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VALIDATING PREDICTION FOR 
BRANCHES IN A CLUSTER WIA 

COMPARISON OF PREDICTED AND 
CONDITION SELECTED TENTATIVE 

TARGET ADDRESSES AND WALIDATION OF 
BRANCH CONDITIONS 

BACKGROUND OF THE INVENTION 

1. Technical Field 
This invention relates to microprocessors, and in particu 

lar to Systems for processing branch instructions. 
2. Background Art 
Advanced processors employ pipelining techniques to 

execute instructions at very high Speeds. In a pipelined 
processor, the Overall machine is organized as a pipeline 
consisting of Several cascaded Stages of hardware. Instruc 
tion processing is divided into a sequence of operations, and 
each operation is executed by hardware resident in a corre 
sponding pipeline Stage ("pipe Stage') in a single cycle of 
the processor clock. Independent operations from Several 
instructions may be processed Simultaneously by different 
pipe Stages, increasing the instruction throughput of the 
pipeline. Where a processor pipeline includes multiple 
execution resources in each pipe Stage, the throughput of the 
processor can exceed one instruction per clock cycle. Con 
temporary SuperScalar, deeply pipelined processors may 
have anywhere from 5 to 15 pipe Stages and may execute 
operations from as 4 to 8 instructions simultaneously in each 
pipe Stage. 

In order to make full use of a processor's instruction 
execution capability, the processor must be provided with 
Sufficient instructions from the correct execution path. AS 
long as the correct execution path can be identified, instruc 
tions from this execution path can be loaded into the 
processor pipeline to keep the execution resources busy. 
Where program instructions are processed Sequentially, it is 
a relatively simple matter to determine the correct execution 
path. Branch instructions can disrupt Sequential execution 
by transferring control of the processor to a non-Sequential 
target address when an associated branch condition is met. 
Many programs have branches every five or six instructions. 
AS a result, a deeply pipelined processor may have two or 
three branch instructions in its pipeline at a given time, 
making determination of the correct execution path difficult. 
Moreover, branch conditions are typically not resolved until 
the back end of the processor pipeline, So the pipeline may 
begin processing instructions from incorrect execution paths 
before the error is discovered. 

Processors typically include branch prediction Systems at 
the front end of their pipelines to anticipate changes in the 
control flow due to taken branch instructions. Branch pre 
diction Systems use a variety of methods to predict whether 
a branch instruction entering the front end of the pipeline is 
likely to be taken when it is executed at the back end of the 
pipeline, e.g. whether the branch condition is likely to be 
met. For branch instructions that are predicted taken, 
instructions beginning at the associated target address may 
be loaded into the pipeline behind the branch instruction. As 
long as the branch is resolved taken when it is executed at 
the back end of the pipeline, the predicted instruction 
Sequence that follows the branch instruction is from the 
correct execution path, and there is no disruption of the 
pipeline's operation. If the prediction is incorrect, the pre 
dicted instructions are not from the correct execution path. 
They must be flushed from the pipeline and instructions 
from the correct instruction path loaded. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
Instructions from a predicted branch path must thus be 

checked at the back end of the pipeline and either validated 
or corrected. Typically, this is done by comparing the target 
address and branch condition from the executed branch 
instruction with the predicted target address and branch 
condition. When the comparisons match, no action need be 
taken Since the instructions in the pipeline following the 
branch instruction represent the correct control flow. When 
the comparisons do not match, the pipeline must be flushed 
and reloaded with instructions from the correct execution 
path. 

Validating branch predictions can consume additional 
clock cycles. For example, the branch information from the 
executed branch instruction is resolved in one Stage of the 
pipeline, and typically compared with the predicted branch 
information no earlier than the next stage of the pipeline. In 
processors that Support predication, branch conditions are 
frequently represented by predicates, and predicate evalua 
tion is a critical path in the processor. Delays in validating 
predicted predicates can lengthen a critical timing path in the 
processor pipeline. 

This problem is exacerbated in processors that execute 
code compiled by trace Scheduling, Superblock Scheduling, 
and hyper block Scheduling. These methods cause fall 
through, i.e. not taken, branches to cluster at the end of a 
Scheduled code block. The clustered branch instructions are 
generally executed and validated in Sequence. Fall through 
branches do not effect the control flow of the processor and 
each one that is executed delays the pipeline by an additional 
clock cycle. Further, delays due to validating each fall 
through branch are compounded as well. The present inven 
tion addresses these and other problems associated with 
executing and validating branch instructions. 

SUMMARY OF THE INVENTION 

The present invention is a System and method for Vali 
dating branch predictions in parallel with execution of the 
corresponding branch instructions. It is especially Suitable 
for use with branch processing Systems capable of executing 
clustered branch instructions concurrently. 

In accordance with the present invention, a branch Vali 
dation System includes a target validation module and a 
condition validation module. The target validation module 
determines a target address for validation, using predicted 
branch condition information and compares the target 
address to a predicted target address. The condition valida 
tion module compares predicted and resolved branch con 
dition information, and generates a flush Signal when either 
comparison indicates a mismatch. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention may be understood with reference 
to the following drawings in which like elements are indi 
cated by like numbers. These drawings are provided to 
illustrate Selected embodiments of the present invention and 
are not intended to limit the Scope of the invention. 

FIG. 1 is a block diagram of one embodiment of a 
processor pipeline that includes a branch validation System 
in accordance with the present invention. 

FIG. 2 is a block diagram of one embodiment of a branch 
processing System in accordance with the present invention. 

FIG. 3 is a block diagram illustrating one embodiment of 
the branch execution pipeline of FIG. 2. 

FIGS. 4 is a circuit diagram illustrating embodiment of 
the address and return pipelines of FIG. 3. 
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FIG. 5 is a circuit diagram illustrating one embodiment of 
the loop pipeline of FIG. 3. 

FIGS. 6A and 6B are circuit diagrams illustrating one 
embodiment of the linking logic of FIG. 2. 

FIG. 7 is a block diagram of one embodiment of the 
validation module of FIGS. 1 and 2. 

FIG. 8 is a more detailed diagram of one embodiment of 
the branch validation module of FIG. 7. 

FIG. 9 is a circuit diagram of one embodiment of the loop 
validation module of FIG. 7. 

