US 20140075582A1

a2y Patent Application Publication (o) Pub. No.: US 2014/0075582 A1l

a9 United States

Hierro et al.

43) Pub. Date: Mar. 13, 2014

(54) METHOD FOR PLAYING DIGITAL
CONTENTS PROTECTED WITH A DRM
(DIGITAL RIGHTS MANAGEMENT)
SCHEME AND CORRESPONDING SYSTEM

(75) Inventors: Oscar Hierro, Amsterdam (NL); Guido
Domenici, Amsterdam (NL)

(73) Assignee: INSIDE SECURE, Meyreuil (FR)

(21) Appl. No.: 14/115,020

(22) PCT Filed: Apr. 23,2012

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/US2012/034649

Oct. 31, 2013

Related U.S. Application Data

(63) Continuation-in-part of application No. 13/099,112,

filed on May 2, 2011, now abandoned.

Publication Classification

(51) Int.CL
HO4L 29/06 (2006.01)
(52) US.CL
CPC oo HO4L 63/123 (2013.01)
1613 G 726/30
(57) ABSTRACT

The method and system are for playing digital contents pro-
tected by a DRM scheme, wherein the digital contents are
stored in a server and downloaded or streamed to a user
device. The approach includes executing a DRM application
inside the user device implementing a proxy between the
server and a native player of the user device, and connecting
the DRM proxy application to the server, selecting a digital
content to be downloaded and retrieving a corresponding
remote playlist. Also, the approach includes transforming the
remote playlist into a local playlist having a format readable
from the native player and executing a plurality of local
packets of the local playlist inside the native player.

~— 05 DEVICE (iPAD, iPHONE) ~

/-

PlayReady LICENSE

.os NATIVE PLAYER
NATIVE PLAYER(I3)
Ts SEGMENT

MEDIA PLAYER APPLICATION EMBEDDING

oy REQUEST/RESPONSE _ |
uCe e ~ SMOOT STR.EAMING URL /" REQUESTTS SEGMENT
~ APPLE HIS PLAYLIST
SMOOTH STREAMING DOWNLOADABLE
@‘__’MANIFEST 7 TYAGENTAPL " peaugsT LOGAL HTTPS SERVER(12)
— S FRAGMENT
1 SMOOTH STREAMING
O DRM PROTECTED HTTP CLIENT
SHOOTH STREAWING FRAGMENT
SERVER (115 7) DE(RYPT
7RO
TRANSPORT STRERM)= 254 ity —(1 264/AAC PARSER
MIXER AAC STREAMS
TS SEGMENT CONTAINING _
RULTIPLEXED AUDIO/VIDEG
J
. J

Patent Application Publication

Mar. 13,2014 Sheet1 of 10

LICENSE

™
LICENSE SERVER
DRM FUSION SERVER LICENSE DELIVERY
LICENSE éf]
GENERATOR
TT OUT OF BAND KEY DELIVERY
SECURE KEY)
MATERIAL
DERIVATION
=
CLIENT SITE
RAW
CONTENT ~
INGESTION CoNTET
NETWORK
BATCH PROTECTOR
AN
7 1]
9

FIG. 1

US 2014/0075582 Al

ENCRYPTED
CONTENT

CONTENT
DELIVERY
NETWORK

US 2014/0075582 Al

Mar. 13, 2014 Sheet 2 of 10

Patent Application Publication

NYOMLIN
IR ELTREL

IN3INOD

\\

4

IN3INGD
(3LdA¥INS

{9
4
/ Nt
7
¥0D3108d IDIVE YALNIWOTS WYAHLS IAT]
INIINO)
DA SINIWOIS
= T~ VIGIW
MIN LIS INIITD
=
NOLLVAL¥30
. TVIHALVW
NYIATHO AN ONY 40 100 LE LI
0LV4INIO
Q INDI
AYIATTAA ISNDDIT IAH3S NOISTA WHa
¥IAYIS ISNIDIT
-

WYRULS
VIQIW
1N

US 2014/0075582 Al

Mar. 13,2014 Sheet 3 0of 10

Patent Application Publication

1144

£
4 N\
051
00§ T401S WYa
4 \ y -
¥INYIS NOISNH WHa [~ NOLLISINGIY ISNDIT— Oel~
139V NOISN4 Wi
N\ ¥IAYIS WHa
[h -0l
< ONIWVIYISHLOOWS
INIINOD e ™ T s m,_# s | ONIWVIALS dLLH AVl
Vi | l AXOYd WYQ INLDIOD
\ ONIWVAALS dLLH |
01z \
\—— YIA¥3S VIGIW ONIWVANLS dLIH— N i / INOHd—
0s1

\

002

001

US 2014/0075582 Al

Mar. 13,2014 Sheet 4 of 10

Patent Application Publication

_0301A/010NY QIXITAILINW
ININIVINO) INIWI3S SL

SWVRNLS JWV
NV bSTH
DWIIXd

YIXIW
WY3YLS 140dSNVAL

INIWIVH

153N03Y I Al

19vVAYOINMOQ
IST1AV1d STH F1ddV e
1 INJW93S SLISInDY \
INIWOTS SI— / 14N INIWVINLS HIOOWS
43AV1d JAILVN 0! (1)

INIAQIEWA NOTIYDT1ddV ¥3AVId VIGIW

>

(INOHd! ‘QvdY) DINIQ SO —7

(3D3104d Wid
INIWVIYLS HLOOWS

™~
1SN0dS3Y/15IN01Y

ISNIDI1 ApoayAd

ISHINYW \l@
INIWVIYLS HLOOWS
E
/ —WI_
=

(£ SII) ¥IAY3S
INIWYIYLS HLOOWS

LELYERENEME
poayA|d

F

I

Patent Application Publication = Mar. 13,2014 Sheet 5 of 10 US 2014/0075582 A1

[USER | [NATIVEPLAYER] [DRM PROXY| MEDIA SERVER
SELECT “MOVIE” FROM GUI |
5 REQUEST PLAYLIST FROM SERVER i/ mediaserver/movi.mdu)
B MOVIEm3y
DTRANSFORM MOVIE.m3u TO MOVIE-LOGAL m3u
| OPEN MOVIE-LOCAL m3
REQUEST i ocalhot 9999/ cunkl

REQUEST hitp://medioserver,/chunkl.Js
chunkl.ls

| [5LICEASE PRESENT FOR hnkl N0,
OBTATI LICENSE STLENTLY FROM it/ drmserver/licensaacy s

LICENSE FOR dhunkl 5

| _ > DM ik
VIEW CHUNI] = chunk]-derypled

hﬂp]/loculhosi:9999/chunk2£: .

D LICENSE 15 PRESENT FOR hunkl

| L > DERYPT cunkls
| derypleds |
VIEW CHUNZ chunk-decrypted s i

FIG.5

Patent Application Publication = Mar. 13,2014 Sheet 6 of 10 US 2014/0075582 A1

[USER] [NATIVE PLAYER] [DRM PROXY] [MEDIA SERVER] [DRM SERVER

SELECT “MOVIE” FROM GUI
REQUEST FULL MOVIE FROM SERVER (htto://mediaserver/movie-ENCRYPTED.mp4)
- MOVIE-ENCRYPTED.mp4

D CREATE LOCAL PLAYLIST WITHOUT DECRYFTING MOVIE (MOVIE-LOCALm3u)

5 OPEN MOVIE-LOCAL m3u
UEST it/ ocbost 9999k 5

[=]
==

IS LICENSE RESENTFORHOVEEENCRYPED O
OBTAIN LICENSE SILENTLY FROM hitp//drmservercgnseacg, asm

LICENSE FOR MOVIE-ENCRYPTED mpd

—

D DECRYPT CHUNK LONG ENOUGH TO REACH NEXT APEG2 BOUNDARY{CHUNKI -i)E(RYPIED.ts}

VIEW CHUNKT = chunk]-decrypled s

- it/ localost:9999/chunk2.s
D DECRYPT CHUNK LONG ENOUGH TO REACH NEKT MPEGIQ BOUNDARY (CHUNKE-DECRYPTED s
D LICENSE IS PRESENT FOR MOVIE-ENCRYPTED.mpd.f |

VI AN = chunk-dacrypted s

FIG. 6

Patent Application Publication = Mar. 13,2014 Sheet 7 of 10 US 2014/0075582 A1

LUSER | [NATIVE PLAYER| [DRM PROXY| MEDIASERVER DRM SERVER
| SELECT ”MOVIE” FROM GUI_, | |

= REQUEST SMOOTHSTREAMING PLAYLIST FROM SERVER (itp //medmserver/mowe im)

! HOVIELSH |

REQUEST SMOOTHSTREAMING MANIFEST FROM SERVER {hitp //medlaserver/ movie.isme)
5 MOVIEISMC

DTRANSFORM MOVIE.ISMCTO MOVIE-LOCALm3u

§= OPEN MOVIE-LO(ALm3u
REQUEST ity /localhost 9998 chunk] 5

> SELECT A BITRATE AWONG THE ONES IN THE MANIFEST
REQUEST htp://mediaserver QualityLevels{birate) Fragments{video=stariTime001)

« VIDED CHUNK STARTING AT striimed0!

