
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0059185 A1

Siripurapu et al.

US 20140059185A1

(43) Pub. Date: Feb. 27, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(63)

PROCESSING DATA FEEDS

Applicant: Wal-Mart Stores, Inc., Bentonville, AR
(US)

Inventors: Taraka Subrahmanya Prasad
Siripurapu, San Bruno, CA (US); Wang
Chee Lam, San Bruno, CA (US);
Digvijay Singh Lamba, San Bruno, CA
(US); Anand Rajaraman, Palo Alto, CA
(US)

Wal-Mart Stores, Inc., Bentonville, AR
(US)

Assignee:

Appl. No.: 14/069,115

Filed: Oct. 31, 2013

Related U.S. Application Data
Continuation of application No. 13/300.524, filed on
Nov. 18, 2011, now Pat. No. 8,595,234, which is a
continuation-in-part of application No. 13/106,706,
filed on May 12, 2011.

Joe's Space Blog
NASA Unveils Latest Results From Lunar Mission, Helps
Prepare for Next Stage of Scientific Discovery 1102

Tags: Lunar Reconnaissance Orbiter, Cameras

(60) Provisional application No. 61/345.252, filed on May
17, 2010, provisional application No. 61/415,279.
filed on Nov. 18, 2010, provisional application No.
61/415,282, filed on Nov. 18, 2010.

Publication Classification

(51) Int. Cl.
H04L 29/06 (2006.01)

(52) U.S. Cl.
CPC H04L 65/60 (2013.01)
USPC .. 709/219

(57) ABSTRACT

Exemplary embodiments allow performance of stream com
putations on real-time data streams using one or more map
operations and/or one or more update operations. A map
operation is a stream computation in which stream events in
one or more real-time data streams are processed in a real
time manner to generate Zero, one or more new stream events.
An update operation is a stream computation in which stream
events in one or more real-time data streams are processed in
a real-time manner to create or update one or more static
“slate' data structures that are stored in a durable manner.

NASA's current missionin Ortaround the moon, the Lunar Reconnaissance
Orbiter, or LRO, has been providing crucial insights about our nearest celestial
neighbor since its launch in June. At a scientific meeting today, researchers
unveiled the latest findings from three instruments of the powerful suite of seven
aboard the satellite, LRO is expected to return more cata about the moon than
all previous orbital missions combinec,

At the American Geophysical Union meeting in San Francisco, scientists
discussed the latest findings from the LROCamera, or LR00, the Cosmic Ray
Telescope for the Effects of Radiation, or CRaTER, and the Diviner Lunar
Radiometer Experiment. Each instrument is returningsurprising data and
helping scientists map the moon in incredible detail and Understand the lunar
environment,

LROC has now mapped in high resolutional the Apollolandingsites and 50
sites that were identified by NASA's Constellation Program to be representative
of the wide range of terrains present on the moon,

"From a practical, Scientific standpoint, the Apollo landing sites have served as a
fantastic source of calibration for the LROC Narrow Angle Cameras," said Mark
Robinson, LROC principal investigator at Arizona State University in Tempe,
"Since the locations of some of the hardware left by theastronauts are known to
about nine feet absolute accuracy, we can tie the Narrow Angle Camera
geometricanc timing calibration to the coordinates of the Apollo Laser Ranging
Retroreflectors and Apolo Lunar Surface Experiments Packages, This ground
truth enables more accurate coordinates to be derived for virtually anywhere on
the moon, Scientists are currently analyzing brightness differences of the
surface material stimed up by the Apolloastronauts, comparing them with the
local surroundings to estimate physical properties of the surface material. Such
analyses will provide critical information for interpreting remote sensing data
from LRO, as well as from India's Chandrayaan-1, and Japan's Kaguya
missions."

Comments
This isqreat Want to be a Spaceman NQ 9 pa 2N. Their helmets are super cool,

Patent Application Publication Feb. 27, 2014 Sheet 1 of 42 US 2014/0059185 A1

SOUrce A
126

Event 132
106 Creator

128 130 SOUrce B 118

----- 108 Big Event CUSter
120 Classification Server

40 40

SOUrce C User SCOre f
-------12? 144

11C Language f
------ 24 Sentiment y

SOUrce D - - - - - - -

FIG.

Patent Application Publication Feb. 27, 2014 Sheet 2 of 42 US 2014/0059185 A1

"text": "Gravity Probe B Confirms two key predictions about Space-time
derived from Einstein's general theory of relativity http://g0, nasa.gov/
klqSMO",

"in reply_to_StatUSid": null, fe
"created at": "wed May 0418:59:59 +0000 2011"
"truncated": false,
"geo": null, fi
"in reply to Screen name": null
"Source": "web"
"place": null
"in reply_to_USerlic": nyl
"contributors": null 212
"User": {

"favourites Count": 56
"profile image_url"; "https://siO, twing, COM/profile images/188302352/

naSalog0_twitter normal.jpg"
"statuses. COunt": 25713

"description": ". u:
"Screen name": "NASA" "lang": Y -
"location": "Pasadena, CA",
"Contributors enabled": false,
"following": null
"notifications": null
"geo-enabled": false,
"profile background tile"; false
"profile Sidebar border Color": "87bC44",
"followers. COUnt": 256, NASA NASA
"protected"; false
"verified": false, Gravity Probe BConfirms two key predictions about
. ".A" space-time derived from Einstein's general theory of
"friends count". 1042377, relativity http://g0.nasa.gov.lklq5MO
"id"; 3274551, 4M
"UtCOffset": 32400 ay N20

, 208 FIG. 2A
"id": 11781133277,
"COOrdinates"; null 206 it is

FIG.2B

Patent Application Publication Feb. 27, 2014 Sheet 3 of 42 US 2014/0059185 A1

"text": "Gravity Probe B Confirms two key predictions about Space
time derived from Einstein's general theory of relativity http://
CO, nasa. COV/klcSMO"

2 4.
"KOSmix rank": 1000, 30 30
"KOSmix tags"; "Gravity Probe B, NASA Space-Time, Einstein, General

Theory of Relativity", 306
"KOSmix-langid": “en", 312
"URL1":

"snippet": "NASA's Gravity Probe B (GP-B) mission has Confirmed
two key predictions derived from Albert Einstein's general theory of
relativity, which the spacecraft was designed to test. The
experiment, launched in 2004, used four ultra-precise gyroscopes to
Measure the hypothesized geodetic effect the Warping of Space and
time around a gravitational body, and frame-dragging, the amount a
Spinning object pulls space and time with it as it rotates."

"final_url"; "http://www.nasa.gov/mission_pages/cpb/ 310
gpb_results.html",

"title": "NASA's Gravity Probe B Confirms TWO Einstein Space
Time Theories",

"short Url": "http://go.nasa.gov/kg5MO", 38
"images": . : fit "url"; "http://www.nasa.gov/images/header logo.gif"

,

316
"url"; "http://www.nasa, COV/images/content/

168806main_SV-rising Web 330.jpg"
32O

l,
"long Url"; "http://www.nasa.gov/mission pages/gpb/

gpb_results, html" 322
"best image": "http://www.nasa.gov/images/content/

168806main_SV rising Web 330.jpg"

FIG, 3

Patent Application Publication Feb. 27, 2014 Sheet 4 of 42 US 2014/0059185 A1

Receive an item

Generate additional information

Classify the item

CUster the tem

Transmit the cluster

FIG, 4

Patent Application Publication Feb. 27, 2014 Sheet 5 of 42 US 2014/0059185 A1

Business 50 View aS
--- 24.522 506

PoliticS On average; 11 Tweets per article, 5 articles per second with articles being 1 hour Old

Entertainment

Technology

BUSINESS

Health & Lifestyle QUARTERLYEARNINGS fi
ANNOUNCED

Science -------

Home & Leisure
Tin-Qt Farnings are out for ACME
Tech. http://www.foo.com/xUe8d

FOOC

KPrevious 12346 Next >>

Patent Application Publication Feb. 27, 2014 Sheet 6 of 42 US 2014/0059185 A1

All Categories Business View as: E
SOW HOH. Fast Sports

Politics On average; 11 Tweets per article, 5 articles per second with articles being 1 hour old

Entertainment

Technology

BUSINESS

Health & Lifestyle

Science

Home & Leisure

FOOd

kPrevious 12|345 Next >>

Green

FIG, 6

Patent Application Publication Feb. 27, 2014 Sheet 7 of 42 US 2014/0059185 A1

All Categories Business View as: E
Slow -OH Fast

Most popular t
Sports

10mins ago 343
P O t CS On average 11Tweets per article, 5 articles per Wenture funding down

second with articles being 1 hour old 10% SOfar this year

32mins ago 18
2mins ago www.acmenews.com New CEO of Beta Corp

Twels QUARTERLYEARNINGSANNOUNCED holds press Conference
Technol eC OOOy Tim-Qt Earnings are Out for ACME 1 hour ago 148

Tech. http:/www.foo Comixue&c Sales of ACME Online

BUSINESS edition beat print edition
?hoUraCO 5 mills ago news.example.com 9 65

Health & Lifestyle Twels RECORDYEARFOR CORNPRICES InSUrance Costs On the
rise for Small businesses

Entertainment

Jane22- Now, corn is really expensive 2 hours aCO 1290
http:www.foo.com.8uscu3c

Science Strong sales for tablet
computers predicted

HOme & Leisure 15mins ago BetaCorp.com 3 hours aCO 97
Twels BETA ANNOUNCESNEWPRODUCT LINE Green technology Sector

FOOC BetaPR-We are proud to announce Our sees modest profits in Q1
new product line. http:betaCorp.com
press release.html 5 hourSago 333

Green Silver at all time high
price

FIG.7

Patent Application Publication Feb. 27, 2014 Sheet 8 of 42 US 2014/0059185 A1

Stream BUS

Key-Value
Store

FIG, 8

Patent Application Publication Feb. 27, 2014 Sheet 9 of 42 US 2014/0059185 A1

04

91C

K

Processing
Engine

K

N

908

Document Processing
System

DOCUment
Processing
System

FIG, 9

Patent Application Publication Feb. 27, 2014 Sheet 10 of 42 US 2014/0059185 A1

1026 -1028-030 10
Feature Vectors

1012
Concept Feature Vectors

DOCUment Vector O

K
K

O 3.

-

O

C)
()
O
O
()
l
s

C)

CD

O
O

FIG, 10

Patent Application Publication Feb. 27, 2014 Sheet 11 of 42 US 2014/0059185 A1

Joe's Space Blog
NASA Unveils Latest Results From Lunar Mission, Helps
Prepare for Next Stage of Scientific Discovery 1102

Tags: Lunar ReConnaissance Orbiter, Cameras

NASA's Current mission in OrbitarOUnd themOOn, the LUNar ReConnaissance
Orbiter, Or LRO, has been providing Crucial insightsabOut Our nearest Celestial
neighbor since its launch in June. At a Scientific meeting today, researchers
Unveiled the latest findings from three instruments of the powerful Suite of seven
aboard the satellite. LRO is expected to return more data about themOOn than
all previous Orbital missions combined.

At the American Geophysical Union meeting in San Francisco, Scientists
discussed the latest findings from the LROCamera, Or LROC, the Cosmic Ray
Telescope for the Effects of Radiation. Or CRaTER, and the Diviner Lunar
Radiometer Experiment. Each instrument is returning surprising data and
helping scientists map the moon in incredible detailand Understand the lunar
environment.

LROC has now mapped in high resolutional the Apollo landing sites and 50
sites that were identified by NASA's Constellation Program to be representative
of the wide range of terrains present on themOOn.

"From a practical Scientific standpoint, the Apollo landing sites have served as a
fantastic SOUrce of calibration for the LROC Narrow Angle Cameras," said Mark
Robinson, LROC principal investigator at Arizona State University in Tempe,
"Since the locations of some of the hardware left by the astronauts are known to
about nine feet absolute accuracy, we can tie the Narrow Angle Camera
geometric and timing Calibration to the COOrdinates of the Apollo Laser Ranging
Retroreflectors and Apollo Lunar Surface Experiments Packages. This ground
truth enables more accurate COOrdinates to be derived for virtually anywhere On
the moon, Scientists are Currently analyzing brightness differences of the
Surface material stirred up by the Apollo astronauts, comparing them with the
local Surroundings to estimate physical properties of the surface material. Such
analyses will provide Critical information for interpreting remote Sensing data
from LRO, as well as from India's Chandrayaan-1, and Japan's Kaguya
missions."

Comments
NQ This is great want to be a spaceman

aly2N. Their helmets are Super COOl.

1100- FIG 11

Patent Application Publication Feb. 27, 2014 Sheet 12 of 42 US 2014/0059185 A1

FIG. 12

Patent Application Publication Feb. 27, 2014 Sheet 13 of 42 US 2014/0059185 A1

Receive set of textual representations

Divide textual representations into
Unambiguous and ambiguous textual

representations

For each ambiguous textual representation,
attempt to resolve ambiguity

FIG. 13

Patent Application Publication Feb. 27, 2014 Sheet 14 of 42 US 2014/0059185 A1

FIG, 14

Patent Application Publication Feb. 27, 2014 Sheet 15 of 42 US 2014/0059185 A1

15O2
ID Textual Representation Concept Score Concept ID
O? Lunar Reconnaissance Orbiter Lunar Reconnaissance Orbiter 0604229629O39764. 2381014

Feature Vector
TitleTF=0, BodyTF-1, NLP-1, IDF=1655, DocSim-226767, Case=3, Position=154, NumWords=3, Homonyms-O.

ID Textual Representation Concept Soore's Concept ID
24 Scientific meeting academic Conference O.O7685213536O24O9 1876O

Feature Vector
TitleTF-0, BodyTF-1, NLP-075, IDF-9759, DocSim=0.0255364, Case-O, Position-298, NumWords-2, Homonyms-O,.

FIG, 15

Patent Application Publication Feb. 27, 2014 Sheet 16 of 42 US 2014/0059185 A1

Receive document

Identify candidate textual representations

Determine a Concept in taxonomy of Concepts
that is aSSOCated with Candidate textual

representation

Output the candicate textual representation
and aSSOciated CONCept

FIG. 16

Patent Application Publication Feb. 27, 2014 Sheet 17 of 42 US 2014/0059185 A1

ReceivedOCUment

Determine entity pairs (textual
representations and Concepts) for the

dOCUment

Determine a Category Vector for the
document based On the Concepts

FIG, 17

Patent Application Publication Feb. 27, 2014 Sheet 18 of 42 US 2014/0059185 A1

1802

(g

V /
\ /

1830
1806

Hierarchy Builder C)
1634 - K - - - - - Index

DAGBUlder

! -1828
FIG, 18

Patent Application Publication

& 1

1902^- Car Manufacturers Transportation M
1904 a Transportation | SOCiely | 20

& l

1906 NHonda Car Manufacturers 10/
1908a-Honda Civic Honda || 0
1901-HOnda CiviC RX | Honda Civic 1C

i /19 1912^u Car Manufacturers KOSmix AutoS 5

FIG, 19A

XCSix ROOt OOOOOO
X0Srix AutoS OOOOO1
XCSICix Nature OOOOO2
&CSICix Health OOOOO3

Jaguar animal 13818
Rabbit (3817

Honda Civic RX : 93817.3

FIG, 19B

Feb. 27, 2014 Sheet 19 of 42

916

914

8

Jaguar Jaguar car 20 | hom
Jaguar Jaguar animal 20 hom}

Puma | Cougar 20 Syn
Mountain L. On Cougar || 20 | Sym}
Panther Cougar || 2 | Syn

FIG, 190

1980au Parent: Countries by Continent 1
1982n Parent:Living People -1

FIG, 19D

US 2014/0059185 A1

3
1.

Patent Application Publication Feb. 27, 2014 Sheet 20 of 42 US 2014/0059185 A1

Receive a graph of arCSOf Concepts

Generate Weights aSSOciated with the arcs

Construct a directed minimum spanning tree

FIG.20

Patent Application Publication Feb. 27, 2014 Sheet 21 of 42 US 2014/0059185 A1

2O2 204 O6 2108 2114 2120

/ 5 / ; / y /
Ronald Reagan: U.S. President Var:3 VCor:0 tmpl:1 Stree: C arCrnk:15 OcC:m p0CC:W COOC:y

Ronald Reagan: Actor war:3 WCOr: 0 tmpl: C Stree: C arCrk:15 OCC:m p0CC:X COOC: A.

FIG.21

Patent Application Publication Feb. 27, 2014 Sheet 22 of 42 US 2014/0059185 A1

L0ad VerteX list

Build graph Using arclist

Load Subtree preferences, merge case variancel
token Variance

Generate tree

Make tree into DAG

FIG.22

Patent Application Publication Feb. 27, 2014 Sheet 23 of 42 US 2014/0059185 A1

?o KOSmIXR00t

2 fo- N 308
306 KOSmix Health 2

KOSmix AutoS

KOSmix Nature N
\ Cancer

Car Animals
Manufacturers

Big Cats

Jaguar (Car)

2310 Jaguar (animal)
! COUgar 2312

C-1 / | N
1. fly- va fain fai Jaguar

FIG.23

Patent Application Publication

Reference Tools

Calculators

Trackers

Graphs
News &
Articles

Expert Search
Basic yx

Reference Papers Journals
Web People

Search Search

Biography

Encyclopedia

Dictionary
Guides

Company
Profe

Reviews

Planners

Charts

News Magazines

Feb. 27, 2014 Sheet 24 of 42

Infotype Root

Communities Audio WSUa

Audio SocialNetworks Images
Video DISCUSSIONS

Opinion Bookmarking

4N.
Chat Blog Posts Social

BOOKmarks
ECUOS Q&A Social News

Support ForUS
Groups

FIG, 24

Shopping

Social News & Online
Retailers

US 2014/0059185 A1

LOcal Listings

Comparison
Search

Deals

Classified

LOCa Event
Services Listings

Patent Application Publication Feb. 27, 2014 Sheet 25 of 42 US 2014/0059185 A1

Event 250) Twitter Event 26O)

streamid 2502. Streamid value streamid 2602 twitter Stream

even?key 2504 key value eventkey 2604 (paul

timestamp 2506: timestamp Value
O timestamp 2606:14:04

text 2608: "LOL
attribute 2508 attribute value

Figure 25 Figure 26

Patent Application Publication

Event 2702

streamid 1234

eventkey key value

timestamp: timestamp Value
O

O

attribute attribute value 7

Event 27.4

streamid 1234

eventkey: key Value

timestonp: timestamp value

Feb. 27, 2014 Sheet 26 of 42

attribute: attribute value 7

Figure 27

Data Stream 2700

Event 2706

streamid 1234

evenikey: key Value

timesicInp: timestamp Value

attribute: attribute value 7

US 2014/0059185 A1

Patent Application Publication

Tweet 2802

Sirectinid twitter Stream3

eventkey. (paul

timestamp: 4:04

tet: "LOL' 7

Feb. 27, 2014 Sheet 27 of 42

Tweet 28.4

Sirect mid-twitter Streami

even?key. (paul

timestamp. 14:05
O

text:"tyltweeps." 7

Figure 28

Twitter DataStream 2800

Tweet 2806

Sirectinid: twitter stream

evenikey (lack

timestamp. 14:07
O

lect: "In NYC tomorrow" 7

US 2014/0059185 A1

Patent Application Publication Feb. 27, 2014 Sheet 28 of 42 US 2014/0059185 A1

Slate 2900

slalekey 2902 slatekey value

attribute 2904 attribute value

Figure 29

Patent Application Publication Feb. 27, 2014 Sheet 29 of 42 US 2014/0059185 A1

Map Operation 3000
Stream Eventin
Intermediate Data

Stream 3006

Stream Event
in DataStream

3004

Stream Bus 3002

Figure 30

Patent Application Publication Feb. 27, 2014 Sheet 30 of 42 US 2014/0059185 A1

Subscribe to areal-time data stream Step3102

Receive a stream event from the Subscribed data stream Step3104

Perform real-time computation on received stream event Step31.06

Step -----------------

311) Generate new stream event based on computation Step31.08

Publish new stream event to a real-time data stream Step3|10

Figure 31

Patent Application Publication Feb. 27, 2014 Sheet 31 of 42 US 2014/0059185 A1

Mupper Class 3200

Attributes

Subscription,

publication,

Methods

map (Event event),

Subscribe (int Streamid);

publish (int Streamid. Event event),

Figure 32

Patent Application Publication Feb. 27, 2014 Sheet 32 of 42 US 2014/0059185 A1

Disk Storage
3312

New Or Stored
Slate 3308 Updated
(key: X) Slate 3310

(key: X)

Update Operation 3300
Stream Event Stream Event in
in DataStream Intermediate Data
3304(key: X) Stream 3306

Stream Bus 3302

Figure 33

Patent Application Publication Feb. 27, 2014 Sheet 33 of 42 US 2014/0059185 A1

Step3402 Subscribe to areal-time data stream

Receive a stream event from the Subscribed data stream Step3404

Create anew slate corresponding to the received stream event Step3408

Initialize the slate Step341)

Step Perform real-time computation on received stream event KH
3422 Step 3412

Update slate based on computation Step3414

Store updated slate on disk storage Step3416

Step3418

Step 3420

Figure 34

Patent Application Publication Feb. 27, 2014 Sheet 34 of 42 US 2014/0059185 A1

Updater Class 3500

Attributes

Subscription,

publication,

Methods

createSlate (Event event);

init (Slate slate),

update (Event event, Slate slate);

finalize (Slate slate);

Subscribe (int Streamid);

publish (int Streamid. Event event),

Figure 35

Patent Application Publication

External Application3602

Input DataStreams 3604

Receiver 3608

Input Buffer 3610

Conductor 3612

36OO
External Application 3628

Stream Bus 3606
-

Feb. 27, 2014 Sheet 35 of 42

External Application3624

Intermediate DataStreams 3622

Worker
Node 364

Worker
Node 366

Worker
Node 3618

Disk Storage
3626

Legend:

Static Data

Figure 36

Worker
Node 3620

US 2014/0059185 A1

Stream Event

D D)

Node 378

Node 372)

Feb. 27, 2014 Sheet 36 of 42

Figure 37

Node 372)

Node 376 Processes

Processes

Patent Application Publication

Patent Application Publication

Step3812

Step 3814

Step3816

Generate stream event at a
Worker node

Publish Stream event to
intermediate data Stream

Provide intermediate data stream
in Same manner as input data

stream to receiver

Feb. 27, 2014 Sheet 37 of 42

Transmit operation instructions from conductor to worker nodes

FH
Receive real-time inputdata stream at receiver and buffer stream events

Transmitreal-time stream events from receiver buffer to conductor

Transmit stream events from conductor to Worker nodes

Perform real-time Map and/or Update operations at each Worker node

external application

Figure 38

US 2014/0059185 A1

Step38O2

Step3804

Step3806

Step3808

Step3810

Generate static data at a worker Step3818
node

Store static data on disk storage | Step3820

Allow access to disk storage by Step3822

Patent Application Publication Feb. 27, 2014 Sheet 38 of 42 US 2014/0059185 A1

Receive, at a first Worker process, a first input stream eventina first real-time input data stream Step 3902

Process, at the first worker process, the first input stream eventina first map operation to generate first intermediate output Step3904
data

Generate, at the first Worker process, a first intermediate stream event corresponding to the first input stream event and Step3906
comprising the first intermediate Output data

Publish, by the first Worker process, the first intermediate stream event to a first real-time intermediate datastream Step3908

Receive, at a second Worker process, the first intermediate stream event in the first real-time intermediate data stream Step3910

Process, at the second Worker process, the first intermediate Output data in the first intermediate stream eventina first update Step39
operation to generate first final Output data

Store the first final Output data in a first data structure associated with the first intermediate Output data on a storage device Step3914

Generate, by the second Worker process, a second intermediate Stream event corresponding to the first intermediate Stream Step 3916
event and comprising the first final Output data .

Publish, by the second worker process, the second intermediate stream event to a second real-time intermediate data stream : Step3918

Receive, at a third Worker process, the second intermediate stream event in the second real-time intermediate data stream Step 3920

Process, at the third Worker process, the first final Output data in the Second intermediate stream eventina Secondupdate Step3922
Operation to generate second final output data

Store the Second final Output data in a second data structure associated with the Second intermediate Output data.Onastorage Step3924
device : As

Figure 39

Patent Application Publication Feb. 27, 2014 Sheet 39 of 42 US 2014/0059185 A1

Receive a stream eventata conductor from a receiver Step 4002

Step 4004 Determine ID of the data stream of the stream event at the conductor

Determine which Map and/or Update operations are Subscribed to receive events from the
data st Step 4006 SC

Poll worker nodes Step 4010 Schedulea Map and/or Update operation
Step 408 associated with the stream event at

Worker node in round robinmanner
Schedulea Map and/or Update operation

asSociated with the Stream event at Step 4012
Worker node with lightest load

Figure 40

Patent Application Publication Feb. 27, 2014 Sheet 40 of 42 US 2014/0059185 A1

Step 4102 Receive a stream event at a conductor from a receiver

F
Determine ID of the data stream of the stream event at the conductor

Determine which Map and/or Update operations are subscribed to receive events from the data stream

Step 4104

Step 4106

Step 4108
Determine the slatekey
attribute value of the

event

Schedule a Map Poll Worker nodes
operation associated with

the stream event at
Worker node in round

robin manner Schedule a Map operation
asSociated with the stream event Determine primary

at Worker node with lightest Worker node associated
load with the slatekey attribute

value

Schedulean Update
operation associated with
the stream event at the
primary Worker node

Figure 41

Patent Application Publication

VisualDisplay
Device, 428

Network
Device,4222

Feb. 27, 2014 Sheet 41 of 42 US 2014/0059185 A1

Computing Device
4200

Processor,42)2

Core(s), 4204

Memory, 4206

Multi-point touch
interface, 4208

Pointing
Device,421)

Network
Interface, 4212

Wirtual Machine

4214

Operating
System, 4216

Processor(s), 42.2

Storage,4224

Slate Storage
3626

Receiver Module
3608

Conductor Module
362

Map Module
4232

Update Module
4234

Patent Application Publication Feb. 27, 2014 Sheet 42 of 42 US 2014/0059185 A1

Server,4304

Computational System, 4200"

Client, 4308

Computational System, 4200”
Server, 4302

Computational System, 4200

Figure 43

US 2014/0059185 A1

PROCESSING DATA FEEDS

RELATED APPLICATIONS

0001. This application is a continuation of and claims
priority to U.S. patent application Ser. No. 13/300.524
entitled “Processing Data Feeds.” filed Nov. 18, 2011. This
application is also a continuation-in-part of and claims prior
ity to U.S. patent application Ser. No. 13/106,706 entitled
“Processing Data Feeds.” filed May 12, 2011. U.S. patent
application Ser. No. 13/106,706, filed May 12, 2011, in turn,
claims priority to U.S. Provisional Patent Application No.
61/345.252 entitled “Content Feed,” filed May 17, 2010, and
to U.S. Provisional Patent Application No. 61/415.282
entitled “Managing Real-Time Data Streams, filed Nov. 18,
2010. The instant application also claims priority to U.S.
Provisional Patent Application No. 61/415,279 entitled
“Social Genome.” filed Nov. 18, 2010. The instant application
is also related to a U.S. non-provisional patent application
Ser. No. 13/300,519 entitled “Social Genome, filed Nov. 18,
2011 a U.S. non-provisional patent application Ser. No.
13/300,523 entitled “Real-time Analytics of Streaming
Data filed Nov. 18, 2011 and a U.S. non-provisional patent
application Ser. No. 13/300,473 entitled “Methods, Systems
and Devices for Recommending Products and Services.” filed
Nov. 18, 2011. The entire contents of each of the above
referenced applications are incorporated herein in their
entirety by reference.

BACKGROUND

0002 Individuals are increasingly consuming content
from Social networking services and other information
Sources that update very frequently. Unfortunately, it can be
difficult to locate content of interest in those sources, due to
reasons such as the sheer Volume of content available and the
speed with which new content is made available.

SUMMARY

0003 Exemplary embodiments provide devices, systems
and methods for performing large-scale long-running stream
computations on real-time data streams using one or more
map operation and/or one or more update operations. A map
operation is a stream computation in which stream events in
one or more real-time data streams are processed in a real
time manner to generate Zero, one or more new stream events.
An update operation is a stream computation in which stream
events in one or more real-time data streams are processed in
a real-time manner to create or update one or more static
“slate data structures that are stored in a durable disk storage
in a persistent manner.
0004 Inaccordance with another exemplary embodiment,
a computer-implemented method is provided for processing
of real-time data streams. The method includes receiving in a
real-time manner, at a first worker process running on a first
computational device, a first stream event in a first real-time
data stream. The method includes processing in a real-time
manner, at the first worker process at the first computational
device, the first stream event in a first map operation to gen
erate first output data. The method includes transforming the
first output data, at the first worker process at the first com
putational device, to generate a second stream event corre
sponding to the first stream event and comprising the first
output data. The method includes transmitting the second

Feb. 27, 2014

stream event in a real-time manner using the first worker
process at the first computational device.

0005. In accordance with another exemplary embodiment,
a computer-implemented method is provided for processing
of real-time data streams. The method includes receiving in a
real-time manner, at a first worker process running on a first
computational device, a first stream event in a first real-time
data stream, the first stream event comprising first input data.
The method includes processing in a real-time manner, at the
first worker process at the first computational device, the first
input data contained in the first stream event in a first update
operation to generate first output data. The method includes
transforming the first output data, at the first worker process at
the first computational device, to generate or update a first
data structure associated with the first input data. The method
includes storing the first data structure on a durable storage
device.

0006 Inaccordance with another exemplary embodiment,
a computer-implemented method is provided for processing
of real-time data streams. The method includes receiving in a
real-time manner, at a first worker process, a first input stream
event in a first real-time input data stream comprising a plu
rality of stream events; processing in a real-time manner, at
the first worker process, the first input stream event in a first
map operation to generate first intermediate output data; gen
erating, at the first worker process, a first intermediate stream
event corresponding to the first input stream event and com
prising the first intermediate output data; and transmitting,
using the first worker process, the first intermediate stream
event in a first real-time intermediate data stream in a real
time manner. The method also includes receiving in a real
time manner, at a second worker process, the first intermedi
ate stream event in the first real-time intermediate data
stream; processing in a real-time manner, at the second
worker process, the first intermediate output data in the first
intermediate stream event in a first update operation to gen
erate first final output data; and storing the first final output
data in a first data structure associated with the first interme
diate output data on a storage device.
0007. In accordance with another exemplary embodiment,
a distributed computational system is provided. The system
includes a computer-readable storage device for storing com
puter-executable code associated with a first map operation
and a first update operation, and for storing static data output
by the first update operation. The system includes a schedul
ing module for scheduling the first map operation to run on a
first worker node and the first update operation to run on a
second worker node. The system also includes the first and
second worker nodes. The first worker node is programmed to
receive in a real-time manner a first input stream event in a
first real-time input data stream comprising a plurality of
stream events, run the first map operation to process in a
real-time manner the first input stream event to generate first
intermediate output data, generate a first intermediate stream
event corresponding to the first input stream event and com
prising the first intermediate output data, and transmit the first
intermediate stream event in a first real-time intermediate
data stream in a real-time manner. The second worker node is
programmed to receive in a real-time manner the first inter
mediate stream event in the first real-time intermediate data
stream, run the first update operation to process in a real-time
manner the first intermediate output data in the first interme
diate stream event to generate first final output data, and store

US 2014/0059185 A1

the first final output data in a first data structure associated
with the first intermediate output data on the storage device.
0008. In accordance with another exemplary embodiment,
one or more non-transitory computer-readable media having
encoded thereon computer-executable instructions for per
forming a method for processing real-time data streams. The
method includes receiving in a real-time manner, at a first
worker process, a first input stream event in a first real-time
input data stream comprising a plurality of stream events;
processing in a real-time manner, at the first worker process,
the first input stream event in a first map operation to generate
first intermediate output data; generating, at the first worker
process, a first intermediate stream event corresponding to the
first input stream event and comprising the first intermediate
output data; and transmitting, using the first worker process,
the first intermediate stream event in a first real-time interme
diate data stream in a real-time manner. The method also
includes receiving in a real-time manner, at a second worker
process, the first intermediate stream event in the first real
time intermediate data stream; processing in a real-time man
ner, at the second worker process, the first intermediate output
data in the first intermediate stream event in a first update
operation to generate first final output data; and storing the
first final output data in a first data structure associated with
the first intermediate output data on a storage device.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. The foregoing and other objects, aspects, features
and advantages of exemplary embodiments will be more fully
understood from the following description when read
together with the accompanying drawings, in which:
0010 FIG. 1 illustrates an example of an environment in
which data is processed.
0011 FIG. 2A illustrates an example of a tweet.
0012 FIG. 2B illustrates an example of a portion of a
JSON object.
0013 FIG.3 illustrates an example of a portion of a JSON
object.
0014 FIG. 4 illustrates an embodiment of a process for
processing an item.
0015 FIG. 5 illustrates an example of an interface.
0016 FIG. 6 illustrates an example of an interface.
0017 FIG. 7 illustrates an example of an interface.
0018 FIG. 8 illustrates an embodiment of a portion of a
distributed computation system.
0.019 FIG. 9 illustrates an embodiment of an environment
in which documents are processed.
0020 FIG.10 illustrates an embodiment of a data process
ing engine.
0021 FIG. 11 illustrates an example of a document.
0022 FIG. 12 illustrates a mapping between a set of tex
tual representations and a set of concepts.
0023 FIG. 13 illustrates a process for resolving an ambi
guity.
0024 FIG. 14 illustrates a mapping between a set of tex
tual representations and a set of concepts after an ambiguity
resolving process has been performed.
0025 FIG. 15 illustrates an example of a portion of output
generated by a document processing engine.
0026 FIG. 16 illustrates an embodiment of a process for
determining a mapping between a textual representation in a
document and a concept.
0027 FIG. 17 illustrates an embodiment of a process for
categorizing a document.

Feb. 27, 2014

0028 FIG. 18 illustrates an embodiment of a system for
creating a hierarchy of concepts from a corpus of documents.
0029 FIG. 19A is a portion of an arc list according to one
embodiment.
0030 FIG. 19B is a portion of a vertex list according to one
embodiment.
0031 FIG. 19C is a portion of an arc list according to one
embodiment.
0032 FIG. 19D is a portion of a subtree preferences list
according to one embodiment.
0033 FIG.20 is a flow chart illustrating an embodiment of
a process for creating a hierarchy of concepts from a corpus of
documents.
0034 FIG. 21 illustrates an example of a vector of weights
according to one embodiment.
0035 FIG.22 is a flow chart illustrating an embodiment of
a process for creating a hierarchy of concepts from a corpus of
documents.
0036 FIG. 23 illustrates an example of a portion of a
concept hierarchy.
0037 FIG. 24 illustrates an example of a hierarchy of
information types according to Some embodiments.
0038 FIG. 25 is a block diagram representing an exem
plary generic stream event.
0039 FIG. 26 is a block diagram representing an exem
plary “tweet' stream event transmitted in a TwitterTM data
Stream.

