCI	
120	1	2-(2,5-Dibromo-4- methylphenyl)ethenyl	HCl	

		ABLE 1-continued	
4,6-DI	AMINO-1,2-DI	HYDRO-1,3,5-TRIAZINE DERIVA	TIVES
121	5	CH ₂ Cl 70% Component of	HBr
122	5	Compound 123 CH ₂ Br 30% Compound of Compound 123	HBr
123	A mixture	of Compounds 121 and 122	HBr
124	3	O¢; 2,4,6-Trimethyl	HBr
125	2	Naphth-1-yloxy	HBr
126	2	Naphth-2-yloxy	HBr
127	1	S¢; 4-Cl 5-Chlorothien-	HCI HCI
128	1	2-yl	nei
129	1		HBr
130	2		HBr
131	3	-N CI	HBr
		U CI	
132	1	Cl O O	HC

			z	V V V W X Y			
Compound Number	n	v	w	x	Y	Z	Salt
133	1	Н	Br	Н	Н	н	HBr
134	1	н	I	н	н	н	HBr
135	1	н	н	I	н	н	HBr
136	1	CH ₃	н	н	н	н	HBr
137	1	н	н	OCH ₃	н	н	HBr
. 138	1	н	н	OC ₂ H ₅	н	н	HBr
139	1	Н	н	OCF ₃	н	н	HBr
140	1	SCH ₃	н	н	н	н	HBr
141	1	F	н	Br	н	н	HBR
142	1	Cl	Н	н	Br	н	HBR
143	1	F	н	н	Br	н	HBr
144	3	Cl	н	н	н	Cl	HBr
145	1	н	Br	F	н	н	HBr
146	1	Cl	н	Cl	Cl	н	Pamoic* acid
147	1	Cl	Н	Cl	Br	Н	Pamoic* acid
148	1	Cl	н	CH3	Cl	н	HBr
140	i	Br	н	CH ₃	Br	н	HBr
150	1	Ci	Н	Cl	CH ₃	н	HBr

			TABLE 1-c	ontinued			
	6-DIAMIN	NO-1,2-E	DIHYDRO-1,3,	S-TRIAZIN	E DERIVA	TIVES	
151	3	Cl	Н	Cl	Cl	н	HCI
152	1	Cl	н	Cl	н	Cl	HCl
153	3	Cl	н	CH ₃	Cl	н	HC1
154	3	Br	н	CH	Br	Н	HCl
155	1	Cl	н	CI	OCH ₃	н	HBr
156	3	Ĥ	φ	н	н	н	HBr
157	1	Н	φ́	н	н	Н	Pamoic* acid
158	1	н	φ; 3,4-Cl ₂	н	Н	Н	HBr
159	1	F	φ	н	н	Н	HBr
160	1	н	φ φ	F	н	н	HBr
161	i	H	φ 4-F	F	н	н	HBr
162	1	Cl	н	н	ф	н	HBr
163	i	F	н	н	φ	н	HBr
164	1	F	ф	F	н	н	HBr

wherein R is

Compound Number	a	R1	R2	R3	Point of Attachment on Naphthyl	Salt
165	1	CH3	CH3	Н	. 1	Butyric acid -
166	1	CH3	CH ₃	н	1	Pentanoic acid
167	1	CH3	CH3	н	1	Hexanoic acid
168	1	CH ₃	CH3	Н	1	 D-gluconic* acid
169	1	CH3	CH3	н	1	Barbituric* / acid

$$\begin{array}{c} R^{3}HN \searrow N & \swarrow NHR^{3} \\ N & \swarrow N & \frown (CH_{2})_{n} - R \\ R^{2} & \swarrow R^{1} \end{array}$$

n R ¹ , R ² are —CH3 and ompound Number	n	R	Salt
170	2	-C(CH ₃) ₃	HBr
171	1	3-Phenylcyclohexyl	HBr
		15% trans-85% cis	
172	1	3-(2-Methylphenyl)-	_
		cyclohexyl	
		5% trans-95% cis	
173	1	3-(3-Methylphenyl)-	HBr
		cyclohexyl	
		100% cis	
174	1	3-(4-Methylphenyl)-	HBr
		cyclohexyl	
		5% trans-95% cis	IID.
175	1	3-(4-Methylphenyl)	HBr
		cyclohexyl	
		70% trans-30% cis	HBr
176	1	1-Phenylpropan-2-yl	HBr
177	1	1-(3-Bromophenyl)-	1101
	2	propan-2-yl 1-Phenylethyl	HBr
178	2 2	(Cyclopropyl)(4-fluoro-	HBr
179	2	phenyl)methyl	110.
180	2	(Cyclopropyl)(4-methoxy-	HBr
180	2	phenyl)methyl	
181	1	2-(5-Bromo-2,4-	HCI
101	-	dichlorophenyl)ethenyl	
182	1	2-(4-Bromo,2,5-	HC1
102	•	dichlorophenyl)ethenyl	
183	1	2-(2-Bromo-4,5-	HCI
100	-	dichlorophenyl)ethenyl	
184	2	Οφ;	HBr
	-	4-Cl	

,

		TA	BLE 1-contin	ued			
4	.6-DIAMINO		DRO-1,3,5-TRI		RIVATIVE	S	
185		2	Οφ;			HCl	
			4-Br			***	
186		3	Оф			HBr	
187		3	Οφ;			HBr	
188		3	2-CH3 Οφ:			HBr	
100		5	3-CH3			112.	
189		3	Οφ;			HBr	
			4-CH3				
190		3	Οφ;			HBr	
	,		2,3-(CH ₃) ₂			IID-	
191		3	·Οφ; 2,4-(CH ₃) ₂			HBr	
192		3	2,4-(CH3)2 Οφ;			HBr	
172		5	2,5-(CH ₃) ₂				
193		3	Οφ;			HBr	
			2,6-(CH ₃) ₂				
194		3	Οφ;			HBr	
•••		•	3,4-(CH ₃) ₂			HBr	
195		3	Οφ; 3,5-(CH ₃) ₂			nbr	
196		3	Οφ;			HBr	
		•	2,3,5-(CH ₃) ₃				
197		3	Οφ;			HBr	
			3,4,5-(CH ₃) ₃				
198		2	Οφ;			HBr	
199		2	2,3,6-(CH ₃)3 Sф			HCI	
200		2	3φ Sφ;			-	
200		-	4-Cl				
201		2	Adamant-l-yl			HBr	
202		1	Benzo[b]thien			HBr	
203		3	2,2-Dimethyl-			HBr	
			benzofuran-7-	yloxy			
wherein R ¹ , R ² are	-CH ₃ ; R ³ is	hydrogen;	and R is:				
			V		•		
			i				
			\checkmark	w			
			\downarrow \checkmark				
		Z		х			
			l Y				
Compound 1	n V	w	х	Y	z	Salt	
			Cl	н	н	HCl	
	3 H 1 H	. н н	Br	н Н	н Н	HBr	
		F	Н	н	н	HBr	
	i H	-CF	3 Н	H	н	HBr	
	1 H	-CN	й н	н	Н	HBr	
200	រ អ	н	-CN	н	н	HBr	

ompound	n	v	w	х	Y	z	Salt
204	3	Н	н	Cl	н	н	HCl
204	1	н	Н	Br	н	н	HBr
205	1	н	F	H	н	н	HBr
200	1	н	-CF3	н	Ĥ	н	HBr
208	1	H	-CN	Ĥ	н	н	HBr
200	1	н	н	-CN	н	н	HBr
210	3	н.	н	-OCF3	н	н	HBr
210	1	.H	F	F	н	н	HBr
212	1	Ci	н	н	NO ₂	н	HBr
213	1	CI	н	Cl	Br	н	_
214	1	CI	н	Cl	Br	н	*Sulfameth-
	-						oxypyridazine
215	3	Cl	н	Cl	Br	н	HCI
216	3 3 3	Cl	н	Br	Cl	н	HCI
217	3	Br	н	Cl	Cl	н	HCl
218	1	$-CH_3$	н	-CH ₃	-CH ₃	н	HBr
219	3	н	н	-OCH ₃	н	н	HBr
220	3	-OCH ₃	н	-OCH ₃	-OCH ₃	н	HBr
221	1	н	φ;	н	н	н	HBr
			2-C1				
222	1	н	ф;	н	н	н	HBr
			3-C1				
223	1	н	φ;	н	н	н	HBr
			4-OCF ₃				
224	3	Cl	н	н	φ.	н	HBr
225	1	F	Н	н	ф;	н	HBr
					4-F		
226	1	F	н	н	φ;	н	HBr
		-		_	2,6-F ₂		
227	1	F	φ;	F	Н	н	HBr

.