> IS LICENSE PRESENT FOR MOVIE? NO.
OBTAIN LICENSE STLENTLY FROM bty //drmserver/hcenseutq K

L LICENSE FOR MOVIE

g

D DECRYFTVIDED CHUNK STARTING AT torTmed01

L

ﬂEW CHUNK] = chnk] -decrypled s

hity://locathost: 9999 chunks
hﬂp//medmserver/ﬂuu||Iyleve|s(blTruIe)/ Frugments(V|deo-sIunTme002)

> LIBSEISREHN FRNOVE
> DR VOED HUNK STARTIG A7 e

chunk?-decrypted s

VIEW CHUNK2 =

FIG./

US 2014/0075582 Al

Mar. 13,2014 Sheet 8 0of 10

Patent Application Publication

g9

J9VY40LS ApoayAoig
YUOMIWYY VIVa 393 | | L0SOWIW

YIAVId VIQIW

INLNOD | 1 (A 1r4n)3S) IINVITAWOD/SSINLSNEOY

am3s
1dV NOLLVY9Y3LNI NOTLYDT1ddY
7

~Z i ~Z

104INOD ¥3AV1d 100) NOILV¥I¥INI

IN AIANVYE ¥IWOLSM

NIOMLIN
NOLLNATYLSIA

INIINOD IN3INO)

(31dAYIN]

US 2014/0075582 Al

Mar. 13,2014 Sheet 9 of 10

Patent Application Publication

0~
YINNIS
VIGINILINW
052"
"

6 9l
0§ _/
| SN
HINIS ¥IAVId
AX08d VIGINLLINW
.......... Sl
ol—"
0"

US 2014/0075582 Al

Mar. 13, 2014 Sheet 10 of 10

Patent Application Publication

0] 91

<{300)0 QWY QIL4AYNA0

< B0 aNv aLdRN| <

(00JN3 ANY GLANS

E_ﬁﬂl

NOILY)IINIHLAY dLIH
(155) NOLLAAYONA

d1AV1d
VIQIW JALLYN
AV1dSIQ
030IA -
10Y4INO) ¥3AV1d

In9

INIIINGIC-TINY
N\ NOLLY)SN490 MS

%

Z ININOD

(3LdAN]

0zl

US 2014/0075582 Al

METHOD FOR PLAYING DIGITAL
CONTENTS PROTECTED WITH A DRM
(DIGITAL RIGHTS MANAGEMENT)
SCHEME AND CORRESPONDING SYSTEM

FIELD OF THE INVENTION

[0001] The present invention relates to a method and a
corresponding system for playing digital contents protected
with a DRM scheme, the digital contents being stored in a
server provider and downloaded in a user device to be
decrypted and played. More particularly, the invention relates
to a method and system of the type described above wherein
the DRM scheme requires that the digital contents are played
by a specific player of the user device.

BACKGROUND OF THE INVENTION

[0002] Known approaches for protecting digital contents
with DRM (Digital rights management) prevent unauthorized
redistribution and restrict the ways a user can copy purchased
content, thus limiting the piracy of commercially marketed
digital material, which recently increased especially through
the widespread use of peer-to-peer file exchange programs.
[0003] A known approach for protecting digital contents
may be implemented by embedding a code in the digital
content which prevents its copy to an unauthorized user
device. Further protections may be provided, for example, by
specifying a time period in which the content can be accessed
or limiting the number of devices whereon the content can be
installed or read. More particularly, a protected digital con-
tentand a code is transmitted from a client to a device of a user
which purchases the content. The digital content is stored in
the client or retrieved from the client in streaming from a
network. When the user device receives the digital content in
protected format, it decrypts such with the code.

[0004] A limitation of the above cited approach is that the
client or content provided is responsible not only to deliver
the digital content in protected format but also to implement
the DRM, generating the code for the user device and storing
it. In other words, the approach has a notable impact on the
client. Moreover, this approach has a limitation of security
because the code enabling the reading of the protected digital
content is transmitted to the user device and is at least avail-
able to the user; in other words, the code is not consumed or
destroyed after reading the protecting digital content in the
user device and it remains available for the user.

[0005] It may be desired to reduce the impact of protecting
digital contents on the client or content provider and to
enforce the security of the DRM so that the code enabling the
user device to read the digital content provider is not easily
available at the user device side, thus overcoming the limita-
tions of current approaches.

[0006] Different types of content services and common
DRM problems in each type are discussed below.

[0007] Inarental service, the consumer purchases the right
to use content for a fixed period of time. In a rental service like
video on demand (VOD), the content lifetime is usually short
(e.g. 24 hours) and the content is viewed on a single device.
This may be the simplest type of service to implement in a
consumer-friendly way.

[0008] In a subscription rental service, the consumer can
access a substantial library of content. In a streaming video
subscription service, for example, a subscriber may pay a
monthly fee to access a variety of movies or TV programs. In

Mar. 13, 2014

a subscription rental service, consumers get access to content
for a longer period of time so issues like the portability of the
content (moving content between devices or accessing it mul-
tiple times on different devices), device upgrades and updates
to the DRM technology may be considered. New licenses
may be issued to subscribers to allow access for the next
subscription period. This process should be as seamless as
possible and not cause any disruption in accessing subscrip-
tion content.

[0009] In a “purchase to own” model, the consumer pur-
chases the right to consume the content for as long as desired.
A common requirement in this type of service is the ability to
backup content and licenses in case a device is damaged,
stolen or upgraded. Upgrades of the DRM technology may
also need to be handled so that new content can be purchased
after the upgrade but previously purchased content can still be
used. Consumers will often expect to access the content on
multiple devices.

[0010] Some DRM content services only deliver content to
one type of device. More commonly content distributors want
to deliver content to a range of different devices, e.g. Android
phones and iPhones. Multiple implementations of the same
DRM technology are required for different devices and oper-
ating systems. The DRM client may be integrated with a
media player, download manager, file system and other com-
ponents on the device. As a result DRM clients are often
installed on the device during manufacture or provisioning. A
Microsoft Playready DRM client for example, may not be
available on all the devices used by the content service’s
target consumers.

[0011] Also, many DRM technologies bind licenses to a
particular device. This means that a new license must be
issued to each device on which the consumer wants to play the
content and it may be necessary to track the devices owned by
a particular consumer.

[0012] Content can be downloaded or streamed. Streaming
content is often only stored on the server side and not on the
client device. This has the advantage that device upgrades or
updates of the DRM technology are less problematic since
older DRM content does not have to be ported to the new
device or DRM version.

[0013] Examples of content services and the typical DRM
problems associated with them are set forth below.

[0014] Video on demand includes a service type involving
rental, e.g. 24-hour access to films and TV programs. Content
delivery involves download or streaming, and devices include
PCs or connected TVs. This type of service has few DRM
usability issues as long as DRM clients are available for all
target device types.

[0015] “Unlimited” video subscription service includes a
service type involving subscription rental and streaming con-
tent delivery. Devices include PCs, connected TVs, tablets
and mobile phones. Making DRM clients available for all
target device types may require additional development. Sub-
scription renewal should be as transparent as possible and the
user should not encounter any interruptions in content access.
Features like license predelivery and silent license delivery
facilitate “invisible” subscription renewal.

[0016] Video download to own is a purchase-to-own ser-
vice type with content delivery that is downloaded. Devices
include PCs, connected TVs, tablets and mobile phones. Con-
tent and licenses should be backed up on the server-side to
allow users to move them when devices are lost or upgraded.
When updating the DRM technology, older content must still

US 2014/0075582 Al

be playable. In major upgrades, a new version of previously
purchased content may need to be delivered to subscribers.
[0017] As known, a method for playing digital contents
protected by a DRM scheme provides that a user device plays
the contents downloaded from a server provider only if a
license is acquired and used to decrypt the content. The DRM
(Digital Right Management) scheme may also require that the
digital content is played with a specific player which is
enabled to decrypt the digital contents download or received
in streaming from the server. Also the streaming format from
the server provider may be provided by the DRM scheme.
[0018] In this respect, the user device may store a native
player which is different from the specific player requested by
the DRM scheme. The term native player is referred to a
player stored by a manufacturer of the user device together
with the operating system; the native player may be faster
than a “non-native” player, since it is more integrated with the
operating system. For instance, the native player may use an
accelerator of the operating system for improving the perfor-
mance of rendering a movie.

[0019] Thus, if the specific player requested by the DRM
scheme is not the native player of the user device, the perfor-
mance of the digital content reproduction may be reduced.
[0020] In this respect, digital contents downloaded or
streamed with the DRM PlayReady scheme of Microsoft,
cannot be read and decrypted from the native player of an
iPhone mobile user device, i.e. from Quick Time Player. In
this case, a specific and non-native player must be down-
loaded into the iPhone mobile for decrypting and playing
such contents. The non-native player inside the iPhone may
perform less than the Quick Time Player, due to a slower
communication with the operating system of the user device,
ie. 108.

[0021] So a technical problem that may need to be
addressed is how to play digital content protected with a
DRM scheme without downloading a specific player, such
specific player being however required by the DRM scheme
to decrypt and play the digital content which is downloaded or
streamed from the server provider. Another technical problem
is how to provide a method for securely playing digital con-
tents protected by a DRM scheme with a secure and improved
performance and flexibility (e.g. without leaking out decryp-
tion keys and contents), especially for what concerns the
phases for decrypting and playing the digital contents in the
user device, thus overcoming the limitation which currently
affects the prior art method.

SUMMARY OF THE INVENTION

[0022] The approach at the base of the present invention is
to store an application inside a user device which translates
the digital contents protected with a predetermined DRM
scheme into a digital format which is readable by a native
player of the user device. The application, also indicated as
DRM proxy application, handles decryption, license acqui-
sition and rights management, through a DRM server which
is connected via a network to the user device. The application
runs as a local web server on the user device, for example on
an iPhone user device, and communicates with the native
player of the user device.

[0023] According to an embodiment of the invention, the
DRM application supports Apple HTTP streaming and also
Microsoft Smooth Streaming from a remote server, thus
enabling the native player to play digital contents managed
according to different DRM streaming protocols. Advanta-

Mar. 13, 2014

geously, the performance of the digital content execution is
increased because the native player is specifically designed to
communicate with the user device operating system and the
DRM proxy application.

[0024] According to the approach reported above, the tech-
nical problem is addressed by a method for playing digital
contents protected by a DRM scheme, wherein the digital
contents are stored in a server provider and streamed to a user
device for playing, the method including: executing a DRM
application inside the user device, the application interfacing
the server and a native player of the user device; connecting
the DRM application to the server, selecting a digital content
to be downloaded and retrieving a corresponding remote
playlist; transforming the remote playlist in a local playlist
having a format readable from the native player and playing a
plurality of local packets of the local playlist inside the native
player. The step of playing the local playlist including, for
each packet: requesting a corresponding remote packet from
the DRM application to said server; returning the remote
packet to the DRM application; acquiring a license to decrypt
the remote packet; and decrypting the remote packet in the
DRM application and returning the decrypted packet to the
native player as a local packet to be displayed.