0040 FIG. 27 is a block diagram representing an exem
plary generic data stream.
0041 FIG. 28 is a block diagram representing an exem
plary TwitterTM data stream.
0042 FIG. 29 is a block diagram representing an exem
plary generic slate.
0043 FIG. 30 is a block diagram representing an exem
plary generic map operation.
0044 FIG. 31 is a flow chart of an exemplary method
performed by a generic map operation.
0045 FIG. 32 is a block diagram representing an exem
plary object-oriented class implementation of a generic map
operation.
0046 FIG. 33 is a block diagram representing an exem
plary generic update operation.
0047 FIG. 34 is a flow chart of an exemplary method
performed by a generic update operation.
0048 FIG. 35 is a block diagram representing an exem
plary object-oriented class implementation of a generic
update operation.
0049 FIG. 36 is a block diagram representing an exem
plary distributed computational system provided in accor
dance with exemplary embodiments for performing one or
more real-time stream computations.
0050 FIG. 37 is a block diagram representing exemplary
distributed computational processes provided in the exem
plary system of FIG. 36 for performing one or more real-time
stream computations.
0051 FIG. 38 is a flow chart of an exemplary method
performed by the exemplary computational system of FIG.
36.
0052 FIG. 39 is a flow chart of an exemplary method
performed by the exemplary computational processes of FIG.
37.
0053 FIG. 40 is a flow chart of an exemplary method
performed by a scheduling mechanism to schedule operations
at one or more worker nodes.

US 2014/0059185 A1

0054 FIG. 41 is a flow chart of another exemplary method
performed by a scheduling mechanism to schedule operations
at one or more worker nodes.
0055 FIG. 42 is a block diagram representing an exem
plary computing device that may be used to perform any of
the exemplary methods disclosed herein.
0056 FIG. 43 is a block diagram representing an exem
plary network environment suitable for a distributed imple
mentation of exemplary embodiments.

DETAILED DESCRIPTION

0057 The invention can be implemented in numerous
ways, including as a process; an apparatus; a system; a com
position of matter; a computer program product embodied on
a computer readable storage medium; and/or a processor,
Such as a processor configured to execute instructions stored
on and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as techniques.
In general, the order of the steps of disclosed processes may
be altered within the scope of the invention. Unless stated
otherwise, a component Such as a processor or a memory
described as being configured to performa task may be imple
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term processor refers to one or more devices, circuits, and/or
processing cores configured to process data, Such as computer
program instructions.
0058. A detailed description of one or more embodiments
of the invention is provided below along with accompanying
figures that illustrate the principles of the invention. The
invention is described in connection with Such embodiments,
but the invention is not limited to any embodiment. The scope
of the invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces
sarily obscured.
0059 FIG. 1 illustrates an example of an environment in
which data is processed. As will be described in more detail
below, system 102 accepts input from a variety of sources.
One example source is a real-time stream of messages pro
vided by a social networking service. A “tweet provided by
the Twitter service is an example of an item of data received
by system 102. System 102 performs various processing on
the received data, Such as categorizing each of the received
items, determining whether the received items pertain to a
specific event, clustering Substantially similar items together
into clusters, and making available as output processed data
that can be consumed by a variety of different interfaces.
0060. In some embodiments, system 102 is a commodity
personal computer or other consumer electronic device. In
that scenario, the output of system 102 is made available to a
user of the device. Such as through an incorporated display, or
is provided to a display of a second device in communication
with system 102. In other embodiments, system 102 is a
single server or one of a small number of servers acting in

Feb. 27, 2014

cooperation. For example, publishing entities Such as news
papers, and other organizations may each operate a system
102 for the benefit of employees, subscribers, or other cus
tomers. In yet other embodiments, system 102 comprises a
distributed, elastic architecture, an example of which is
described in more detail below, such as in the section titled
MANAGING REAL-TIME DATA STREAMS.

0061. Whenever system 102 is described as performing a
task, either a single component or a Subset of components or
all components of system 102 may cooperate to perform the
task. Similarly, whenever a component of system 102 is
described as performing a task, a Subcomponent may perform
the task and/or the component may perform the task in con
junction with other components. In various embodiments,
portions of system 102 are provided by one or more third
parties. Depending on factors such as the amount of comput
ing resources available to system 102, various logical com
ponents and/or features of system 102 may be omitted and the
techniques described herein adapted accordingly. Similarly,
additional logical components/features can be added to sys
tem 102 as applicable. Such as ones providing additional or
alternate ways of processing incoming data and ones making
available different types of output. Additional detail on ele
ments depicted in FIG. 1 will now be provided, including
examples of how Such elements would process tweet data.
System 102 can process a variety of data and is not limited to
the examples provided.
0062 Preprocessing Engine
0063. Input from various sources 104-110 is ingested by
system 102. Example sources include Twitter (twitter.com),
Facebook (facebook.com), foursquare (foursquare.com), and
other social networking sites; Flickr (flickr.com) and other
media hosting services; Digg (digg.com) and other Social
news websites; traditional news websites; RSS Feeds; and
financial transaction information. System 102 is configured
to access data from the various sources using appropriate
techniques, including through application programming
interfaces (APIs), crawling, performing standing searches,
and the pushing/pulling of new items, such as via RSS.
0064. Items of data are provided by sources 104-110 to
system 102 in a variety of different formats, such as in XML,
JSON, and HTML. Examples of items include tweets,
updates, articles, RSS feed entries, news articles, reviews,
deals, and financial transactions. Preprocessor 112 is config
ured to standardize each item of incoming data into a JSON
object and to augment the contents of the JSON object with
more key-value pairs by performing additional processing
through the use of one or more modules 114-124.
0065 FIG. 2A illustrates an example of a tweet. Tweet 200

is rendered as it could appear to an end user of www.twitter.
com who accesses the service using a web browser or dedi
cated application, such as on a mobile device.
0.066 FIG. 2B illustrates an example of a portion of a
JSON object. The example shown is a representation of data
corresponding to tweet 200 received from source 104, after
initial processing and standardization by preprocessor 112.
Some examples of the attributes/parameters included in the
JSON object are: the full text of the tweet (“text” 202); the
time the tweet was created (“created at 204); whether the
tweet was a favorite (“favorited 206); a unique identifier of
the tweet (“id 208); whether the tweet is in reply to another,
and if so, that user's screen name (“in reply to Screen
name 210); and profile information for the author of the
tweet (“user 212), such as the screen name of the author

US 2014/0059185 A1

“screen name 214). Other types of items, such as Facebook
updates and financial transactions can also be represented in
JSON objects (or in any other appropriate format) with appli
cable key-value pairs, one example of which is a source type
(e.g., indicating that the received information is a tweet or is
a transaction).
0067. In various embodiments, in addition to standardiz
ing information received from a source Such as source 104.
preprocessor 112 is configured to augment the JSON object
contents by performing additional processing. In some
embodiments, the additional processing is performed by
modules, such as modules 114-122.
0068 Language Module
0069 Language module 122 is configured to determine
the language (e.g., English or Japanese) of an item or content
associated with an item. In the example shown in FIG. 2B, a
language associated with a profile of the author of tweet 200
is provided by source 104 (at 216). In such a scenario, the
processing of language module 122 can be omitted, or can be
used to confirm that a particular tweet is indeed in the
expected language. For other sources, such as RSS feeds, an
associated language may not be provided by the source and
language module 122 is configured to determine the language
of the item and include the determined language in the JSON
object of the item. Language module 122 can also be used to
determine the language of information crawled by crawler
114, as applicable.
0070. Sentiment Analysis Module
(0071. Sentiment analysis module 124 is configured to
determine a sentiment (e.g., positive or negative) associated
with the item, if applicable, and store the sentiment in the
JSON object.
0072) User Importance Score Module
0073 User importance score module 120 is configured to
determine an importance score for the author of the item (or,
e.g., in the case of a financial transaction, a party to the
transaction) and to include that score in the JSON object. A
variety of factors can be used to compute a user importance
score. And, over time, a user's importance score can change.
The following are examples of factors which can be used in
computing an importance score of a given Twitter user:
0074 (1) The number of other users that follow the user.
The more followers, the higher the score.
0075 (2) When that user generates content, such as by
writing a tweet or posting an update, how much additional
traffic is generated (e.g., how many retweets and/or replies
occur).
0076 (3) Is the user a publisher-only account (e.g.,
belonging to ACME News). Such accounts can be identified
(among other ways) based on factors, such as that they rarely,
ifever, retweet; they rarely, if ever, respond to other users; and
that they have many followers but follow very few, if any,
other users.
0077 (4) The frequency with which the user tweets an
item that is ultimately associated with an event that is deter
mined to be a top event.
0078 (5) The frequency with which the user is the first to
tweet an article.
0079 (6) The importance scores of the users who are
following this user.
0080 (7) The importance scores of the users this user is
following.
0081 (8) The importance scores of the users who retweet
tweets by this user.

Feb. 27, 2014

I0082 (9) The importance scores of the users whose tweets
this user retweets.
0083. In some embodiments, factors such as those listed
above are used to determine the relative importance of any
two users. The comparisons can be used to construct a hier
archy of user importances, once an equilibrium is reached. As
one example, Suppose all users are assigned a seed rank of
1000. Each time a user retweets an item, the rank of the
original tweeter is increased by epsilon and the rank of the
retweeting user is decremented by epsilon. Other signals can
be used in a similar way. For example, when one user follows
another, then the person who is followed could be awarded a
higher score based on the score of the person who is follow
ing. Additional techniques for computing a user importance
score are provided below, such as in the section titled MAN
AGING REAL-TIME DATA STREAMS.

0084. Crawler Module
I0085. Whenever preprocessor 112 detects the presence of
a URL in an item, such as is present in tweet 200, it instructs
crawler module 114 to crawl that URL and to provide back
information such as the title of the crawled page, the full text
of the crawled page, and a list of images on the crawled page.
Other metadata, Such as the list of keywords or tags associated
with a blog post are also collected by crawler 114. Each of the
pieces of information obtained by crawler 114 is included in
the JSON object as a name-value pair.
I0086 Categorizer Module
I0087 Categorizer 116 is configured to categorize the
tweet, and also to categorize content obtained by crawler 114.
Categorization techniques are described in more detail below,
Such as in the Section titled TAGGING A DOCUMENT. The
categorization information is included in the JSON object as
a series of tags (e.g., “Sports'), scores (e.g., “Volleyball=0.
999), or a combination thereof.
I0088 Disambiguator Module
I0089. In some cases, the meaning of a tweet may be
ambiguous. For example, a tweet that says, “I want to buy an
apple could mean that the author is hungry and wishes to
purchase a piece of fruit. The tweet could also indicate that the
author desires to purchase a computer or consumer electronic
device. As another example, a tweet of “Earthquakes could
refer to the author experiencing an earthquake or could refer,
for example, to the author's support of the San Jose soccer
team. Techniques for resolving ambiguities are described
below in the section titled TAGGING A DOCUMENT, and
are performed in some embodiments by categorizer module
116, by disambiguator 118, or both modules.
0090. In some embodiments, if categorizer 116 is unable
to resolve ambiguities (such as the meaning of “apple' in the
example given above), categorizer 116 includes tags for all
possible meanings in the JSON object. For example, catego
rizer 116 might generate tags of Apple (Fruit). APPLE
(Satellite). Apple Mac (Computer), and "Apple Inc.” for
the tweet text “I want to buy an apple.” Categorizer 116 might
similarly generate tags of “Japan Earthquake.” “Haiti Earth
quake.” “Earthquakes. “San Jose Earthquakes (Soccer
Team), and “Earth Quake (Musical Group) for the tweet
text “Earthquake!” Disambiguator module 118 can be used to
resolve such ambiguous meanings through additional con
text. Such as user profile information, historical information,
and location information.

0091 System 102 maintains two dictionaries for each of
the following: every Twitter user, every hashtag (e.g., it dogs);
every domain (e.g., example.com); every concept; and every

US 2014/0059185 A1

word. The first dictionary for each is a list of words used by
that user (or words that co-occur with the hashtag, words that
co-occur with the domain, words that co-occur in a tweet that
has been assigned a given concept, and words that co-occur
within tweets). The second dictionary is a list of concepts that
the user's tweets are tagged with (or concepts assigned to
tweets that include a given hashtag, concepts assigned to
tweets that include a given domain, concepts that co-occur,
and concepts that are assigned to a tweet that includes a given
word). In some embodiments, both types of dictionaries
maintain only the top n words (or concepts), instead of an
exhaustive list of all words (or concepts). One approach to
storing the dictionaries is to store each dictionary as a slate,
described in more detail below in the section titled MANAG
ING REAL-TIME DATA STREAMS.
0092. One way to resolve the ambiguous meaning of
“apple' in the exampletweet provided above, is to analyze the
appropriate dictionaries (e.g., for the user posting the tweet).
If other tweets made by the user frequently are tagged with
food-related concepts, an assumption can be made that “I
want to buy an apple pertains to the purchase of fruit. As
another example, if a previous tweet by the user includes the
domain apple.com, an assumption can be made that "I want to
buy an apple' pertains to the purchase of a computer or other
device. In the case of the “Earthquake!' tweet, if the author is
located in San Jose or if a soccer game featuring the San Jose
Earthquakes is taking place, an assumption can be made that
the tweet pertains to the soccer team, while if the author is
located in Japan, works for the Red Cross, or sometimes
tweets in Japanese, an assumption can be made that the tweet
pertains to the March 2011 earthquake.
0093. If disambiguator 118 is able to resolve an ambiguity,

it updates the tags included in the JSON object. For example,
if it is determined that a tweet is about the purchase of fruit,
disambiguator 118 would remove the tag "Apple Inc. from
the JSON object. Disambiguator 118 can also add additional
tags to the JSON object as applicable.
0094 FIG.3 illustrates an example of a portion of a JSON
object. The example shown illustrates examples of additional
attributes included in the object shown in FIG. 2B by prepro
cessor 112. Specifically, a user importance score has been
added for the author (“kosmix rank' 302); a set of concepts
determined by categorizer 116 and refined by disambiguator
118 as applicable are included (“kosmix tags' 304); and the
language of the tweet has been confirmed as English ("kos
mix lang 306). Also included is a section (308) for informa
tion obtained by crawler 114. For example, a title of the page
accessible via the URL (“title'310), a snippet of text from the
page (“snippet' 312), and the URLs of the pictures appearing
on the page (“URL' 314 and 316). Other information is also
included, such as the URL as it appears in the tweet (“short
url” 318), the long form of the URL (“long url'320), and a
designation of image 316 as being the representative image
for the tweet (“best image 322). Other information can also
be included in region 308, such as the language of the crawled
page and categorization information for the crawled page.
0.095 Event Creator
0096. Event creator 126 is configured to provide to event
classifier 128a set of event definitions. The event definitions
can be created by a human through an interface, can be
automatically created, and can be created by a combination of
the two. The event definitions can also be updated over time.
0097. One example of an event is a news event, such as an
earthquake occurring. A human administrator, aware that the

Feb. 27, 2014

earthquake has occurred, can use a provided interface to
create a definition for the event. Specifically, the administra
tor would indicate a title for the event (e.g., “Earthquake in
Japan) and include other information that defines the event,
Such as any of the following:
0.098 (1) a set of positive concepts/tags (e.g., “Earth
quake' and “Japan’)
0099 (2) a set of positive words (e.g., “Oshika Peninsula'
and “9.0)
0100 (3) a set of negative concepts and/or words which, if
present in an item, indicate that it does not pertain to the event
0101 (3) particular users (e.g., the Twitter account of a
particular Japanese newspaper or the account of a particular
reporter or celebrity involved in an event)
0102 (4) particular hashtags (e.g., ii.Jishin)
0103 (5) location information (e.g., GPS coordinates or
place names)
0104 (6) a text description of the event
0105 (7) pictures and/or videos that pertain to the event
0106. Other information, such as a start and end time of the
event can also be specified. Some events, such as sporting
events, may have predefined start and end times. Other events
may have a defined start time, and then have an end time
automatically generated as interest in the event wanes. Some
events (e.g., pertaining to the President of the United States or
popular celebrities) may not have clear start or end times but
are instead “evergreen.” In some embodiments, when the end
time for an event has passed, items will no longer be able to be
classified by event classifier 128 as pertaining to that event.
0107. In some embodiments, at least some of the above
information is automatically collected by system 102 and
presented to an administrator as a proposed/potential event.
For example, system 102 can be configured to detect when
groups of words or other things (such as hashtags) co-occur
with a frequency that is higher than usual. An increased co
occurrence (e.g., of the terms “Japan’ and "earthquake') can
indicate that a newsworthy event is occurring and that infor
mation can be surfaced to an administrator for review. Co
occurring contexts are also indicators. For example, if several
people in the same approximate location at the same approxi
mate time tweet “fire' or “crash,” it is likely that an event is
occurring at that location/time. The administrator can
approve or disapprove the proposed event, and can make
changes, such as by providing a title and refining the event
definition.

0.108 Hierarchical Events
0109. In some embodiments, events are organized into a
hierarchy. Using the Mar. 11, 2011 earthquake in Japan as an
example, the earthquake itself would be at the top of the
hierarchy. Other events, such as the resulting tsunami,
destruction at the Fukushima Nuclear Power Plant, and press
conferences by the Prime Minister are examples of sub
events that would be organized into the hierarchy. Periodi
cally, operations to merge events (because they are con
nected) or split events occur. For example, in the case of the
earthquake, events such as the tsunami might originally be
part of the main event, but Subsequently be split out into
events of their own.

0110. Event Classification
0111 Event classifier 128 is configured to determine
whether a given item corresponds to one of the events for
which it has received a definition from event creator 126. In
Some embodiments, classification is performed as follows.

US 2014/0059185 A1

0112 The event classifier maintains a vector of currently
“live' events—those events for which an end time has not
passed. Event classifier 128 receives processed items (e.g.,
JSON objects) from preprocessor 112. The classifier com
putes a similarity metric between the processed item and each
of the definitions of the live stories to determine a probability
of match. If the probability exceeds a threshold, the item is
tagged with the event (e.g., a unique identifier of the event), as
yet another name-value pair. If the item matches with mul
tiple events, the item is tagged with each of those events. If the
item does not match any events, no additional tags are added
by classifier 128, or a tag of “no event matches' or other
appropriate tag(s) are added.
0113 Cluster Server
0114 Cluster server 130 is configured (1) to cluster mul

tiple processed items together into a cluster definition and (2)
to evaluate (and re-evaluate) the cluster, Such as by assigning
one or more scores to the cluster. For a given item, many
hundreds of other items (or more) may be received by system
102 that are identical or substantially the same. As one
example, tweet 200 may be retweeted by thousands of other
users (each of which would be ingested by system 102 as a
separate item). Cluster server 130 is configured to group the
original tweet and all of the retweets together into a single
new JSON object that represents the cluster (also referred to
as the “cluster object’) and provide the cluster as output, such
as to output engine 132. As another example, many users may
tweet identical messages ('Smith scored a goal') or Substan
tially similar messages (e.g., all of which include the same
URL, or which match within a tolerance). Yet another
example is a set of tweets in response to one another—form
ing a conversation.
0115 Cluster server 130 can similarly be configured to
cluster those respective items. For a given event (e.g., as
determined by event creator 126), multiple clusters can exist.
0116. When cluster server 130 receives an object from
event classifier 128, it determines whether the object should
be included in an existing cluster (because it is identical to or
substantially similar to a previously received object). If the
object does not match with an existing cluster, a new clusteris
created, with the received object serving as the first item
included in the cluster. The other information included in the
item's JSON object, such as the information illustrated in
FIGS. 2B and 3, is included in the newly created cluster
object. If the received item does match an existing cluster, the
cluster is updated to include an identifier of the item and other
information, such as the cluster's score and representative
information is re-evaluated as described in more detail below.
Either the newly created cluster object, or the updated cluster
object, as applicable, is provided as output to output engine
132.

0117 Cluster Score
0118 System 102 maintains, for each cluster, a variety of
statistics, including how many items have been included in
the cluster, representative information for the cluster, and one
or more quality measures for the cluster. Examples of repre
sentative information include the first item to be included in
the cluster (i.e., tweet 200), the most recently received item
(i.e., the most recently received retweet of tweet 200), the
tweet whose author has the highest user importance score,
and one or more photographs, videos, or other media repre
sentative of the cluster. In the case of a cluster formed around
tweet 200, a representative image might be selected from the
information obtained by crawler 114 (e.g., a photograph

Feb. 27, 2014

appearing in the linked-to article). The representative infor
mation of a cluster is re-evaluated each time a new item is
included in the cluster. Thus, if a retweet of tweet 200 is
received from a user who has a higher user importance score
than any of the user importance scores of the already-included
items, the newly received tweet will be designated as a rep
resentative tweet for the cluster, replacing the item with the
previously highest associated user importance score. In vari
ous embodiments, administrators or otherindividuals are able
to manually Supplement or override the representative infor
mation of a cluster, such as through an interface provided by
system 102.
0119 Examples of Quality Measures of a Cluster Include:
I0120 (1) the user importance score of the first item in the
cluster
I0121 (2) the sum of the user importance scores of the
authors of each of the items included in the cluster
0.122 (3) the highest user importance score of the authors
of the items included in the cluster
I0123 (4) how many items are included in the cluster
0.124 (5) does the cluster include images, videos, or other
media
0.125 (6) do the clustered items include a URL, and if so,
what is the importance of the URL's domain (e.g., with URLs
to national newspapers having higher scores than personal
blogs)
0.126 (7) how quickly are new items being received by
system 102 that are included in the cluster, and is that rate
increasing or decreasing
(O127 (8) user feedback
I0128. The various signals listed above can be combined
into one or more cluster scores that indicate the importance of
a given cluster. In some embodiments, the cluster score is
included in the cluster object as a name-value pair, prior to
transmission to output engine 132.
I0129. Output Engine
0.130 Output engine 132 maintains, for every event cre
ated by event creator 126, various top n lists, such as the most
popular links associated with the event (134), the most popu
lar clusters associated with the event (136), the most popular
hashtags associated with the event (138), the most popular
videos associated with the event (140), and the most popular
images associated with the event (142). Output engine 132
also maintains various global lists, such as the most popular
events (144). In some embodiments, the lists are maintained
as slates and are updated in real-time by workers, described in
more detail below. Whenever output engine 132 receives a
cluster from cluster server 130, the respective workers deter
mine whether any of the lists need to be updated. Historical
information about each of the lists is also preserved, allowing
for the given top n of an event to be determined for a particular
time slice.
I0131 Lists 134-142 are just some of the examples of data
that can be maintained by output engine 132. Output engine
132 can also maintain top n lists for other data as well. For
example, output engine 132 can maintain, for a given Twitter
user, the most popular items; for a given location, the most
popular items; for a given concept the most popular videos or
other media; and for a given domain, the Twitter users that
most frequently mention the domain. Output engine 132 may
also make use of intermediate slates/workers.
0.132. The information managed by output engine 132 can
be exposed in a variety of ways, such as through an interface
provided by device 150. Various examples of such interfaces

US 2014/0059185 A1

are provided in more detail below. In the example shown,
device 150 is a personal computer. Other devices can also be
used in conjunction with the techniques described herein,
Such as cellular phones/personal digital assistants, tablet
computers, game consoles, Internet-connected appliances
Such as picture frames and refrigerators, and set-top boxes.
0.133 FIG. 4 illustrates an embodiment of a process for
processing an item. In some embodiments, the process shown
in FIG. 4 is performed by system 102. The process begins at
402 when an item is received. As one example, an item (Such
as tweet 200) is received at 402 by preprocessor 112. At 404,
additional information is generated. As one example, at 404.
various modules 114-124 augment the contents of a JSON
object corresponding to the item. At 406, the item is classi
fied. As one example, at 406, event classifier 128 determines
one or more events to which the itempertains. At 408, the item
is clustered. As one example, at 408, cluster server 130 deter
mines whether the item is identical to or substantially similar
to any previously received items and if so, clusters the items.
Finally, at 410, at least a portion of the cluster is transmitted.
As one example, at 410, a portion of the cluster is transmitted
to a device that includes a display.
0134)
0135 FIGS.5-7 each illustrate examples of interfaces that
can be used to display information. Elements of the interfaces
shown in FIGS. 5-7 are provided by output engine 132. In
FIG. 5, a user of device 150 is viewing business-related clus
terg. The user can adjust the speed with which clusters are
displayed by manipulating speed control 502 and can also
pause the display of new clusters by selecting button 504.
Statistics (506) about the clusters being shown in region 508
are also provided.
0.136 Element 510 of the interface shown in FIG. 5 is a
representation of a cluster. Included in the representation is
the total number of items in the cluster (512) (e.g., the number
of items received by system 102 and clustered together by
cluster server 130). Also included in element 510 is a copy of
the representative item of the cluster (tweet 514), a represen
tative image (516), and other information obtained from
crawler 114 or specified by an administrator, Such as descrip
tion (518) and title (520). Which tweet is shown in represen
tation 510 is selectable, such as by system 102, by device 150,
or by another appropriate selector. For example, instead of
showing the tweet from the user with the highest user impor
tance score, the first tweet or most recent retweet could be
shown instead.

0.137 The interface shown is an example of a slideshow
view, selectable by a user by clicking on button 522. Other
clusters, such as cluster 524, will Scroll by (resizing as appli
cable) at the speed selected by the user.
0138 FIG. 6 illustrates an alternate embodiment of the
slideshow interface shown in FIG. 5. As illustrated in FIG. 6,
multiple clusters are shown in the same size, at the same time,
instead of one cluster being made more prominent.
0.139. In FIG. 7, a viewer of the interface shown in FIG. 5
has clicked on button 524 and been presented with a list view
of clusters. Specifically, cluster 510 is shown in a more con
densed form (702), with description 518 and representative
image 516 omitted. Also included in the interface shown in
FIG. 7 is a list (704) of the top stories of the day.
0140. Additional details on various aspects of interfaces
which can be used in conjunction with the techniques
described herein will now be provided.

ExampleUser Interfaces

Feb. 27, 2014

0.141 Channels
0142. In the example interfaces shown in FIGS. 5-7, users
are able to view clusters across all categories and can also
narrow the clusters they are presented with to pre-selected
high level categories. Such as Sports and Politics. In various
embodiments, users are able to specify finer grained topic
preferences (e.g., California Politics) and can also create arbi
trary channels that precisely define the requirements for clus
ters to be included for display. For example, a user can specify
a channel in which clusters must be tagged with either Sports
or Business and can also specify a channel in which clusters
must be tagged with both Finance and Semiconductors.
0.143 Clusters need not be built based on topics (or com
binations oftopics) but can instead be based on any of the data
stored in item objects, cluster objects, or otherwise tracked by
system 102. Such as by output engine 132. For example, a user
can Subscribe to a channel of popular links (irrespective of
category), a channel of popular business videos, a channel
that includes any stories about earthquakes that are written in
Japanese or Spanish, and a channel for a specific story (e.g.,
relating to the Prime Minister of Japan's speech). Another
example of a channel is a custom "deal channel. Suppose a
user is in the market for a television. Using the techniques
described herein, the user can subscribe to a “40 inch plasma
tv sale' channel.
0144. In some embodiments, channels are defined at least
in part on the capabilities of the display device, and can be
specified without the need for configuration by an end user of
the device. As one example, an Internet connected picture
frame can be configured to display a channel constructed
from all clusters that include images of a minimum (or maxi
mum) size and/or resolution.
0145 Yet another example of a channel is a location-based
one. Suppose a user is riding on a commuter train. The user's
phone can report the user's location to system 102 which in
turn recognizes that the user is on the commuter train. If any
items pertaining to the train are received by system 102, they
can be provided to the user. A user in a car can similarly
receive traffic updates, accident reports, traffic photos, acci
dent photos, etc. as a channel. As yet another example, if a
specific user's location is known (e.g., the user is on a train),
a channel of “what other people on the same train are reading
can be made available to the user.

0146. One or more channels can also be created automati
cally for a given user based on interests obtained by System
102 from a social networking site or other profiles of the user.
The user's Twitter stream, blog posts, and other content can
be examined by system 102 for hashtags and the content
categorization techniques described herein can be applied to
the content to discern topics of interest to the user.
0147 Speed Control
0.148. If a user is viewing a channel that is sufficiently
narrow in Scope, Such as one in which clusters are required to
pertain to Astronomy-related events, the user will likely be
able to read (or otherwise absorb) every cluster provided as
output by output engine 132 at its natural speed. However,
even with the clustering techniques described herein
employed, for certain channels, such as the “All Categories'
channel 526, the real time output of output engine 132 will
likely include far more information than can be absorbed by
an individual viewing that output in an interface. By manipu
lating control 502, the user is able to control how quickly new
pieces of information are presented in an interface. Such as
interface 500. In some embodiments, the “slower the control

US 2014/0059185 A1

is set, the higher a given cluster's cluster score must be to be
shown; the “faster the control is set, the lower that a given
cluster's cluster score must be to be shown. Thus, irrespective
of what speed is selected by the user, the most important
information will be shown. In other embodiments, other fac
tors can also be used to adjust what information is presented
in interface 500. For example, in some embodiments, the
processing performed by cluster server 130 is performed
simultaneously with the processing performed by output
engine and/or is performed by device 150. The tolerances for
what it means for two items to be “substantially similar can
be adjusted to be either more inclusive or less inclusive, thus
resulting in either fewer, or more clusters to be displayed,
respectively.
0149. In some embodiments, stories are clustered using
techniques similar to those described for the clustering of
items. When viewing a channel such as the “All Categories'
channel 526, at a slow speed, story clustering can be used to
prevent several clusters associated with the same story to be
presented in rapid succession. Story scores can also be used in
a manner similar to the use of cluster scores described above.
0150. Playback Controls
0151. In the example interfaces shown in FIGS. 5-7, a
pause button 504 is shown. In various embodiments, some or
all of the following controls are made available in an inter
face.
0152 PLAY: This is the default mode when the user views
the interface. A stream of clusters for a channel selected by the
user is displayed. In the absence of personalization, the global
channel stream is provided.
0153 PAUSE: When the pause button is selected, the
channel's display is paused and a time marker is set. Clusters
continue to be sent to the user's device until a buffer of the
device is full. When the PLAY button is selected, the buffered
clusters are shown to the user. Depending on speed settings,
the user may see highlights for the lost period or the entire
stream of clusters. If a particular event (or cluster) has
changed while the user interface is paused (e.g., because the
event grows in size or decays or splits/combines, or because
the description or other representative information for the
cluster has changes), in some embodiments, once the channel
is unpaused, the current version of the event (or cluster) is
displayed in place of the event (or cluster) as it stood when the
stream was paused.
0154). STOP: Stop receiving clusters.
(O155 REWIND: System 102 is configured to perma
nently store cluster and event information, as well as global
information, thus allowing users to request the replay of vari
ous channels as they would have appeared at an arbitrary date
and time. The user can specify an arbitrary speed with which
the channel should be replayed, which can be different from
a speed with which the user may have originally viewed the
channel (if at all).
0156 RECORD: A user can choose to record the channel
stream on a device such as device 150. The user can also ask
for the channel be recorded for a given time interval. In some
embodiments, all the clusters in the stream will be recorded,
thus giving the user an option to view the stream in varying
levels of detail/speed during playback. In other cases (e.g., a
device with constrained resources), only the specified level of
detail is recorded. One example use of the record function is
for a mobile device user to record one or more channels prior
to boarding a flight. During the flight, the user can then play
back the stored channel stream. The playback speed could be

Feb. 27, 2014

slow (i.e., to provide entertainment during the flight) or fast
(i.e., to allow the user to be “caught up” with current events
quickly). People interested in seeing how events unfold can
also use record to review information, such as which news
sites reported information first and how the information
propagated to other sites.
(O157 FAST-FORWARD: While replaying a recording,
the techniques described herein can be used to minimize the
loss of information when the stream is replayed at a faster
than real time speed. Clicking on FAST-FORWARD will
allow the user to view only the most-important clusters in the
recording. Different speeds are Supported (e.g., slow motion,
2.times., 5.times., etc.). If the stream is slowed down, fewer
clusters will be displayed, but those clusters that are displayed
will be more important than those that are not displayed.
0158. Additional Uses of Location Information
0159. An interface can be provided in which users indicate
their location on a map and then are shown stories that are
occurring nearby. As one example, in the event of a plane
crash or a natural disaster, many nearby individuals may be
tweeting about the event prior to national news sources. Fur
ther, the pictures that are received (e.g., of a Volcano erupting
ora rocket launch) can be aggregated into a “story in pictures'
as it unfolds. A user nearby the incident may be interested in
knowing about the story as soon as possible, while other users
(e.g., across the country) may only be interested if/when the
story is picked up nationally.
0160. As another example, during the period of time that a
trade show is occurring in Texas (i.e., during a designated start
and end of the event as defined in event creator 126), a graphi
cal user interface can depict where people are located when
they tweet about the trade show (e.g., based on hashtags and
other categorization information). For example, early in the
evening, the individuals are at the tradeshow. Then they move
to a particular vendor's party, as a large group. The individu
als then break off into various smaller parties.
0.161 Additional Information on Cluster (and/or Event)
Scoring
0162. As explained above, a variety of signals can be used
to determine a score indicative of the quality of a cluster (or
story). In the case of the importance of domain, a single value
can be used. Such as a page rank or other score provided by a
third party. Other features can also be used. Such as how large
the domain is, how often the domain breaks news, and how
much traffic the domain receives. Another signal is the num
ber of items in a cluster that came from reputable sources.
Another signal is the composition of the cluster—how many
items are tweets vs blog posts.
0163 Importance can change over time. As a cluster
grows, its importance grows. In some embodiments, a decay
factor is applied. If nothing has changed for a given period of
time, the contribution of dynamics to the cluster starts to
decay. A history of the various importance scores of a cluster
is recorded. Clusters may also pick up steam again after
decaying. Since the trend data is known, and the causes are
known (e.g., that in the last 10 minutes, 100 people tweeted
Something that was previously on the decline), the cluster
may be shown again.
0164. User feedback can also be employed. There are two
kinds of user feedback general feedback such as how often
users collectively click on URLs—and personalized feed
back (relating to how likely it is that a story will be of interest
to a specific user, e.g., how often they click on entertainment
stories). Collaborative filters can also be used to measure how

