
USOO74286 19B2

(12) United States Patent (10) Patent No.: US 7428,619 B2
Yasue et al. (45) Date of Patent: Sep. 23, 2008

(54) METHODS AND APPARATUS FOR 6,216,174 B1 4/2001 Scott
PROVIDING SYNCHRONIZATION OF 6,466.988 B1 10/2002 Sukegawa
SHARED DATA 6,557,084 B2 * 4/2003 Freerksen et al. T11 147

2003.0043.156 A1 3/2003 Macy et al.
75 2003/0088.61.0 A1* 5/2003 Kohn et al. 709/107
(75) Inventors: Masahiro Yasue, Kanagawa (JP); 2004/0181636 A1* 9, 2004 Martin et al. 711 152 Keisuke Inoue, Kanagawa (JP)

FOREIGN PATENT DOCUMENTS
(73) Assignee: Sony Computer Entertainment Inc. JP 58-169659 10, 1983

(JP) JP 08-016456 1, 1996

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Japanese Office Action dated Oct. 2, 2007 corresponding to Japanese
U.S.C. 154(b) by 316 days. Patent Application No. 2006-006723, 4 pages.

J.B. Carter et al: "A Comparison of Software and Hardware Synchro
(21) Appl. No.: 11/037,864 nization Mechanisms for Distributed Shared Memory Multiproces

sors” Sep. 24, 1996, XP002466304, University of Utah; 24 Pages;
(22) Filed: Jan. 18, 2005 retrieved from the internet: http://www.cs.utah.edu/research/

techreports/1996/pdf/UUCS-96-011.pdf>.
(65) Prior Publication Data Mellor-Crummey JMetal.: "Scalable reader-writer synchronization

for shared-memory multiprocessors' ACM Sigplan Notices, ACM,
US 2006/O161741 A1 Jul. 20, 2006 Association for Computing Machinery, New York, NY, US, vol. 26.

No. 7, Jul 1991, pp. 106-113, XP002402085.
(51) Int. Cl. * cited b

G06F 3/16 (2006.01) c1ted by examiner
G06F 12/00 (2006.01) Primary Examiner Gary J Portka

(52) U.S. Cl. 711/150; 711/147; 711/152 (74) Attorney, Agent, or Firm Lerner, David, Littenberg,
(58) Field of Classification Search 711/152 Krumholz & Mentlik, LLP

See application file for complete search history.
(57) ABSTRACT

(56) References Cited

U.S. PATENT DOCUMENTS

4,975,833. A 12, 1990 Jinzaki 711 152
5.434,995 A 7, 1995 Oberlin
5,519,877 A 5, 1996 Yoneda
5,634,037 A * 5/1997 Sasaki et al. 711 152
5,796,946 A 8, 1998 Sakon
5,983,326 A * 1 1/1999 Hagersten et al. T11 147
6,052,763 A * 4/2000 Maruyama 711 152

A synchronization scheme is provided for a multiprocessor
system. In particular, a processor includes a buffer sync con
troller. The buffer sync controller is operative to allow or deny
access by a Subprocessor to shared data in a shared memory,
Such that a processor seeking to write data into or read data
from the shared memory must ascertain certain shared param
eter data processed by the buffer sync controller.

20 Claims, 13 Drawing Sheets

200

PROCESSORELEMENT 1
202 "r

IO
INTERFACE

212

U.S. Patent Sep. 23, 2008 Sheet 1 of 13 US 7428,619 B2

FIG. 1
2OO

PROCESSORELEMENT 1
202:

I/O
INTERFACE

204

206
- - - - - - - - - - - - - - -

N DMAC 212
: --------------- :

208A

SPU1

208B :

