
USOO630496OB1

(12) United States Patent (10) Patent No.: US 6,304,960 B1
Yeh et al. (45) Date of Patent: Oct. 16, 2001

(54) VALIDATING PREDICTION FOR 5,699,536 12/1997 Hopkins et al. 712/216
BRANCHES IN A CLUSTER WIA 5,699,537 12/1997 Sharangpani et al. 712/217
COMPARISON OF PREDICTED AND 5,796,998 8/1998 Levitan et al. 712/239

5,826,070 10/1998 Olson et al. 712/222
CONDITION SELECTED TENTATIVE 5,903,750 * 5/1999 Yeh et al. 712/236
TARGET ADDRESSES AND WALIDATION OF :
BRANCH CONDITIONS 5,964,869 10/1999 Talcott et al. 712/236

OTHER PUBLICATIONS
(75) Inventors: Tse-Yu Yeh, Milpitas; Michael Paul

Corwin, Palo Alto, Judge K. Arora, Sharangpani, Harsh, Intel Itanium Processor Microarchitec
Cupertino, all of CA (US); Sujat Jamil, ture Overview, Intel p 1-23.
Chandler, AZ (US); Sailesh Kottapalli, Shanley, Tom, “Pentium Pro Processor System Architec
Newark, CA (US) ture', Mindstream, Inc., pp. 63, 66, 67, 80,89, and 109.

Sharangpani, Harsh et al., U.S. Pat. application No. 08/949,
(73) Assignee: Intel Corporation, Santa Clara, CA 277 entitled Efficient Processing of Clustered Branch

(US) Instructions, filed Oct. 13, 1997.

(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. Primary Examiner Kenneth S. Kim

(74) Attorney, Agent, or Firm-Leo V. Novakoski
(21) Appl. No.: 09/130,380 (57) ABSTRACT

(22) Filed: Aug. 6, 1998 A System for validating branch predictions for clusters of
(51) Int. Cl." .. G06F 9/38 branch instructions includes an address validation module
(52) U.S. Cl. ... 712/236; 712/239 and a condition validation module. The address validation
(58) Field of Search 71 223 6. 239 module determines target addresses for the branches in the

- s cluster. One of the determined target addresses is Selected,

using predicted branch directions. The Selected target
(56) References Cited address is compared with a predicted target address, and

U.S. PATENT DOCUMENTS resolved branch directions are compared with predicted
4,833.599 5/1989 Colwell et all 712/236 branch directions. A misprediction is indicated if either
5.333,280 7/1994 Ishikawa et al.. 42 comparison fails.
5,414,822 5/1995 Saito et al..... ... 712/240
5,655,098 8/1997 Witt et al. 712/210 25 Claims, 11 Drawing Sheets

DETERMINE TARGET
ADDRESS FOREACH BR

1110

USE PREDICTED
INFORMATION TO SELECT

TARGET ADDRESS
1120

SIGNAL
MISPREDICTION

1134

SELECTED TA =
PREDCTEDTA

1130

BRANCH
PREDICTION VALID

1144

RESOLVED TK/NT -
PREDICTED TKINT2

1140

U.S. Patent Oct. 16, 2001 Sheet 1 of 11 US 6,304,960 B1

US 6,304,960 B1 U.S. Patent

U.S. Patent Oct. 16, 2001 Sheet 3 of 11 US 6,304,960 B1

S L
cy

S
S C2

CO 2
C 9 cyd

O
Here

L
C
cy

s
C
cyd

cy
O
cy

O
-
CN

US 6,304,960 B1 Sheet 4 of 11 Oct. 16, 2001 U.S. Patent

G08

808

US 6,304,960 B1 Sheet 5 of 11 Oct. 16, 2001 U.S. Patent

U.S. Patent Oct. 16, 2001 Sheet 6 of 11 US 6,304,960 B1

CR(a)/BrVld(a)

CR(b)/BrVld (b)

CR(c)/BrVld (c)

F.G. 6B

U.S. Patent Oct. 16, 2001 Sheet 7 of 11 US 6,304,960 B1

303 : 304 : 305 : 306

PREDICTED
BRANCH

INFORMATION

TO
EXCEPTION
MODULE

FIG. 7

US 6,304,960 B1 Sheet 8 of 11 Oct. 16, 2001 U.S. Patent

FIG. 8

U.S. Patent Oct. 16, 2001 Sheet 9 of 11 US 6,304,960 B1

CextpVld
LCNonZero

would flexivid) PR(c) N. N.
D E.

WLCL in 305
& EC 2 :

CextVid T. HF: {Copyl)):
P(a)Brwid

Prd(a)
P(b)BrVid

U.S. Patent Oct. 16, 2001 Sheet 10 of 11 US 6,304,960 B1

303 304 305
ps in - r u a s u a up s we ur

PRD TK(a) H))

PRD TK(b) I- D 1010(b) 1030(b)

HSI A

A

1010(c) : PDI, I 1030(c):

306

U.S. Patent Oct. 16, 2001 Sheet 11 of 11 US 6,304,960 B1

DETERMINE TARGET
ADDRESS FOREACH BR

1110

USE PREDICTED
INFORMATION TO SELECT

TARGET ADDRESS
1120

SIGNAL
MISPREDICTION

1134

SELECTED TA =
PREDICTED TA2

1130

BRANCH
PREDICTION VALID

1144

RESOLVED TK/NT
PREDICTED TK/NT?

1140

FIG. 11

US 6,304,960 B1
1

VALIDATING PREDICTION FOR
BRANCHES IN A CLUSTER WIA

COMPARISON OF PREDICTED AND
CONDITION SELECTED TENTATIVE

TARGET ADDRESSES AND WALIDATION OF
BRANCH CONDITIONS

BACKGROUND OF THE INVENTION

1. Technical Field
This invention relates to microprocessors, and in particu

lar to Systems for processing branch instructions.
2. Background Art
Advanced processors employ pipelining techniques to

execute instructions at very high Speeds. In a pipelined
processor, the Overall machine is organized as a pipeline
consisting of Several cascaded Stages of hardware. Instruc
tion processing is divided into a sequence of operations, and
each operation is executed by hardware resident in a corre
sponding pipeline Stage ("pipe Stage') in a single cycle of
the processor clock. Independent operations from Several
instructions may be processed Simultaneously by different
pipe Stages, increasing the instruction throughput of the
pipeline. Where a processor pipeline includes multiple
execution resources in each pipe Stage, the throughput of the
processor can exceed one instruction per clock cycle. Con
temporary SuperScalar, deeply pipelined processors may
have anywhere from 5 to 15 pipe Stages and may execute
operations from as 4 to 8 instructions simultaneously in each
pipe Stage.