US 2014/0059185 A1

often a group of users that are like an individual user click on
a URL. Additional data sources, such as the user's profiles/
history on various Social networking sites and browser his
tory, can be used in conjunction with user feedback signals.
As one example, say a particular users friend tweeted about
an article. The cluster may be given a higher weight than it
might otherwise receive due to the friend having taken that
action.
0.165 Yet another type of signal relates to a predictive
model. Given a particular entertainment story, and historical
knowledge of how entertainment stories behave, a prediction
can be made about a cluster associated with the story (e.g.,
how many tweets it is expected to have after 24 hours have
elapsed). For example, history stories (i.e., about historical
figures and places) tend to move slower than entertainment
stories. If a history story is growing quickly, that information
can be used as a factor in its importance. Stories that have
higher predictive signals may be shown to users more quickly
than those that do not. In one example embodiment, users are
presented with “tomorrow’s news today' user interface based
on the signal. The interface can include a histogram of when
various news sources are anticipated to pick up the story. As
another example, Suppose a very important person (e.g., a
president) tweets infrequently. If that person tweets on a
Monday evening, the predictive model anticipates that the
tweet will be a popular news item within 8 hours. Instead of
waiting for other sources to pick up the tweet, the story may
be presented to users immediately.
0166 The following is an example of a computation of a
score calculation. In this example, signals include:
0167. 1. User signals: ranks of the users whose items are
included in the cluster
0168 2. Site signals: ranks of the domains of the URLs
mentioned in the cluster
0169. 3. Dynamics signals: How many items are in the
cluster and how fast did they arrive
0170 4. Diversity signals: What ratio of the items are
tweets, updates, blog posts, etc.
0171 Example score formula:

UserSignal userSignal Weight-i-SiteSignal siteSignal Weight--DynamicsSignal dy
namicSignal Weight--Diversity.Signal diversity.Signal Weight

0172. In various embodiments, the calculation is weighted
based on the channel—scores change based on a channel and
an interest.
0173 Managing Real-Time Data Streams
0.174 FIG. 8 illustrates an embodiment of a portion of a
distributed computation system. The distributed computation
system Supports stream computations—those computations
whose input is a stream and whose output is either a stream or
a real-time data structure. An example of a real-time data
structure is a data structure that is kept updated in real-time
based on Stream data, Such as top items list 136.
0.175. In some embodiments, system 102 includes a dis
tributed computation system, such as the one shown in FIG.8.
The system illustrated in FIG. 8 is implemented using com
modity nodes interconnected using Gigabit Ethernet.
(0176 Data Model
0177 Elements in a data stream are modeled as Events.
For example, each tweet is an Event, as is each Facebook
status update. Formally, an Event is a record with a variable
number of attribute-value pairs. Values can either be atomic or

Feb. 27, 2014

collection types, such as sets and lists. Certain fields are
present in every Event: a streamid (which stream does this
Event belong to), a timestamp, and a key. The key attribute
always has an atomic value. Keys are used to group related
Events, and there is no requirement that the key be unique
across Events. For example, the key for a tweet can be the
Twitter username (e.g., to group tweets by user) or, the key
can be a set of categories (e.g., to group tweets by category).
The other attributes will depend on the kind of Event. For
example, a tweet will contain Twitter-specific fields.
0.178 A Stream is a collection of Events with the same
streamid attribute. An assumption is made that timestamps
are monotonically increasing with time, but not necessarily
dense. At any point in time, there are usually several Streams:
some of them external (e.g., Twitter, Facebook) and others
that are generated as intermediate values and outputs by the
application.
0179 A Slate is a persistent attribute-value collection (i.e.,
a collection of key-value pairs) usually related to a group of
Events: for example, all the tweets that mention a particular
link, or all the tweets related to a given news story. The
attributes are application dependent, except for one required
attribute: the slatekey. The value of this attribute is a primary
key for the Slate: the system shown in FIG. 8 guarantees that
there is exactly one Slate with a given slatekey. The system
shown in FIG.8 persists Slates and makes it very efficient to
access them by slatekey; in practice, the most active Slates are
stored in memory and only old, inactive Slates may need to be
fetched from disk.
0180. The system shown in FIG. 8 provides primitives that
construct new Events and Slates, as well as examine, add or
modify attributes of existing Slates given their slatekey.
Events are assumed to be immutable. If in the process of a
computation, it becomes necessary to add an attribute to an
Event, the idiom is to create a new event that copies the
current Event, add the additional attribute, and emit the new
Event, usually on a different Stream.
0181 Computation Model
0182 Computation in a streaming model is Event-driven:
things happen in reaction to new Events. One way to organize

computation in a streaming model is publish-subscribe. Com
putational units subscribe to Events and publish Events. All
Events from all Streams are placed on the same “Stream Bus.”
and the system (in particular, the Bus Conductor) takes care of
routing Events as appropriate. There are two kinds of com
putational units: Map and Update.
0183 Map is a stateless computation. A Mapper (the unit
that performs a Map) is invoked with an Event. It publishes
Zero or more new Events on to the bus, possibly to different
Streams. Mappers Subscribe to one or more Streams, and get
invoked for every Event on each of those Streams.
0.184 Update is a stateful computation. An Updater is
invoked with an Event and a Slate; in particular, the Slate
whose slatekey matches the key of the Event. If no such Slate
exists, the system creates ablank Slate (with only the slatekey
attribute filled in). The Updater can examine the Slate and
also add, remove, or modify the Slate in any way (except
changing the slatekey). An Updater publishes Zero or more
Events, possibly to different Streams. An Updater, like a

US 2014/0059185 A1

Mapper, Subscribes to Zero or more Streams, and gets invoked
for every Event on each of those Streams. To summarize:

map(Event).fwdarw.4 (Event)*
update(Event, Slate).fwdarw. (Event)*

0185. If more than one computational unit is subscribed to
a Stream, they will each get every Event on the Stream.
However, the order in which they get invoked is nondetermin
istic; it is possible they get invoked concurrently, possibly on
different nodes.
0186. In some embodiments, the system shown in FIG. 8
makes the following guarantees related to scheduling and
concurrency:
0187. At-Least-Once. Regardless of hardware or software
failures, every Mapper and Updater subscribed to a Stream
will receive every Event on the Stream, and will successfully
execute to completion for that Event, at least once. It is pos
sible in rare circumstances that an Event will be sent more
than once to a computational unit.
0188 Persistent Updates. After successful completion of
an Updater, any changes it makes to its Slate are persistent.
(0189 Per-Slate in-order execution. When an Updater
receives an Event, its Slate will reflect all, and only, the
updates due to all Events with the same key and earlier times
tamps.
(0190. An Application is a collection of Streams, Mappers,
Updaters, and Subscriptions.

Map and Update: Additional Details
0191 A Mapper is obtained by subclassing a system-de
fined Mapper class. The programmer defines a single method
with the following signature:
(0192 map(Event event)/*process an Event/The pro
grammer uses the system-provided publish(event, streamid)
method to publish Events to Streams. An Updater subclasses
a system-defined Updater class and provides three methods:

init(Slate slate), * initialize the state of a Slate ahead of any Events
*/update(Event
event, Slate slate), * process an Event and possibly update the Slate */
finalize(Slate slate), * called before the Slate is destroyed */

0193 The update() method: When an Updater is sub
scribed to a Stream, and an Event arrives with a never-before
seen key, the system creates a new Slate with that slatekey and
then calls the init() method of the updater. The system guar
antees that update() will only be called on an initialized Slate.
0194 The init() method can be used to initialize applica
tion-specific data structures on the Slate. In addition, it can
also specify a time-to-live (TTL) for the Slate, using the
system-provided set ttl() method. This parameter is inter
preted as follows. If the Slate is not accessed (read or written)
for a period that equals the TTL, the system calls the finalize(
) method for that Slate and then destroys it. This feature of the
model allows the system shown in FIG. 8 to “forget' very old
data (e.g., old clusters). The default TTL is infinity; that is, the
Slate persists forever.
0.195 Once the application has defined its Mappers and
Updaters, it calls a system-provided subscribe() method on

Feb. 27, 2014

them (this method is provided by the system-defined Mapper
and Updater classes that every Mapper or Updater sub
classes).

Mappersubscribe(streamid)
Updater.Subscribe(streamid)

0196. Included in the system shown in FIG. 8 is a highly
Scalable, available, and fault-tolerant persistent key-value
store 802. The key-value store is used to store system meta
data as well as persistent storage for Slates. One example of
Such a key-value store is Cassandra. The key-value store
forms the storage layer of the Map-Update system.
(0197) Also included in system 800 area Stream Bus 804,
a Conductor 806, and Workers 808. The Stream Bus receives
every Stream Event and buffers it for the Conductor. If the
Conductor falls behind or fails over, the Stream Bus buffers
the Stream so that Events are not lost. Each Worker node has
a pool of Worker processes. Each process has all the code for
every Mapper and Updater in the system, and can run any
Map or Update. In some embodiments, modules Such as
modules 114-124 are implemented as Workers.
0198 The Conductor is the master that manages subscrip
tions and routes Events to computational units. It maintains
metadata about the available Workers and Subscriptions.
When it receives an Event, it finds Mappers and Updaters
subscribed to the Stream. It determines which Worker node to
use for each Mapper and Updater, and invokes them appro
priately.
Slates are stored in the key-value store, indexed by slatekey.
The Slate is serialized to become the value in the key-value
store and de-serialized when it is readback. It is assumed that
the key-value store is distributed and runs on a separate set of
nodes from the Map-Update system.
0199 Task Scheduling: One Example Implementation
0200. When an Event arrives, the Conductor has to decide
which Worker node(s) run the Mapper(s) and Updater(s) sub
scribed to the Stream. One implementation is to allocate tasks
round-robin among the Workers, hoping that the result will be
that every Worker node gets a roughly equal computational
load at every point in time. A slightly better scheme is for the
Conductor to poll the Workers periodically and collect load
data, and schedule tasks on the most-lightly-loaded node.
0201 To ensure atomicity in this model, every time an
Updater is scheduled, it needs to read its Slate from the
key-value store when it starts, and write back the updated
Slate (if it made updates) to the key-value store. Suppose the
system processes nevents/second, and each Event accesses k
Slates. Also suppose each Slate is sbytes in size. A total of nk
key-value store operations/second, transferring inks bytes/
second of data between the key-value store and Worker nodes
is required.
0202 Task Scheduling: Alternate Implementation
0203 Computation blocks are moved close to the data it
accesses. At any point, a single Worker node can be made the
Primary for a given slatekey. When an Event arrives, the
Conductor examines its key, and schedules Updaters for it on
the primary node for that key. Mappers are still scheduled as
in the previous implementation.
0204 Each Worker node maintains an in-memory (or in
SSD) cache of Slates. These are Slates for which this Worker
node is the Primary. By default, the cache is write-through;

US 2014/0059185 A1

writes are written back immediately to the key-value store.
When an Updater is scheduled on a Slate, it is very likely that
its most recent value is in the cache, not requiring a read from
the key-value store. The application can control the write
through behavior with a write-delay parameter. This param
eter relaxes the immediate write-through and allows the
cached Slate to be written back, say, every few seconds.
0205 Streams can be subject to spiky behavior, with
bursts of activity for the same key. The Primary node
approach, together with the write-delay parameter, allows
this feature to be harnessed. The Slate for such a “hot” key
will remain in the Primary's cache, and will be read and
written several times in-cache for every access to the key
value store. The write-delay allows the application to trade
off between scalability and absolute correctness. If a Worker
node fails, the updates in its cache that have not yet been
written through to the key-value store are lost.
0206. The Conductor periodically polls Workers and gath
ers load data. If the Primary node for an events key has a load
less than a specified threshold (e.g., 80% utilization), sched
ule the Updater on the Primary. If not, the Conductor picks the
most lightly-loaded Worker as the new Primary for this key. It
will have to wait for a time period slightly longer than the
write-delay before scheduling Updaters for this key on the
new primary. That will ensure that any updates from the old
Primary have been written through to the key-value store. The
new Primary then gets the most recent value of the Slate from
the key-value store.
0207. Application Slates and Keyspaces
0208. In some embodiments, the application is given
access to the key-value Store. Application Slates are used to
facilitate application access to the key-value store. Isolation
between system-Slates and application-Slates is ensured by
using separate keyspaces. A keyspace is specified by a prefix
in front of the key, with a colon separating the keyspace name
and the key. For example, “foo:bar is key “bar in keyspace
“fool” Only system 800 can create Slates in the “system:
namespace. Applications can create in any other namespace.
Updaters can create, access, and modify application Slates by
key.
0209 Exemplary embodiments providing methods, sys
tems and devices for processing and managing real-time data
streams are described further in the Section entitled "Process
ing of Real-Time Data Streams' beginning at page 84.
0210
0211 FIG. 9 illustrates an embodiment of an environment
in which documents are processed. In the example shown, a
user of client 916 uses a web browser to access a variety of
sites 918-924. Site 918 hosts an astronomy-oriented blog that
allows readers to comment on blog posts via a commenting
feature. Site 920 is a medically-themed message board on
which users discuss various medical conditions and other
topics with one another. Site 922 is a news aggregation Ser
vice. Visitors to site 922 provide information about their
interests and are provided with personalized news feeds. Site
924 belongs to the company for which Alice works, Acme
Corporation. Site 924 securely makes available internal docu
ments to users such as Alice that have appropriate credentials.
0212. In the example shown, documents, such as docu
ment 902, are provided to document processing system 904
for processing. Examples of documents include blog posts
made on site 118, forum messages exchanged on site 120,
news articles made available through site 122, the various

Tagging a Document

Feb. 27, 2014

types of documents served by site 124, and any other text (in
formats such as HTML, TXT, PDF, etc.), as applicable.
0213. In various embodiments, for a given document 902,
document processing engine 906 produces two types of out
put—a list of entities 910 and a document vector 912. As used
herein, an entity is a pair of items—a textual representation
(i.e., a string of text appearing in the document) and a concept
associated with the textual representation. Unlike the textual
representation (which is literally present in the document),
the associated concept need not be literally present in the
document. Instead, the concept is present in a taxonomy. Such
as is stored in database 908.
0214. As one example, Suppose a news article describes
the saving of a baby from a fire by a dog. An excerpt from the
article reads “The small, heroic sheltie saved baby Fred on
Tuesday.” When the article is provided to system 904, one
example of an entity 910 that is generated is (“sheltie'."Sh
etland Sheepdog”). The first portion of the pair (the textual
representation) is the fourth word of the excerpt. The second
portion of the pair is the associated concept that is included in
a taxonomy of concepts—the canonical name of the breed of
dog also known as a “sheltie.” Document vector 912 is a
ranked list of concepts associated with the document. An
example of a document vector 912 for the dog article is:
(pets: 10, dogs:6. Shetland Sheepdog:4, arson:2) with each
concept having an associated score. In various embodiments,
the associated scores are normalized between 0 and 1.
0215. In the example shown in FIG. 9, system 904 com
prises standard commercially available server hardware (e.g.,
having a multi-core processor, 4G+ of RAM, and Gigabit
network interfact adaptors) running a typical server-class
operating system (e.g., Linux). In various embodiments, sys
tem 904 is implemented across a scalable infrastructure com
prising multiple Such servers, Solid state drives, and other
applicable high-performance hardware. In the environment
shown, Acme Corporation owns a document processing sys
tem 926 that provides functionality similar to that of system
904. System 926 is configured to receive as input various
internal documents and to categorize and Summarize those
documents in accordance with the techniques described
herein.

0216. Whenever system 904 is described as performing a
task (such as communicating with a client or accessing infor
mation in a database), eithera single component or a Subset of
components or all components of system 904 may cooperate
to perform the task. Similarly, whenever a component of
system 904 is described as performing a task, a Subcompo
nent may perform the task and/or the component may per
form the task in conjunction with other components. In vari
ous embodiments, portions of system 904 are provided by one
or more third parties. As one example, database 908 stores a
taxonomy comprising millions of concepts. The taxonomy
can be created by system 904 (using techniques described in
more detail below) and can also be supplied to system 904 by
a separate component, or by a third party. As another example,
database 908 also includes various statistical information,
Such as inverse document frequency information, that can be
periodically computed by system 904, supplied by a separate
component, or provided by a third party.
0217 FIG. 10 illustrates an embodiment of a data process
ing engine. Data processing engine906 is of a modular design
and employs a blackboard architecture in which various mod
ules (if included) contribute to computation and refinement of
various calculations (such as the computation of vectors

US 2014/0059185 A1

1010-1014), as applicable. Some of the processing performed
by the modules of data processing engine 906 is paralleliz
able, such as natural language processing and textual repre
sentation detection. Further, the processing performed by
engine 906 is customizable through the use of configuration
file 1018 (e.g., allowing documents from different publishers
to be processed differently). Additional detail on various
aspects of data processing engine 906 will now be provided.
0218 Conversion/Preprocessing
0219. When a document, such as document 902, is
received, if applicable, preprocessor 1002 converts the docu
ment (e.g., from a DOC or PDF file) or otherwise extracts
(e.g., from HTML or XML) a plaintext representation of the
content of the document. Preprocessor 1002 is also config
ured to handle special characters, such as by converting
occurrences of the “& sign into whitespace or into the word
“and
0220 Boundary Processing/Position Information
0221 Boundary processor 1004 is configured to recognize
certain types of boundaries within a document based on the
format of the document (e.g. <head>, <body), <h1>, and
<pHTML tags) and can also parse configuration informa
tion Supplied by publishers regarding the formatting of docu
ments on their sites. The document shown in FIG. 11 includes
two sections—a title section and a body section. In some
embodiments, document boundaries are ignored and the pro
cessing of boundary processor 1004 is omitted. In various
embodiments, boundary processor 1004 is also configured to
store, for each term in the document, the position of the term.
As one example, the first word in the document would have a
position 0, the second word in the document would have a
position 1, and so on. As will be described in more detail
below, terms that appearin one section of a document (Such as
a title) may be scored or otherwise treated differently than
terms that appear in another section (such as in the com
ments). In addition, publishers can use sections to enforce
preferences, such as that all terms appearing in a document be
used to categorize the document, but that only terms appear
ing in the main body (and not the title or comments sections)
be able to be associated with hyperlinks. Such preferences
can be provided by the publisher via configuration 1018.
0222 Natural Language Processing
0223 Natural language processor 1006 is configured to
determine part-of-speech information for each term in the
document. In various embodiments, natural language proces
sor 1006 uses part-of-speech tags, such as are provided by the
Brown corpus, to tag each term in the document. Using the
article shown in FIG. 11 as an example, “NASA's would be
tagged “NPS meaning that it is a possessive proper noun. As
will be described in more detail below, in various embodi
ments, different parts of speech are assigned different scores
and those scores can be used in evaluating textual represen
tations.
0224 Textual Representation Detection
0225. Whitelist 1020, extracted from the taxonomy stored
in database 908, is a list of all of the concepts that are included
in the taxonomy. Textual representation detector 1008 is con
figured to perform agreedy match against the document using
whitelist 1020. Each match is included in a list of candidate
textual representations 1024. Using the first line of the article
shown in FIG. 11 as an example “NASA.”“mission,” “orbit.”
and “moon, would each be included in the list of candidate
textual representations—1024. Suppose “Lunar and “Lunar
Reconnaissance Orbiter are both phrases that are included in

Feb. 27, 2014

whitelist 1020 but “Lunar Reconnaissance' is not. Because
detector 1008 is configured to perform a greedy match,
“Lunar Reconnaissance Orbiter' will be added to the list of
candidate textual representations 1024 while the other two
terms will not. In various embodiments, detector 1008 is
configured to perform other types of matches, instead of or in
addition to greedy matches. In some embodiments, all
matches (e.g., both "Lunar and "Lunar Reconnaissance
Orbiter) are added to list 1024.
0226 Leading Prepositions
0227 Suppose “The American” and “American Pie' are
both concepts included in whitelist 1020, but that “The
American Pie' is not. Also suppose that document 902
includes the string “The American Piemovie is showing at the
Downtown Theatre tomorrow.” When performing its greedy
match, detector 1008 might add to list 1024 two entries, “The
American” and “Pie” erroneously omitting “American Pie.”
To address this problem, in some embodiments, detector
1008 employs a prepositional rule in which, when a match
that includes at its start a preposition is detected, the prepo
sition is temporarily ignored and the greedy match continues
using the next word in the document. If a match is found, the
preposition is discarded and the phrase that does not include
it is used. In this example, because “The American includes
a leading preposition, “The would be temporarily ignored,
and a match of “American Pie' would be detected. From the
three words, “The American Pie' only one entry would be
added to list 1024 American Pie.

0228. Without further refinement, the list of candidate tex
tual representations 1024 might include virtually every word
in document 902. Accordingly, in various embodiments, tex
tual representation detector 1008 employs additional logic to
refine the list of candidate textual representations. As will be
described in more detail below, the candidate list can be
refined/pruned both before and after feature vectors for items
on the candidate list are populated.
0229 Static and Runtime Blacklists
0230. In various embodiments, textual representation
detector 1008 is configured to exclude from inclusion in list
1024 those textual representations that match a blacklist
1016. Stop words (such as “a,” “about,” “again.” and
“would') are one example of terms that can be included in a
static blacklist. A publisher can also provide custom black
lists (referred to herein as “runtime' blacklists) that should be
considered by engine 906 when processing that particular
publisher's documents. As one example, a publisher may
blacklist the names of competitors. As another example, the
publisher may have an agreement with a third-party advertis
ing company that certain words be directed to that advertising
company. By employing a blacklist, the publisher can prevent
the already-contracted-for words from being considered by
engine 906. Publishers can also specify constraints such as
requiring that all textual representations belong to one or
more verticals (also referred to herein as “top level catego
ries’) specified by the publisher, which will be described in
more detail below.
0231 Concept-Based Blacklists
0232 Concepts included in a taxonomy can be used to
bias/prune candidate textual representations, as will be
described in more detail below. As with the examples
described in the previous section, concept-based blacklists
can be static (e.g., applied to all documents) or runtime (e.g.,
used according to a configuration Supplied by a publisher or
other runtime clue). For example, an administrator of engine

US 2014/0059185 A1

906 can configure as blacklisted concepts “chronology” and
“days of the week. Child topics such as “Monday” and
“1997 would be blacklisted as a result. As another example,
a preference can be indicated for health-themed textual rep
resentations by specifying the vertical, “Health,” as a
whitelisted concept in configuration 1018. A preference
against adult-themed textual representations can be imple
mented by specifying the vertical Adult Entertainment” as a
blacklisted concept. Instead of Supplying whitelists/black
lists, in some embodiments weights are assigned to various
categories, so that higher weighted categories are given pref
erence over lower weighted categories by engine 906. As one
example, the following weights could be provided: “Health
(1); Sports(0.5)' indicating a preference for health-related
concepts but also indicating that sports concepts should be
considered.

0233. In various embodiments, concept whitelist/blacklist
information is passed in at runtime via the provider of docu
ment 902 instead of or in addition to being supplied via
configuration 1018. Whitelist information can also be col
lected on behalf of a publisher, without requiring the pub
lisher to manually specify category preferences. One way of
accomplishing this is as follows. When a publisher initially
decides to use the services provided by system 906, system
906 performs the document categorization techniques
described herein across the corpus of documents included in
the publisher's site and collects together the dominant con
cepts into a concept whitelist.
0234 Regular Expression Patterns
0235. In various embodiments, textual representation
detector 1008 is configured to exclude from inclusion in list
1024 those textual representations that match a regular
expression. As one example, as a result of converter/prepro
cessor 1002 manipulating document 902, a term such as
“AT&T GSM may be converted to “ATT GSM Suppose
“TGSM is a concept included in whitelist 1020. During the
greedy match portion, “TGSM may be erroneously added to
candidate list 1024. A regular expression pattern that discards
matches that begin with a lone “T” or a lone “S” can be used
to prevent the erroneous match from being included.
0236
0237. In various embodiments, textual representation
detector 1008 is configured to evaluate proper nouns included
in list 1024 and remove from the list those proper nouns that
have an adjacent proper noun that was not selected. One
purpose of this rule is to prevent one person that has a famous
last name (but is not that famous person) from being errone
ously recognized as the famous person. Suppose an article
discusses a chemist named John Mozart and that “Mozart' is
added to list 1024 as a result of the greedy match. Since “John
Mozart' is not included in whitelist 1020, it is not included in
list 1024. Detector 1008 is configured to recognize that
Mozart was added, has an adjacent proper noun (“John') and
to remove “Mozart from list 1024.

0238
0239 Vector populator 1026 is configured to populate a
feature vector 1010 for each candidate textual representation
included in list 1024. A feature vector comprises a set of
various signals associated with the textual representation.
The signals can be used in various ways, as will be described
in more detail below. Some of the signal information is
obtained from analyzing document 902 and other information
is obtained from data included in database 908.

Proper Noun Sequences

Initial Feature Vector Population

Feb. 27, 2014

0240. One signal, denoted herein as “TitleTF indicates
the number of times that the term appears in the title section
of the document. Using the textual representation, “Lunar
Reconnaissance Orbiter, as shown at 1102 in FIG. 11 as an
example, that term is not present in the title section of the
document and thus has a TitleTF-0. “BodyTF is a signal that
indicates the number of times that the term appears in the
body section of the document. The term, “Lunar Reconnais
sance Orbiter has a BodyTF=1 because it is present once in
the body section of the document. Another textual represen
tation, “LRO,” also has a TitleTF=0, but has a BodyTF=3.
0241. Other term frequency counts can also be used
instead of or in addition to TitleTF and BodyTF, as applicable.
For example, the terms frequencies with respect to meta tags,
bold/strong tags, H3-H6 tags, H1-H2 tags, and anchor classes
can all be included in its feature vector. As another example,
a CommentTF signal can be used to indicate the number of
times a term appears in the comment section of a blog. Arbi
trary section frequency counts can also be used. Such as
Section0TF, Section 1TF, Section2TF, etc., indicating the
number of times the term appears, respectively, in the 0. Sup.
th, 1. Sup.st, and 2. Sup.nd sections of the document. One way
that section frequency signal information can be used is to
allow words occurring in the comments to be considered
when categorizing a document, but also to prevent those
words from being selected for automated hyperlinking.
0242. As mentioned above, a score (the “NLP score) can
be assigned to a textual representation based on its part of
speech. As one example, proper nouns are assigned a score of
“1,” common nouns are assigned a score of "0.75, and verbs
are assigned a score of "0. For multi-word textual represen
tations, the NLP score can be computed as the average of each
constituent word's score, the Sum of each constituent words
score, or in accordance with any other appropriate calcula
tion. The “Case' signal scores the number of capitalized
words in the textual representation. In the example of “Lunar
Reconnaissance Orbiter, the Case score is 3 because each
component of the term is capitalized. In the example of
“Apollo landing sites, as shown in FIG. 11, the Case score is
1.

0243 Both the NLP score and the Case score can be used
to resolve whether particular textual representations included
in the document are proper nouns or common nouns and also
to resolve ambiguities, as described in more detail below. As
one example, the occurrence of the words
0244 “Simply hired in a document could refer to the
author's explanation of how easy it was to be hired at a job and
could also refer to the jobs website, www.simplyhired.com.
The Case score of “Simply hired is 1. The Case score of the
canonical name of the jobs website, Simply Hired, is 2. As
another example, “it’s it in a document could refer to some
thing the author thinks is “it,” but could also refer to It’s-It
brand ice cream sandwiches. The Case score of “it’s it as
written is 0. The Case score of the canonical form of the ice
cream Sandwich product is 2.
0245. The Position signal indicates the relative location of
the textual representation in the document. “Lunar Recon
naissance Orbiter' occurs once in document 1100, at position
154. In various embodiments, if the textual representation
occurs multiple times, the position of each occurrence is
included in a list (e.g., Position=100,202,554). In various
embodiments, the position of the term can be used to bias

US 2014/0059185 A1

various processing. For example, links to terms occurring
earlier in the document can be preferred over ones occurring
later.
0246 The NumWords signal indicates the number of
words included in the textual representation. “Lunar Recon
naissance Orbiter” includes three words, and thus has Num
Words=3.
0247 The signals described herein are examples of signals
and particular signals can be omitted and/or accompanied by
additional signals based on factors such as availability of
data/information, preferences, and other implementation
choices.
0248 Transforming Candidate Textual Representations
into the Taxonomy Space
0249 Mapper 1028 is configured to map candidate textual
representations to nodes in the taxonomy stored in database
908. As explained above, the whitelist 1020 used to identify
textual representations is extracted from a taxonomy stored in
database 908. Each node in the taxonomy has an associated
ID. As one example, the concept "Lunar Reconnaissance
Orbiter” has a ConceptiD of 2381014. The concept “aca
demic conference' has a ConceptiD of 118760. In some cases
(such as with “Lunar Reconnaissance Orbiter), the textual
representation unambiguously corresponds to a single node
in the taxonomy (i.e., node 2381014). In other cases, the
textual representation’s meaning may be ambiguous. For
example, a textual representation of "jaguar occurring in a
document could correspond to the concept "Jaguar Cars
Ltd.” to the concept "Panthera onca,” to the concept “Mac OS
X v10.2. or one of several other concepts. A textual repre
sentation of “apple' occurring in a document could corre
spond to the concept “Malus domestica,” to the concept
Apple Inc. or one of several other concepts.
0250 In various embodiments, mapper 1028 determines
the set of all concepts to which a particular textual represen
tation maps. Each mapping is associated with a mapping
vector. Mapping vectors (1032) are either of type “unambigu
ous' or type 'ambiguous. A mapping vector is of type
“unambiguous only if a given textual representation maps to
a single concept. Otherwise, it is of type ambiguous. A map
ping vector also stores additional information, such as a
pointer to the textual representation in the document, the
conceptiD of the mapped concept, the feature vector of the
textual representation, and a strength value that indicates a
confidence in the mapping. As will be described in more
detail below, in some embodiments the mappings 1032 ini
tially created by mapper 1028 are pruned through a series of
refining actions.
0251 FIG. 12 illustrates a mapping between a set of tex
tual representations (1202) and a set of concepts (1204). In
the example shown, the first textual representation (tr. Sub.I)
unambiguously maps to concept c. Sub.1. The unambiguous
mapping between the two is denoted as “u' along line 1206.
As one example, tr. Sub.1 is “Lunar Reconnaissance Module'
and c. sub.1 is the concept "Lunar Reconnaissance Orbiter.”
Suppose tr. Sub.2 is the acronym, “LRO.” LRO could be short
for "Lunar Reconnaissance Orbiter but could also be short
for “large receive offload (c. Sub.3) which is a technique in
computer networking for increasing inbound throughput. As
shown in FIG. 12, tr. Sub.2 can thus be mapped both to c. sub.1
and c. Sub.3. The ambiguous nature of the mappings is
denoted as “a” along lines 1208 and 1210.
0252 Mapper 1028 sorts a documents textual represen
tations into a set of unambiguous textual representations (e.g.,

Feb. 27, 2014

tr. Sub.1) and a set of ambiguous textual representations (e.g.,
tr. Sub.2, tr. Sub.3, and tr. Sub.n). For each ambiguous textual
representation, the mapper determines whether a concept to
which it is mapped is also a concept to which a textual rep
resentation that is unambiguous is mapped. If so, the ambigu
ous textual representation is reclassified as an unambiguous
textual representation and is mapped solely to the concept to
which the unambiguous concept is mapped.
0253 FIG. 13 illustrates a process for resolving an ambi
guity. In various embodiments, the process shown in FIG. 13
is performed by mapper 1028. The process begins at 1302
when a set of textual representations is received. At 1304, the
textual representations are divided into sets based on whether
they unambiguously or ambiguously map to a concept.
Finally, at 1306, an attempt to resolve ambiguities is made.
One technique for attempting to resolve an ambiguity is pre
sented in the preceding paragraph.
0254 FIG. 14 illustrates the mapping depicted in FIG. 12
after the processing described in conjunction with FIG. 13 has
been performed. As explained above, textual representation
t. Sub.2 was initially mapped to two concepts—c. Sub.1 and
c. Sub.3. Since unambiguous textual representation tr. Sub.1
mapped to concept c. Sub.1, mapper 1028 removed the map
ping vector corresponding to 1210 and changed the type of
the mapping vector corresponding to 1208 from ambiguous
to unambiguous. Two textual representations that map to the
same concept (such as tr. Sub.1 and tr. Sub.2 as shown in FIG.
14) are examples of synonyms. Both textual representations
(“Lunar, Reconnaissance Orbiter' and “LRO”) refer to the
concept "Lunar Reconnaissance Orbiter.” In the example
shown in FIG. 14, if another textual representation, “tr. Sub.4.”
also mapped to c. Sub.1, it would also be considered a syn
onym of tr. Sub.1, and tr. Sub.2.
(0255. The process of FIG. 13 can also be used to resolve
ambiguities for textual representations which are not syn
onyms of one another but share related concepts. As one
example, suppose “Steve Jobs' is a textual representation
included in a document and unambiguously resolves to the
concept of businessman, Steven Paul Jobs. The textual rep
resentation “apple' is also present in the document, in the
sentence, “I would like to buy an apple.” The term, “apple' is
not synonymous with “Steve Jobs, however, its potential
meaning as a fruit can be disambiguated by the presence of
Steve Jobs in the document. One approach for accomplishing
this is for mapper 1028, when performing portion 1306 of the
process shown in FIG. 13, to examine the nearest neighbors of
concepts in the taxonomy. Another approach is to use the
concept blacklist/whitelist signals described in more detail
below. Yet another approach is to use a document similarity
score described in more detail below.

0256 In some embodiments, for any remaining textual
representations in the ambiguous textual representation set
(e.g., four meanings of "jaguar”), a mapping between the
textual representation and the concept corresponding to each
possible meaning is added to the unambiguous set (e.g., four
different unambiguous mappings), and the textual represen
tation (jaguar) is removed from the ambiguous set. Engine
906 is configured to remember that the meaning of the textual
representation was not resolved (i.e., that jaguar could mean
one of four things). As will be described in more detail below,
pruning of three of the four different unambiguous mapping
vectors is performed after a document vector is computed and
a document similarity Score generated.

US 2014/0059185 A1

0257 Creating a Concept Feature Vector
0258. In addition to the processing described above, vec
tor populator 1026 is also configured to populate a set of
concept feature vectors 1012. One way of accomplishing this
is as follows. For each concept remaining after the processing
of FIG. 13, vector populator 1026 merges the feature vector
scores of any textual representations mapped to respective
concept (e.g., by adding the values together) and includes
additional information (described in more detail below).
0259. Using the example of the representations “Lunar
Reconnaissance Orbiter' and “LRO, a concept feature vec
tor for “Lunar Reconnaissance Orbiter is formed by sum
ming the respective feature vectors of the two textual repre
sentations and adding additional information. The concept
“Lunar Reconnaissance Orbiter” would accordingly have a
TitleTF=0+0=0, a BodyTF=1+3=4, and so on.
0260 Inverse Document Frequency Signal
0261) One additional piece of information that is included
in the concept feature vector is the inverse document fre
quency (IDF) of a canonical textual representation associ
ated with the concept. As one example, “JFK” “John F.
Kennedy,” and “Jack Kennedy' all refer to the 35. Sup.th
president of the United States. The canonical textual repre
sentation is “John F. Kennedy' and the IDF included in a
concept feature vector for the president would be determined
using “John F. Kennedy.” The canonical textual representa
tion is stored in the taxonomy in database 908 and is in some
embodiments the title of the concept as it appears in a third
party corpus such as Wikipedia. In some embodiments, the
IDF is computed for all textual representations occurring in
the document instead of or in addition to the canonical textual
representation.
0262 The IDF is a statistical measure that can be used to
evaluate how important a word is to a particular document
included in a corpus of documents (e.g., the worldwide web,
documents on an enterprise server, etc.). For a given term “i.
one way to compute the IDF of i is as follows:

IDFi=log D{ditidi-elect cons.d #EQU00001#

with ID being the number of documents in the corpus, and
|{d:tsubi.epsilon.d being the number of documents where
the term t. Sub.i appears.
0263
0264. Another piece of information that can be included in
the concept feature vector is the Homonyms signal. This
signal indicates the number of homonyms for the concept and
can be used to weight against (or toward) the selection of
concepts that can easily be confused with other concepts. The
number of homonyms associated with a concept is, in some
embodiments, included in the taxonomy stored in database
908.