SPU2

208C
SPU3

208D
SPU4

210
MEMORY
INTERFACE

rsr

214

U.S. Patent Sep. 23, 2008 Sheet 2 of 13 US 7428,619 B2

50 2O6

LOCAL MEMORY

REGISTERS
64

FLOATING POINT
UNITS

INTEGER UNITS

U.S. Patent Sep. 23, 2008 Sheet 3 of 13 US 7.428,619 B2

FIG. 3

-- -o e - - - - - - - - - - - - - - - - as

1A 1B

PROCESSORELEMENT (PE). PROCESSORELEMENT (PE)
202A 202B

I/O 12A : : I/O 12B
INTERFACE ; : INTERFACE

204A : ; 204B

2O6A 206B
DMAC DMAC

208A1 208A2
APU1 APU1

208B1 208B2
APU2 APU2

208C1 208C2
APU3 APU3

2O8D1 208D2
APU4 APU4

210A 210B
; : MEMORY MEMORY
; : INTERFACE INTERFACE

- ---

14
DRAM

U.S. Patent Sep. 23, 2008 Sheet 4 of 13 US 7.428,619 B2

FIG. 4

102A

PROCESSOR PROCESSOR PROCESSOR

-

U.S. Patent Sep. 23, 2008 Sheet 5 of 13 US 7428,619 B2

FIG. 5

SINGLE OR SINGLE OR
MULTI- MULTI

PROCESSOR PROCESSOR
ELEMENT ELEMENT

U.S. Patent

SINGLE OR
MULTI

PROCESSOR
ELEMENT

SINGLE OR
MULTI

PROCESSOR
ELEMENT

Sep. 23, 2008 Sheet 6 of 13

F.G. 6

SINGLE OR
MULTI

PROCESSOR
ELEMENT

SINGLE OR
MULTI

PROCESSOR
ELEMENT

US 7.428,619 B2

US 7.428,619 B2 Sheet 7 of 13 Sep. 23, 2008 U.S. Patent

FIG. 7

506B SERVER 506A

504

512

US 7428,619 B2 U.S. Patent

U.S. Patent Sep. 23, 2008 Sheet 9 of 13 US 7428,619 B2

2OO

PROCESSOR ELEMENT -1
202:

I/O

; L INTERFACE
204

206
DMAC 212

208A:

SPU H. 208B :

SPU H.
208C

- SPUDE
208D :

SPU4 - SPUDE
210

MEMORY
INTERFACE

214

DRAM

8O2

U.S. Patent Sep. 23, 2008 Sheet 10 of 13 US 7.428,619 B2

800

814

Initialization Unit

Set parameter Set parameter
816 818

Synchronization Unit Data Transfer Unit

request grant

Control Unit 812

request grant

| ?Uueu-O ?Uueu

US 7428,619 B2 U.S. Patent

U.S. Patent Sep. 23, 2008 Sheet 12 of 13 US 7428,619 B2

FIG. 12

REQUEST WRITE

WAIT FOR UNLOCK

SET WL TO LOCKWL = 1

WAIT FOR RC TO EQUAL O

WRITE NEW DATA
TO SHARED MEMORY

RESET WL TO UNLOCK;
WL = O

U.S. Patent Sep. 23, 2008 Sheet 13 of 13 US 7.428,619 B2

FIG. 13

REGUEST READ

WAT FOR UNLOCK

INCREMENT RC BY 1

READ DATA IN SHARED
MEMORY

DECREMENT RC BY 1

US 7,428,619 B2
1.

METHODS AND APPARATUS FOR
PROVIDING SYNCHRONIZATION OF

SHARED DATA

BACKGROUND OF THE INVENTION

In a multiprocessor System, data integrity is always of key
concern. For instance, in multiprocessing systems employing
a plurality of Sub-processing units, the Sub-processing units
typically have no cache System (memory storage space apart
from main memory such as random access memory (RAM))
Thus, because Such Subprocessors may share common data,
synchronization between and among processors is required in
order to ensure coherency of shared data.

Traditional approaches to achieving Such synchronization
have involved the use of a synchronization variable to serve as
a “barrier object.” in an object oriented software program, to
control read and write access to shared data. For instance, a
typical barrier object that prevents access to shared memory
when necessary can be created in Software by a processor
which can initialize a synchronization procedure by creating
a barrier object. For example, in connection with a continuous
loop of a main program running in a multiprocessor System,
indexed data, is written to a memory or buffer area shared for
use by the processors. Pseudo code for implementing a barrier
procedure is as follows:

Initialization of synchronization: create barrier object
(objB)
Main loop:
Wait on objB
Create data D,
Write D, to shared area

