US 20140074973A1

a2y Patent Application Publication o) Pub. No.: US 2014/0074973 A1l

a9 United States

Kumar et al.

43) Pub. Date: Mar. 13, 2014

(54) SYSTEM AND METHOD FOR
ORCHESTRATION OF SERVICES FOR USE
WITH A CLOUD COMPUTING
ENVIRONMENT

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: Abhijit Kumar, Cupertino, CA (US);
Jagadish Ramu, Bangalore (IN);

Sivakumar Thyagarajan, Bangalore
(IN)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(21) Appl. No.: 13/970,494

(22) Filed: Aug. 19, 2013

Related U.S. Application Data

(60) Provisional application No. 61/799,182, filed on Mar.
15, 2013, provisional application No. 61/698,467,
filed on Sep. 7, 2012, provisional application No.

61/748,658, filed on Jan. 3, 2013, provisional applica-
tion No. 61/766,819, filed on Feb. 20, 2013.

Publication Classification

(51) Int.CL
HO4L 29/08 (2006.01)
(52) US.CL
[SR HO4L 67/32 (2013.01)

709/217

(57) ABSTRACT

A system and method for orchestration of services for use
with a cloud computing environment. In accordance with an
embodiment, a cloud platform enables provisioning of enter-
prise software applications within a cloud environment,
including packaging enterprise applications as service defi-
nition packages (SDP), and instantiating the services using
service management engines (SME). In an embodiment, an
orchestration engine communicates with a plurality of SMEs
to control the flow of service creation, provider dependency
resolution, association of services and providers, and the
life-cycle management of services within the cloud platform.

Paa$S Administration Server 508

Administration Console 520

h 2

Platform Logic 521

VAB Deployer 522

VAB Repository
524

1
|
|
I
|
I
|
1
|
|
I
|
1
| A 2
|
I
|
I
|
1
|
|
I
|
1
|

:VM Server

VM Manager 541 -

) Pool 540

}

1

1

1

1 OVM
1 Server
: 542
1

Server Server
543 544

[}
1
[}
1
[}
oM OVM |
[}
1
[}
1

Paa$ Platform 500

= Cloud Computing Environment 100

L 2dN9Id

1517 0p) WewuolAug Bupndwo) pnojy:

US 2014/0074973 Al

0L1 (See|) sinonyiselu] welsAg paleys

0Z1 @injoniiselju| Juswsbeuel pue juswsajgeus paieys

Mar. 13,2014 Sheet 1 of 18

001 Johe] (Seed) 821A8S B se wliofield

0/L 19/heT (Sees) ad1MeS e sk a1emyjos

Patent Application Publication

US 2014/0074973 Al

Mar. 13,2014 Sheet 2 of 18

Patent Application Publication

¢ 34N9id

(o1bojex3 “6'9) {1 | arempieH Jaalag uoneslddy paieys

(gepex3 “6'9) z| | alempleH aseqele(paleys

0L1 (See]) ainjoniisesu] wWalsAg paleys
9zl
cel (s1eusploo “H'8)
swabeuey weus |
el 8zL uoyeoydey zzl
JebBeuep (gvA) Jepiing juswisBeuep
asudisjug Alqwsssy |enMIA Anuspy
o€l ¥Zl
Buiuoisiroid WalsAS uoneiBaju| e1eq
951 Bung 7G1 Aemojen Zg1 dmyoeg 0sL 114" 9y 1 Bunoy Pyl J9jsuelL vl
9 abesn uonelbaju| a2Inoag SUOITEOYIION ISI9NUA dllH 9|l4 8Inosg ueoas snIIA
0zl aimoniiselyu| Juswseabeue pue Juswsjgeus paleys

991 1SS DYIM

91 (01601q9pA ““6°9) Jansag uoneo)ddy

Z9l oseqejeq

00l Jehe (Qeed) 891AI9S € se wiofe|d

0/ suoljeoi|ddy wojsny “Jopusp WoysAg psjesbaju|

2.\ (seeg ssems|ppi ucisng 6s) suoneolddy ssldisjug

0/l J184e (Seeg) a0lAlag B Se aIemyos

€ 34N9OI4

US 2014/0074973 Al

Mar. 13,2014 Sheet 3 0of 18

0Ll (See]) ainonlisenu] welsAg paleys

905 (VA)
Alquessy [enpip
71Lg _ L_omwmmm z0g
JaBeuely (4as) ebesoed
Ayonse|g pnojo €16 (shueusa uoedsIuIUpY uoNIULSQ S0INSS
Seed
705
(3Ins) suibug
ZLG ddy ao1n198 :_m%oFM wswabeuep
m.o_zmw sones
00G wiofie|d seed

0/1 19heT (Seeg) a2I1MIag e se a1em)os

Patent Application Publication

US 2014/0074973 Al

Mar. 13,2014 Sheet 4 of 18

Patent Application Publication

¥ 34N9id

cLs
ddy so1n98

Z£G 9|0sSu0D)
80IAI9g

01G ulrewoq 921AI8g

|
! _ 0£G Joouejeg peo 82S Jepinoid
! SETIRCETY

e e e e e e e e e e e e e = = a

|

| 12
1 siapinoid
! da

|

| 9¢s
1 1spIroid
! dvadn

14

foysodsy gvA

(\
zzG 19hojdaa gva

1Zg 01607 wiope|d

025 910SUOD UoResISIUIWPY

806 JoAlag uonensiuIWpY Seed

US 2014/0074973 Al

Mar. 13, 2014 Sheet S of 18

Patent Application Publication

S 34N9i4

001, JUSWIUOIIAUT .m:._u.s.o_.Eo.Q .v.:o._o. i

00G wiope|d Seed

¥2G
Aoysodsy gva

(‘\l\
zes 1efojdsg gva

\

1.2G 01807 wiopeld

[

0ZG S|0SUOD UOHEBASIUIWPY

805 JoAIag UoensIuIWPY Seed

906 (VA)
Alquisssy |enJIA

)

.{\l\\\.\

c0s

(das) sbexoed
uonusg 991AI8S

¥0S

(3nS) subuz
swsabeuep aoiAlag

9 J4N9I4d

001 e WwuoJAuT Bupndwod pnojo -

| 00g wiopeid seed

US 2014/0074973 Al

! I
! I
_ bG £vG Zrs |
! 1aAIeg JEYNELS 1aAIeg |
“ WAO WAO WAO !
|

" 7 Y “
“ ovg 100d !
| 18N8S WA |
- IvG ofeuey WA 0 fmm—m—— -

A A

[£4%

Aoysodey gvn

Mar. 13,2014 Sheet 6 of 18

(“\l\
Zzg 1efoldeg ava

A
12G 21607 wiojeld

A

(02G SI0SuU0) uolBASIUIWLPY

805 JoAJ9g UoReNsIuIWPY Seed

Patent Application Publication

US 2014/0074973 Al

Mar. 13, 2014 Sheet 7 of 18

Patent Application Publication

4 34N9i4

001 Wwawuouiaug Bundwaod pnoyy:

‘1 00g wiopeld Seed

266 N jueus |

GG g jueus |

0GG V jueus |

ZLG ddy aoinesg

[A%
9]0SU0D) 901AI9G

QLG urewoq 891M8g

opG 1asn

US 2014/0074973 Al

Mar. 13,2014 Sheet 8 of 18

Patent Application Publication

8 34N9Id

| 00g wuopeld SeEd

986G 1015 Auap)

286 9101S JUNoooY

¥86 €86
uonesnbyuo)

A

FAAS
aoepBU|
uonensiuiwpy

186G IdV
swabeuey Ajusp)

08G JokeT
uonenbiyuo)

¥26 Juswsabeuep
uNoooYy

£/6 Wwawsbeuep
uoneinbyuor)

7

0.6 1aBeuepy 1UN02Y PNojD

*

%

*

99G adlnBg
weawsabeue|y Ajijusp|

1%
W30

298
JNS/euIBUT UoeIISaYDIO

09 S0IAISS UONEBIISIUIWPY WIojeld PNofD)

US 2014/0074973 Al

Mar. 13,2014 Sheet 9 of 18

Patent Application Publication

6 34NOId

001 JuswuoaAuT Bugndwod pnojQ <

-] 005 unopeld sERY

0L9 (018 'g 8dIM8G

v 901Al0S ‘B9) — 909

azZljeoy

0.8

Jobeuep
(O ERIINELS JUNO22Y pnojD

%

¥z Moysoday gya

09
g adA] so1meg

209
v adA| ao1n8g

,I‘\\
Zzs lehodeq ava

125 01607 wioged

0ZG 9l0SuoD uonensiuILpY

80G JeAIeg UohRISIUIWPY Seed

665 UIbn|d
wJojield pnoj)

86G Blepesiy

166 Areuig
uoneolddy

966 g dAs

065
JaBeuely das

./

T

G6G uIbn|g
wJojield pnoj)

¥6G ejepesiy

€66 Areuig
uoneolddy

265 vV dds

US 2014/0074973 Al

Mar. 13, 2014 Sheet 10 of 18

Patent Application Publication

0l 34N9I4

819

JUSWIUOIIAUS PNoJD
ay3 uiyum asn Joy ‘Jusuodwood wiogeld sy ojul sadA) eolaies
se sjusuodwoo uoneoldde ssudisjus Buipuodsslloo uoIsIACId

919

jusuodw oo wuope|d ey uiyim
adA) a21Al9S e sk g|geldAlap S| Jusuodwod uoned)dde
asudiajua Jeinonied jeyy moy aujwislap jeyy ‘quauodwod uopes)dde
aspdisjus Jejnoiped e Joy ‘sjuswalinbal pue saljsisoeleyd SoIAI9S
aujuulep 0} ‘sabexoed uoniulep 99IAI9S SJOW IO BUO BU} 9sied

pL9 7~

ejepelsW e pue ‘jusuodwoo Areuiq uonesldde ue
sapnjoul abexoed uoiuyep asiAles yoes ulaisym ‘usuodwod wiodeld
3] ypm asn 1oy ‘safiesoed uoniusp 891A19S 810W 10 SUO SPIAOId

z19

uoaJay) Buinosxa (wioneld geed) jusuodwos wiojeld geed
© pue JUSWU CJIAUS Pnojo e Bulpnjoul sJajnduwios 8iow Jo 9UO0 SpIACId