FIG. 10 is a circuit diagram of one embodiment of the 
predicate handling and predicate validation logic of FIG. 8. 

FIG. 11 is a flow chart illustrating a method in accordance 
with the present invention for validating branch instructions. 

DETAILED DISCUSSION OF THE INVENTION 

The following discussion Sets forth numerous specific 
details to provide a thorough understanding of the invention. 
However, those of ordinary skill in the art, having the benefit 
of this disclosure, will appreciate that the invention may be 
practiced without these specific details. In addition, various 
well known methods, procedures, components, and circuits 
have not been described in detail in order to focus attention 
on the features of the present invention. 

The present invention is a System and method for vali 
dating branch predictions concurrently with execution of the 
corresponding branch instructions. It is particularly advan 
tageous to branch processing Systems that Support concur 
rent processing of clustered branch instructions in combi 
nation with aggressive prediction Strategies to achieve high 
performance. 

In accordance with the present invention, the branch 
validation System validates the target address and branch 
direction (Taken/Not Taken status) in parallel, allowing the 
validation results to conclude as branch execution com 
pletes. This is accomplished by employing predicted con 
dition information to determine a target address for valida 
tion. Target address validation is thus decoupled from 
branch condition validation, allowing them to proceed in 
parallel. 

FIG. 1 is a block diagram of one embodiment of a 
processor pipeline 100 that incorporates a branch validation 
module 170 in accordance with the present invention. Pro 
cessor pipeline 100 includes an instruction fetch module 
110, a branch prediction module 120, an instruction decode 
module 130, branch processing system 140, execution 
resources 150, and an exception/commit module 160. 
Execution resources 150 represents non-branch execution 
units that are typically present in a processor pipeline. These 
include floating point execution unit(s) (FPU), integer 
execution unit(s) (IEU), and memory execution units. 
Exception/commit module 160 monitors pipeline events to 
determine whether to commit the results of instructions to 
the architectural State of the processor. 

For the disclosed embodiment, branch validation module 
170 is shown incorporated in branch processing system 140. 
However, this is not required. Branch validation module 170 
may be implemented Separately from branch processing 
system 140 or in any other association that allows rapid 
communication between the two Systems. 

Fetch module 110 fetches instructions for processing by 
pipeline 100. To facilitate fetching and branch prediction 
operations, instructions may be identified through instruc 
tion pointers (IPs). Fetch module 110 provides IPs to branch 
prediction module 120, which accesses branch prediction 
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4 
information, when available, for those IPs that represent 
branch instructions. Branch prediction information indicates 
whether a branch is likely to be taken (branch direction). It 
typically also indicates a predicted target address, i.e. an 
address to which the branch instruction transfers control 
when it is taken. The predicted target address points to one 
or more target instructions that may be loaded into the 
pipeline 100 when the branch is predicted taken. For one 
embodiment, branch prediction module 120 predicts a first 
taken branch for a cluster of branch instructions and a target 
address associated with the first taken branch. 

AS long as the predicted branch information is accurate, 
pipeline 100 operates on a seamless flow of instructions. The 
alternative, fetching the target instructions when the branch 
instruction is executed by branch processing System 140 at 
the back end of pipeline 100, leaves the resources in pipeline 
100 under utilized. 

Instructions are decoded in decode module 130 and 
directed to appropriate execution resources according to 
their instruction type. Branch instructions are directed to 
branch processing System 140 where each is executed to 
determine the next instruction on the execution path and any 
Side effects on the architectural State. For example, a con 
ditional branch instruction Specifies a target address and a 
branch condition. When the branch instruction is executed, 
processor control jumps to the instruction at the target 
address if the branch is taken or falls through to the 
instruction that follows the branch instruction if the branch 
is not taken. The branch condition determines whether the 
branch is taken or not taken, i.e. the branch direction. The 
target address may be specified by a pointer to a register 
(indirect branch) or as an offset from the IP of the branch 
instruction (IP-relative branch). The branch direction may 
be specified through a variable to which the branch instruc 
tion points. The variable is typically Stored in a register that 
is written by compare instructions. 

For one embodiment of the present invention, branch 
instruction module 140 is capable of executing one or more 
branch instructions concurrently and identifying a first taken 
branch instruction from among the concurrently executed 
branch instructions. 

If no exceptions/faults are detected, the architectural State 
is updated to reflect the effects of the first taken branch. 
Branches following the first taken branch in the cluster arc 
ignored. Branches that precede the first taken branch in the 
cluster are fall-through branches. Generally, fall-through 
branches have no effect on the architectural State. Loop 
branches, which adjust various loop counters even when 
they fall-through, are an exception. 

For the present invention, branch validation module 170 
compares predicted branch information (TK/NT status, tar 
get address) with resolved branch information from pro 
cessed branch or branch-related instructions. When the 
predicted and resolved branch information do not match, 
instructions loaded into processor pipeline 100 based on the 
predicted information are not from the correct execution 
path. In this case, processor pipeline 100 is flushed and fetch 
module 110 is resteered to the correct instructions. When the 
predicted and actual branch information match, instructions 
in processor pipeline 100 are from the correct execution path 
and processing proceeds uninterrupted. 

FIG. 2 is a block diagram of one embodiment of a branch 
processing System 140 in accordance with the present inven 
tion. Branch processing System 140 includes multiple 
branch execution pipelines 210(a), 210(b), 210(c) 
(collectively, "pipelines 210’) and linking logic 220. Also 
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shown are ports 212(a), 212(b), 212(c) for providing branch 
instructions to associated pipelines 210(a), 210(b), 210(c), 
respectively, and a validation module 170. FIG. 2 illustrates 
the invention for the case where clusters of up to three 
branch instructions may be processed simultaneously. 
However, the present invention is not limited to this 
configuration, and may be modified to process any number 
of branch instructions concurrently. 

Each pipeline 210 executes a branch instruction to deter 
mine the branch direction, the target address, and any side 
effects the branch on the architectural State. Examples of 
Side effects are return addresses calculated on execution of 
call branches and loop variables calculated on execution of 
loop branches. The latter include loop counters (L,C), which 
track the iterations of associated loops, and epilog counters 
(EC), which track the number of stages remaining in Soft 
ware pipelined loops. Since multiple branch instructions 
may be executed concurrently and only the first branch in 
execution order is committed to the architectural State, Side 
effects for each taken branch are maintained in a speculative 
State until linking logic 220 determines which branch, if any, 
is the first taken branch in the cluster. 