0265 Concept Whitelist/Blacklist Signals
0266 Yet another piece of information that can be
included in the concept feature vector is whether or not the
concept is present in a concept whitelist (or concept blacklist,
as applicable). For example, in configuration 1018, publish
ers can specify concept whitelists (concepts they prefer to
bias toward) and concept blacklists (concepts they have a bias
against). If the concept is present in the concept whitelist, in
some embodiments a Whitelist=1 signal is included in the
concept feature vector (and has a “0” value otherwise). If the
concept is present in the concept blacklist, in Some embodi
ments a Blacklist 1 signal is included in the concept feature

Number of Homonyms Signal

Feb. 27, 2014

vector (and has a “0” value otherwise). The whitelist/blacklist
signals can be used as weights and can also be used to prune
concepts.
0267
0268 “Linkworthiness” is another signal that can be pre
computed for a concept in the taxonomy and included in a
concept feature vector. One example of a linkworthiness sig
nal is a measure of how frequently the concept is included in
a hyperlink in a corpus. As one example, Suppose “bottled
water occurs 4.543 times within the corpus of documents
that comprise the Wikipedia site. However, the term is linked
a single time. Bottled water would accordingly have a link
worthiness score of 1/4.543=0.00022. As another example,
suppose “carpe diem” occurs 200 times and is linked to 88
times. Carpe diem would accordingly have a linkworthiness
score of 88/200=0.44. A corpus including multiple sites and/
or the entire WorldWideWeb can also be parsed in determin
ing linkworthiness instead of or in addition to Wikipedia. In
Some embodiments, the documents used to perform the link
worthiness determination are selected based on a pagerank or
other measure of their quality. For example, links included in
highly rated newspaper sites might be parsed, while links
included in domain parked sites would not.
0269. The measure of quality can also be factored into the
linkworthiness score itself. For ambiguous concepts. Such as
jaguar in addition to determining the number of times a

concept is linked, the meaning to which it is linked is also
examined. For example, Suppose that within Wikipedia, jag
uar” appears 500 times. Of those 500 instances, 300 have
associated hyperlinks. Of the 300 hyperlinks, 60% direct the
viewer to a page about Panthera onca, 30% direct the viewer
to a page about the car company, and the remaining 10% of
links direct viewers to other (even less common) meanings of
the word. In this example, a popularity score can be associ
ated with each of the meanings and used as a signal (described
in more detail below). Such as the cat meaning having a
popularity score of 0.6, the car meaning having a popularity
score of 0.3, and so on. In the case where the Wikipedia
corpus is used, whether or not a particular ambiguous concept
is designated as the default can also be used as a measure of
popularity.
0270. The “freshness” of a topic can also be used as a
signal. Such information can be gleaned by Scraping Twitter
feeds, news aggregation sites, and other indicators of current
topics, stored in the taxonomy and included by vector popu
lator 1026 in the concept feature vector. One example of a
change in a concepts freshness is the concept "cupola. Prior
to the STS-130 shuttle mission, the term rarely appeared in
news articles and Twitter messages. The inclusion in the
payload of a cupola for the International Space Station, how
ever, resulted in considerably more use of the term and thus its
freshness score rose.

0271 In various embodiments, the linkworthiness, popu
larity, and freshness signals are combined together into a
single signal. The values may be binary (e.g., fresh 0 or
fresh-1) or any other appropriate value, typically normalized
between 0 and 1.

0272. Additional Signals
0273 A capitalization signal can be used to indicate how
often a concept is capitalized in documents appearing in a
corpus such as the World Wide Web. As one example, the
n-gram data made available by Google can be used to estimate
the percentage of times a concept is capitalized.

Linkworthiness, Popularity, and Freshness Signals

US 2014/0059185 A1

0274. In some embodiments, rules are used to weight vari
ous signals on a category basis. For example, ifa topic Such as
“Hired belongs to the category “Film, a category-based rule
can be used to give higher weight to the Case signal accord
ingly.
0275
0276. In various embodiments, once vector populator
1026 has completed populating concept feature vectors 1012,
Some of the concepts are pruned. For example, concepts
having a non-zero TitleTF score and a BodyTF-0, having
NLP scores of 0, or having very low EDF scores (e.g., a term
Such as 'shopping) are dropped. As another example, con
cepts that are orphans (e.g., nodes in the taxonomy without at
least one parent or child) are also dropped.
0277 As explained above, the “Case' score of a textual
representation can be used when determining whether the
textual representation maps to a particular concept. Suppose
“Has Been' is the name of a musical album (a concept) and
“has been appears in a document 902. The Case score of the
concept is 2, because the musical album's title is capitalized.
The Case score of the textual representation is 0. In some
embodiments, the musical album is pruned due to the mis
match in Case scores.

0278. As another example, if concept whitelist/blacklist
information has been provided to engine 906, the information
can be used to resolve ambiguous meanings. For example,
suppose medically themed site 120 has specified either the
vertical “Health' or a series of lower level concepts such as
“nutrition' and “organic foods” in whitelist 1020. Also sup
pose that document 902 includes an ambiguous occurrence of
the textual representation “apple' which is mapped by map
per 1028 in accordance with the techniques described above
to two concepts—a fruit and a computer company. The ambi
guity can be resolved (and one of the two concepts pruned) by
detecting that the Whitelist signal for the fruit concept has a
value of 1 and the Whitelist signal for the computer concept
has a value of 0.

0279. In some embodiments, filtering is performed by
various components of the document processing engine at
various stages of processing. For example, in some embodi
ments, orphan concepts are omitted from whitelist 1020. As
another example, in Some embodiments, filtering based on
scores such as NLP scores and IDF scores occurs prior to the
processing described in conjunction with portion 1306 of the
process shown in FIG. 13.
0280
0281. Each concept 'c' in the taxonomy stored in database
908 has an associated category vector 1022. In various
embodiments, the category vector is precomputed (i.e., prior
to the processing of document 902) and is also stored in
database 908. For a particular concept c in the taxonomy, the
category vector is a set of categories/concepts that are related
to that concept c, along with a weight for each of the included
categories/concepts. A variety of techniques can be used to
compute the category vector.
0282 One way to populate the category vector is to use the
up-lineage of the concept (e.g., parents, grandparents, etc.),
and assign a decreasing score based on distance (e.g., parents
have a score of 0.9, grandparents have a score of 0.8, etc.). A
second way to populate the category vector is to use the
down-lineage of the concept (e.g., children). A third way to
populate the category vector is to use a predetermined list of
concepts designated as being “related to the concept (e.g.,

Pruning Concepts

Category Vectors

Feb. 27, 2014

including siblings), or to use the concept lighting techniques
described in more detail below.
0283. A fourth way to populate the category vector is to
use membership in a subset “K” of a taxonomy “T” where
K|<<ICI. For example, K can include only verticals and
entity classes. Further, elements within K should not have
parent-child relationship, meaning that all members of a
given kin K should not automatically be members of another
k

0284 Document Vector
0285 Vector populator 1026 is configured to populate a
document vector 1014 for each document 902. In some
embodiments, this is accomplished by computing the average
of all category vectors implicated by the concepts associated
with document 102 remaining after the pruning described
above. Document vector 1014 canthus be denoted as follows:

dy=ncvin.

0286. In some embodiments, the document vector is nor
malized so that the sum of the components of cV. Sub.i is 1.
Other techniques can also be used to compute a document
vector, as applicable. For example, a weight value on an
exponent can be included in the computation Such that top
level concepts (like “health' and “sports') are favored or
disfavored, as indicated by a publisher, over bottom level
concepts (like “Sungold Tomato'). As another example, the
computation of the document vector can take into account
rules such as that concepts that have ambiguous parents be
excluded from the document vector, that concepts associated
with terms appearing in the title be weighted significantly
more than other concepts, etc. Document vector 1014 is one
example of output that can be provided by engine 906 to
various applications described in more detail below.
0287 Document Similarity and Further Disambiguation
0288. In some embodiments, vector populator 1026 is
configured to use document vector 1014 to compute a set of
document similarity scores. For a given concept, the docu
ment similarity Score is computed as: ds. Sub.i.dv. Smallcircle.
cv. Sub.i. It provides an indication of how similar the concept
vector is to the document vector. Once computed, the docu
ment similarity score is included in the concepts feature
vector 1012. In various embodiments, other similarity scores,
Such as a site similarity score, can also be computed (e.g., by
computing the similarity of a concept overall the documents
from a given site) and included in feature vector 1012.
0289. The document similarity score can be used to
resolve remaining ambiguities. For example, Suppose docu
ment 902 includes the statement, “Jaguar prices are climb
ing.” Absent additional information, the textual representa
tion “Jaguar could plausibly refer to either an animal or an
automobile. By examining the document similarity scores of
both the Panthera onca and the Jaguar Cars Ltd. concepts,
disambiguation can be performed. For example, if the docu
ment is an article about the cost of Zoo exhibits; concepts Such
as “Zoo” and “wildlife” and “park” will likely be included in
the document vector, while concepts such as “luxury cars'
and “high performance engine' will likely not (or will have
considerably lower scores). Accordingly, the document simi
larity score of “Panthera onca' will be considerably higher
than the score for “Jaguar Cars Ltd. and the ambiguity can be
finally resolved by pruning the second concept.
0290. In some embodiments, additional information is
employed to resolve remaining ambiguities. For example, the
textual representation, “Michael Jackson' most frequently

US 2014/0059185 A1

refers to the American musician. However, the taxonomy also
includes other individuals of note that are also named
“Michael Jackson” (e.g., a civil war soldier, a British televi
sion executive, etc.). It is possible that a document could be
referring to a Michael Jackson that is not the musician. In
various embodiments, the popularity of aparticular concept is
used as one consideration (e.g., with the musician meaning
being more popular than the civil war Solider) and concepts
document similarity Score is used as another. Based on cus
tomizable weights, engine 906 can be configured to disam
biguate concepts such as “Michael Jackson” by preferring the
popular meaning (and pruning the others), except when the
document similarity score overwhelmingly indicates (e.g.,
having a document similarity score exceeding 0.7) that an
alternate meaning should be selected. As another example,
the freshness of a topic can be considered.
0291 Ranking Results
0292 Even after the scoring and pruning actions described
above have been performed, for a given document 902, it is
possible that hundreds (or more) of textual representations
and associated concepts remain as candidates. Typically, only
a handful of the top textual representations and/or concepts
are needed.

0293 Ranker 1030 is configured to rank the concepts
remaining in consideration after the above processing/prun
ing has been performed. One approach is to use a scoring
function S that computes a score given a concept feature
vector. In various embodiments, what weights to apply to the
various signals included in the concept feature vector are
empirically determined and then tunes using linear regres
Sion. In various embodiments, only a Subset of the signals is
used (e.g., a combination of the document similarity score
and linkworthiness/popularity/freshness signals). For a given
document 902, a threshold/cutoff is applied to limit the final
list of concepts to an appropriately manageable size for con
Sumption by an application. Concepts having a score above
the threshold (and their corresponding textual representa
tions) are provided as output (i.e., “entities’).
0294 Publishers can, through configuration 1018, specify
customized rules for the combination function used to calcu
late final concept scores. For example, publisher 120 can
specify as a rule that while all medical concepts should be
considered by engine 906 when generating the document
vector 1014, disease symptoms should not be output as enti
ties. As another example, publisher 120 might choose to
weight the values of the Whitelist/Blacklist signals more
heavily than publisher 118, who might in turn prefer another
signal, such as by preferring concepts with the higher fresh
ness scores, or a monetization signal that measures how well
a given concept monetizes. One benefit of using category
based monetization is that an extrapolation can be made as to
the monetization of a very specific textual representation
based on the concept (or higher level category/vertical) with
which it is associated. It may be the case that pharmaceuticals
monetize well but names of diseases do not. When a new
pharmaceutical is introduced to market, the publisher need
not take any action to indicate a preference toward textual
representations of the new pharmaceutical as a candidate
term. As another example, if specific words are empirically
determined to monetize well on a given publisher's website
(e.g., “golden retriever” or “collie'), the categorization of
those words (e.g., “breeds of dog”) within the taxonomy can

Feb. 27, 2014

be used by engine 906 to bias the selection of other words
belonging the category (e.g., “beagle') even absent historic
data for those other words.
0295. In some embodiments, the threshold/cutoff is manu
ally selected. Such as by a publisher specifying in configura
tion 1018 that a maximum number of 10 entities be returned.
In other embodiments, engine 906 applies a dynamically
generated threshold based on factors such as the document
length. For example, the publisher can specify a link density,
such as that up to 5% of the number of words in a document
be included in entities. In some embodiments, the number of
textual representations remaining in candidate list 1024 is
used as a proxy for the document length. Other information,
Such as click-through rate data, can also be used to determine
the cutoff number of entities and also as an additional, site
specific signal that can be stored (e.g., in database 908) and
used while processing other documents (e.g., as an additional
concept feature vector signal).
0296 FIG. 15 illustrates an example of a portion of output
generated by a document processing engine. The example
shown illustrates the first and twenty-fourth ranked entities
determined from the document shown in FIG. 11. The con
cept "Lunar Reconnaissance Orbiter” (and corresponding
textual representation “Lunar Reconnaissance Orbiter') has
the highest score as indicated in region 1502. The concept
"academic conference' (and corresponding textual represen
tation 'scientific meeting) has a considerably lower score as
indicated in region 1504.
0297 Example Process for Detecting an Entity
0298 FIG. 16 illustrates an embodiment of a process for
determining a mapping between a textual representation in a
document and a concept. In various embodiments, the process
shown in FIG. 16 is performed by document processing
engine 906. The process begins at 1602 when a document is
received. As one example, a document is received at 1602
when the owner of blog site 118 submits a blog post and site
118 provides the post to system 906 via an API. At 1604,
candidate textual representations are identified, such as by
textual representation detector 1008. At 1606, concepts asso
ciated with the candidate textual representations are deter
mined, such as by mapper 1028. As explained above, various
refinements (e.g., disambiguation) and pruning of the candi
date textual representations and associated concepts can be
performed. Finally, at 1608 pairs of textual representations
and associated concepts are provided as output.
0299 FIG. 17 illustrates an embodiment of a process for
categorizing a document. In various embodiments, the pro
cess shown in FIG. 17 is performed by document processing
engine 906. The process begins at 1702 when a document is
received. As one example, a document is received at 1702
when the owner of blog site 118 submits a blog post and site
118 provides the post to system 906 via an API. At 1704,
entity pairs are determined, such as in accordance with the
processing shown at portions 1604-1608 of the process
shown in FIG. 16. Finally, at 1706 a categorization of the
document is determined. In some embodiments, this is docu
ment vector 1014. In various embodiments, the categoriza
tion determined at 1706 is thresholded prior to output, such as
by being limited to the top three categories of the document
Vector.

0300 Creating a Hierarchy of Concepts from a Corpus of
Documents

0301 FIG. 18 illustrates an embodiment of a system for
creating a hierarchy of concepts from a corpus of documents.

US 2014/0059185 A1

In the example shown, collection 1802 includes a group of
WorldWideWeb pages 1808 that are crawled, processed, and
indexed by a crawler 1804 and stored, along with assorted
scores and other information, in index 1806.
0302. As described in more detail below, crawler 1804
performs tasks Such as tagging the documents stored in index
1806 with subject type concepts and with information type
concepts (also referred to herein as “infotypes”). Crawler
1804 also performs and stores the results of frequency and
concurrence counts. Crawler 1804 may be a single device, or
its functionality may be provided by multiple devices. For
example, elements typically used in conjunction with a
crawler to create an index, such as an indexer, are described
herein as being provided by crawler 1804, but may also be
performed by separate devices or components and the tech
niques described herein adapted accordingly. For example, in
Some embodiments, concurrence counts are performed by
concept lighting engine 2804.
0303 Documents in collection 1802 can include, but are
not limited to text files, multimedia files, and other content. In
some embodiments, collection 1802 includes documents
found on an intranet. Also included in collection 1802 are a
variety of concept data sources 1810-1814. In the example
shown, source 1810 is the set of web pages known collec
tively as Wikipedia (and available, e.g., at http://en.wikipedia.
org). Source 1812 is a directory of automobile makes and
models, and source 1814 is a taxonomy of pharmaceuticals.
In some cases, such as with Wikipedia, the pages are used
both as concept data sources, and are also included in group
1808 and are crawled accordingly. In other cases, such as with
the directory of automobile makes and models, the informa
tion may be restricted or otherwise not available to crawler
1804, and the concept data source will serve only as a concept
data source and not be included in group 1808.
0304 Concept data sources 1810-1814 each provide
information that conveys some kind of relation between con
cepts and can be used as a source of concepts and also as a
source of hierarchical relations between at least some of those
concepts. For example, Suppose a sample entry in automobile
directory 1812 is: “2008 Honda Civic Sedan XL.” Using the
techniques described herein, it is possible to extract hierar
chical information from the entry, for example, that the “2008
Sedan XL' is a type of “Honda Civic, and that a “Honda
Civic' is manufactured by “Honda. Pages within Wikipedia
typically refer to their conceptual parents by link. For
example, the Wikipedia page on the topic of Astronomy' has
a link to its parent (typically by labeling the parent as its
“category'), the more general subject of “Science.” The Wiki
pedia page on the topic of “India’ includes a link to “South
Asian Countries, which includes a link to Asian Countries'
which includes a link to “Countries by Continent. The
entries in the pharmaceutical taxonomy are likewise related to
one another in a manner that can be harvested using the
techniques described herein.
0305 For each of the concept data sources 1810-1814, one
or more arc generators 1816 are used to parse the respective
concept data Source, extract concepts and relations between
concepts, and store the information in a common format
(1818) that can be consumed by aggregator 1822. For
example, a Wikipedia arc generator is configured to obtain
and parse Wikipedia data made available as a single XML file.
From the XML file, pairs of concepts—an article and a cat
egory to which it belongs—are extracted. Another arc gen
erator is configured to parse the automobile directory (e.g.,

Feb. 27, 2014

provided as a spreadsheet) and generate arcs accordingly,
Such as by knowing that for each line of the spreadsheet, the
first column (year) should be combined with the last column
to form “2008 Sedan XL, which has as its parent the second
and third column (“Honda Civic'), which has as its parentjust
the second column (“Honda”). As used herein, an arc is a
directional edge between two concepts. A concept is a word
n-gram with meaning. One relation between concepts as used
herein is an “is a” (“containing) relation. For example,
“Physics:Science' is an arc that means “physics is a science'
(“science contains physics”). As described in more detail
below, additional relations may also be employed. Such as by
homonym and synonym arcs. Other directed relations
between arcs that convey meaning may also be employed, and
the techniques described herein adapted as applicable. For
example, case variants and tokenization can be handled
through the use of flags.
0306 The respective content of concept data sources
1810-1814 may change at various times, and arc generators
1816 are configured to obtain and process fresh versions of
data from their corresponding concept data sources as appli
cable so that files 1818 reflect the most currently known
concepts and relations from those sources. For example,
Wikipedia (1810) changes frequently, while the content of the
pharmaceutical taxonomy 1814 may change very infre
quently. As such, in various embodiments, arc generators
1816 periodically process their respective sources according
to a schedule appropriate to the source (e.g., with the Wiki
pedia arc generator running weekly, and the pharmaceutical
arc generator running monthly). Editorial list 1820 is a manu
ally maintained list of arcs and relations used, for example, to
designate a fixed set of top level concepts (also referred to
herein as “verticals) and to ensure that those top level con
cepts are not moved underneath one another or omitted.
0307 Aggregator 1822 aggregates the Source-specific arc
files 1818 extracted by their respective arc generators 1816
and the editorial list of arcs 1820 and creates as output arc list
1824 and vertex list 1826. As described in more detail below,
arc list 1824 is a list of edges and properties that will be used
to construct a concept hierarchy 1828. Each time aggregator
1822 runs, the newly constructed arc list 1824 replaces any
previously constructed arc list. Vertex list 1826 is a persistent
list of globally unique concepts that monotonically
increases—maintaining a set of stable concept identifiers
over the iterations of aggregator 1822's processing, and
growing only when a concept not previously seen is encoun
tered by aggregator 1822, which is then appended to the list.
0308 As described in more detail below, hierarchy builder
1830 constructs hierarchy 1828 using arc list 1824 and addi
tional information such as a list of subtree preferences 1832
and information obtained from index 1806. The subtree pref
erences list 1832 includes rules to be considered by hierarchy
builder 1830 when evaluating arc list 1824. In various
embodiments, hierarchy 1828 is stored as a list of pairs of
concepts, a weight, and optionally other arc attributes such as
homonym and synonym indicators. The weight is a rank
indicating whether the arc is the primary arc between a con
cept and a parent (“1”) or whether the arc is an additional arc
(e.g., “2 or “3) that was inserted into the hierarchy after the
primary arc was selected.
(0309. In some embodiments, hierarchy builder 1830 con
structs hierarchy 1828 by building a directed graph based on
the information it receives, and then extracting a directed
minimum spanning tree (“DMST) from that graph (in which

US 2014/0059185 A1

every concept (also referred to herein as a “node') present in
the tree except the root has exactly one parent, and no cycles
or orphans are present). A variety of techniques for finding a
minimum spanning tree have been developed. One example is
the Chu/Liu-Edmonds algorithm.
0310. Hierarchy builder 1830 optionally employs a DAG
builder 1834, which inserts additional nodes into the DMST
to form a directed acyclic graph (“DAG”) of concepts. An
optional interface allows an administrator to view why nodes
are placed in the hierarchy where they are and to audit the
effects of making changes to the rules used in constructing the
hierarchy. For example, if certain nodes are not consistently
being placed under appropriate parents, an administrator can
make additions to the subtree preferences list 1832 or add
entries to editorial arc list 1820 as applicable. For example, an
administrator may use the interface to specify that when Bhas
C as a parent and A has a choice of parent B or C. A should
select B as its parent so that a deeper hierarchy is created. This
property of A, B, and C is sometimes referred to as transitive
reduction.
0311 FIG. 19A is a portion of an arc list according to one
embodiment. In the example shown—a portion of aggregated
arc list 1824 lines 1902 and 1904 were provided by the
Wikipedia arc list 1818, lines 1906-1910 were provided by
the automobile directory arc list 1818, and line 1912 was
provided by editorial arc list 1820. As described in more
detail below, one task performed by hierarchy builder 1830 is
a determination of a “best parent for a concept from among
its candidate parents. In the example shown, "Car Manufac
turers’ has two candidate parents. The first is “Transporta
tion” as suggested by Wikipedia (1902) and the second is
“Kosmix Autos' as suggested by the editorial arc list (1912).
0312. One factor that can be considered in the determina
tion of which candidate parent is the best, is what score is
assigned (e.g., by an administrator) to each of the candidate
parents’ concept Source (referred to herein as an "arc rank
score). Typically, the arcs provided by specialized concept
sources (such as the automobile directory) are preferred over
more general concept Sources (such as Wikipedia). In the
example shown in FIG. 19A, a lower arc rank score indicates
a better (preferred) source. In some embodiments, arc rank
generators 1816 are configured with what arc rank score
should be assigned their respective arcs, and those scores are
included in the source specific arc rank files 1818. In other
embodiments, aggregator 1822 is configured by an adminis
trator with a list of sources and their respective scores.
0313 Wikipedia as a source has a score of 20, as indicated
in region 1914. The automobile directory is considered a
“better source of information than Wikipedia for its special
ized information on automobiles, and therefore, each of the
arcs that are contributed to arc list 1824 by its arc list 1818
receive a score of 10, as indicated in region 1916. The edito
rial arc list is intended to override entries in arc list 1824
provided by source specific arc lists 1818 and has an even
better (lower preference order) score as indicated in region
1918. As described in more detail below, a graph constructed
from the data shown in FIG. 19A would include a leaf'Honda
Civic RX' which is a “Honda Civic’ which is made by
“Honda” which is a "Car Manufacturer(s)' which is con
tained by “Kosmix Autos.”
0314 FIG. 19B is a portion of a vertex list according to one
embodiment. The vertex list 1826 represents a list of all
known concepts and is used by crawler 1804 to perform
document frequency counts as described in more detail

Feb. 27, 2014

below. In the example shown, the vertex list is maintained in
the form of human readable concept (column 1) and unique
identifier (column 2). For example, “Kosmix Root, which
serves as the root of the DMST produced by hierarchy builder
1830 has a unique ID of "000000, while the concept “rabbit”
has a unique ID of “103817.”
0315 FIG. 19C is a portion of an arc list according to one
embodiment. Some word n-grams, such as "jaguar, have
ambiguous meanings absent additional context. For example,
jaguar could refer to the automobile, the mammal, an oper

ating system, etc. Wikipedia attempts to mitigate Such ambi
guity by presenting a "disambiguation page' in Scenarios
Such as where a user types in the ambiguous term into a search
box. A related problem is that of synonyms. For example,
“puma,” “mountain lion.” “panther,” and “cougar are all
terms used to refer to the animal Felidae Puma P. concolor.
Wikipedia attempts to mitigate the proliferation of entries by
designating one of the terms as a “main entry, and redirect
ing to the main entry any attempts to access information by
using the synonymous term. For example, "J K Rowling (a
pen name) is the main entry for the author whose legal name
is “Joanne Murray.” If a user of Wikipedia attempts to access
an article on “Joanne Murray, they are redirected to the entry
titled “J K Rowling.” The homonym and synonym annota
tions are made available in hierarchy 1828 and can be used by
a lighting system as described in more detail below.
0316. In the example shown in FIG. 19C a portion of
aggregated arc list 1824–each of the lines was provided by
the Wikipedia arc list 1818. The Wikipedia arc generator 1816
is configured to recognize disambiguation pages when pars
ing the Wikipedia source XML file and record as arcs the
ambiguous term and each of the disambiguated options in the
arc list 1818 as a pair, along with a “horn' (for homonym)
flag. Each disambiguated word is given a separate entry in the
vertex file, such as the “Jaguar animal' line shown in FIG.
19B. The Wikipedia arc generator 1816 is also configured to
recognize redirection pages when parsing the Wikipedia
SourceXML file and records as arcs each of the synonyms and
the main entry ("cougar) in the arc list 1818 as a pair, along
with a “syn' (for synonym) flag. In some embodiments, dif
ferent weights are given to homonyms and/or synonyms over
normal arcs instead of or in addition to the use of flags.
0317. In some embodiments aggregator 1822 is config
ured to remove homonym arcs in which the ambiguous term
and the disambiguated term do not begin with the same word,
so that the over generation of homonym arcs is reduced. For
example, since “Mac OS Jaguar does not begin with “Jag
uar, it is removed (or omitted, as applicable) from arc list
1824. As another example, Wikipedia offers “FionaApple' as
a disambiguation of Apple.” Such an arc would likewise be
deleted or omitted from arc list 1824.

0318 FIG. 19D is a portion of a subtree preferences list
according to one embodiment. In the example shown, the first
column is the name of a concept, the second column is a score,
and the third column is a depth. When hierarchy builder 1830
determines a best parent for a concept from among its candi
date parents, one factor that can be considered is whether
there is relevant information in the subtree preferences list. A
subtree preferences list can be used to reduce the likelihood
that a bad parent (e.g., that does not maintain the “is a/con
taining relationship) will be selected overa better parent (e.g.,
that does preserve the relation). For example, many famous
people will have as a candidate parent the concept "living
people.” There are over 300,000 such entries in Wikipedia.

US 2014/0059185 A1

Entry 1982 in the subtree preferences list states that any arc in
which a concept has as a candidate parent “living people' is to
be disfavored. Concepts such as “living people' and “things
in 1900 exist in Wikipedia but their inclusion in hierarchy
1828 is generally disfavored. While Stephen Hawking and
Sting are both “living people' and contained by that Wikipe
dia category, a more meaningful hierarchy can be constructed
if their respective parents are “Scientists’ and “Musicians.”
Virtually all people present in the living people category of
Wikipedia have something to recommend about themselves
beyond the fact that they are alive. Such arcs are disfavored
rather than discarded in some embodiments to avoid creating
orphan nodes.
0319. In contrast, entry 1980 states that any chain of arcs
(with up to 3 levels distance) that includes a parent of “coun
tries by continent' is to be preferred. In some embodiments,
entries in the subtree preferences list are applicable at all
depths and the depth column is omitted. What entries should
be included in the subtree preferences list (and what scores/
depths should be assigned) is generally Subjective, and can be
refined over time, Such as by evaluating logs. The Subtree
preferences provide a mechanism for an administrator to
remove or favor a potentially large number of arcs without
having to manually enter rules for each arc. For example, by
preferring “countries by continent, all countries listed in
Wikipedia will tend to be grouped under countries by conti
nent (possibly at varying depth levels), and an administrator
need not specify a rule for each country.
0320 FIG.20 is a flow chart illustrating an embodiment of
a process for creating a hierarchy of concepts from a corpus of
documents. In some embodiments, the process shown in FIG.
18 is performed by hierarchy builder 1830.
0321. The process begins at 2002 when a graph of arcs of
concepts is received. In some embodiments, the graph
includes the XML representation of Wikipedia. In some
embodiments, the graph comprises an arc list Such as arc list
1824. Other sources of arcs of concepts, at least some of
which can be connected to form a graph (irrespective of
whether that graph contains some orphans orcycles) may also
be used, as applicable. For example, in Some embodiments a
graph or portions thereof is received from a third party at
2002.

0322. At 2004, weights associated with the arcs in the
graph are generated. As described in more detail below, a
variety of techniques can be used, individually and in com
bination, to generate weights at 2004. For example, arc rank
scores, Boolean values, cooccurrence scores, mutual infor
mation, etc., can be used to form a single weight or a vector of
weights at 2004.
0323. At 2006, a directed minimum spanning tree is
extracted from the graph received at 2002. In some embodi
ments, preprocessing is performed. Such as to remove orphan
nodes which cannot be reached from the root, and the directed
minimum spanning tree is extracted from the preprocessed
graph rather than the graph as received at 2002. One way of
constructing a DMST is as follows. For each node in the
graph, a single parent is selected, such as by using the vector
of weights generated at 2004 to evaluate candidate parents.
By biasing the selection of parents toward the best parent
(e.g., the one with the lowest source score), an attempt is
made to preserve the consistency of the “is a/containing
relationship up the DMST, such as that calculus is a form of
mathematics. Next, any cycles in the graph are detected by
hierarchy builder 1830. An example of a cycle is an arc from

20
Feb. 27, 2014

“ships” to “boats” and another from “boats” to “ships' both
being present in the graph. Sometimes cycles are created in
Wikipedia data because two nodes are imputed to have a
hierarchical relationship when they are in fact peers. For
example, a node “Bert” may have as a parent "Ernie' and vice
versa. Hierarchy builder 1830 runs a process to reduce the
number of cycles. The selection of a best parent, the detection
of cycles, and the reduction of cycles continues iteratively
until an acyclic tree is formed. As described in more detail
below, optional post processing can be performed on the
acyclic tree.
0324 FIG. 21 illustrates an example of a vector of weights
according to one embodiment. Suppose that two arcs for the
concept “Ronald Reagan” (2102) are present in arc list 1824.
As mentioned previously, one portion of the process for con
structing a DMST from a graph of directed arcs is to select
one parent from among the candidate parents of a node.
Generally, if only one arc for a concept exists, that arc is used.
If the candidate parent must be selected from multiple candi
dates, in some embodiments, a pairwise lexicographical com
parison is performed between the vectors of weights of those
candidates. In the example shown in FIG. 21, the two candi
date parents of “Ronald Reagan” are “U.S. President' and
Actor” (2104). Indeed, Ronald Reagan was both a U.S.
President and an actor, so the selection of either candidate
would result in the preservation of the “is a meaning between
the node in column 2102 and the node in column 2104.

