US 20140082295A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2014/0082295 A1

Beard et al.

(43) Pub. Date:

Mar. 20, 2014

(54)

(71)
(72)

(73)

@
(22)

(60)

DETECTION OF OUT-OF-BAND ACCESS TO
A CACHED FILE SYSTEM

Applicant: NetApp, Inc., Sunnyvale, CA (US)

Derek Beard, Austin, TX (US);
Ghassan Yammine, Leander, TX (US);
Greg Dahl, Austin, TX (US)

Assignee: NetApp, Inc., Sunnyvale, CA (US)
Appl. No.: 14/031,023
Filed: Sep. 18, 2013

Related U.S. Application Data

Provisional application No. 61/702,692, filed on Sep.
18, 2012.

Inventors:

Fiters

D

(52)

&7

Publication Classification

Int. CI.
GOGF 12/08 (2006.01)
USS. CL
CPC ... GOGF 12/0891 (2013.01); GOGF 12/0815
(2013.01)
1615 G 711/135; 711/141
ABSTRACT

A network attached storage (NAS) caching appliance, sys-
tem, and associated method to detect out-of-band accesses to
a networked file system.

Clienis

US 2014/0082295 A1l

Mar. 20, 2014 Sheet 1 of 8

Patent Application Publication

US 2014/0082295 A1l

Mar. 20, 2014 Sheet 2 of 8

Patent Application Publication

¢ 'Ol

© S
amusgddy
ST

Patent Application Publication = Mar. 20, 2014 Sheet 3 of 8 US 2014/0082295 A1

Network
Switches Cache System 300
305
—— [l |
Flow Director
v 312 File System
-] e | carver
Client 302 - Data Server PR 330 |4 0S 332 320
] b 20 b
: v I |
Client 303 fat—p-| Data Server PR 330 K 05332
: 310 : :
e | Eile System
Client 303 <> Data Server PR330 H 05332 Server
......................... | e a3l | i 320
i FlOW Director |
Filer |
301 |
S |
Ul y
336

Patent Application Publication = Mar. 20, 2014 Sheet 4 of 8 US 2014/0082295 A1

Network
Switches
405 Cache System 400
— rF————n
fow Divecto
412 File System
Server
Client 403 (9] Data Server PR 440 05432 490
411 410 411
Client 403 —p Bata SEVer [om g 105432 ' '
410
411 File System
Client 403 (—{ | ;1 Data Server PR 440 QS 432 Server
410
420
Flow Director /
412 l |
l Filer !
boogor
I

LSP 413

FIG. 4

Patent Application Publication = Mar. 20, 2014 Sheet S of 8 US 2014/0082295 A1

Network
Switches
503

| |

Server
520

Client 503 t—p1

Patent Application Publication

Network

Mar. 20, 2014 Sheet 6 of 8 US 2014/0082295 A1l

Switches
605

r— - -1

Server

620

| PR 660

Client 603 <—> PR 660 &

Server

/ 620

Filter 615

Patent Application Publi

cation

Mar. 20, 2014 Sheet 7 of 8

Statistion and
Configuration
Manwger
i

Meludats Engine

712

Dala Cachs
Module

4%

Bedwark
Topslogy
Hanager
745

NAD Prafoont

M- Gigabi
Packet

fnapacion 718

US 2014/0082295 A1l

NAS Cliants
i

Switch

Render

Switeh

Router

FIG. 7

Patent Application Publication = Mar. 20, 2014 Sheet 8 of 8 US 2014/0082295 A1

o ”;M-:W-M:’u

o o

o

%
i
B

fonmming requeet

- Retuss! sent o ey

- Aliribnde Davhedd B Hier

Bos. o g
Incorping mquestl | 205

R O ot
“"Ww\:m M-ﬁﬂl"""w

R /T
rcoming request:

834

T
sl AT

.*"/’:’wv; e
£ Explrsg S

R A i,
e i,

5/ Paruiing

S,
o

-
St

BiH

GOB undate
dedented by reply
ahributs

e
o,

A

O man N

\oosz o g

FIG. 8

US 2014/0082295 Al

DETECTION OF OUT-OF-BAND ACCESS TO
A CACHED FILE SYSTEM

RELATED APPLICATIONS

[0001] This patent application claims benefit of priority to
Provisional U.S. Patent Application No. 61/702,692; the
aforementioned priority application being hereby incorpo-
rated by reference in its entirety for all purposes.

TECHNICAL FIELD

[0002] Examples described herein relate to detection of
out-of-band access to a cached file system.

BACKGROUND

[0003] Data storage technology over the years has evolved
from a direct attached storage model (DAS) to using remote
computer storage models, such as Network Attached Storage
(NAS) and a Storage Area Network (SAN). With the direct
storage model, the storage is directly attached to the worksta-
tions and application servers, but this creates numerous dif-
ficulties with the administration, backup, compliance and
maintenance of the directly stored data. These difficulties are
alleviated at least in part by separating the application server/
workstations from the storage medium. For example, FIG. 1
depicts a typical NAS system 100 in which a number of PCs,
workstations and application servers (clients) use a network
10 to access storage resources on a number of remote network
attached storage and file servers (or filers). In the depicted
system 100, each of the networked PC or workstation devices
12-14 and application servers 16-18 may act as a storage
client that is connected to the network 10 by the appropriate
routers 11 and switches 15 to remotely store and retrieve data
with one or more NAS filers 1-6, which in turn are connected
to the network 10 by the appropriate routers 9 and switches
7-8. Typically, the storage clients (e.g., 14) use an [P-based
network protocol, such as CIFS and NFS, to communicate
store, retrieve and modify files on an NAS filer (e.g., 5).
[0004] Conventional NAS devices are designed with data
storage hardware components (including a plurality of hard
disk drives, one or more processors for controlling access to
the disk drives, I/O controller and high speed cache memory)
and operating system and other software that provides data
storage and access functions. Even with a high speed internal
cache memory, the access response time for NAS devices
continues to be outpaced by the faster processor speeds in the
client devices 12-14, 16-18, especially where anyone NAS
device may be connected to a plurality of clients. In part, this
performance problem is caused by the lower cache hit rates
that result from a combination of larger and constantly chang-
ing active data sets and large number of clients mounting the
NAS storage device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 depicts a prior art NAS system.

[0006] FIG. 2 illustrates an example of a networked system
that utilizes intelligent, cache appliances, including topology
detection logic, according to an embodiment.

[0007] FIG. 3 illustrates an example of a cache system for
use with a system such as described with FIG. 2.

[0008] FIG.4 illustrates another example of a cache system
for use with a system such as described with FIG. 2.

[0009] FIG. 5 illustrates another example of a cache cluster
for use with a system such as described with FIG. 2.

Mar. 20, 2014

[0010] FIG. 6 illustrates another example of a cache system
for use with a system such as described with FIG. 2.

[0011] FIG. 7 illustrates an architecture network, according
to one or more embodiments.

[0012] FIG. 8 illustrates a request state diagram for han-
dling out-of-band update requests at a cache node appliance,
according to one or more embodiments.

DETAILED DESCRIPTION

[0013] Some embodiments described herein include a net-
work attached storage (NAS) caching appliance, system, and
associated method to detect out-of-band accesses to a net-
worked file system.