						5,300,5	03			
		25	5							·
				LE 1-c						
	4,6-DI	AMINO-1	,2-DIHYI	DRO-1,3,5		NE DERI	VATIVE	S		
			z y			.w [,] 'X'				
Compound	n	<u>x</u>	Y	Z		<u>W'</u>	<u>X'</u>	Y'	Salt	
228 229	1 1	Cl H	н Н	н · н	H H	н Н	H Br	H H	HBr HBr	
			Pa	moic Acio	1					
					Ť	92Н				
			D-	gluconic .						
			0 	OH I	OH					
		H	∘∽	Л	ОН	✓ ^{ОН}				
				Barbituri						
			нс							
				γ	\sum		•			
				$^{\rm HN}$ \sim	NH					
				 0						
			Sulfame	thoxypyric	lazine					
				снохуруги СН3	Juzine					
				.						
			. 🤇	N N N						
			Т N	$\sim 1^{\circ}$	D ,					
			ol	s l						
					\leq	NH ₂				

TABLE 1-a-continued

	TABLE 1	-a		IA	BLE 1-a-co	ntinued
Compound Number	Melting Point (°C.)	Empirical Formula		Compound Number	Melting Point (°C.)	Empirical Formula
1	197-200	C7H16BrN5O	55	18	218-220	C9H18BrN5O
2	206-208	C8H18C1N5O		19	216-218	C14H20BrN5O
3	204-206	C9H20CIN5O		20	231-232	C14H18Cl3N5O
4	204-207	C ₁₁ H ₂₄ BrN ₅ O		21	198-200	C8H14BrN5O
5	196-197	C14H30BrN5O		22	200-202	C11H20CIN5O
6	148-149	C14H29N5O		23	194-198	C ₁₂ H ₂₂ ClN ₅ O
7	195-196	C ₁₅ H ₃₂ BrN ₅ O	60	24	208-212	C ₁₃ H ₂₄ ClN ₅ O
8	195-197	C ₁₆ H ₃₄ BrN ₅ O	00	25	210-211	C14H16Cl3N5O
9	199-200	C17H36BrN5O		26	215-217	C7H15BrFN5O
10	199-200	C18H38BrN5O		27	202-204	C9H20BrN5O2
11	199-200	C19H40BrN5O		28	191-193	C14H19BrCl3N5O2
12	206-209	C10H22BrN5O		29	209-211	$C_{14}H_{18}Cl_{3}N_{5}O_{2}$
13		C ₁₁ H ₂₄ BrN ₅ O	15	30	145-149	C8H16BrN5O3
14	205-207	CoH18BrN5O	65	31	218, dec.	C ₁₂ H ₁₈ N ₆ O
15	212-215	C ₁₀ H ₂₀ BrN ₅ O		32	216-219	C ₁₅ H ₁₉ BrN ₆ O ₃
16	209-211	C14H18Br2Cl3N5O		33	200-202	C ₁₆ H ₂₁ BrN ₆ O ₃
18	193-195	$C_8H_{16}BrN_5O$		34	210-212	C13H18BrN5O3