0325 In various embodiments, some values included in
the vector of weights are read in from files, and others are
provided by additional processes (e.g., plugins) which calcu
late and provide scores. The first portion of the vector of
weights to compare between the two candidates is the “vari
ance' score, indicated in column 2106. The variance score
indicates the number of internal links which point to the
candidate parent. Both candidate parents have a score of
three, meaning that the vectors are tied, so the next portion of
the vector is evaluated.
0326. The next portion of the vector of weights to compare
between the two candidates is the “vertical correction' score,
indicated in column 2108. In some embodiments the con
struction of a DMST is performed twice. The first time it is
run, the vertical correction score is Zero. The second time it is
run, a vertical correction score is determined by a process that
attempts to keep nodes that are peers grouped together under
the same parent. For example, suppose that 95% of house
plants are placed under“botany, but 5% select as best parents
“health' on the first run. The vertical correction process is
configured to detect the discrepancy and will indicate that a
“botany parent should be selected by returning a nonzero
score in column 2108 (such as a Boolean value) during the
second run. In various embodiments, normalization and/or a
threshold is applied so that in cases such as a 60/40 split, the
Vertical correction process does not attempt to group peers
under the same parent. In the example shown, both candidates
have a score of zero. The vectors are tied, so the next portion
of the vector is evaluated.
0327. The next portion of the vector of weights to compare
between the two candidates is the “templates' score, indi
cated in column 2110. The value for the templates score is
provided by a process that evaluates nodes against groups or
lists of concepts and attempts to keep those groups together. If
concepts are present in multiple groups, the process attempts
to keep the most number of groups; or the most important
groups together, etc., as applicable. The lists/groups may be

US 2014/0059185 A1

provided by a third party and/or configured by an administra
tor or otherwise obtained. For example, Wikipedia provides
set information for certain entries which can be scraped by
crawler 1804. Examples of groups include a list of the planets
in the Solar system, a list of human diseases, a list of the seven
dwarves, British Commonwealth countries, etc. In the
example shown, Ronald Reagan appears in a list of United
States presidents. As such, a score of one is present in column
2110 for “U.S. President but not for Actor. Since there is no
longer a tie between the two vectors, “U.S. President would
be selected as the best parent for the concept "Ronald
Reagan.” If both values in column 2110 were equal, however,
the next portion of the vector would be evaluated, and so on,
until the tie was broken. In the example shown, the remaining
columns are as follows. Column 2112 reports whether a pro
cess evaluating the loaded subtree preferences list 1832 has
determined that a positive or negative preference exists for the
arc. If no such preference is found, column 2112 reports a
Zero. If a preference is found, it is indicated in some embodi
ments as a positive or negative value. Column 2114 is the arc
rank score described previously.
0328 Columns 2116, 2118, and 2120 report various sta

tistics about the presence of the concept and its candidate
parent within the documents stored in index 1806.
0329. The “occ’ column (2116) includes a score that rep
resents a frequency count for the concept. A frequency count
indicates the frequency of the occurrence of the concept
within the pages in index 1806. The frequency count is deter
mined in some embodiments by crawler 1804 using vertex list
1826 to scanthrough each of the documents in index 1806 and
increment the “occ' for the concept for each page in the index
that includes at least one occurrence of the concept. The
"pocc’ column similarly represents a frequency count for the
candidate parent.
0330. The “cooc' column includes a score that represents
the cooccurrence of the concept and candidate parent in the
pages in index 1806. Cooccurrence scores are determined in
some embodiments by crawler 1804 evaluating the cooccur
rence of concepts which are connected by an arc (e.g., are
present in arc list 1824). Techniques such as using a running
window of words can also be employed to avoid quadratic
blowup.
0331 FIG.22 is a flow chart illustrating an embodiment of
a process for creating a hierarchy of concepts from a corpus of
documents. In some embodiments, the process shown in FIG.
22 is performed by hierarchy builder 1830.
The process begins at 2202 when vertex list 1826 is loaded,
allowing hierarchy builder 1830 to map concept names (e.g.,
human readable concept names) to concept IDs. At 2204, a
graph is built using arc list 1824 for example by connecting
pairs of concepts together and storing any associated proper
ties. If duplicate arcs are encountered, the properties of the
duplicate arcs are merged. For example, if one line in arc list
1824 reads Physics: Science:20 and another line in arc list
1824 reads Physics:Science: 10, the arcs are “merged with
the best weight being preserved (e.g., Physics:Science: 10). If
one source indicates that an arc is a homonym arc, and another
Source indicates that the arc is a synonym arc, the arcs are
merged and both flags are set for the merged arc. At 2206,
subtree preferences list 1832 is loaded, as are any applicable
case variance or tokenization variance information.

0332. At 2208, a DMST is constructed. First, a best parent
is selected for each node by performing a local decision
comparing vectors of weights. Next, cycles are detected. One

Feb. 27, 2014

way of detecting cycles is to traverse the graph, marking each
node as “seen as it is visited. If a node is reached again during
the traversal, a cycle has been located. For each cycle, an
evaluation is made between the cost of removing an arc and
the cost of adding an incident arc, and selecting the appropri
ate arcs whose addition/removal have the lowest associated
cost. In some embodiments, the comparison is a difference of
vectors, and is computed by replacing the values in the vec
tors with minwise elements. As stated previously, the selec
tion of a single parent, the detection of cycles, and the reduc
tion of cycles continues until each node (except the root) has
exactly one parent. In some embodiments, post processing is
performed, such as vertical correction.
0333. At 2210, the DMST is extended to a DAG using
additional arcs. For example, at 2210, synonym arcs are
inserted into the DMST, as are homonym arcs, so long as
acyclicity is preserved. In some cases, additional concept arcs
are included in the DAG where doing so would not result in
the formation of a cycle. For example, including "Actor” as a
second parent of “Ronald Reagan' will not result in a cycle
and will preserve the “is a relationship up the hierarchy.
However, the insertion of other arcs (not previously shown),
such as between “Ronald Reagan' and “Hollywood Walk of
Frame might be inappropriate, e.g., because the “is a/con
taining relation would be skewed away (e.g., if the parent of
“Hollywood Walk of Frame” is “Landmarks' Ronald
Reagan is not a Landmark). One way of inserting additional
arcs into the DMST is to first globally rank the omitted arcs.
Rules can be used, such as that additional arcs will be inserted
into the DAG, in the globally ranked order, so long as the arc
to be inserted is of a smaller depth than the existing single
parent for the node, or that arcs can be inserted within the
same vertical but only one additional arc may be added into a
different vertical from the existing single parent, or that addi
tional arcs must have a threshold cooccurrence score before
they are placed into the DAG.
0334. In some embodiments at least some orphan nodes
are placed back into the DMST at 2210. One way of placing
orphans is to perform a search using the orphan as an input to
the query categorization techniques described in more detail
below. If the results are sufficiently dense, the orphan can be
placed in the appropriate place in the DAG. Similarly, the
hierarchy of concepts can be expanded by crawling the docu
ments 1808 for word n-grams and also attempting to place
them into the DAG by using the word n-grams as an input to
the query categorization techniques described in more detail
below.
0335 FIG. 23 illustrates an example of a portion of a
concept hierarchy. The example shown is an example of a
portion of a DAG created using the process shown in FIG.22.
At the root of the hierarchy is a root node 2302. Assorted
verticals 2304-2308 have a containing relation to their respec
tive children. For example, Kosmix Autos contains Car
Manufacturers which contains the Jaguar automobile manu
facturer. Homonym arcs 2310 and 2312 exist between the
ambiguous term, Jaguar, to two of the disambiguated mean
ings of the concept. Synonym arcs 2314-2318 exist between
the main instance of the concept "Cougar and assorted Syn
onyms for the concept.
0336 Tagging Documents with Concepts
0337 FIG. 24 illustrates an example of a hierarchy of
information types according to some embodiments. Both the
hierarchy of subject type concepts 1828 constructed by hier
archy builder 1830 (or received, for example from a third

US 2014/0059185 A1

party Such as by using the Open Directory) and a hierarchy of
infotypes, such as is shown in FIG. 24, can be used to tag the
documents stored in index 1806 using a variety of techniques.
0338. One way of tagging a document in index 1806 with
Subject type concepts is as follows. For each concept invertex
list 1826, use the concept as a search query against the docu
ments in index 1806. Evaluate the results using standard text
match and link scoring techniques (e.g., by examining the
number of occurrences of the query on the page, the page title,
the link text, metadata, whether the concept appears in bold,
etc). Such techniques, which measure how well the text of a
query matches a document are collectively referred to herein
as "text match scoring techniques producing "text match
scores, although more than just the text of the document may
be evaluated by Such techniques.
0339 For any particular page, the concept (query) which
results in the highest text match score for the page is that
pages top concept. The concept which results in the second
highest text match score for the page is that page's second
concept, etc. Any given document may include thousands of
concepts from vertex list 1826. Thus, in some embodiments,
a threshold is applied and the document is tagged with its
resulting top n concepts, such as the top 30 concepts.
0340 Websites typically have common elements across
the various pages that are included in that site. For example, a
news website may include a left or right navigational section
that includes the terms, “Health,” “Finance.” “World News.
etc. The site may also include a prominent logo on every page.
In some embodiments such common elements are identified
and ignored or Stripped during indexing so that text match
scores are not skewed by the prolific presence of those com
mon elements. Identifying and ignoring or stripping common
elements allows text match scores and infotype rules to be
applied specifically to the distinct content of each document.
0341 One way of tagging a document in index 1806 with
an infotype is to determine whether any rules associated with
those infotypes is satisfied by the document. For example,
documents hosted by a known image hosting service (e.g.,
stock-photo library), or having an image with a certain mini
mum pixel size may be indicative of an image type document
(e.g., a document having one or more informative images),
and be tagged as having an infotype "images. Conversely,
documents with discouraging ALT text (e.g., “advertise
ment'), a standard advertisement size or location, and generic
filenames Suggestive of being merely decorative or format
ting elements (e.g., 'pixel.gif, “footer.jpg) indicate that
while including an image, the document is unlikely to be of
interest to a user seeking images and are not tagged with the
“images' infotype.
0342 Documents hosted by a known news site (e.g., www.
wsj.com), having a title indicative of a news source (e.g.,
"Breaking News”), or including a copyright notice from a
known news agency/newswire (e.g., “Associated Press') are
tagged as being of infotype news. Documents with a title that
includes words such as “event,” “calendar.” “upcoming, etc.,
are tagged with the “events’ infotype. Documents that
include terms specific to categories of local venues (e.g.,
amusement parks, toy stores, police stations, That restau
rants, dentists) or including links to map services are tagged
with the “local infotype. Documents that include terms (e.g.,
appearing on a wordlist) Such as "add to cart,” “coupon, and
“checkout” are tagged with a 'shopping infotype, etc.
0343 If multiple rules for different infotypes are satisfied
by a document, the document is tagged with multiple info

22
Feb. 27, 2014

types as applicable. For example, a photojournalist’s blog
about current events might be tagged with both the “images'
and the “news’ infotypes.
0344 Although the foregoing embodiments have been
described in some detail for purposes of clarity of understand
ing, the invention is not limited to the details provided. There
are many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.
0345 Processing of Real-Time Data Streams
0346. Many computational methods depend on process
ing large Volumes of real-time data in a distributed manner
using a large number of computers. Recent years have seen an
explosive growth in the volume of real-time data that may be
used by computational methods in many domains. Real-time
data is increasingly being made available and being used by a
large number of people, for example, through popular Social
networking services, such as the TwitterTM and FacebookTM
Social networking websites. The increasing availability, use
and growth of real-time data raise real-time data overload
issues and the need for Sophisticated computational methods
that are able to process and track desired information in the
real-time data in a rapid, distributed and fault-tolerant man

0347 Exemplary embodiments provide devices, systems
and methods for performing large-scale long-running stream
computations on real-time data streams in which input data in
the data streams is selectively read and output data is written
to durable storage. Exemplary embodiments allow computa
tions to be performed on input data streams that are dynamic
and evolving in real-time as the computations are being per
formed. That is, exemplary embodiments are not restricted to
performing computations on static Snapshots of data streams
or static data sets. Nonetheless, one of ordinary skill in the art
will recognize that exemplary embodiments may also be used
to perform stream computations on non real-time data
streams and on computations on non-stream data, e.g., static
data or static Snapshots of data streams.
0348 Exemplary embodiments may allow one or more
applications to perform real-time stream computations using
one or more map operations and/or one or more update opera
tions. A map operation is a stream computation in which
stream events in one or more real-time data streams are pro
cessed in a real-time manner to generate Zero, one or more
new stream events. The map operation may publish the gen
erated stream events to one or more real-time data streams in
a real-time manner. In an exemplary embodiment, a map
operation may publish stream events to a data stream from
which it receives stream events as input. An update operation
is a stream computation in which stream events in one or more
real-time data streams are processed in a real-time manner to
create or update one or more static “slate' data structures for
persistent storage in durable disk storage. In some exemplary
embodiments, an update operation may generate Zero, one or
more new stream events. The update operation may publish
the generated stream events to one or more real-time data
streams in a real-time manner. In an exemplary embodiment,
an update operation may publish stream events to a data
stream from which it accepts stream events as input.
0349 Conventional mechanisms of performing computa
tions on large Volumes of data include search engines that
provide a gateway to the World Wide Web. An exemplary
conventional search mechanism offered is by Google Inc.
which includes hardware components including clusters of
commodity nodes connected through commodity networking

US 2014/0059185 A1

means, and software components including the Google File
System and the MapReduce software framework. The
MapReduce software framework supports distributed com
puting on large data sets on clusters of computers. MapRe
duce employs, inter alia, map operators that partition input
data and distribute them to worker nodes, worker nodes that
processes the data partitions to generate answers, and reduce
operators that collect the answers and combine them to form
the output.
0350 However, conventional mechanisms like MapRe
duce are not suitable for use in processing or performing
computations on data streams because data streams possess
certain fundamentally different properties from the types of
non-stream data sets that may be processed by MapReduce.
MapReduce is only capable of being run on a static Snapshot
of a data set in which the input data set does not and cannot
change between the start of the MapReduce computation and
the end of the computation. For example, in MapReduce, no
reduce operator can be run until all of the map operators have
completed processing data. In contrast, exemplary embodi
ments allow stream computations to be performed on data
streams that are changing and evolving in real-time as the
computations are being performed. That is, exemplary
embodiments are not restricted to performing computations
on static Snapshots of data streams or static data sets.
0351. Every MapReduce computation has a definite
“start point and a definite “finish point, i.e., the computa
tion does not continue forever or for an indeterminate period
of time. In MapReduce, for every key that the reduce opera
tors view, the operators need to view all of the values associ
ated with the key, which is not possible to view in a streaming
model. In contrast, exemplary embodiments allow stream
computations to be performed on data streams that may con
tinue forever or for an indeterminate period of time. Since
exemplary stream computations may proceed for an indeter
minate period of time, a large amount of State may begin to
accumulate in the system. Exemplary embodiments provide
mechanisms for storing state so that the state is efficiently
accessed and updated in Stream computations, e.g., update
operations. In addition, in order to avoid an explosive and
continual growth in the state saved in the system, exemplary
embodiments provide mechanisms to “forget' or delete
desired portions of the state.
0352 Conventional computational mechanisms are not
Susceptible to spikiness in the input data because, since these
mechanisms operate on static Snapshots of the data over time,
spikes in the input data are Smoothed away. As a result,
conventional mechanisms are able to achieve natural load
balancing by partitioning the input data in any suitable man
ner. In contrast, stream computations performed in exemplary
embodiments are susceptible to spikiness in the flow of
stream events in the input data streams. For example, a par
ticular topic or link may suddenly become “hot” or popular in
an input data stream, resulting in a Sudden Surge and a Sub
sequent Sudden Subsidence in the number of stream events in
the input data streams that are related to that topic or link. In
a distributed computing model, spikiness in input data
streams can result in “hot spots” in the data structures and
nodes used to perform computations relating to a popular
topic or link. In order to maintain computational efficiency in
the face of this issue, exemplary embodiments are able to
react in a fast and efficient manner to Surges in input data
streams, and to balance computational loads relating to the

Feb. 27, 2014

“hot spots” so that that the data structures and nodes are still
able to operate efficiently and generate output in short
response times.
0353. In conventional computational mechanisms like
MapReduce, it is possible to re-start a computation in case of
a software error or hardware failure. However, it may not be
possible to re-start stream computations performed on real
time data streams as the data streams may continue to flow at
their own rate oblivious to computational or processing
issues. Exemplary embodiments allow computational pro
cesses to recover from software errors and hardware failures
in a fast and efficient manner to avoid lagging behind input
data streams.
0354 Conventional mechanisms like the MapReduce
Software framework typically read and produce large files
that are stored in disk storage that may be represented as a
distributed storage layer, like the Google File System and the
HadoopTM Distributed File System (HDFS). In contrast, there
is a reduced need for a large disk storage or a large distributed
storage layer in exemplary embodiments. Exemplary stream
computations may be less disk-heavy and more memory
heavy than conventional mechanisms like the MapReduce
Software framework. This is because exemplary data stream
computations may read a stream as it flows by, maintain in
disk storage data structures pertaining to the stream, and
maintain in memory one or more active or recently accessed
data structures to facilitate fast and efficient access of the
in-memory data structures.

I. DEFINITIONS OF CERTAIN RELEVANT
TERMS

0355 Certain terms are defined below to facilitate under
standing of exemplary embodiments.
0356. As used herein, the terms “data stream.” “event
stream” and “stream” refer to a sequence of one or more units
of data that are published or transmitted in a real-time manner.
0357. As used herein, the terms “stream event and
“event refer to a unit of data published or transmitted in a
data stream in a real-time manner. A stream event may have
any suitable data structure or format. In an exemplary format,
a stream event may include a collection of one or more
attribute-value pairs.
0358. As used herein, the term “slate” refers to a static data
structure that may be used to record data about a set of one or
more related stream events. A slate may have any Suitable data
structure or format. In an exemplary format, a slate may
include a collection of one or more attribute-value pairs. A
slate may be stored corresponding to its unique slatekey
attribute value and corresponding to an update operation that
updates the slate.
0359. As used herein, the terms “operator' and “opera
tion” refer to a set of one or more computations performed at
least partially on one or more stream events in a data stream.
0360. As used herein, the terms “map operation.” “map
operator” and “mapper refer to a stream operation per
formed in exemplary embodiments in which stream events in
one or more real-time data streams are processed in a real
time manner to generate Zero, one or more new stream events.
The generated stream events may be published to one or more
real-time data streams. In an exemplary embodiment, a map
operation may publish stream events to a data stream from
which it accepts stream events as input.
0361. As used herein, the terms “update operation.”
“update operator' and “updater refer to a stream operation

US 2014/0059185 A1

performed in exemplary embodiments in which stream events
in one or more real-time data streams are processed in a
real-time manner to create or update one or more persistent
static “slate' data structures that are stored in a persistent
manner in a durable disk storage. In some exemplary embodi
ments, an update operation may generate Zero, one or more
new stream events. The generated Stream events may be pub
lished to one or more real-time data streams. In an exemplary
embodiment, an update operation may publish stream events
to a data stream from which it accepts stream events as input.
0362. As used herein, the term “stream computation'
refers to a computation performed in real-time on an input
that is received from a real-time data stream. That is, the input
received by the stream computation may be dynamic and may
change over time even as the stream computation is being
performed. A stream computation may generate an output
that takes the form of a stream event that is published to a
real-time data stream, or a data structure that is updated in
real-time based on the computation. A stream computation
may be performed by one or more map operations and one or
more update operations. Exemplary stream computations
may include, but are not limited to, determining one or more
“hot” or popular topics on TwitterTM, determining the time of
the last post published by a TwitterTM user, performing K-rank
computations to determine a users influence on other users,
performing analytics on data published on a website, deter
mining a user's current interests based on their postings on
Social networking websites, grouping web page view events
into “visits and generating aggregate statistics over “visits
(such as, a rate at which the web page view is terminated, the
number of page views per “visit”), determining different sets
of links on a web page to identify a set that maximizes the
click-through rate (CTR), and the like.
0363 As used herein, the term “distributed refers to a
system or framework in which a data computation layer and/
or a data storage layer may be implemented so that different
portions of the data computation or different portions of a data
storage are distributed over a plurality of computing devices,
e.g., commodity nodes, worker nodes, etc. The computing
devices may be geographically proximal to or remote from
one another.
0364. As used herein, the term “computer-readable
medium” refers to a non-transitory storage hardware, non
transitory storage device or non-transitory computer system
memory that may be accessed by a computational system or
a module of a computational system to encode thereon com
puter-executable instructions or software programs. The
“computer-readable medium' may be accessed by a compu
tational system or a module of a computational system to
retrieve and/or execute the computer-executable instructions
or Software programs encoded on the medium. The non
transitory computer-readable media may include, but are not
limited to, one or more types of hardware memory, non
transitory tangible media (for example, one or more magnetic
storage disks, one or more optical disks, one or more USB
flash drives), computer system memory or random access
memory (such as, DRAM, SRAM, EDO RAM, etc.) and the
like.

0365 Exemplary embodiments are described below with
reference to the drawings. One of ordinary skill in the art will
recognize that exemplary embodiments are not limited to the
illustrative embodiments, and that components of exemplary
systems, devices and methods are not limited to the illustra
tive embodiments described below.

24
Feb. 27, 2014

II. EXEMPLARY DATA TYPES

0366 Exemplary embodiments provide one or more data
types suitable for real-time data stream processing including,
but not limited to, data streams, stream events and slates.
0367 A stream event is a unit of data in a real-time data
stream. An exemplary event may be implemented in any
Suitable data structure or format. An exemplary event data
structure may include one or more attributes and correspond
ing attribute values. In exemplary embodiments, the
attributes may be atomic and the attributes values may be
atomic or collection types, e.g., sets, lists, etc.
0368. In an object-oriented implementation, an “Event'
class or object may be defined to represent stream events.
Exemplary embodiments may provide functionality to create
one or more new stream event objects, and to access infor
mation contained in the one or more event objects, for
example, using get methods in an object-oriented implemen
tation. In an exemplary embodiment, events may be immu
table, i.e., may not be altered once created. In this embodi
ment, if it is necessary to add or alteran attribute of an event,
exemplary embodiments may create a new event copied from
the existing event, add or alter the attribute, and publish the
new event to an appropriate data stream. In another exemplary
embodiment, events may be mutable, i.e., may be altered. In
this embodiment, exemplary embodiments may provide
functionality to alter one or more attributes of an event, for
example, using set methods in an object-oriented implemen
tation.
0369 FIG. 25 is a block diagram representing an exem
plary generic stream event 2500. In exemplary embodiments,
an event 2500 may include a streamid attribute 2502 having a
value that denotes a stream to which the event belongs. In
exemplary embodiments, an event 2500 may include an
eventkey attribute 2504 having an atomic value that desig
nates a desired characteristic of the event that may be com
mon to two or more events. The eventkey attribute 2504 may
be used to group related events, and there is no requirement
that the value of the attribute be unique across events. In one
example in which “tweet' events in a TwitterTM stream are
grouped by the user, an eventkey attribute value for a “tweet”
may be the user ID of the user who generated the “tweet. In
another example in which events in a stream are grouped by
category, an eventkey attribute value for an event may be one
or more categories of the event, e.g., news, music, and the
like.
0370. In exemplary embodiments, a stream event 2500
may include a timestamp attribute 2506 having a value indi
cating the time at which the event was generated. In an exem
plary embodiment, the time recorded in the timestamp
attribute value may be a global time that is applicable uni
formly across all real-time data streams of interest, e.g., Twit
terTM and FacebookTM data streams. That is, the global times
tamp attribute value may be generated by the system, and not
by each data stream individually. In an exemplary embodi
ment, each data stream may also add a local time relative to
the stream to the timestamp attribute value. The timestamp
attribute values may monotonically increase in some exem
plary embodiments.
0371 Exemplary events may include one or more addi
tional attribute-value pairs 2508 based on the type of the data
streams or the type of the events. For example, “tweet' events
may include TwitterTM-specific attributes and corresponding
values, e.g., a text attribute that has as its value the entire text
of a particular “tweet.”

US 2014/0059185 A1

0372 FIG. 26 is a block diagram representing an exem
plary “tweet' event 2600 received in a Twitter data stream.
The “tweet” event 2600 may include a streamid attribute 2602
whose value denotes that the event belongs to a TwitterTM
stream titled “twitter stream3.” The “tweet” event 2600 may
include an eventkey attribute 2604 whose value denotes that
the username of the user generating the event is “paul.” The
“tweet' event 2600 may include a timestamp attribute 2606
whose value denotes the global and/or local time “14:04 at
which the event was generated. The “tweet event 2600 may
also include a text attribute 2608 whose value includes the
entire text of the “tweet,” e.g., “LOL!”
0373) A set of one or more stream events may be modeled
and implemented as a data stream having a streamid attribute
with the same value as that of the streamid attributes of its
constituent events. That is, a data stream includes one or more
stream events having the same streamid attribute value indi
cating that the events belong to the same data stream. In an
object-oriented implementation, a “Stream” class or object
may be defined to represent data streams. An input data
stream may be generated by and received from an external
application, e.g., TwitterTM. FacebookTM, etc. An intermedi
ate data stream may be generated by and received from a map
operation and/or update operation provided in accordance
with exemplary embodiments. In an exemplary embodiment,
all of the data streams (input and intermediate data streams)
may be provided in a collective manner in a stream bus that
may be accessed by any operation or computation provided in
accordance with exemplary embodiments.
0374 Exemplary data streams may include, but are not
limited to, streams of text files, html files, profiles, updates
and posts from Social networking websites (e.g., the Twit
terTM, FacebookTM, MySpaceTM social networking websites),
video and photo publishing websites (e.g., the FlickrTM.You
tubeTM content publishing websites), blog publishing web
sites (e.g., the BloggerTM publishing website), transactional
data streams (e.g., purchase data, inventory data), updates or
feeds from any suitable dynamic data repository, logs, maps,
RSS feeds, combinations of any of the above, and the like. An
exemplary data stream may include more than one type of
stream events, for example, both text publications, photos and
videos.
0375 FIG. 27 is a block diagram representing an exem
plary generic real-time data stream 2700 including a plurality
of the generic events 2702, 2704 and 2706 illustrated in FIG.
25. All of the events in the data stream 2700 may have the
same streamid attribute value, e.g., “1234.
0376 FIG. 28 is a block diagram representing an exem
plary real-time TwitterTM stream 2800 including a plurality of
“tweet' events generated in real-time. All of the “tweet”
events in the stream 2800 may have the same streamid
attribute value, e.g., “twitter stream3. The stream 2800 may
include “tweet' events 2802 and 2804 generated by a user
named “paul and a “tweet' event 2806 generated by a user
named "jack.” The “tweet” events 2802, 2804 and 2806 may
include timestamps 14:04, 14:05 and 14:07, respectively, and
“tweet” text "LOL,”“ttyl tweeps!...” and “In NYC tomorrow.”
respectively.
0377. A slate is a static data structure that may be used by
update operations to record data about a set of one or more
related Stream events. A slate may be implemented in any
Suitable data structure or format. In an exemplary embodi
ment, a slate data structure may include a collection of one or
more attribute-value pairs. A plurality of stream events may

Feb. 27, 2014

be related based on one or more suitable characteristics. For
example, a slate may be defined for “tweet events that all
mention a particular webpage link or that are all related to a
particular news story or topic. A slate may be stored corre
sponding to its unique slatekey attribute value and corre
sponding to an update operation that updates the slate.
0378. In an object-oriented implementation, a “Slate'
class or object may be defined to represent slates. Exemplary
embodiments may provide functionality to create one or more
new slate objects, and to access information contained in one
or more slate objects, for example, using get methods in an
object-oriented implementation. In an exemplary embodi
ment, slates may be mutable, i.e., may be altered. In this
embodiment, exemplary embodiments may provide func
tionality to alter one or more attributes of a slate, for example,
using set methods in an object-oriented implementation.
0379 FIG. 29 is a block diagram representing an exem
plary generic slate 2900. A slate 2900 may include a unique
slatekey attribute 2902 having a value that is a primary key for
the slate. That is, exemplary embodiments may ensure that
there is exactly one slate with a particular slatekey attribute
value. Exemplary embodiments persist Slates in disk storage
and make it efficient to access a specific slate by a combina
tion of its slatekey attribute value and an updater operation
that updates the slate. In an exemplary embodiment, one or
more active slates may be stored in memory (e.g., in cache) in
addition to being Stored in a durable disk storage, while less
active slates may only be stored in a durable disk storage. This
allows fast and efficient look-up of the active slates stored in
memory. Exemplary slates may include one or more addi
tional attribute-value pairs 2904 necessary for an application
that uses the slates.
0380. In an exemplary embodiment, slates may be
accessed by one or more applications that implement one or
more stream computations. In one example, a K-rank com
putation application may use slates in a disk storage to store
influence ranks of each user publishing stream events. In
another example, a clustering application may use slates in a
disk storage to store the actual text contained in stream events
and metadata about individual clusters of text.
0381. In an exemplary embodiment, a special type of slate
named 'application slate may be implemented to store data
accessible by applications, while the general data type named
“slate may only be accessible at the system-level. Isolation
between the system slates and application slates may be
maintained by using separate keyspaces. A keyspace may be
specified by a prefix placed in front of a key with a colon
separating the keySpace name and the key. For example, “foo:
bar denotes the key “bar in keyspace “foo. Only the system
may create slates in the “system: namespace, while applica
tions may create slates in any other namespace.
0382. Update operations may create, access and modify
application slates by the key. In an exemplary application of
slates and keyspaces, a K-rank computation may store an
individual user's k-scores separately in the disk storage
indexed by a key which is the user ID. In an exemplary
embodiment, the system may use keyspaces to provide infor
mation on improving execution, for example, designating the
same worker node as the primary worker node for all the keys
in an application keyspace.

III. EXEMPLARY MAP OPERATIONS

0383 Map operations are stream computations performed
on one or more stream events in one or more real-time data

US 2014/0059185 A1

streams to generate Zero, one or more new stream events for
publishing to Zero, one or more data streams. Exemplary map
operations may be implemented in any Suitable programming
language, for example, a scripting programming language, an
object-oriented programming language (e.g., Java), and the
like. Map operations may be started, paused and stopped at
any Suitable time.
0384. A map operation may subscribe to receive as input
stream events from one or more real-time data streams (input
data streams and/or intermediate data streams), and may be
invoked for every stream event in the subscribed data streams.
In exemplary embodiments, the streamid attribute value of a
data stream to which a map operation is subscribed or to
which a map operation publishes may be defined in a static
manner, e.g., in a configuration file including any Suitable
parameters that may be necessary for an application. The
configuration file may include tunables that provide instruc
tions or guidance to the system on how to allocate resources
among the various map and update operations.
0385. A map operation may perform one or more real-time
computations on a received stream event, and may publish
Zero or more new stream events to Zero or more intermediate
data streams. In an exemplary embodiment, the intermediate
data streams may be provided in an aggregated real-time data
streambus that provides in a collective manner all of the input
and intermediate data streams, so that any map or update
operation may subscribe to receive stream events from any of
the data streams in the stream bus.

0386. In exemplary embodiments, an "at-least-once
guarantee may be provided to ensure that, regardless of hard
ware failures and software errors, every map operation Sub
scribed to a data stream will receive every event in the stream
and will successfully execute computations for that event, at
least once.
0387. In exemplary embodiments, map operations may be
stateless computation units, i.e., do not store state. A generic
map operation may be denoted as: map(event) (event)*
0388. An exemplary stream event may be defined as:
0396 s-destination stream, k-key, v=value
0389 where the destination streams represents a set of
operators that have subscribed to receive the event, the key k
represents one or more keys or attributes of the events, and the
value V represents one or more values associated with the
keys.
0390 An exemplary map operator F may be defined as a
function on a subset of all possible events E:
0391 F:s.k.v.epsilon...fwdarw.(e.Sub.1, e.Sub.2, e.sub.3,
where e.Sub.i.epsilon.E
0392 FIG. 30 is a block diagram representing an exem
plary generic map operation 3000. The map operation 3000
receives one or more stream events 3004 in one or more
real-time data streams. The data streams may be provided in
a stream bus 3002. The map operation 3000 performs one or
more computations on the stream events, for example, one
stream event at a time, and may generate Zero or more stream
events 3006 for publishing to zero or more real-time interme
diate data streams. The intermediate data streams may be
provided in the same stream bus 3002 as the input data
StreamS.

0393 FIG. 31 is a flow chart of an exemplary method
performed by a generic map operation. In step 3102, the map
operation may subscribe to one or more real-time data
streams, e.g., a TwitterTM data stream. The data streams may

s

26
Feb. 27, 2014

be generated by an external application or may be intermedi
ate data streams generated by one or more map or update
operations.
0394. In step 3104, the map operation may receive a
stream event contained in the Subscribed data stream, e.g., a
“tweet contained in a TwitterTM data stream. Since map
operations are stateless operations, i.e., do not store state, a
plurality of map operations may be allowed to concurrently
receive and process events in the same stream.
0395. In step 3106, the map operation may perform one or
more computations on the received stream event, e.g., deter
mine the topic discussed in the received “tweet.” In step 3112,
the map operation may continue to receive each additional
stream event in the subscribed data stream.
0396. In step 3.108, the map operation may generate a new
stream event based on the computation, e.g., a stream event
that indicates the topic of the “tweet.” In step 3110, the map
operation may, in some embodiments, publish the new stream
event to one or more intermediate data streams. The interme
diate data stream may be provided in conjunction with all
other data streams in the system in a stream bus so that the
stream events in the intermediate data stream may be received
by other map and update operations. In step 3112, the map
operation may continue to receive each additional stream
event in the subscribed data stream.
0397 Exemplary map operations may be implemented in
any suitable programming language, for example, a scripting
programming language, an object-oriented programming
language (e.g., Java), and the like. In an exemplary object
oriented implementation, a general Mapper class or interface
may be defined by the system to generally specify attributes
and functionality of ageneric map operation. For each desired
map operation, a Sub-class may be created based on the Map
per class. For example, a TopicTagger class may be Sub
classed from the Mapper class to define a specific map opera
tion that processes a TwitterTM data stream and extracts topics
associated with the “tweets in the TwitterTM data stream. The
TopicTagger operation may subscribe to the TwitterTM data
stream and may publish events to a separate data stream, each
published event including the topic extracted from a “tweet”
and the hour of the day during which the topic was extracted.
One or more object instances may be created from each
Sub-class at a worker node, for example, a TopicTagger object
may be instantiated from the TopicTagger class.
0398 FIG. 32 is a block diagram representing an exem
plary Mapper class 3200 for implementing a general map
operation. The Mapper class 3200 may include Zero, one or
more attributes and Zero, one or more methods. One of ordi
nary skill in the art will recognize that FIG. 32 represents
exemplary attributes and methods of the class in pseudo-code
form, and does not represent specific computer-implemented
code that may be used to implement the class.
0399. The Mapper class 3200 may include zero, one or
more attributes associated with properties or characteristics
of sub-classes. Each Sub-class based on the Mapper class may
include the Zero, one or more attributes associated with prop
erties or characteristics of the class objects. The attribute
values may be specified for a particular object instantiation of
the class. In an exemplary embodiment, in the Mapper class
3200, a “subscription' attribute may be provided to indicate
one or more data streams to which an object instantiation is
subscribed, e.g., a TwitterTM data stream S0. Similarly, in an
exemplary embodiment, in the Mapper class 3200, a “publi
cation' attribute may be provided to indicate one or more data

US 2014/0059185 A1

streams to which an object instantiation may publish stream
events, e.g., an intermediate data stream 51. In other exem
plary embodiments, the Mapper class 3200 may not include
the “subscription and/or “publication' attributes.
0400. The Mapper class 3200 may include Zero, one or
more methods associated with the behavior of an object
instantiation at run-time. Each Sub-class may include the
Zero, one or more specific methods associated with the behav
ior of the object instantiations of the Sub-class at run-time.
0401 Since exemplary embodiments operate in a stream
ing model, new stream events may trigger the performance of
one or more operations, e.g., a map operation. In order to
implement the streaming model, a map operation may Sub
scribe to receive events from one or more real-time data
streams and may publish events to one or more real-time data
streams. In the Mapper class 3200, a subscribe method may
be provided to allow an object instantiation to subscribe to
one or more data streams in order to receive stream events
from the data streams. The Subscribe method may accept as
input a value of the attribute streamid which identifies a data
stream to which an object instantiation subscribes. The sub
scribe method may be a system-defined and system-provided
method. When an object instantiation of a Mapper sub-class
Subscribes to one or more data streams, information on the
Subscriptions may be stored in the system and consulted by a
conductor to transmits stream events in the data streams to
those objects that are subscribed to those data streams. In an
exemplary static event-flow configuration, applications may
not need to call the subscribe method and this method may not
be necessary.
0402. In the Mapper class 3200, a publish method may be
provided to publish one or more stream events generated by
an object instantiation to one or more intermediate data
streams. The publish method may accept as input a value of
the attribute streamid which identifies a data stream to which
an object instantiation publishes stream events.
0403. The Mapper class 3200 may include a map method
that encapsulates the functionality of a generic map opera
tion. In an exemplary embodiment, in the Mapper class 3200,
the map method may generally indicate a stream event and a
stream event as input parameters of the method, and may not
specify the functionality of a specific Map operation. One or
more sub-classes of the Mapper class 3200 may further define
the map method specific to the Sub-classes. For example, a
TopicTagger Sub-class (that determines the topic of an incom
ing stream event) may include a map method that accepts a
stream event from a subscribed real-time data stream as input
and that invokes doctagger which is capable of extracting one
or more topics from textual data in the stream event.
04.04 Exemplary embodiments may provide a code gen
eration module for generating code associated with the meth
ods of any of the classes provided in exemplary embodiments.
The code may be executed at run time to perform the func
tionality encapsulated in the methods of the classes.