The barrier object objB includes a variable which permits
or denies access to the memory area shared by the processors
such that after creation of the barrier object, the main proces
sor or subprocessor units must wait until the barrier object is
available before the data in the shared memory can be read
from or written to.
A buffer can be created by each processor in conjunction

with a request for the barrier object objB. in which data is
placed pursuant to a READ of the shared memory area or
pursuant to a WRITE to the shared memory area. Pseudo code
for this request procedure also involving the buffer object is as
follows:

Synchronization initialization:
get barrier object (objB)
create buffer to get data (buf)
wait on objB
A processor requesting data in accordance with this proce

dure must therefore wait until the variable associated with
objB becomes available, indicating that the memory in the
shared area is available for reading or writing. Once the
barrier object is received by a requesting processor for a
READ of the shared data, data from the shared memory can
be placed in a buffer corresponding to locations in the shared
memory. Pseudo code for this procedure could be as follows:
Main loop:
Wait on objB
Sub loop:
get place of data . . . i
get Dm, to buf and calculate loop while (i-num)
Alternatively, should the variable indicate the objB is avail

able and additionally that the shared memory is available for
a WRITE, data in a buffer is placed into corresponding loca
tions in the shared memory.

10

15

25

30

35

40

45

50

55

60

65

2
As noted, the individual processing elements of Such a

multi-processor System must wait on the barrier object in
order to synchronize to one another. The processing element
that creates the shared data also waits on the barrier object
during the writing of such data to shared memory. Finally, the
processing elements seeking to read the shared data from
memory also wait on the barrier object during the reading
process.
The efficacy of this traditional approach of using a syn

chronization variable in the multi-processor environment is
typically a function of the diligence of the Software program
mer in coding the interrelationships between processing ele
ments created by the barrier object. As it is a relatively com
plex and difficult task to ensure that the software code
accurately reflects the barrier object interrelationships, pro
gramming errors often occur. This problem is exacerbated
because it is difficult to debug Software programs that contain
coding errors associated with synchronization variables. Fur
ther, barriers provided by Software generally require a great
deal of customization. Accordingly, improved synchroniza
tion methods and systems are needed.

SUMMARY OF THE INVENTION

In accordance with a preferred aspect of the present inven
tion, there is provided a method of providing synchronization
of shared data access among a plurality of processors in a
multi-processor System. The method includes storing shared
parameter data including one or more conditions relating to
access to data shared by a plurality of processors; modifying
the shared parameter databased on the access by the proces
Sors to the shared data; and preventing and granting access to
the shared data by the processors based on the shared param
eter data.

Preferably, the one or more conditions includes a first con
dition indicating the number of the processors accessing the
shared data and a second condition indicating whether the
access to the shared data is being denied in writing to the
shared data. Further, access to read the shared data is prefer
ably granted upon the second condition indicating that none
of the processors are writing to the shared data, and access to
write to the shared data by one of the processors is granted
upon the second condition being set to deny access to the
shared data by all other of the processors following an indi
cation by the second condition that none of the processors
were writing to the shared data.

Another aspect of the present invention provides a system
for providing synchronization of shared data access among a
plurality of processors, including a plurality of processors,
each of the processor including a buffer sync controller for
processing shared parameter data and to control access to
shared data shared by the plurality of processors in accor
dance with the state of the shared parameter data.

Preferably, the shared parameter data indicates the number
of processors reading the shared data and also whether one of
the processors is writing to the shared data. The plurality of
processors preferably includes at least two or more Sub-pro
cessors. The system may further include a direct memory
access controller for controlling access to the shared data by
the plurality of processors and a shared memory for storing
the shared parameter data and the shared data. The buffer sync
controller may also be integrated with the processors.
The shared parameter data may include a first condition

indicating the number of the processors accessing the shared
data and a second condition indicating whether the access to
the shared data is being denied in writing to the shared data.
The shared parameter data may also includes a writer lock

US 7,428,619 B2
3

parameter associated with writing to the shared data and a
reader count parameter associated with the number of pro
cessors reading the shared data.

Still another aspect of the present invention provides a
method of providing synchronization of shared data access in
a multi-processor system including sharing data among a
plurality of processors in accordance with one or more con
ditions provided by shared parameter data accessible to the
processors; and preventing and granting access to the shared
data by one or more of the processors based on the one or
more conditions.