[0014] According to some embodiments, a network
attached storage (NAS) caching system is provided that deliv-
ers enhanced performance to 1/O intensive applications while
relieving overburdened storage subsystems. In some embodi-
ments, a caching solution identifies active data sets in a net-
worked file system, and uses predetermined policies to con-
trol what data gets cached using a combination of memory
resources (e.g., DRAM and SSDs). Among other benefits,
some examples provided herein improve performance by
guaranteeing the best performance for the most important
applications. When positioned between the storage clients
and the networked file system, a caching system can intercept
requests between the clients and filers and provides read and
write cache acceleration by storing and recalling frequently
used information.

[0015] In addition, embodiments described herein include
a caching system that detects out-of-band operations that
affect a networked file system. In some embodiments, the
cache system detects out-of-band changes to the networked
file system by comparing locally cached rnetadata with cor-
responding rnetadata from a NAS data storage device.
[0016] In some embodiments, a NAS cache appliance
includes a multi-path detection functionality which compares
cached rnetadata with corresponding rnetadata from the filer
using a predetermined comparison triggering mechanism
(e.g., defined lease times, on-demand probes, etc.) to ensure
that NAS requests are serviced with correct content. In addi-
tion, a computer program product may be implemented that
includes a non-transitory computer readable storage medium
having computer readable program code embodied therein
with instructions which are adapted to be executed to imple-
ment a method for operating a NAS caching appliance, sub-
stantially as described hereinabove. In selected embodi-
ments, the operations described herein may be implemented
using, among other components, one or more processors that
run one or more software programs or modules embodied in
circuitry and/or non-transitory storage media device(s) (e.g.,
RAM, ROM, flash memory, etc.) to communicate to receive
and/or send data and messages. Thus, it will be appreciated by
one skilled in the art that the present invention may be embod-
ied in whole or in part as a method, system, or computer
program product. For example, a computer-usable medium
embodying computer program code may be used, where the
computer program code comprises computer executable
instructions configured to compare locally cached metadata/
attributes with metadata/attributes received from the filer to
detect out-of-band operations. Accordingly, the present
invention may take the form of an entirely hardware embodi-
ment, an entirely software embodiment (including firmware,
resident software, micro-code, etc.) or an embodiment com-
bining software and hardware aspects that may all generally

US 2014/0082295 Al

2 <

be referred to herein as a “circuit,” “module” or “system.”
Furthermore, the present invention may take the form of a
computer program product on a computer-usable storage
medium having computer-usable program code embodied in
the medium.

[0017] Examples described herein provide for a high-per-
formance network attached storage (NAS) caching appliance
and system. In an embodiment, a NAS cache appliances man-
ages the interconnect busses connecting one or more flow
directors and cache node appliances, in order to monitor and
respond to system health events/changes. In some embodi-
ments, each of the NAS cache appliances includes an inter-
connect bus manager that provides address configuration and
monitoring functions for each NAS cache appliance. In addi-
tion, a computer program product is disclosed that includes a
non-transitory computer-readable storage medium having
computer-readable program code embodied therein with
instructions which are adapted to be executed to implement a
method for operating a NAS caching appliance, substantially
as described hereinabove. In selected embodiments, the
operations described herein may be implemented using,
among other components, one or more processors that run
one or more software programs or modules embodied in
circuitry and/or non-transitory storage media device(s) (e.g.,
RAM, ROM, flash memory, etc.) to communicate to receive
and/or send data and messages. Thus, it will be appreciated by
one skilled in the art that the present invention may be embod-
ied in whole or in part as a method, system, or computer
program product. For example, a computer-usable medium
embodying computer program code may be used, where the
computer program code comprises computer executable
instructions configured to use the interconnect bus to monitor
appliance failures using gratuitous ARP or heartbeat mes-
sages and respond to any failures at the interconnect bus or
other system appliance. Accordingly, the present invention
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, the present invention may take the form of a com-
puter program product on a computer-usable storage medium
having computer-usable program code embodied in the
medium.

[0018] Among other benefits, a high-performance network
attached storage (NAS) caching appliance can be provided
for a networked file system to deliver enhanced performance
to I/O intensive applications, while relieving overburdened
storage subsystems. The examples described herein identity
the active data sets of the networked system and use prede-
termined policies to control what data gets cached using a
combination of DRAM and SSDs to improve performance,
including guaranteeing the best performance for the most
important applications. Examples described herein can fur-
ther be positioned between the storage clients and the NAS
filers, to intercept requests between the clients and filers, and
to provide read and write cache acceleration by storing and
recalling frequently used information. In some embodiments,
acache system that includes NAS caching appliance manages
the network topology in which itis connected by dynamically
probing the network to build a topology map of all accessible
network devices. Using the topology map, the NAS cache

Mar. 20, 2014

appliances respond only when it is correct to do so, thus
protecting against frame flooding while enabling minimal
customer configuration.

[0019] In selected embodiments, the operations described
herein may be implemented using, among other components,
one or more processors that run one or more software pro-
grams or modules embodied in circuitry and/or non-transi-
tory storage media device(s) (e.g., RAM, ROM, flash
memory, etc.) to communicate to receive and/or send data and
messages. Thus, it will be appreciated by one skilled in the art
that the present invention may be embodied in whole or in part
as a method, system, or computer program product. For
example, a computer-usable medium embodying computer
program code may be used, where the computer program
code comprises computer executable instructions configured
to provide dynamically detect and select file servers associ-
ated with a requested caching operation. Accordingly, the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, the present invention may take the
form of a computer program product on a computer-usable
storage medium having computer-usable program code
embodied in the medium.

[0020] It should be understood that as used herein, terms
such as coupled, connected, electrically connected, in signal
communication, and the like may include direct connections
between components, indirect connections between compo-
nents, or both, as would be apparent in the overall context of
a particular embodiment. The term coupled is intended to
include, but not be limited to, a direct electrical connection.

[0021] FIG. 2 illustrates an example of a networked system
that utilizes intelligent, cache appliances, including out-of-
band detection logic, according to an embodiment. In an
example of FIG. 2, an enterprise network system 200 includes
multiple file system servers 220 and file system server groups
220a that collectively operate as one or more NAS filers of the
enterprise file system 200. The system 200 includes one or
more cache appliances 212, 219 located in front of a file
system server 220 and/or file system server groups 220a. One
or more clients 203-205 or 206-208 connect to and utilize the
enterprise file system 200. In the example provided, clients
203-205 correspond to, for example, mobile or desktop PCs
or workstations, and clients 206-208 correspond to applica-
tion servers (collectively termed “clients 203-208""). Each of
the clients 203-208 may run a separate application which
requires access to remotely-stored application data. In opera-
tion, a requesting client sends a read or write request over the
network 210 using the appropriate routers 201, 211 and/or
switches 202, 216, 224. Such requests may be directed to the
destination NAS filer using an appropriate [P-based network
protocol, such as, for example, CIFS or NFS.