IV. EXEMPLARY UPDATE OPERATIONS

04.05 Update operations are stream computational units or
methods performed on one or more stream events from one or
more real-time data streams to create and/or update one or
more slate data structures for persistent storage. Update
operations may be implemented in a thread-safe manner in
any Suitable computer programming language, for example, a
Scripting programming language, an object-oriented pro

27
Feb. 27, 2014

gramming language (e.g., Java), and the like. Update opera
tions may be started, paused and stopped at any Suitable time.
0406 An update operation may subscribe to receive as
input stream events from one or more real-time data streams
(input data streams and/or intermediate data streams), and
may be invoked for every stream event in the subscribed data
streams. In exemplary embodiments, an "at-least-once guar
antee may be provided to ensure that, regardless of hardware
failures and Software errors, every update operation Sub
scribed to a data stream will receive every event in the stream
and will successfully execute computations for that event, at
least once. An update operation may also receive one or more
slates corresponding to one or more stream events, in particu
lar, slates whose slatekey attribute values matches the event
key attribute values of the corresponding events.
0407. Since exemplary embodiments operate in a stream
ing model, new stream events may trigger the performance of
one or more operations, e.g., an update operation. In order to
implement the streaming model, an update operation may
subscribe to receive events from one or more real-time data
streams and may publish events to one or more real-time data
streams. An update operation may perform one or more real
time computations on a received stream event and/or slate,
and may publish Zero or more new stream events to Zero or
more intermediate data streams. In an exemplary embodi
ment, the intermediate data streams may be provided in an
aggregated real-time data stream bus that includes all of the
input and intermediate data streams, so that any map or
update operation may subscribe to receive stream events from
any of the data streams in the stream bus.
0408. The update operation may also create and/or update
one or more slates associated with the stream events pro
cessed by the update operation. The slates may be stored in a
persistent manner on a disk storage. In exemplary embodi
ments, a “persistent update' guarantee may be provided to
ensure that, after Successful completion of an update opera
tion, any changes made by the operation to one or more slates
are stored in a persistent manner. In an exemplary embodi
ment, one or more slates may be scheduled to expire from the
disk storage after a pre-defined period of time, e.g., one hour.
In some exemplary embodiments, the update operation may
store one or more slates (e.g., last accessed slates, most active
slates, etc.) in memory for easy access.
04.09. In exemplary embodiments, a “per-slate in-order
guarantee may be provided to ensure that, when an update
operation receives an event, one or more slates corresponding
to the update operation will reflect all and only those updates
that are due to all events with the same eventkey attribute
value and earlier timestamp attribute values. This ensures that
events are operated on in the order of their timestamps. In
Some exemplary embodiments, the “per-slate in-order guar
antee may be relaxed to provide for a more distributed update
computation. The update operation may, for example, com
bine slates that represent the processing of different subsets of
input events. The update operation may then process separate
Subsets of input events separately and may Subsequently
merge them. Such exemplary update operations may be
expressed as:

update (Slate*)->Event
update (Slate, Slate)->Event

US 2014/0059185 A1

0410. In some exemplary embodiments, slate processing
by the update method may be amortized over a plurality of
stream events. As such, the update method may be repre
sented as update (Event event, Slate slate). Other update
methods may operate on multiple events and/or multiple
slates to generate a plurality of events, and may be repre
sented as:

update (Event, Event, Slate)->Event
update (Event, Slate, Slate)->Event

0411. In exemplary embodiments, update operations may
be stateful computation units, i.e., may store state. A generic
update operation may be denoted as: update(event, slate) 4
(event)*
0412. An exemplary stream event may be defined as:
0413 s-destination stream, k-key, v=value
0414 where the destination streams represents a set of
operators that have subscribed to receive the event, the key k
represents one or more keys or attributes of the events, and the
value V represents one or more values associated with the
keys.
0415. An exemplary update operator F may be defined as
a function on a subset of all possible events E:
0416 F:s, k.V.epsilon.E.fwdarw.e. sub.1, e.Sub.2, e.Sub.3..

... where e.Sub.i.epsilon.E
0417. In an exemplary embodiment, if the operator F is an
updater U, the operator may receive an intermediate event
from an output data stream, and perform one or more opera
tions on data contained in the intermediate event to generate
output data. In an exemplary embodiment, the updater Umay
also create or read and modify a slate having key <U, k> as
part of its operation.
0418 FIG. 33 is a block diagram representing an exem
plary generic update operation 3300. The update operation
3300 may receive as input one or more stream events 3304 in
one or more real-time data streams. The real-time data
streams may be provided in a stream bus 3302. In an exem
plary embodiment, the update operation 3300 may receive as
input one or more stored slates 3308 corresponding to the
received stream events. The slates 3308 may be received from
a persistent disk storage 3312 or from memory. In another
exemplary embodiment, the update operation 3300 may not
receive slates corresponding to the received stream events and
may create one or more of the slates.
0419. The update operation 3300 performs one or more
computations on the stream events 3304 and/or the slates
3308, for example, one stream event and a corresponding
slate at a time. The update operation 3300 may generate Zero,
one or more stream events 3306 for publishing to zero, one or
more real-time intermediate data streams. The intermediate
data streams may be provided in the same stream bus 3302 as
the input data streams. The Update operation 3300 may also
save one or more new or updated slates 3310 associated with
the stream event processed by the Update operation. The
slates 3310 may be stored in a persistent manner on the disk
storage 3312.
0420. In the exemplary block diagram of FIG. 33, the
eventkey attribute value of the input stream event(s) 3304, the
slatekey attribute value of the stored slate 3308 and the
slatekey attribute value of the new or updated slate 3310 are
the same.

28
Feb. 27, 2014

0421 FIG. 34 is a flow chart of an exemplary method
performed by a generic update operation. In step 3402, the
update operation may subscribe to one or more real-time data
streams, e.g., a TwitterTM data stream. The data streams may
be generated by an external application or may be intermedi
ate data streams generated by one or more map or update
operations.
0422. In step 3404, the update operation may receive a
stream event contained in the Subscribed data stream, e.g., a
“tweet contained in a TwitterTM data stream. Since update
operations are stateful operations, i.e., store state, concur
rency problems may be caused by a plurality of update opera
tions processing events for the same stream. In order to avoid
these concurrency problems, in an exemplary embodiment,
the entire execution of an update operation may be atomic.
The atomic execution of an update operation may be ensured
by preventing two update operations for input events having
the same eventkey attribute value from running concurrently.
In another exemplary embodiment, a lock method may be
defined to lock the state of a slate during critical stages in an
operation. Exemplary embodiments may schedule a plurality
of update operations on the same slate concurrently since the
state of the slate will be locked during critical stages. This
mechanism allows for great concurrently, especially if the
update operations are read-only in most cases. In an exem
plary embodiment, a Reader Sub-class of an Updater class
(corresponding to a specific type of update operation) may be
defined so that multiple Reader operations may be scheduled
concurrently.
0423. In step 3406, the update operation may determine if
the stream event received from the subscribed data stream is
the first event having a particular eventkey attribute value. If
So, in step 3408, the update operation may create one or more
new slates having a slatekey attribute value set equal to the
eventkey attribute value of the first event received.
0424. In step 3410, the update operation may initialize the
slate, for example, by calling an init method. In an exemplary
embodiment, the slate may be initialized to include applica
tion-specific data structures in the slate. In exemplary
embodiments, initialization of the slate may include sched
uling the slate to be in existence for a predefined period of
time (i.e., a time-to-live or TTL), for example, using a set ttl
method. If the slate is not accessed (i.e., read or writtento) for
a period of time that equals or is greater than the predefined
TTL, the system may automatically destroy the slate and
remove it from the disk storage. The TTL may be set in a static
manner, e.g., in a configuration file including any Suitable
parameters that may be necessary for an application. The
configuration file may include tunables that provide instruc
tions or guidance to the system on how to allocate resources
among the various map and update operations. It is advanta
geous to set the predefined TTL and to automatically remove
slates based on the TTL, because this allows the system to
“forget' very old data, e.g., old clusters, and prevents the
stored stream data from growing without limit.
0425. In another exemplary embodiment, a predefined
TTL may not be set or may be set to infinity so that the slate
persists forever. The TTL may subsequently be set to any
suitable number.
0426 In exemplary embodiments, a slate may be sched
uled to expire by setting an explicit expiry time, for example,
using a set expiry method. In an exemplary embodiment, a
finalize method may be called by the set expiry method on a
particular slate to remove the slate from the system.

US 2014/0059185 A1

0427. In step 3412, the update operation may perform one
or more computations on the received stream event, e.g.,
determine the topic discussed in the received “tweet. In step
3414, the update operation may update one or more associ
ated slates based on the computation. In step 3416, the update
operation may store the updated slate in memory on a tem
porary basis and persistently in disk storage.
0428. In step 3422, the update operation may continue to
receive each additional stream event in the subscribed data
Stream.

0429. In an exemplary embodiment, in step 3418 the
update operation may generate a new stream event based on
the computation, e.g., a stream event that indicates the num
ber of occurrences of a topic in a stream of “tweets.” In step
3420, the update operation may publish the new stream event
to one or more intermediate data streams. The intermediate
data stream may be provided in conjunction with all other
data streams in the system in a stream bus so that the stream
events in the intermediate data stream may be received by
other map and update operations. In step 3422, the update
operation may continue to receive each additional stream
event in the subscribed data stream.
0430 Exemplary update operations may be implemented
in any Suitable programming language, for example, a script
ing programming language, an object-oriented programming
language (e.g., Java), and the like. In an exemplary object
oriented implementation, a general Updater class or interface
may be defined by the system to generally specify attributes
and functionality of a generic update operation. For each
desired update operation, a Sub-class may be created based on
the Updater class. For example, a TopicCounter class may be
sub-classed from the Updater class to define an Update opera
tion that processes a TwitterTM data stream and counts the
occurrences of one or more topics associated with the
“tweets” in the TwitterTM data stream. The TopicCounter
operation may subscribe to the TwitterTM data stream and may
publish events to a separate data stream, each published event
including the number of occurrences in the TwitterTM data
stream of a topic corresponding the currently processed
“tweet' and the hour of the day during which the “tweet' was
generated. One or more object instances may be created from
each Sub-class at a worker node, for example, a TopicCounter
object may be instantiated from the TopicCounter class.
0431 FIG. 35 is a block diagram representing an exem
plary object-oriented Updater class 3500 that may be used to
implement a general update operation. The Updater class
3500 may include Zero, one or more attributes and Zero, one
or more methods. One of ordinary skill in the art will recog
nize that FIG.35 represents exemplary attributes and methods
of the class in pseudo-code form, and does not represent
specific computer-implemented code that may be used to
implement the class.
0432. The Updater class 3500 may include Zero, one or
more attributes associated with properties or characteristics
of sub-classes. Each Sub-class based on the Updater class may
include the Zero, one or more attributes associated with prop
erties or characteristics of the class objects. The attribute
values may be specified for a particular object instantiation of
the class. In an exemplary embodiment, in the Updater class
3500, a “subscription' attribute may be provided to indicate
one or more data streams to which an object instantiation is
subscribed, e.g., a TwitterTM data stream S1, an intermediate
data stream S2. Similarly, in an exemplary embodiment, in
the Updater class 3500, a “publication' attribute may be

29
Feb. 27, 2014

provided to indicate one or more data streams to which an
object instantiation may publish stream events, e.g., an inter
mediate data stream S3. In other exemplary embodiments, the
Updater class 3500 may not include the “subscription' and/or
“publication' attributes.
0433. The Updater class 3500 may include Zero, one or
more methods associated with the behavior of a class instan
tiation at run-time. Each Sub-class may include the Zero, one
or more specific methods associated with the run-time behav
ior. In the Updater class 3500, a subscribe method may be
provided to allow an object instantiation to subscribe to one or
more data streams in order to receive stream events from the
data streams. The Subscribe method may accept as input a
value of the attribute streamid which identifies a data stream
to which an object instantiation subscribes. The subscribe
method may be a system-defined and system-provided
method. When an object instantiation of an Updater sub-class
Subscribes to one or more data streams, information on the
Subscriptions may be stored in the system and consulted by a
conductor to transmits stream events in the data streams to
those objects that are subscribed to those data streams. In an
exemplary static event-flow configuration, applications may
not need to call the subscribe method and this method may not
be necessary.
0434 In the Updater class 3500, a publish method may be
provided to publish one or more stream events generated by
an object instantiation to one or more intermediate data
streams. The publish method may accept as input a stream
event and a value of the attribute streamid which identifies a
data stream to which an object instantiation publishes the
event.

0435 The Updater class 3500 may include a createSlate
method that may accept as input a stream event and create one
or more new slates with the slatekey attribute value of the slate
being set equal to the eventkey attribute value of the stream
event. The Updater class 3500 may also include an init
method that may accept a slate as input and initialize the State
of the slate, e.g., by setting a predefine time-to-live or an
expiry time of the slate. When a slate expires, a finalize
method may be called to remove or delete the slate from disk
Storage.
0436 The Updater class 3500 may include an update
method that encapsulates the functionality a generic update
operation. In an exemplary embodiment, the Updater class
3500, the update method may generally indicate a stream
event and a slate as input parameters of the method, and may
not specify the functionality of a specific update operation.
One or more sub-classes of the Updater class 3500 may
further define the update method specific to the sub-classes.
For example, a TopicCounter Sub-class (that counts the num
ber of occurrences of a topic in a data stream) may include an
update method that accepts as input a stream event from a
Subscribed real-time data stream and a slate that corresponds
to an hour of day and a particular topic, e.g., a topic deter
mined by a TopicTagger sub-class or object derived from the
Updater class. The update method may maintain a variable
count in the slate that counts the number of occurrences of the
particular topic in a particular hour of the day. That is, upon
receiving a stream event corresponding to the same hour of
day and the same topic, the update method may increment the
variable count by one in the corresponding slate. In an exem
plary embodiment, the update method may call an additional
method, e.g., a method called updateSlate, to perform its
functionality.

US 2014/0059185 A1

0437 Exemplary embodiments may provide a code gen
eration module for generating code associated with the meth
ods of any of the classes provided in exemplary embodiments.
The code may be executed at run time to perform the func
tionality encapsulated in the methods of the classes.

V. EXEMPLARY STREAMPROCESSING
SYSTEMS AND METHODS

0438 Exemplary stream computation mechanisms may
be implemented in any suitable computing hardware and
software architecture that includes a scalable, fault-tolerant
and durable storage layer that is available at all times for
storing slates used by exemplary map and update operators.
Exemplary embodiments may provide a cluster of one or
more commodity nodes interconnected by communication
means, e.g., Ethernet, in order to process real-time data
streams in a distributed manner. Exemplary stream computa
tional mechanisms may be less disk-heavy and more
memory-heavy than conventional mechanisms like the
MapReduce software framework. This is because exemplary
data stream computations may read a stream as it flows by,
maintain in durable disk storage data structures pertaining to
the stream, and maintain in memory one or more certain data
structures to facilitate fast and efficient access of the data
Structures.

0439 FIG. 36 is a block diagram of an exemplary distrib
uted computational system 3600 provided in accordance with
exemplary embodiments for performing a real-time stream
computation. Exemplary system 3600 may provide a stream
bus 3606 that receives one or more real-time data streams
from one or more external applications 3602 (i.e., input data
streams) and/or from one or more map and update operations
provided in accordance with exemplary embodiments (i.e.,
intermediate data streams). Input real-time data streams may
include, but are not limited to, streams of text files, html files,
profiles, updates and posts from Social networking websites
(e.g., the TwitterTM, FacebookTM, MySpaceTM social net
working websites), video and photo publishing websites
(e.g., the FlickrTM. YoutubeTM content publishing websites),
blog publishing websites (e.g., the BloggerTM publishing
website), transactional data streams (e.g., purchase data,
inventory data), updates or feeds from any suitable dynamic
data repository, logs, maps, RSS feeds, combinations of any
of the above, and the like. An exemplary data stream may
include more than one type of stream events, for example,
both text publications, photos and videos.
0440 The stream bus 3606 may reformat stream events
received from an external application to a suitable format,
e.g., by adding Suitable attribute-value pairs to the stream
events. In an exemplary embodiments, an application pro
gramming interface (API) may be provided to interface with
any source of data streams to receive stream events. The
stream bus 3606 may interface with one or more external
application 3624 for providing one or more real-time data
streams to the external applications. The streambus 36.06 may
reformat stream events for transmission to an external appli
cation to a suitable format. For example, exemplary embodi
ments may provide a stream containing real-time information
on popular topics in one or more data streams, a streaming
containing popular or trending videos in one or more data
streams, and the like.
0441 The stream bus 3606 may provide one or more real
time data streams in a collective manner for access by one or
more components of the system, for example, by a receiver, a

30
Feb. 27, 2014

conductor, and/or one or more operations running at worker
nodes. The components of the system may subscribe to
receive stream events from one or more data streams provided
by the streambus 3606. In an exemplary embodiment, all map
and update operations may share the same streambus 3606. In
an exemplary embodiment, the stream bus 36.06 may resenda
stream event to a client module (e.g., a receiver, a conductor,
or a worker node) until the event is successfully received and
processed. The stream bus 3606 may also buffer stream
events in the real-time data streams to ensure that events are
not lost. The stream bus 3606 may also include an archival
system to store portions or entirety of one or more data
streams for a predefined period of time or for an unlimited
time. For example, the last stream event in each stream may
be archived at all times at the stream bus 3606 or at any other
component in the system, e.g., in a slate in disk storage. The
stream bus 36.06 may replay a data stream from any selected
timestamp, for example, from the archival system.
0442. An exemplary stream bus 3606 may be imple
mented using any suitable application framework including,
but not limited to, the Gearman application framework for
distributed processing written in Perl. Servers in the Gearman
framework run on bus hosts, i.e., machines Suitable for host
ing Gearman servers. In an exemplary embodiment in which
the Gearman framework is used to provide the stream bus,
each instance of the map-update system may have at least two
Gearman servers for redundancy running on separate bus
hosts. In an exemplary embodiment, different Gearman serv
ers may be maintained for different event sources and appli
cations to avoid slowing down the event sources.
0443. In an exemplary embodiment, a single stream bus
may be provided. In other exemplary embodiments, a plural
ity of stream buses may be provided, for example, as a set of
event-queue servers, each responsible for a Subset of events in
transit among the map and update operations. In an exem
plary embodiment, the Subsets may be disjoint partitions.
0444 Exemplary system 3600 may include one or more
receivers 3608 that interface with the real-time data streams
3604 to continually receive stream events in the data streams
in a real-time manner as the data streams flow past the sys
tems. The receiver 3608 may include one or more buffers
3610 for buffering the stream events as they flow into the
receiver 3608 in order to prevent loss of the stream events. In
Some exemplary embodiments in which a stream computa
tion is mission-critical, the buffer 3610 of the receiver 3608
may be configured as a message queue, e.g., using Java Mes
sage Service, in which the stream events placed in the buffer
3610 are stored until the stream events are retrieved. In an
exemplary embodiment, the buffer may be provided at the
conductor 3612 and/or the stream bus 3606.

0445. In exemplary embodiments, an "at-least-once'
guarantee may be provided to ensure that, regardless of hard
ware failures and software errors, every map operation Sub
scribed to a data stream will receive every event in the stream
and will successfully execute computations for that event, at
least once. To ensure at-least-once event processing, the
buffer 3610 may buffer the data streams so that the events are
not lost. In some exemplary embodiments, "at-most-once'
event processing may be provided even under overload con
ditions so that each event is processed no more than once, for
example, by allowing the system to selectively prune its buff
ers (e.g., a buffer at the stream bus 3606, the receiver 3608, or
the conductor 3612) to control the event load. In some exem
plary embodiments, some events may be prioritized over

US 2014/0059185 A1

others by allowing the system (e.g., the stream bus 3606, the
receiver 3608, the conductor 3612, or the worker nodes) to
reorder events accordingly.
0446. Exemplary system 3600 may include one or more
conductors 3612 that may interface with the receiver 3608 to
continually receive the stream events from the receiver 3608
in a real-time manner. The conductor 3612 may act as a task
scheduling mechanism to provide instructions to designate
worker nodes for performing map and update operations. The
conductor 3612 may also transmit stream events to the worker
nodes that are subscribed to receive the stream events. In an
exemplary embodiment, the conductor 3612 may protect a
worker node from bad or faulty events that cause repeated
failures, for example, by discarding the faulty events from
Subscription to the operation running on the worker node.
0447. In an exemplary embodiment, the conductor 3612
may provided as a separate component from the worker pro
cesses. In another exemplary embodiment, the conductor
3612 may be provided so that each worker process is provided
as an extension of a conductor class, thereby making the
conductor effectively distributed and multi-threaded.
0448. The conductor 3612 may have visibility into the
performance of the worker nodes and may perform load bal
ancing by reassigning tasks to the worker nodes. In an exem
plary embodiment, the conductor 3612 may read and write
slates in a disk storage and/or in memory. In an exemplary
embodiment, the conductor 3612 may record the last event
processed for each data stream when a worker completes
processing the event.
0449 The conductor 3612 may maintain metadata about
the available worker nodes in the system including, but not
limited to, the computational specifications of the worker
nodes, the current status of each worker node (e.g., whether it
is operational, is in a failed State, etc.), the current processing
load at each worker node, the data streams from which each
worker node are subscribed to receive stream events, the data
streams to which each worker node publishes events, the
particular slatekey that is the primary slatekey handled by
each worker node, and the like.
0450. In cases in which the conductor 3612 may fall
behind the influx of the stream events or in cases in which the
conductor 3612 may suffer a software error or a hardware
failure, the buffer 3610 of the receiver 3608 prevents loss of
Stream eventS.

0451. In an exemplary embodiment including multiple
conductors, a Super-conductor (not pictured) may be pro
vided to coordinate the operation of the conductors and to set
up and provide instructions to the conductors. Message
broadcasting services may be implemented over the multiple
conductors so that outage or failure of a conductor may be
announced to the other conductors. The operation of the
failed conductor may be transferred to another functional
conductor.

0452 Exemplary system 3600 may include one or more
worker nodes 3614, 3616, 3618, 3620 that provide a pool of
one or more worker processes for performing computations
on real-time data streams. The worker nodes may interface
with the conductor 3612 to receive stream events in a real
time manner in order to perform real-time computations on
the stream events. The worker nodes may be assigned to
perform one or more stream computations concurrently at a
given time so that a desired functionality may be achieved by
distributing different tasks over the nodes.

Feb. 27, 2014

0453 This distributed implementation provides scalabil
ity, wherein one or more additional worker nodes may be
added to perform additional map and update operations and to
accommodate increased computational requirements, addi
tional data streams, increased data stream flows, and the like.
The system overhead is minimal and does not increase with
the scale of the system. Information on the new worker nodes
may be transmitted to the conductor and may be stored by the
conductor as meta-data. The conductor may assign stream
processing operations to the new worker nodes and may
transmit stream events to the new worker nodes.
0454. The distributed implementation also provides fault
tolerance so that there is no single point of failure, wherein a
task at a failed worker node may be assigned to a different
worker node without affecting the entire distributed system.
0455. In an exemplary embodiment, each worker node
may include and may be capable of running one or more
worker processes. For example, each worker node process
may include all necessary computer-implemented instruc
tions, i.e., software code, for running any map and update
operator in the system, and may be capable of running any
map and update operator in the system. In another exemplary
embodiment, each worker node may receive computer
implemented instructions for running a specific map or
update operation when the operation is scheduled to run on
the worker node. The computer-implemented instructions
may be provided to the worker node inabinary file format that
may be loaded onto a process running on the worker node.
0456. The worker nodes may receive instructions from the
conductor 3612 which determine the operations that the
nodes will perform. In an exemplary embodiment, a worker
node may perform a single map or update operation at a time.
In another exemplary embodiment, a worker node may per
form a plurality of map and/or update operations at a time, for
example, using multiple processors, multiple cores or mul
tiple threads.
0457. The worker nodes may be provided in a distributed
manner at a plurality of computing devices that may be geo
graphically remote from one another, or may be provided as
separate modules or cores in the same computing device.
0458. The map and/or update operation that is run by a
worker node process at a particular time may be determined
based on the instructions received from the conductor 3612.
Upon selection of a particular map and/or update operator for
running on a worker node process, the worker node may
automatically determine one or more data streams from
which stream events should be received for performing the
operator. Alternatively, one or more data streams necessary
for a particular map or update operator may be pre-identified
and stored in association with the operator. The worker node
may subscribe to the one or more data streams required by the
selected operator by sending a Subscription request to the
conductor 3612. Upon registering the Subscription request,
the conductor 3612 may begin to send stream events in the
requested data streams to the worker node.
0459. That is, the data on which the assigned map and/or
update operator is run at a worker node process may be
determined by the stream events transmitted to the worker
node from the conductor 3612. In an exemplary embodiment,
the conductor 3612 manages subscriptions of the worker
nodes to different data streams. The conductor may store the
Subscription information associated with the worker node and
an identification of the data streams requested by the worker
node, and may transmit input stream events corresponding to

US 2014/0059185 A1

the requested data streams to the worker node that subscribed
to the requested data streams. In this case, the conductor 3612
may store a table of mappings between each worker and one
or more data streams from which the worker is subscribed to
receive stream events. For each stream event received by the
conductor 3612, the conductor may consult the table of map
pings to determine which worker nodes are to receive the
Stream event.

0460. Upon performing a computational operation, a
worker node may generate one or more stream events to be
published to one or more intermediate data streams 3622. In
an exemplary embodiment, one or more map operations per
formed by worker nodes may result in the generation of
stream events published to one or more intermediate data
streams 3622. The intermediate data streams 3622 may be
provided in a manner similar to the input data streams 3604 in
the stream bus 3606 so that the receiver 3608 may receive
stream events from the intermediate data streams 3622 as
well. One or more worker nodes may be subscribed to receive
stream events from one or more intermediate data streams
3622 through the receiver 3608 and the conductor 3612.
0461 In addition or alternatively, upon performing a com
putational operation, a worker node running an update opera
tion may generate static output data, for example, slates that
are stored as key-value combinations. The slates may be
stored temporarily in memory and persistently in a durable
disk storage 3626. Each slate generated may be indexed by its
slatekey and a corresponding update operation in the disk
storage 3626. A worker node running an update operation
may have exclusive access to a slate while it is performing the
operation to prevent inconsistencies in the data stored in the
slate.
0462. In an exemplary embodiment, the worker nodes
may access the disk storage 3626 to retrieve and/or store
slates, and may store one or more slates on a temporary basis
in memory, e.g., a write-through cache. In an exemplary
embodiment, each worker node may maintain a least recently
used (LRU) cache of slates. The storage of one or more slates
in memory at worker nodes allows Scheduling computation
near the data.

0463) To fetch data maintained in a map-update applica
tion, the system may provide a slate-fetch operation so that
requests from outside the application may retrieve a slate for
any <update operation, key value. To reduce the network
requirements and computational costs of applications using
data saved in the disk storage 3626, exemplary embodiments
may provide a slate-postprocess operation so that requests
from outside an application may retrieve a slate for any
<update operation, key value and may run a particular func
tion on the slate before returning it to the application. In one
example, Such a slate-postprocess operation may select only
individual attributes of interest, thereby returning less data
that is stored in the slate. For example, the operation may
compute an aggregate of select attributes in the slate. In
another example, if the slate contains information on two
numbers, a slate-postprocess operation may provide the aver
age of the numbers to an external application.
0464) To provide a consistent interface to a map-update
application's data even as its implementation changes, some
exemplary embodiments may provide a node-fetch operation
that runs a particular function (implemented by the applica
tion) to return a desired result. The node-fetch operation may
execute slate-fetch operations and slate-postprocess opera
tions as well as its own code to “normalize' the data main

32
Feb. 27, 2014

tained in the application to generate a result. In exemplary
embodiments, the node-fetch operation may also perform
other processing and optimization operations.
0465. To provide a consistent interface to a map-update
application's data even as its implementation changes, some
exemplary embodiments may provide a view-fetch operation
that runs a particular function (implemented over the appli
cation) to return a desired result. The view-fetch operation
may execute node-fetch operations as well as its own code to
“normalize' the data maintained in the applications to gener
ate a result. In exemplary embodiments, the view-fetch opera
tion may also perform other processing and optimization
operations.
0466. In an exemplary embodiment, a worker node may be
preferentially assigned to perform computations on stream
events with a particular eventkey that is equal to the slatekey
for which the node is a primary worker node. A worker node
that is the primary worker node for a particular slatekey may
be capable of handling all events associated with the slatekey,
i.e., with the particular slate, and may store in memory, e.g.,
cache, all slates corresponding to the slatekey. Each worker
node may maintain an in-memory cache of slates, i.e., key
value combinations, for which the worker node is the “pri
mary' worker node. The cache of slates may be saved, for
example, in a solid-state drive (SSD) that stores persistent
accessible data. In exemplary embodiments, the cache may be
write-through in which write operations performed on the
cache by an operation running on the worker node is written
back to the disk storage. In an exemplary embodiment, write
operations performed on the cache may be written through to
the disk storage immediately. In another exemplary embodi
ment, write operations performed on the cache may be written
through to the disk storage after a time delay. A write-delay
parameter may be configured to adjust the time delay to
control the write-through behavior of the cache. The write
delay parameter may relax the immediate write-through
behavior of the cache and may allow the cached slate to be
written back at certaintimes, for example, every few seconds.
0467. The storage of the slates in memory minimizes the
number of disk read operations that need to be performed to
access slates. This is because, when an Update operation is
scheduled on a slate, the operation is scheduled on a worker
node that is the primary worker node for the slate. As such, it
is likely that the most recent value of the slate is stored in the
cache of the primary worker node. This makes it unnecessary
for the worker node to perform a read operation on the disk
storage in order to determine the most recent value of the
slate, and may instead look up the value in its own cache.
0468. The large number of slate accesses required in some
stream computations adversely affect performance. For
example, in a data stream of Nevents/second, each event may
trigger K Slate accesses in which each slate may have a size of
S bytes. Therefore, the system must support NK slate
accesses/second and a data volume of NKS bytes over the
network. For exemplary values of 10,000 events/second for
N, 10 slate accesses for K, and 10 KB for S, the system must
support at least 100K lookups/second and a flow of 8 Gbps.
An exemplary implementation that allows computation near
the data at worker nodes lowers the number of slate accesses
in disk storage that must be performed, and lowers the seri
alization overhead involved in accessing and storing slates in
disk storage. Similarly, the number of slate write operations to
the disk storage may be reduced by batching the write opera
tions.

US 2014/0059185 A1

0469 Data streams are subject to spiky behavior in which
bursts of activity may arise for stream events corresponding to
the same eventkey value. Implementation of a write-delay
parameter and assigning worker nodes as primary worker
nodes allows the system to harness spiky bursts of activity to
improve system performance and efficiency. A slate for a hot
or popular or very active eventkey value may remain in
memory, e.g., in cache, at one or more worker nodes that are
the primary worker nodes assigned to that eventkey value. As
Such, for every access to the disk storage for the slate, the slate
may be read and written several times in memory, thus saving
the time and computations, e.g., serialization, that would
otherwise be required in multiple read and write operations to
the disk storage.
0470. In some cases, due to hot spots in the flow of incom
ing stream events, a computational loadata worker node may
increase beyond a certain threshold. In order to avoid such
increased loads, the conductor may periodically determine
load data for the worker nodes, e.g., by polling the worker
nodes. In order to schedule an update operation associated
with a stream event, the conductor may schedule the update
operation to run on the primary worker node associated with
the events key only if the primary node has a load less than a
specified threshold, e.g., 80% of the threshold. Otherwise, the
conductor may select another worker node with the lightest
computational load as the new primary worker node for the
key. The conductor may wait for a time period slightly longer
than the write-delay parameter before scheduling Subsequent
update operations for the key on the new primary worker
node. This ensures that any update operations from the old
primary worker node have already updated the disk storage,
before Subsequent update operations are scheduled on the
new primary worker node. The new primary worker node thus
receives the most recent slate value from the disk storage.
0471. In an exemplary embodiment, a storage layer 3626
may be implemented in a distributed manner, e.g., over mul
tiple storage devices that may be geographically remote from
one another. For example, an exemplary storage layer may be
implemented using Cassandra which is a distributed Storage
system. A distributed storage layer may provide a high avail
able service with no single point of failure, and may be
accessible to the plurality of worker nodes in the system. In an
exemplary embodiment, the storage layer may be provided at
the worker nodes in a distributed manner. In addition to the
ability to persist data, the distributed storage layer may have
one or more additional characteristics including, but not lim
ited to, Scalable and robust solutions for load balancing, rep
lica synchronization, membership and failure detection, fail
ure recovery, overload handling, state transfer, concurrency
and job Scheduling, request marshalling, request routing, sys
tem monitoring and alarming, configuration management,
and the like. In an exemplary embodiment, the disk storage
3626 may be provided in a distributed manner run on a set of
two or more nodes that are separate from the worker nodes in
Some exemplary embodiments, and that are the worker nodes
in other exemplary embodiments. That is, in Some exemplary
embodiments, the nodes providing the disk storage 3626 may
be separate from the nodes providing the map and update
operations. The two or more nodes running the disk storage
3626 may be provided on separate computing devices and/or
provided at separate geographical locations.
0472. The worker nodes may have access to the disk stor
age 3626 to retrieve and store slates on the disk storage. Slates
may be maintained in the disk storage 3626 and/or in memory

Feb. 27, 2014

at worker nodes and/or at the conductor at any Suitable time
granularity, e.g., hourly, daily, weekly, monthly. Versioning
may be applied to maintain and identify different states of the
slates at different times. Older states of a slate may be stored
or archived for a predefined time or for an unlimited time as
the slate is updated. The disk storage 3626 may also store
information received or processed by the conductor, for
example, metadata pertaining to the worker nodes.
0473 Exemplary system 3600 may allow one or more
external applications 3628 to interface with the system to
receive the static output data. The external applications 3628
may interface with the disk storage 3626 to receive static
output data stored on the disk storage. The external applica
tions 3628 may be any suitable external data consumers, e.g.,
a web application that displays the Top N topics in a TwitterTM
feed at a given time. In this example, the web application may
retrieve a key-value combination stored in the disk storage
3626 that provides the values of the Top N topics in a Twit
terTM feed at a given time.
0474 The different components of the system 3600 may
be coupled to each other using any suitable communication
mechanism, e.g., gigabit Ethernet.
0475 FIG.37 is a block diagram of exemplary distributed
computational processes provided in accordance with exem
plary embodiments for performing a real-time stream com
putation. The system may include a stream bus 3702 includ
ing one or more streams (not pictured) in which real-time
stream events (e.g., events 3704,3706,3708, 3710,3712 and
3714) are published to the streams by external applications
and/or worker nodes provided in accordance with exemplary
embodiments. For example, stream events 3704 and 3706
may be published by external applications, while stream
events 3708, 3710, 3712 and 3714 may be published by
worker nodes.
0476. The system may include one or more disk storage
devices 3724, e.g., in the form of a distributed storage layer,
for storing one or more slates. In some exemplary embodi
ments, the disk storage 3724 may be provided in a distributed
manner over the conductors or the worker nodes, or sepa
rately therefrom.
0477 The system may include one or more conductors
running one or more conductor processes 3726. In exemplary
embodiments, during an initial setup stage, the conductor
process 3726 may delegate one or more map operations to one
or more worker nodes (so that the worker nodes are primarily
responding for performing the map operations) and/or one or
more update operations to one or more other worker nodes (so
that the worker nodes are primarily responding for perform
ing the update operations). In exemplary embodiments, the
conductor process 3726 may receive and transmit stream
events to appropriate worker nodes that are subscribed to
receive events from the stream. In an exemplary embodiment,
the conductor process 3726 may itself be a task that is initi
ated and instructed by a Super-conductor process (not pic
tured).
0478. The system may include one or more worker pro
cesses running on one or more worker nodes 3716, 3718,
3720 and 3722. Each worker node may be capable of running
one or more processes for performing one or more map opera
tions (M) and/or one or more update operations (U). For
example, each worker node may be able to access instructions
for performing the operations. Each process thread at a
worker node may be invoked based on the particular task
assigned to the worker node. In an exemplary embodiment,

US 2014/0059185 A1

the number of worker processes may be equal to the number
of worker nodes or machines available in the system, i.e., one
worker process per machine. In another exemplary embodi
ment, two or more worker processes may be used in each of
the worker nodes or machines in the system. If a worker
process fails, its task may be reassigned to another worker
process by the conductor process 3726 and measures may be
taken to repair or replace the failed worker process.
0479. In an exemplary embodiment, the worker node 3716
may be designated a primary worker for performing a first
map operation (M. Sub.0). The worker node 3716 may be
subscribed to receive event 3706 from the stream bus 3702,
may run a worker process to perform the first Map operation
(M.Sub.0) on the event, and may publish intermediate event
3708 to one or more streams in the stream bus 3702. Simi
larly, the worker node 3718 may be designated a primary
worker for performing a second map operation (M.Sub.1).
The worker node 3718 may be subscribed to receive event
3704 from the stream bus 3702, may run a worker process to
perform the first map operation (M. Sub.1) on the event, and
may publish intermediate event 3710 to one or more streams
in the stream bus 3702.