Another aspect of the present invention provides a buffer
sync controller for providing synchronization of shared
memory access in a multi-processor System by a plurality of
processors, which includes an initialization unit for providing
a first parameter indicative of a number of processors reading
shared data and a second parameter indicative of whether the
shared data is being written to by one of the processors; a
control unit; a synchronization unit for receiving a request for
access to the shared data from the control unit and for granting
the request for access based on the states of the first and
second parameters; and a data transfer unit for receiving a
request to transfer data from the shared memory by the con
trol unit and granting the request to transfer data in connection
with predetermined values of the first and second parameters.
An even further aspect of the present invention provides a

method for providing synchronization for memory access
pursuant to a write to shared memory in a multiprocessor
system comprising: receiving a request to write to a shared
memory area by a selected processor; receiving a read count
indication that no other processors are reading data in the
shared memory area; receiving a write access condition indi
cating the shared memory area is available to read; setting the
write access condition to prevent other processors from
access to the shared memory area; writing data to the shared
memory after setting the access condition to prevent access
by other processors; and setting the access condition to enable
other processors to access the shared memory area after writ
ing the data. Preferably, the method includes storing the write
access condition and the read count condition in a shared
parameter data memory location accessible by the proces
SOS.

In accordance with the present invention, a method is also
provided for providing synchronization for memory access
pursuant to a read of shared memory area in a multiprocessor
system comprising: requesting a read of data shared memory
area; receiving an access flag indicating access to the shared
memory area; incrementing a READ variable indicative of
the number of processors reading the shared memory area;
reading data in the shared memory; and decrementing the
variable following the reading of the data.

In accordance with another aspect of the present invention,
there is provided apparatus for providing synchronization of
shared data access among a plurality of processors compris
ing: a processing element including two or more processing
units connected via a bus, the one or more processing units
being connectable to a memory and operable to issue instruc
tions, and wherein the processing units are programmed to
share data in accordance with one or more conditions pro
vided by shared parameter data accessible to the processing
units and to prevent and grant access to the shared data by the
processing units based on the one or more conditions.

Another aspect of the present invention provides a medium
storing instructions to cause a one or more processors to
provide synchronization of shared data access among a plu
rality of processors comprising instructions for sharing data
among a plurality of processors in accordance with one or

10

15

25

30

35

40

45

50

55

60

65

4
more conditions provided by shared parameter data acces
sible to the processors; and preventing and granting access to
the shared data by one or more of the processors based on the
one or more conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a basic processing module or
processor element.

FIG. 2 illustrates the preferred structure and function of a
Sub-processing unit.

FIG. 3 illustrates two processor elements which may be
packaged or joined together, within one or more chip pack
ages, to form a set of multi-processor units.

FIG. 4 is a block diagram of a preferred embodiment of a
multi multi-processing system.

FIG. 5 illustrates multi-processing units as part of a set and
as part of a stand alone configuration.

FIG. 6 illustrates a plurality of multi-processing units
which may be disposed on different circuit boards and dis
posed in a single product.

FIG. 7 illustrates stand-alone multi-processing elements or
broadband engines (sets of multi-processing elements) which
may be distributed among a plurality of products to form a
multi-processing system.

FIG. 8 is a block diagram of an overall computer network
in accordance with one or more aspects of the present

FIG. 9 illustrates a multiprocessor system in which the
Sub-processors each include a buffer sync controller inaccor
dance with a preferred embodiment of the present invention.

FIG. 10 illustrates one preferred arrangement of a buffer
sync controller used in accordance with the present invention.

FIG. 11 illustrates the processing of shared data by proces
sors in a multiprocessor system.

FIG. 12 illustrates a flow chart of a WRITE to shared
memory according to one aspect of the invention.

FIG. 13 illustrates a flow chart of a READ of shared
memory according to one aspect of the invention.

Applicable reference numbers have been carried forward.