US 2014/0074973 Al

Mar. 13, 2014 Sheet 11 of 18

Patent Application Publication

LL 34N9Id

| 00g waopeld SeEd

019 (018 ‘g S0INIeS 929 (3NS) suibu3
‘v 90Inieg ‘B9) P wawsbeue ao1A198
(s)ao1nl8g < (s01019G)
96 18sn
l I

6Z9 (INS) suibug
waswabeuepy ao1AI8S

(1apinroid) / \
l
pTTSSsTssssscscsccccccsce- 1
29 . : Y < \\ LS
qadA| sd1neg " ¥29 (INS) suibuz : . | 20BMSU|
i Juswabeuep 991A19G JO} . :] uoneJsiuiwpy
m salpadoid sigeinbyuod | "
029 >
v odAL eoinieg 296G au1bug uonenssyalQ
006G SJIAISS UoljelisIUIWPY WIojeld Pno|D

US 2014/0074973 Al

Mar. 13, 2014 Sheet 12 of 18

Patent Application Publication

Zl 38N9id4

8¢9

sadA} aoiales Jenoiued asoy) woddns o) Jusuodwod
wioped syy uiypm sauibua JuswaBeuew ao1alas Buipuodsaliod ainbiyuon)

9¢9

abexoed uolUep 921AI9S B JO
SjusjUO0 By] Jo/pue Jusuodwos wiogeld ay) Jo uoleinByuoo ay) 0}
Buipioooe ‘sedA) 891AI8S JUSISYIP SJ0W JO SUO SE $80IAI8S UoIsircld 0)
pue ‘abexyoed Uol JUlep 92IAISS B Jo/pue J8s)l Jusuodwoo wioyeld ayj Jo
uollenBuoo e asled 0) pasn ale saulbus Juswabeuew adlAleg

ve9

JUSWIUOJIAUS pnop ay)
uIypm asn 1oy psuoisiacld aq 0} sadA} soiales Jenolyed suiwisiag

A

ze9 M

sadA) eo1n8s 8y} Jo Buuojuow pue
‘Juswabeuew 2429y ‘Buluoisiaoid aiow Jo suo Buipnjoul ‘sadA)
20IABS SB S§901AI9S UoIsiacld 0] pash ale yolym ‘auibus uoljelyssyolo ue
YA UORESIU NWWOD Ul ‘ssulbus juswabeuew 891A19S 810W JO 8UO 8pIACId

0£9

uoalsay) Bunnooxs (wiogeld geeq) Jusuodwod wioyeld geeq
€ puUe JUsWU olIAUS pnojd e Buipnjoul s1sjndwos aiow Jo auUo apiacid

US 2014/0074973 Al

Mar. 13, 2014 Sheet 13 of 18

Patent Application Publication

€L 34N9I4

00} s wuoliAuT Bugndwod pnojy

00S w.ohe|d Seed

065
JeBeuep 4as

! |

! |

I bg £VG FALS] I

| Jonsg SEVNEIS Joneg 1

“ WAO WAO WAO “
I

| y Y “

“ 075 foog!

¥2s I Jamas NA |

Aoysodsy gva - LyG 1eBeuey WA 000 fmmm—m————

949 Idv 1S3
x 2T6 19hojdeq ava
2¥9 WalID sakojdaq gavA / uibnid ava
019 901IM8S A|qWIBSSY [enlIA
298

JWS/eUIBUT UoleISIY2IQ

09G 80IAI9S UONEJISIUIWPY WIoE|d PNojD

US 2014/0074973 Al

Mar. 13, 2014 Sheet 14 of 18

Patent Application Publication

i 34N9O14

859 7™

JUSWUOJIAUS PNOJD 8y} UIYIM
S90IMSS JO Juswabeuew 8j04o-a) pue ‘sispiroid pue sa2IAISS JO
uoleloosse ‘uolinjosal Aouspusdsp Japiacid ‘Uoljeald 81AISS JO MO)) BU}
|onuoo 0} se uibus Juswabeuew 201AIas Jo Ajjein|d B Yyim SJesiunwiwo’)

969

sadA} a21n19s Jejnoiued asoy)
yoddns o0} Jusuodwos wiopeld syy ulyum ssuibus
wawabeuew ao1A19s Bulpuodsaliod aunByuod pue ‘JUSWUOIIAUS PNojo
8y} ulyIm asn Joj pauoaisiroid aq 0] sadA aolalas tejnailed sulwisleq

v59 M

seoue|dde [enyiA Jo 18s e o] uoitelnBljuod e pue ABojodo) e sauysp
12Uy} A|quissse |enyiA e ‘sBexoed Uoluep S2IAISS SU3 UIUIIM ‘sulluis}aq

269 7~

suod woo wioge(d ay)
uiym ad £) 801A19S B se s|qelanlsp sl Jusuodwod
uoneoldde asiidisus Jeinonted jeyy moy ‘Jusuodwod uoneoljdde ssudisyus
Jejnoiped e Joy ‘saulap abeyoed uoluyep S901AI9S oS Uldlaym ‘Jusuoduwod
wioferd sy yum asn Joy ‘sebBexoed uoniulep a21AI8S 810W JO SUO SAISSY

A

059

uoalay) Bun noaxa (wiopneld Seed) Jusuodwos wiojeld Seed
B pue JuswiuoJiAus pnojo e Buipn|oul s1e)ndwod s1oul 10 SUO 9pIACId

US 2014/0074973 Al

Mar. 13, 2014 Sheet 15 of 18

Patent Application Publication

GL 34N9Id

296 048
Js/euIBug uolelISBYIO JaBeuely JUno22y pnol)
A
|||||||||||||||||||| -
|
|
“ 899
aulbu
G99 < ! Pia e
Jalsyjes) ouley _ v
| \
| ™\ AN _
I
_ / £99 2.9
“ Jonjosay 13 SuonoY
|
Z18 “ 3
| v ddy so1n108 |
|
|
1 |]
! I
“ < _ v99 029
| Z€6 8|osu0) | JaJsyies) o
I 80IAI9G “ SHelY
! S_— I
I
I
“ | 299 JleBeuey uswWUONAUT oSBT
1 0LG Ulewoq 821AI8g “
I
I “ 099 Jebeue Aponse|3 pnojy
b o e o o o e e o e o e o e -

US 2014/0074973 Al

Mar. 13, 2014 Sheet 16 of 18

Patent Application Publication

941 34N9I4

6.9

S90IAJS Jenoled Joy puewap pasealoul Buipnjoul ‘sjuswalinbal o)
puodsai 0] ‘9 [2A0a)1| 921Alas oy} abeuew o) painbyuod si Jabeuew Ajonse|3

229

awi Jo polled e JsA0 sisisjeb oujaW 810w IO BUo
Aq pasayeb ejep ouyaw BuizAjeue AqQ JUSWUOIIAUS Ue Ul 82IAI9S B
JO yyeay ey} syoeyd Ajjesipolad joslgo paje sjium iobesn 991n0sal 92IAI9S
e Jnoge ejep o1oul sulejulew pue sjo9)|00 Ajjesipolad jslqo tasayed ousp

019

3[0A08)1| 92IAl9S By} sbeuew
0} suibus uoljessaydJo sy} BulAyou Jo/pue spus|e Buinssi
‘syusAe Bunos)ep Buipnpoul ‘suonoe ejeldoidde seye) pue ‘Jusuodwod
wiofeld syj UIyuMm se01AI9s JO Y)esy saulullelep Jefeuew Ajonseg

$19

sadA} 991alas Jejnoied asoy) poddns
0} Jusuodwod wuojeld ay) uiypm seulbus Juewsabeuew adlaIes
Buipuodssa.ioo sainBljuco pue ‘JUSWUCIIAUS PNOJd 3y} UIYIIM ash o}
pauoisiacid aq 0} sadA) ao1n1as Jenoted saujwialsp suibua uoljes}sayalQ

€19

uoaley) Buinasxs (wiopeld geed) Jusuodwos wiogpeld geed
© pue JUSLWU oJIAUS pnojo & Buipnjoul s1ejndwiod aow o auo apiAcld

Ll 3¥noId

US 2014/0074973 Al

Mar. 13, 2014 Sheet 17 of 18

00} JuawuosAug Bupndwo) pnojg -

/| 00g wuopeld seed

! |
A e Y !
Aoysoday gvA | 4% 3 2] rAn® |
| SEYNETS SEVNETS Janeg |
“ WAO WAO WAO “
289 ! 'y |
L] sejepdn/ssyoled “ !
ddy eo1n19g I L%\ﬂw [ood “
[L LyG JoBeuey WA 02090 0 p———-—- M _\I,_\V_
ayepdn/yored)

N~N—

ov9 |dv 1834
2zs lekoide@ gava

N

/89 a1epdn 1s9nbay

\

//k]]
689 ddy a0i1nleg |, 080 ddy a21n198 m
(petppoIN) : (lreuibuQ) :

R " 689 (s)mopui
aoueUSjUIE
CES 9|0su0) Z€G 9|0suo)
90IM5G : 90IAI8S "
| | I ' 01§ urewoq 89 01607 ejepdn soineg
I ET

Patent Application Publication

US 2014/0074973 Al

Mar. 13, 2014 Sheet 18 of 18

Patent Application Publication

81 3¥N9Id

969

AjjoaaIp sjusjuod walsAs a1 sy BuiAyipow pue
‘sefiexoed uonulep 821AISS §,901A19S BU) 0} SPUOdsalIod Jey) awn|oA
ysip e Bununow Aq 1o/pue yjas) Jusuodwos wiofe|d Buunbiuoosl Aqg
‘Aresiweuip sjuswaiinbal Jo/pue sofnslajoeIeYD 5,901A18S B ajepdn Jo Ajipojy