[0022] According to examples described herein, the cache
appliances 212, 219 are disposed logically and/or physically
between at least some clients 203-208 and the file system
server 220 and/or filer server groups 220a of the NAS filer. In
more detail the cache appliances 212, 219 include intelligent
cache appliances which are installed in-line between indi-
vidual clients 203-208 and the destination NAS filer. The
individual clients 203-208 issue requests for a respective
NAS filer provided with the system 200. Such requests can
include read or write requests in which file system objects of

US 2014/0082295 Al

the respective NAS filer is used. More specifically, examples
described herein provide for the cache appliances 212,219 to
(1) store a segment of the data of the NAS filer, and (ii) process
requests from the clients 203-208 directed to the NAS filer.
The cache appliances 212, 219 can each include program-
matic resources to optimize the handling of requests from the
clients 203-208 in a manner that is transparent to the clients
203-208. In particular, the cache appliances 212, 219 can
respond to individual client requests, including (i) returning
up-to-date but cached application data from file system
objects identified from the client requests, and/or (ii) queuing
and then forwarding, onto the NAS filer, write, modify or
create operations (which affect the NAS filer), and subse-
quently updating the contents of the respective cache appli-
ances 212, 219. In general, the cache appliances 212, 219
enable the individual client requests to be processed more
quickly than would otherwise occur if the client requests were
processed from the disk arrays or internal cache memory of
the file system servers. More generally, the cache appliances
212, 219 can be positioned in-line to cache the NAS filer
without requiring the clients 203-208 to unmount from the
NAS filer.

[0023] Inan example of FIG. 2, each cache appliance 212,
219 can include one or more cache appliances that are con-
nected together and working in tandem to form a single
homogeneous caching device. Examples of cache appliances
212,219 are provided with embodiments described with FIG.
3 through FIG. 6, as well as elsewhere in this application.
Furthermore, in an example of FIG. 2, each cache appliance
212, 219 can include an appliance that is constructed as a
high-speed packet processor with a substantial cache
memory. For example, each cache appliance 212, 219 can
correspond to an appliance that includes a set of network
processing resources (such as a network switch and network
processor(s)), a dynamic cache memory, a non-volatile cache
memory and/or cache controller(s). The processing resources
of'the individual cache appliances 212,219 can be configured
to handle, for example, NFS type requests from the clients
203-208.

[0024] As further shown by an example of FIG. 2, indi-
vidual cache appliances 212, 219, can be installed in multiple
different locations of the system 200. In this manner, the
individual cache appliances 212, 219 provide caching
resources for one or more NAS filers, as shown by the place-
ment of the cache appliance 219 in relation to file servers 220,
or alternatively, to a group of NAS filers as shown by the
placement of the cache appliance 212 in relation to the NAS
filers provided by the file servers 220 and file server groups
220a. However positioned, the cache appliances 212, 219
each operate to intercept requests between the clients and the
servers 220. In this way, the cache appliances 212, 219 are
able to provide read and write cache acceleration by storing
and recalling frequently used information. In some embodi-
ments, the cache appliances 212, 219 are positioned as part of
a required path between a respective file server and some or
all of the clients. In particular, the cache appliances 212, 219
are positioned to intercept traffic directed from clients 203-
208 to a particular file server 220 or set of file servers 220a in
order to avoid cache coherency problems. In particular, cache
coherency problems can arise when a piece of information
stored with cache appliance 212, 219 is modified through an
alternate path.

[0025] Asdescribed with some examples, each cache appli-
ance 212, 219 can be provided with packet inspection func-

Mar. 20, 2014

tionality. In this way, each cache appliance 212, 219 are able
to inspect the information of each of the intercepted packets in
each of the TCP/IP stack layers. Through packet inspection,
cache appliances 212, 219 can determine (i) the physical port
information for the sender and receiver from the Layer 2 (data
link layer), (ii) the logical port information for the sender and
receiver from the Layer 3 (network layer), (iii) the TCP/UDP
protocol connection information from the Layer 4 (transport
layer), and (iv) the NSF/CIFS storage protocol information
from the Layer 5 (session layer). Additionally, some embodi-
ments provide that the cache appliances 212, 219 can perform
packet inspection to parse and extract the fields from the
upper layers (e.g., Layer 5-Layer 7). Still further, some
embodiments provide that the packet inspection capability
enables each cache appliance 212, 219 to be spliced seam-
lessly into the network so that it is transparent to the Layer 3
and Layer 4 layers.

[0026] According to embodiments, the cache appliances
212, 219 can accelerate responses to storage requests made
from the clients. In particular, the packet inspection capability
enables each cache appliance 212, 219 to be spliced seam-
lessly into the network so that it is transparent to the Layer 3
and Layer 4 layers and only impacts the storage requests by
processing them for the purposes of accelerating them, i.e., as
a bump-in-the-wire. Rather than splicing all of the connection
parameters in the Layer 2, Layer 3 and Layer 4, some embodi-
ments provide that each cache appliance 212, 219 can splice
only the connection state, source sequence number and des-
tination sequence number in Layer 4. By leaving unchanged
the source and destination MAC addresses in the Layer 2, the
source and destination IP addresses in the Layer 3 and the
source and destination port numbers in the Layer 4, the cache
appliances 212, 219 can generate a programmatic perception
that a given client 203-208 is communicating with one of the
NAS filers of the enterprise network system 200. As such,
there is no awareness at either the clients 203-208 or file
servers 220, 220q of any intervening cache appliance 212,
219. Inthis way, the cache appliances 212, 219 can be inserted
seamlessly into an existing connection with the clients 203,
208 and the NAS filer(s) provided with the system 200, with-
out requiring the clients to be unmounted. Additionally,
among other benefits, the use of spliced connections in con-
necting the cache appliances 212, 219 to the file servers 220
and file server groups 220 enable much, if not all, of the data
needs of the individual clients to be served from the cache,
while providing periodic updates to meet the connection tim-
eout protocol requirements of the file servers 220.

[0027] In more detail, the cache appliance 212, 219 can
process a read or write request by making only Layer 1 and
Layer 2 configuration changes during installation or deploy-
ment. As a result, no filer or client configuration changes are
required in order to take advantage of the cache appliance.
With this capability, an installed cache appliance 212, 219
(e.g., appliance) provides a relatively fast and transparent
storage caching solution which allows the same connections
to be maintained between clients and filers. As described with
some embodiments, if there is a failure at the cache appliance
212, 219, the cache appliance automatically becomes a wire
(e.g., pass through) between the client and filer who are able
to communication directly without any reconfiguration.

[0028] According to some embodiments, cache appliance
212, 219 are implemented as a network attached storage
(NAS) cache appliance, and connected as an in-line appliance
or software that is positioned in the enterprise network system

US 2014/0082295 Al

200 to intercept requests to one or more of the file servers 220,
or server groups 220a. This configuration provides clients
203-208 expedited access to the data within the requested
files, so as to accelerate NAS storage performance. As an
appliance, cache appliances 212, 219 can provide accelera-
tion performance by storing the data of the NAS filers (pro-
vided from the file servers 220 and server groups 220q) in
high-speed media. In some embodiments, cache appliances
212, 219 are transparently installed appliances, deployed
between the clients 203-208 and file system servers 220,220a
without any network or reconfiguration of the endpoints.
Without client or file server configuration changes, the cache
appliances 212, 219 can operate intelligently to find the active
dataset (or a designated dataset) of the NAS filers, and further
to copy the active data sets into DRAM and SSD memory. The
use of DRAM and SSD memory provides improvement over
conventional type memory used by the file servers. For
example, in contrast to conventional approaches, embodi-
ments described herein enable cache appliances 212, 219 to
(1) operate independently, (ii) operate in a manner that is
self-contained, (iii) install in-line in the network path between
the clients and file servers. Knowing the contents of each
packet allows data exchanged with the file servers 220, 220a
(e.g., NFS/CIFS data) to be prioritized optimally the first time
the data is encountered by the cache appliances, rather than
being moved after-the-fact.