[0025] Advantageously, the native player of the user device
is used to play the content even if the DRM scheme requires
a different and specific player; the communication between
the native player and the operating system of the user device
is faster than a communication between such operating sys-
tem and a specific and non-native player. In fact, the native
player may use the accelerator provided by the operating
system of the user device for rendering the digital contents.
[0026] Inanembodimentofthe invention, the user deviceis
an iPhone and the DRM scheme is Apple HTTP Streaming or
Microsoft Smooth Streaming with contents downloaded or
streamed from a remote server. Preferably, according to this
embodiment, the native player is Quick time Player. The
method for playing contents further supports streaming from
a television content provider like HBO. Thus, a native player
of'auser device, for example the native player of iPad, iPhone
or Android, may be used to directly play movie streamed from
HBO.

[0027] According to an aspect of the invention, the step of
acquiring the license comprises connecting the DRM proxy
application to a DRM server and sending an URL included in
the encrypted digital contents for retrieving the license.
Advantageously, the license request is embedded in the
encrypted digital contents.

[0028] Preferably the license request is executed before
activating the native player and which is activated only if the
license is acquired from the DRM server. Advantageously,
according to this aspect of the invention, if a license is not
acquired, no time is spent for activating the native player.
[0029] According to an embodiment of the invention, all
the remote packets of the remote playlist are associated to a
same license and the step of acquiring is executed only once,
preferably for the first remote packet of the remote playlist.
[0030] Inanother embodiment, the remote playlistincludes
only one remote packet as a full file corresponding to the
entire digital content; according to this embodiment, the
DRM proxy application divide the remote packet in a plural-
ity of local packets which are separately executed by the
native player.

[0031] The method supports a DRM scheme based on
Microsoft Smooth Streaming, in this case, the step of retriev-

US 2014/0075582 Al

ing a corresponding remote playlist includes retrieving a
SmoothStreaming playlist and Manifest files. The DRM
proxy may be configured to operate at a bit rate among the bit
rates available in the remote playlist.

[0032] Further advantages and features according to the
present invention will be apparent from the description given
here below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG.11isablock diagram illustrating components of
a system and phases of the method according to the present
invention;

[0034] FIG.2is ablock diagram illustrating components of
a system and phases of the method according to another
embodiment of the present invention.

[0035] FIG. 3 is a block diagram schematically represent-
ing a system and method according to an embodiment of the
invention.

[0036] FIG. 4 is a schematic diagram illustrating a proxy
server in the user device operating with a multimedia player,
and the multimedia server according to an embodiment of the
present invention.

[0037] FIG. 5 is a communication timing diagram sche-
matically illustrating a method for playing digital contents
protected with a DRM scheme, according to an embodiment
of the present invention.

[0038] FIG. 6 is a communication timing diagram sche-
matically illustrating a method for playing digital contents
protected with a DRM scheme, according to an embodiment
of the present invention.

[0039] FIG. 7 is a communication timing diagram sche-
matically illustrating a method for playing digital contents
protected with a DRM scheme, according to an embodiment
of the present invention.

[0040] FIG. 8 is a schematic diagram illustrating an inte-
gration of an agent implementing a DRM proxy and the other
application of the user device playing digital contents pro-
tected by a DRM scheme, according to an embodiment of the
present invention.

[0041] FIG. 9 is a schematic diagram illustrating an exem-
plary communication flow when special protocol, for
instance the Apple HTTP Streaming protocol, is used
between the proxy server and the multimedia server accord-
ing to an aspect of the invention.

[0042] FIG. 10 is a schematic diagram illustrating some
security details adopted between the user device and the
multimedia server according to an aspect of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0043] The present invention will now be described more
fully hereinafter with reference to the accompanying draw-
ings in which preferred embodiments of the invention are
shown. This invention may, however, be embodied in many
different forms and should not be construed as limited to the
embodiments set forth herein. Rather, these embodiments are
provided so that this disclosure will be thorough and com-
plete, and will fully convey the scope of the invention to those
skilled in the art. Like numbers refer to like elements through-
out. The dimensions of layers and regions may be exagger-
ated in the figures for greater clarity.

[0044] With reference to FIGS. 1 and 2, it is schematically
represented a system and method for protecting digital con-

Mar. 13, 2014

tents with DRM according to the present invention, wherein a
client site 2 or a content provider is in communication with a
user device 3 for transmitting digital contents in a protected
format. Typically, the client site 2 stores the digital content
(e.g. FIG. 1) or retrieves such in a streaming format from a
network (FIG. 2).

[0045] By way of example, the user device 3 may be a
cellular device that is capable of sending and receiving calls,
messages, emails and data via a wireless (i.e., cellular) com-
munications network. However, other types of wireless
devices (and networks), such as wireless local area network
(WLAN) devices, may also be used. Moreover, the user
devices 3 may be enabled for communicating via more than
one type of wireless network (e.g., via a cellular network and
a WLAN).

[0046] According to the present invention, a DRM server 1
generates the key for the encryption process within the client
site 2 and for the decryption process within the user device 3.
More particularly, the approach includes the following
phases. A key generation phase where the DRM server 1
derives at least one key for protecting the contents, a key
transmission phase where the key is transmitted from the
DRM server 1 to the client site 2, and a content delivery phase,
where the client site 2 transmits the protected content to a user
device 3.

[0047] For decrypting the digital content, the user device 3
requests the key(s) from the DRM server 1, the request may
include a key identification that was transmitted by the client
site 2 to the device 3 together with the protected contents and
alsoused by the DRM server 1 to derive the key orkeys for the
device 3.

[0048] Advantageously, the key is provided by the DRM
server 1 to the client site 2 and to the user device 3, and itis not
transmitted between client site 2 and user device 3. Moreover,
several keys may be generated in the DRM server 1 and
transmitted to the client site 2 to encrypt “on the fly” corre-
sponding several pieces of digital contents, e.g. the user
device 3 may request several keys from the DRM server 1, for
decrypting pieces of the protected digital content.

[0049] The execution of the key generation phase is
requested from a DRM batch protector module 21 of the
client site 2, before encrypting the digital contents. After
receipt of the encryption keys from the DRM server 1, the
DRM batch protector module 21 encrypts the digital contents,
preferably offline. More particularly, the DRM batch protec-
tor module 21 reads the digital contents from a local directory
or from a URL (Uniform Resource Locator) and retrieves the
encryption keys from a KEY_FILE provided by the DRM
server 1. Preferably, the KEY_FILE is password protected.
[0050] The key generation phase may comprise an execu-
tion of a SOAP (Simple Object Access Protocol) API (Appli-
cation Programming Interface) which is stored inside the
DRM server 1, and receives as an in input an identifier of the
digital content to be encrypted, for example the title of a
movie, and a Crypto Period Number (CPN) associated to a
number of segments or streams in which the digital contents
is divided. The output of the SOAP API is a plurality of
encryption keys to be used for encrypting the digital content
in a plurality of segments or streams.

[0051] The DRM batch protector module 21 transmits the
CPN and the identifier of digital contents to the DRM server
1 and receives in response from the DRM server 1 the plural-
ity of encryption keys. According to an aspect of the inven-
tion, an increased CPN is transmitted from the DRM batch

US 2014/0075582 Al

protector module 21 to the DRM server 1, and further encryp-
tion keys may be received, to encrypt further segments or
streams of data.

[0052] In this further request of encryption keys, the con-
tent identifier is not modified. Preferably, the CPN is an
unsigned 64-bit integer used for key scheduling purposes, as
different numbers, even with the same content identifier, to
yield different content encryption keys.

[0053] According to a preferred embodiment, the DRM
batch protector module 21 further transmits the type of DRM
Protection System used for encrypting the digital contents;
the type may include, for example, “PlayReady”, “Windows
Media DRM” and “Apple HTTP Streaming” as the DRM
Protection System, or any other DRM system using symmet-
ric keys for protection.

[0054] Hereafter are given some examples of the output or
response from the DRM server 1 to the client site 2, i.e. to the
DRM batch protector module21, in case the DRM Protection
System used is “PlayReady”, “Windows Media DRM” and
“Apple HTTP Streaming”.

[0055] With PlayReady, the Key provisioning response
may include: -a Key ID which is a 16-byte array including the
identification of the content to PlayReady and to an Entitle-
ment API which is queried by the user device, as is apparent
from the description below. The Key ID is also part of the
PlayReady protected header; -a Seed which is a byte array of
at least 30 bytes including the seed used to generate the
content key in combination with the Key ID; -a Content
Encryption Key which is a 16-byte array used to AES-128
encrypt the contents. The Content Encryption Key may be
deterministically calculated on the basis of Key ID and Seed
but, as a preferred embodiment, it is specifically returned by
the SOAP APL

[0056] With Windows Media DRM, the Key Provisioning
Response may include: a Key ID which is a 16-byte array
including the identification of the content to Windows Media
DRM and to the Entitlement API, it is also part of the
WMDRM protected header; and a Seed which is a byte array
of at least 30 bytes including the seed used to generate the
content key in combination with the Key ID.

[0057] With Apple HTTP Streaming, the Key Provisioning
Response may include: aKey ID, i.e. a 16-byte array with the
identifier of the content to the Entitlement API; and a Content
Encryption Key, i.e. a 16-byte array comprising the AES key
for encrypting the digital content.

[0058] Hereafter are examples of steps for transforming the
external content identifier into Key ID, Seed and/or Content
Encryption Key, according to an embodiment of the present
invention:

[0059] 1. A UTF-8 encoding of the content identifier, for
example the identifier “The Family Guy, Season 2, Episode
6”, is given as an input to a MDS5 algorithm.

[0060] 2. A UTF-8 encoding of a decimal representation of
the Crypto number, for example “12345”, is give in input to
the same MDS5 algorithm.

[0061] 3. MDS hash is calculated, returning as an output a
16-byte array which is the Key ID.