¥69

sefexoed UoIULSP 92IAISS B} AHPOLW 0] MOPUIM S3UBUSUIEL
ay) Bulnp 2160] ayepdn aoialas 8y Ag pasn ale Yolym ‘sjusuodwiod
18yJ0 Jo/pue 1duds ‘ajiy uojeinByuod ‘yojed SopNOUI JBY) puUe ‘Swiun
20|AJ9S JB WIB)SAS 9|I} PSIUNOW B 10 [BD0] B JO SUO Sk Aloyisodal e aplacid

269

sebexoed uoniuiyep 821A18S ay] Yim pajelposse sajepdn
1o sayoyed aJow Jo aUo 0} BuIpIooOE ‘MOpUIM SoUBUSIUTEW B UIyIM sobeyoed
uoniuLep 831AISS 8 JOU 10 8U0 aUy BuiAjipow Joj 2160] ejepdn 821AI8S B 8pIAcId

169

suodwoo wuojeld sy} uiyim adA) 801AI8S B SE 3|qeISAlSp S Jusuodwod
uonealjdde ssudisjus Jejnaiped jey; moy ‘Jusuoduwod uonealdde asiidisius
Jenoiped e Joj ‘saulsp abeyoed uoniusp 921A18S Yoes ulslaym ‘Juauodwod

wuogeld ay) yiim asn Joj ‘sabeyoed UoIULSP 991AISS S10W JO SUO SPIAOIH

069

uoasayy Bupnosxa (wiogeld geed) jusuodwos wioyeld Seed
B pue JUSWUOIIAUS Pnojd e Bulpnjoul s1sindwod 810w JO U0 8pIAcld

US 2014/0074973 Al

SYSTEM AND METHOD FOR
ORCHESTRATION OF SERVICES FOR USE
WITH A CLOUD COMPUTING
ENVIRONMENT

CLAIM OF PRIORITY

[0001] This application claims the benefit of priority to
U.S. Provisional Patent Application titled “SYSTEM AND
METHOD FOR ORCHESTRATION OF SERVICES FOR
USE WITH A CLOUD COMPUTING ENVIRONMENT”,
(Attorney Docket No. ORACL-05415US5), Application No.
61/799,182, filed Mar. 15, 2013; U.S. Provisional Patent
Application titled “SYSTEM AND METHOD FOR PRO-
VIDING A CLOUD COMPUTING ENVIRONMENT”,
Application No. 61/698,467, filed Sep. 7, 2012; U.S. Provi-
sional Patent Application titled “SYSTEM AND METHOD
FOR PROVIDING A CLOUD COMPUTING ENVIRON-
MENT”, Application No. 61/748,658, filed Jan. 3, 2013; and
U.S. Provisional Patent Application titled “SYSTEM AND
METHOD FOR PROVIDING A CLOUD COMPUTING
ENVIRONMENT”, Application No. 61/766,819, filed Feb.
20, 2013, each of which above applications are herein incor-
porated by reference.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro-
duction by anyone of the patent document or the patent dis-
closure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF INVENTION

[0003] Embodiments of the invention are generally related
to cloud computing, and in particular to systems and methods
for orchestration of services for use with a cloud computing
environment.

BACKGROUND

[0004] The term “cloud computing” is generally used to
describe a computing model which enables on-demand
access to a shared pool of computing resources, such as
computer networks, servers, software applications, and ser-
vices, and which allows for rapid provisioning and release of
resources with minimal management effort or service pro-
vider interaction.

[0005] A cloud computing environment (sometimes
referred to as a cloud environment, or a cloud) can be imple-
mented in a variety of different ways to best suit different
requirements. For example, in a public cloud environment,
the underlying computing infrastructure is owned by an orga-
nization that makes its cloud services available to other orga-
nizations or to the general public. In contrast, a private cloud
environment is generally intended solely for use by, or within,
a single organization. A community cloud is intended to be
shared by several organizations within a community; while a
hybrid cloud comprise two or more types of cloud (e.g.,
private, community, or public) that are bound together by data
and application portability.

[0006] Generally, a cloud computing model enables some
of those responsibilities which previously may have been
provided by an organization’s own information technology

Mar. 13, 2014

department, to instead be delivered as service layers within a
cloud environment, for use by consumers (either within or
external to the organization, according to the cloud’s public/
private nature). Depending on the particular implementation,
the precise definition of components or features provided by
or within each cloud service layer can vary, but common
examples include:

[0007] Software as a Service (SaaS), in which consumers
use software applications that are running upon a cloud
infrastructure, while a SaaS provider manages or con-
trols the underlying cloud infrastructure and applica-
tions.

[0008] Platform as a Service (PaaS), in which consumers
can use software programming languages and develop-
ment tools supported by a PaaS provider to develop,
deploy, and otherwise control their own applications,
while the PaaS provider manages or controls other
aspects of the cloud environment (i.e., everything below
the run-time execution environment).

[0009] Infrastructure as a Service (IaaS), in which con-
sumers can deploy and run arbitrary software applica-
tions, and/or provision processing, storage, networks,
and other fundamental computing resources, while an
laaS provider manages or controls the underlying physi-
cal cloud infrastructure (i.e., everything below the oper-
ating system layer).

[0010] The above examples are provided to illustrate some
of'the types of environment within which embodiments of the
invention can generally be used. In accordance with various
embodiments, the systems and methods described herein can
also be used with other types of cloud or computing environ-
ments.

SUMMARY

[0011] Described herein is a system and method for orches-
tration of services for use with a cloud computing environ-
ment. In accordance with an embodiment, a cloud platform
enables provisioning of enterprise software applications
within a cloud environment, including packaging enterprise
applications as service definition packages (SDP), and instan-
tiating the services using service management engines
(SME). In an embodiment, an orchestration engine commu-
nicates with a plurality of SMFEs to control the flow of service
creation, provider dependency resolution, association of ser-
vices and providers, and the life-cycle management of ser-
vices within the cloud platform.

BRIEF DESCRIPTION OF THE FIGURES

[0012] FIG. 1 illustrates a cloud computing environment
including service layers, in accordance with an embodiment.
[0013] FIG. 2 further illustrates an environment, in accor-
dance with an embodiment.

[0014] FIG. 3 illustrates a cloud computing environment
that can include a PaaS platform component, in accordance
with an embodiment.

[0015] FIG. 4 further illustrates a PaaS platform compo-
nent, including an administration server and a service
domain, in accordance with an embodiment.

[0016] FIG. 5 further illustrates a PaaS platform compo-
nent, including the use of service definition packages and
service management engines with an administration server, in
accordance with an embodiment

US 2014/0074973 Al

[0017] FIG. 6 further illustrates a PaaS platform compo-
nent, including the interaction between an administration
server and a virtualization manager, in accordance with an
embodiment

[0018] FIG. 7 further illustrates a PaaS platform compo-
nent, including a multiple tenant service domain, in accor-
dance with an embodiment.

[0019] FIG. 8 further illustrates a PaaS platform compo-
nent, including a cloud account manager, in accordance with
an embodiment

[0020] FIG. 9 further illustrates use of a service definition
package with a PaaS platform component, in accordance with
an embodiment.

[0021] FIG.10is aflowchart of a process forusing aservice
definition package with a PaaS platform component, in accor-
dance with an embodiment.

[0022] FIG. 11 further illustrates use of a service manage-
ment engine with a PaaS platform component, in accordance
with an embodiment.

[0023] FIG.12is aflowchart of a process forusing aservice
management engine with a PaaS platform component, in
accordance with an embodiment.

[0024] FIG. 13 further illustrates use of an orchestration
engine with a PaaS platform component, in accordance with
an embodiment.

[0025] FIG. 14 is a flowchart of a process for using an
orchestration engine with a PaaS platform component, in
accordance with an embodiment.

[0026] FIG. 15 further illustrates use of an elasticity man-
ager with a PaaS platform component, in accordance with an
embodiment.

[0027] FIG. 16 is a flowchart of a process for using an
elasticity manager with a PaaS platform component, in accor-
dance with an embodiment.

[0028] FIG. 17 further illustrates patching of service defi-
nition packages with a PaaS platform component, in accor-
dance with an embodiment.

[0029] FIG. 18 is a flowchart of a process for patching of
service definition packages with a PaaS platform component,
in accordance with an embodiment.

DETAILED DESCRIPTION

[0030] As described above, a cloud computing environ-
ment (cloud environment, or cloud) can be implemented in a
variety of different ways to best suit different requirements:
for example, public cloud, private cloud, community cloud,
or hybrid cloud. A cloud computing model enables some of
those responsibilities which previously may have been pro-
vided by an organization’s own information technology
department, to instead be delivered as service layers within a
cloud environment, for use by consumers (either within or
external to the organization, according to the cloud’s public/
private nature).

[0031] Described herein are a variety of hardware and/or
software components and features, which can be used in
delivering an infrastructure, platform, and/or applications to
support cloud computing environments. In accordance with
various embodiments, the system can also utilize hardware
and software such as Oracle Exalogic and/or Exadata
machines, WebLogic and/or Fusion Middleware, and other
hardware and/or software components and features, to pro-
vide a cloud computing environment which is enterprise-
grade, enables a platform for development and deploying

Mar. 13, 2014

applications, provides a set of enterprise applications built on
modern architecture and use cases, and/or provides flexible
consumption choices.

[0032] FIG. 1 illustrates a cloud computing environment
including service layers, in accordance with an embodiment.
As shown in FIG. 1, in accordance with an embodiment, a
cloud computing environment (cloud environment, or cloud)
100 can generally include a combination of one or more
Infrastructure as a Service (IaaS) layer 110, Platform as a
Service (PaaS) layer 160, and/or Software as a Service (SaaS)
layer 170, each of which are delivered as service layers within
the cloud environment, and which can be used by consumers
within or external to the organization, depending on the par-
ticular cloud computing model being used.