Branch execution pipelines 210 and various resources of 
pipeline 100 determine branch directions, branch target 
addresses, and any Side effects. For one embodiment of the 
invention, branch directions for, e.g., calls, returns, instruc 
tion set Switches, and returns from interrupts (RFIs) are 
determined by predicates which are written by compare 
instructions. Each compare instruction is executed in con 
junction with its corresponding branch instruction by, for 
example, IEU or FPU 150. For one embodiment of the 
invention, the result of the compare operation is represented 
by a value that is Stored in a predicate register. The predicate 
register is indicated by a condition field of the branch 
instruction. The branch direction of loop branches may be 
determined by loop variables alone or in combination with 
predicates, depending on the type of loop. 

Linking logic 220 employs resolved branch information 
asSociated with each executed branch instruction of a cluster 
to identify the first branch instruction in execution order that 
is resolved taken, i.e. first taken branch instruction (FTB) of 
a cluster. For one embodiment, the resolved branch infor 
mation is provided as predicates by a predicate delivery unit 
and, in the case of loop instructions, as logical combinations 
of predicates and/or counter variables. Linking logic 220 
uses this information to Select a target address associated 
with the FTB. The selected target address may be used to 
resteer the pipeline in the event of a branch misprediction. 

For one embodiment of the invention, FTB identification 
is simplified by assigning branch instructions to pipelines 
210(a), 210(b), 210(c) according to their order of execution. 
Here, execution order refers to the order in which the branch 
instructions of a cluster are encountered in the code Segment. 
For a cluster of three branch instructions in the disclosed 
embodiment, pipeline 212(c) is assigned to the branch 
instruction that is third in execution order, pipeline 212(b) is 
assigned to the branch instruction that is Second in execution 
order, and pipeline 212(a) is assigned to the branch instruc 
tion that is first in execution order. In a cluster of two branch 
instructions, pipeline 212(c) is assigned to the branch 
instruction that is Second in execution order and pipeline 
212(b) is assigned to the branch instruction that is first in 
execution order. Similar assignments apply for different 
numbers of pipelines and corresponding branch cluster 
SZCS. 

With this assignment Strategy, linking logic 220 can 
identify the FTB through a priority selection scheme. For 
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6 
example, branch directions associated with branch instruc 
tions in pipelines 210 may be examined Sequentially, begin 
ning with pipeline 210(a). The first taken branch identified 
in this order is the first taken branch in execution order, i.e. 
the FTB. 

Branch validation module 170 is associated with branch 
execution pipelines 210 and linking logic 220 to Support 
aggressive branch prediction Strategies. Validation module 
170 receives the predicted branch information from branch 
prediction module 140 and compares it with branch resolu 
tion information provided by branch processing system 140. 
Validation module 170 receives predicted branch informa 
tion for a cluster from branch prediction module 120 and 
compares it with branch information generated by proceSS 
ing branch instructions from the cluster (resolved branch 
information). When the predicted and resolved information 
for a FTB match, the instructions that follow the FTB are 
from the correct execution path, and validation module 170 
allows branch processing system 140 to proceed. When the 
predicted and resolved branch information do not match, 
validation module 170 flushes pipeline 100 and triggers the 
front end of the pipeline to access target instructions from 
the correct execution path. For one embodiment of the 
invention, validation module 170 causes the target address 
selected by linking logic 220 to be transferred to the front 
end of pipeline 100. 
Once an FTB has been validated and no faults or excep 

tions have been generated by instructions preceding the 
FTB, side effects associated with the FTB are transferred 
from a speculative State to the architectural State of the 
program thread. Side effects of any branches that follow the 
FTB are ignored, regardless of the branch directions. Side 
effects of any non-loop fall-through branches that precede 
the FTB are also ignored, while those of loop branches may 
update one or more loop counters. 

FIG. 3 shows one embodiment of a branch execution 
pipeline 210 of FIG. 2. Pipeline stages 303-307 are shown 
in FIG. 3 to indicate when branch operations occur at 
various points along pipeline 210. In the absence of pipeline 
Stalls or faults, Successive Stages of pipeline 100 operate on 
an instruction on Successive cycles of the processor clock. 
The pipeline of FIG. 3 is provided for illustration only. The 
present invention may be implemented in pipelines having 
different numbers of pipe Stages and distributions of 
resources among the pipe Stages. 

For the disclosed embodiment, execution pipeline 210 
includes a target address module 310, a call/return module 
320, and an optional loop execution module 330. Also 
shown area predicate delivery module 360 and register 
read/write modules 340/350, which operate in conjunction 
with pipelines 210 to resolve branch instructions. For 
example, read/write modules 340/350 couple indirect branch 
target addresses, LC values, an EC values, between modules 
310,320, 330 and various registers associated with pipeline 
100. Predicate delivery module 360 provides predicates to 
various components of branch processing System 140. The 
modules of FIG. 3 are shown separately to highlight their 
different functions. However, their functions may overlap 
and they may be combined in different ways to achieve the 
Same results. 

Target address module 310 generates a target address for 
a branch instruction as it transits stages 303-305. For the 
disclosed embodiment, target addresses for IP-relative and 
indirect branches may be generated in Stage 303. In addition, 
target addresses for indirect branches may be by-passed into 
target address module 310 at stages 304 or 305. 
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Call/return module 320 includes additional resources for 
processing call and return branch instructions. For example, 
it generates a return address in Stage 303 for a call instruc 
tion and makes the return address available for Storage or use 
by other pipeline resources. For the disclosed embodiment, 
the return address may be written to a branch (BR) register 
at Stage 306, by-passed to other resources at intervening 
Stages, or coupled to linking logic 220 as necessary. Call/ 
return pipeline 320 also Saves and restores architectural State 
data, e.g. privilege levels, loop variables, etc., on call and 
return branches, respectively. 