			5 3 00 /			
	27		5,300,5	503	28	
TA	ریم BLE 1-a-con	tinued		TA	ABLE 1-a-con	tinued
Compound Number	Melting Point (°C.)	Empirical Formula		Compound Number	Melting Point (°C.)	Empirical Formula
35	187-190	C16H24BrN5O2	5	112	232-234	C ₁₂ H ₂₂ BrN ₅ O
36	226-228	C ₁₆ H ₂₀ BrN ₅ O ₄	2	113 114	220-222	$C_{13}H_{26}BrN_5O$
37 38	227-230 218-219	C ₁₇ H ₂₂ BrN5O5 C ₁₂ H ₁₈ ClN5O		114	188–191 213–216	C ₁₅ H ₂₃ BrFN ₅ O C ₁₆ H ₂₆ BrN ₅ O
39	_	C14H22BrN5O		116	201-203	C ₁₆ H ₂₆ BrN ₅ O
40	213-214	C ₁₂ H ₁₇ Cl ₂ N ₅ O		117	218-221	C ₁₇ H ₂₆ BrN ₅ O
41 42	241-242 241-242	C ₁₂ H ₁₇ BrClN ₅ O C ₁₂ H ₁₇ Cl ₂ N ₅ O	10	118 119	249–250 225–227	C ₁₄ H ₁₇ Cl4N5O C ₁₅ H ₂₀ Cl ₃ N5O
42	230-232	$C_{13}H_{19}Cl_2N_5O$		120	222-223	$C_{15}H_{20}Br_2CIN_5O$
44	223-225	C ₁₂ H ₁₇ ClFN ₅ O		121	196-198	C11H23BrClN5O
45	218-220	C ₁₂ H ₁₇ BrFN ₅ O		122 123	196-198	C ₁₁ H ₂₃ Br ₂ N ₅ O
46 47	209-212 219-220	C ₁₂ H ₁₆ BrCl ₂ N ₅ O C ₁₂ H ₁₆ Cl ₃ N ₅ O		123	196–198 215–217	C ₂₂ H ₄₆ Br ₃ ClN ₁₀ O ₂ C ₁₇ H ₂₈ BrN ₅ O ₂
48	236-238	C12H16Cl3N5O	15	125	190-193	C17H22BrN5O2
49	211-213	C12H16BrCl2N5O		126	201-204	C ₁₇ H ₂₂ BrN ₅ O ₂
50 51	232–233 234–235	C ₁₂ H ₁₆ Cl ₃ N ₅ O C ₁₂ H ₁₆ Cl ₃ N ₅ O		127 128	198–200 224–226	C ₁₂ H ₁₇ Cl ₂ N ₅ OS C ₁₀ H ₁₅ Cl ₂ N ₅ OS
52	169-170,	$C_{12}H_{15}Cl_2N_5O$		129	220-222	C14H17BrN6O5
	remelts at 224			130	192-195	C15H17BrCl2N6O3
53	249-250	$C_{13}H_{18}Cl_3N_5O$	20	131	210-213 231-232	C ₁₆ H ₁₉ BrCl ₂ N ₆ O ₃
54 55	231-232 218-219	C ₁₄ H ₂₀ Cl ₃ N ₅ O C ₁₅ H ₂₂ Cl ₃ N ₅ O		132 133	231-232	C13H17Cl2N5O3 C12H17Br2N5O
56	231-233	C ₁₂ H ₁₆ Cl ₃ N ₅ O		134	232-235	C ₁₂ H ₁₇ BrIN ₅
57	226-228	$C_{12}H_{16}BrF_2N_5O$		135	228-231	C ₁₂ H ₁₇ BrIN ₅
58 59	233-234	C ₁₂ H ₁₅ BrCl ₃ N ₅ O C ₁₂ H ₁₅ Cl ₄ N ₅ O	25	136 137	212-214 215-217	C ₁₃ H ₂₀ BrN5O C ₁₃ H ₂₀ ClN5O ₂
60	247-248	$C_{12}H_{15}BrCl_3N_5O$	25	138	215-217	$C_{14}H_{22}BrN_5O_2$
61	200, dec.,	C12H14Cl3N5O		139	220-222	$C_{13}H_{17}BrF_3N_5O_2$
62	remelts at 245 214-217	C ₁₂ H ₁₅ BrF ₃ N ₅ O		140 141	213-216 218-220	C ₁₃ H ₂₀ BrN5OS C ₁₂ H ₁₆ Br ₂ FN5O
63	244-245	$C_{12}H_{15}Br_2Cl_2N_5O$		142	218-220	$C_{12}H_{16}Br_2CIN_5O$
64	216-218	$C_{12}H_{13}BrF_5N_5O$	30	143	237-240	C ₁₂ H ₁₆ Br ₂ FN ₅ O
65 66	220-222 160, dec.	C ₁₃ H ₁₆ BrF ₄ N ₅ O		144 145	205–207 218–220	C ₁₄ H ₂₀ BrCl ₂ N ₅ O
67	214-216	C ₁₈ H ₂₀ BrClN5O C ₁₄ H ₂₂ BrN5O		145	180, dec.	C ₁₂ H ₁₆ Br ₂ FN ₅ O C ₄₇ H ₄₄ Cl ₁₆ N ₁₀ O ₈
68	207-209	C18H30IN5O		- 147	Gum	C47H44Br2Cl14N10O8
69 70	213-216	$C_{14}H_{22}BrN_5O_2$		148 149	238-241	C ₁₃ H ₁₈ BrCl ₂ N ₅ O
70	165-168 182-185	C ₁₉ H ₃₂ BrN5O ₂ C ₂₁ H ₂₈ BrN5O ₂	35	149	238-240 · 230-231	C ₁₃ H ₁₈ Br ₃ N ₅ O C ₁₃ H ₁₈ BrCl ₂ N ₅ O
72	236-238	C ₁₂ H ₁₇ BrN ₆ O ₃		151	230-231	C14H19Cl4N5O
73	233-235	C ₁₂ H ₁₇ BrN ₆ O ₃		152	232-233	$C_{12}H_{15}Cl_4N_5O$
74 75	223-225 202-204	C13H17BrF3N5O C13H17BrF3N5O2		153 154	222–223 220–221	C ₁₅ H ₂₂ Cl ₃ N ₅ O C ₁₅ H ₂₂ Br ₂ ClN ₅ O
76	208-216	$C_{14}H_{18}BrF_4N_5O_2$		155	215-216	$C_{13}H_{18}BrCl_2N_5O_2$
77	221-222	C ₁₈ H ₂₂ ClN ₅ O	40	156	208-210	C ₂₀ H ₂₆ BrN ₅ O
78 79	213-215 233-236	C ₁₈ H ₂₂ BrN5O C ₁₈ H ₂₂ BrN5O		157 158	Gum 225–227	C59H58N10O8 C18H20BrCl2N5O
80	211-213	$C_{19}H_{24}ClN_5O$		159	225-227	$C_{18}H_{21}BrFN_5O$
81	215-217	C ₂₀ H ₂₆ BrN ₅ O		160	212-214	C ₁₈ H ₂₁ BrFN ₅ O
82 83	222-225 225-228	C ₁₈ H ₂₁ BrClN5O C ₁₈ H ₂₁ BrFN5O	45	161 162	220–223 221–224	C ₁₈ H ₂₀ BrF ₂ N ₅ O C ₁₈ H ₂₁ BrClN ₅ O
83	200-203	$C_{18}H_{22}CIN_5O_2$	45	163	226-228	$C_{18}H_{21}BrFN_5O$
85	224-226	C18H22ClN5O2		164	223-225	C ₁₈ H ₂₀ BrF ₂ N ₅ O
86 87	216–219 219–224	C ₁₈ H ₂₁ BrFN ₅ O ₂ C ₁₅ H ₁₈ ClN ₅ O		165 166	167–170 Paste	C ₂₀ H ₂₇ N ₅ O ₃ C ₂₁ H ₂₉ N ₅ O ₃
88	150	$C_{16}H_{20}ClN_5O$		167	Paste	$C_{22}H_{31}N_5O_3$
89	152	C22H24ClN5O	50	168	Paste	C ₂₂ H ₃₁ N ₅ O ₃
90 91	232–234 201–203	C ₂₂ H ₂₄ ClN ₅ O C ₂₄ H ₃₁ Cl ₂ N ₅ O ₃		169 170	202, dec. 220–222	$C_{20}H_{23}N_7O_4$
91	217-218	$C_{16}H_{20}CIN_5O$		171	218-220	C ₁₁ H ₂₄ BrN5O C ₁₈ H ₂₈ BrN5O
93	Paste	C25H37N5O3			dec.	- 1020
94	178-186	C ₃₀ H ₄₇ N ₅ O ₃		172	100	C19H29N5O
95 96	170–171 234–235	C ₁₆ H ₁₉ N5O C ₁₈ H ₂₀ ClN5O	55	173 174	231-232 241-242	C19H30BrN5O C19H30BrN5O
97	169-170,	C ₁₆ H ₁₉ N ₅ O			dec.	- 17- 50 5-
22	remelts at 244	6 1 D N O		175	228-229	C ₁₉ H ₃₀ BrN ₅ O
98 99	206-208	C ₁₇ H ₂₂ BrN5O C ₁₇ H ₂₂ ClN5O		176	dec. 192-197	C15H24BrN5O
100	216-218	$C_{19}H_{24}ClN_5O$		177	208-211	C15H23Br2N5O
101	152-154	C ₂₀ H ₂₃ N ₅ O ₃	60	178	187-188	C15H24BrN5O
102 103	164–166 169–171	C ₂₂ H ₂₇ N ₅ O ₃ C ₂₄ H ₃₁ N ₅ O ₃		179 180	223-224 221-222	C17H25BrFN5O C18H28BrN5O
103	183-184	C ₂₄ H ₃₁ N ₅ O ₃ C ₂₄ H ₂₇ N ₅ O ₃		180	234-235	$C_{14}H_{17}BrCl_3N_5O$
105	137-138	C22H27N5O5		182	242-243	C14H17BrCl3N5O
106	173-177	$C_{26}H_{23}N_5O_5$	·-	102	dec.	CUHUBICLNIC
107 108	178–180 192–194	C6H14BrN5O C12H26BrN5O	65	183 184	236-237 205-207	C ₁₄ H ₁₇ BrCl ₃ N ₅ O C ₁₃ H ₁₉ BrClN ₅ O ₂
109	196-197	C13H28BrN5O		185	202-205	C13H19BrClN5O2
110 111	217-219	C ₁₁ H ₂₄ BrN ₅ O		186 187	205–207 205	C ₁₄ H ₂₂ BrN ₅ O ₂ C ₁₅ H ₂₄ BrN ₅ O ₂
111	229-231	$C_{12}H_{24}BrN_5O$		10/	203	01511/40111502

.

.