[0033] In accordance with an embodiment, the cloud com-
puting environment can be implemented as a system that
includes one or more conventional general purpose or spe-
cialized digital computers, computing devices, machines,
microprocessors, memory and/or computer readable storage
media, for example the computer hardware, software, and
resources provided by Oracle Exalogic, Exadata, or similar
machines.

[0034] As further shown in FIG. 1, in accordance with an
embodiment, the cloud computing environment can include a
shared enablement and managing infrastructure 120, which is
described in further detail below, and which provides enable-
ment and management tools that can be used to support the
various service layers.

[0035] The example shown in FIG. 1 is provided as an
illustration of a type of cloud computing environment in
which embodiments of the invention can generally be used. In
accordance with various embodiments, the systems and
methods described herein can also be used with different
and/or other types of cloud or computing environments.
[0036] FIG. 2 further illustrates an environment, in accor-
dance with an embodiment. As shown in FIG. 2, in accor-
dance with an embodiment, each of the laaS, PaaS, and/or
SaaS layers can generally include a variety of components.
For example, in accordance with an embodiment, the laaS
layer can include a shared database hardware (e.g., an Exa-
data machine) 112, and/or a shared application server hard-
ware (e.g., an Exalogic machine). The PaaS layer can include
one or more PaaS services, such as a database service 162,
application server service 164, and/or WebCenter service
166. The SaaS layer can include various SaaS services, such
as enterprise applications (e.g., Oracle Fusion SaaS) 172,
and/or ISV or custom applications 176.

[0037] As described above, in accordance with an embodi-
ment, the cloud computing environment can also include a
shared enablement and management infrastructure. For
example, as shown in FIG. 2, the shared enablement and
management infrastructure can include one or more identity
management 122, data integration 124, replication (e.g.,
Oracle GoldenGate) 126, virtual assembly builder 128, sys-
tem provisioning 130, tenant management 132, and/or enter-
prise manager components 134.

[0038] As further shown in FIG. 2, in accordance with an
embodiment, the shared enablement and managing infra-
structure can also include other components, such as virus
scan 142, secure file transfer 144, HTTP routing 146,
whitelist 148, notifications 150, secure backup 152, integra-
tion gateway 154, and/or usage & billing 156 components.
[0039] The example shown in FIG. 2 is provided as an
illustration of some of the types of components which can be

US 2014/0074973 Al

included in a cloud computing environment, or within a
shared enablement and management infrastructure. In accor-
dance with other embodiments, different and/or other types or
arrangements of components can be included.

PaaS Platform Component

[0040] In accordance with an embodiment, the cloud com-
puting environment can include a PaaS platform component
(PaaS platform), which enables provisioning of enterprise
software applications within a cloud environment.

[0041] FIG. 3 illustrates a cloud computing environment
that can include a PaaS platform component, in accordance
with an embodiment. As shown in FIG. 3, in accordance with
an embodiment, the PaaS platform 500 can be provided as an
installable software suite that provides a self-service provi-
sioning experience for enterprise applications, such as Fusion
Middleware or other enterprise applications.

[0042] Generally, installing and configuring enterprise
applications for an organization’s on-premise or private cloud
environment can involve a considerable amount of adminis-
trative work, including challenges faced by an administrator
when trying to scale their environment horizontally to meet
increased workload demands. In accordance with an embodi-
ment, the PaaS platform component can be easily extended to
host new enterprise application suites when desired, and to
thereafter scale the quantity of instantiated runtimes accord-
ing to increases in load.

[0043] As shown in FIG. 3, in accordance with an embodi-
ment, the PaaS platform can include one or more service
definition package (SDP) 502, service management engine
(SME) 504, virtual assembly (VA) 506, PaaS administration
server 508, service domain 510 (including one or more ser-
vice apps 512 for use by one or more cloud accounts or
tenants 513), and/or cloud elasticity manager 514 compo-
nents. Each of these components, together with other com-
ponents and features, are described in further detail below.

Glossary

[0044] In accordance with an embodiment, the following
terms are used herein. In accordance with other embodi-
ments, different and/or other terms can be used.

PaaS Platform Component (PaaS Platform, platform): In
accordance with an embodiment, a PaaS platform component
(PaaS platform, platform) is an installable software suite that
provides a self-service provisioning experience for enterprise
applications, such as Fusion Middleware or other enterprise
applications.

Cloud Account (Tenant): In accordance with an embodiment,
a cloud account (tenant) is an entity that is associated with
those users/consumers that consume the PaaS platform as a
service. A cloud account establishes an administrative scope,
which account administrators can then use to access PaaS
services. For example, a cloud account can be created for an
organization or company that is buying PaaS services from a
public PaaS provider. As another example, a cloud account
can be created for a department or group that is consuming
PaaS services from an internal information technology
department that is acting as a private PaaS provider. In accor-
dance with an embodiment, different PaaS user roles, such as
the cloud account administrator role described below, can be
associated with a cloud account. In accordance with an
embodiment, within the PaaS platform, consumed resources,
such as services together with their virtual machines, data-

Mar. 13, 2014

bases, DNS entries, load-balancer, and other configurations,
can be associated with a cloud account. One or more users,
and zero or more services can similarly be associated with a
cloud account. A PaaS platform domain can be associated
with one, or a plurality of cloud accounts (tenants).

Service Definition Package: In accordance with an embodi-
ment, a Service Definition Package (SDP) is a package that
contains all of the information that is necessary for a particu-
lar type of service to be offered by the PaaS platform. For
example, when used with Fusion Middleware, each type of
Fusion Middleware service can provide its own SDP. In
accordance with an embodiment, an SDP includes custom
code that is installed into the platform, together with a virtual
assembly (e.g., an OVAB assembly) that contains the topol-
ogy and configuration of a set of virtual appliances that will
comprise a running instance of the service once deployed
onto a set of virtual machines (VM). For example, a Fusion
Middleware application SDP can include custom code
together with a Fusion Middleware OVAB assembly that
contains the topology and configuration needed to deploy a
running instance of that Fusion Middleware application as a
service.

Service Type: In accordance with an embodiment, a service
typeis a representation of a software functionality that can be
instantiated within the PaaS platform for a cloud account. In
accordance with an embodiment, a service type can be cre-
ated based on an SDP, with additional configuration informa-
tion supplied by the system administrator. Some of this con-
figuration information may supply values that are specific to
an installation of the platform product or the enterprise in
which it is running; while other configuration information
may reflect a system administrator’s choices of options sup-
ported by the SDP. In accordance with an embodiment, mul-
tiple (different) service types can be created from a single
SDP, by making different configuration choices.

Service: In accordance with an embodiment, a service is an
instantiation of a service type. A cloud account can be asso-
ciated with multiple services. Within a single cloud account,
there can be multiple services for a single service type. In
accordance with an embodiment, a service provides both a
service administration interface, and an end-user interface. A
service can be associated with identity, database, or other
service features that are required by the service. A service is
associated with a service runtime that runs on one or more
VMs.

Provider Type: In accordance with an embodiment, a provider
type is a special kind of service type that supports providers
instead of services. Provider types are created by the system
administrator in the same way as service types. As with the
service types described above, a provider type can be created
based on an SDP, with additional configuration information
supplied by the system administrator. Similarly, some of this
configuration information may supply values that are specific
to an installation of the platform product or the enterprise in
which it is running; while other configuration information
may reflect the system administrator’s choices of options
supported by the SDP. In accordance with an embodiment,
multiple (different) provider types can be created from a
single SDP, by making different configuration choices.

Provider: In accordance with an embodiment, a provider is a
specialization of a service. Unlike services, which are gener-
ally created by the explicit action of a cloud account admin-
istrator, providers can be created on demand to satisfy the
dependencies of services. In accordance with an embodi-

US 2014/0074973 Al

ment, a provider is an instantiation of a provider type, and
represents the use of'a resource managed by the provider type,
by a particular instance of a service type. Services can be
associated with multiple providers. In accordance with an
embodiment, when creating a service, an orchestration
engine matches the requirements of a desired service type
with the capabilities of configured provider types. The
orchestration engine then requests the service type to create
an instance of a service; requests the provider types to create
instances of the providers for use by this instance of the
service; and associates the service with the providers.

Association Resource: In accordance with an embodiment,
an association resource (provider resource) enables a service
to keep track of configuration information for a particular
association. For example, if a Java service is associated with
two different database providers, it may need to create a
connection pool for each database. An association resource
allows the Java service to keep track of which connection pool
is associated with which database, so that, if the orchestration
engine subsequently needs to change one of the associations,
the Java service will know which connection pool to change.

Runtime: In accordance with an embodiment, a runtime is a
representation of an installed operational software applica-
tion that provides the functionality of a service or a provider.
In accordance with an embodiment, runtimes are managed by
the custom code included in an SDP, in some instances using
the facilities provided by the PaaS platform, such as virtual-
ization and provisioning support.

Environment: In accordance with an embodiment, an envi-
ronment is a collection of services and their associated pro-
viders, which can be managed together as a group. An envi-
ronment can be created for the purpose of running an
application, or providing a higher level service. Environ-
ments provide the ability to operate on a collection of services
asawhole, including operations such as start, stop, backup, or
destroy. In accordance with an embodiment, an environment
can provide the functions of an “association group” and a
“management group”.

System Administrator (Role): In accordance with an embodi-
ment, a system administrator is responsible for installing,
configuring, managing, and maintaining the cloud environ-
ment and/or the PaaS platform infrastructure and environ-
ment, including the resources that are made available to appli-
cations running in the environment. For example, in
accordance with an embodiment, the system administrator is
responsible for downloading and installing SDPs to support
new/additional service types; setting up or configuring the
virtualization technology for the PaaS platform to use; and
installing and configuring providers.

Cloud Account Administrator (Role): In accordance with an
embodiment, a cloud account administrator is responsible for
the provisioning of new services, the management of generic
service properties (such as their Quality of Service/QoS set-
tings) and their associations, and the locking and termination
of services. In accordance with an embodiment, the cloud
account administrator can assign service administrators for
each service.

Service Administrator (Role): In accordance with an embodi-
ment, a service administrator is responsible for administering
and managing a specific service after it has been provisioned.
A service administrator can interact with the service’s admin-
istration interface to perform administration and management
operations.