[0029] As described with an example of FIG. 7 and FIG. 8,
each of cache appliance 212, 219 includes out-of-band detec-
tion logic 225. The out-of-band detection logic 225 can per-
form operations to detect out-of-band changes to the system
200. By detecting the out-of-band changes to the system 200,
the cache appliances 212, 219 can, for example, ensure coher-
ency is maintained between the networked file system and the
cache resources.

[0030] FIG. 3 illustrates an example of a cache system for
use with a system such as described with FIG. 2. In particular,
FIG. 3 illustrates a cache system 300 that includes multiple
data servers 310 and flow directors 312. In this way, the cache
system 300 can include multiple appliances, including NAS
cache appliances. The cache system 300 utilizes network
switches 305 to connect to clients 303 across one or more
networks. In implementation, the components of the cache
system 300 (e.g., data servers 310, flow directors 312) can be
positioned in-line with respect to clients 303 and file system
servers 320 of a networked system 301. Accordingly, connec-
tivity between the clients 303 and the cache system 300, as
well as between the cache system 300 and the file system
servers 320 of the networked system 301, can be across one or
more networks. The networked system 301 can correspond
to, for example, a combination of file system servers of the
networked system, as described with an example of FIG. 2
(e.g., see network system 200 of FIG. 2).

[0031] According to one aspect, the cache system 300
includes one or more data servers 310, one or more flow
directors 312, and processing resources 330. In some imple-
mentations, the processing resources 330 that coincide with
resources of the data servers 310 implement a cache operating
system 332. Additionally, the processing resources 330 can
perform various analytic operations, including recording and/
or calculating metrics pertinent to traffic flow and analysis.
[0032] In some embodiments, the data server 310 imple-
ments operations for packet-inspection, as well as NFS/CIFS
caching. Multiple data servers 310 can exist as part of the
cache system 300, and connect to the file servers 320 of the

Mar. 20, 2014

networked system 301 through the flow director(s) 312. The
flow director(s) 312 can be included as active and/or redun-
dant devices to interconnect the cache system 300, so as to
provide client and file server network connectivity for filer
301.

[0033] The cache operating system 332 can synchronize
the operation of the data servers 310 and flow directors 312. In
some embodiments, the cache operating system 332 uses
active heartbeats to detect node failure (e.g., failure of one of
the data servers 310). If a node failure is detected, the cache
operating system 332 removes the node from the cache sys-
tem 300, then instructs remaining nodes to rebalance and
redistribute file responsibilities. If a failure is detected from
one of the flow directors 312, then another redundant flow
director 312 is identified and used for redirected traffic.
[0034] In one implementation, a user interface 336 can be
implemented through the processing resources 330. The user
interface 336 can be implemented as, for example, a web-
interface. The processing resources 330 can be used to gather
and view statistics, particularly as part of the operations of the
data server 310 and the flow director 312. The user interface
336 can be used to display metrics and statistics for purpose
of, for example, troubleshooting storage network issues, and
configuring the NAS cache system 300. For example, admin-
istrators can use the user interface 336 to view real-time
information on cache performance, policy effectiveness, and
application, client, and file server performance.

[0035] According to some embodiments, the data servers
310 include packet inspection and NFS/CIFS caching infra-
structure for the cache system 300. In one implementation,
the data servers 310 utilize multiple cache media to provide
different performance levels. For example, in some embodi-
ments, each data server 310 supports DDR3 DRAM and high
performance SSD storage for caching. In operation, data
servers 310 communicate with both clients 303 and file sys-
tem servers 320, by, for example, inspecting every message
and providing the information necessary to intelligently
cache application data.

[0036] In some embodiments, the data servers 310 can be
implemented in a manner that is extensible, so as to enable
expansion and replacement of data servers 310 from the cache
system 300. For example, each data server 310 can employ
hot swappable power supplies, redundant fans, ECC memory
and enterprise-level Solid State Disks (SSD).

[0037] Further, in some embodiments, the flow directors
312 operate as an enterprise-level Ethernet switch (e.g., 10
GB Ethernet switch). The flow directors 312 can further be
implemented with software so as to sit invisibly between
clients 303 and file system servers 320. In the cache system
300, the flow director 312 load balances the data severs 310.
The individual flow directors 312 can also provide the ingress
and egress point to the network. Additionally, the flow direc-
tors 312 can also filter traffic that passes through non-accel-
erated protocols. In some implementations, flow directors
312 work in concert with the operating system 332 to provide
failover functionality that ensures access to the cached data is
not interrupted.

[0038] In some embodiments, the flow directors 312 can
also operate so that they do not participate in switching pro-
tocols between client and file server reciprocal ports. This
allows protocols like Spanning Tree (STP) or VLAN Trunk-
ing Protocol (VTP) to pass through without interference.
Each flow director 312 can work with the data servers 310 in
order to support, for example, the use of one or more of Link

US 2014/0082295 Al

Aggregation (LAG) protocols, 802.1Q VL AN tagging, and
jumbo frames. Among other facets, the flow directors 312 can
be equipped with hot swappable power supplies and redun-
dant fans. Each flow director 312 can also be configured to
provide active heartbeats to the data servers 310. In the event
that one of the flow directors 312 becomes unresponsive, an
internal hardware watchdog component can disable client/file
server ports in order to facilitate failover on connected
devices. The downed flow director 312 can then be directed to
reload and can rejoin the cache system 300 if once again
healthy.

[0039] FIG. 4 illustrates another example of a cache system
for use with a system such as described with FIG. 2. In
particular, FIG. 4 illustrates a cache system 400 that includes
multiple data servers 410, flow directors 412 and processing
resources 430 on which an operating system 432 can be
implemented. In this way, the cache system 300 can include
multiple appliances, including NAS cache appliances. The
cache system 400 utilizes network switches 405 to connect to
clients 403 across one or more networks. In implementation,
the cache system 400 can be positioned in-line with respect to
clients 403 and file system servers 420 of a networked system
401. Accordingly, connectivity between the clients 403 and
the cache system 400, as well as between the cache system
400 and the file system servers 420 of the networked system
401, can be across one or more networks. As with an example
of FIG. 3, the networked system or filer 401 can correspond
to, for example, a combination of file system servers 420 that
provide one or more NAS filers, as described with an example
of FIG. 2 (e.g., see system 200 of FIG. 2).