Loop execution module 330 provides the additional 
resources necessary to process loop type branch instructions. 
For example, these resources update Side effects associated 
with loop execution, LC, EC, etc., and resolve branch 
directions for loop branches. For one embodiment of the 
invention, only one of execution pipelines 210 is provided 
with loop module 330, and loop branch instructions are 
directed to this pipeline 210 for processing. This eliminates 
the need to reproduce the loop hardware in all pipelines 210. 
It also simplifies the hardware necessary to Suppress instruc 
tions in the cluster that follow the FTB. 

FIG. 4 illustrates in greater detail one embodiment of 
target address and call/return modules 310, 320, 
respectively, Suitable for use with the present invention. The 
disclosed embodiment of address module 310 includes an 
adder 412 to generate target addresses for IP-relative branch 
instructions and a multiplexer (MUX) 414 to select a target 
address Source for indirect branch instructions. The Source 
may be a branch register (BR) 416 or a by-pass input 418. 
At stage 304, a MUX 422 selects adder 412, MUX 414, or 
by-pass input 428 as the target address Source, according to 
the branch instruction type and timing considerations. MUX 
432 selects between a target address from stage 304 or one 
provided through by-pass input 438 in stage 305. The target 
address from module 310 (and target address modules in 
other branch pipelines 210) are coupled to linking logic 220 
for selection in stage 306. Latches 404 stage data across the 
different pipe Stage boundaries. 

Call/return module 320 includes an adder 422 in stage 303 
that generates a return address for a call branch instruction. 
Arrows in stages 303 and 304 represent by-passes available 
to couple the return address to various Stages in this and 
other branch execution pipelines 210. The return address 
may also be coupled to linking logic 220 in stage 305. Block 
424 represents components of call return pipeline 320 that 
update loop and privilege level (PL) variables to reflect 
call/return activity. For example, block 424 Saves an archi 
tectural value of PL as a previous PL(PPL) on execution and 
commitment of a return branch instruction. The architectural 
value of PPL is restored to PL on execution and commitment 
of a return branch instruction. Block 424 is discussed in 
greater detail in conjunction with FIG. 5. 

FIG. 5 illustrates one embodiment of loop module 330 
suitable for use in the present invention. Loop module 330 
includes an EC update module 510, a previous EC (PEC) 
update module 520, and an LC update module 530. EC 
update module 510 includes logic for updating speculative 
and architectural values of a loop EC (S EC and A EC, 
respectively) to reflect branch and move instructions 
executed by branch processing system 140. PEC update 
module 520 and LC update module 530 perform similar 
update operations for Speculative and architectural values of 
PEC and LC, respectively. Pipe stages 305, 306 are shown 
for reference. 

Various types of loop instructions that may be processed 
by loop module 330 are identified in Table 1 along with the 
predicate/loop variable values for which the branch is taken. 
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TABLE 1. 

BRANCHTYPE TAKEN CONDITION 

CLOOP LC = 0 
CTOP LC > 0 || EC > 1 
CEXIT LC = 0 && EC is 1 
WTOP PR == 0 || EC > 1 
WEXIT PR == 1 && EC is 1 

Here, CLOOP is a counted loop, CTOP is a modulo 
Scheduled (Software pipelined) counted loop in which the 
branch direction is resolved at the bottom of the loop body, 
and CEXIT is a modulo-scheduled counted loop in which 
the branch direction is resolved somewhere other than the 
bottom of the loop. WTOP and WEXIT are modulo 
Scheduled while loops corresponding to the counted loops, 
CTOP and CEXIT, respectively. 

In EC update module 510, a state machine 512 receives an 
instruction type signal (IN TYP) along with any necessary 
predicate or speculative LC (S LC) values and selects an 
appropriate mode to update the speculative EC (S EC) 
value responsive to the received signals/values. The output 
of state machine 512 is coupled to the control input of a 
MUX 514 to update S EC. For the disclosed embodiment 
of loop module 330, S EC is: (1) unchanged by default; (2) 
updated to the architectural EC (A EC) value when a flush 
or reset occurs in the previous cycle; (3) decremented when 
the epilog portion (S LC=0, S ECz0) of a first taken 
CTOP/CEXIT branch is in stage 305 or when the epilog 
portion (PR=1, S ECz0) of a first taken WTOP/WEXIT 
branch is in stage 305; (4) updated to a by-passed EC value 
when a committed mov to EC instruction is in stage 305 
of read/write module 340 or when a committed mov to 
PFS (previous function state) instruction is in stage 305 of 
read/write module 340 and a taken return is in stage 305; or 
(5) updated to a Previous EC value (PEC) when a taken 
return branch is in Stage 305. Depending on timing 
constraints, it may be necessary to use predicted predicate 
values to determine whether the CTOP, CEXIT, WTOP, or 
WEXIT branch is the FTB in case (3). 
A state machine 516 updates A EC via MUX 518 with 

the current A EC value by default or with the S EC value. 
In the latter case, the A EC value is updated to the 
by-passed EC value, the decremented EC value, or the PEC 
value when conditions (4), (3), or (5), respectively, are 
updated to stage 306. 

In PEC update module 520, a state machine 522 selects an 
appropriate update mode for the speculative PEC (S PEC) 
according to various input signals on each clock cycle. PEC 
is typically updated in response to call or return type branch 
instructions, which cause a current EC value to be saved or 
retrieved, respectively. For the disclosed embodiment, 
S PEC is: (1) updated with the current A PEC value when 
a flush or reset occurs in the previous cycle; (2) updated with 
the current S EC value when a first taken call occurs in 305; 
or (3) updated with the S PEC by default. A state machine 
526 controls MUX 518 to retain the current value for 
A PEC or to update A PEC to the current value of S PEC 
when conditions (1), (2), or (3) are updated to stage 306. 

In LC update module 530, a state machine 532 updates 
S LC through MUX 534 according to the state received 
Signals/values on each clock cycle. For the disclosed 
embodiment, S LC is: (1) updated to a by-passed LC value 
when a committed move is detected in stage 305; (2) 
decremented when a first taken CLOOP, CTOP, or CEXIT 
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branch is in stage 305 and S LCz0, (3) updated to A LC 
when a flush or reset event is detected on the previous cycle; 
and (4) unchanged when no update event is detected. 
Depending on timing constraints, it may be necessary to use 
predicted predicate values to determine that the CLOOP, 
CTOP, or CEXIT branch is the FTB for case (3). 
A LC is updated by the S LC value according to which 

Source updated Spec LC and the State of commit Signals. In 
case (1), the by-passed value must be from a committed 
MOV to LC instruction. In case (2), the update must be 
from the FTB. If neither of these cases is detected, the 
current A LC value is maintained. 