Mar. 13, 2014

Application Deployer (Role): In accordance with an embodi-
ment, an application deployer deploys an application to the
provisioned service, and is responsible for installing, config-
uring, and running the application. Once the application is
running it can then be made available to an end user.

End User (Role): In accordance with an embodiment, an end
user is a user of the application which the application
deployer has deployed to the service. The end user can inter-
act with a user interface provided by the application deployed
to the service. If the service provides an interface for users to
consume the functionality that it exposes, then the end user
can use that interface provided by the service, without requir-
ing the application deployer to deploy an application.

[0045] FIG. 4 further illustrates a PaaS platform compo-
nent, including an administration server and a service
domain, in accordance with an embodiment. As shown in
FIG. 4, in accordance with an embodiment, once installed, the
PaaS platform (platform) comprises a PaaS administration
server 508, which supports an administration console 520, a
cloud platform provisioning/management logic 521, and a
virtual assembly builder (VAB) deployer 522, together with
an assembly or VAB repository.

[0046] In accordance with an embodiment, the VAB
deployer can be provided by functionality, components or
products such as Oracle Virtual Assembly Builder (OVAB).
The VAB deployer (e.g., the OVAB Deployer) can then be
used by the PaaS platform to manage those VMs that will host
the servicing applications. In accordance with other embodi-
ments, other means of providing assembly builder function-
ality or components can be used.

[0047] In accordance with an embodiment, the PaaS
administration server can be implemented as a WebLogic
(WLS) server application, together with, e.g., Glassfish mod-
ules embedded therein to provide cloud platform functional-
ity. A service domain 510, including a service app and service
console 532, can be provided for housing those enterprise
applications, such as the Fusion Middleware applications,
that will ultimately service user requests. In accordance with
an embodiment, the service domain components may be
instantiated multiple times as part of provisioning requests.

[0048] Inaccordance with an embodiment, provider server
types that will be used by the PaaS administration server and
the service domain (examples of which can include LDAP
526, database 527, and load-balancer 528 providers) can be
provided in pools that are not provisioned by the administra-
tion server, since these are external services that are registered
with the cloud environment. In accordance with an embodi-
ment, the PaaS platform can make use of a single load-bal-
ancer provider to forward all incoming, e.g., Web requests,
that are directed to the services. For example, each service can
be associated with a virtual host name that will be registered
with the load-balancer provider during service provisioning,
and the PaaS platform can include a pool of database provid-
ers which those services can utilize. When a service is later
provisioned, all external references to a database service are
then resolved to point to one or more instances in the database
provider pool.

[0049] FIG. 5 further illustrates a PaaS platform compo-
nent, including the use of service definition packages and
service management engines with an administration server, in
accordance with an embodiment. As shown in FIG. 5, in
accordance with an embodiment, new enterprise application
service types (e.g., new Fusion Middleware service types),

US 2014/0074973 Al

which the administrator wishes to make available for use
within the PaaS platform, can be installed from an SDP.

[0050] In accordance with an embodiment, SDPs can be
downloaded over the Internet, or can be provided by other
means. Each SDP contains custom code that can be injected
into the PaaS platform, for use in supporting, e.g., elasticity
and provisioning; together with an assembly (e.g., an OVAB
assembly) that contains the topology and configuration of a
set of virtual appliances that will comprise a running instance
of the enterprise application service once the assembly is
deployed onto a set of VMs. Each of the service types/pro-
viders that the PaaS administrator interacts with can be reg-
istered with the system in this manner. Other provider service
types, such as external services, can be generally pre-in-
stalled.

[0051] FIG. 6 further illustrates a PaaS platform compo-
nent, including the interaction between an administration
server and a virtualization manager, in accordance with an
embodiment. As shown in FIG. 6, in accordance with an
embodiment, a VM manager component 541 (e.g., OVM
Manager) can be used by the PaaS platform to manage the
pool 540 of VMs 542, 543, 544, which are then used in
instantiating a service assembly.

[0052] When a request is made from a PaaS platform mod-
ule to instantiate an assembly (or a single appliance in the case
of a scale-up request), the VAB deployer application (e.g.,
OVAB Deployer) can then interact with the VM manager
(e.g., OVM Manager) to fulfill the request. By delegating the
infrastructure/virtualization responsibilities to the VM man-
ager and the VAB deployer in this manner, the PaaS platform
can be abstracted from the target deployment platform.

[0053] FIG. 7 further illustrates a PaaS platform compo-
nent, including a multiple tenant service domain, in accor-
dance with an embodiment.

[0054] As shown in FIG. 7, a service domain can include
multiple tenants 550, 551,552, that are configurable using the
service console. Multi-tenancy, like virtualization, is a den-
sity optimization that allows the use of less resources to
support more clients and, similar to virtualization, should be
transparent to the applications themselves. Although multi-
tenancy involves the use of shared resources, the sharing need
not be part of the logical model of the applications. These
models are referred to as using “multitenant™ and “dedicated”
resources.

[0055] Separately, applications may also share resources in
away that is part of the logical model of the applications. For
example, two applications may purposely access a shared
database because they intend to operate on the same data.
These models are referred to as using “shared” and
“unshared” resources.

[0056] In accordance with an embodiment, some service
types may support both dedicated and multitenant uses, based
on their particular configuration. Other service types may
support either only dedicated use, or only multitenant use.
Service types that are able to support multiple tenants on the
same runtime can provision their runtimes in a multitenant
manner during the instantiation process, based on the con-
figuration of the service type. A single instantiated service
runtime that has been marked as multitenant-capable will be
reused for a finite number of additional service provisioning
requests, as determined by the service type and based on its
configuration. Generally, it is left to the service application to

Mar. 13, 2014

support this tenancy mode; service applications that are not
multitenant will only be able to support a single account for
each service instance.

[0057] Once a service has been instantiated from its VM
assembly, end users 546 can then interact with the system and
the instantiated services in the same manner as they would
interact with an on-premise version of that service.

[0058] FIG. 8 further illustrates a PaaS platform compo-
nent, including a cloud account manager, in accordance with
an embodiment. As shown in FIG. 8, in accordance with an
embodiment, the PaaS platform can include a cloud platform
administration service (CPAS) 560, together with a cloud
account manager 570 which is responsible for supporting
functions such as account management, and for providing a
framework that other modules of the PaaS platform (e.g., the
orchestration engine/SMEs 562, CEM 564, or identity man-
agement service 566) can use to access or persist account-
specific data.

[0059] Inaccordance with an embodiment, a configuration
management component 573 can use a configuration layer
580 to persist account specific configuration 583 and other
files 584 to an account store 582, which then enables the
various services and other components of the CPAS to access
and manipulate account-specific data.

[0060] In accordance with an embodiment, an account
management module 574 also provides the ability to manage
accounts for a CPAS domain. This can be exposed through the
use of a command-line, REST, or other identity management
application program interface (API) 581. Each account can
have multiple users. In accordance with an embodiment, the
users can either be managed in an identity store 586 managed
by the PaaS platform, or alternatively can be provided from an
external (e.g., corporate) LDAP, or from another means of
user identification.

[0061] In accordance with an embodiment, users can
access the cloud account manager through an administration
interface 572. The account and configuration data can also be
stored on a file system or other means of storage that is
accessible from all nodes of a CPAS cluster.

Service Definition Package (SDP)

[0062] FIG. 9 further illustrates use of a service definition
package with a PaaS platform component, in accordance with
an embodiment. In accordance with an embodiment, a Ser-
vice Definition Package (SDP) is the means by which a par-
ticular enterprise application component (e.g., a Fusion
Middleware component) is delivered as a service type into the
PaaS platform.

[0063] In accordance with an embodiment, an SDP gener-
ally has the following characteristics: it can be easily created
for a particular enterprise application component; it can be
deployed to various virtualization technologies (e.g., OVM,
Amazon, KVM, or VirtualBox); it can be deployed to non-
virtualized environments (e.g., laptop mode); and it includes
support for pre-provisioned service types or providers.
[0064] As shown in FIG. 9, in accordance with an embodi-
ment, each SDP 592, 596 can include a binary 593, 597; a
metadata 594, 598 (e.g., the SDP name, service type, version,
vendor, or virtualization support metadata such as indicating
whether the SDP supports OVAB, EC2, or Native); and one or
more plugins 595, 599 that enable the SDP to be used within
a PaaS platform or cloud environment. In accordance with an
exemplary embodiment, each SDP can also include:

US 2014/0074973 Al

[0065] An assembly, reference, package, archive or tem-
plate, which can be used to install a service on a particu-
lar virtualization provider (e.g., OVAB); an assembly
bundled within the SDP; or a reference to an assembly
(e.g., an EC2-specific reference).

[0066] A service management plugin or SME plugin for
the service type, which enables PaaS platform function-
ality such as elasticity metric gatherers, or alerts to be
used with the service.

[0067] A plugin for use with an VAB deployer (e.g.,
OVAB Deployer) during its assembly rehydration pro-
cess.

[0068] Dependency information regarding service pro-

viders, such as association rules or other artifacts for
association; for example, an association with a database
provider may require information such as a database
schema, or appropriate tables.

[0069] Configuration metadata, which in some instances
may be further subdivided into service configuration and
service runtime configuration metadata.

[0070] Access interfaces, such as service administration
interfaces or URL patterns for use by a service admin-
istrator (e.g., a WLS admin server URL).

[0071] Quality of service metadata, for use with the ser-
vice and its runtimes.

[0072] Scalability metadata, such as scalability limits for
different components; for example, the scalability limits
for different appliances within an assembly can be
defined, and these scalability limits exposed to the sys-
tem administrator or cloud account administrator and
the elasticity manager, for appropriate scaling and han-
dling.

[0073] An indication of supported tenancy model, such
as whether the service is a multitenant or dedicated
service.

[0074] Security template/credentials for use with the ser-
vice.