In order to make full use of a processor's instruction
execution capability, the processor must be provided with
Sufficient instructions from the correct execution path. AS
long as the correct execution path can be identified, instruc
tions from this execution path can be loaded into the
processor pipeline to keep the execution resources busy.
Where program instructions are processed Sequentially, it is
a relatively simple matter to determine the correct execution
path. Branch instructions can disrupt Sequential execution
by transferring control of the processor to a non-Sequential
target address when an associated branch condition is met.
Many programs have branches every five or six instructions.
AS a result, a deeply pipelined processor may have two or
three branch instructions in its pipeline at a given time,
making determination of the correct execution path difficult.
Moreover, branch conditions are typically not resolved until
the back end of the processor pipeline, So the pipeline may
begin processing instructions from incorrect execution paths
before the error is discovered.

Processors typically include branch prediction Systems at
the front end of their pipelines to anticipate changes in the
control flow due to taken branch instructions. Branch pre
diction Systems use a variety of methods to predict whether
a branch instruction entering the front end of the pipeline is
likely to be taken when it is executed at the back end of the
pipeline, e.g. whether the branch condition is likely to be
met. For branch instructions that are predicted taken,
instructions beginning at the associated target address may
be loaded into the pipeline behind the branch instruction. As
long as the branch is resolved taken when it is executed at
the back end of the pipeline, the predicted instruction
Sequence that follows the branch instruction is from the
correct execution path, and there is no disruption of the
pipeline's operation. If the prediction is incorrect, the pre
dicted instructions are not from the correct execution path.
They must be flushed from the pipeline and instructions
from the correct instruction path loaded.

15

25

35

40

45

50

55

60

65

2
Instructions from a predicted branch path must thus be

checked at the back end of the pipeline and either validated
or corrected. Typically, this is done by comparing the target
address and branch condition from the executed branch
instruction with the predicted target address and branch
condition. When the comparisons match, no action need be
taken Since the instructions in the pipeline following the
branch instruction represent the correct control flow. When
the comparisons do not match, the pipeline must be flushed
and reloaded with instructions from the correct execution
path.

Validating branch predictions can consume additional
clock cycles. For example, the branch information from the
executed branch instruction is resolved in one Stage of the
pipeline, and typically compared with the predicted branch
information no earlier than the next stage of the pipeline. In
processors that Support predication, branch conditions are
frequently represented by predicates, and predicate evalua
tion is a critical path in the processor. Delays in validating
predicted predicates can lengthen a critical timing path in the
processor pipeline.

This problem is exacerbated in processors that execute
code compiled by trace Scheduling, Superblock Scheduling,
and hyper block Scheduling. These methods cause fall
through, i.e. not taken, branches to cluster at the end of a
Scheduled code block. The clustered branch instructions are
generally executed and validated in Sequence. Fall through
branches do not effect the control flow of the processor and
each one that is executed delays the pipeline by an additional
clock cycle. Further, delays due to validating each fall
through branch are compounded as well. The present inven
tion addresses these and other problems associated with
executing and validating branch instructions.

SUMMARY OF THE INVENTION

The present invention is a System and method for Vali
dating branch predictions in parallel with execution of the
corresponding branch instructions. It is especially Suitable
for use with branch processing Systems capable of executing
clustered branch instructions concurrently.

In accordance with the present invention, a branch Vali
dation System includes a target validation module and a
condition validation module. The target validation module
determines a target address for validation, using predicted
branch condition information and compares the target
address to a predicted target address. The condition valida
tion module compares predicted and resolved branch con
dition information, and generates a flush Signal when either
comparison indicates a mismatch.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be understood with reference
to the following drawings in which like elements are indi
cated by like numbers. These drawings are provided to
illustrate Selected embodiments of the present invention and
are not intended to limit the Scope of the invention.

FIG. 1 is a block diagram of one embodiment of a
processor pipeline that includes a branch validation System
in accordance with the present invention.

FIG. 2 is a block diagram of one embodiment of a branch
processing System in accordance with the present invention.

FIG. 3 is a block diagram illustrating one embodiment of
the branch execution pipeline of FIG. 2.

FIGS. 4 is a circuit diagram illustrating embodiment of
the address and return pipelines of FIG. 3.

US 6,304,960 B1
3

FIG. 5 is a circuit diagram illustrating one embodiment of
the loop pipeline of FIG. 3.

FIGS. 6A and 6B are circuit diagrams illustrating one
embodiment of the linking logic of FIG. 2.

FIG. 7 is a block diagram of one embodiment of the
validation module of FIGS. 1 and 2.

FIG. 8 is a more detailed diagram of one embodiment of
the branch validation module of FIG. 7.

FIG. 9 is a circuit diagram of one embodiment of the loop
validation module of FIG. 7.

FIG. 10 is a circuit diagram of one embodiment of the
predicate handling and predicate validation logic of FIG. 8.

FIG. 11 is a flow chart illustrating a method in accordance
with the present invention for validating branch instructions.

DETAILED DISCUSSION OF THE INVENTION

The following discussion Sets forth numerous specific
details to provide a thorough understanding of the invention.
However, those of ordinary skill in the art, having the benefit
of this disclosure, will appreciate that the invention may be
practiced without these specific details. In addition, various
well known methods, procedures, components, and circuits
have not been described in detail in order to focus attention
on the features of the present invention.

The present invention is a System and method for vali
dating branch predictions concurrently with execution of the
corresponding branch instructions. It is particularly advan
tageous to branch processing Systems that Support concur
rent processing of clustered branch instructions in combi
nation with aggressive prediction Strategies to achieve high
performance.

In accordance with the present invention, the branch
validation System validates the target address and branch
direction (Taken/Not Taken status) in parallel, allowing the
validation results to conclude as branch execution com
pletes. This is accomplished by employing predicted con
dition information to determine a target address for valida
tion. Target address validation is thus decoupled from
branch condition validation, allowing them to proceed in
parallel.

FIG. 1 is a block diagram of one embodiment of a
processor pipeline 100 that incorporates a branch validation
module 170 in accordance with the present invention. Pro
cessor pipeline 100 includes an instruction fetch module
110, a branch prediction module 120, an instruction decode
module 130, branch processing system 140, execution
resources 150, and an exception/commit module 160.
Execution resources 150 represents non-branch execution
units that are typically present in a processor pipeline. These
include floating point execution unit(s) (FPU), integer
execution unit(s) (IEU), and memory execution units.
Exception/commit module 160 monitors pipeline events to
determine whether to commit the results of instructions to
the architectural State of the processor.