29

TABLE	1-a-continued

	Melting Point		
Compound Number	(°Ĉ.)	Empirical Formula	_
188	209	C15H24BrN5O2	
189	223	C15H24BrN5O2	
190	214-215	C16H26BrN5O2	
191	211	C16H26BrN5O2	
192	210	C16H26BrN5O2	
193	240-242	C ₁₆ H ₂₆ BrN ₅ O ₂	
194	214-215	C16H26BrN5O2	
195	205	C16H26BrN5O2	:
196	212	C17H28BrN5O2	
197	205	C17H28BrN5O2	
198	210-212	C ₁₇ H ₂₈ BrN ₅ O ₂	
199	198-200	C ₁₃ H ₂₀ ClN ₅ OS	
200	197-200	C13H18CIN5OS	
201	226-227	C17H30BrN5O	
202	223-225	C14H28BrN5OS	
203	184-185	C ₁₈ H ₂₈ BrN ₅ O ₃	
204	221-223	$C_{14}H_{21}Cl_2N_5O$	
205	215-217	C ₁₂ H ₁₇ Br ₂ N ₅ O	
206	221-223	C ₁₂ H ₁₇ BrFN5O	
207	212-214	C13H17BrF3N5O	:
208	235-237	C ₁₃ H ₁₇ BrN ₆ O	•
209	233-236	C13H17BrN6O	
210	207-209	C15H21BrF3N5O2	
211	212-216	$C_{12}H_{16}BrF_2N_5O$	
212	239-240	C12H16BrClN6O3	
213	233-234	C12H14BrCl2N5O	
214	161-168	C23H26BrCl2N9O4S	
215	233-234	C14H19BrCl3N5O	
216	229-230	C14H19BrCl3N5O	
217	219-220	C14H19BrCl3N5O	
218	225-227	C ₁₅ H ₂₄ BrN ₅ O	
219	209-212	C15H24BrN5O2	
220	210-211	C17H28BrN5O4	
221	216-217	C ₁₈ H ₂₁ BrClN ₅ O	
222	210-213	C18H21BrClN5O	
223	213-214	$C_{19}H_{21}BrF_3N_5O_2$	
224	206-208	C ₂₀ H ₂₅ BrClN ₅ O	
225	237-238	C ₁₈ H ₂₀ BrF ₂ N ₅ O	
226	220-222	C ₁₈ H ₁₉ BrF ₃ N ₅ O	
227	233-235	C ₁₈ H ₁₉ BrF ₃ N ₅ O	
228	-	C ₁₆ H ₁₉ BrClN ₅ O	
229	-	C ₁₆ H ₁₉ Br ₂ N ₅ O	

Insecticide Formulations

In the normal use of the insecticidal triazines of the present invention, the triazines usually will not be employed free from admixture or dilution, but ordinarily will be used in a suitable formulated composition compatible with the method of application and comprising 45 an insecticidally effective amount of the triazine. The triazines of this invention, like most pesticidal agents, may be blended with the agriculturally acceptable surface-active agents and carriers normally employed for 50 facilitating the dispersion of active ingredients, recognizing the accepted fact that the formulation and mode of application of an insecticide may affect the activity of the material. The present triazines may be applied, for example, as sprays, dusts, or granules to the area where pest control is desired, the type of application varying 55 of course with the pest and the environment. Thus, the triazines of this invention may be formulated as granules of large particle size, as powdery dusts, as wettable powders, as emulsifiable concentrates, as solutions, and 60 the like. It will be understood that the insecticides themselves may be present as essentially pure compounds, or as mixtures of these triazine compounds.

Granules may comprise porous or nonporous particles, such as attapulgite clay or sand, for example, which serve as carriers for the triazines. The granule particles are relatively large, a diameter of about 400–2500 microns typically. The particles are either impregnated with the triazine from solution or coated

with the triazine, adhesive sometimes being employed. Granules generally contain 0.05-10%, preferably 0.5-5%, active ingredient as the insecticidally effective amount.

Dusts are admixtures of the triazines with finely divided solids such as talc, attapulgite clay, kieselguhr, pyrophyllite, chalk, diatomaceous earths, calcium phosphates, calcium and magnesium carbonates, sulfur, flours, and other organic and inorganic solids which

⁰ acts carriers for the insecticide. These finely divided solids have an average particle size of less than about 50 microns. A typical dust formulation useful for controlling insects contains 1 part of triazine, such as 4,6diamino-1,2-dihydro-2,2-dimethyl-1-(3,4-dichloro-

⁵ phenylmethoxy)-1,3,5-triazine (Compound 2), and 99 parts of talc.

The triazines of the present invention may be made into liquid concentrates by dissolution or emulsification in suitable liquids and into solid concentrates by admix-

¹⁰ ture with talc, clays, and other known solid carriers used in the pesticide art. The concentrates are compositions containing, as an insecticidally effective amount, about 5-50% triazine, and 95-50% inert material, which includes surface-active dispersing, emulsifying,

and wetting agents, but even higher concentrations of active ingredient may be employed experimentally. The concentrates are diluted with water or other liquids for practical application as sprays, or with additional solid carrier for use as dusts.

Typical carriers for solid concentrates (also called wettable powders) include fuller's earth, clays, silicas, and other highly absorbent, readily wetted inorganic diluents. A solid concentrate formulation useful for controlling insects contains 1.5 parts each of sodium lignosulfonate and sodium lauryl sulfate as wetting agents, 25 parts of Compound 52 (above), and 72 parts of attapulgite clay.

Manufacturing concentrates are useful for shipping 40 low melting products of this invention. Such concentrates are prepared by melting the low melting solid products together with one percent or more of a solvent to produce a concentrate which does not solidify on cooling to the freezing point of the pure product or 45 below.

Useful liquid concentrates include the emulsifiable concentrates, which are homogeneous liquid or paste compositions readily dispersed in water or other liquid carriers. They may consist entirely of the triazines with a liquid or solid emulsifying agent, or they may also contain a liquid carrier such as xylene, heavy aromatic naphthas, isophorone and other relatively non-volatile organic solvents. For application, these concentrates are dispersed in water or other liquid carriers and normally applied as sprays to areas to be treated.

Typical surface-active wetting, dispersing, and emulsifying agents used in pesticidal formulations include, for example, the alkyl and alkylaryl sulfonates and sulfates and their sodium salts; alkylaryl sulfonates, including fatty methyl taurides; alkylaryl polyether alcohols, sulfates of higher alcohols, polyvinyl alcohols; polyethylene oxides; sulfonated animal and vegetable oils; sulfonated petroleum oils; fatty acid esters of polyhydric alcohols and the ethylene oxide addition products of such esters; and the addition products of long-chain mercaptans and ethylene oxide. Many other types of useful surface-active agents are available in commerce. The surface-active agent, when used, normally com-

prises about 1-15% by weight of the insecticidal composition.

Other useful formulations include simple solutions of the active ingredient in a solvent in which it is completely soluble at the desired concentrations, such as 5 acetone or other organic solvents.

An insecticidally effective amount of triazine in an insecticidal composition diluted for application is normally in the range of about 0.001% to about 8% by weight. Many variations of spraying and dusting com- 10 positions known in the art may be used by substituting the triazines of this invention into compositions known or apparent in the art.

The insecticidal compositions of this invention may be formulated with other active ingredients, including 15 other insecticides, nematicides, acaricides, fungicides, plant growth regulators, fertilizers, etc. In using the compositions to control insects, it is only necessary that an insecticidally effective amount of triazine be applied to the locus where control is desired. Such locus may, 20 e.g., be the insects themselves, plants upon which the insects feed, or the insect habitat. When the locus is the soil, e.g., soil in which agricultural crops are or will be planted, the active compound may be applied to and optionally incorporated into the soil. For most applica- 25 tions, an insecticidally effective amount will be about 75 to 4000 g per hectare, preferably 150 g to 3000 g per hectare.

In both the solid and liquid formulations described above, it has been found that the addition of an ultra- 30 humidity. At the end of the 96 hour exposure period the violet light (u.v.) stabilizer to the formulations is particularly useful and advantageous in prolonging the activity, i.e., the photostability, of the compounds of this invention when they are exposed to light or photosensitizers on the leaves of the sprayed plants. Thus, for example, the addition of 2-hydroxy-4-n-octoxyben-35 zophenone in photostabilizing amounts to the insecticidal formulation of Compound 78 (above) can reduce the photolysis rate of the triazines several-fold when tested in artificial sunlight. In particular, it has been found that the addition of from about 0.02 to 2.0 parts by weight of the above octoxybenzophenone per part by weight of the triazine composition, is effective for this purpose.