For one embodiment of the invention, loop module 330 is 
present in the pipeline that processes the last branch instruc 
tion in execution order, e.g. pipeline 210(c) in the disclosed 
embodiment, and all loop type branches are directed to 
pipeline 210(c). This ensures that in any branch cluster that 
includes a loop instruction, the loop instruction will be last 
in execution order. This minimizes the use of loop execution 
resources in all cases in which an earlier branch instruction 
in a cluster is taken. It also eliminates the need to SuppreSS 
branch instructions from the same cluster, i.e. concurrently 
processed branch instructions, following a first taken loop 
branch. The relatively complex nature of loop branches 
would otherwise impose Sever timing constraints on this 
proceSS. 

For another embodiment of the invention, logic for imple 
menting RFIs may also be included only in pipeline 210(c) 
and RFIs may be routed to this pipeline by decoder module 
120. RFIs are singled out because they are processed at an 
instruction granular level, So that locations within a cluster 
or bundle of instructions must be tracked. A register asso 
ciated with interrupt/exception logic may b used for this 
purpose. The other branches are processed at a cluster or 
bundle granular level, and only the Starting address of the 
bundle need be tracked. For example, on completion of an 
interrupt, an RFI is executed and control is returned to the 
next instruction in execution order. This may be an instruc 
tion in the same bundle/cluster. One the other hand, follow 
ing any other branch control is passed to the first instruction 
in the bundle/cluster indicated by the branch target address. 

For the disclosed embodiment, Sufficient information is 
available by stage 305 to resolve branch instructions in 
pipelines 210 and determine their side effects. Linking logic 
220 monitors this resolution information for each branch 
instruction in pipelines 210 and identifies the FTB, if any, in 
a cluster of branch instructions. 

FIG. 6A illustrates one embodiment of linking logic 220 
for the case in which three branch execution pipelines 210 
are available and only pipeline 210(c) includes loop execu 
tion module 330. The disclosed embodiment of linking logic 
220 includes a state machine 610 and a MUX 630. State 
machine 610 receives as input condition resolution and valid 
branch signals, e.g. CR(a)/BrVld(a), CR(b)/BrVld(b), 
CR(c)/BrVld(c), for pipeline 210 and outputs an address 
select signal (Add Sel) that identifies the first branch 
instruction in execution order that is resolved taken (FTB). 
For non-loop branch instructions, CR may be a predicate 
provided by PDU 360. For loop branch instructions, CR(c) 
is the logical combination of predicate, EC, and LC Values 
indicated in Table 2 for the loop branch type. To reduce 
timing constraints, S EC and S LC and predicated predi 
cate values may be used to determine CR(c). Add Sel is 
coupled to a control input of MUX 630, and target addresses 
from pipelines 210(a), 210(b), 210(c), e.g. TA(a), TA(b), 
TA(c), are coupled to data inputs of MUX 630. State 
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machine 610 uses MUX 630 to select the target address 
corresponding to the FTB. 

FIG. 6B illustrates one embodiment of state machine 610 
for the case in which only pipeline 210(c) includes loop 
module 330, and branches are assigned to pipelines 
210(a)-210(c) in execution order, beginning with pipeline 
210(c) for single branch clusters, pipeline 210(b) for two 
branch clusters, and pipeline 210(c) for three branch clus 
ters. In this embodiment, BrVld(a), (b), and (c) enable AND 
gates 612, 614, 616, respectively, when valid branch instruc 
tions are in pipelines 210(a), 210(b), and 210(c). AND gates 
612, 624, and 626 generate an asserted Signal on an output 
corresponding to the FTB. 
AS noted above, branch prediction module 120 generates 

predicted branch information at the front end of pipeline 
100. This information is used to anticipate changes in the 
instruction flow through pipeline 100 before branch pro 
cessing System 140 executes the branch instructions that 
actually determine changes in control flow. For one embodi 
ment of the present invention, branch prediction module 120 
identifies a predicted FTB (if any) and associated target 
address for a branch cluster. Instructions beginning at the 
predicted target address are prefetched into pipeline 100. 
Provided the prediction is correct, pipeline 100 processes the 
FTB and its target instructions without interruption, despite 
the change in control flow. 

For one embodiment of the invention, branch validation 
module 170 checks the validity of branch prediction infor 
mation against the branch information generated when the 
branch instructions are actually executed. AS long as the 
predicted and resolved branch information matches, branch 
validation module 340 does not interfere with pipeline 100. 
If a mismatch is detected, branch validation module 240 
triggers a pipeline flush and a resteer to instructions on the 
correct execution path. 

FIG. 7 is a block diagram of one embodiment of branch 
validation module 230 in accordance with the present inven 
tion. The disclosed embodiment of branch validation mod 
ule 230 includes a target check module 710, a predicate 
check module 750, and a loop check module 770 to check 
predicted target addresses, non-loop branch directions, and 
loop branch directions, respectively, against values deter 
mined by executing the corresponding branch instructions. 
Branch validation module 230 is shown with respect to 
pipeline stages 303-306 to indicate the timing of its opera 
tions relative to those of branch execution pipelines 210. 

Branch validation module 230 is described for the case in 
which branches and other conditional operations are repre 
Sented by predicates. However, it is readily applicable to 
other Systems for representing conditional operations, and 
“condition' and "predicate” are used interchangeably 
throughout this discussion. 
The disclosed embodiment of branch validation module 

170 validates the predicted branch information by the end of 
stage 305, when resolved branch information is available 
from pipelines 210. To accomplish this, target check module 
710 uses predicted predicate values to calculate an “actual” 
target address, i.e. the target address of the FTB, and 
predicate check module 750 independently checks the pre 
dicted predicate values. An error in the actual target address 
attributable to an incorrectly predicted predicate is identified 
by predicate check module 750. 