[0040] Inan example of FIG. 4, the flow directors 412 and
data server 410 support 802.1Q VL AN tagging connections
411 to the client-side switch and the file servers. The data
servers 410 operate to maintain the connection state between
the clients 403 and file servers 420 of the filer, so that network
traffic can flow indiscriminately through either of the flow
directors 412. In this way, the flow directors 412 are essen-
tially equal bidirectional pathways to the same destination. As
a result, any link failover is negotiated between the client
switch and individual file servers, with the operating system
432 facilitating failover with Link State Propagation (L.SP)
communications 413 and link aggregation protocols. In this
arrangement, the flow director(s) 412 provide an LSP feature
for the in-line cache system 400 to maintain end-to-end link
state between the client switch and file server. Since, in the
example provided with FIG. 4, the flow director(s) 412 are
physically located between these devices, these flow directors
actively monitor reciprocal connections so both client-side
and file server-side connections are in sync. This allows
implementation of the LAG protocol (if employed) to
dynamically adjust in case of link failure.

[0041] FIG. 5 illustrates another example of a cache cluster
for use with a system such as described with FIG. 2. In an
example of FIG. 5, an in-line NAS cache system 500 includes
two (or more) flow directors 512, a supporting data server
510, and processing resources 530 on which an operating
system 532 can be implemented. In this way, the cache system
500 can include multiple appliances, including NAS cache
appliances. The cache system 500 utilizes network switches
505 to connect to clients 503 across one or more networks. In
implementation, the cache system 500 can be positioned in-
line with respect to clients 503 and file system servers 520 of
a networked system 501. Accordingly, connectivity between
the clients 503 and the cache system 500, as well as between

Mar. 20, 2014

the cache system 500 and the file system servers 520 of the
networked system 501, can be across one or more networks.
As with an example of FIG. 3, the networked system or filer
501 can correspond to, for example, a combination of file
system servers 520 that provide one or more NAS filers, as
described with an example of FIG. 2 (e.g., see system 200 of
FIG. 2).

[0042] The data servers 510 can be connected between
individual file system servers 520 and a client-side switch for
some of the clients 503. As depicted, the flow directors 512
and data server 510 provide a fail-to-wire pass through con-
nection 515. The connection 515 provides a protection fea-
ture for the in-line cache system 500 in the event that the data
servers 510 fail to maintain heartbeat communications. With
this feature, the flow director(s) 512 are configured to auto-
matically bypass the data server(s) 510 of the cache system in
case of system failure. When bypassing, the flow directors
512 send traffic directly to the file system servers 520. Using
active heartbeats, the flow directors 512 can operate to be
aware of node availability and redirect client requests to the
file system server 520 when trouble is detected at the cache
system.

[0043] A bypass mode can also be activated manually
through, for example, a web-based user interface 536, which
can be implemented by the processing resources 530 of the
cache system 500. The active triggering of the bypass mode
can be used to perform maintenance on data server nodes 510
without downtime. When the administrator is ready to reac-
tivate the cache system 500, cached data is revalidated or
flushed to start with a “clear cache” instruction.

[0044] FIG. 6 illustrates another example of a cache system
for use with a system such as described with FIG. 2. In an
example of FIG. 6, an in-line cache system 600 includes two
(or more) flow directors 612 and one or more supporting data
servers 610. In this way, the cache system 600 can include
multiple appliances, including NAS cache appliances. The
cache system 600 utilizes network switches 605 to connect to
clients 603 across one or more networks. The data server 610
can be connected between one of the file system servers 620
of'the NAS filer 601 and clients 603 (including iSCSI clients).
In implementation, the cache system 600 can be positioned
in-line with respect to clients 603 and file system servers 620
of a networked system 601. Accordingly, connectivity
between the clients 603 and the cache system 600, as well as
between the cache system 600 and the file system servers 620
of the networked system 601, can be across one or more
networks. As with an example of FIG. 3, the networked sys-
tem or filer 601 can correspond to, for example, a combina-
tion of file system servers 620 that provide one or more NAS
filers, as described with an example of FIG. 2 (e.g., see system
200 of FIG. 2).

[0045] As depicted, the flow directors 612 and data server
610 of the cache system 600 provide a low latency, wire-
speed filtering feature 615 for the in-line cache system 600.
With filtering feature 615, the flow director(s) 612 provide
advanced, low-latency, wire-speed filtering such that the flow
director filters only supported-protocol traffic to the system.
Substantially all (e.g., 99%) other traffic is passed straight to
the file system servers 620 of the NAS filer 601, thereby
ensuring that the data servers 610 focus only on traffic that can
be cached and accelerated.

[0046] In support of the various features and functions
described herein, each cache system 600 implements operat-
ing system 632 (IQ OS) (e.g., FreeBSD) to be customized

US 2014/0082295 Al

with a purpose built caching kernel. Operating across all data
servers and interacting with flow directors in the cache sys-
tem, the OS 632 serves basic functions that include network
proxy, file object server, and generic storage access. As a
network proxy between clients and file servers, the OS 632
performs Layer 2 topology discovery to establish what is
physically connected. Once the topology is determined, it
maintains the network state of'all connections. As requests are
intercepted, the requests are converted to NAS-vendor inde-
pendent file operations, streamlining the process while allow-
ing the cache system 600 to incorporate other network pro-
tocols in the future.

[0047] Once requests are converted, the cache appliance
system handles generic metadata operations, and data opera-
tions are mapped to virtual devices. Virtual devices can be
implemented with DRAM, flash memory, and/or other
media, and are categorized according to their performance
metrics, including latency and bandwidth. Virtualization of
devices allows the OS 632 to easily incorporate faster media
to further improve performance or denser media to add cache
capacity. Once the media hierarchy or tier is established
within the cache resources of the system 600, blocks are
promoted and demoted based on frequency of use, unless
“pinned” to a specific tier by the administrator. Additionally,
in some implementations, the data servers 610 can operate a
policy engine, which can implement user-defined polices,
and proactively monitor the tiers of cache and prioritize the
eviction of data blocks.

[0048] In one implementation, the cache system 600 may
include a DRAM virtual tier where metadata is stored for the
fastest random 1/0 access. In the DRAM virtual tier, user-
defined profiles can be “pinned” for guaranteed, consistent
access to critical data. SWAP files, database files, and 1/0O
intensive virtual machine files (VMDKs) are a few examples
of when pinning data in DRAM can provide superior perfor-
mance.

[0049] In addition or in the alternative, some implementa-
tions provide that each cache system 600 may include a
virtual tier for Solid State Disks (SSD) which can be added at
any time to expand cache capacity. To maximize performance
and capacity, individual SSDs are treated as an independent
virtual tier, without RAID employment. In the event of a
failed SSD, the overall cache size will shrink only by the
missing SSD. The previously cached data will be retrieved
from the file server (as requested) and stored on available
media per policy.

[0050] Using packet inspection functionality of the data
server 610, the OS 632 at the cache system 600 learns the
content of data streams, and at wire-speed, makes in-flight
decisions based on default or user-defined policies to effi-
ciently allocate high-performance resources where and when
they are required most. Because data is initially stored to its
assigned virtual tier, blocks are moved less frequently, which
increases overall efficiency. However, as data demands
change, the OS 632 also considers frequency of use to pro-
mote or demote blocks between tiers (or evict them com-
pletely out of cache).