Biological Data

Representative compounds of the present invention were tested in the laboratory as aqueous acetone or aqueous methanol solutions containing a small amount of octylphenoxypolyethoxyethanol surfactant. The insecticidal activity of these compounds against the tobacco budworm is summarized in TABLE 2 (below).

Compounds 60 and 78 were also formulated as 10% wettable powder formulations. A typical 10% wettable powder formulation consists of the following:

Wettable Powder, 10%	Percent by Weight	
Active ingredient (95%)	10.5	
Dispersing Agent	4.0	
Wetting Agent	1.0	6
Carrier/Diluent	84.5	
	100.00	

The dispersing agent was sugar free, sodium based sulfonates of Kraft lignin sold under the trademark 65 rates of application. "Polyfon F". (Westvaco Polychemical Corp., Charleston Heights, S.C.) The wetting agent was sodium alkylnaphthalene sulfonate sold under the trademark "Nekal

BX-78". (Rhone Poulenc, Dayton, N.J.) The carrier/diluent was an attapulgite clay.

The 4,6-diamino-1,2-dihydro-1,3,5-triazine derivatives of the present invention were tested for insecticidal activity in foliar evaluations against the tobacco budworm (Heliothis virescens [Fabricius]).

In these tests against the tobacco budworm, nine-dayold chickpea plants (Cicer arietinum) were sprayed at 20 psi to runoff on both upper and lower leaf surfaces with solutions of test chemical to provide application rates as high as 3000 ppm of active ingredient. The solvent used to prepare the solutions of the test chemical was 10% acetone or methanol (v/v), and 0.1% of the surfactant, octylphenoxypolyethoxyethanol in distilled water. Four replicates, each containing four chickpea plants, for each rate of application of test chemical were sprayed. The treated plants were transferred to a hood where they were kept until the spray had dried.

The four chickpea plants in each replicate treated with test chemical as described above were removed from their pots by cutting the stems just above the soil line. The excised leaves and stems from the four plants in each replicate were placed in individual 8-ounce paper cups. Five first-instar (4-5 days old) tobacco budworms were counted into each cup, taking care not to cause injury. An opaque plastic lid was placed on each cup which was then held in a growth chamber for a 96 hour exposure period at 25° C. and 50% relative cups were opened, and the numbers of dead and live insects were counted. Moribund larvae which were disoriented or unable to crawl normally were counted as dead. Using the insect counts, the efficacy of the test chemical was expressed in percent mortality. The condition of test plant was also observed for phytotoxicity and for reduction of feeding damage as compared to an untreated check.

In an alternate test method, 10% wettable powder 40 formulations of Compounds 146, 147, and 157 were tested against tobacco budworm on chickpea plants and cabbage looper on pinto bean (Phaseolus vulgaris) plants. The candidate insecticides were applied as aqueous solutions of the 10% wettable powder formulations at 45 rates o application equivalent to 1.0 pound active ingredient/acre (lb/A) and submultiples thereof, for example 0.5 lb/A, 0.25 lb/A, and so on. In these tests, nine-day-old test plants were sprayed with the test chemical solutions at a delivery rate of 30 gallons/acre 50 at 40 psi with the nozzle of the spray machine adjusted to 10.5 inches above the foliage of the test plants. Four replicates each containing four plants for each rate of application of test chemical, were sprayed.

The aqueous test chemical solutions were prepared by dissolving 1.2 grams of the 10% wettable powder formulation in 30 ml of distilled water. For the 1.0 lb/A rate of application, 15 ml of the solution was sprayed onto the test plants as described above. The remaining 15 ml of test solution was diluted with 15 ml of distilled water. A 15 ml aliquot of the resultant solution was removed and sprayed onto test plants to provide a rate of application of 0.5 lb/A. The serial dilution and spraying was continued to provide the appropriate lower

Upon completion of spraying the remaining portion of the test was conducted as described above with the 4-5 day-old tobacco budworm.

These tested compounds (Compounds 146, 147, and 157) were likewise generally very active against the tobacco budworm. The results of these alternate tests are also reported in TABLE 2 below.

Selected compounds of the present invention were 5 also tested by the foliar spraying methods of compounds 1 et seq. of TABLE 2 (other than the wettable powder) against other insect species, which included fall armyworm (Spodoctera frugiperda [J. E. Smith]), imported cabbageworm (Pieris rapae [Linnaeus]), Mexican bean 10 beetle (Epilachna varivestis Mulsant), southern armyworm (Spodoptera eridania [Cramer]), soybean looper (Pseudoplusia includens [Walker], beet armyworm (Spodoptera exigua [Hubner]), corn earworm (Heliothis zea [Boddie]), cabbage looper (Trichoplusia ni [Hubner]), 15 diamondback moth (Pluttela xylostella [Linnaeus]), European corn borer (Ostrinia nubilalis [Hubner]), and black cutworm (Agrotis ipsilon [Hufnagel]). The insecticidal activity against these species is summarized in 20 TABLE 3 below.

The compounds of the present invention appear to be especially suited for use on cole crops, sweet corn, tobacco, and cotton against foliar-feeding lepidoptera.

	_ 25		
SELECTED SPECI	ES OF THE ORD	UATIONS* AGAINST ER LEPIDOPTERA	
(TOBA	CCO BUDWORM	- TBW)	_
Cmpd No.	Rate (PPM)	% KILL	- 20
1	30 10	90 19	- 30
2	300 30	33 0	•
3	300 30	85 0	
4	30 10	70 11	35
5	30 10	72 25	
6	30 10	84 85	
7	30 10	67 13	40
8	30 10	81 0	
9	30	42 11	
10	10 30	13 12	45
11	10 30 10	6 0	
12	30	60 0	
13	10 10	85	50
14	3 300	11 44	
15	30 30 10	0 75 28	
16	300 30	95 47	55
. 17	300 30	17 6	
18	300 30	70 0	
19	300 30	33 10	60
20	300 30	44 13	
21	300 30	5 42	
22	300	0	
23	300 30	95 38	65
24	30 10	63 0	
25	300	0	

TABLE 2-continued

RESULTS OF FOLIAR SPRAY EVALUATIONS* AGAINST SELECTED SPECIES OF THE ORDER LEPIDOPTERA (TOBACCO BUDWORM - TBW)

Cmpd No.	Rate (PPM)	% KILL	
26	300	0	
27	300	0	
28	30 10	~ 79 55	
29	30	75	
30	10 300	60 0	
31	300	89	
20	30	37	
32	30 10	90 6	
33	30	85	
34	10 300	40 90	
	30	17	
35	300 30	6 6	
36	300	10	
	30	0	
37	30 10	42 11	
38	300	39	
39	100 300	15 0	
40	300	90	
41	100	70 31	
41	30 10	38	
42	100	70	
43	30 3	70 65	
	1	0	
44	30 10	44 50	
45	300	70	
46	30 300	0 89	
	30	5	
47	64 32	60 70	
48	30	29	
40	10	42 90	
49	300 30	18	
50	1000	50 0	
51	300 100	90	
~	54	82	
52	32 17	93 73	
53	10	80	
54	3 30	21 95	
	10	85	,
55	30 10	50 0	
56	30	25	
57	10	0 84	
57	3000 1000	33	
58	30	60	
59	10 30	13 75	
	10	20	
6 0	3 1	72 6	
61	30	85	
62	10 3000	25 65	
	1000	31	
63	3	70 53	
64	1 3000	30	
	1000	6 79	
65	1000 540	65	

.

.

.