[0062] 4.The Key ID is given as an input to a key manager
table. A transformation turns any byte array into another
32-byte array by going through SHA-256 and a secret 64 KB
“key table”. The keyTable may be a 256-by-256 byte square
matrix including pseudo-random numbers generated using a
cryptographically strong random generator. This table is
available to DRM server 1, for example in a local file. Turning

Mar. 13, 2014

the initial “contentiD” of arbitrary length into a 32-byte array
that can be used as a seed would be appreciated by those
skilled in the art.

[0063] 5.The Key ID and the Seed are given in input to an
algorithm having in output the Content Encryption Key, pref-
erably 16-bytes long.

[0064] As already stated, for PlayReady, at least Key ID
and Seed are returned, and as for Windows Media. For Apple
HTTP Streaming, Key ID and Content Encryption Key are
returned.

[0065] According to the invention, a higher security of the
DRM process is obtained avoiding the storage of the keys
within the DRM server but deriving the key(s) through an
internal server table and with a key identification.

[0066] Preferably, the transmission of key(s) between the
DRM server 1 and the client site 2 is over a secure channel,
more preferably out-of-band. Moreover, the transmission of
keys between the DRM server 1 and the client site 2 is pass-
word protected.

[0067] In an aspect of the present invention, the transmis-
sion of protected contents from the client site 2 to the device
1 is streamed, each stream being separately encrypted before
transmission with a different encryption key generated by the
DRM server (e.g. as illustrated in FIG. 2).

[0068] In another aspect of the invention, the transmission
of contents from the client site 2 to the device 3 is in a single
block, previously stored in the client site 2. In this case, the
digital content is already available locally in a storage of the
client and is not retrieved from a network.

[0069] In a preferred embodiment of the invention, the
key(s) is used only for one communication session between
the DRM server 1 and the client site 2, and than marked as
consumed or used. This embodiment improves security of the
DRM. Also the user device 3 consumes the key(s) after
decrypting the protected content.

[0070] The protected content may be delivered to a content
delivery network 4 associated to the client site 2, preferably a
web server or an edge-caching network, for improving deliv-
ery time to the user device 3.

[0071] Hereinafter the method will be disclosed in more
detail making reference to the communication flow inside the
DRM server 1.

[0072] Asisknown, an Application Programming Interface
(AP]) is a particular set of rules and specifications that a
software program can follow to access and make use of the
services and resources provided by another particular soft-
ware program that implements that API. In other words, an
APl is an interface between different software programs and
facilitates their interaction, similar to the way the user inter-
face facilitates interaction between humans and computers.
[0073] An API can be created for applications, libraries,
operating systems, etc., as a way of defining their “vocabu-
laries” and resources request conventions (e.g. function-call-
ing conventions). It may include specifications for routines,
data structures, object classes, and protocols used to commu-
nicate between the consumer program and the implementer
program of the API.

[0074] According to the method the SOAP API hereafter
also referred as Key Provisioning AP, may be used by any-
one implementing DRM protection, for example, by a third-
party Media Encoder with all the key material needed to
encrypt streaming samples. The delivered key material can in
principle be used with any DRM technology, but it is espe-
cially focused towards the following environments including,

US 2014/0075582 Al

for example, Microsoft PlayReady, Apple Streaming and
Windows Media DRM 10.1.x.

[0075] This new API may provide support for live stream-
ing scenarios, where it is important to be able to switch
content encryption keys even within the same live stream. To
these ends, the concept of “Crypto Period Number” (CPN) is
introduced. Encoder vendors can obtain new encryption keys
for a given stream simply by increasing the CPN, without
changing the main content identifier.

[0076] To facilitate the use of this API, the user is allowed
to pass in any content identifier that makes sense to him such
as for instance: “Title, Season 6, Episode 2” (or any string of
that kind). The Key Provisioning API will turn these content
identifiers into content encryption keys using a special pro-
cedure described below.

[0077] After this phase, the Key Provisioning API will
return an identifier—{for instance a 16-byte “Key ID”—which
can be used later on when requesting a license from the DRM
server 1.

[0078] All these procedures may be implemented without
needing to store content IDs, encryption keys, or seeds in any
database table. As an example:

[0079] Key Provisioning Public Interface involves aservice
referred to as Key Provisioning. This service may accept the
following parameters in the key provisioning request: DRM
Protection System, e.g. one of “PlayReady”, “Windows
Media DRM”, or “Apple HT TP Streaming”; External content
identifier, e.g. any identifier that makes sense to the content
provider, such as “Titlel” or “Title2, Season 4, Episode 17;
Crypto Period Number, optional, e.g. an unsigned 64-bit inte-
ger that can be used for key scheduling purposes, different
numbers, even with the same external content identifier, will
yield different content encryption keys.

[0080] The key provisioning response may be one of three
types: PlayReady, Windows Media DRM, or Apple HTTP
Streaming. PlayReady Key Provisioning Response Key 1D,
e.g. a 16-byte array containing the key ID that uniquely iden-
tifies the content to PlayReady, and to the Entitlement API
later on, it also may need to be part of the PlayReady protected
header; Seed, e.g. a byte array of at least 30 bytes containing
the seed used to generate the content key (in combination with
the Key ID); Content Encryption Key, e.g. 16-byte array that
can be used to AES-128 encrypt the contents, although this
may be deterministically calculated on the basis of Key 1D
and Seed, it is returned for convenience. Windows Media
DRM Key Provisioning Response: Key 1D, e.g. 16-byte array
containing the key ID that uniquely identifies the content to
Windows Media DRM, and to the Entitlement API later on, it
may also need to be part of the WMDRM protected header;
Seed, e.g. a byte array of at least 30 bytes representing the
seed used to generate the content key (in combination with the
Key ID). Apple HTTP Streaming Key Provisioning
Response: Key 1D, e.g. 16-byte array containing the key ID
that uniquely identifies the content to the Entitlement API
later on; Content Encryption Key, e.g. 16-byte array contain-
ing the AES key needed to encrypt the content.

[0081] A final step may be provided for transforming the
arbitrary External Content Identifier into Key 1D, Seed, and/
or Content Encryption Key.

[0082] Hereafter, the phase of requesting the key(s) from
the user device to the DRM server 1 is described in more
detail. The request is preferably served by another AP, also
indicated as entitlement or license API, which is stored in the
DRM server 1. The entitlement API returns a license to

Mar. 13, 2014

PlayReady, to WMDRM or an Apple CEK. The API takes in
input the content identification and, for PlayReady or
WMDRM, a test. The API is programmed to treat different
content identification: If a content ID is received, for example
xxxx@domain.com, a content metadata (most notably, the
Seed) is retrieved and passed to an application, e.g.
CrossTalk, to generate a license; If a content ID is received in
a specific format, for example cid:
HYYyYYYyYYYYyYYYYYYYYYYYyYyyyyyyy@domain.com,
where it is 32 characters long and it is the hex-encoding of the
Key ID, then the characters are converted into a 16-byte key
1D (and the following step is executed); Ifa 16-byte Key ID is
received, the Key ID is given in input to a key manager table,
then the last 2 bytes are discarded, and the output is a 30-byte
Seed.

[0083] Then only one of the following 3 cases may apply:
-PlayReady, the Key ID and Seed are given in input to the
license server to obtain a license; -Windows Media DRM, the
Key ID and Seed are given in input to the license server to
obtaina license; and -Apple HT TP Streaming, the Key ID and
Seed are given in input into an algorithm which turns them
into a Content Encryption Key.

[0084] As to the client site 2, details of the structure and
functioning of the DRM-batch-protector that is preferably an
offline content protection tool will be discussed. The ability to
package content offline is possible by the above disclosed
Key Provisioning API that allows to generate a desired
amount of content protection keys in advance.

[0085] The DRM-batch-protector 21 may have two modes
of operation: KEY_FILE and PROTECT. When working in
KEY_FILE mode, the DRM-batch-protector 21 calls key
provisioning API of the specified DRM server and retrieves a
specified amount of content encryption keys that are put into
a file. Content encryption keys are protected with a password
that is also specified on the command line. When working in
PROTECT mode, the DRM-batch-protector 21 reads content
from specified input directory, protects it and writes it to the
specified output directory. The keys that are used for protec-
tion are extracted from the key file that has been created in
KEY_FILE mode. The PlayReady envelope protection is
supported by DRM-batch-protector 21.

[0086] According to the present invention a mode referred
to as LIVE may be added to DRM-batch-protector 21. When
working in this mode the DRM-batch-protector is able to
encrypt content that is being segmented live. The DRM-
batch-protector is able to read raw content from a directory or
from a URL. When specifying URL—it should be pointing to
the playlist (master). All other DRM-batch-protector proper-
ties should be valid. The encryption keys should be taken
from the key file.

[0087] When working in LIVE mode the DRM-batch-pro-
tector 21 may execute the following actions: Download mas-
ter playlist (if URL specified) or read it from the file system;
Read the playlist and extract child playlists that are specified
in the master playlist, or return the master playlist itself; Fork
off a thread per each child playlist that would take care of
synchronizing raw content with protected one; and DRM-
batch-protector would keep running until it would receive a
Control-C command, then the threads would shutdown grace-
fully and DRM-batch-protector would exit.

[0088] According to the invention, the DRM-batch-protec-
tor may be scheduled to execute at specified time intervals.
For example, the default may be 10 s.

US 2014/0075582 Al

[0089] While synchronizing the content, DRM-batch-pro-
tector 21 may perform the following steps: Read playlist into
memory and retrieve all raw content files from it; Check if an
encrypted file version already exists in the output directory, if
not—add it to the new files list; After the check for new files
is complete, all the old files in the output directory that do not
exist in the playlist will be added to the old files list and would
be eventually deleted. The synchronization process may be
executed by: Deleting old files from the previous run (this is
done to prevent files being deleted while some DRM agents
might still be using them); Encrypting new files; Copying
new playlist to the output directory; and Updating old files list
so that they would be deleted on the next run.

[0090] The DRM-batch-protector 21 may log errors when
they occur and keep running.