DETAILED DESCRIPTION

A synchronization system and method for a multiprocessor
system is provided by the present invention. Preferably, the
present invention can be implemented in conjunction with a
computing architecture where all processors are designed to
process a unit of software known as a cell. The present inven
tion can thus be used with a computer architecture known as
the CELL architecture, such as described in U.S. Pat. No.
6,526,491, the disclosures of which are incorporated by ref
erence herein. A common computing module is described in
the applications for use with cell architecture, which has a
consistent structure and Supports the same instruction set
architecture. A multi-processing computer system using the
cell architecture can be formed of many different types of
computers, such as one or more clients, servers, PCs, mobile
computers, game machines, PDAs, set top boxes, appliances,
digital televisions and other devices using computer proces
SOS.

A plurality of these computers or computer systems may
also be members of a network if desired. The consistent
modular structure enables efficient, high speed processing of
applications and data by the multi-processing computer sys
tem, and if a network is employed, the rapid transmission of
applications and data over the network. This structure also
simplifies the building of members of the network of various

US 7,428,619 B2
5

sizes and processing power and the preparation of applica
tions for processing by these members.

In accordance with one aspect of the present invention, the
basic processing module is a processor element (PE). In this
regard, reference is made to FIG. 1, which is block diagram of
a basic processing module or processor element (PE) 200. As
shown in this figure, PE 200 comprises an I/O interface 202,
a processing unit (PU) 204, a direct memory access controller
(DMAC) 206, and a plurality of sub-processing units 208,
namely, Sub-processing unit 208A, Sub-processing unit
208B, sub-processing unit 208C, and sub-processing unit
208D. A local (or internal) PE bus 212 transmits data and
applications among the PU 204, sub-processing units 208,
DMAC 206, and a memory interface 210. Local PE bus 212
can have, e.g., a conventional architecture or it can be imple
mented as a packet Switch network. Implementation as a
packet Switch network, while requiring more hardware,
increases available bandwidth.

PE 200 can be constructed using various methods for
implementing digital logic. PE 200 preferably is constructed
as a single integrated circuit employing a complementary
metal oxide semiconductor (CMOS) on a silicon substrate.
Alternative materials for Substrates include gallium arsenide,
gallium aluminum arsenide and other so-called III-V com
pounds employing a wide variety of dopants. PE 200 can also
be implemented using Superconducting material, e.g., rapid
single-flux-quantum (RSFQ) logic.
PE 200 is closely associated with dynamic random access

memory (DRAM) 214 through high bandwidth memory con
nection 216. DRAM 214 functions as the main memory for
PE 200. Although DRAM 214 preferably is a dynamic ran
dom access memory, DRAM 214 can be implemented using
other means, e.g., static random access memory (SRAM),
magnetic random access memory (MRAM), optical memory,
holographic memory, etc. DMAC 206 and memory interface
210 facilitate the transfer of data between DRAM 214, Sub
processing units (also known as Sub-processors) 208 and PU
204 of PE 200. It is noted that DMAC 206 and/or memory
interface 210 may be integrally or separately disposed with
respect to sub-processing units 208 and PU 204. Indeed,
instead of a separate configuration as shown, DMAC 206
and/or the memory interface 210 may function integrally with
PU208 and one or more (preferably all) sub-processing units
(SPU) 208. Thus, DMAC 206 is shown in dashed lines.
PU 204 can be, e.g., a standard processor capable of stand

alone processing of data and applications. In operation, PU
204 schedules and orchestrates the processing of data and
applications by the Sub-processing units. The Sub-processing
units preferably are single instruction, multiple data (SIMD)
processors. Under the control of PU 204, sub-processing
units 208 perform the processing of data and applications in a
parallel and independent manner. DMAC 206 controls
access, by PU204 and sub-processing units 208, to the data
and applications stored in DRAM 214. It is noted that PU204
may be implemented by one of the sub-processing units 208,
taking on the role of a main processing unit that schedules and
orchestrates the processing of data and applications by Sub
processing units 208.

In accordance with this modular structure, the number of
processor elements employed by a particular computer sys
tem is based upon the processing power required by that
system. For example, a server may employ four processor
elements, a workstation may employ two processor elements
and a PDA may employ a single processor element. The
number of Sub-processing units of a processor element

10

15

25

30

35

40

45

50

55

60

65

6
assigned to processing a particular software cell depends
upon the complexity and magnitude of the programs and data
within the cell.