[0051] In support of the caching operations, each cache
system 600 can include one or more default built-in policies
which assign all metadata to the highest tier (currently
DRAM) and all other data to a secondary pool with equal
weight. Frequency of use will dictate if data is to be migrated
between tiers. And with no user-defined profiles enabled, the
default policy controls caching operations. In addition, one or

Mar. 20, 2014

more file policies may be specified using filenames, file
extensions, file size, file server, and file system ID (FSID) in
any combination with optional exclusions. An example file
policy would be to “cache all *.dbf files less that 2 GB from
file server 192.168.2.88 and exclude file201.dbf.” Client poli-
cies may also use IP addresses or DNS names with optional
exclusions to specify cache operations. An example client
policy would be to “cache all clients in IP range: 192.168.2.
0/24 and exclude 192.168.2.31”

[0052] As will be appreciated, one or more cache policy
modifiers may be specified, such as a “quota” modifier which
imposes a limit on the amount of cache a policy consumes and
can be specified by size or percent of overall cache. Quota
modifiers can be particularly useful in multitenant storage
environments to prevent one group from over-consuming
resources. In addition, a “schedule” modifier may be used to
define when a policy is to be activated or disabled based on a
time schedule. An example, the cache system 600 can activate
the “Nightly Software Build” profile at 9 pm and disable at 6
am. Another policy modifier referenced above is a user-cre-
ated exception to “pin” data to a particular tier or the entire
cache. A pinned policy means other data cannot evict the
pinned data—regardless of frequency of use. Such a policy
can be useful for data that may not be accessed often, but is
mission-critical when needed. In busy environments that do
not support pinning, important but seldom used data will
never be read from cache because soon after it is cached, the
data is evicted before it is needed again. Pinned policies can
address this unwanted turnover. Yet another modifier is a
“Don’t Cache” modifier which designates by file name of
client request selected data that is not to be cached. This
option can be useful when dealing with data that is only read
once, not critical, or which may change often. As another
example, a “priority” modifier may be used to manually dic-
tate the relative importance of policies to ensure data is
evicted in the proper order. This allows user-defined priorities
to assign quality of service based on business needs.

[0053] Using the cache policies and modifiers, the cache
behavior of the cache system 600 can be controlled to specify
data eviction, migration, and multi-path support operations.
For example, the cache system 600 can make an eviction
decision based on cache priority from lowest to highest (no
cache, default, low, high, and pin), starting with the lowest
and moving to higher priority data only when the tier is full.
In one implementation, eviction from cache resources of the
cache system 600 can be based on priority, and then usage.
For example, the lowest priority with the least accessed
blocks will be evicted from cache first, and the highest prior-
ity, most used blocks will be evicted last.

[0054] Thecache system 600 can also control the migration
of data within the cache based strictly by usage, so that the
most active data, without regard to priority, will migrate to the
fastest cache tier. Likewise, as other data becomes more
active, stale data will be demoted. Data pinned to a specified
tier is excluded from migration.

[0055] Insomeimplementations, the cache system 600 can
also include a Mufti-Path Support (MPS) mechanism for
validating the data in the cache resources of the cache system
600. With the MPS mechanism, the NAS cache checks back-
end file server attributes at a configurable, predefined interval
(lease time). Data may change when snap-restoring, using
multiprotocol volumes (i.e., CIFS, NFSv2/4), or if there are
clients directly modifying data on the backend file server.
When a client reads a file, MPS evaluates its cache lease time

US 2014/0082295 Al

to determine whether it needs to check file server attributes. If
not expired, the read will be served immediately from cache.
If expired, MPS checks the backend file server to confirm no
changes have occurred. If changes are found, MPS will pull
the data from the file server, send it to the client, reset its lease,
and update the cache. With regular activity, file leases should
rarely expire since they are updated on most NFS operations.
Expiration only occurs on idle files. MPS timeout can be
configured from, for example, a minimum (e.g., 3 seconds) to
a maximum (e.g., 24 hours).

[0056] FIG. 7 illustrates a NAS architecture network 700 in
which a plurality of filer systems 708 are connected across
switch routers 706, 704 to a plurality of remote clients 702
using an intermediate cache node appliance 710. With such
NAS architectures, the filer system 708 actively managing the
data is considered its “owner” or “authoritative entity”
because it is directly responsible for the state of the data set.
In this role, the filer 708 provides services to remote clients
702 via NAS protocols, such as NFS and CIFS. These filer
services include data storage and retrieval, naming, authori-
zation (e.g., access control), transaction, and locking ser-
vices. When a request to read or write application data is
received from a storage client 702, the NAS cache appliance/
cluster 710 uses dedicated, high-speed packet inspection
hardware 716 to inspect the packets of incoming requests to
determine if they should be passed inward for further pro-
cessing by the NAS cache appliance/cluster 710 or forwarded
to another destination, such as a NAS filer 708. For example,
if the NAS client 702 requests application data that is stored
on the NAS cache appliance/cluster 710, the packet inspec-
tion hardware 716 may process the request based on I/O
profiles to determine if the request is to be processed by the
NAS cache appliance/cluster 710. If so, the request is passed
internally to the tiered memory cache system. For example,
Tier 1 of NAS the cache appliance/cluster 710 may be
reserved for the most critical data (including email, high
transaction databases, business critical processes and line of
business applications), while Tier O storage refers to an in-
band, network-resident, policy-driven, high-performance,
scalable tier of memory subsystems that is used for the stor-
age of business critical data under control of a policy engine
that is managed independently from the one or more NAS
filers. Within the tiered memory, a volatile or dynamic ran-
dom access memory virtual tier may be used to store metadata
and/or application data for the fastest random I/O access,
while a non-volatile random access memory (NVRAM) pro-
vides a space for caching pending write operations to NAS
filers for the purpose of maintaining data coherency in a
failure event. Such a failure event can correspond to incidents
of network packets not arriving to their destination. If it is
determined that the request cannot be serviced by the NAS
cache appliance/cluster 710, the client request is sent to the
destination NAS 708.

[0057] To support caching operations, the cache node
appliance 710 can be provided as an external, active, NAS
device that provides services similar to that of a filer 708
while deferring data set ownership to the filer, thereby acting
as a proxy to the filer 708. As shown in FIG. 7, the cache node
appliance 710 is positioned in the network 700 between the
NAS clients 702 and filers 708 to service NAS requests on
behalf of the filer 708. Although it provides similar services to
the filer 708, it is not the authoritative entity—the filer
remains the sole owner of the data set.

Mar. 20, 2014

[0058] In addition to providing NAS protocol support 714
and data caching module 713, the NAS cache appliance/
cluster 710 includes a metadata engine (MDE) 712. The MDE
712 uses metadata to detect out-of-band (OOB) operations
relating to file system objects at the cached file system that are
executed by the filer without knowledge of the NAS cache
system. As will be appreciated, a file system object is a data
object (e.g., file or directory) that resides on, and is managed
by, a file system, while metadata is the meta information (e.g.,
file size, creation-time, and modification-time) that describes
a file system object.

[0059] Among other functionality, the MDE 712 can pro-
vide for metadata storage and retrieval by caching file system
object metadata. The MDE 712 can also provide metadata
services by servicing and accelerating metadata requests, as
well as naming services, such as providing lookup services
for the clients. The MDE 712 can also provide authorization
services to enforce access control, and transaction manage-
ment services by coordinating concurrent requests. In addi-
tion, the MDE 712 may provide locking services on behalf of
the filer.