[0091] During protection, from the URL it might happen
that a 404 error is returned from the raw content server while
trying to retrieve the content file that was specified in the
playlist. DRM-batch-protector 21 should log such error on
DEBUG level and try to sleep for 1% of the time that a thread
sleeps at scheduled interval.

[0092] If an error is returned while trying to refresh the
playlist—DRM-batch-protector 21 should retry after a sched-
uled thread sleep interval, if the same error is returned again,
then thread sleep interval should be increased 2, 3, 4, 5 times
each time an error is returned. Once the thread sleep interval
is increased to 5 times its original time—DRM-batch-protec-
tor 21 should continue running until a valid response is
received from the server. Once a valid response is received—
thread scheduled sleep time would return to normal.

[0093] A property may be added to DRM-batch-protector
21 that would cause playlist files to be rewritten in a more
friendly format. This could be done by removing any non-
alphabetic and non-numeric characters from playlists and
content file names and adding proper file extensions. Exten-
sions that should be added to playlist and content files should
be specified as properties and default for instance to .m3u8 for
playlist and .ts for content files.

[0094] To satisfy requirements of constant availability,
DRM-batch-protector 21 may be updated with monitoring.
This would allow to easily check DRM-batch-protector status
and take any additional measures if needed. SNMP monitor-
ing framework from DRM server can be re-used here.
[0095] The present invention also relates to a system for
protecting digital contents including: a DRM (Digital Right
Management) server configured to derive at least one key; and
a client configured to store digital content or receive stream-
ing digital content to be protected, and configured to receive
a derived key from the DRM server, and configured to trans-
mit protected digital content to a user device including a key
identification. The DRM server is configured to receive the
key identification from the user device to derive the key for
the user device.

[0096] The client site 2 includes a DRM batch protector
module 21 configured to request key generation from the
DRM server 1 before encrypting the digital content to be
protected which is then performed offline in the DRM batch
protector module after receipt of the derived key from the
DRM server as an encryption key. The DRM batch protector
module 21 is configured to read the digital content from a
local directory or from a URL (Uniform Resource Locator)
and retrieve the encryption key from a key file provided to the
DRM batch protector module by the DRM server with pass-
word protection.

Mar. 13, 2014

[0097] The DRM server 1 comprises a SOAP API pro-
grammed to receive in input from the DRM batch protector
module 21 an identification of the digital content and a num-
ber associated to the number of streams or segments in which
the digital content is to be encrypted and to return in output at
least one code for protecting the digital contents. In one
embodiment of the invention, the code includes a key ID and
a seed. The DRM batch protector module 21 is programmed
to derive the content encryption key from the key ID and the
seed. In another embodiment, the SOAP API is programmed
to directly return the content encryption key the DRM batch
protector module 21.

[0098] Preferably, the format of key ID, seed and content
encryption key comply with a plurality of DRM protection
systems, including for example “PlayReady”, “Windows
Media DRM”, “Apple HTTP Streaming”.

[0099] Hereafter, the features of an example method and
system according to the invention are briefly summarized.
Keys are generated in the DRM Server 1 and delivered out-
of-band and securely to a client 2, preferably to a batch
protector of the client. The number ofkeys delivered depends
on the encryption job. The key is derived from an internal key
table thus there is no storage ofkeys per se in the DRM Server.
Keys are identified by key ids and forms the basis of the key
derivation function Key tables can exist on a per client basis,
further increasing security by segregating the key space
between clients. The delivered key file is encrypted with a
password of choice.

[0100] Batch protector is configured with the keys and sub-
sequently started to protect the content. This content can be a
bunch of files stored on disk on the client or retrieved stream-
ing resource and protecting it “on-the-fly”. Keys are con-
sumed as required from the previously delivered secure key
file. Then, the keys are marked as consumed

[0101] The protected content is delivered to the content
delivery network of the client, for example a simple web
server or a edge-caching network. This depends on how
quickly the client should deliver the content to the user
devices.

[0102] The device downloads the content, detects that it is
DRM protected and initiates license acquisition.

[0103] DRM Server receives the license request and gen-
erates the encryption key based on the information received.
The key id is used to derive the key. This is shipped as part of
the license acquisition protocol. The device consumes the
license and can decrypt the content.

[0104] Now with reference to FIGS. 3-8, another aspect of
the invention will be described.

[0105] FIG. 3 schematically represents a user device 100
requesting digital contents, a multimedia server 200 or pro-
vider server, providing contents to the user device, and a
license server 300 or DRM server, managing licenses of a
DRM scheme.

[0106] Referring to FIG. 3, the user device 100 comprises a
multimedia player, a DRM Fusion Agent 120, DRM store
130, Proxy server 150 and Local file system 140. The Proxy
server 150 is stored in the user device, and provides HTTP
streaming service to the multimedia player 110.

[0107] The user device 100 comprises a multimedia player
110 or native player, to play the digital contents, the DRM
Fusion Agent 120 for downloading and decrypting the con-
tents, the DRM store 130 for storing encryption keys and the
Local file system 140. Advantageously, the user device 100
further comprises a DRM application, also indicated as Proxy

US 2014/0075582 Al

server 150, enabling the multimedia player 110 to play a
predetermined HTTP streaming service provided according
to different DRM schemes.

[0108] More particularly, the proxy server 150 runs as a
local web/streaming server on the user device 100 and trans-
lates static or streaming contents into a streaming format
which is readable from the multimedia player 110.

[0109] For example, the user device 100 may be an iPhone
and the multimedia player 110 is the native player of iPhone,
i.e. Quick Time Player, which is used to download and play
digital contents according to the Apple HTTP Live Streaming
scheme, even if the scope of invention is not limited thereto.
[0110] The proxy server 150 may handle license acquisi-
tion, rights management via the DRM Fusion Agent 120.
According to the invention, the proxy server 150 translates
the HTTP Streaming provided according to other DRM
schemes into a format readable to the iPhone native player
110.

[0111] The multimedia server 200 may comprise a front-
end media server 210 and content repository 220 as repre-
sented in FIG. 1. The frontend 210 receives request for
accessing multimedia contents from the user device 100 and
sends a response after processing. More particularly, the fron-
tend 210 accesses the content repository 220 and retrieves the
multimedia content requested by the user device 100, while
the multimedia sever 200 supports several communication
protocols such as Apple HT'TP Live Streaming, Microsoft
Smooth Streaming or transmission of a static file to the user
device.

[0112] The specific protocol used between the multimedia
server 200 and the proxy server 150 is not limited to the
examples provided.

[0113] FIG. 4 schematically represents a more detailed
view of the components of the proxy server 150, or DRM
application, in the user device 100 operating with a multime-
dia player 110, or native player, and communicating with the
multimedia server 200 or server provider. The example is
described when a Smooth Streaming Server (I1IS7) is used as
multimedia server 200, and the well known so-called
PlayReady standard is used as a DRM standard. The multi-
media player 110 of the user device 100 supports the HT'TP
protocol for streaming.

[0114] Hereinafter the process steps or phases involved
with or following a user’s request is discussed. Each step has
a corresponding reference numeral in FIG. 4. Hereinafter,
each of the step will be explained in detail.

[0115] First, in step 1, the multimedia player 110 receives
an instruction of “Play Movie” from GUI. The user is pre-
sented with a graphical interface allowing him/her to play a
movie associated with a certain Smooth Streaming URL.
Then, in step 2, a Downloadable Agent API receives the
Smooth Streaming URL, and downloads the Smooth Stream-
ing manifest from the web server (e.g. IIS 7). In subsequent
step 3, the web server returns the Smooth Streaming manifest.
The Smooth Streaming manifest may include a playlist.
[0116] At this point, the API (2) applies some relatively
straightforward transformations to transform it into an HL.S
playlist. The conversion may work as follows:

[0117] a. Create a master playlist pointing to bitrate-spe-
cific playlists—as many as there are <QualityLevel> entries
for the video stream.

[0118] b. For each <QualityLevel> entry, create a bitrate-
specific playlist. Each of these playlists will contain a number
of TS segments, enough that each segment will result to be

Mar. 13, 2014

approximately 10 seconds in lengths. For example, the origi-
nal Smooth Streaming manifest may contain 20<c> entries
representing a Smooth Streaming fragment each. Each of
theses fragments may have a d (duration) attribute of 3 sec-
onds. In that case, the final playlist will have a total of 7 TS
segments: 6 of ~9 seconds, and the last one of ~6 seconds.
[0119] c. Each of the TS segments is actually an (obfus-
cated) URL pointing to localhost (i.e. the device itself) on a
randomized port.

[0120] Additionally, at this point the Downloadable Agent
API starts a local HTTPS listener on the port that was used
when creating the HLS playlist. Then, in step 4, the
PlayReady License server 300 is called to intervene. If the
Smooth Streaming manifest contains the <Protection> ele-
ment, then the content is DRM-protected. In this case, the API
requests and receives a license from the license server using
the PlayReady content header contained in the manifest. The
API sends to the native player 110 the playlist.

[0121] In step 5, the native player 110, for instance using
Apple’s algorithms for bitrate throttling, will pick the most
suitable bitrate and attempt to play segments sequentially off
of'it. By doing so it will hit the local web server 150. It should
be noted that the native player 110 does not need to have a full
sense of the actual network conditions, given that it will only
communicate with the local web server 150 rather than with
the content server 200 which is on the Internet.

[0122] This means that if the native player 110 is using
some heuristic algorithms to try and estimate the available
bandwidth, it may not be able to do so unless the local web
server 150 somehow mimics these conditions on the local
interface, for instance by throttling the data delivery rate to
match that of the WAN interface. Therefore, according to the
present invention, this throttling action of the data delivery
rate has an important effect for streaming protocols such as
HLS because they use just these algorithms to decide what
stream to play.

[0123] Then, in step 6, the local HTTPS server 150 may
receive from the native player a request of three possible
types:

[0124] a. Master playlist request. In this case, the local
server will serve up the master HLS playlist that was com-
puted at the beginning.