[0075] The above description of an exemplary embodiment
of SDP contents is provided as an illustration of some of the
types of information which can be included in an SDP. In
accordance with other embodiments, different and/or other
types of information can be included in an SDP.

[0076] Inaccordance with an embodiment, for a PaaS sys-
tem administrator to provide support for a particular enter-
prise application or other software component as a service
type, the system administrator can download an SDP for the
particular service type, and install the SDP to the PaaS plat-
form.

[0077] In accordance with an embodiment, installing an
SDP will install, e.g., the OVAB assembly into the OVAB
repository; appropriate SME plugins will be registered with
the cloud platform; and metric gatherers, alerts and actions
will be installed in the PaaS platform. After the system admin-
istrator installs the SDP, a cloud account administrator can
then use the cloud account administration interface to request
for a service of that type. A service is the realization of a
particular service type.

[0078] For example, in the context of Fusion Middleware
components, each version of a Fusion Middleware compo-
nent can have a separate SDP. When a cloud account admin-
istrator/service administrator wants to upgrade to a new ver-
sion of a Fusion Middleware component, they can select a
new version of the SDP. For example, to be able to support

Mar. 13, 2014

SOA suite 11g, and SOA suite 12.1.3, there can be separate
SDPs for these two versions of the SOA suite product.
[0079] In accordance with an embodiment, an SDP can be
packaged as a zip or a jar file, for example:

<SDP Name~>.zip

->,0va (OVAB assembly if bundled)

-> sme-plugin.jar (includes elasticity components)
-> service-definition.xml (metadata for the service)

[0080] An SDP can also be packaged as other file formats,
depending on the particular implementation. As shown in
FIG. 9, In accordance with an embodiment, when an SDP
installed into a PaaS platform domain, it is subsequently
consumed by the SDP Manager 590, which is responsible for
obtaining a list of SDPs that are available to be installed the
local system; downloading an SDP if necessary, and install-
ing the parts of the SDP into the right places; maintaining a
list of those SDPs that have been installed; and, if necessary,
uninstalling an SDP by uninstalling all of its parts from the
places where they are/were previously installed.

[0081] In accordance with an embodiment, the SDP man-
ager supports multiple versions of a given SDP (e.g., SOA 11
and SOA 12), in addition to patching of an existing version of
an SDP. Generally, when an SDP is patched (as described in
further detail below), this will only affect the installed com-
ponents related to the SDP in the PaaS infrastructure; it will
not affect the services of that service type.

[0082] In accordance with an embodiment, the SDP man-
ager isolates the PaaS system from the format of the SDP file.
No other parts of the PaaS platform architecture need be
aware of the precise SDP file format. The SDP manager can
interface with other system components by installing an SME
plugin to the CPAS, which can then take responsibility for
replicating the SME plugin to other CPAS instances in the
cluster; installing the VAB assembly 602, 604 (e.g., an OVAB
assembly) into the VAB deployer (e.g., OVAB Deployer);
interfacing with other tools such as Enterprise Manager to
provide a customized console interface for the service if the
service provides one; and, installing configuration data for the
service into the CPAS.

[0083] Subsequently, during realization 606 of a service,
the service 610 can be realized as an instance of those service
types defined by the SDP and installed as assemblies in the
VAB repository.

[0084] FIG.10is aflowchart of a process for using aservice
definition package with a PaaS platform component, in accor-
dance with an embodiment. As shown in FIG. 10, at step 612,
one or more computers are provided, including a cloud envi-
ronment and a PaaS platform component (PaaS platform)
executing thereon.

[0085] Atstep 614, one or more service definition packages
are provided for use with the platform component, wherein
each service definition package includes an application
binary component, and a metadata.

[0086] Atstep 616, the one or more service definition pack-
ages are parsed to determine service characteristics and
requirements, for a particular enterprise application compo-
nent, that determine how that particular enterprise application
component is deliverable as a service type within the platform
component.

US 2014/0074973 Al

[0087] At step 618, corresponding enterprise application
components are provisioned as service types into the platform
component, for use within the cloud environment.

Service Management Engine (SME)

[0088] FIG. 11 further illustrates use of a service manage-
ment engine with a PaaS platform component, in accordance
with an embodiment.

[0089] Generally described, in accordance with an embodi-
ment, a Service Management Engine (SME) provides a
generic means to plug any service type into the system. For
example, an SME takes care of all of the service-specific
provisioning, lifecycle, management, and monitoring support
for a service type or provider type. The orchestration engine
(OFE, as described in further detail below), being service-
agnostic, depends completely on the SME to handle all ser-
vice-related actions.

[0090] In accordance with an embodiment, within a PaaS
platform domain, there can be several different classes of
SMEs. For example, provider SMEs can be provided to
handle different providers that are supported in the PaaS
platform domain. Examples of the types of providers that can
be supported include Database, Web-Tier, and Identity-Man-
agement providers. In accordance with an embodiment, a
provider SME is configured to point to an existing external
service within the enterprise, by creating a provider type from
the provider SDP. The provider SME is also responsible for
all actions such as schema management that may be required
as part of association and dissociation with the service being
created. Provider SMEs are generally not configured to
handle provisioning, unprovisioning, or management of the
external service pointed to by the provider type; although
provider SMEs could be configured to do so.

[0091] In accordance with an embodiment, service SMEs
can be added to the PaaS platform domain using an SDP. For
example, a service SME can be dynamically incorporated
into the PaaS platform domain by installing an appropriate
SDP. In accordance with an embodiment, the SDP manager
handles the installation/registration of service SMEs bundled
in SDPs with the PaaS platform domain. The set of registered
service SMEs then become the service types that are available
to cloud account administrators to create services.

[0092] In accordance with an embodiment, each service
type supported in the PaaS platform domain maps to a specific
service SME. A service SME handles all service related
activities, such as spanning creation, monitoring, manage-
ment, patching, upgrade, and deletion for that service. In
accordance with an embodiment, the contract that is imple-
mented by an SME is referred to as a Service Management
Interface (SMI), which defines the support for monitoring,
patching and upgrade of the service.

[0093] In accordance with an embodiment, the orchestra-
tion engine interacts with the provider and service SMEs to
create a service in a PaaS platform domain. The orchestration
engine choreographs the creation of service; however all ser-
vice level activities are handled by SMEs. In the example
shown in FIG. 11, when OVAB is used as a virtualization
provider, all interaction with the OVAB Deployer is handled
by a Virtualization API (e.g., an OVAB client API). In accor-
dance with an embodiment, the orchestration process can
then proceed as follows:

Mar. 13, 2014

[0094] A cloud account administrator discovers, e.g.,
SOA servicetypes 620, 622 that are available in the PaaS
platform domain, and initiates the creation of, in this
example, an SOA service.

[0095] The orchestration engine iterates through all of
the available service SMFEs in the system, and deter-
mines which service SMEs can handle this service type
624. In this example, the orchestration engine will dis-
cover, in this example, the SOA SME to handle creation
of the SOA service.

[0096] The orchestration engine then calls into the SOA
SME to get all provider dependencies for that SME 625.
In this example, the SOA SME returns database and
load-balancer provider dependencies.

[0097] The orchestration engine then calls a get-user or
similar configurable properties function for the SOA
SME, and exposes those properties in a user interface or
GUI, so that the cloud account administrator can edit the
properties as desired.

[0098] User-provided inputs are then supplied to the
SOA SME. Since in this example OVAB is being used,
the user provided inputs can be used to update the OVAB
deployment plan.

[0099] The orchestration engine performs any pre-pro-
visioning association between the SOA SME and the
provider SMEs upon which it depends. For example, the
orchestration engine will perform pre-provisioning
association between the SOA SME and database pro-
vider SME, which results in creation of schema and
tables as required by the SOA service, in addition to
populating the deployment plan with the database pro-
vider configuration.

[0100] Once any pre-provisioning association is com-
plete, the orchestration engine then calls into the SOA
SME 626 to provision the SOA service. At this point, the
deployment plan is generally complete except for net-
work configurations. The updated deployment plan
together with an assembly ID can be pushed to the
OVAB API, which takes care of filling the deployment
plan with the remaining network configurations. Then,
the orchestration engine can call the web service API of
the OVAB deployer to provision the OVAB assembly.
Once the assembly is provisioned, all of the virtual
machine information is retrieved and passed back to the
SOA SME, which in turn passes this information back to
the orchestration engine. The orchestration engine may
persist this information for later use.

[0101] The orchestration engine then performs any post-
provisioning association between the SOA SME and the
provider SMEs on which it depends. For example, post-
provisioning association between the SOA SME and
load-balancer provider SME may result in virtual server
creation to handle requests for this SOA service and
appropriately route them.

[0102] Finally, the status of the service creation is
returned back to the cloud account administrator.

[0103] The above description of an orchestration process,
using OVAB Deployer as a means of deploying assemblies, a
SOA service and SOA SME as an example SME, and asso-
ciation with database and load-balancer providers, is pro-
vided to illustrate an exemplary orchestration process. In
accordance with other embodiments, different and/or other
types of, e.g., VAB deployer, SME, and providers can be used.

US 2014/0074973 Al

[0104] FIG.12is aflowchart of a process forusing aservice
management engine with a PaaS platform component, in
accordance with an embodiment. As shown in FIG. 12, at step
at step 630, one or more computers are provided, including a
cloud environment and a PaaS platform component (PaaS
platform) executing thereon.

[0105] At step 632, one or more service management
engines are provided in communication with an orchestration
engine, which are used to provision services as service types,
including one or more provisioning, lifecycle management,
and monitoring of the service types.

[0106] At step 634, particular service types are determined
to be provisioned for use within the cloud environment.
[0107] At step 636, service management engines are used
to parse a configuration of the platform component itself
and/or a service definition package, and to provision services
as one or more different service types, according to the con-
figuration of the platform component and/or the contents of
the service definition package.

[0108] At step 638, corresponding service management
engines are configured within the platform component to
support those particular service types.

Orchestration Engine

[0109] FIG. 13 further illustrates use of an orchestration
engine with a PaaS platform component, in accordance with
an embodiment.