[0060] The MDE 712 may also provide additional services
when the cache node appliance 710 is deployed transparently.
The MDE 712 can be inserted into an ongoing NAS conver-
sation (i.e., a set of requests flowing between a NAS client and
filer). Once inserted into the conversation, the MDE 712
proxies on behalf of the client 702 to the filer 708, and on
behalf of the filer 708 to the client 702. In this capacity, the
MDE 712 takes over the role of servicing, or forwarding,
NAS requests as required. In servicing the requests, the MDE
712 maintains (data and metadata) consistency with the filer
for the relevant file(s). And because the MDE 712 can be
inserted into ongoing NAS traffic, the MDE 712 can maintain
a sparse namespace so that it is not required to be inserted
prior to the time the NAS client mounts the exported filer
path.

[0061] By virtue of being located in the network 700
between a NAS client 702 and filer 708, it is possible for
out-of-band (OOB) requests to occur. In particular, OOB
requests can occur when one or more NAS requests reach the
filer 708 while bypassing the cache system’s MDE 712. As a
result of an OOB request, a file can be modified at the filer 708
without the knowledge of the MDE 712. Yet, the MDE, as a
proxy to the filer 708, must remain consistent with the
authoritative entity or filer 708 in order to ensure that the NAS
requests are serviced with the correct content, as if it were
being serviced by the filer 708. Consequently, embodiments
implement the MDE 712 to detect out-of-band updates.

[0062] As disclosed herein, the MDE 712 may be config-
ured to handle out-of-band updates using one or more detec-
tion schemes, depending on the applicable protocol. Under a
first detection technique, the MDE 712 grants each file system
object a shelf-life, or lease time, having a predefined duration
such that after its expiration, the MDE probes the filer 708 to
determine if out-of-band changes have occurred. If an OOB
change has occurred, the MDE 712 invalidates its own copy
of'the specific object so that it can obtain the filer’s version of
the object.

[0063] According to another detection technique, the MDE
712 performs probing operations on demand to detect OOB
changes. In other words, MDE 712 implements operations to
remain consistent with the filer for those objects that are being
accessed.

US 2014/0082295 Al

[0064] Under yet another detection technique, the MDE
712 is selective about what it caches and which NAS requests
it services. For instance, MDE 712 can selectively ignore
NAS requests for files that were opened before the MDE was
inserted into the NAS stream.

[0065] The MDE 712 may also use an OOB request detec-
tion technique which probes the filer using existing, standard,
NAS requests. In other words, it requires no proprietary
“hooks” at the filer. Alternatively, the MDE 712 may leverage
NAS protocol-specific information to implement its out-of-
band detection. In other words, OOB detection can be imple-
mented to be protocol specific. To provide an example imple-
mentation for a NAS architecture providing file access using
the NFS Version 3 network file sharing protocol specification
(NFSv3, RFC 1813), the MDE 712 may be configured to
detect out-of-band updates by maintaining the metadata of
the file in its cache, where the metadata represents the latest
state of the file from the MDE’s perspective. In this context,
the metadata for NFS version 3 is referred to as attributes,
which include the file size, the creation-time, and the modi-
fication-time, etc. Any unexpected divergence between the
metadata on the filer 708 and the cached version at the cache
node appliance 710 indicate an out-of-band update, which
results in the invalidation of the cached content. The MDE
712 also applies a lease time on the cached metadata so that,
whenever a NAS request is received, the MDE 712 checks the
lease time of cached file metadata. If the lease time has
expired, the MDE 712 forwards the request to the filer, atomi-
cally, and waits for a reply.

[0066] Embodimentsrecognize that with the NFS Version 3
protocol specification, replies from the filer 708 include the
“post-op” attributes which describe the state of the file after a
particular request has been processed or executed. In addi-
tion, NFSv3 update operations typically include metadata
which are called the “pre-op” attributes. The pre-op attribute
is a subset of the file’s metadata, but includes all the elements
necessary to describe the state of the file just before the
request was executed. For query operations, such as
LOOKUP, which do not modify the file system object and do
not return the pre-op attributes, the MDE 712 compares the
returned post-op attributes with what is cached. Any diver-
gence indicates that an OOB update has occurred, and the
object is consequently invalidated. For update operations,
such as MKDIR, both the pre-op and post-op attributes are
returned. In this case, the MDE compares the returned pre-op
attributes with the cached version. If a difference is detected,
then the object is invalidated.

[0067] In the NFS Version 3 protocol specification, the
MDE 712 may also leverage the out-of-band detection
mechanism to enable concurrent, non-overlapping, file write
operations. For example, in the situation where there are two
NFS_WRITE operations, the first one writes 1024 bytes at
offset O of the file, and the second one writes 1024 at offset
2048 of the same file. Although both operations update dif-
ferent regions of the file, both operations also update a shared
element of the file, namely, the attribute. This behavior intro-
duces problems if the response is processed out of order since
an out-of-order response would look like an OOB update
which would trigger an object invalidation within the MDE
712. However, by enforcing the order of responses, the MDE
712 can detect out-of-band writes while providing for paral-
lel, non-overlapping, file writes. To this end, the MDE 712
enforces order by tagging each outgoing write request to the
filer with an identifier which is monotonically incremented in

Mar. 20, 2014

value (e.g., a sequence number) with each write request sent.
As a result, responses received by the MDE 712 can be sorted
according to the sequence number value before being pro-
cessed. Although such requests are sequenced and ordered,
the network transport could reorder them (e.g., UDP), or the
filer itself could choose to reorder their execution. In this
particular case, the MDE 712 would perceive the effects of
such re-ordering as an OOB update, and invalidate the file.

[0068] While a variety of different architectures may be
used to implement the NAS cache appliance 710, variations
provide a hardware implementation that includes a network
switch interconnect component for routing network traffic, a
network processor component for packet processing, a cache
controller, and cache memory component for storing cached
data files. The high-speed network switch provides client and
filer interfaces and multiple high-speed (e.g., 10 Gbps) con-
nections to the packet processing and cache controller hard-
ware. The high-speed network switch manages data flow
between the client/filer /O ports and the packet processing
and cache controller hardware. The high-speed network
switch may be optimized for network traffic where it is desir-
able to obtain extremely low latency. In addition, one or more
network processor units (NPUs) are included to run the core
software on the device to perform node management, packet
processing, cache management, and client/filer communica-
tions. Still further, a substantial cache memory is provided for
storing data files, along with a cache controller that is respon-
sible for connecting cache memory to the high-speed network
switch.

[0069] FIG. 8 illustrates a request state diagram 800 for
handling out-of-band update requests at a cache node appli-
ance. In an initial or start state (801), a cache node appliance
710 is positioned between the storage clients and the NAS
filers, where it operates to intercept requests between the
clients and filers and provide read and write cache accelera-
tion by storing and recalling frequently used information. In
this state, the metadata, or attribute, of a particular file is
absent from the MDE’s cache. After receiving an incoming
NAS request from a client (transition 803), the cache appli-
ance 710 inspects the packet information associated with the
request to obtain information for moving the packet through
the system (e.g., network protocol traffic state parameters).
The MDE determines that the attribute is missing from the
cache. Consequently, it sends the request to the target filer. In
the transition 803, the MDE receives the attribute from the
filer for the particular file and loads it into its cache.