FIG. 8 illustrates in greater detail one embodiment of 
branch validation module 170. For the disclosed 
embodiment, target check module 710 includes first and 
second address generators 820 and 830, respectively, to 
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calculate the “actual” addresses of branch instructions in the 
pipeline. First generator 820 determines target addresses for 
IP relative and indirect branches for which data is available, 
including those in which the target address is by-passed from 
instructions in stages 305 and 306. Second generator 830 
determines target addresses for more tightly constrained 
bypasses. These includes target addresses that are provided 
in the same cycle as the dependent branch instruction or one 
cycle before the dependent branch instruction. 

First generator 820 includes an adder 812 and a MUX814 
in stage 303 for each branch execution pipeline 210. For the 
disclosed embodiment, first generator 820 can process up to 
three target addresses in stage 303. Adder 812 determines 
target addresses for IP relative branch instructions and MUX 
814 Selects target addresses for indirect branch instructions 
from branch registers 818 and bypass input 816. At stage 
304, a MUX 822 is provided for each branch execution 
pipeline 210 to select a target address from adder 812 or 
MUX814, according to whether the branch instruction in 
the pipeline is an IP relative or indirect branch instruction, 
respectively. 

In the exemplary embodiment of branch processing SyS 
tem 140, Sufficient information is available to determine the 
actual (“resolved”) FTB at the end of stage 305. In order to 
provide timely validation, validation module 170 employs 
predicted branch information to Select a target address from 
among the target addresses calculated for the concurrently 
processed branch instructions. For this purpose, the dis 
closed embodiment of branch validation module 170 
includes a second MUX824 at stage 304 to select one of the 
target addresses provided by MUXs 822. In order to limit 
timing constraints, a State machine 828 receives predicted 
predicate information (P PRD) from, e.g., branch predic 
tion module 120, determines a predicted FTB, and selects an 
“actual” target address via MUX 824 using the predicted 
FTB. The Selected target address is coupled to a comparator 
826, which compares it against a predicted target address 
(P TA). The result of the comparison is provided to an input 
of MUX848 in stage 305. 

For one embodiment of the invention, state machine 828 
may be a Set of logic gates as shown in FIG. 6B, with inputs 
CR(a), CR(b), CR(c) provided by prediction module 120 
rather than PDU 260 or execution units 160. 

Second generator 830 generates a target address using 
data by-passed from operations in stages 303 or 304. Com 
parator 844 compares the generated target address with the 
predicted target address, and provides the result to another 
input of MUX 848. A control block 846 determines when 
time critical bypass data is being provided and Selects the 
appropriate target address comparison result via MUX848. 
The output of MUX 848 indicates whether the “actual” 
address (based on predicated predicate values) and the 
predicted target address match. 

The disclosed embodiment of predicate validation module 
750 includes a validation control block 854, a predicate 
validation block 856 having an input 858 for receiving 
by-passed predicate values, an AND gate 860, and an OR 
gate 862. Validation control block 854 receives predicted 
predicates for the branch instruction(s) being processed, 
determines whether a branch instruction is predicted taken 
and if so, which branch execution pipeline 210 has the 
predicted FTB. A BR TK signal line coupled to an input of 
AND gate 860 is asserted when the current cluster includes 
an FTB. In this embodiment, AND gate 860 asserts its output 
when an FTB is present in a cluster and the “actual” and 
predicted target addresses do not match. 
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Validation control block 854 also provides a predicted 

predicate for the predicted FTB to predicate validation block 
856, where it is compared with the actual predicate provided 
through bypass input 858. Predicate validation block 856 
asserts an input to OR gate 862 if the predicted and actual 
predicates for the FTB do not match. 
Loop validation module 770 includes logic for determin 

ing the branch direction of loop branches using speculative 
EC and LC values and predicted predicate values. For one 
embodiment of loop validation module 770, relevant EC and 
LC values are determined from a previous cycle to limit 
timing constraints. Loop validation module 770 asserts an 
output Signal when a predicted first taken loop branch is 
invalidated. 

OR gate 862 receives invalidation signals from loop 
validation module 770, predicate validation module 856, and 
AND gate 860 (target address validation). The output of OR 
gate 862 is coupled to an exception/commit module 160 in 
Stage 306, which generates a flush Signal when any invali 
dation signal to OR gate 862 is asserted. 

FIG. 9 illustrates in greater detail one embodiment of loop 
validation module 770. Loop validation module 770 com 
pares a predicted branch direction (P TK) against EC, LC, 
and predicate (PR) values, as needed to determine whether 
a misprediction has occurred. For the disclosed embodiment, 
EC and LC values from a previous clock cycle are used for 
the branch instruction currently in stage 305, in order to 
reduce the timing constraints on validation logic in Stage 
305. In addition, by-passes are provided for selected instruc 
tion Sequences that raise timing problems. For example, 
where consecutive branch instructions are being processed, 
the EC, LC, PEC values from the first processed branch 
instruction may not be updated in time to evaluate the 
accuracy of the Second processed branch instruction. The 
by-pass makes the appropriate loop variables available for 
validation in a timely manner. 

The disclosed embodiment of loop validation module 770 
includes an update block 910 and a comparison block 950. 
Update block 910 provides appropriate values of loop vari 
ables from a clock cycle N to comparison block 950 for 
validation in cycle N+1. For example, update block 910 
intercepts loop variables from all writers of S EC and 
selects appropriate values for updating S EC and S PEC 
using MUXs 912 and 914, respectively. AS PEC gating 
block 916 compares a selected S PEC value against 1 when 
a return is detected in stage 305. A MUX 920 couples values 
of S EC to EC-gating blocks 922, 924 and decrementing 
block 926. EC gating blocks 922, 924 and S PEC gating 
block 916 indicate EC statuses for loop branches, consecu 
tive loop branches, and loop branches following returns, 
respectively. Comparison block 950 uses the EC status 
information to validate the branch when it enters stage 305. 

Comparison logic 950 includes EC select MUX 954, 
by-pass logic 960, OR gates 964, 968, mispredict logic 980, 
and NAND gates 990,994. The disclosed embodiment is 
Suitable for the case in which loop branches are processed in 
pipeline 210(c). For this embodiment, NAND gates 990,994 
disable portions of bypass logic 960 and mispredict logic 
980 when an earlier branch (in execution order) from the 
Same cluster is resolved taken. In this case, the current loop 
branch does not need to be validated, Since its results is 
ignored. 