	33				. 30			
	TABLE 2-contin	ued		TABLE 2-continued				
	F FOLIAR SPRAY EVAL D SPECIES OF THE ORI (TOBACCO BUDWORN	UATIONS* AGAINS DER LEPIDOPTERA		RESULTS OF FOLIAR SPRAY EVALUATIONS* AGAINST SELECTED SPECIES OF THE ORDER LEPIDOPTERA (TOBACCO BUDWORM - TBW)				
 Стр		1-100)	5 [·]	Cmpd	Rate	12(1)		
No.	(PPM)	% KILL		No.	(PPM)	% KILL		
66	30	95	·		10	0		
67	10 3000	60 36		107	300 30	56 - 18		
0,	1000	5	10	108	30	95		
68		29	10	100	10	67		
69	10 10	0 61		109	30 10	50 12		
0)	6.4	- 100		110	30	26		
70		90			10	0		
71	30 300	5 85	15	111	30 10	95 53		
71	30	0		112	30	90		
72		90			10	75		
73	100 300	70 90		113	10 3	95 21		
15	30	11	•	114	30	95		
74		45	20		10	85		
75	30 30	0 0		115	300 30	95 80		
75		Õ		116	30	95		
77	300	11			10	90		
78	30 30	0 95	25	117	30 10	95 75		
78	10	65		118	640	80		
79	300	85			320	65		
80	30 300	0 90		119	300 30	15 0		
	30	6		120	300	70		
81	3000	78	30		30	0		
82	1000 30	25 95		121 122	No Data No Data			
62	30 10	24		122	300	95		
83	30	· 89		•	30	47		
0.4	10	72 31		124	3	44 0		
84	30 10	0	35	125	300	95		
85	1000	75			30	79		
. 86	540	85 95		126	300 100	90 90		
80	300 30	12		127	10	90 90		
87	300	5	40		3	65		
00	30 300	5 0		128	300 100	90 85		
88 89		0		129	300	68		
90	300	0			30	74		
91	300 30	5 0		130 131	5000 300	0 80		
92		95	45	151	30	35		
	10	71		132	100	95		
93	30 10	71 72 6 20		133	30 170	80 80		
94	30	20			100	58		
	10	0	50	134	100	72		
95	32 17	93 80	50	135	30 30	42 85		
96	30	95		155	10	25		
	10	. 75		136	300	85		
97	32 17	93 87		137	100 300	4 5 95		
98		75	55		100	33		
	1	10		138	1000	95		
99	300 30	95 50		139	300 300	65 95		
100	300	5			100	75		
101	30	11	(0	140	300	95 75		
101	30 10	65 5	60	141	100 100	75 95		
102	30	5 47			30	58		
	10	10		142	30	33		
103	30 10	47 . 0		143	10 100	13 80		
104	300	0 95	65		30	47		
100	30	30		144	10	95 75		
105	30 10	45 0		145	3 100	95		
106		60			30	59		

·

,

 TABLE 2-continued

 RESULTS OF FOLIAR SPRAY EVALUATIONS* AGAINST

 SELECTED SPECIES OF THE ORDER LEPIDOPTERA (TOBACCO BUDWORM - TBW)

.

TABLE 2-continued

RESULTS OF FOLIAR SPRAY EVALUATIONS* AGAINST SELECTED SPECIES OF THE ORDER LEPIDOPTERA (TOBACCO BUDWORM - TBW)

· (TOB/	ACCO BUDWORM	- TBW)		(108/	ACCO BUDWURN	<u>1 - IBW)</u>
Cmpd No.	Rate (PPM)	% KILL	5	Cmpd No.	Rate (PPM)	% KILL
	1**	100			30	95
146 147	1**	100		188	300	95
147	30	95			100	- 89
140	10	55	10	189	30	83
149	30	67	10	-	10	61
• • •	10	32		190	10	95
150	30	95			3	70
	10	- 80		191	3	75 21
151	30	95		102	1 10	94
	10	47	15	192	3	72
152	1000	10		193	30	84
153	300 10	0 95		175	10	74
155	3	35		194	30	95
154	30	95			10	78
	10	90	••	195	30	95
156	30	70	20		10	85
	10	6		196	10	95
157	1**	100			3	84
158	30	75		197	100 30	95 74
	10	16		102	100	95
159	30	95	25	198	30	95
1(0	10	55 95	25	199	30	83
160	30 10	85		177	10	40
161	30	90		200	100	89
101	10	45		200	30	89
162	30	80		201	30	95
102	10	50	30		10	100
163	30	89		202	100	95
	10	17			30	55
164	30	95		203	300	90
	10	65	•		100	50
165	300	95		204	30	95 90
	30	65	35	205	10 100	90 90
166	30	90		205	30	85
	10	75 75		206	300	85
167	30	53		200	100	50
168	10 30	55		207	100	75
108	10	22	40	201	30	35
169	No Data		40	208	100	95
170	No Data				30	95
171	100	94		209	100	63
	30	83			30	15 94
172	100	95		210	300	94 94
	30	65	45	211	100	94 90
173	100	95		211	300 100	47
	30	70		212	100	85
174	100	90 69		212	30	15
175	· 30 1,00	65		213	100	87
175		55			30	94
176	30 30	95	50	214	. 30	94 82 95
170	10	90			10	82
177	30	95		215	30	95
1.17	10	. 89			10	56
178	30	95		216	10	80
	10	50			3	30 95 85 95
179	100	95	55	217	30	95
	30	85			10	65
180	30	80		218	300 100	95
	10	21		219	30	95
181	300	16		219	10	50
100	100	6	60	220	100	95
182	300 100	33 6	00	<u>4</u> .40	30	80
183	300	53		221	30	95
183	100	5			10	60
184	100	5 80		222	100	- 95
107	30	15			30	75
185	300	95	65	223	100	95
	100	55			30	70
186	30	95		224	100	
	10	55 95		225	30 100	53 90
187	100	95		225	100	70

TAB	BLE 2-continued		
RESULTS OF FOLIAR	SPRAY EVALUATI	IONS* AGAINST	
SELECTED SPECIES	OF THE ORDER L	EPIDOPTERA	
(TOBACC	CO BUDWORM - TB	W)	
Cmpd	Rate		5

.

(PPM)	% KILL	
30	45	
30	90	
10	21	
100	95	
	(PPM) 30 30 10	(PPM) % KILL 30 45 30 90 10 21

RESULTS OF FOLL	AR SPRAY EVAL	UATIONS* AGAINST
		ER LEPIDOPTERA
(TOBA	ACCO BUDWORM	- TBW)
Cmpd	Rate	
No.	(PPM)	% KILL
	30	90

**Cmpds 146, 147, 157 - indicates data for a compound formulated as a 10%
 10 wettable powder. Cmpds 146, 147, 157 - indicates rate units are in lbs/acre

.