For the disclosed embodiment, branch validation module
170 is shown incorporated in branch processing system 140.
However, this is not required. Branch validation module 170
may be implemented Separately from branch processing
system 140 or in any other association that allows rapid
communication between the two Systems.

Fetch module 110 fetches instructions for processing by
pipeline 100. To facilitate fetching and branch prediction
operations, instructions may be identified through instruc
tion pointers (IPs). Fetch module 110 provides IPs to branch
prediction module 120, which accesses branch prediction

5

15

25

35

40

45

50

55

60

65

4
information, when available, for those IPs that represent
branch instructions. Branch prediction information indicates
whether a branch is likely to be taken (branch direction). It
typically also indicates a predicted target address, i.e. an
address to which the branch instruction transfers control
when it is taken. The predicted target address points to one
or more target instructions that may be loaded into the
pipeline 100 when the branch is predicted taken. For one
embodiment, branch prediction module 120 predicts a first
taken branch for a cluster of branch instructions and a target
address associated with the first taken branch.

AS long as the predicted branch information is accurate,
pipeline 100 operates on a seamless flow of instructions. The
alternative, fetching the target instructions when the branch
instruction is executed by branch processing System 140 at
the back end of pipeline 100, leaves the resources in pipeline
100 under utilized.

Instructions are decoded in decode module 130 and
directed to appropriate execution resources according to
their instruction type. Branch instructions are directed to
branch processing System 140 where each is executed to
determine the next instruction on the execution path and any
Side effects on the architectural State. For example, a con
ditional branch instruction Specifies a target address and a
branch condition. When the branch instruction is executed,
processor control jumps to the instruction at the target
address if the branch is taken or falls through to the
instruction that follows the branch instruction if the branch
is not taken. The branch condition determines whether the
branch is taken or not taken, i.e. the branch direction. The
target address may be specified by a pointer to a register
(indirect branch) or as an offset from the IP of the branch
instruction (IP-relative branch). The branch direction may
be specified through a variable to which the branch instruc
tion points. The variable is typically Stored in a register that
is written by compare instructions.

For one embodiment of the present invention, branch
instruction module 140 is capable of executing one or more
branch instructions concurrently and identifying a first taken
branch instruction from among the concurrently executed
branch instructions.

If no exceptions/faults are detected, the architectural State
is updated to reflect the effects of the first taken branch.
Branches following the first taken branch in the cluster arc
ignored. Branches that precede the first taken branch in the
cluster are fall-through branches. Generally, fall-through
branches have no effect on the architectural State. Loop
branches, which adjust various loop counters even when
they fall-through, are an exception.

For the present invention, branch validation module 170
compares predicted branch information (TK/NT status, tar
get address) with resolved branch information from pro
cessed branch or branch-related instructions. When the
predicted and resolved branch information do not match,
instructions loaded into processor pipeline 100 based on the
predicted information are not from the correct execution
path. In this case, processor pipeline 100 is flushed and fetch
module 110 is resteered to the correct instructions. When the
predicted and actual branch information match, instructions
in processor pipeline 100 are from the correct execution path
and processing proceeds uninterrupted.

FIG. 2 is a block diagram of one embodiment of a branch
processing System 140 in accordance with the present inven
tion. Branch processing System 140 includes multiple
branch execution pipelines 210(a), 210(b), 210(c)
(collectively, "pipelines 210’) and linking logic 220. Also

US 6,304,960 B1
S

shown are ports 212(a), 212(b), 212(c) for providing branch
instructions to associated pipelines 210(a), 210(b), 210(c),
respectively, and a validation module 170. FIG. 2 illustrates
the invention for the case where clusters of up to three
branch instructions may be processed simultaneously.
However, the present invention is not limited to this
configuration, and may be modified to process any number
of branch instructions concurrently.

Each pipeline 210 executes a branch instruction to deter
mine the branch direction, the target address, and any side
effects the branch on the architectural State. Examples of
Side effects are return addresses calculated on execution of
call branches and loop variables calculated on execution of
loop branches. The latter include loop counters (L,C), which
track the iterations of associated loops, and epilog counters
(EC), which track the number of stages remaining in Soft
ware pipelined loops. Since multiple branch instructions
may be executed concurrently and only the first branch in
execution order is committed to the architectural State, Side
effects for each taken branch are maintained in a speculative
State until linking logic 220 determines which branch, if any,
is the first taken branch in the cluster.

Branch execution pipelines 210 and various resources of
pipeline 100 determine branch directions, branch target
addresses, and any Side effects. For one embodiment of the
invention, branch directions for, e.g., calls, returns, instruc
tion set Switches, and returns from interrupts (RFIs) are
determined by predicates which are written by compare
instructions. Each compare instruction is executed in con
junction with its corresponding branch instruction by, for
example, IEU or FPU 150. For one embodiment of the
invention, the result of the compare operation is represented
by a value that is Stored in a predicate register. The predicate
register is indicated by a condition field of the branch
instruction. The branch direction of loop branches may be
determined by loop variables alone or in combination with
predicates, depending on the type of loop.

Linking logic 220 employs resolved branch information
asSociated with each executed branch instruction of a cluster
to identify the first branch instruction in execution order that
is resolved taken, i.e. first taken branch instruction (FTB) of
a cluster. For one embodiment, the resolved branch infor
mation is provided as predicates by a predicate delivery unit
and, in the case of loop instructions, as logical combinations
of predicates and/or counter variables. Linking logic 220
uses this information to Select a target address associated
with the FTB. The selected target address may be used to
resteer the pipeline in the event of a branch misprediction.

For one embodiment of the invention, FTB identification
is simplified by assigning branch instructions to pipelines
210(a), 210(b), 210(c) according to their order of execution.
Here, execution order refers to the order in which the branch
instructions of a cluster are encountered in the code Segment.
For a cluster of three branch instructions in the disclosed
embodiment, pipeline 212(c) is assigned to the branch
instruction that is third in execution order, pipeline 212(b) is
assigned to the branch instruction that is Second in execution
order, and pipeline 212(a) is assigned to the branch instruc
tion that is first in execution order. In a cluster of two branch
instructions, pipeline 212(c) is assigned to the branch
instruction that is Second in execution order and pipeline
212(b) is assigned to the branch instruction that is first in
execution order. Similar assignments apply for different
numbers of pipelines and corresponding branch cluster
SZCS.

With this assignment Strategy, linking logic 220 can
identify the FTB through a priority selection scheme. For

15

25

35

40

45

50

55

60

65

6
example, branch directions associated with branch instruc
tions in pipelines 210 may be examined Sequentially, begin
ning with pipeline 210(a). The first taken branch identified
in this order is the first taken branch in execution order, i.e.
the FTB.