Bypass logic 960 operates with MUX 954 to provide an 
appropriate EC status check to mispredict logic 980. For the 
disclosed embodiment, bypass logic 960 determines when 
the default EC Status check, provided by gating logic 924, 
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must be bypassed to accommodate timing constraints on EC 
updates. For example, when a modulo-Scheduled loop pre 
cedes the current branch instruction in stage 305, bypass 
logic 960 directs the EC status check from gating logic 922 
to mispredict logic via MUX 954. This allows the EC update 
from the modulo-scheduled loop to be incorporated in the 
analysis of the current branch instruction. For this purpose, 
OR gates 964 and 968 determine when modulo-counted and 
module-while loop branch instructions, respectively, pre 
cede the current branch instruction in stage 305. 

Similarly, when a taken return precedes the current branch 
instruction in stage 305, bypass logic 960 directs the EC 
status check from gating logic 916 (S PEC>1) to mispre 
dict logic 980 via MUX 954. In this case, S PEC stores the 
speculative EC value of the branch to which the taken return 
branch returns control. If neither bypass condition is 
detected, bypass logic directs the EC Status check from 
gating logic 924 to mispredict logic 980. 

Mispredict logic 980 uses the status of S EC, S LC, and 
the predicate value for the branch instruction in stage 305 
(PR(c)) to determine the TK/NT status of the branch instruc 
tion and compare it against the predicted value (Pred TK). 
For the disclosed embodiment, signals at the outputs of AND 
gates 982(a), 982(b), 982(c), or 982(d) are asserted when a 
WTOP, WEXIT, CEXIT, or CTOP branch instruction, 
respectively, is mispredicted. 

FIG. 10 is a circuit diagram of embodiments of predicate 
control and validation logic 854, 856, respectively, in accor 
dance with the present invention. Predicate control logic 854 
receives predicted predicates (PRED TK3) and deter 
mines which pipeline 210, if any, includes a FTB for a given 
branch cluster. Predicate validation logic 856 compares 
predicted and resolved branch predicates in pipe Stage 305, 
and asserts a mismatch Signal when the comparison fails for 
the FTB. For the disclosed embodiment, predicated predi 
cates are provided by branch prediction module 120 and 
resolved predicates may be provided through input 858. 

Predicate control logic 854 includes AND gates 1020(b) 
1020(c) and OR gate 1022. AND gate 1020(g) generates an 
enable signal if branches in pipelines 210(a) and 210(b) are 
predicted NT and TK, respectively. AND gate 1020(c) 
generates an enable signal if branches in pipelines 210(a), 
210(b), and 210(c) are predicted NT, NT, and TK. OR gate 
1022 asserts BR TK if a branch in any pipeline 210 is 
predicted TK. 

Predicate validation logic 856 includes XOR gates 
1010(a)-1010(c) and AND gates 1030(b), 1030(c), XOR 
gates 1010(a)-1010(c) compare predicted predicates with 
resolved predicates for pipelines 210(a)-210(c) and assert 
invalidation signals when a mismatch is detected. AND 
gates 1030(b) and 1030(c) mask invalidation signals from 
XORs 1010(b) and 1010(c) when the predicted FTB is in an 
earlier pipeline 210 in execution order. For example, AND 
gate 1030(b) is enabled by predicate control logic 854 only 
if branches in pipelines 210(a) and 210(b) are predicted NT 
and TK, respectively. AND gate 1030(c) is enabled by 
predicate control logic 854 only if branches in pipelines 
210(a), 210(b), and 210(c) are predicted NT, NT, and TK, 
respectively. 

Validation module 170 provides a final check on predicted 
versus actual results by stage 305. Even when the predicted 
results are validated, however, faults may prevent the results 
from being committed. Validated results from branch pro 
cessing System 140 are only committed to the architectural 
State of the thread when no instruction that precedes the first 
taken branch generates a fault. In the embodiment in which 
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only one execution pipeline 210 includes loop pipeline 330, 
a fault may be generated when a loop instruction is Sched 
uled into an execution pipeline 210(a) or 210(b), since 
neither has the hardware resources necessary to execute loop 
branches. When this or any other fault is generated, control 
is passed to a fault handler, independent of the resolution of 
the branch instructions in the cluster, and results from 
linking logic 220 are not committed. 

FIG. 11 is a flow chart representing a method in accor 
dance with the present invention for validating branch 
prediction information. At Step 1110, target addresses are 
determined for each branch instruction in a cluster of branch 
instructions. At step 1120, branch prediction information is 
used to Select on of the determined target addresses as the 
target address for the cluster. Where the cluster includes 
multiple branch instructions, the Selected target address is 
the target address associated with the first branch instruction 
in execution order that is predicted to be taken (predicted 
FTB). The selected branch instruction is then compared 
1130 with the predicted branch instruction. If the selected 
and predicted target address do not match, a branch mispre 
diction is indicated 1134. 

If the Selected and predicted target addresses match, 
predicted and resolved TK/NT status are compared 1140. If 
the predicted and resolved TK/NT status match, the branch 
prediction is validated 1144. In this case, pipeline 100 may 
continue processing any instructions prefetched on the basis 
of a TK prediction for the branch. If the predicted and 
resolved branch Status do not match, a misprediction is 
indicated 1134. For one embodiment of the invention, fetch 
module 110 at the front end of pipeline 100 is resteered using 
the a target address calculated by the branch execution 
pipeline associated with the first taken branch. 

There has thus been provided a System for processing 
clustered branch instructions concurrently. The clustered 
branch instructions are each assigned to a branch execution 
pipeline and processed to determine their resolution and 
target addresses (if resolved taken). Linking logic identifies 
a first taken branch from the cluster and updates the archi 
tectural State of an associated thread to reflect the taken 
branch. Resolution and target information from later 
executed instructions are Suppressed. For one embodiment 
of the invention, predicted branch information is validated 
against resolved branch information for the first taken 
branch, and the pipeline is resteered if a misprediction is 
detected. 
What is claimed is: 
1. A branch System comprising: 
a branch predictor to predict a target address for an 

instruction cluster that includes one or more branch 
instructions, 

an address generator to determine target addresses for the 
branch instructions of the cluster; 

a target address validation module to Select one of the 
determined target addresses as a tentative target 
address, responsive to predicted directions for the 
branch instructions and to compare the tentative target 
address with the predicted target address, and 

a condition validation module to compare the predicted 
branch directions with resolved branch directions and 
trigger a resteer Signal when either comparison indi 
cates a mismatch. 