[0125] b. Bitrate-specific playlist request. In this case, the
local server will serve up the requested bitrate-specific HL.S
playlist that was computed at the beginning.

[0126] c. A single TS segment. In this case, the local web
server will assemble a TS segment as described in steps 7
through 11 below.

[0127] The incoming local HTTPS request contains the
start timestamp of the Smooth Streaming fragment the user
wants to retrieve, step 7. The API then uses a set of algorithms
to determine the following:

[0128] a. How many Smooth Streaming fragments are
needed in order to total 10 seconds,

[0129] b. The start timestamp of the corresponding audio
fragment, and

[0130] c. How many audio fragments are needed.

[0131] Atthis point, the HT TP client will perform a number

of parallel HTTP GET requests to the Smooth Streaming
server to retrieve all these video and audio Smooth Streaming
fragments. After that, step 8, the web server returns all the
requested Smooth Streaming fragments, which at this point
are still PlayReady DRM-encrypted.

US 2014/0075582 Al

[0132] Ifthe downloaded fragments are encrypted, then in
step 9 the DRM Agent 120 will decrypt them in-memory 130
using the license previously acquired. A further step 10 is
provided wherein the Smooth Streaming fragments are then
parsed to extract the raw H.264 streams and the raw AAC
streams. All raw H.264 streams are then concatenated
together to reach a length of about 10 seconds, and the same
goes for all raw AAC streams.

[0133] In step 11 the MPEG 2 Transport Stream multi-
plexer component takes the concatenated H.264 stream and
the concatenated AAC stream and multiplexes them together,
taking care that the timestamps are in sync. It thus generates
an MPEG 2 Transport Stream segment. The segment is
returned to the local HTTPS server 150 in a step numbered 12.
The HTTPS server 150 fulfils the local request by returning
the multiplexed TS segment in step 13, which the native
player 110 plays in the correct sequence order.

[0134] Therefore, the above described approach allows a
content encoded with Microsoft Smooth Streaming and
encrypted with Microsoft PlayReady DRM to reach iOS
devices and to be displayed smoothly, while retaining the
adaptive streaming capabilities of the Smooth Streaming pro-
tocol.

[0135] Moreover, the approach renders possible to keep
simultaneously this content DRM-protected as long as pos-
sible to avoid snooping, interception, and capture. In other
words, the approach allows the implementation of the DRM-
protected Smooth Streaming library for a Downloadable
Agent with Native Player on a i0S environment.

[0136] With reference to FIG. 5, it is schematically repre-
sented the method for playing digital contents according to
the invention, wherein, in this example, the DRM proxy of an
iPhone communicates with a corresponding Quick time
Player and with a HTTP streaming remote media server via
Apple HTTP Streaming. The user device 30 selects digital
content from a list of contents in the GUI (Graphic User
Interface); from the user point of view, the application simply
opens the native player, Quick time Player, which starts play-
ing the contents after a short delay.

[0137] However, hidden to the user, the following steps
may be executed: The DRM proxy displays a GUI with a list
of contents; the list is retrieved from a website or is hard-
coded in the application; The user selects a desired content,
and preferably, there is a one-to-one correspondence between
contents and playlist, therefore the DRM proxy may detect
which playlist to retrieve from the server for a content
requested from the user; The DRM proxy retrieves the origi-
nal playlist, for example HarryPotter.m3u which comprises,
for example, the following packets: “http://mediaserver/
packetl .ts”, “http://mediaserver/packet2.ts”, The DRM
proxy transforms the playlist in a local playlist (In an aspect of
the present invention, the transformed playlist, for example
HarryPotter-local.m3u, replaces the real hostname/port with
the local hostname/port, as “http://localhost:9999/packetl.
ts”, “http://localhost:9999/packet2.ts”, The DRM proxy
passes the transformed playlist to native player, for example
Quick Time player; The native player, which is enabled to
read the M3U format, requests the first file from the local
playlist, i.e. http://localhost:9999/packetl.ts; The DRM
proxy applies a reverse transformation on the host name, and
requests http://mediaserver/packet].ts from the media server;
Media server transmits the corresponding packet, packetl .ts,
more particularly, packetl.ts is PlayReady envelope-en-
crypted; The DRM proxy, calls a DRM Agent in a DRM

Mar. 13, 2014

server, checks if it has a license for packetl.ts, and if the
license is not detected the DRM Proxy, calls the DRM Agent
and navigates to the silent License Acquisition URL which is
included in an encrypted content’s header, for example http://
drmserver/licenseacq.asmx, and in this respect, according to
an aspect of the present invention, all the packets packetl.ts,
packet2.ts, have the same content Identification DRM-wise
(which is for example the same for the whole movie) and
therefore share the same license/decryption key (in this
respect, in a different embodiment of the invention, the
license acquisition is started before starting the native player
with the playlist; this is advantageous because, if no license
may be obtained, it is not necessary to start the native player);
The DRM server returns silently a valid license; The DRM
Proxy, calls DRM Fusion Agent and decrypts packetl.ts in
memory; and the DRM Proxy returns the decrypted packed to
the native player, which displays the video packet to the user.
[0138] According to another embodiment of the invention,
the DRM Proxy does not decrypt but it leaves each packet
encrypted. It inserts an EXT-X-KEY item at the top of the
playlist, using a same AES-128 key used in the PlayReady
encryption, for example. The DRM Proxy, instead of decrypt-
ing the packet, will only proceed to remove the PlayReady
envelope header, leaving only the raw AES128-encrypted
data. The DRM Proxy then pass this raw data back to Native
Player. The Native Player, with EXT-X-KEY, obtains the
decryption key and decrypts the packet itself.

[0139] The native player requests the second playlist item,
http://localhost:9999/packet2.ts. The DRM proxy calls the
DRM Agent and checks if it has a license for packet2.ts. in the
example given above, i.e. all the packets have the same
decryption key, the license key is available. The DRM proxy
calls the DRM Agent, decrypts packet2.ts in memory.
[0140] The DRM proxy returns decrypted packet2 to
Native Player, which displays the video packet to the user.
These last four steps are repeated for all the video reproduc-
tion.

[0141] With reference to FIG. 6, it is schematically repre-
sented the method for playing digital contents according to
another aspect of the invention. In this case, the DRM proxy
of'an iPhone communicates with a corresponding Quick time
Player to play a static file. More particularly, the following
steps are executed: The DRM Proxy shows the GUI with a list
of contents. This list can be retrieved from a website or
hard-coded in the application; The User selects the desired
content; The DRM Proxy retrieves the full PlayReady-enve-
lope encrypted file HarryPotter-encrypted.mp4; The DRM
Proxy creates a new local playlist without yet decrypting the
file, the new playlist, for example HarryPotter-local.m3u, is
in the form: “http://localhost:9999/packetl .ts”, “http://local-
host:9999/packet2.ts”, “http://localhost:9999/packetN.ts”, in
this step, the DRM Proxy uses heuristics to determine a
number of packets (“N”) to be used, based on the content
length, this is because it is memory-consuming to decrypt the
whole movie in memory beforehand; The DRM Proxy passes
the transformed playlist to the native player; The native
player, detecting the M3U format, requests the first file from
its playlist, http://localhost:9999/packetl .ts; The DRM Proxy
checks whether a license is available for the whole movie file,
and if the license is not detected, the DRM Proxy calls the
DRM Agent, navigates to the silent License Acquisition URL
contained in the encrypted content’s header, for example
http://drmserver/licenseacq.asmx (also in this example, it is
assumed that there is only one DRM content ID (for example,

US 2014/0075582 Al

the same for the whole movie) and therefore all packets share
the same license/decryption key), as already stated above,
according to a different embodiment, the license acquisition
is started before invoking the native player; The DRM Server
returns silently a valid license; The DRM Proxy calls the
DRM Agent, decrypts in memory 1/Nth of the movie plus
enough data to reach the next MPEG 2 boundary, this is the
decrypted packet1, and in this respect, in order to comply with
the HTTP Streaming specification, each packet is terminated
on an MPEG 2 boundary, with some additional restrictions;
The DRM Proxy returns decrypted packet] to Native Player,
which display the video packet to the user.

[0142] Also in this case, according to another embodiment
of'the invention, the DRM Proxy does not decrypt at all but it
leaves the whole movie encrypted. It inserts an EXT-X-KEY
item at the top of the playlist, using the same AES-128 key
that was used in the PlayReady encryption. The DRM Proxy,
instead of decrypting the movie, proceeds to remove the
PlayReady envelope header, leaving only the raw AES128-
encrypted data, and then simply cut off a still-encrypted
packet of (movie length)/(number of packets) length. DRM
Proxy then passes this raw data back to Native Player. The
Native Player, with EXT-X-KEY, obtains the decryption key
and decrypts the packet itself.

[0143] The Native player requests the second playlist item,
http://localhost:9999/packet2.ts. The DRM Proxy, calls the
DRM Agent, checks if it has alicense for the whole moviefile.
If all the packets have the same decryption key, the license is
available. The DRM Proxy calls the DRM Agent, decrypts in
memory the next 1/Nth of the movie plus enough data to reach
the next MPEG 2 boundary, i.e. the packet2 decrypted. The
DRM Proxy returns packet2-decrypted to Native Player,
which displays the video packet to the user. The last four steps
are repeated for displaying all the digital content.

[0144] With reference to FIG. 7, it is schematically repre-
sented the method for playing digital contents according to
another aspect of the invention. In this case, the DRM proxy
of'an iPhone communicates with a corresponding Quick time
Player and with a Microsoft Smooth Streaming from a remote
server to play the digital content. More particularly, the fol-
lowing steps are executed: The DRM Proxy shows a GUI with
a list of contents, this list can be retrieved from a website or
hard-coded in the application; The User selects a desired
content; Preferably, there is a one to one mapping between
contents and playlist so that DRM Proxy detects the playlistto
be retrieve from the server; The DRM Proxy retrieves the
original SmoothStreaming playlist and Manifest files.
[0145] The DRM Proxy transforms the playlist in a local
playlist, the transformed playlist (HarryPotter-local. m3u) has
the same number of packets as the original manifest but points
to “files” on the local DRM proxy: “http://localhost:9999/
packetl.ts”, “http://localhost:9999/packet2.ts”, The
DRM Proxy passes the transformed playlist to the native
player, the playlist name is not expected to show anywhere in
the UT; The Native player, which understands the M3U for-
mat, requests the first file from its playlist, http://localhost:
9999/packetl.ts.