Branch validation module 170 is associated with branch
execution pipelines 210 and linking logic 220 to Support
aggressive branch prediction Strategies. Validation module
170 receives the predicted branch information from branch
prediction module 140 and compares it with branch resolu
tion information provided by branch processing system 140.
Validation module 170 receives predicted branch informa
tion for a cluster from branch prediction module 120 and
compares it with branch information generated by proceSS
ing branch instructions from the cluster (resolved branch
information). When the predicted and resolved information
for a FTB match, the instructions that follow the FTB are
from the correct execution path, and validation module 170
allows branch processing system 140 to proceed. When the
predicted and resolved branch information do not match,
validation module 170 flushes pipeline 100 and triggers the
front end of the pipeline to access target instructions from
the correct execution path. For one embodiment of the
invention, validation module 170 causes the target address
selected by linking logic 220 to be transferred to the front
end of pipeline 100.
Once an FTB has been validated and no faults or excep

tions have been generated by instructions preceding the
FTB, side effects associated with the FTB are transferred
from a speculative State to the architectural State of the
program thread. Side effects of any branches that follow the
FTB are ignored, regardless of the branch directions. Side
effects of any non-loop fall-through branches that precede
the FTB are also ignored, while those of loop branches may
update one or more loop counters.

FIG. 3 shows one embodiment of a branch execution
pipeline 210 of FIG. 2. Pipeline stages 303-307 are shown
in FIG. 3 to indicate when branch operations occur at
various points along pipeline 210. In the absence of pipeline
Stalls or faults, Successive Stages of pipeline 100 operate on
an instruction on Successive cycles of the processor clock.
The pipeline of FIG. 3 is provided for illustration only. The
present invention may be implemented in pipelines having
different numbers of pipe Stages and distributions of
resources among the pipe Stages.

For the disclosed embodiment, execution pipeline 210
includes a target address module 310, a call/return module
320, and an optional loop execution module 330. Also
shown area predicate delivery module 360 and register
read/write modules 340/350, which operate in conjunction
with pipelines 210 to resolve branch instructions. For
example, read/write modules 340/350 couple indirect branch
target addresses, LC values, an EC values, between modules
310,320, 330 and various registers associated with pipeline
100. Predicate delivery module 360 provides predicates to
various components of branch processing System 140. The
modules of FIG. 3 are shown separately to highlight their
different functions. However, their functions may overlap
and they may be combined in different ways to achieve the
Same results.

Target address module 310 generates a target address for
a branch instruction as it transits stages 303-305. For the
disclosed embodiment, target addresses for IP-relative and
indirect branches may be generated in Stage 303. In addition,
target addresses for indirect branches may be by-passed into
target address module 310 at stages 304 or 305.

US 6,304,960 B1
7

Call/return module 320 includes additional resources for
processing call and return branch instructions. For example,
it generates a return address in Stage 303 for a call instruc
tion and makes the return address available for Storage or use
by other pipeline resources. For the disclosed embodiment,
the return address may be written to a branch (BR) register
at Stage 306, by-passed to other resources at intervening
Stages, or coupled to linking logic 220 as necessary. Call/
return pipeline 320 also Saves and restores architectural State
data, e.g. privilege levels, loop variables, etc., on call and
return branches, respectively.

Loop execution module 330 provides the additional
resources necessary to process loop type branch instructions.
For example, these resources update Side effects associated
with loop execution, LC, EC, etc., and resolve branch
directions for loop branches. For one embodiment of the
invention, only one of execution pipelines 210 is provided
with loop module 330, and loop branch instructions are
directed to this pipeline 210 for processing. This eliminates
the need to reproduce the loop hardware in all pipelines 210.
It also simplifies the hardware necessary to Suppress instruc
tions in the cluster that follow the FTB.

FIG. 4 illustrates in greater detail one embodiment of
target address and call/return modules 310, 320,
respectively, Suitable for use with the present invention. The
disclosed embodiment of address module 310 includes an
adder 412 to generate target addresses for IP-relative branch
instructions and a multiplexer (MUX) 414 to select a target
address Source for indirect branch instructions. The Source
may be a branch register (BR) 416 or a by-pass input 418.
At stage 304, a MUX 422 selects adder 412, MUX 414, or
by-pass input 428 as the target address Source, according to
the branch instruction type and timing considerations. MUX
432 selects between a target address from stage 304 or one
provided through by-pass input 438 in stage 305. The target
address from module 310 (and target address modules in
other branch pipelines 210) are coupled to linking logic 220
for selection in stage 306. Latches 404 stage data across the
different pipe Stage boundaries.

Call/return module 320 includes an adder 422 in stage 303
that generates a return address for a call branch instruction.
Arrows in stages 303 and 304 represent by-passes available
to couple the return address to various Stages in this and
other branch execution pipelines 210. The return address
may also be coupled to linking logic 220 in stage 305. Block
424 represents components of call return pipeline 320 that
update loop and privilege level (PL) variables to reflect
call/return activity. For example, block 424 Saves an archi
tectural value of PL as a previous PL(PPL) on execution and
commitment of a return branch instruction. The architectural
value of PPL is restored to PL on execution and commitment
of a return branch instruction. Block 424 is discussed in
greater detail in conjunction with FIG. 5.

FIG. 5 illustrates one embodiment of loop module 330
suitable for use in the present invention. Loop module 330
includes an EC update module 510, a previous EC (PEC)
update module 520, and an LC update module 530. EC
update module 510 includes logic for updating speculative
and architectural values of a loop EC (S EC and A EC,
respectively) to reflect branch and move instructions
executed by branch processing system 140. PEC update
module 520 and LC update module 530 perform similar
update operations for Speculative and architectural values of
PEC and LC, respectively. Pipe stages 305, 306 are shown
for reference.

Various types of loop instructions that may be processed
by loop module 330 are identified in Table 1 along with the
predicate/loop variable values for which the branch is taken.

1O

15

25

35

40

45

50

55

60

65

8

TABLE 1.

BRANCHTYPE TAKEN CONDITION

CLOOP LC = 0
CTOP LC > 0 || EC > 1
CEXIT LC = 0 && EC is 1
WTOP PR == 0 || EC > 1
WEXIT PR == 1 && EC is 1

Here, CLOOP is a counted loop, CTOP is a modulo
Scheduled (Software pipelined) counted loop in which the
branch direction is resolved at the bottom of the loop body,
and CEXIT is a modulo-scheduled counted loop in which
the branch direction is resolved somewhere other than the
bottom of the loop. WTOP and WEXIT are modulo
Scheduled while loops corresponding to the counted loops,
CTOP and CEXIT, respectively.