2. The branch validation system of claim 1, wherein the 
target address generator further comprises first and Second 
target address generators, the Second target address genera 
tor to determine target addresses for Selected time-critical 
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branch instructions and the first target address generator to 
determine target addresses for non-time critical branch 
instructions. 

3. The branch validation system of claim 2, wherein the 
Selected time-critical branch instructions are branch instruc 
tions for which bypass data to determine the target addresses 
of the branch instructions is generated within a Selected 
number of clock cycles of the target address determination. 

4. The branch validation system of claim 1, wherein the 
target address validation module determines a predicted first 
taken branch from the predicted branch directions and 
Selects as the tentative target address the determined target 
address associated with the predicted first taken branch. 

5. The branch validation system of claim 1, wherein the 
tentative target address and predicted branch directions are 
validated in parallel with a cluster of concurrently processed 
branch instructions. 

6. The branch validation system of claim 5, wherein the 
condition validation module converts predicted branch 
directions to predicted predicate information for comparison 
with resolved predicate information. 

7. A method for validating branch instructions compris 
ing: 

predicting a target address for an instruction cluster; 
calculating target addresses for each branch instruction of 

the cluster; 
predicting a first taken branch for the instruction cluster; 
Selecting a tentative target address from the one or more 

calculated target addresses according to the predicted 
first taken branch; and 

comparing the tentative target address with the predicted 
target address to detect a branch misprediction. 

8. The method of claim 7, wherein predicting the first 
taken branch comprises: 

receiving a predicted branch direction for each branch 
instruction of the cluster; and 

identifying the first branch instruction having a taken 
predicted branch direction. 

9. The method of claim 8, further comprising: 
receiving resolved branch directions for the branch 

instructions of the cluster; 
comparing the resolved branch directions with the pre 

dicted branch directions, and 
indicating a misprediction when the target address com 

parison or the branch direction comparison fails. 
10. A processor comprising: 
a branch prediction System to predict a first taken branch 

and an associated target address for a cluster of branch 
instructions, 

a branch execution System to process the branch instruc 
tions of the cluster concurrently and identify an actual 
first taken branch; and 

a branch validation module to Select from target addresses 
calculated for the branch instructions a tentative target 
address for the clustered branch instructions using the 
predicted first taken branch and to compare the tenta 
tive target address with the predicted target address. 

11. The processor of claim 10, wherein the branch vali 
dation module includes a predicate validation module to 
compare predicted and resolved branch directions for the 
branch instructions and provide an invalidation signal when 
the direction or target address comparison fails. 

12. The processor of claim 10, wherein the branch vali 
dation System employs predicted predicates to validate the 
predicted target address and the predicted first taken branch 
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as the branch execution System resolves actual branch 
directions for the cluster of branch instructions. 

13. The processor of claim 10, wherein the branch vali 
dation System operates in parallel with the branch execution 
System to validate the predicted target address for the cluster 
of branches as the branch execution System completes 
processing the branches. 

14. A branch validation module comprising: 
a target validation module, the target validation module to 

Select a tentative target address from a plurality of 
target addresses determined from a cluster of concur 
rently processed branch instructions and to compare the 
tentative target address with a predicted target address, 
and 

a condition validation module to compare one or more 
predicted and resolved branch directions and to trigger 
a resteer Signal if the target address or direction com 
parison fails. 

15. The branch validation system of claim 14, wherein the 
condition validation System includes a predicate validation 
System to validate non-loop branches in the cluster and a 
loop module to validate loop branches in the cluster. 

16. The branch validation system of claim 14, wherein the 
resolved branch directions are provided by processing the 
clustered branch instructions in parallel with validating the 
processed branch instructions. 

17. A processor comprising: 
a branch prediction System to predict a first taken branch 

and a target address for a cluster of branch instructions, 
branch execution means to process the cluster of branch 

instructions concurrently and resolve a first taken 
branch; and 

branch validation means to Select a tentative target 
address for the cluster of branch instructions from 
target addresses calculated for the branch instructions, 
using the predicted first taken branch, and to compare 
the tentative and predicted target addresses. 

18. The processor of claim 17, wherein the branch execu 
tion means includes a plurality of branch execution 
pipelines, each capable of processing one of the branch 
instructions in the cluster and linking logic to determine a 
first taken branch of the cluster. 

19. The processor of claim 17, wherein the branch vali 
dation means includes a plurality of address generators to 
determine a plurality of target addresses from the branch 
instructions of the cluster. 

20. The processor of claim 19, wherein the branch vali 
dation means further includes logic to determine the first 
taken branch using predicted branch directions for the 
clustered branch instructions. 

21. The processor of claim 20, wherein the logic is 
coupled to the plurality of address generators to Select a 
target address for the clustered branch instructions according 
to the predicted first taken branch. 

22. The processor of claim 21, wherein the branch pre 
diction means further comprises condition validation means 
to compare predicted branch directions with resolved branch 
directions from processed branches and generate a resteer 
Signal when a mismatch is detected. 

23. The processor of claim 18, wherein the branch vali 
dation means includes a target address generator to deter 
mine target addresses for each branch of the cluster, Selec 
tion logic to Select a target address corresponding to the 
predicted first taken branch of the cluster, and a comparator 
to compare the Selected target address with a resolved target 
address from the branch execution means. 
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24. The processor of claim 23, wherein the branch vali 
dation means further includes a condition validation module 
to compare predicted and resolved branch directions and 
generate a resteer Signal if a mismatch is detected for the 
branch direction or target address. 

25. The processor of claim 24, wherein the branch vali 
dation means implements target address and branch condi 

18 
tion validation in parallel with target address and branch 
condition resolution implemented by the branch execution 
CS. 