[0110] In accordance with an embodiment, the orchestra-
tion engine (OE) enables service creation, provider depen-
dency resolution, association of services and providers, and
generally the end to end life-cycle management of the ser-
vices in the PaaS platform. In particular, the orchestration
engine coordinates all ofthe interactions among various com-
ponents in the PaaS platform domain while creating or man-
aging a service; enables the pluggability of SMEs for various
service types in the platform; and aids in provisioning the
service by selecting appropriate SMEs from among those
available in the platform. The orchestration engine also helps
in managing the configuration of providers such as DB Pro-
viders, IDM Providers, and LB Providers.

[0111] In accordance with an embodiment, the orchestra-
tion engine, as part of creating a service, ensures thatall of the
dependencies of the service, such as its provider dependen-
cies are satisfied, by selecting appropriate providers (provider
SMEs), and coordinating the association between the provid-
ers and service. The act of association can be performed
during pre-provisioning and/or post provisioning-phases.
The act of installing and configuring an SME can be per-
formed by the SDP manager as part of registering a pre-
packaged service type or a customized service type. The
orchestration engine helps expose the deployment plan con-
figuration, which can be configured by the cloud account
administrator through the console during the act of provision-
ing the service.

[0112] In accordance with an embodiment, the orchestra-
tion engine recognizes a set of phases and tasks that match the
requirements of the PaaS platform for its “service creation”
action and other life-cycle related activities. The orchestra-
tion engine is also designed to be extensible and to allow the
configuration of phases and tasks in all actions that are man-
aged by the orchestration engine.

[0113] Provisioning and managing a service in a virtualized
environment is often a time-consuming action and generally
needs to be performed in an asynchronous fashion. The sys-

Mar. 13, 2014

tem must also be able to handle any transient (or retryable)
failures, and continue with the provisioning activity. In accor-
dance with an embodiment, the administrator can query or
monitor any of these asynchronous activities on demand. A
unique identifier can also be provided for actions such as
provision, unprovision etc., in order to determine, display and
record the progress status of all initiated actions.

[0114] In accordance with an embodiment, the orchestra-
tion engine also helps to retry a task, or rollback an action
based on theresiliency of the task, where the task or phase can
have markers (annotations) to indicate the resiliency level and
any compensating act.

[0115] In accordance with an embodiment, the orchestra-
tion engine acts as a gateway for all service management,
monitoring, scaling actions that could be initiated by other
containers in the PaaS platform domain, or by the adminis-
trator. For example, the elasticity engine (as described in
further detail below) communicates with the orchestration
engine to manage, monitor, and scale services based on a
service’s QoS configuration. The orchestration engine can
also play a role in service maintenance actions, such as patch-
ing and upgrade, which can be performed in an active system
in a rolling fashion that helps avoid down time of the service.
Such actions may require disassociating or re-associating
services in a phased manner.

[0116] Inaccordance with an embodiment, services created
by a cloud account administrator are visible and accessible
only to that particular cloud account (tenant), and are isolated
from other cloud accounts in the PaaS platform domain. In
accordance with an embodiment, such isolation can be pro-
vided by the orchestration engine with the help of a cloud
account management module. Storing and managing service
configuration, status, and accessibility are achieved by having
separate cloud account data stores. Both multitenant and
dedicated tenancy models can be supported within a platform
domain. The orchestration engine, based on the preference
provided in the service metadata, selects an appropriate pro-
vider type that supports the required tenancy level. Similarly,
multitenant and dedicated tenancy models can be supported
for services based on multitenant service runtimes, or on a
dedicated service runtime per service.

[0117] In accordance with an embodiment, SMEs can be
registered with the orchestration engine such that multiple
SMEs for a given “family” of service (e.g., “database”) can be
present in the system. It is also possible to configure a default
SME for a particular service family on a per-cloud account
basis.

[0118] AsshowninFIG.13,inaccordance with an embodi-
ment, the virtualization features for CPAS are primarily built
around the VAB deployer (e.g., OVAB Deployer), with VAB
assemblies (e.g., OVAB Assemblies) being the unit of provi-
sioning. In accordance with other embodiments, the CPAS
can support alternative virtualization solutions.

[0119] In accordance with an embodiment, the orchestra-
tion and service management components can interface with
the virtualization layer through a virtualization service 640,
plugin 642, and a virtualization API 646 that abstracts the
basic virtualization operations supported. In accordance with
an embodiment that uses OVAB, this API can be an OVAB
Deployer interface, which allows OVAB Deployer to perform
the tasks of assembly creation. Products such as OVAB sup-
port virtualization providers such as OVM, in addition to
computer hardware machines such as Exal.ogic. Products
such as OVAB Deployer also provide an SPI that allows the

US 2014/0074973 Al

development of plugins to support additional virtualization
technologies, such as EC2. In accordance with an embodi-
ment, the orchestration engine/SME can upload and deploys
assemblies through the OVAB Virtualization API, in addition
to managing their lifecycle.

[0120] To support developer/demo scenarios, in accor-
dance with an embodiment, the system can also implement a
limited solution that can run on native OS processes (i.e., with
no virtualization). This capability can be implemented by
providing a physical plugin that implements a portion of the
Virtual Assembly Service API.

[0121] FIG. 14 is a flowchart of a process for using an
orchestration engine with a PaaS platform component, in
accordance with an embodiment. As shown in FIG. 14, at step
at step 650, one or more computers are provided, including a
cloud environment and a PaaS platform component (PaaS
platform) executing thereon.

[0122] Atstep 652, one or more service definition packages
are received, for use with the platform component, wherein
each service definition package defines, for a particular enter-
prise application component, how that particular enterprise
application component is deliverable as a service type within
the platform component.

[0123] At step 654, the process determines, within the ser-
vice definition package, a virtual assembly that defines a
topology and a configuration for a set of virtual appliances.
[0124] At step 656, particular service types are determined
to be provisioned for use within the cloud environment, and
corresponding service management engines configured
within the platform component to support those particular
service types.

[0125] At step 658, the process communicates with a plu-
rality of service management engines to control the flow of
service creation, provider dependency resolution, association
of services and providers, and life-cycle management of ser-
vices within the cloud environment.

Elasticity Manager

[0126] FIG. 15 further illustrates use of an elasticity man-
ager with a PaaS platform component, in accordance with an
embodiment.

[0127] AsshowninFIG. 15, in accordance with an embodi-
ment, the cloud elasticity manager 660, including an environ-
ment manager 662, can use metric gatherers 664, 665 and
alerts 670, to determine the health of services running in an
environment. Once the state of the environment is deter-
mined, the cloud elasticity manager can take appropriate
actions 672. In accordance with an embodiment, the metric
gatherers, alerts and actions can be provides as HK2 con-
tracts, such that the set of metric gatherers, alerts and actions
are extensible.

[0128] In accordance with an embodiment, a metric gath-
erer is an object that collects and maintains metric data about
a service periodically. For example, a metric gatherer may
periodically collect heap statistics such as used memory and
committed memory. Another metric gatherer can periodically
gather metrics about CPU usage. Generally, the metric gath-
erers provide information about the state of some resource
usage. Metrics can also be provided by external monitoring
tools and need not be metric gatherer objects. In accordance
with an embodiment, the cloud elasticity manager allows any
Java bean component to provide metrics data for use in gen-
erating alerts.

Mar. 13, 2014

[0129] In accordance with an embodiment, an alert object
periodically checks the health of a service in an environment
by analyzing metric data gathered by one or more metric
gatherers over a period of time. For example, an alert may
examine the CPU usage for the past 10 minutes to determine
if the environment is under stress. After the alert determines
the state of the service or environment, it can execute some
action, such as: sending an email; logging a message; sending
an event; or scaling-up or scaling-down a service. In accor-
dance with an embodiment, an alert can take multiple actions.
[0130] In accordance with an embodiment, the cloud elas-
ticity manager can include a unified Expression Language
(EL) engine 668 that allows alerts to be specified as EL
expressions. EL, expressions can also use metric gatherers and
alerts in their expressions. In accordance with an embodi-
ment, the cloud elasticity manager also allows external ELL
Resolver objects 667 to be registered; which allows other
types of objects such as MBeans or POJOs to be used in an
expression.

[0131] Metric gatherers, alerts and actions typically require
some configuration data. For example, a metric gatherer may
require some configuration data that specifies the duration of
time metric data should be kept. Similarly, alerts may require
some configuration data that specifies the threshold value. In
accordance with an embodiment, the cloud elasticity man-
ager relies on the cloud account manager to persist such
configuration data. Again, configuration data can be based on
HKZ2, thereby allowing easy extensibility.

[0132] FIG. 16 is a flowchart of a process for using an
elasticity manager with a PaaS platform component, in accor-
dance with an embodiment. As shown in FIG. 16, at step at
step 673, one or more computers are provided, including a
cloud environment and a PaaS platform component (PaaS
platform) executing thereon.

[0133] At step 674, the orchestration engine determines
particular service types to be provisioned for use within the
cloud environment, and configures corresponding service
management engines within the platform component to sup-
port those particular service types.

[0134] At step 676, the clasticity manager determines
health of services within the platform component, and takes
appropriate actions, including detecting events, issuing alerts
and/or notifying the orchestration engine to manage the ser-
vice lifecycle.

[0135] At step 677, one or more metric gatherer object
periodically collects and maintains metric data about a ser-
vice resource usage; while one or more alert object periodi-
cally checks the health of a service in an environment by
analyzing metric data gathered by one or more metric gath-
erers over a period of time.

[0136] At step 679, the elasticity manager is configured to
manage the service lifecycle, to respond to requirements,
including increased demand for particular services.

Updating and Patching of SDPs

[0137] FIG. 17 further illustrates patching of service defi-
nition packages with a PaaS platform component, in accor-
dance with an embodiment. In accordance with an embodi-
ment, services can be periodically maintained to ensure that
they are up-to-date with, e.g., bug fixes, security updates and
configuration changes. To help ensure homogeneous environ-
ments, services should be updated in a timely manner, with
the same set of patches and configuration updates.