In EC update module 510, a state machine 512 receives an
instruction type signal (IN TYP) along with any necessary
predicate or speculative LC (S LC) values and selects an
appropriate mode to update the speculative EC (S EC)
value responsive to the received signals/values. The output
of state machine 512 is coupled to the control input of a
MUX 514 to update S EC. For the disclosed embodiment
of loop module 330, S EC is: (1) unchanged by default; (2)
updated to the architectural EC (A EC) value when a flush
or reset occurs in the previous cycle; (3) decremented when
the epilog portion (S LC=0, S ECz0) of a first taken
CTOP/CEXIT branch is in stage 305 or when the epilog
portion (PR=1, S ECz0) of a first taken WTOP/WEXIT
branch is in stage 305; (4) updated to a by-passed EC value
when a committed mov to EC instruction is in stage 305
of read/write module 340 or when a committed mov to
PFS (previous function state) instruction is in stage 305 of
read/write module 340 and a taken return is in stage 305; or
(5) updated to a Previous EC value (PEC) when a taken
return branch is in Stage 305. Depending on timing
constraints, it may be necessary to use predicted predicate
values to determine whether the CTOP, CEXIT, WTOP, or
WEXIT branch is the FTB in case (3).
A state machine 516 updates A EC via MUX 518 with

the current A EC value by default or with the S EC value.
In the latter case, the A EC value is updated to the
by-passed EC value, the decremented EC value, or the PEC
value when conditions (4), (3), or (5), respectively, are
updated to stage 306.

In PEC update module 520, a state machine 522 selects an
appropriate update mode for the speculative PEC (S PEC)
according to various input signals on each clock cycle. PEC
is typically updated in response to call or return type branch
instructions, which cause a current EC value to be saved or
retrieved, respectively. For the disclosed embodiment,
S PEC is: (1) updated with the current A PEC value when
a flush or reset occurs in the previous cycle; (2) updated with
the current S EC value when a first taken call occurs in 305;
or (3) updated with the S PEC by default. A state machine
526 controls MUX 518 to retain the current value for
A PEC or to update A PEC to the current value of S PEC
when conditions (1), (2), or (3) are updated to stage 306.

In LC update module 530, a state machine 532 updates
S LC through MUX 534 according to the state received
Signals/values on each clock cycle. For the disclosed
embodiment, S LC is: (1) updated to a by-passed LC value
when a committed move is detected in stage 305; (2)
decremented when a first taken CLOOP, CTOP, or CEXIT

US 6,304,960 B1
9

branch is in stage 305 and S LCz0, (3) updated to A LC
when a flush or reset event is detected on the previous cycle;
and (4) unchanged when no update event is detected.
Depending on timing constraints, it may be necessary to use
predicted predicate values to determine that the CLOOP,
CTOP, or CEXIT branch is the FTB for case (3).
A LC is updated by the S LC value according to which

Source updated Spec LC and the State of commit Signals. In
case (1), the by-passed value must be from a committed
MOV to LC instruction. In case (2), the update must be
from the FTB. If neither of these cases is detected, the
current A LC value is maintained.

For one embodiment of the invention, loop module 330 is
present in the pipeline that processes the last branch instruc
tion in execution order, e.g. pipeline 210(c) in the disclosed
embodiment, and all loop type branches are directed to
pipeline 210(c). This ensures that in any branch cluster that
includes a loop instruction, the loop instruction will be last
in execution order. This minimizes the use of loop execution
resources in all cases in which an earlier branch instruction
in a cluster is taken. It also eliminates the need to SuppreSS
branch instructions from the same cluster, i.e. concurrently
processed branch instructions, following a first taken loop
branch. The relatively complex nature of loop branches
would otherwise impose Sever timing constraints on this
proceSS.

For another embodiment of the invention, logic for imple
menting RFIs may also be included only in pipeline 210(c)
and RFIs may be routed to this pipeline by decoder module
120. RFIs are singled out because they are processed at an
instruction granular level, So that locations within a cluster
or bundle of instructions must be tracked. A register asso
ciated with interrupt/exception logic may b used for this
purpose. The other branches are processed at a cluster or
bundle granular level, and only the Starting address of the
bundle need be tracked. For example, on completion of an
interrupt, an RFI is executed and control is returned to the
next instruction in execution order. This may be an instruc
tion in the same bundle/cluster. One the other hand, follow
ing any other branch control is passed to the first instruction
in the bundle/cluster indicated by the branch target address.

For the disclosed embodiment, Sufficient information is
available by stage 305 to resolve branch instructions in
pipelines 210 and determine their side effects. Linking logic
220 monitors this resolution information for each branch
instruction in pipelines 210 and identifies the FTB, if any, in
a cluster of branch instructions.

FIG. 6A illustrates one embodiment of linking logic 220
for the case in which three branch execution pipelines 210
are available and only pipeline 210(c) includes loop execu
tion module 330. The disclosed embodiment of linking logic
220 includes a state machine 610 and a MUX 630. State
machine 610 receives as input condition resolution and valid
branch signals, e.g. CR(a)/BrVld(a), CR(b)/BrVld(b),
CR(c)/BrVld(c), for pipeline 210 and outputs an address
select signal (Add Sel) that identifies the first branch
instruction in execution order that is resolved taken (FTB).
For non-loop branch instructions, CR may be a predicate
provided by PDU 360. For loop branch instructions, CR(c)
is the logical combination of predicate, EC, and LC Values
indicated in Table 2 for the loop branch type. To reduce
timing constraints, S EC and S LC and predicated predi
cate values may be used to determine CR(c). Add Sel is
coupled to a control input of MUX 630, and target addresses
from pipelines 210(a), 210(b), 210(c), e.g. TA(a), TA(b),
TA(c), are coupled to data inputs of MUX 630. State

15

25

35

40

45

50

55

60

65

10
machine 610 uses MUX 630 to select the target address
corresponding to the FTB.

FIG. 6B illustrates one embodiment of state machine 610
for the case in which only pipeline 210(c) includes loop
module 330, and branches are assigned to pipelines
210(a)-210(c) in execution order, beginning with pipeline
210(c) for single branch clusters, pipeline 210(b) for two
branch clusters, and pipeline 210(c) for three branch clus
ters. In this embodiment, BrVld(a), (b), and (c) enable AND
gates 612, 614, 616, respectively, when valid branch instruc
tions are in pipelines 210(a), 210(b), and 210(c). AND gates
612, 624, and 626 generate an asserted Signal on an output
corresponding to the FTB.
AS noted above, branch prediction module 120 generates

predicted branch information at the front end of pipeline
100. This information is used to anticipate changes in the
instruction flow through pipeline 100 before branch pro
cessing System 140 executes the branch instructions that
actually determine changes in control flow. For one embodi
ment of the present invention, branch prediction module 120
identifies a predicted FTB (if any) and associated target
address for a branch cluster. Instructions beginning at the
predicted target address are prefetched into pipeline 100.
Provided the prediction is correct, pipeline 100 processes the
FTB and its target instructions without interruption, despite
the change in control flow.