0480. In an exemplary embodiment, the worker node 3720
may be designated a primary worker for performing a first
update operation (U.Sub.0). The worker node 3720 may be
Subscribed to receive event 3710 from the Stream bus 3702
and one or more slates from the disk storage 3724. The worker
node 3720 may run a worker process to perform the first
update operation (U.Sub.0) on the events and/or slates. The
worker node 3720 may publish intermediate event 3712 to
one or more streams in the stream bus 3702 and/or save new
and/or updated slates to the disk storage 3724. Similarly, the
worker node 3722 may be designated a primary worker for
performing a second update operation (U.Sub.1). The worker
node 3722 may be subscribed to receive event 3708 from the
stream bus 3702 and one or more slates from the disk storage
3724. The worker node 3722 may run a worker process to
perform the second update operation (U.Sub. 1) on the events
and/or slates. The worker node 3722 may publish intermedi
ate event 3714 to one or more streams in the stream bus 3702
and/or save new and/or updated slates to the disk storage
3724.

0481 FIG. 38 is a flow chart of an exemplary method
performed by the exemplary computational system of FIG.
36. In step 3802, a conductor may transmit instructions to one
or more worker nodes to perform one or more map and/or
update operations. In an exemplary embodiment, the opera
tion assigned to each worker node may be pre-defined. In
another exemplary embodiment, the operation assigned to
each worker node may be determined automatically and in
real-time by the conductor in a task Scheduling operation.
Task Scheduling may be performed by the conductor in a
manner to balance the loads among the worker nodes, prevent
"hot spots” from arising at any worker node and to reduce the
response time required by each worker node to generate an
output. Any suitable task scheduling mechanism may be used
by the conductor. Some exemplary task scheduling mecha
nisms are described with reference to FIGS. 40 and 41.
0482. Upon selection of a particular map and/or update
operator for running on a worker node process in step 3802,
the worker node may automatically determine one or more
data streams from which stream events should be received for
performing the operator. Alternatively, one or more data
streams necessary for a particular map or update operator

34
Feb. 27, 2014

may be pre-identified and stored in association with the
operator. The worker node may subscribe to the one or more
data streams required by the selected operator by sending a
Subscription request to the conductor.
0483. In an exemplary embodiment, step 3802 may be
performed at start-up of the system, and may be repeated to
provided updated instructions to the worker nodes.
0484. In step 3804, one or more receivers may receive one
more real-time input data streams. The receiver may extract
one or more stream events from each data stream and place
the stream events in one or more buffers.
0485. In step 3806, the receiver may transmit the stream
events from the buffer in a real-time manner to one or more
conductors.
0486 In step 3808, for each stream event that the conduc
tor receives, the conductor may determine the data stream to
which the stream event belongs. The conductor may then
determine which worker nodes, if any, are subscribed to
receive stream events in that data stream. The conductor may
then transmit the received stream event to the worker nodes
Subscribed to the data stream corresponding to the stream
event.

0487. In step 3810, the worker nodes may perform map
and/or update operations in a continual real-time manner on
the stream events received from the conductor. Each worker
node may generate one or more stream events for publishing
on intermediate data streams and/or static output data.
0488. In step 3812, a worker node may generate a stream
event. In step 3814, the stream event may be published to an
intermediate real-time data stream by the worker node. In step
3816, the intermediate data stream may be provided to the
receiver in the same manner as the input data streams.
0489. In step 3818, a worker node may generate static
output data. In step 3820, the static output data may be stored
durably on a disk storage. In step 3822, one or more external
applications may interface with and access the static output
data stored on the disk storage.
0490 FIG. 39 is a flow chart of an exemplary method
performed by the exemplary computational processes of FIG.
37. In step 3902, a first worker process may receive a first
input stream event from a first real-time input data stream. In
step 3904, the first worker process may process the first input
stream event in a first map operation to generate first inter
mediate output data. In step 3906, the first worker process
may transform the first intermediate output data to generate a
first intermediate stream event corresponding to the first input
stream event and comprising the first intermediate output
data. In step 3908, the first worker process may publish the
first intermediate stream event to a first real-time intermediate
data stream. The first worker process may be scheduled to run
on one or more worker nodes. One of ordinary skill will
recognize that one or more additional worker processes may
be scheduled to run additional instances of the first map
operation or one or more additional map operations, for
example, concurrently with the first worker process. The
computational load for a map operation may be distributed
among multiple instances of the operation in an exemplary
embodiment.
0491. In step 3910, a second worker process may receive
the first intermediate stream event from the first real-time
intermediate data stream. In step 3912, the second worker
process may process the first intermediate output data in the
first intermediate stream event in a first update operation to
generate first final output data. In step 3914, the second

US 2014/0059185 A1

worker process may store the first final output data in a first
data structure associated with the first intermediate output
data on a storage device. The first data structure may be
generated by the second worker process, or an existing data
structure may be updated with the first final output data. One
of ordinary skill will recognize that one or more additional
worker processes may be scheduled to run additional
instances of the first update operation or one or more addi
tional update operations, for example, concurrently with the
second worker process. The computational load for an update
operation may be distributed among multiple instances of the
operation in an exemplary embodiment.
0492. In some embodiments, one or more additional
worker processes may be scheduled to run additional update
operations. For example, in step 3916, the second worker
process may transform the first final output data to generate a
second intermediate stream event corresponding to the first
intermediate stream event and comprising the first final out
put data. In step 3918, the second worker process may publish
the second intermediate stream event to a second real-time
intermediate data stream. In step 3920, a third worker pro
cess, may receive the second intermediate stream event in the
second real-time intermediate data stream. In step 3922, the
third worker process may transform the first final output data
in the second intermediate stream event in a second update
operation to generate second final output data. In step 3924,
the third worker process may store the second final output
data in a second data structure associated with the second
intermediate output data on a storage device.

VI. EXEMPLARY TASK SCHEDULING
MECHANISMS

0493 An exemplary task scheduling mechanism imple
mented at a conductor may be used to assign one or more map
operations and/or one or more update operations to worker
nodes in a distributed system based on a suitable task Sched
uling policy. Exemplary task Scheduling policies include, but
are not limited to, random assignment, round robin assign
ment, assignment first to worker nodes with the lightest com
putational load, assignment to minimize communication
costs, assignment to minimize disk accesses, and the like.
0494 FIG. 40 is a flow chart of an exemplary method
performed by a scheduling mechanism to schedule operations
at one or more worker nodes. In step 4002, the conductor may
receive a stream event in real-time from a receiver or directly
from a streambus. In step 4004, the conductor may determine
the identification of the data stream that included the stream
event, for example, by looking up the value of the streamid
attribute. The conductor may then determine one or more map
and/or update operations that are subscribed to receive stream
events in the data streams having the streamid attribute value
in the stream event. In step 4006, the conductor may deter
mine which worker nodes should be scheduled to run the map
and/or update operations associated with the incoming stream
event. The conductor may then schedule the map and/or
update operations determined in step 4008 on one or more
worker nodes to perform one or more real-time computations
on the incoming stream event.
0495. In an exemplary embodiment, in step 4010, the con
ductor may schedule the map and/or update operations asso
ciated with the incoming stream event in a round robin fash
ion among available worker nodes. That is, a first map or
update operation may be scheduled to run on a first worker
node, a second map or update operation may be scheduled to

Feb. 27, 2014

run on a second worker node, and the like. The round robin
task Scheduling may allocate a roughly equal computational
load to the worker nodes at most points in time.
0496. In another exemplary embodiment, in step 4012, the
conductor may schedule the map and/or update operations
associated with the incoming stream event in a manner that
balances the computational load among the worker nodes. In
an exemplary embodiment, the conductor may receive infor
mation on their current computational loads at any Suitable
time. For example, the conductor may poll the worker nodes
at step 4010 or at pre-defined intervals of time. In another
exemplary embodiment, the worker nodes may automatically
transmit their load information to the conductor, for example,
at pre-defined periods of time or upon prompting by the
conductor. Upon receiving load information from the worker
nodes, the conductor may schedule the map and/or update
operations associated with the incoming stream event on the
worker nodes with the lowest computational loads in step
4012.

0497. In another exemplary embodiment, a conductor may
schedule a map operation and/or an update operation in a
random manner among the available worker nodes.
0498. The exemplary task scheduling method illustrated
in FIG. 40 may give rise to issues in maintaining consistency
of State among update operations performed by different
worker nodes since update operations are stateful operations,
i.e., they store state at the end of each operation. To ensure
atomicity in the system, every time an update operation is
scheduled, the operation reads its associated slate from the
disk storage on start-up. Upon performing the update opera
tion, the operation writes back the updated slate to the disk
storage if any updates are made during the operation. The
slates have to be written to the distributed disk storage acces
sible by all of the worker nodes, because the next update
operation may be scheduled on any worker node and must be
able to access the latest state in the disk storage. As a result, in
Some exemplary embodiments, scheduling different update
operations to worker nodes in a round robin fashion may
require many data read and write operations in the disk Stor
age performed by different worker nodes, which may lead to
inefficiencies and bottlenecks in the system.
0499 For example, assuming that an exemplary system
processes in stream events per second, that each stream event
accesses k slates, and that each slate is S bytes in size, a total
ofnk key-value operations per second must be performed on
the disk storage. The nk key-value operations may transfer
nks bytes of data per second between the disk storage and the
worker nodes.
0500. In an example in which the exemplary system uses
input data streams from Twitter'TM, an exemplary value for n
may be about 10,000 (i.e., a TwitterTM data stream contains
about 10,000 TwitterTM updates per second), an exemplary
value for k may be about 10 (i.e., each TwitterTM update
accesses about 10 Slates), and an exemplary value for S may be
about 10 KB (i.e., each slate has a size of about 10KB). These
values yield about 100,000 key-value operations per second,
which is at the outer limits of the capabilities of conventional
disk storage devices. The data transferred between the disk
storage and the worker nodes is about one (1) gigabyte per
second, i.e., eight (8) gigabits per second, which would
require network communication mechanisms capable of Sup
porting at least ten (10)gigabytes of data. Conventional com
modity nodes are typically equipped with network commu
nication mechanisms capable of Supporting up to one (1)

US 2014/0059185 A1

gigabyte of data. Thus, the task scheduling method illustrated
in FIG. 40 may create inefficiencies and bottlenecks due to the
large amount of data being read from and written to the disk
storage and the high rate at which data is being read from and
written to the disk storage.
0501. However, the exemplary task scheduling illustrated
in FIG. 40 does not give rise to the same issue when sched
uling map operations, because map operations are stateless
operations and do not access or store state in the disk storage.
0502 FIG. 41 is a flow chart of another exemplary method
performed by a scheduling mechanism to Schedule update
operations at one or more worker nodes. This exemplary
method avoids the deficiencies of the method of FIG. 40
without adding greater computational complexity, and avoids
the inefficiencies caused by the update operations of FIG. 40
and their associated disk storage read and write operations.
0503. Since map operations are stateless operations, they
may be scheduled to run on worker nodes in accordance with
method 4000 of FIG. 40. Exemplary task scheduling policies
that may be used to assign map operations to worker nodes
may include, but are not limited to, random assignment,
round robin assignment, assignment to worker nodes with the
lightest computational loads, assignment to worker nodes to
minimize communication costs, and the like.
0504. In another exemplary embodiment, a conductor may
assign map operations among the worker nodes in a manner
that minimizes the cost of communications between the con
ductor and the worker nodes. For example, a conductor may
assign one or more map operations "close to the conductor
(i.e., at worker nodes that have short communication paths to
the conductor) in order to reduce communication costs, like
serialization costs or network costs. This task scheduling
policy is Suitable for assigning map operations, as map opera
tions are stateless and may be assigned to worker nodes
anywhere, including at worker nodes that are "close to a
conductor.
0505. The exemplary scalable method of FIG. 41 moves
the update operations performed by the worker nodes closer
to the data read and written by the worker nodes. More spe
cifically, for each slatekey associated with stream events, a
single worker node is designated as the “primary or pre
ferred worker node for performing update operations on
slates having the slatekey. The conductor may store mappings
between each slatekey and its associated primary worker
node. That is, an update operation that receives a stream event
is scheduled to run on the primary worker node associated
with the slatekey value of the stream event.
0506. In step 4102, the conductor may receive a stream
event in real-time from a receiver. In step 4104, the conductor
may determine the identification of the data stream that
included the stream event, for example, by looking up the
value of the streamid attribute in the stream event. The con
ductor may then determine one or more map and/or update
operations that are subscribed to receive stream events in the
data streams having the streamid attribute value in the stream
event.

0507 If a map operation is subscribed to receive the
stream event, the conductor may determine which worker
node should be scheduled to run the map operation associated
with the incoming stream event, in step 4106. In an exemplary
embodiment, in step 4108, the conductor may schedule map
operations associated with the incoming stream event in a
round robin fashion among the worker nodes. Alternatively,
in another exemplary embodiment, the conductor may sched

36
Feb. 27, 2014

ule the map operations associated with the incoming stream
event in a manner that balances the computational load
among the worker nodes. In an exemplary embodiment, the
conductor may receive information on the current computa
tional loads at the worker nodes at any suitable time. For
example, the conductor may poll the worker nodes at step
4110 or at pre-defined intervals of time. In another exemplary
embodiment, the worker nodes may automatically transmit
their load information to the conductor, for example, at pre
defined periods of time or upon prompting by the conductor.
Upon receiving load information from the worker nodes, in
step 4112, the conductor may schedule the map operations
associated with the incoming stream event on the worker
nodes with the lowest computational loads.
0508 Update operations associated with slates having a
particular slatekey attribute value may be scheduled on one or
more worker nodes designated to be the primary worker
nodes for that slatekey attribute value. This allows the pri
mary worker nodes to store the slates in memory, which
allows fast and efficient access of the slates. If an update
operation is Subscribed to receive the stream event, in step
4114, the conductor may determine the value of the slatekey
attribute of the stream event. In step 4116, the conductor may
determine the primary worker node assigned to perform
update operations associated with the given slatekey value.
The conductor may look up the primary worker node in a
table of mappings between slatekey values and their associ
ated primary worker nodes. In step 4118, the conductor may
schedule the Update operation to the primary worker node
associated with the given slatekey value and may transmit the
stream event to the worker node.

VII. EXEMPLARY FAILURE HANDLING
MECHANISMS

05.09 Exemplary embodiments provide failure handling
mechanisms for handling Software errors and hardware fail
ures at any of the worker nodes in the system. In an exemplary
embodiment, a conductor may poll the worker nodes at pre
determined intervals of time for load data and to detect fail
ures. In an exemplary embodiment, the worker nodes may
send load data and information on Software errors and hard
ware failures to the conductor at predetermined intervals of
time. Upon receiving information that a worker node has
experienced a software error or hardware failure, the conduc
tor may mark the worker node as failed, e.g., in meta-data
associated with the worker node. In some embodiments, the
system may restart or attempt to repair the worker node and/or
the operation running on the worker node.
0510. When a stream event arrives at the conductor with a
eventkey attribute value for which the failed worker node is
the primary worker node, the conductor may select another
worker node to be the primary worker node for the key. In an
exemplary embodiment, one or more new worker nodes may
be added to the system to replace the failed worker node.
Information on the new worker nodes may be transmitted to
the conductor and may be stored by the conductor as meta
data. The conductor may assign stream processing operations
to the new worker nodes and may transmit stream events to
the new worker nodes.

0511 To ensure consistency, the conductor may wait for a
predefined period of time that is slightly longer than the
write-delay once the failure is detected before scheduling
update operations for the events associated with the failed

US 2014/0059185 A1

worker node. This allows the events to be buffered at the
receiver or the conductor for a period of time equal to the
write-delay.
0512. When a worker node fails, there is a risk that the
system may lose any data in memory at the worker node (e.g.,
in cache) that has not yet been written to the disk storage. The
system may also lose the stream events that the failed worker
node was processing at the time of failure. However, Such
losses are not catastrophic in applications of exemplary
embodiments. In exemplary embodiments, redundancy in
data storage and storage of events (e.g., at other worker
nodes) may be provided to prevent such losses in cases of
worker node failure.
0513 Exemplary embodiments provide failure handling
systems and methods for handling software errors and hard
ware failures at a conductor in the system. In an exemplary
embodiment, the conductor may maintain metadata about the
available worker nodes in the system including, but not lim
ited to, the computational specifications of the worker nodes,
the current status of each worker node (e.g., whether it is
operational, is in a failed State, etc.), the current processing
load at each worker node, the data streams from which each
worker node are subscribed to receive stream events, the data
streams to which each worker node publishes events, the
particular slatekey that is the primary slatekey handled by
each worker node, and the like.
0514. In exemplary embodiments, the meta-data stored at
the conductor may change at a slow rate compared to the rate
of the real-time data streams being processed. As such, the
conductor may use a pure write-through cache with no write
delay for the meta-data. If the conductor experiences a soft
ware error or a hardware failure, a new conductor may be
started (e.g., by initiating a new conductor process on the
same or a different machine) that reads the meta-data from the
disk storage and continues the operation of the failed conduc
tor. During the time between the failure of the conductor and
the handling of events by the new conductor, the receiver may
buffer events so that the only events lost are those that were in
the process of being scheduled by the failed conductor. In
order to avoid issues regarding designating worker nodes as
being primary worker nodes for certain eventkey attribute
values and to ensure consistency, the conductor may wait for
a predefined period of time equal to and/or greater than the
write delay before scheduling new tasks.

VIII. EXEMPLARY STREAM EVENT
ORDERING MECHANISMS

0515 Exemplary embodiments may provide replay
equivalence to ensure that a particular event processing
occurs exactly once. For example, if no software crashes or
hardware failures occur, then every event is processed once
and the results of the update operations are saved to the
persistent disk storage. If a Software crash or hardware failure
occurs, the input data streams may be replayed (e.g., may be
rewound to a previous point in time and played from that
previous point again), and the slates of the update operations
may be saved in snapshots so that the effects of every event is
either preserved or replayed.
0516 To ensure replay equivalence, every update opera
tion must receive all of its stream events for a key attribute k
in a well-defined consistent order within each and between all
external stream events. In an exemplary embodiment, a stron
ger guarantee may be provided that all events must be deliv
ered to their destination operations in a consistent order. This

37
Feb. 27, 2014

stronger guarantee may be implemented by creating a com
plete ordering of all operations in an application.

0517 For an application in which the flow of events
through operations forms a directed line, the complete order
ing is equivalent to the enumeration of that line's operations.
For an application in which the flow of events through opera
tions forms a tree or directed acyclic graph (DAG), the com
plete ordering is an arbitrary but fixed (i.e., unspecified) topo
logical sort of the flow. Because the topological sort of a
cyclic graph is not well-defined, this approach does not apply
to cyclic-event-flow-graph applications even if the event flow
for all external events is otherwise guaranteed to termination.
0518. The exemplary pseudocode represents an exem
plary method for running an application. Methods enqueue
(Q, V) and dequeue(Q) represent order-preserving queue
operations. One queue is used for each defined operation, one
queue is used for each update operation with more than one
state, and two queues are used for each instance of each
operation (one queue for events into the instance for process
ing and one for return values after processing). All enqueue
(U) calls in line 3 of the pseudocode may run in parallel
without affecting correctness.

TABLE-US-OOOO1

Algorithm 1 run application Require: F.Sub.0 is the operator that receives
incoming events (with key O). Require: seqno is a sequence number for the
first incoming external event (e.g., O). 1: epoch rarw.
current epoch (application) For simplicity, define epoch rarw. 0.
2: for all U.di-elect cons. updaters with multiple states do 3: enqueue(U,
nil) Allow updaters to start execution. (See Algorithm 4, run updater.)
4: end for 5: for all external events do 6: e.rarw. F.Sub.0, k = epoch,
seqno, V = external event data 7: e seq.rarw. e8: enqueue(F.Sub.0,
e seq) 9: Seqno rarw. Seqno + 1 10: end for

0519. The exemplary pseudocode represents an exem
plary method for running an exemplary operation F.

TABLE-US-OOOO2

Algorithm 2 run operator for operator F 1: if F is a state of an updater
with multiple states then 2: U.rarw. updater for operator F 3: else 4:
U.rarw. nil 5: end if 6: loop 7: if U.noteq. nil and F is the first state of
Uthen 8: dequeue(U) {i.e., wait until previous external event is done with
U.9:end if 10: in rarw. dequeue(F) 11: assert in is a (possibly empty)
sequence of events 12: out.rarw. 13: for alls, k, v.di-elect cons, in do
14: if F subscribes to s then 15: instance rarw, instance of F for key k 16:
enqueue(instance in, k, v) 17: end if 18: end for 19: for alls, k, v.di-elect
cons. in do in the same order as the above for loop 20; if F subscribes
to Sthen 21: events rarw. dequeue(instance out) 22: out.rarw. Out +
events 23: else 24: Out.rarw.out +s, k, w 25: end if 26: end for 27: G
rarw. Succ(F) in the operator ordering for this application 28: if G is not
nil then 29: enqueue(G, out) 30: else 31: assert out = 32: end if 33: if
U.noteq nil and F is the last state of Uthen 34: enqueue(U, nil) {i.e.,
allow next external event to execute in U. 35: end if 36: end loop

0520. If the enqueue and dequeue loops are merged in the
method, the method may become a strictly serial (blocking)
execution of each external event, rather thana slightly parallel
(izable) execution. If the endueue and dequeue loops in the
method are split further into separate threads of execution,
then execution of multiple external events for an operation F
may be slightly overlapped, for example, in a Sufficiently
parallel environment.
0521. The exemplary pseudocode represents an exem
plary method for running an exemplary map operation.

US 2014/0059185 A1

TABLE-US-OOOO3

Algorithm 3 run mapper for each instance of mapper F is trivial. 1: loop
2: in rarw. dequeue(instance in) 3: assert in is an event 4: S., k, v.rarw.
in 5: assert F subscribes to s 6: out.rarw. map.sub.F(k, v) Run the actual
application code.} 7: enqueue(instance out, out) 8: end loop

0522 The exemplary pseudocode represents an exem
plary method for running an exemplary update operation.

TABLE-US-OOOO)4

Algorithm 4 run updater for each instance of updater F is easy (only)
because its input is already queued (in required order of execution). 1:
loop 2: in rarw. dequeue(instance in) 3: assert in is an event 4: S., k, V
rarw. in 5: assert F subscribes to s 6: slaterarw, exclusive reference to
mutable slate of key U, k 7: out rarw.update. Sub.F(k, v, slate) {Run the
actual application code.} 8: if slate at slate has been modified in
update. Sub.F then 9: Add slate to list of dirty slates (if not already
present). 10: end if 11: enqueue(instance out, out) 12: end loop

0523) Additional optimizations may be implemented to
any of the above methods. In an exemplary embodiment, in a
tree-event-flow application, separate branches of operators
may run in parallel if distinct branches never share slates. If
the distinct branches share slates, then each queue(U) may
need to be expanded into a full token ring threading all slates
of U in Some order. In an exemplary embodiment, the stronger
guarantee of full-ordering for all operators may not be nec
essary for map operations which are stateless and, therefore,
may not be implemented in Some exemplary embodiments.

IX. STORAGE AND REPLAY OF
APPLICATION-STATESNAPSHOTS

0524 Exemplary embodiments may provide replay
equivalence to ensure that a particular event processing
occurs exactly once. For example, if no software crashes or
hardware failures occur, then every event is processed once
and the results of the update operations are saved to the
persistent disk storage. If a Software crash or hardware failure
occurs, the input data streams may be replayed (e.g., may be
rewound to a previous point in time and played from that
previous point again), and the slates of the update operations
may be saved in snapshots so that the effects of every event is
either preserved or replayed.
0525 Application-state snapshots including, for example,
external stream events, may be saved on demand and/or at
periodic time intervals so that the saved slates represent the
output of processing exactly all external events up to a par
ticular one. Exemplary embodiments may replay the saved
Snapshots on demand, Such as, after a software crash. Exem
plary implementations of Snapshots may be based on an
event-ordered implementation.
0526. A snapshot state may be stored in a durable disk
storage by defining a Snapshot index. An exemplary Snapshot
index may be formatted as variables epoch, seqno and status.
The variable epoch may be an ordered identifier for a snap
shot or a Snapshot attempt that distinguishes one Snapshot or
Snapshot attempt from any other Snapshots or Snapshot
attempts. A Snapshot attempt is an incomplete or failed Snap
shot. In an exemplary embodiment, values for the variable
epoch may be monotonically increasing integers. The vari
able seqno may be the sequence number of the external event
up to which an application-state Snapshot will be saved. The
value of the variable seqnothereby demarcates the external
events whose effects are included in a Snapshot from Subse
quent external events whose effects are not included in the
Snapshot. The variable status indicates whether a Snapshot

Feb. 27, 2014

has been Successfully, i.e., completely saved. If a Snapshot has
been completely and successfully saved, the value of the
variable status is set to “complete.” If a snapshot has not been
completely saved, the value of the variable status may, in
Some exemplary embodiments, indicate a set of operators that
have successfully saved their Snapshots thus far in the pro
CCSS,

0527. An exemplary dummy snapshot index is repre
sented below. The dummy tuple <0, 0, { } may be omitted
when constructing a minimal Snapshot index value to run a
new application. The minimal Snapshot index value may be
merely <>, i.e., the empty list.
0528 application, snapshots sarw.epoch=0, seqno=0, sta
tus={ }
0529. The value of the snapshot index may identify all
Snapshots and may be updated as new Snapshots are written.
A “timestamp' may be defined as a <epoch, seqno pair. The
“latest” of a set of timestamps is the one with the largest
epoch; if multiple timestamps share the largest epoch, then
the one with the largest seqno is latest. For example, the latest
<epoch, seqno, status.> tuple in the Snapshot index is the one
with the largest epoch value. A tuple indicates a fully written
usable snapshot only if its status value indicates “complete.”
A write log may be maintained in durable disk storage to track
a snapshot in process So that apartially failed Snapshot may be
fully reversed and repaired. To permit replay/restart of the
Snapshot without first repairing a failed Snapshot, an applica
tion key may be defined as follows:
0530 application, run state.rarw.current epoch=-1
0531. To ensure that a new snapshot includes processing
up to a particular event and no processing of any Subsequent
events, the Snapshot request is triggered in exemplary
embodiments only between successive external events. For
example at line 9 of Algorithm 1 entitled “run application.”
the following call may be inserted before incrementing seqno.
This initiates a request to save all processing up to and includ
ing external event seqno. A 'sync request queue entry/mes
sage must be distinguishable from an event.

1: Append new tuple <epoch, seqno, status={}> to the Snapshot-index
value.
2: enqueue(F.Sub.0, Sync request(epoch, seqno))

0532. Once a new Snapshot request is triggered, a sync
request propagates to each slate, i.e., to each update operation
instance, in the same way as events, which ensures that the
request arrives in order consistent with event processing. In
particular, the sync request arrives in exemplary embodi
ments at each update operation when its slates are in the
desired State, e.g., right after processing external event seqno
and right before processing external event seqno +1. In order
to implement the desired propagation of the sync request,
Algorithm 2 entitled “run operator” may be modified at line
11 so that the method can handle sync requests as well as
events. The following pseudocode represents the following
modification to Algorithm 2.

TABLE-US-OOOO5

1: if in is a sync request then 2: if F is an updater state then 3: for all
instance rarw. instance of F do 4: enqueue(instance in, in) 5: end for 6:
for all instance rarw. instance of F do 7: r.rarw. dequeue(instance in, in)
8: assert r = true 9: end for 10: end if 11: if G is nil then 12: epoch, seqno

US 2014/0059185 A1

TABLE-US-00005-continued

.rarw. in 13: status rarw. Snapshot-index value for epoch, seqno 14: if
status orgate. F = {all operator sinks in application then 15: Replace
status rarw. “complete in Snapshot-index value. 16: else 17: Replace
status rarw. status.orgate. {F} in Snapshot-index value. 18: end if 19:
else 20: enqueue(G, in) 21:end if 22: restart loop 23:end if 24: assert in is
a (possibly empty) sequence of events

0533. A corresponding modification is made to Algorithm
4 entitled “run updater at line 3 so that “run updater actually
writes the Snapshot in response to a sync request. The follow
ing pseudocode represents this modification to Algorithm 4.

TABLE-US-OOOO6

1: U.rarw. the updater corresponding to operator instance F 2: if in is a
sync request then 3: epoch, seqno rarw. in 4: for all slate.di-elect cons.
list of dirty slates do 5: key rarw.slate key 6: Log impending write for
epoch, seqno, key, U. 7: Append epoch, seqno, slate data to durable
key-value storage for key key, U. 8: Mark slate clean. 9:end for 10:
enqueue(instance out, true) 11: restart loop 12: end if 13: assert in is an
event

0534. The “for” loop in the above “run updater method
for enumerating dirty slates may be parallelized. As long as
log writes are atomic, all slate data write operations may
occur in parallel.
0535 To restart an application for any reason, an exem
plary embodiment may follow the following exemplary steps.
The Snapshot-index value may be read to determine the
<epoch, seqno of the latest Snapshot having
status="complete.” If there is no tuple in the snapshot index in
which the status value is equal to “complete epoch=-1 and
seqno -1 may be selected. The log of impending writes may
be read to remove all slate data whose <epoch, seqno is later
than the selected tuple. current epoch epoch +1 may be writ
ten into the application-key value. The “run application'
method shown in Algorithm 1 may be restarted from external
event seqno +1 onwards, configured so that its current epoch
method in line 1 returns epoch +1. In reading a slate for <key
k, updater UD from durable disk storage, if key <k. U> has no
value in the durable disk storage, then no Such slate exists, and
if key <k, U> has a value in the durable disk storage, the slate
data with the latest timestamp is returned.
0536. In another exemplary embodiment, an application
may be restarted without reversing incomplete syncs as long
as epoch numbers are never reused. This alternative may
provide a faster restart by deferring the repair operation in
environments where epoch numbers neither run out nor wrap
around. An exemplary embodiment may follow the following
exemplary steps. The Snapshot-index value may be read to
determine the seqno of the latest Snapshot having
status="complete.” If there is no tuple in the snapshot index in
which the status value is equal to “complete.” seqno=0 may be
selected. The application-key value may be read to determine
the last current epoch and increment it. The new current
epoch may be written into the application-key value. The
“run application' method shown in Algorithm 1 may be
restarted from external event seqno +1 onwards, configured
so that its current epoch method in line 1 returns the new
current epoch. In reading a slate for <keyk, updater UD from
durable disk storage, if key <k, U> has a value in the durable
disk storage, the first one of the following options is selected:
(a) select the latest slate data whose epoch current epoch,
(b) select the slate data whose timestamp matches that of the

39
Feb. 27, 2014

latest status="complete' snapshot. If no slate data has been
selected, the system determines that no such slate exists.
0537 Additional improvements may be made to the appli
cation-state Snapshot storage and replay mechanism. In an
exemplary embodiment, if an update operation is used mul
tiple times (i.e. has multiple states) in an application, each
state may flush all dirty slates to storage even though only the
last state of that update operation to run needs to flush the
dirty slates. In an exemplary embodiment, in linear-event
flow applications, there may be only one event sink the entire
application. For Such applications, status may simply be a
Boolean flag and does not need to hold a set of operators. In
an exemplary embodiment, the Snapshot-index value, indi
vidual slates and write logs may have obsolete or old history
discarded automatically, for example, at periodic intervals of
time. A tuple may be considered obsolete and may be dis
carded safely if its timestamp satisfies either of the following
conditions: (a) the timestamp is earlier than the latest
status="complete Snapshot timestamp, or (b) the timestamp
epoch is larger than that of the latest status="complete'snap
shot and is Smaller than current epoch.