FIG. 2 illustrates the preferred structure and function of a
sub-processing unit 208. Sub-processing unit 208 includes
local memory 50, registers 52, one or more floating point
units 34 and one or more integer units 56. Again, however,
depending upon the processing power required, a greater or
lesser number of floating points units 34 and integer units 56
may be employed. In a preferred embodiment, the local
memory 50 contains 256 kilobytes of storage, and the capac
ity of registers 52 is 128x128 bits. The floating point units 34
preferably operate at a speed of 32 billion floating point
operations per second (32 GFLOPS), and the integer units 56
preferably operate at a speed of 32 billion operations per
second (32 GOPS)
The local memory 50 may or may not be a cache memory.

The local memory 50 is preferably constructed as a static
random access memory (SRAM). A PU204 (of FIG. 1) may
require cache coherency Support for direct memory accesses
initiated by the PU 204. Cache coherency support is not
required, however, for direct memory accesses initiated by
the Sub-processing units 208 or for accesses from and to
external devices.
The sub-processing unit 208 further includes a bus inter

face (I/F) 58 for transmitting applications and data to and
from the sub-processing unit 208. In a preferred embodiment,
the bus I/F58 is coupled to a DMAC 206, which is shown in
dashed line to indicate that it may be integrally disposed
within the sub-processing unit 208 as shown or may be exter
nally disposed (as shown in FIG. 2). A pair of busses 68,268B
interconnect the DMAC 206 between the bus IVF 58 and the
local memory 50. The busses 68A, 68B are preferably 56 bits
wide.
The sub-processing unit 208 also includes internal busses

60, 62 and 64. In a preferred embodiment, the bus 60 has a
width of 56 bits and provides communications between the
local memory 50 and the registers 52. The busses 62 and 64
provide communications between, respectively, the registers
52 and the floating point units 34, and the registers 52 and the
integer units 56. In a preferred embodiment, the width of the
busses 64 and 62 from the registers 52 to the floating point or
the integer units is 384 bits, and the width of the busses 64 and
62 from the floating point or the integer units 34, 56 to the
registers 52 is 128 bits. The larger width of these busses from
the registers 52 to the floating point or the integer units 34, 56
than from these units to the registers 52 accommodates the
larger data flow from the registers 52 during processing. A
maximum of three words are needed for each calculation. The
result of each calculation, however, normally is only one
word.

FIGS. 3 through 6 illustrate multi-processing systems
wherein a number of processor elements, as shown in FIG. 1,
may be joined or packaged together to provide enhanced
processing power. For example, as shown in FIG. 3, two or
more processor elements 1A, 1B may be packaged or joined
together, e.g., within one or more chip packages, to form a set
of multi-processor units. This configuration may be referred
to as a broadband engine (BE). As shown in FIG. 3, the
broadband engine 80 contains the two processor elements 1A,
1B, which are interconnected for data communication over a
buss 12A and 12B. An additional data bus 16 is preferably
provided to permit communication between the processor
elements 1A, 1B and the shared DRAM 14. One or more
input/output (I/O) interfaces 202A and 202B and an external
bus (not shown) provide communications between the broad
band engine 80 and any external elements. Each of the pro

US 7,428,619 B2
7

cessor elements 1A and 1B of the broadband engine 80 per
form processing of data and applications in a parallel and
independent manner analogous to the parallel and indepen
dent processing of applications and data performed by the
sub-processing elements 208 discussed hereinabove with
respect to FIG. 1.

With reference to FIG. 4, a block diagram of one preferred
embodiment of a multi multi-processing system is shown in
which multi-processing system 100 includes a plurality of
processors 102 (any number may be used) coupled to
memory, such as DRAM 106, shared over bus 108. It is noted
that DRAM memory 106 is not required (and thus is shown in
dashed line). Indeed, one or more processing units 102 may
employ its own memory (not shown) and have no need for
shared memory 106.
One of the processors 102 is preferably a main processing

unit, for example, processing unit 102A. The other processing
units 102 are preferably sub-processing units (SPUs), such as
processing unit 102B, 102C, 102D, etc. All of the processing
units 102 need not have the same internal organization;
indeed they may be of heterogeneous or homogenous con
figurations. In operation, the main processing unit 102A pref
erably schedules and orchestrates the processing of data and
applications by the sub-processing units 102B-D such that the
sub-processing units 102B-D perform the processing of these
data and applications in a parallel and independent manner.