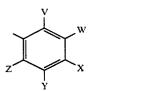
TABLE 3

D	ESIII Te				BLE 3		AINCT	SEI E	TED		
RESULTS OF FOLIAR SPRAY EVALUATIONS AGAINST SELECTED SPECIES OF THE ORDER LEPIDOPTERA AND COLEOPTERA											
		10111	MDD		Percent I				5551	ECD	DOW
COMPOUND NO.	*FAW	ICW	MBB	SAW	SBL	BAW	CEW	CL	DBM	ECB	BCW
6 13						5 50	9 0	50 70			
28		20	100			55	80	100			
29								90			
30			5					85			
42 50				40		45	50	30			
51				40	18 ¹	95					
52	65		45		10	,,,	95	90			
53	70	95	90	65		60	85	[.] 95			
59	1002	70	5	20		95	9 0	9 0			
63	90 ²	30	70			50	85	65			
66 69			100 5 ³			50	40 50	30 85			
72			5-				50	50			
78	55 ²	95	100			70	65	90			
92	95		25 ³	10	I4**	6	13 ¹	40 ⁵	70	44	0
95			•		19 ¹	100					
96	100		5	50	101	33	56 ¹	305	75	44	0
97 98	85 ²		70 ²	35	18 ¹	100 85	. 100	65			
107	05		70	0		05	. 100	05			
108	65		10	-		35	40	65			
111	60										
112						25			70		
123 127						65 ³ 40		55			
127	40					40		25			
134	65							90			
135						70		30			
139						5		37			
144						15		95 100 ⁶			
146 147						100 ⁶ 100 ⁶		100°			
150						35		90			
152						0					
153	70		100	95					45		
154	75		100	95		70	90		15		
155 157						35 ³ 100 ⁶		1006			
162						35		100-			
177						103		95			
186						11					
190						72					
193						11					
194 199						32 10					
200						10					
204						15		90			
205						25		11			
210						6					
212 214						25 ³ 30					
214 215						30 5		95			
216						6					
218						25 ³					
219						19					
221						71					
222 226						80 25					
						20					

TABLE 3-continued

	RESULTS SPEC			PRAY E							
					Percent	Kill at 10	0 ррт				
COMPOUND N	O. *FAW	ICW	MBB	SAW	SBL	BAW	CEW	CL	DBM	ECB	BCW
227						5					
*FAW - fall armywo ICW - imported cab MBB - Mexican bea SAW - southern arm SBL - soybean loop BAW - beet armyw CEW - corn earwor CL - cabbage loope DBM - diamondbac ECB - European co BCW - black cutwo *J - inactive lat 32 ppm 2at 30 ppm	bbage worm in beetle nyworm er orm r r r r k moth orn borer										

⁵at 10 ppm ⁶at 0.5 lbs/acre


³at 1000 ppm ⁴at 15 ppm

-

We claim:

1. An insecticidal composition comprising an insecticidal amount of the compound 25

wherein R is selected from the group consisting of hydrogen, straight or branched chain alkyl, haloalkyl, (substituted aryl)haloalkyl, arylakyl, (substituted aryl)alkyl, (α -cycloalkyl)arylalkyl, cycloalkyl, arylcycloal- 35 kyl, (substituted aryl)cycloalkyl, alkenyl, cycloalkenyl, arylalkenyl, (substituted aryl)alkenyl, alkynyl, arylalkynyl, (substituted aryl)alkynyl, alkoxy, (substituted aryl-)alkoxy, aryl, aryloxy, (substituted aryl)oxy, arylthio, (substituted aryl)thio, heterocyclclyl, alkoxycarbonyl, ⁴⁰ and substituted phenyl of the structure

wherein

V, W, X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, lower alkyl, haloalkyl, cycloalkyl, arylalkyl, alkoxy, haloalkoxy, arylalkoxy, aryl, substituted aryl, aryl-55 oxy, (substituted aryl)oxy, alkylthio, alkylsulfoxy, alkylsulfonyl, cyano, and nitro;

or V and W, or W and X, when taken together, comprise the ring-forming group

wherein V', W', X' and Y' have the same definition as V, W, X, and Y; n is 1 to 5; R¹ is selected from the group consisting of lower alkyl, arylalkyl, arylalkenyl, and alkoxyaryl;

or R² is selected from the group consisting of hydrogen and lower alkyl,

- R¹ and R² taken together form a spirocycloalkane ring of 3 to 9 carbon atoms;
- R³ is selected from the group consisting of hydrogen, lower alkylcarbonyl, cyclopropylcarbonyl, methoxymethylcarbonyl, and 2-furanylcarbonyl;
- and agriculturally acceptable salts thereof, in admixture with a compatible agricultural vehicle, wherein each alkyl, alkenyl, and alkynyl group independently contains up to 13 carbon atoms; the cycloalkyl groups contain 3 to 7 carbon atoms; and each aryl group is independently selected from the group consisting of phenyl, naphthyl, or phenanthryl which optionally substituted by one or more alkyl, halo, alkoxy, cycloalkyl, aryl, haloalkyl, haloalkoxy, cyano, nitro, dialkylamino or thioalkyl groups, and
- wherein the heterocyclyl groups are selected from the group consisting of thienyl, furyl, pyranyl, triazinyl, pyrrlyl, imidazolyl, pyridyl, pyridazinyl, isoxazolyl, benzothienyl, isobenzofuranyl, indolyl, quinolyl, phthalimido, benzodioxolyl, benzodioxanyl, benzofuranyl, and benzopyranyl.

 The composition of claim 1 wherein R is cycloalkyl, aryl, substituted phenoxy, substituted phenylthio,
 or substituted phenyl of the structure

60 wherein

65

45

V, W, X, Y, and Z are independently halogen, or alkoxy, wherein at least one of V to Z is not hydrogen;

n is 1 to 4;

R¹ is methyl or ethyl;

- R² is methyl;
- R³ is hydrogen;

or the acid salts thereof.

3. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(cycloheptylmethoxy)-1,3,5-triazine hydrobromide.

4. The composition of claim 1 wherein the insecti- 5 cidal compound is 4,6-diamino-1,2-dihydro-2,2-dimeth-yl-1-[3-(4-methoxyphenyl)butoxy]-1,3,5-triazine hydro-bromide.

5. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimeth- 10 yl-1-[3-(2,4,6-trimethylphenoxy)propoxy]-1,3,5-triazine hydrobromide.

6. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(4-chlorophenylthiomethoxy)-1,3,5-triazine hydro-15 chloride.

7. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2,6-dichlorophenyl)propoxy]-1,3,5-triazine hydrobromide.

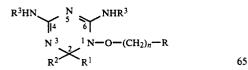
8. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(2,4,5-trichlorophenylmethoxy)-1,3,5-triazine, pamoic acid salt.

9. The composition of claim 1 wherein the insecti- 25 cidal compound is 4,6-diamino-1,2-dihydro-2,2-dimeth-yl-1-(5-bromo-2,4-dichlorophenylmethoxy)-1,3,5-tria-zine, pamoic acid salt.

10. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine, pentanoic acid salt.

11. The composition of claim **1** wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2,4-dimethylphenoxy)propoxy]-1,3,5-triazine 35 hydrobromide.

12. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2,5-dimethylphenoxy)propoxy]-1,3,5-triazine hydrobromide.


13. The composition of claim **1** wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2,3,5-dimethylphenoxy)propoxy]-1,3,5-triazine hydrobromide.

14. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-(adamant-1-yl)ethoxy]-1,3,5-triazine hydrobromide.

15. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(4-bromophenylmethoxy)-1,3,5-triazine hydrobromide.

16. The composition of claim 1 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2-bromo-4,5-dichlorophenyl)propoxy]-1,3,5triazine hydrochloride.