For one embodiment of the invention, branch validation
module 170 checks the validity of branch prediction infor
mation against the branch information generated when the
branch instructions are actually executed. AS long as the
predicted and resolved branch information matches, branch
validation module 340 does not interfere with pipeline 100.
If a mismatch is detected, branch validation module 240
triggers a pipeline flush and a resteer to instructions on the
correct execution path.

FIG. 7 is a block diagram of one embodiment of branch
validation module 230 in accordance with the present inven
tion. The disclosed embodiment of branch validation mod
ule 230 includes a target check module 710, a predicate
check module 750, and a loop check module 770 to check
predicted target addresses, non-loop branch directions, and
loop branch directions, respectively, against values deter
mined by executing the corresponding branch instructions.
Branch validation module 230 is shown with respect to
pipeline stages 303-306 to indicate the timing of its opera
tions relative to those of branch execution pipelines 210.

Branch validation module 230 is described for the case in
which branches and other conditional operations are repre
Sented by predicates. However, it is readily applicable to
other Systems for representing conditional operations, and
“condition' and "predicate” are used interchangeably
throughout this discussion.
The disclosed embodiment of branch validation module

170 validates the predicted branch information by the end of
stage 305, when resolved branch information is available
from pipelines 210. To accomplish this, target check module
710 uses predicted predicate values to calculate an “actual”
target address, i.e. the target address of the FTB, and
predicate check module 750 independently checks the pre
dicted predicate values. An error in the actual target address
attributable to an incorrectly predicted predicate is identified
by predicate check module 750.

FIG. 8 illustrates in greater detail one embodiment of
branch validation module 170. For the disclosed
embodiment, target check module 710 includes first and
second address generators 820 and 830, respectively, to

US 6,304,960 B1
11

calculate the “actual” addresses of branch instructions in the
pipeline. First generator 820 determines target addresses for
IP relative and indirect branches for which data is available,
including those in which the target address is by-passed from
instructions in stages 305 and 306. Second generator 830
determines target addresses for more tightly constrained
bypasses. These includes target addresses that are provided
in the same cycle as the dependent branch instruction or one
cycle before the dependent branch instruction.

First generator 820 includes an adder 812 and a MUX814
in stage 303 for each branch execution pipeline 210. For the
disclosed embodiment, first generator 820 can process up to
three target addresses in stage 303. Adder 812 determines
target addresses for IP relative branch instructions and MUX
814 Selects target addresses for indirect branch instructions
from branch registers 818 and bypass input 816. At stage
304, a MUX 822 is provided for each branch execution
pipeline 210 to select a target address from adder 812 or
MUX814, according to whether the branch instruction in
the pipeline is an IP relative or indirect branch instruction,
respectively.

In the exemplary embodiment of branch processing SyS
tem 140, Sufficient information is available to determine the
actual (“resolved”) FTB at the end of stage 305. In order to
provide timely validation, validation module 170 employs
predicted branch information to Select a target address from
among the target addresses calculated for the concurrently
processed branch instructions. For this purpose, the dis
closed embodiment of branch validation module 170
includes a second MUX824 at stage 304 to select one of the
target addresses provided by MUXs 822. In order to limit
timing constraints, a State machine 828 receives predicted
predicate information (P PRD) from, e.g., branch predic
tion module 120, determines a predicted FTB, and selects an
“actual” target address via MUX 824 using the predicted
FTB. The Selected target address is coupled to a comparator
826, which compares it against a predicted target address
(P TA). The result of the comparison is provided to an input
of MUX848 in stage 305.

For one embodiment of the invention, state machine 828
may be a Set of logic gates as shown in FIG. 6B, with inputs
CR(a), CR(b), CR(c) provided by prediction module 120
rather than PDU 260 or execution units 160.

Second generator 830 generates a target address using
data by-passed from operations in stages 303 or 304. Com
parator 844 compares the generated target address with the
predicted target address, and provides the result to another
input of MUX 848. A control block 846 determines when
time critical bypass data is being provided and Selects the
appropriate target address comparison result via MUX848.
The output of MUX 848 indicates whether the “actual”
address (based on predicated predicate values) and the
predicted target address match.

The disclosed embodiment of predicate validation module
750 includes a validation control block 854, a predicate
validation block 856 having an input 858 for receiving
by-passed predicate values, an AND gate 860, and an OR
gate 862. Validation control block 854 receives predicted
predicates for the branch instruction(s) being processed,
determines whether a branch instruction is predicted taken
and if so, which branch execution pipeline 210 has the
predicted FTB. A BR TK signal line coupled to an input of
AND gate 860 is asserted when the current cluster includes
an FTB. In this embodiment, AND gate 860 asserts its output
when an FTB is present in a cluster and the “actual” and
predicted target addresses do not match.

15

25

35

40

45

50

55

60

65

12
Validation control block 854 also provides a predicted

predicate for the predicted FTB to predicate validation block
856, where it is compared with the actual predicate provided
through bypass input 858. Predicate validation block 856
asserts an input to OR gate 862 if the predicted and actual
predicates for the FTB do not match.
Loop validation module 770 includes logic for determin

ing the branch direction of loop branches using speculative
EC and LC values and predicted predicate values. For one
embodiment of loop validation module 770, relevant EC and
LC values are determined from a previous cycle to limit
timing constraints. Loop validation module 770 asserts an
output Signal when a predicted first taken loop branch is
invalidated.

OR gate 862 receives invalidation signals from loop
validation module 770, predicate validation module 856, and
AND gate 860 (target address validation). The output of OR
gate 862 is coupled to an exception/commit module 160 in
Stage 306, which generates a flush Signal when any invali
dation signal to OR gate 862 is asserted.

FIG. 9 illustrates in greater detail one embodiment of loop
validation module 770. Loop validation module 770 com
pares a predicted branch direction (P TK) against EC, LC,
and predicate (PR) values, as needed to determine whether
a misprediction has occurred. For the disclosed embodiment,
EC and LC values from a previous clock cycle are used for
the branch instruction currently in stage 305, in order to
reduce the timing constraints on validation logic in Stage
305. In addition, by-passes are provided for selected instruc
tion Sequences that raise timing problems. For example,
where consecutive branch instructions are being processed,
the EC, LC, PEC values from the first processed branch
instruction may not be updated in time to evaluate the
accuracy of the Second processed branch instruction. The
by-pass makes the appropriate loop variables available for
validation in a timely manner.