US 2014/0074973 Al

[0138] In accordance with an embodiment, an update is
defined to be a change which has to be made to the system.
Examples of updates include an application of a security
patch, upgrade of a component, or changing of a configura-
tion value. Depending on the type of update, some updates
may require a downtime, while other updates may not require
a downtime. The system can take both of these situations into
account.

[0139] In accordance with an embodiment, updates can
include hard updates—an update which requires a service
downtime (e.g., patches to middleware, operating system
(OS) updates etc.), or a service reboot; and soft updates—an
update which does not require system downtime (e.g., some
configuration changes).

[0140] Softupdates avoid a downtime, but at the expense of
service stability. To this extent, it is important that the system
administrator categorizes updates properly. It is also impor-
tant that all services are updated to keep the environment
homogeneous, and that maintenance windows are restricted
to ensure that all of the services are updated properly.
[0141] In accordance with an embodiment, a maintenance
window is defined as a time frame when updates will be
applied to a particular service. A different maintenance win-
dow can be different for different services. Generally, one or
more of the following actions will happen during the main-
tenance window, depending on the update type: lockout the
service (typically only for hard update); backup the service;
apply and or all of OS updates; perform system configuration
changes; apply patches for an enterprise application, e.g.,
Fusion Middleware components; perform service configura-
tion changes (e.g., tune threads, 10 timeouts etc.); perform
updates to other non-standard components; reboot service
VMs; perform health check; and/or open up a service for
public access.

[0142] For a soft update, not all of the above steps may be
necessary. However, soft updates are still preferably applied
when the service access is at a minimum (e.g., during the
night). Although some updates may not require a restart or
reboot of service runtimes, it is generally recommended that
the VM hosting the service are rebooted, to provide a clean
state.

[0143] Inaccordance with an embodiment, an upgrade of a
service is similar to a hard update, except that one or more of
the components will be undergoing a major change, which
may involve one or more of the following: installation of a
software component with a different version; minor version
upgrade of a software component; or configuration migra-
tion.

[0144] In accordance with an embodiment, a service may
be upgraded if the components being upgraded provide the
necessary tooling, and the ability to automate the migration
scenario.

[0145] In accordance with an embodiment, a repository is
assumed to be available as alocal (or mounted) file system on
the service runtimes. A repository can be used to hold all of
the components (patches, configuration files, scripts etc.)
which will be required during the maintenance window. For
example, the repository can hold artifacts for different ver-
sions of service, e.g.,

repository:// . . . /<service-name>/<version-#>/<mainte-
nance-window-#>/ . . .

[0146] AsshowninFIG.17, in accordance with an embodi-
ment, prior to a maintenance window, the repository is
updated with the necessary components 682, e.g., patches,

Mar. 13, 2014

Puppet manifests, or shell scripts. Updates can be driven
using a configuration tool, such as Puppet or a tool or com-
ponent that provides similar functionality. In accordance with
an embodiment, if a service does not have Puppet or the
appropriate configuration tool installed, the patching infra-
structure will install configuration tool and will apply mani-
fests made available in the repository.

[0147] A service administrator may also choose a different
automation framework for handling updates. All updates
should be transactional, and should be capable of being rolled
back in case of failures.

[0148] In accordance with an embodiment, the system
administrator then defines a maintenance window 685, for
use by the service update logic 684. In accordance with an
embodiment, the cloud administration console can be used to
define the maintenance window. The system administrator
then configures information such as: the service name and
version of SDP for the services to be patched; whether the
maintenance window is a hard or soft window; the length of
the maintenance window (typically, 60 mins for hard
updates); the time frame for scheduling the updates (typically,
a week for hard updates); and any other parameters which
qualify the appropriate time for updates.

[0149] In accordance with an embodiment, the service
update logic will then assign a default time slot for each
service. Email notifications can be sent to service administra-
tors in case of ‘hard’ updates notifying them of a system
downtime. In accordance with an embodiment, a service
administrator has an option to choose amongst three time
slots when his/her service will incur a downtime and update.
[0150] At update time, the update is requested by the ser-
vice update logic 687, and the information in the repository is
used to patch or update a service from its original configura-
tion 686, to a modified configuration 689.

[0151] FIG. 18 is a flowchart of a process for patching of
service definition packages with a PaaS platform component,
in accordance with an embodiment. As shown in FIG. 18, at
step at step 690, one or more computers are provided, includ-
ing a cloud environment and a PaaS platform component
(PaaS platform) executing thereon.

[0152] Atstep 691, one or more service definition packages
are provided, for use with the platform component, wherein
each service definition package defines, for a particular enter-
prise application component, how that particular enterprise
application component is deliverable as a service type within
the platform component.

[0153] At step 692, a service update logic is provided for
modifying the one or more service definition packages within
a maintenance window, according to one or more patches or
updates associated with the service definition packages.
[0154] Atstep 694, arepository is provided as one of alocal
or a mounted file system at service runtime, and that includes
patch, configuration file, script and/or other components,
which are used by the service update logic during the main-
tenance window to modify the service definition packages.
[0155] At step 696, a service’s characteristics and/or
requirements are modified or updated dynamically, by recon-
figuring the platform component itself and/or by mounting a
disk volume that corresponds to the service’s service defini-
tion packages, and modifying its file system contents directly.
[0156] The present invention may be conveniently imple-
mented using one or more conventional general purpose or
specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory

US 2014/0074973 Al

and/or computer readable storage media programmed
according to the teachings of the present disclosure. Appro-
priate software coding can readily be prepared by skilled
programmers based on the teachings of the present disclo-
sure, as will be apparent to those skilled in the software art.

[0157] In some embodiments, the present invention
includes a computer program product which is a non-transi-
tory storage medium or computer readable medium (media)
having instructions stored thereon/in which can be used to
program a computer to perform any of the processes of the
present invention. The storage medium can include, but is not
limited to, any type of disk including floppy disks, optical
discs, DVD, CD-ROMs, microdrive, and magneto-optical
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs,
VRAMs, flash memory devices, magnetic or optical cards,
nanosystems (including molecular memory ICs), or any type
of media or device suitable for storing instructions and/or
data.

[0158] The foregoing description of the present invention
has been provided for the purposes of illustration and descrip-
tion. Itis not intended to be exhaustive or to limit the invention
to the precise forms disclosed. Many modifications and varia-
tions will be apparent to the practitioner skilled in the art. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical appli-
cation, thereby enabling others skilled in the art to understand
the invention for various embodiments and with various
modifications that are suited to the particular use contem-
plated. It is intended that the scope of the invention be defined
by the following claims and their equivalence.

What is claimed is:

1. A system for orchestration of services for use with a

cloud computing environment, comprising:

one or more computers including a cloud environment
executing thereon;

a platform component that is provided as an installable
software suite within the cloud environment, and that
supports self-service provisioning for enterprise appli-
cations; and

an orchestration engine, which

receives one or more service definition packages, foruse
with the platform component, wherein each service
definition package defines, for a particular enterprise
application component, how that particular enterprise
application component is deliverable as a service type
within the platform component, and

determines particular service types to be provisioned for
use within the cloud environment, and configures cor-
responding service management engines within the
platform component to support those particular ser-
vice types.

2. The system of claim 1, wherein

each service definition package includes a virtual assembly
that defines a topology and a configuration for a set of
virtual appliances, and
wherein an enterprise application defined by its service
definition package, can be instantiated as one or more
services that are then accessible by other applications
within the cloud environment.
3. The system of claim 1, wherein the orchestration engine
communicates with a plurality of service management
engines to control the flow of service creation, provider

Mar. 13, 2014

dependency resolution, association of services and providers,
and life-cycle management of services within the cloud envi-
ronment.

4. A method of providing orchestration of services for use
with a cloud computing environment, comprising:

providing one or more computers including a cloud envi-

ronment executing thereon;

providing a platform component that is provided as an

installable software suite within the cloud environment,
and that supports self-service provisioning for enterprise
applications; and

providing an orchestration engine, which

receives one or more service definition packages, for use
with the platform component, wherein each service
definition package defines, for a particular enterprise
application component, how that particular enterprise
application component is deliverable as a service type
within the platform component, and

determines particular service types to be provisioned for
use within the cloud environment, and configures cor-
responding service management engines within the
platform component to support those particular ser-
vice types.

5. The method of claim 4, wherein

each service definition package includes a virtual assembly

that defines a topology and a configuration for a set of
virtual appliances, and

wherein an enterprise application defined by its service

definition package, can be instantiated as one or more
services that are then accessible by other applications
within the cloud environment.

6. The method of claim 4, wherein the orchestration engine
communicates with a plurality of service management
engines to control the flow of service creation, provider
dependency resolution, association of services and providers,
and life-cycle management of services within the cloud envi-
ronment.

7. A non-transitory computer readable medium, including
instructions stored thereon which when read and executed by
one or more computers cause the one or more computers to
perform the steps comprising:

providing, at one or more computers including a cloud

environment executing thereon, a platform component
that is provided as an installable software suite within
the cloud environment, and that supports self-service
provisioning for enterprise applications; and

providing an orchestration engine, which

receives one or more service definition packages, for use
with the platform component, wherein each service
definition package defines, for a particular enterprise
application component, how that particular enterprise
application component is deliverable as a service type
within the platform component, and

determines particular service types to be provisioned for
use within the cloud environment, and configures cor-
responding service management engines within the
platform component to support those particular ser-
vice types.

8. The non-transitory computer readable medium of claim
7, wherein

each service definition package includes a virtual assembly

that defines a topology and a configuration for a set of
virtual appliances, and

US 2014/0074973 Al Mar. 13,2014
12

wherein an enterprise application defined by its service
definition package, can be instantiated as one or more
services that are then accessible by other applications
within the cloud environment.
9. The non-transitory computer readable medium of claim
7, wherein the orchestration engine communicates with a
plurality of service management engines to control the flow of
service creation, provider dependency resolution, association
of services and providers, and life-cycle management of ser-
vices within the cloud environment.

#* #* #* #* #*