[0146] The DRM Proxy selects a suitable bitrate among the
ones offered in the server playlist. In this respect, according to
a first aspect of the invention, the bitrate is constant. The
DRM Proxy transforms the playlist entry into an HTTP GET
request compliant with the SmoothStreaming URL format
(http://mediaserver/QualityLevels(chosenBitrate)/Frag-
ments(video=startTime001), and sends the request to the

Mar. 13, 2014

media server. The Media server serves video packet starting at
startTime001. The packet is PlayReady envelope-encrypted.
The DRM Proxy calls the DRM Agent, checks if it has a
license for the whole movie.

[0147] Ifalicenseisnotavailable, the DRM Proxy calls the
DRM Fusion Agent, navigates to the silent License Acquisi-
tion URL contained in the encrypted packet’s PlayReady
header, for example http://drmserver/licenseacq.asmx. Also
in this case, it is assumed that all packets have the same
content ID DRM-wise; license acquisition might be started
before invoking the native player with the playlist. The DRM
Server returns silently a valid license. The DRM Proxy calls
a DRM Agent, decrypts the video packet into decrypted
packetl in memory. In this respect, if the codecs supported by
SmoothStreaming are also not valid codecs for HTTP
Streaming, an additional decoding/re-encoding step is neces-
sary at this stage. The DRM Proxy returns decrypted packetl
to Native Player, which displays the video packet to the user.
[0148] In a different embodiment of the invention, the
DRM Proxy does not decrypt at all but it leaves each packet
encrypted. It inserts an EXT-X-KEY item at the top of the
playlist, using the same AES-128 key used in the PlayReady
encryption. The DRM Proxy, instead of decrypting the
packet, proceeds to remove the PlayReady envelope header,
leaving only the raw AES128-encrypted data. The DRM
Proxy then passes the raw data back to Native Player. The
Native Player, with EXT-X-KEY, obtains a decryption key
and decrypts the packet itself.

[0149] The Native player requests the second playlist item,
http://localhost:9999/packet2.ts. The DRM Proxy calls the
DRM Fusion Agent, checks if it has a license for the whole
movie. Also in this case, this is assumed to be true. The DRM
Proxy calls the DRM Fusion Agent, decrypts the video packet
inmemory. The DRM Proxy returns packet2-decrypted to the
Native Player, which displays the video packet to the user.
The last four steps 16-19 are repeated for all the digital con-
tent execution.

[0150] To implement the method of the invention, there is
provided an agent which is downloadable into the user device
and acts as the DRM application to play digital contents
protected by several DRM scheme. The Agent is integrated
with the user device platform’s native media player. This is
advantageous with respect to using a 3rd party player, since
the user device hardware acceleration may be used to decode
and render video, making the playback smoother and allow-
ing for higher quality content.

[0151] Moreover, using the native player to play DRM
protected content, a simpler user interface, integrated with the
other application of the user device may be provided. The
Agent supports streaming content via the HT'TP Live Stream-
ing protocol, and support for other streaming protocols such
as Microsoft’s Smooth Streaming and for content down-
loaded to the device. FIG. 8 schematically represents the
integration of the user device application and the Agent and
the communication with external devices.

[0152] The Agent is integrated with an application created
by the customer and it is hidden to the user, since it has no Ul
element on screen. Preferably, the Agent manages the cus-
tomer application and/or the native player with a public API.
The Agent’s API includes a set of methods or instructions
which enables the customer application or the native player to
acquire licenses for protected content and prepare the native
player to play it. This API is provided as a static linked library
written in Objective C. A Media Player Framework included

US 2014/0075582 Al

in the 108 SDK (Software development kit) enables the appli-
cation to customize some features of the native player, for
example the size and position of video rendering view or the
playback controls. Only when used in conjunction with the
Agent, it can be used to play content protected with
PlayReady DRM.

[0153] According to the invention, a user device for playing
digital contents protected by a DRM scheme and stored in a
server provider is also provided. The user device comprises a
DRM application interfacing the server and a native player of
the user device, the DRM application being configured for:

[0154] selecting a digital content to be downloaded and
retrieving a corresponding remote playlist;

[0155] transforming the remote playlist in a local playlist
having a format readable from the native player and
associated to a plurality of local packets of the digital
contents to be played in the native player and, for each
local packet:

[0156] requesting a corresponding remote packet to the
server;

[0157] acquiring a license to decrypt the remote packet;

[0158] decrypting the remote packet and returning the

decrypted packet to the native player as the local packet

to be played.
[0159] The DRM application is configured to connect a
DRM server for acquiring the license and to send an URL
included in the digital contents for retrieving the license. It is
also configured to acquire the license before activating the
native player and to activate the native player only if the
license is acquired. More particularly, the DRM application is
configured to acquire one license available to decrypt all the
remote packets of the remote playlist, the license being pref-
erably associated to the first remote packet of the remote
playlist. The remote playlist retrieved from the DRM appli-
cation may include only one remote packet corresponding to
the entire digital content and the DRM application is config-
ured to divide the remote packet in the plurality of local
packets to be displayed in the native player.
[0160] According to an aspect of the invention, the DRM
application is configured for retrieving a SmoothStreaming
playlist and Manifest files and selecting a bit rate among the
bit rates available in the remote playlist. Moreover, the native
player is configured to request an HTTP connection for
receiving the digital content and the DRM application is
configured to secure a communication between the native
player and the server provider and for:

[0161] receiving a request to access the content of the
server provider from the native player with a first URL
associated with the content, the first URL not including
an effective URL which provides direct streaming from
the server provider for said content;

[0162] sending arequest for receiving the remote playlist
associated with the content to the server provider, based
on the request from the native player;

[0163] receiving the remote playlist from the server pro-
vider, including at least one bit-rate information for the
content;

[0164] generating the local playlist based on the remote
playlist, the local playlist including at least one bit-rate
information, a corresponding URL and corresponding
port number, wherein the corresponding URL includes
the user device and the corresponding port number is
generated randomly;

Mar. 13, 2014

[0165] requestinga license associated with the content to
the DRM server if the content is protected by DRM;
[0166] sending the local playlist to the native player;
[0167] receiving an HTTP request associated with the
content from the native player through a port which is
determined based on a bit-rate of the local playlist
selected by the native player;
[0168] requesting a streaming for the content having said
bit-rate selected to the server provider;
[0169] receiving said packets associated with the digital
content from the server provider;
[0170] decrypting the packets with said license if the
plurality of packets is protected by DRM; and
[0171] sending a HTTP response corresponding to the
HTTP request to the native player, the HT'TP connection
response including the decrypted content.
[0172] The DRM application is further configured for pars-
ing the packets and storing temporarily the parsed packed into
an audio stream buffer and video stream buffer separately,
after receiving the packets; and muxing the parsed audio
stream and the parsed video stream with a sync information
into a segment, the HT'TP connection response including the
segment to be played by the multimedia player. The parsed
video stream is H.264 stream, the parsed audio stream is AAC
stream, and the muxing is performed by MPEG2 Transport
Stream muxer.
[0173] According to an embodiment, the first URL is
smooth streaming URL, the remote playlist is a smooth
streaming manifest, and the local playlist is HLS playlist. The
streaming for the multimedia content to the content server is
performed through HTTP protocol using a number of parallel
HTTP GET request.
[0174] Advantageously, according to the present invention,
the native player of the user device is used to play the content
even if the DRM scheme requires a different and specific
player. Advantageously, the communication between the
native player and the operating system of the user device is
faster than a communication between such operating system
and a specific and non-native player. In fact, the native player
may use the accelerator provided by the operating system of
the user device for rendering the digital contents. Advanta-
geously, the download of a third party player in the user
device is avoided.
[0175] Another aspect of the invention will now be dis-
cussed with reference to FIGS. 9 and 10.
[0176] Referring now to FIG. 9, an exemplary communi-
cation flow between user device 100 and multimedia server
200 will be discussed.
[0177] The user device 100 comprises a multimedia player
110 and a proxy server 150. The multimedia player 110
communicates with the proxy server 150 to receive multime-
dia content from the multimedia server 200.
[0178] The proxy server 150 is installed in the user device
100. The proxy server 150 may be implemented as a separate
hardware, or may be anapplication program which runs in the
user device 110. If the proxy server is implemented as an
application, it can be a standalone application or can be pro-
vided as a module being used by another program.
[0179] The proxy server 150 may communicate with the
multimedia server 200 through cellular network, wireless
LAN orwire communication protocol. Specific protocol used
for the communication between proxy server 150 and Multi-
media server 200 does not limit the scope of invention, and
provided here as an example. Generally, since the user device

US 2014/0075582 Al

100 and the multimedia server 200 are located distantly, it
takes time for the packet to be communicated between the
user device 100 and the multimedia server 200. That is to say,
when the proxy server send a data packet 250 which may
include a request of e.g. playlist or actual multimedia data to
the multimedia server 200, there exists a delay for the data
packet 250 to reach the multimedia server 200. Moreover,
when a data packet 240 which may include a playlist or a
segment of the actual multimedia data pass through the net-
work, it also needs time to arrive at the proxy server 150.
These times for the data packets 250 and 240 to be pass
through the network may vary depending on the status of
network, thus influencing the data rate of the packets 250 and
240.

[0180] Meanwhile, for the communication between the
multimedia player 110 and the proxy server 150, there may be
also some delays. However, since both of the multimedia
player 110 and the proxy server 150 are running in the user
device 100, the delay for communicating the packets 115 and
125 is very low compared to that of the packets 250 and 240.
That is to say, the data rate of packet 115 and packet 125 is far
higher than that of the packet 250 and packet 240.