The disclosed embodiment of loop validation module 770
includes an update block 910 and a comparison block 950.
Update block 910 provides appropriate values of loop vari
ables from a clock cycle N to comparison block 950 for
validation in cycle N+1. For example, update block 910
intercepts loop variables from all writers of S EC and
selects appropriate values for updating S EC and S PEC
using MUXs 912 and 914, respectively. AS PEC gating
block 916 compares a selected S PEC value against 1 when
a return is detected in stage 305. A MUX 920 couples values
of S EC to EC-gating blocks 922, 924 and decrementing
block 926. EC gating blocks 922, 924 and S PEC gating
block 916 indicate EC statuses for loop branches, consecu
tive loop branches, and loop branches following returns,
respectively. Comparison block 950 uses the EC status
information to validate the branch when it enters stage 305.

Comparison logic 950 includes EC select MUX 954,
by-pass logic 960, OR gates 964, 968, mispredict logic 980,
and NAND gates 990,994. The disclosed embodiment is
Suitable for the case in which loop branches are processed in
pipeline 210(c). For this embodiment, NAND gates 990,994
disable portions of bypass logic 960 and mispredict logic
980 when an earlier branch (in execution order) from the
Same cluster is resolved taken. In this case, the current loop
branch does not need to be validated, Since its results is
ignored.

Bypass logic 960 operates with MUX 954 to provide an
appropriate EC status check to mispredict logic 980. For the
disclosed embodiment, bypass logic 960 determines when
the default EC Status check, provided by gating logic 924,

US 6,304,960 B1
13

must be bypassed to accommodate timing constraints on EC
updates. For example, when a modulo-Scheduled loop pre
cedes the current branch instruction in stage 305, bypass
logic 960 directs the EC status check from gating logic 922
to mispredict logic via MUX 954. This allows the EC update
from the modulo-scheduled loop to be incorporated in the
analysis of the current branch instruction. For this purpose,
OR gates 964 and 968 determine when modulo-counted and
module-while loop branch instructions, respectively, pre
cede the current branch instruction in stage 305.

Similarly, when a taken return precedes the current branch
instruction in stage 305, bypass logic 960 directs the EC
status check from gating logic 916 (S PEC>1) to mispre
dict logic 980 via MUX 954. In this case, S PEC stores the
speculative EC value of the branch to which the taken return
branch returns control. If neither bypass condition is
detected, bypass logic directs the EC Status check from
gating logic 924 to mispredict logic 980.

Mispredict logic 980 uses the status of S EC, S LC, and
the predicate value for the branch instruction in stage 305
(PR(c)) to determine the TK/NT status of the branch instruc
tion and compare it against the predicted value (Pred TK).
For the disclosed embodiment, signals at the outputs of AND
gates 982(a), 982(b), 982(c), or 982(d) are asserted when a
WTOP, WEXIT, CEXIT, or CTOP branch instruction,
respectively, is mispredicted.

FIG. 10 is a circuit diagram of embodiments of predicate
control and validation logic 854, 856, respectively, in accor
dance with the present invention. Predicate control logic 854
receives predicted predicates (PRED TK3) and deter
mines which pipeline 210, if any, includes a FTB for a given
branch cluster. Predicate validation logic 856 compares
predicted and resolved branch predicates in pipe Stage 305,
and asserts a mismatch Signal when the comparison fails for
the FTB. For the disclosed embodiment, predicated predi
cates are provided by branch prediction module 120 and
resolved predicates may be provided through input 858.

Predicate control logic 854 includes AND gates 1020(b)
1020(c) and OR gate 1022. AND gate 1020(g) generates an
enable signal if branches in pipelines 210(a) and 210(b) are
predicted NT and TK, respectively. AND gate 1020(c)
generates an enable signal if branches in pipelines 210(a),
210(b), and 210(c) are predicted NT, NT, and TK. OR gate
1022 asserts BR TK if a branch in any pipeline 210 is
predicted TK.

Predicate validation logic 856 includes XOR gates
1010(a)-1010(c) and AND gates 1030(b), 1030(c), XOR
gates 1010(a)-1010(c) compare predicted predicates with
resolved predicates for pipelines 210(a)-210(c) and assert
invalidation signals when a mismatch is detected. AND
gates 1030(b) and 1030(c) mask invalidation signals from
XORs 1010(b) and 1010(c) when the predicted FTB is in an
earlier pipeline 210 in execution order. For example, AND
gate 1030(b) is enabled by predicate control logic 854 only
if branches in pipelines 210(a) and 210(b) are predicted NT
and TK, respectively. AND gate 1030(c) is enabled by
predicate control logic 854 only if branches in pipelines
210(a), 210(b), and 210(c) are predicted NT, NT, and TK,
respectively.

Validation module 170 provides a final check on predicted
versus actual results by stage 305. Even when the predicted
results are validated, however, faults may prevent the results
from being committed. Validated results from branch pro
cessing System 140 are only committed to the architectural
State of the thread when no instruction that precedes the first
taken branch generates a fault. In the embodiment in which

15

25

35

40

45

50

55

60

65

14
only one execution pipeline 210 includes loop pipeline 330,
a fault may be generated when a loop instruction is Sched
uled into an execution pipeline 210(a) or 210(b), since
neither has the hardware resources necessary to execute loop
branches. When this or any other fault is generated, control
is passed to a fault handler, independent of the resolution of
the branch instructions in the cluster, and results from
linking logic 220 are not committed.

FIG. 11 is a flow chart representing a method in accor
dance with the present invention for validating branch
prediction information. At Step 1110, target addresses are
determined for each branch instruction in a cluster of branch
instructions. At step 1120, branch prediction information is
used to Select on of the determined target addresses as the
target address for the cluster. Where the cluster includes
multiple branch instructions, the Selected target address is
the target address associated with the first branch instruction
in execution order that is predicted to be taken (predicted
FTB). The selected branch instruction is then compared
1130 with the predicted branch instruction. If the selected
and predicted target address do not match, a branch mispre
diction is indicated 1134.

If the Selected and predicted target addresses match,
predicted and resolved TK/NT status are compared 1140. If
the predicted and resolved TK/NT status match, the branch
prediction is validated 1144. In this case, pipeline 100 may
continue processing any instructions prefetched on the basis
of a TK prediction for the branch. If the predicted and
resolved branch Status do not match, a misprediction is
indicated 1134. For one embodiment of the invention, fetch
module 110 at the front end of pipeline 100 is resteered using
the a target address calculated by the branch execution
pipeline associated with the first taken branch.