17. A method for controlling insects which comprises applying to the locus where control is desired an insecticidal amount of a compound of the formula

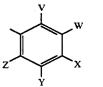
where R is selected from the group consisting of hydrogen, straight or branched chain alkyl, haloalkyl, (substituted aryl)haloalkyl, arylakyl, (substituted aryl)alkyl, (α -cycloalkyl)arylalkyl, cycloalkyl, arylcycloalkyl, (substituted aryl)cycloalkyl, alkenyl, cycloalkenyl, arylalkenyl, (substituted aryl)alkenyl, alkynyl, arylalkynyl, (substituted aryl)alkynyl, alkoxy, (substituted aryl)alkoxy, aryl, aryloxy, (substituted aryl)oxy, arylthio, (substituted aryl)thio, heterocyclclyl, alkoxycarbonyl, and substituted phenyl of the structure

wherein

- V, W, X, Y, and Z are independently selected from the group consisting of hydrogen, halogen, lower alkyl, haloalkyl, cycloalkyl, arylalkyl, alkoxy, haloalkoxy, arylalkoxy, aryl, substituted aryl, aryloxy, (substituted aryl)oxy, alkylthio, alkylsulfoxy, alkylsulfonyl, cyano, and nitro;
- or V and W, or W and X, when taken together, comprise the ring-forming group

wherein V', W', X' and Y' have the same definition as V, W, X, and Y;

n is 1 to 5;


60

- R¹ is selected from the group consisting of lower alkyl, arylalkyl, arylalkenyl, and alkoxyaryl;
- R² is selected from the group consisting of hydrogen and lower alkyl;
- or \mathbb{R}^1 and \mathbb{R}^2 taken together form a spirocycloalkane ring of 3 to 9 carbon atoms;
- R³ is selected from the group consisting of hydrogen, lower alkylcarbonyl, cyclopropylcarbonyl, methoxymethylcarbonyl, and 2-furanylcarbonyl;
- and agriculturally acceptable salts thereof, in admixture with a compatible agricultural vehicle, wherein each alkyl, alkenyl, and alkynyl group independently contains up to 13 carbon atoms; the cycloalkyl groups contain 3 to 7 carbon atoms; and each aryl group is independently selected from the group consisting of phenyl, naphthyl, or phenanthryl which optionally are substituted by one or more alkyl, halo, alkoxy, cycloalkyl, aryl, haloalkyl, haloalkoxy, cyano, nitro, dialkylamino or thioalkyl groups, and
- wherein the heterocyclyl groups are selected from the group consisting of thienyl, furyl, pyranyl, triazinyl, pyrrlyl, imidazolyl, pyridyl, pyridazinyl, isoxazolyl, benzothienyl, isobenzofuranyl, indolyl, quinolyl, phthalimido, benzodioxolyl, benzodioxanyl, benzofuranyl, and benzopyranyl.

18. The method of claim 17 wherein R is cycloalkyl, aryl, substituted phenoxy, substituted phenylthio, or substituted phenyl of the structure

10

15

wherein

V, W, X, Y, and Z are independently halogen or alkoxy, wherein at least one of V to Z is not hydrogen;

n is 1 to 4;

R¹ is methyl or ethyl;

R² is methyl

R³ is hydrogen;

or the acid salts thereof.

19. The method of claim **17** wherein the insecticidal compound is **4,6-diamino-1,2-dihydro-2,2-dimethyl-1-** cycloheptylmethoxy)-1,3,5-triazine hydrobromide.

20. The method of claim 17 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(2,4,5-trichlorophenylmethoxy)-1,3,5-triazine, pamoic 25 acid salt.

21. The method of claim 17 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(5-bromo-2,4-dichlorophenylmethoxy)-1,3,5-triazine, pamoic acid salt. 30

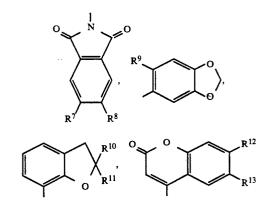
22. The method of claim 17 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(naphth-1-ylmethoxy)-1,3,5-triazine, pentanoic acid salt.

23. The method of claim 17 wherein the insecticidal ³⁵ compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2,4-dimethylphenoxy)propoxy]-1,3,5-triazine hydrobromide.

24. The method of claim **17** wherein the insecticidal 40 compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3 -(2,5-dimethylphenoxy)propoxy]-1,3,5-triazine hydrobromide.

25. The method of claim 17 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1- 45 [3-(2,3,5-trimethylphenoxy)propoxy]-1,3,5-triazine hy-drobromide.

26. The method of claim 17 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-(adamant-1-yl)ethoxy]-1,3,5-triazine hydrobromide.

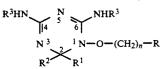

27. The method of claim 17 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(4-bromophenylmethoxy)-1,3,5-triazine hydrobromide.

28. The method of claim 17 wherein the insecticidal compound is 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(2-bromo-4,5-dichlorophenyl)propoxy]-1,3,5-triazine hydrochloride.

29. Compounds of the formula

$$\frac{R^{3}HN}{\mu^{4}} \xrightarrow{N}{5} \xrightarrow{N}{6} NHR^{3} \\
\frac{N^{3}}{R^{2}} \xrightarrow{1} N-O-(CH_{2})_{n}-R \\
R^{2} \xrightarrow{R}{1} \qquad 65$$

and agriculturally acceptable salts thereof, wherein R is a heterocyclyl moiety selected from the following



wherein

- R¹ is selected from the group consisting of lower alkyl, arylalkyl, arylalkenyl, and alkoxyaryl, wherein aryl is phenyl, naphthyl, or phenanthryl;
- R² is selected from the group consisting of hydrogen and methyl;
- or R¹ and R² taken together form a spirocycloalkane ring of 3 to 9 carbon atoms;
- R³ is selected from the group consisting of hydrogen, lower alkylcarbonyl, cyclopropylcarbonyl, methoxymethylcarbonyl, and 2-furanylcarbonyl; and
- R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently hydrogen, halogen, alkyl, or alkoxy with the proviso that R⁷ and R⁸ are not both hydrogen and with the further proviso that R⁹ is not hydrogen, and wherein each alkyl and alkenyl group independently contains up to 13 carbon atoms.
- **30**. 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-(4,5-dichloro-1-phthalimido)ethoxy]-1,3,5-triazine.

31. 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-(4,5-dichloro-1-phthalimido)propoxy]-1,3,5-triazine.

32. Compounds of the formula

and agriculturally acceptable salts thereof, wherein R is selected from phenyl or naphthyl, phenylalkyl, phenyl-50 methylalkyl, (α -cycloalkyl)phenylmethyl, or (phenylsubstituted)cycloalkyl, wherein each phenyl or naphthyl group optionally is substituted with lower alkyl, halogen, and lower alkoxy and each alkyl is straight or branched, wherein each cycloalkyl group indepen-55 dently contains 3 to 7 carbon atoms;

n is 1 to 5;

- R¹ is selected from the group consisting of lower alkyl, arylalkyl, arylalkenyl, and alkoxyaryl, wherein aryl is phenyl, naphthyl, or phenanthryl;
- R² is selected from the group consisting of hydrogen and methyl;
- or R^1 and R^2 taken together form a spirocycloalkane ring of 3 to 9 carbon atoms; and
- R³ is selected from the group consisting of hydrogen, lower alkylcarbonyl, cyclopropylcarbonyl, methoxymethylcarbonyl, and 2-furanylcarbonyl, with the proviso that R³ is not hydrogen or lower alkylcarbonyl when R is (optionally substituted)phenyl,

47

(optionally substituted)naphthyl, or phenylalkyl, and wherein each alkyl and alkenyl group independently contains up to 13 carbon atoms.

33. 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-methyl-3-(2-fluorophenyl)propoxy]-1,3,5-triazine.

34. 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[2-methyl-3-(4-methoxyphenyl)propoxy]-1,3,5-triazine.

4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[3-(4-35. methoxyphenyl)butoxy]-1,3,5-triazine.

36. trans-3-(2-methylphenyl)cyclohexylmethoxy]-1,3,5triazine.

37. 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[cis-3-(3methylphenyl)cyclohexylmethoxy]-1,3,5-triazine.

4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[cis/-38. trans-3-(4-methylphenyl)cyclohexylmethoxy]-1,3,5triazine.

39. The compound 4,6-diamino-1,2-dihydro-2,2dimethyl-1-(3-cyclopropyl-3-phenylpropoxy)-1,3,5-triazine hydrobromide.

40. The compound 4,6-diamino-1,2-dihydro-2,2-4,6-diamino-1,2-dihydro-2,2-dimethyl-1-[cis/- 10 dimethyl-1-(cis/trans-3-phenylcyclohexylmethoxy)-1,3,5-triazine hydrobromide.

* *

15

20

25

35

40

45

50

55

60

65