[0070] The cache node appliance 710 next moves the meta-
data to a validation state 805 where the MDE applies a lease
time on the cached metadata. In this valid state 805 all
requests for metadata are satisfied from the MDE’s cache
806. At some point in time, the lease on the cached metadata
expires. The next incoming request 807 detects that the lease
has expired and moves the attribute to an expired state (state
809). In addition, the MDE forwards the incoming request to
the filer (transition 811), at which point the cache node appli-
ance 710 moves the metadata to a pending state (state 813)
where the MDE waits for a reply from the filer. If no OOB
update is detected in the reply to the request (transition 814),
the cache node appliance moves the metadata to the valid state
(state 805). However, if an OOB update is detected from a
reply attribute (transition 815), the cache node appliance
moves the metadata to the invalid state (state 817). This
detection process can be implemented at the cache node
appliance by comparing a reply attribute from the filer with a

US 2014/0082295 Al

corresponding cached version of the metadata. If a difference
is detected, then the object is invalidated (transition 819), and
the sequence returns to the start state (state 810) to await the
next incoming request.

[0071] Although illustrative embodiments have been
described in detail herein with reference to the accompanying
drawings, variations to specific embodiments and details are
encompassed by this disclosure. It is intended that the scope
of embodiments described herein be defined by claims and
their equivalents. Furthermore, it is contemplated that a par-
ticular feature described, either individually or as part of an
embodiment, can be combined with other individually
described features, or parts of other embodiments. Thus,
absence of describing combinations should not preclude the
inventor(s) from claiming rights to such combinations.

What is claimed is:

1. A method for operating a cache appliance system, the
method being implemented by one or more processors and
comprising:

connecting to a networked file system so that the cache

appliance system intercepts traffic as between a plurality
of clients and the networked file system while storing
data corresponding to file system objects provided by
the networked file system;

detecting, at the cache appliance system, a change to the

networked file system that is not a result of the inter-
cepted traffic; and

in response to detecting the change to the networked file

system, performing one or more operations to maintain
coherency as between the networked file system and the
stored data of the cache appliance system.

2. The method of claim 1, wherein performing the one or
more operations includes flushing the cache appliance system
of at least data that corresponds to a portion of the networked
file system that was detected as being changed.

3. The method of claim 1, wherein detecting the change to
the networked file system includes detecting a divergence as
between metadata of the networked file system and metadata
identified from stored data of the cache appliance system.

4. The method of claim 1, wherein detecting the change to
the networked file system includes analyzing metadata of file
system objects provided with the networked file system, as
compared to metadata of corresponding file system objects
stored with the cache appliance system.

5. The method of claim 1, wherein detecting the change to
the networked file system includes assigning a shelf-life of'a
pre-determined duration to a file system object provided by
data stored with the cache appliance system, then probing the
networked file system to determine if any changes occurred to
the file system object that are not reflected in the file system
object stored with the cache appliance system.

6. The method of claim 5, wherein performing one or more
operations includes flushing the cache appliance system of at
least the file system object.

7. The method of claim 1, wherein detecting the change in
the networked file system includes inspecting attributes pro-
vided in traffic that corresponds to replies from the networked
file system.

8. The method of claim 7, wherein inspecting attributes
includes identifying an operation that is performed on the
networked file system in providing a reply, then identifying at
least one of a pre-operation attribute or post-operation
attribute specified in the reply, and comparing the identified

Mar. 20, 2014

attribute to metadata provided with data stored in the cache
appliance system for a corresponding file system object.

9. The method of claim 7, wherein inspecting attributes
includes identifying a read-type operation that is performed
on the networked file system in providing a reply, then com-
paring a post-operation attribute specified in the reply with a
corresponding metadata provided with data stored in the
cache appliance system for a corresponding file system
object.

10. The method of claim 7, wherein inspecting attributes
includes identifying an update-type operation that is per-
formed on the networked file system in providing a reply, then
comparing a pre-operation attribute specified in the reply
with a corresponding metadata provided with data stored in
the cache appliance system for a corresponding file system
object.

11. The method of claim 1, wherein detecting the change in
the networked file system includes:

tagging individual outgoing write requests to the net-

worked file system with a monotonically incremented
identifier that reflects a sequence in which each write
request is forwarded from the cache appliance system to
the networked file system;

sorting responses from the networked file system based on

the monotonically incremented identifier; and
determining that that the responses are re-ordered with
respect to the outgoing write requests.

12. A computer-readable medium for operating a cache
appliance system, the computer-readable medium including
instructions that, when executed by one or more processors,
cause the one or more processors to perform operations that
comprise:

connecting to a networked file system so that the cache

appliance system intercepts traffic as between a plurality
of clients and the networked file system while storing
data corresponding to file system objects provided by
the networked file system;

detecting, at the cache appliance system, a change to the

networked file system that is not a result of the inter-
cepted traffic; and

in response to detecting the change to the networked file

system, performing one or more operations to maintain
coherency as between the networked file system and the
stored data of the cache appliance system.

13. The computer-readable medium of claim 12, wherein
instructions for performing the one or more operations
includes instructions for flushing the cache appliance system
of at least data that corresponds to a portion of the networked
file system that was detected as being changed.

14. The computer-readable medium of claim 12, wherein
instructions for detecting the change to the networked file
system includes instructions for detecting a divergence as
between metadata of the networked file system and metadata
identified from stored data of the cache appliance system.

15. The computer-readable medium of claim 12, wherein
instructions for detecting the change to the networked file
system includes instructions for analyzing metadata of file
system objects provided with the networked file system, as
compared to metadata of corresponding file system objects
stored with the cache appliance system.

16. The computer-readable medium of claim 12, wherein
instructions for detecting the change to the networked file
system includes instructions for assigning a shelf-life of a
pre-determined duration to a file system object provided by

US 2014/0082295 Al

data stored with the cache appliance system, and instructions
for then probing the networked file system to determine if any
changes occurred to the file system object that are not
reflected in the file system object stored with the cache appli-
ance system.

17. The computer-readable medium of claim 12, wherein
instructions for performing one or more operations includes
instructions for flushing the cache appliance system of at least
the file system object.

18. The computer-readable medium of claim 12, wherein
instructions for detecting the change in the networked file
system includes instructions for inspecting attributes pro-
vided in traffic that corresponds to replies from the networked
file system.

19. The computer-readable medium of claim 18, wherein
instructions for inspecting attributes includes instructions for
identifying an operation that is performed on the networked
file system in providing a reply, and instructions for then
identifying at least one of a pre-operation attribute or post-
operation attribute specified in the reply, and instructions for

Mar. 20, 2014

comparing the identified attribute to metadata provided with
data stored in the cache appliance system for a corresponding
file system object.

20. The computer-readable medium of claim 18, wherein
instructions for inspecting attributes includes instructions for
identifying a read-type operation that is performed on the
networked file system in providing a reply, and instructions
for then comparing a post-operation attribute specified in the
reply with a corresponding metadata provided with data
stored in the cache appliance system for a corresponding file
system object.

21. The computer-readable medium of claim 18, wherein
instructions for inspecting attributes includes instructions for
identifying an update-type operation that is performed on the
networked file system in providing a reply, then comparing a
pre-operation attribute specified in the reply with a corre-
sponding metadata provided with data stored in the cache
appliance system for a corresponding file system object.

#* #* #* #* #*