There has thus been provided a System for processing
clustered branch instructions concurrently. The clustered
branch instructions are each assigned to a branch execution
pipeline and processed to determine their resolution and
target addresses (if resolved taken). Linking logic identifies
a first taken branch from the cluster and updates the archi
tectural State of an associated thread to reflect the taken
branch. Resolution and target information from later
executed instructions are Suppressed. For one embodiment
of the invention, predicted branch information is validated
against resolved branch information for the first taken
branch, and the pipeline is resteered if a misprediction is
detected.
What is claimed is:
1. A branch System comprising:
a branch predictor to predict a target address for an

instruction cluster that includes one or more branch
instructions,

an address generator to determine target addresses for the
branch instructions of the cluster;

a target address validation module to Select one of the
determined target addresses as a tentative target
address, responsive to predicted directions for the
branch instructions and to compare the tentative target
address with the predicted target address, and

a condition validation module to compare the predicted
branch directions with resolved branch directions and
trigger a resteer Signal when either comparison indi
cates a mismatch.

2. The branch validation system of claim 1, wherein the
target address generator further comprises first and Second
target address generators, the Second target address genera
tor to determine target addresses for Selected time-critical

US 6,304,960 B1
15

branch instructions and the first target address generator to
determine target addresses for non-time critical branch
instructions.

3. The branch validation system of claim 2, wherein the
Selected time-critical branch instructions are branch instruc
tions for which bypass data to determine the target addresses
of the branch instructions is generated within a Selected
number of clock cycles of the target address determination.

4. The branch validation system of claim 1, wherein the
target address validation module determines a predicted first
taken branch from the predicted branch directions and
Selects as the tentative target address the determined target
address associated with the predicted first taken branch.

5. The branch validation system of claim 1, wherein the
tentative target address and predicted branch directions are
validated in parallel with a cluster of concurrently processed
branch instructions.

6. The branch validation system of claim 5, wherein the
condition validation module converts predicted branch
directions to predicted predicate information for comparison
with resolved predicate information.

7. A method for validating branch instructions compris
ing:

predicting a target address for an instruction cluster;
calculating target addresses for each branch instruction of

the cluster;
predicting a first taken branch for the instruction cluster;
Selecting a tentative target address from the one or more

calculated target addresses according to the predicted
first taken branch; and

comparing the tentative target address with the predicted
target address to detect a branch misprediction.

8. The method of claim 7, wherein predicting the first
taken branch comprises:

receiving a predicted branch direction for each branch
instruction of the cluster; and

identifying the first branch instruction having a taken
predicted branch direction.

9. The method of claim 8, further comprising:
receiving resolved branch directions for the branch

instructions of the cluster;
comparing the resolved branch directions with the pre

dicted branch directions, and
indicating a misprediction when the target address com

parison or the branch direction comparison fails.
10. A processor comprising:
a branch prediction System to predict a first taken branch

and an associated target address for a cluster of branch
instructions,

a branch execution System to process the branch instruc
tions of the cluster concurrently and identify an actual
first taken branch; and

a branch validation module to Select from target addresses
calculated for the branch instructions a tentative target
address for the clustered branch instructions using the
predicted first taken branch and to compare the tenta
tive target address with the predicted target address.

11. The processor of claim 10, wherein the branch vali
dation module includes a predicate validation module to
compare predicted and resolved branch directions for the
branch instructions and provide an invalidation signal when
the direction or target address comparison fails.

12. The processor of claim 10, wherein the branch vali
dation System employs predicted predicates to validate the
predicted target address and the predicted first taken branch

15

25

35

40

45

50

55

60

65

16
as the branch execution System resolves actual branch
directions for the cluster of branch instructions.

13. The processor of claim 10, wherein the branch vali
dation System operates in parallel with the branch execution
System to validate the predicted target address for the cluster
of branches as the branch execution System completes
processing the branches.

14. A branch validation module comprising:
a target validation module, the target validation module to

Select a tentative target address from a plurality of
target addresses determined from a cluster of concur
rently processed branch instructions and to compare the
tentative target address with a predicted target address,
and

a condition validation module to compare one or more
predicted and resolved branch directions and to trigger
a resteer Signal if the target address or direction com
parison fails.

15. The branch validation system of claim 14, wherein the
condition validation System includes a predicate validation
System to validate non-loop branches in the cluster and a
loop module to validate loop branches in the cluster.

16. The branch validation system of claim 14, wherein the
resolved branch directions are provided by processing the
clustered branch instructions in parallel with validating the
processed branch instructions.

17. A processor comprising:
a branch prediction System to predict a first taken branch

and a target address for a cluster of branch instructions,
branch execution means to process the cluster of branch

instructions concurrently and resolve a first taken
branch; and

branch validation means to Select a tentative target
address for the cluster of branch instructions from
target addresses calculated for the branch instructions,
using the predicted first taken branch, and to compare
the tentative and predicted target addresses.

18. The processor of claim 17, wherein the branch execu
tion means includes a plurality of branch execution
pipelines, each capable of processing one of the branch
instructions in the cluster and linking logic to determine a
first taken branch of the cluster.

19. The processor of claim 17, wherein the branch vali
dation means includes a plurality of address generators to
determine a plurality of target addresses from the branch
instructions of the cluster.

20. The processor of claim 19, wherein the branch vali
dation means further includes logic to determine the first
taken branch using predicted branch directions for the
clustered branch instructions.

21. The processor of claim 20, wherein the logic is
coupled to the plurality of address generators to Select a
target address for the clustered branch instructions according
to the predicted first taken branch.

22. The processor of claim 21, wherein the branch pre
diction means further comprises condition validation means
to compare predicted branch directions with resolved branch
directions from processed branches and generate a resteer
Signal when a mismatch is detected.

23. The processor of claim 18, wherein the branch vali
dation means includes a target address generator to deter
mine target addresses for each branch of the cluster, Selec
tion logic to Select a target address corresponding to the
predicted first taken branch of the cluster, and a comparator
to compare the Selected target address with a resolved target
address from the branch execution means.

US 6,304,960 B1
17

24. The processor of claim 23, wherein the branch vali
dation means further includes a condition validation module
to compare predicted and resolved branch directions and
generate a resteer Signal if a mismatch is detected for the
branch direction or target address.

25. The processor of claim 24, wherein the branch vali
dation means implements target address and branch condi

18
tion validation in parallel with target address and branch
condition resolution implemented by the branch execution
CS.