[0181] In some cases, the proxy server 150 may send the
data 125 to the multimedia player as soon as it receives data
packet 240 from the multimedia server 200. That is, the proxy
server 150 may merely redirect the packet received to the
multimedia player 110.

[0182] However, in another example, the proxy server 150
may buffer data received from the multimedia server 200.
Then, if a sufficient amount of data is buffered, the proxy
server 150 may start to send its data to the multimedia player
110. Periodically, the proxy server 150 may check the status
of'the buffer, and if there is not enough data for sending to the
multimedia player 110, it can suspend sending, and wait for
the buffer to be filled again.

[0183] Inany ofthe above examples, the multimedia player
110 is not aware of how the proxy server 150 and the multi-
media server 200 work exactly unless there is a protocol to
notify it between the multimedia player 110 and the proxy
server 150.

[0184] For example, it may be supposed that the multime-
dia player 110 uses a multimedia streaming protocol estab-
lished based on HTTP, and the proxy server 150 acts as an
HTTP server. If the multimedia player 110 is programmed not
to distinguish where the server it connects is located, it will
function in the same way regardless of whether the server is
located in the local device or not.

[0185] Sometimes, the multimedia player 110 may use
heuristic algorithms to try and estimate the available band-
width based on the data it receives. In this case, the multime-
dia player 110 analyzes the packet 125 and estimates the data
rate of it. If the proxy server 150 sends data as much as
possible to multimedia player 110 whenever the multimedia
player 110 requests it, the multimedia player 110 could esti-
mate the data rate incorrectly, e.g. higher that its actual data
rate, because there can be a data burst during a short period. It
is highly possible that the multimedia player estimate a higher
data rate than the real data rate between the proxy server 150
and the multimedia server 200.

[0186] Itmay be pointed out that a goal here is to mimic the
network conditions, e.g. from a WAN interface into the local
interface, so that the proxy server can work in a transparent
way for the multimedia player 110, i.e. not affecting the
player’s heuristics to estimate the available bandwidth.

Mar. 13, 2014

[0187] According to the approach, and solving such a prob-
lem, the proxy server 150 estimates the data rate between the
user device 300 and the multimedia server 200 and sends a
data stream for the multimedia content to the multimedia
player 200 based on the estimated data rate. There may exist
various ways to estimate the data rate between the user device
100 and the multimedia player 200. If the network driver
software of the user device 100 provides an average data rate
through an API, the proxy server 150 may call the API to
retrieve the actual network speed between the proxy server
150 and the multimedia server 200.

[0188] Inanother alternative embodiment, the proxy server
150 may measure data rates for a plurality of multimedia
contents based on the plurality of packet 240 for the multi-
media content which is received. For example, if the proxy
server 150 may count the amount of data received during a
specific interval, the amount and the interval may be consid-
ered to calculate the approximate data rate. The measurement
for the data rate may even be performed periodically.

[0189] Once, the approximate data rate is calculated, the
proxy server 150 may control its data rate of the data packets
125 between the multimedia player 110 and the proxy server
150. For example, it can reply for the request 115 from the
multimedia player 110 not as soon as possible but after wait-
ing for a duration of time to make the multimedia player 110
believe that it is communicating with a remote server. The
duration of time to wait for can be determined based on the
approximate data rate between the proxy server 150 and the
multimedia server 200. Alternatively, the proxy server 150
may stream data 125 to the multimedia player 110 based on
the approximate data rate.

[0190] How the system of the present invention takes care
of the security of the downloadable DRM agent will now be
discussed. Secret keys and licenses are stored in an HDS
(PlayReady database). It stores all persistent information
related to DRM licenses, including license keys (secrets). The
database encrypts all keys stored in the HDS using keys
derived from the unique device private key. The unique device
private key (and certificate) is created at the run time the very
first time the DRM Fusion Agent is initialized, that is to say
the first time the application is run after installation. To create
the device key and the certificate a model key (or application
key) is used in the following procedure:

[0191] for downloadable application, the unique model
key should be part of the application image;

[0192] the generated device key is stored as an encrypted
file (encrypted by a key derived from the model key).

[0193] To summarize, the root of the trust key is the appli-
cation or model private key. This is stored in the application
image in encrypted format.

[0194] It must be noted that the DRM Fusion Agent pro-
tects the device key by using SW obfuscation technologies.

[0195] The model key is used to create a device unique key
the first time the application is initialized. The device key or
the certificate is used for authenticating to PlayReady servers
during license acquisition. All licenses received from the
server contain keys that are wrapped with other keys derived
from the device unique key. Run time protection of keys is
provided by anti-debugging, obfuscation.

US 2014/0075582 Al

[0196] Inthisrespectitisalso important providing a secure
clock Implementation and this is obtained through:

[0197] arollback detection of the system clock;

[0198] a synchronizing system time, with a secure net-
work time server (e.g. provided by Microsoft), which is
invoked if a user modification of a system clock is
detected.

[0199] The DRM Core software library including all sen-
sitive DRM related functions and parameters are protected by
obfuscation and anti-tampering technologies.

[0200] In FIG. 10 it is presented a schematic view of the
integration with iOS native player including the security mea-
sures within the iOS native player. As to the media content
Server 200, it should be noted that its main duties are the
following: reformats the PlayReady protected media into a
native player compatible HLS local stream; but decrypted
data never stored on flash, and no decoding/re-encoding is
applied; The media content server is started on demand only
when media is ready to be displayed; Internal address invis-
ible to external parties or other installed applications; Ran-
dom listen port and media URLs are used on each playback
session; HTTP authentication applied between Media Con-
tent Server and Native Player; Generated credentials are
passed from the DRM Fusion Agent when launching the
native media player; SSL encryption applied between Media
Content Server and Native Player; The local media stream is
encrypted with SSL. by the media content server and
decrypted by the native media player.

[0201] The SW Obfuscation, anti-debugging and anti-tam-
pering procedure are applied by default to protect the DRM
Fusion Agent software.

[0202] Many modifications and other embodiments of the
invention will come to the mind of one skilled in the art having
the benefit of the teachings presented in the foregoing
descriptions and the associated drawings. Therefore, it is to be
understood that the invention is not to be limited to the spe-
cific embodiments disclosed, and that modifications and
embodiments are intended to be included within the scope of
the appended claims.

1-24. (canceled)

25. A method for playing digital contents protected by a
Digital Rights Management (DRM) scheme, the protected
digital contents being downloaded by a user device from a
media server in the form of protected segments, the method
comprising:

executing a DRM proxy inside the user device, the DRM

proxy interfacing the media server and a player, the
player being configured to implement the HTTP Live
Streaming protocol (HLS);

executing an HLS server in the DRM proxy;

registering the DRM proxy to handle HTTP requests

received by the user device;

producing by the DRM proxy a playlist in HLS format

including a list of Uniform Resource Locators (URLs)
locating the individual protected segments, the segment
URLSs being formatted with a host name or IP address
assigned to the user device;

processing the playlist in the player, whereby the player

successively issues a request for each URL in the play-
list, and each URL is directed to the HLS server of the
DRM proxy;

in the DRM proxy, acquiring a license to access the pro-

tected segment identified by a current URL request;

Mar. 13, 2014

decrypting the protected segment in the DRM proxy based

on the license; and

returning a segment based on the decrypted segment to the

player in response to the current URL request.

26. The method according to claim 25, wherein the DRM
proxy and the player are configured to connect using the
HTTPS protocol and the URLs of the playlist are formatted
with the HTTPS protocol, whereby the DRM proxy returns
the segments to the player through an encrypted channel.

27. The method according to claim 25, comprising:

connecting the DRM proxy to the media server, selecting a

digital content to be downloaded and retrieving a corre-
sponding remote playlist;

transforming the remote playlist into said playlist in HL.S

format; and

requesting, from the DRM proxy to the media server, a

remote segment corresponding to the segment identified
in the current URL request, and receiving the remote
segment with the DRM proxy as the protected segment
to decrypt.

28. A non-transitory computer readable storage medium
storing instructions which, when executed on a processor,
perform steps comprising:

executing a Digital Rights Management (DRM) proxy

inside a user device, the DRM proxy interfacing a media

server and a player, the player being configured to imple-

ment the HTTP Live Streaming protocol (HLS);
executing an HLS server in the DRM proxy;

registering the DRM proxy to handle HTTP requests

received by the user device;

producing by the DRM proxy a playlist in HLS format

including a list of Uniform Resource Locators (URLs)
locating the individual protected segments, the segment
URLSs being formatted with a host name or IP address
assigned to the user device;

processing the playlist in the player, whereby the player

successively issues a request for each URL in the play-
list, and each URL is directed to the HLS server of the
DRM proxy;
in the DRM proxy, acquiring a license to access the pro-
tected segment identified by a current URL request;
decrypting the protected segment in the DRM proxy based
on the license; and

returning a segment based on the decrypted segment to the

player in response to the current URL request.

29. A user device for playing digital contents protected by
a Digital Rights Management (DRM) scheme and down-
loaded from a media server in a form of protected segments,
comprising:

a network connection to a player configured to implement

the HTTP Live Streaming protocol (HLS); and

a DRM proxy interfacing the media server and the network

connection, the DRM proxy configured to

run an HLS server,

register itself to handle HTTP requests received by the
user device,

produce a playlist in an HTTP Live Streaming protocol
(HLS) format including a list of Uniform Resource
Locators (URLs) locating the individual protected
segments, the segment URLs being formatted with a
host name or IP address assigned to the user device,

send the playlist to the player through the network con-
nection,

US 2014/0075582 Al

receive a URL request from the player on the network
connection,

acquire a license to access the protected segment iden-
tified by the URL request,

decrypt the protected segment based on the license, and

return a segment based on the decrypted segment to the
player.

30. The user device according to claim 29, wherein said
DRM proxy and the player are configured to connect using
the HTTPS protocol and the URLs of the playlist are format-
ted with the HTTPS protocol, whereby the DRM proxy
returns the protected segments to the player through an
encrypted channel.

13

Mar. 13, 2014