It is noted that the main processing unit 102A may be
disposed locally with respect to the Sub-processing units
102B-D, such as in the same chip, in the same package, on the
same circuit board, in the same product, etc. Alternatively, the
main processing unit 102A may be remotely located from the
sub-processing units 102B-D, such as in different products,
which may be coupled over a bus, a communications network
(such as the Internet) or the like. Similarly, the Sub-processing
units 102B-D may be locally or remotely located from one
another.
The participating Sub-processing units may include one or

more further Sub-processing units of one or more further
multi-processing systems. Such as system 100 (FIG. 4), sys
tem 200 (FIG. 1), and/or system 80 (FIG. 3). As will be
apparent to one skilled in the art from the description herein
above, the participating Sub-processing units, therefore, may
include one or more respective groups of Sub-processing
units, where each group is associated with a respective main
processing unit. As to the system 100 of FIG. 4, the main
processing unit is processor 102A and the respective group of
sub-processing units include processors 102B-D, which are
associated with the main processing unit 102A. Similarly, if
system 200 of FIG. 1 is employed, then the participating
Sub-processing units may include further Sub-processing
units 208A-D that are associated with a further main process
ing unit 204. Still further, if the system 80 (broadband engine)
of FIG. 3 is employed, then the participating Sub-processing
units may include an additional two (or more) groups of
sub-processing units 208A1-D1, which are associated with
the main processing unit 204A, and Sub-processing units
208A2-D2, which are associated with main processing unit
204B.

In this regard, the participating groups of Sub-processing
units (and the respective associated main processing units)
may be part of a set of multi-processing units, such as is
illustrated in FIG. 3 in which the respective groups of sub
processing units share a common data bus 12A or 12B. Alter
natively, or in addition, one or more of the respective groups
of participating Sub-processing units may be a stand alone
multi-processing unit. Such as is illustrated in FIG. 1 or 2.
where no such common data bus exists between respective

10

15

25

30

35

40

45

50

55

60

65

8
groups of Sub-processing units. Further, one or more of the
respective groups of participating Sub-processing units may
be at least part of a distributed multi-processing unit, where at
least Some of the Sub-processing units are remotely located
with respect to one another.

With reference to FIG. 5, the respective multi-processing
units, whether part of a set or part of a stand alone configu
ration, may be disposed on common or different circuit
boards, in common or different products, and/or at common
or different locations. As shown in FIG. 5, a pair of broadband
engines 80A and 80B (which happen to include respective
sets of multi-processor elements 200 (shown in FIG. 1)) are
disposed on common circuit board 40. Although broadband
engines 80A and 80B are illustrated in this example, it is
noted that stand-alone multi-processing units (such as
employing a single processor element 200 of FIG. 1) are also
contemplated. Respective multi-processing units 80A and
80B are interconnected by way of a broadband interface (BIF)
42.

With reference to FIG. 6, a plurality of multi-processing
units 80A-D may be disposed on different circuit boards 40,
while circuit boards 40 are disposed in a single product 44.
More particularly, multi-processing units 80A and 80B are
disposed on a common circuit board 40A, while the multi
processing units 80C and 80D are disposed on a different
circuitboard 40B. Both circuitboards 40A and 40B, however,
are disposed within a single product 44. Thus, data commu
nications between the respective multi-processing units
80A-D may be carried out by way of a broadband interface
(BIF) 52 that may include an intra-circuit board portion and
an inter-circuit board portion.
As discussed above, the participating Sub-processing units