X. EXEMPLARY IMPLEMENTATION FOR
ARCHIVAL OF THE LAST STREAM EVENT IN

ADATA STREAM

0538 Exemplary embodiments may be used to determine
and archive the last stream event in a real-time data stream,
e.g., the last “tweet' in a user's TwitterTM stream. One of
ordinary skill in the art will readily recognize that archival of
the last stream event is an exemplary implementation of
exemplary embodiments, and that exemplary embodiments
are not limited to this illustrative implementation. In an exem
plary embodiment, an update operation may subscribe to a
selected data stream and may store the last Successfully pro
cessed stream eventina slate that is maintained for the stream
in a persistent manner.

XI. EXEMPLARY IMPLEMENTATION OF THE
LAST PUBLICATION TIME IN A REAL-TIME

DATA STREAM

0539 Exemplary embodiments may be used to determine
the time of the last stream event published in a real-time data
stream, e.g., the time of publication of the last “tweet' in a
user's TwitterTM stream. One of ordinary skill in the art will
readily recognize that real-time detection of popular topics is
an exemplary implementation of exemplary embodiments,
and that exemplary embodiments are not limited to this illus
trative implementation.
0540. In an exemplary embodiment, a map operation may
Subscribe to receive “tweets in a TwitterTM Stream T. The
map operation may process each “tweet' in a real-time man
ner and publish a stream event to an intermediate real-time
data stream S. The output stream event may have an eventkey
attribute that is the user id of the TwitterTM who published the
“tweet.” The value of the eventkey attribute may be the time of
publication of the “tweet.”
0541. An update operation may subscribe to the interme
diate real-time data stream S and may extract the publication
time for each user ID. The update operation may update a
slate in disk storage having a slatekey attribute set to the
eventkey attribute and a slatekey attribute value set to the
eventkey attribute value. That is, the slate may store the last
publication time for “tweets’ published by the user identified

US 2014/0059185 A1

in the slatekey attribute. A slate for a desired TwitterTM user
may be looked up in disk storage by the slatekey attribute
which designates the user ID.

XII. EXEMPLARY IMPLEMENTATION OF
REAL-TIME DETECTION OF POPULAR TOPICS

0542 Exemplary embodiments may be used to perform
real-time detection of an unusually high level of interest in a
topic discussed in one or more real-time data streams. One of
ordinary skill in the art will readily recognize that real-time
detection of popular topics is an exemplary implementation
of exemplary embodiments, and that exemplary embodi
ments are not limited to this illustrative implementation.
0543. In an exemplary embodiment, interestina particular
topic T may be indicated by the number of stream events that
mention the topic Tina certain amount of time, e.g., in the last
hour, divided by the average number of stream events that
mention the topic Tin the same hour of the day. In another
exemplary embodiment, interest in a particular topic T may
be indicated by a Z-score that takes into account both the mean
and the standard deviation of hourly mentions of the topic T.
0544. In an exemplary approach, a TopicTagger map
operation may be performed to determine the topics dis
cussed in the stream events. A TopicCounter update operation
may be performed to count the number of occurrences of a
particular topic in the stream events. A TopicThermometer
update operation may be performed to indicate those topics
that have an unusually high interest indicated by the interest
exceeding a predefined threshold interest. A TopKTopic
update operation may be performed to determine the top K
topics at a time of day.
0545 An exemplary TopicTagger map operation may Sub
scribe to a real-time input data stream S0, e.g., a TwitterTM
stream. A stream event in the exemplary TwitterTM stream
may have an eventkey attribute value the user ID of a Twit
terTM user, and a text attribute value containing the full text of
the “tweet' event. The TopicTagger map operation may
receive a stream event from the subscribed data stream and
run a document parsing mechanism on the text attribute value
of the “tweet' event. In an exemplary embodiment, the doc
tagger operator may be run on the text attribute value to
extract a set of one or more topics (KCIDs) mentioned in the
“tweet.” For each KCID in the “tweet, the TopicTagger map
operation may create and publish a new event on an interme
diate real-time data stream S1. The eventkey attribute value of
the new event may be a collection or combination of the
KCID and the time at which the “tweet' was generated, e.g.,
{KCID, time of day. The new event may also include a
KCID attribute whose value is the KCID corresponding to the
event, and a timestamp attribute whose value is the time at
which the “tweet was generated. The intermediate data
stream S1 may be provided in a stream bus so that any of the
map and update operations may access the new events.
0546. The following pseudo-code represents an exem
plary object-oriented class TopicTagger that may be used to
implemented the TopicTagger map operation.

TABLE-US-OOOO7

class TopicTagger(Mapper): defmap(event): kcids =
doctag(event.text) h = date().hh () i? hour in hh format for kcid
in kcids: self-publish (“s1”. Event(key:hh--kcid, topic:kcid))

40
Feb. 27, 2014

0547 An exemplary TopicCounter update operation may
subscribe to the real-time intermediate data stream S1. For a
particular topic and a time of day associated with a stream
event in the data stream S1, the TopicCounter update opera
tion may be called on a slate S corresponding to the topic and
the time of day. The slate S may be expired in a predefined
period of time, e.g., one hour. The TopicCounter update
operation may maintain a variable count in the slate that
counts the number of occurrences of the topic at the time of
day associated with the slate. When the slate expires, the
TopicCounter update operation may create and publish to a
real-time intermediate data stream S2 a new stream event
whose eventkey attribute is a collection or combination of the
topic KCID and the time at which the “tweet' was generated,
e.g., KCID, time of day. The value of the eventkey
attribute may be the value of the count variable that indicates
the number of occurrences of the topic at the time of day. The
new stream event may be created and published by a finalize
method of the TopicCounter update operation.
0548. The following pseudo-code represents an exem
plary object-oriented class TopicCounter that may be used to
implemented the TopicCounter update operation.

TABLE-US-OOOO8

class TopicCounter(Updater): definit(slate): slate.count = 0 if total
number of mentions slate.set expiry (next hour()) i? assume we’ve
written a utility fin to compute the i? timestamp of the next hour def
update(event, slate): slate.count += 1 def finalize(slate): self-publish (“s2,
Event(key:slate.key, value:count))

0549. An exemplary TopicThermometer update operation
may subscribe to the real-time intermediate data stream S2.
The update operation may be invoked with a slate S corre
sponding to a particular topic KCID and time of day. The
TopicThermometer update operation may maintain the fol
lowing variables: variable N that includes the total number of
mentions of the topic at the time of day, variable D that
includes the number of days that the information has been
tracked, variable avg that includes the average number of
mentions of the topic (i.e., N/D), and variable interest that
includes an indication of the interest in the topic determined
as count/avg. If the value of the interest variable is equal to
and/or above a predefined threshold, the TopicThermometer
update operation may create and publish to a real-time inter
mediate data stream S3 a new stream event with the topic
KCID as the eventkey attribute and the interest level as the
eventkey attribute value.
0550 The following pseudo-code represents an exem
plary object-oriented class TopicThermometer that may be
used to implemented the TopicThermometer update opera
tion.

TABLE-US-OOOO9

class TopicThermometer(Updater): definit(slate): slate.n = 0
slate.d = 0 defupdate(event, slate): avg = (slate.n--1) (slate.d+1)
avoid zero div intrst = event.count avg if intrst > threshold:
publish (s3'.Event(key:slate.kcid,interest:intrst)) i? update stats
slate.n += event.count slate.d += 1

0551. In an exemplary embodiment, a data structure may
be maintained to record the top K topics at any time of the day.
A TopKTopic update operation may be used to maintain this
data structure. The TopKTopic update operation may Sub
scribe to the real-time intermediate data stream S3 and may

US 2014/0059185 A1

use a slate to maintain a priority queue that tracks the top K
interest scores in the events of stream S3. The TopKTopic
update operation may also track the top K topics by location
and/or category.

XIII. EXEMPLARY IMPLEMENTATION OF
REAL-TIME K-RANK COMPUTATION

0552) Exemplary embodiments may be used to perform
real-time computation of K-ranks that indicate the degree of
influence of content published by a particular user on other
users. The computation may be based on Stream events in a
real-time input data stream, e.g., a TwitterTM stream. The
stream events in the input data stream may have a streamid
attribute value of S0, an eventkey attribute value of the user
ID, and a text attribute value of the text of the “tweet. The
output may be a hashtable in which the key is the user ID and
the value is the K-rank of the user, i.e., <userID, scored. All
K-ranks may be initialized at time Zero, e.g., to 1000. In an
exemplary embodiment, a map operation named LinkParti
tioner, a first update operation named GamePlayer and a
second update operation named ScoreUpdater may be used to
implement the K-rank computation functionality. One of
ordinary skill in the art will readily recognize that real-time
detection of popular topics is an exemplary implementation
of exemplary embodiments, and that exemplary embodi
ments are not limited to this illustrative implementation.
0553. In an exemplary embodiment, the LinkPartitioner
map operation may subscribe to the input data stream S0 and
may determine if the text of each stream event contains a link.
The map operation may, for example, process the text
attribute value of the stream event to determine if any portion
of the text matches the format of a link. If the map operation
determines that the stream event does not include a link, the
map operation may not output anything. However, if the
stream event is determined to include a link, the map opera
tion may canonicalize the link and generate a new stream
event in which the eventkey attribute is the canonicalized link
and the value is the userID of the user who published the input
stream event. The map operation may publish the new stream
event to a real-time intermediate data stream S1.
0554. The following pseudo-code represents an exem
plary object-oriented class LinkPartitioner that may be used
to implemented the LinkPartitioner map operation.

TABLE-US-OOO10

class LinkPartitioner(Mapper): defmap (event): link =
extractLink(event.text) if link: ev = event.copy ()
ev.key = canonicalize(link) self-publish (s1, ev)

0555. In an exemplary embodiment, the GamePlayer
update operation may subscribe to receive stream events from
the real-time intermediate data stream S1. The GamePlayer
update operation may be invoked with a slate S with slatekey
attribute Land a stream event whose eventkey attribute is a
link L and whose value is a user ID. The slate S may have an
additional attribute named users with a value that holds an
ordered list of the users who have published the link L. Every
user V in the ordered list of users has in essence “won a game
against user U, i.e., have been preceded by user U in publish
ing the link L. In order to model this information, the Game
Player update operation may generate a new stream event
who eventkey attribute is a fixed value and whose value is the
ordered pair of users, e.g., (U,V), indicating that “V defeated

Feb. 27, 2014

U.” The GamePlayer update operation may publish the new
stream event to a real-time intermediate data stream S2. In
addition, the GamePlayer update operation may create a slate
Sor, if slate Salready exists, may append U to the ordered list
ofusers stored in the value of the users attribute in the slate S.
A time-to-live parameter may be set for the slate S, e.g., for a
day, which ensures that the slate S will be deleted if a link is
not seen by the LinkPartitioner map operation in twenty-four
hours.

0556. The following pseudo-code represents an exem
plary object-oriented class GamePlayer that may be used to
implemented the GamePlayer update operation.

TABLE-US-OOO11

class GamePlayer(Updater): definit(slate): slate.users =
slate.set ttl(24*60*60) i? set TTL to be 1 day defupdate(event, slate): u =
event.users for v in slate.users: e = Event(key:''x'', winner: v, loser: u)
self-publish (“s2', e) slate.users.append (u)

0557. In an exemplary embodiment, the Scorel Jpdater
update operation may subscribe to receive stream events from
the real-time intermediate data stream S2. The Scorel Jpdater
update operation may create a slate or, if the slate already
exists, may update the slate containing a single attribute
named scores which is a hashtable with a key attribute of user
ID and value of the K-score associated with the user ID. The
Scorel Jpdater update may receive the result of every pairwise
game performed by the GamePlayer update operation and
may update the K-scores stored in the hashtable associated
with each user ID. Any Suitable rating system may be used in
updating the K-scores, e.g., the Elo rating system.
0558. The following Pseudo-code represents an exem
plary object-oriented class Scorel Jpdater that may be used to
implemented the ScoreUpdater update operation.

TABLE-US-OOO12

class ScoreUpdater(Updater): definit(slate): slate.scores = Hashtable()
defupdate(event, slate): (win, lose) = (event"winner, event loser')
s = slate.scores Assume a function ELO that takes old scores of
winner and loser and returns their new scores (swinslose) =
elo(swinslose)

0559. In an exemplary embodiment which uses applica
tion slates and keyspaces, a K-rank computation may store an
individual user's K-scores separately in the disk storage
indexed by the user ID. A modification may be made to the
ScoreUpdater update operation to create a keyspace'kScore.”
For every user ID u, the Scorel Jpdater update operation may
create an application slate with key “kscore:u' which stores
the score associated with userIDu. These slates may be set up
with a delayed write time, e.g., sixty seconds. The disk Stor
age may be used to store the results of the stream computa
tions and may allow efficient real-time access for applications
that use the results. Any application, whether built using the
map-update framework, may access the K-score of a user,
correct to the last minute, by looking up the key “kscore:u' in
the disk storage. In an exemplary embodiment, the system
may use keyspaces as information on improving execution,
for example, designating the same worker node as the primary
worker node for all the keys in an application keyspace.
0560. The following pseudo-code represents an exem
plary object-oriented class Scorel Jpdater class modified to
implement application slates and keyspaces.

US 2014/0059185 A1

TABLE-US-OOO13

class ScoreUpdater(Updater): defgets(userid): if utility method try:
f* get Slate() gets a slate by key. If no slate exists for the key, it raises
KeyError *, return self get slate(“kscore: + userid) except KeyError:
f* create a new appslate and initialize it *f s = Slate(“kscore:” +
userid) s.score = 1000 ft initial ELO score s.set write delay (60) i? 60
Second write delay returns defupdate(event, slate) winner, loser =
(event.winner, event.loser) wins, loses = (self.gets(winner),
self.gets(loser)) wins.score, loses. Score = elo(wins.score...loses.score)
wins.update() loses.update()

XIV. EXEMPLARY IMPLEMENTATION OF
STREAM CLUSTERING

0561 Exemplary embodiments may be used to cluster
stream events in real-time data streams based on a taxonomy
of one or more topic categories. Exemplary stream clustering
mechanisms may be used to cluster stream events in any
desired data streams. In an exemplary application of a clus
tering search engine, a spider may crawl the web and catego
rize the web pages it gathers into topic pages. A "home page'
or information repository may be provided for each topic to
serve as a doorway to all of the most valuable information on
the topic found on the web. Exemplary topics of interest may
include, but are not limited to, health, cancer, travel, Hawaii
vacation, autos, and the like.
0562. In an exemplary application, stream clustering may
be applied to a subset of stream events (e.g., “tweets”
obtained from a TwitterTM stream) that contain links to exter
nal articles. Exemplary embodiments may cluster the external
articles into news “stories.” As the data stream flows, new
stores may emerge, existing stories may divide into Sub
stories, and certain stories may increase and diminish in
importance. Exemplary embodiments may apply the stream
clustering mechanisms to identify the top N Stories at any
time. Exemplary embodiments may also identify the top N
stories in different topic categories. Exemplary embodiments
may also generate a real-time story stream.
0563 A taxonomy may be provided in exemplary embodi
ments to categorize information in stream events hierarchi
cally. The taxonomy may provide a plurality of categories for
categorizing information at different levels of granularity. In
an exemplary embodiment, the information in each stream
event may be analyzed and categorized based on one or more
categories, for example, first, second and third-level catego
ries indicating increasing granularities of categorization. For
example, a first-level category may indicate a high-level con
cept associated with the information in a stream event, e.g.,
news. A second-level category may indicate an intermediate
level concept, e.g., politics. A third-level category may indi
cate a specific concept, e.g., American politics. One of ordi
nary skill in the art will recognize that additional levels of
categories may be used and that, in an alternative embodi
ment, the granularity of categorization may decrease with
increasing category levels.
0564. In exemplary embodiments, the taxonomy may also
reflect one or more relationships including, but not limited to,
is-a relationships (e.g., San Francisco is-a city), member-of
relationships (e.g., James Hetfield is a member-of Metallica),
capital-of relationships (e.g., Canberra is the capital-of Aus
tralia), and the like. The resulting hierarchical structure may
be implemented as a directed acyclic graph (DAG).
0565. An exemplary stream clustering computation may
be divided into two phases for ease of implementation. In a

42
Feb. 27, 2014

first phase of the stream clustering computation, stream
events may be distributed among worker nodes in Such a
manner that if events A and B can be part of the same cluster,
the events are routed to the same worker node. In order to
implement this event routing mechanism, each stream event
may be distributed to k different worker nodes corresponding
to k different second or third-level topic categories corre
sponding to the stream event. If there are M second-level topic
categories, M update operations may be executed, each
update operation maintaining topic clusters in parallel. An
assumption in this implementation is that stream events can
not cluster together unless they agree on at least one of their
k second-level topic categories.
0566 In an exemplary embodiment, the first phase of the
stream clustering computation may be implemented with a
map operation named DocTagger and an update operation
named CategoryCluster. In an exemplary embodiment, the
DocTagger map operation may run a document categoriza
tion engine named doctagger on the text contained in stream
events. The DocTagger map operation may analyze the text of
each stream event and generate a cluster vector of topic cat
egories corresponding to the text in the stream event. The
DocTagger map operation may also generate high-level topic
categories corresponding to the text in the stream event (e.g.,
second or third-level topic categories in an exemplary tax
onomy). For each high-level topic category, the DocTagger
map operation may create a new stream event whose eventkey
attribute is the topic category. The new stream event may
include other attributes including, but not limited to, a
docvector attribute containing the cluster vector and other
attributes specific to the source that generated the input
stream event, e.g., TwitterTM The DocTagger map operation
may publish the new stream event to a real-time intermediate
data stream S1.

0567. In an exemplary embodiment, the CategoryCluster
update operation may subscribe to the real-time intermediate
data stream S1, and may be invoked with each stream event in
the data stream S1 and a slate whose slatekey attribute is the
topic category in the stream event. The CategoryCluster
update operation may run a suitable clustering engine to add
the stream event to the clusters maintained in the slate. For
each cluster, only the metadata may be stored in the slate, and
application slates with Suitable time-to-live parameter values
may be used to store the actual contents of the cluster and the
stream event information. The Category Cluster update opera
tion may create a new stream event for each updated cluster
with the eventkey attribute set to the cluster ID and the value
set to the cluster vector and other cluster metadata. The Cat
egory Cluster update operation may publish the new stream
event to a real-time intermediate data stream S2.

0568. In a second phase of the stream clustering compu
tation, the clusters from the M different clusterings may be
examined, and duplicates and near-duplicates are eliminated
or merged. In an exemplary embodiment, each cluster may
have a cluster vector of topic categories. An assumption in
this implementation is that if two clusters are near-duplicates,
the clusters will agree on their top-topic category sets, i.e.,
the topic categories that have the highest scores in the cluster
vector viewed as a set (e.g., -3). The cluster metadata may be
distributed so that candidate near-duplicate clusters are
routed to the same node where they may be merged or com
bined.

US 2014/0059185 A1

0569. In some other exemplary embodiments, duplicates
and near-duplicates may not be removed or merged, and may
be tracked separately.
0570. In an exemplary embodiment, the second phase of
the stream clustering computation may be implemented with
a map operation named KCIDGrouper, a first update opera
tion named ClusterMerger, and a second update operation
named OutputStreamer. In an exemplary embodiment, the
KCIDGrouper map operation may subscribe to receive
stream events from the real-time intermediate data stream S2.
For every received stream event, the KCIDGrouper map
operation may examiner the cluster vector and create an
eventkey attribute with a value that combines the k highest
level topic categories in the cluster vector. The KODGrouper
map operation may create a new stream event having the
newly created eventkey attribute and value.
0571. The new stream event may have one or more addi
tional attributes, e.g., corresponding to those of the received
stream event in the data stream S2. The KCIDGrouper map
operation may publish the created Stream event to a real-time
intermediate data stream S3.
0572. In an exemplary embodiment, the ClusterManager
update operation may subscribe to receive stream events from
the real-time intermediate data stream S3. The ClusterMan
ager update operation may run a Suitable hierarchical cluster
ing engine on the clusters in the received stream event to
merge near-duplicate clusters. The ClusterManager update
operation may create a new stream event corresponding to
every second-level cluster. The ClusterManager may publish
the new stream event to a real-time intermediate data stream
S4.
0573. In an exemplary embodiment, the OutputStreamer
update operation may subscribe to receive stream events from
the real-time intermediate data stream S4. The Output
Streamer update operation may examiner each second-level
cluster and, based on predefined threshold levels, may publish
stream events to one or more output data streams in which one
data stream is provided for each stream speed. In an exem
plary embodiment, slower data streams may have higher pre
defined threshold levels.

XV.EXEMPLARY COMPUTING DEVICES

0574 FIG. 42 is a block diagram representing an exem
plary computing device 4200 that may be used as a worker
node, a receiver, a conductor, and the like, to perform any of
the methods provided by exemplary embodiments. The com
puting device 4200 may be any computer system, Such as a
workstation, desktop computer, server, laptop, handheld
computer, tablet computer (e.g., the iPadTM tablet computer),
mobile computing or communication device (e.g., the
iPhoneTM mobile communication device, the AndroidTM
mobile communication device, and the like), or other form of
computing or telecommunications device that is capable of
communication and that has sufficient processor power and
memory capacity to perform the operations described herein.
A distributed computational system may be provided com
prising a plurality of Such computing devices.
0575. The computing device 4200 includes one or more
non-transitory computer-readable media having encoded
thereon one or more computer-executable instructions or
Software for implementing exemplary methods. The non
transitory computer-readable media may include, but are not
limited to, one or more types of hardware memory, non
transitory tangible media (for example, one or more magnetic

Feb. 27, 2014

storage disks, one or more optical disks, one or more USB
flash drives), and the like. For example, memory 4206
included in the computing device 4200 may store computer
readable and computer-executable instructions or Software
for implementing exemplary embodiments. The computing
device 4200 also includes processor 4202 and associated core
4204, and in Some embodiments, one or more additional
processor(s) 4202' and associated core(s) 4204" (for example,
in the case of computer systems having multiple processors/
cores), for executing computer-readable and computer-ex
ecutable instructions or software stored in the memory 4206
and other programs for controlling system hardware. Proces
sor 4202 and processor(s) 4202 may each be a single core
processor or multiple core (4204 and 4204") processor.
0576 Virtualization may be employed in the computing
device 4200 so that infrastructure and resources in the com
puting device may be shared dynamically. A virtual machine
4214 may be provided to handle a process running on mul
tiple processors so that the process appears to be using only
one computing resource rather than multiple computing
resources. Multiple virtual machines may also be used with
one processor.

0577 Memory 4206 may include a computer system
memory or random access memory, such as DRAM, SRAM,
EDO RAM, and the like. Memory 4206 may include other
types of memory as well, or combinations thereof. Memory
4206 may be used to store one or more slates on a temporary
basis, for example, in cache.
0578. A user may interact with the computing device 4200
through a visual display device 4218. Such as a screen or
monitor, that may display one or more user interfaces 4220
that may be provided in accordance with exemplary embodi
ments. The visual display device 4218 may also display other
aspects, elements and/or information or data associated with
exemplary embodiments. The computing device 4200 may
include other I/O devices for receiving input from a user, for
example, a keyboard or any Suitable multi-point touch inter
face 4208, a pointing device 4210 (e.g., a mouse, a user's
finger interfacing directly with a display device, etc.). The
keyboard 4208 and the pointing device 4210 may be coupled
to the visual display device 4218. The computing device 4200
may include other suitable conventional I/O peripherals.
0579. The computing device 4200 may include one or
more audio input devices 4224. Such as one or more micro
phones, that may be used by a user to provide one or more
audio input streams.
0580. The computing device 4200 may include one or
more storage devices 4224. Such as a durable disk storage
(which may include any Suitable optical or magnetic durable
storage device, e.g., RAM, ROM, Flash, USB drive, or other
semiconductor-based storage medium), a hard-drive, CD
ROM, or other computer readable media, for storing data and
computer-readable instructions and/or Software that imple
ment exemplary embodiments as taught herein. For example,
the storage device 4224 may provide a slate storage 3626 for
storing slates, and may store computer-executable instruc
tions for implementing, for example, a receiver module 3608,
a conductor module 3612, one or more map modules 4232,
and one or more update modules 4234. Exemplary receiver,
conductor, map and update modules may be programmati
cally implemented by a computer process as described in
connection with FIGS. 8 and 36. The storage device 4224
may be provided on the computing device 4200 or provided

US 2014/0059185 A1

separately or remotely from the computing device 4200. The
storage device 4224 may be used to store one or more slates in
a durable manner.
0581. The computing device 4200 may include a network
interface 4212 configured to interface via one or more net
work devices 4222 with one or more networks, for example,
Local Area
0582 Network (LAN), Wide Area Network (WAN) or the
Internet through a variety of connections including, but not
limited to, standard telephone lines, LAN or WAN links (for
example, 802.11, T1, T3, 56 kb, X.25), broadband connec
tions (for example, ISDN. Frame Relay, ATM), wireless con
nections, controller area network (CAN), or some combina
tion of any or all of the above. The network interface 4212
may include a built-in network adapter, network interface
card, PCMCIA network card, card bus network adapter, wire
less network adapter, USB network adapter, modem or any
other device Suitable for interfacing the computing device
4200 to any type of network capable of communication and
performing the operations described herein. The network
device 4222 may include one or more suitable devices for
receiving and transmitting communications over the network
including, but not limited to, one or more receivers, one or
more transmitters, one or more transceivers, one or more
antennae, and the like.
0583. The computing device 4200 may run any operating
system 4216, such as any of the versions of the Microsoft(R)
Windows(R) operating systems, the different releases of the
Unix and Linux operating systems, any version of the
MacOS(R) for Macintosh computers, any embedded operating
system, any real-time operating system, any open source
operating system, any proprietary operating system, any
operating systems for mobile computing devices, or any other
operating system capable of running on the computing device
and performing the operations described herein. In exemplary
embodiments, the operating system 4216 may be run in native
mode or emulated mode. In an exemplary embodiment, the
operating system 4216 may be run on one or more cloud
machine instances.
0584) Exemplary computer-executable methods, systems
and devices taught herein may be used in various computer
applications and to implement further computer-executable
methods and techniques. For example, exemplary computer
executable methods, systems and devices taught herein may
be used to populate and process data structures taught in U.S.
Provisional Patent Application No. 61/415,279 entitled
“Social Genome, filed Nov. 18, 2010 and in a U.S. non
provisional patent application Ser. No. 13/300,519 entitled
“Social Genome filed Nov. 18, 2011. Exemplary computer
executable methods, systems and devices taught herein may
be used to perform analytics as taught in a U.S. non-provi
sional patent application Ser. No. 13/300.523 entitled “Real
time Analytics of Streaming Data.” filed Nov. 18, 2011.
Exemplary computer-executable methods, systems and
devices taught herein may be used to process and provide data
for methods taught in a U.S. non-provisional patent applica
tion Ser. No. 13/300,473 entitled “Methods, Systems and
Devices for Recommending Products and Services.” filed
Nov. 18, 2011.

XVI. EXEMPLARY NETWORK
ENVIRONMENTS

0585 FIG. 43 is a block diagram representing an exem
plary network environment 4300 suitable for a distributed
implementation of exemplary embodiments. The network
environment 4300 may include one or more servers 4302 and
4304 coupled to one or more clients 4306 and 4308 via a

44
Feb. 27, 2014

communication network 4310. The network interface 4212
and the network device 4222 of the computing device 4200
enable the servers 4302 and 4304 to communicate with the
clients 4306 and 4308 via the communication network 4310.
The communication network 4310 may include, but is not
limited to, the Internet, an intranet, a LAN (Local Area Net
work), a WAN (Wide Area Network), a MAN (Metropolitan
Area Network), a wireless network, an optical network, and
the like. The communication facilities provided by the com
munication network 4310 are capable of supporting distrib
uted implementations of exemplary embodiments.
0586. In an exemplary embodiment, the servers 4302 and
4304 may provide the clients 4306 and 4308 with computer
readable and/or computer-executable components or prod
ucts or data under a particular condition, such as a license
agreement. In an exemplary embodiment, the clients 4306
and 4308 may provide the servers 4302 and 4304 with com
puter-readable and/or computer-executable components or
products or data under a particular condition, such as a license
agreement.
0587. In an exemplary embodiment, one or more of the
servers 4302 and 4304 and clients 4306 and 4308 may imple
ment a computational system, Such as system 4200 or one or
more modules thereofshown in FIG. 42, in order to provide a
distributed mechanism for performing the exemplary meth
ods described herein. For example, servers 4302 and 4304
may implement computational systems 4200' and 4200",
respectively, and clients 4306 and 4308 may implement com
putational systems 4200" and 4200", respectively.
0588. In an exemplary distributed implementation for pro
cessing real-time data streams, a stream bus comprising one
or more real-time data streams may be provided at a compu
tational system 4200' on a server 4302. One or more receiver
and/or one or more conductor modules may be provided at a
computational system 4200" on a server 4304. The receiver
and/or conductor modules may access one or more data
streams provided by the server 4302, may transmit stream
events in the data streams to one or more worker processes
running on client machines. For example, a computational
system 4200" on a client 4306 may run a first worker process
to perform a first stream computation, e.g., a map operation
and/or an update operation. Similarly, a computational sys
tem 4200" on a client 4308 may run a second worker process
to perform a second stream computation, e.g., a map opera
tion and/or an update operation.
0589. In an exemplary embodiment, the first worker pro
cess running on the client 4306 may receive one or more
stream events from the conductor running on the server 4304,
and may perform the first stream computation. The first
worker process may generate an output stream event as a
result of the first stream computation, which may be pub
lished to a data stream maintained at the stream bus on the
Server 4302.

0590. In an exemplary embodiment, the second worker
process running on the client 4308 may receive one or more
stream events from the conductor running on the server 4304,
and may perform the second stream computation. The second
worker process may create or update one or more slate data
structures, and may persistently store the slates at the com
putational system 4200" on the client 4308 in a distributed
manner and/or at a central data structure provided on a dif
ferent server or client. The second worker process may also
store the slates in memory at the computational system
4200" on the client 4308. Storage of a slate locally in
memory at a worker node where the worker node is the
primary worker node for the slatekey of the slate reduces the
number of disk storage accesses performed during the stream

US 2014/0059185 A1

computation and, thereby, reduces the time and computa
tional requirements of the stream computation. The second
worker process may, additionally or alternatively, generate an
output stream event as a result of the second stream compu
tation, which may be published to a data stream maintained at
the stream bus on the server 4304.

XVII. EQUIVALENTS
0591. In describing exemplary embodiments, specific ter
minology is used for the sake of clarity. For purposes of
description, each specific term is intended to at least include
all technical and functional equivalents that operate in a simi
lar manner to accomplish a similar purpose. Additionally, in
Some instances where a particular exemplary embodiment
includes a plurality of system elements, device components
or method steps, those elements, components or steps may be
replaced with a single element, component or step. Likewise,
a single element, component or step may be replaced with a
plurality of elements, components or steps that serve the same
purpose. Moreover, while exemplary embodiments have been
shown and described with references to particular embodi
ments thereof, those of ordinary skill in the art will under
stand that various Substitutions and alterations in form and
detail may be made therein without departing from the scope
of the invention. Further still, other aspects, functions and
advantages are also within the scope of the invention.
0592 Exemplary flowcharts are provided herein for illus

trative purposes and are non-limiting examples of methods.
One of ordinary skill in the art will recognize that exemplary
methods may include more or fewer steps than those illus
trated in the exemplary flowcharts, and that the steps in the
exemplary flowcharts may be performed in a different order
than the order shown in the illustrative flowcharts. Method
steps in the exemplary flowcharts represented in dashed lines
are steps that are provided in Some embodiments and not in
other embodiments.

1. A computer-implemented method comprising:
receiving, at a worker process, a first stream event in a

real-time data stream;
processing, at the worker process, the first stream using a
map operation to generate output data;

transforming the output data, at the worker process, to
generate a second stream event associated with at least
one slate that records a set of related Stream events; and

transmitting the second stream event in an intermediate
data stream.

2. The computer-implemented method of claim 1, wherein
the map operation is a stream computation in which stream
events are processed to generate the output data.

3. The computer-implemented method of claim 2, wherein
the stream computation determines at least one of a popular
topic in the first stream, post time information, and a user's
current interest.

4. The computer-implemented method of claim 2, wherein
the stream computation includes ranking computations to
determine a users influence on other users.

5. The computer-implemented method of claim 2, wherein
the stream computation includes analyzing data published on
a web site.

6. The computer-implemented method of claim 2, wherein
the stream computation includes grouping web page view
events into visits and aggregating statistics based on visits.

7. The computer-implemented method of claim 2, wherein
the stream computation includes determining links on a web
page that maximize a click-through rate.

Feb. 27, 2014

8. The computer-implemented method of claim 1, wherein
the map operation is subscribed to receive a plurality of
stream events in the real-time data stream.

9. The computer-implemented method of claim 1, further
comprising: determining a computational load at a plurality
of worker nodes on a network; and scheduling the worker
process on a particular worker node with the lowest compu
tation load.

10. The computer-implemented method of claim 1,
wherein the first stream event is a unit of data transmitted in
the real-time data stream, and wherein the second stream
event is a unit of data transmitted in the intermediate data
stream in a real-time manner.

11. The computer-implemented method of claim 1,
wherein the at least one slate records the set of related stream
events in a persistent storage device.

12. A computer-implemented method comprising:
receiving, at a worker process, a first stream event in a

real-time data stream;
processing, at the worker process, the first stream using an

update operation to generate updated data;
transforming the updated data, at the worker process, to

generate a second stream event associated with a set of
related stream events; and

transmitting the second stream event in an intermediate
data stream.

13. The computer-implemented method of claim 12,
wherein the set of related stream event is associated with a
slate that records the set of related Stream events in a persis
tent storage device.

14. The computer-implemented method of claim 12,
wherein the update operation is a stream computation in
which stream events are processed to generate the output data.

15. The computer-implemented method of claim 14,
wherein the stream computation determines at least one of a
popular topic in the first stream, post time information, and a
user's current interest.

16. The computer-implemented method of claim 14,
wherein the stream computation includes ranking computa
tions to determine a users influence on other users.

17. The computer-implemented method of claim 14,
wherein the stream computation includes analyzing data pub
lished on a web site.

18. The computer-implemented method of claim 14,
wherein the stream computation includes grouping web page
view events into visits and aggregating statistics based on
visits.

19. The computer-implemented method of claim 14,
wherein the stream computation includes determining links
on a web page that maximize a click-through rate.

20. An apparatus comprising:
a memory; and
one or more processors coupled to the memory, the one or
more processors configured to:
receive a first stream event in a real-time data stream;
process the first stream using a map operation to gener

ate output data;
transforming the output data to generate a second stream

event associated with at least one slate that records a
set of related stream events; and

transmitting the second stream event in an intermediate
data stream.