(e.g., 102B-D and/or 208A-D) of the respective multi-pro
cessing units may be disposed in different products. Data
communications among Such products (and Sub-processing
units) must, therefore, employ more than a bus interface and/
or broadband interface within a single product. In this regard,
reference is now made to FIG. 7. Here, stand-alone multi
processing elements 200 or BEs 80 (sets of multi-processing
elements) may be distributed among a plurality of products to
form multi-processing system 500. The elements or members
(implemented as computer and/or computing devices) of sys
tem 500 are preferably in communication over network 504.
Network 504 may be a local area network (LAN), a global
network, such as the Internet, or any other computer network.
The members that are connected to network 504 include,

e.g., client computers 506, server computers 508, personal
digital assistants (PDAs) 510, digital television (DTV)
receivers 512, and other wired or wireless computers and
computing devices. For example, client 506A may be a laptop
computer constructed from one or more of PEs 200 or other
suitable multi-processing systems. Client 506B may be a
desk-top computer (or set top box) constructed from one or
more of PEs 200 or other suitable multi-processing systems.
Further, server 508A may be a administrative entity (employ
ing a database capability), which is also preferably con
structed from one or more PEs 200.
The processing capabilities of multi-processing system

500 may rely on a plurality of processor elements 200 dis
posed locally (e.g., one product) or disposed remotely (e.g., in
multiple products). In this regard, reference is made to FIG.8.
which is a block diagram of an overall computer network in
accordance with one or more aspects of the present invention.
Again, the PEs 200 and/or broadband engines 80 (made of
multiple PEs) may be used to implement an overall distrib
uted architecture for computer system 500.

US 7,428,619 B2
9

Since servers 508 of system 500 perform more processing
of data and applications than clients 506, servers 508 contain
more computing modules (e.g., PEs 200) than clients 506.
PDAs. 510, on the other hand, in this example perform the
least amount of processing. Thus, PDAs. 510 contain the
smallest number of PEs 200, such as single PE 200. DTVs
512 perform a level of processing that is substantially
between that of clients 506 and the servers 508. Thus, DTVs
512 contain a number of processor elements between that of
clients 506 and servers 508.

FIG. 9 illustrates one preferred embodiment of a multipro
cessor System, according to one aspect of the invention,
which includes main processor unit 204, a plurality of sub
processor units (SPUs) 208A through 208D, denoted gener
ally and referred herein collectively as SPUs 208, and direct
memory access controller DMAC 206. DRAM 214 is also
provided and shared as a common memory among the main
and sub-processor units. DMAC 206, according to one aspect
of the invention, is preferably an on-chip device that controls
data transfers between two locations without having to use the
computing systems main processor (in this instance, main
processor unit 204) to effect the transfer. DRAM 214 is pref
erably composed of a number of dynamic random access
memories. However, DRAM 214 may comprise various dif
ferent types of memory such as static random access memory
(SRAM), magnetic random access memory (MRAM), opti
cal memory, holographic memory, and the like.
As described in more detail below, each SPU 208 prefer

ably includes a buffer sync controller 800A-800D for con
trolling access to shared data in shared memory 214. When
one of the sub-processor units 208 requests information from
DRAM 214 as a result of normal software program control or
by virtue of a program interrupt, the accessed memory loca
tion(s) within the shared memory must contain current data.
Consequently, the read and write operations of the Subpro
cessors must be synchronized to ensure that correct data is
accessed in memory that is shared among the Subprocessors.
The present invention can accomplish proper processor Syn
chronization, for example in connection with a READ of or a
WRITE to shared memory 214, as described below.

In one aspect of the invention, each SPU 208A-208D,
includes a corresponding a buffer sync controller 800A-800D
to control read and write access to data shared among proces
sors. Namely, each buffer sync controller operates to check
whether the shared data in memory is being read or writtento,
and can set and store shared parameter data to track Such reads
and writes to provide synchronization among the SPUs. The
shared parameter data can be stored in shared memory Such as
DRAM 214, in a memory location such as shared parameter
data memory buffer 802.

FIG. 10 depicts a preferred embodiment of a buffer sync
controller 800, which can be implemented via software or
hardware within each SPU.

Namely, the buffer sync controller 800 includes a control
unit 812, an initialization unit 814, a synchronization unit 816
and data transfer unit 818. Initialization unit 814 is operative
to create sync buffer entries (e.g., sync buffer 802) in the
shared parameter data memory buffer 802. This is where the
shared parameter data or pointers to Such data is to be stored
for use in synchronization of the SPUs. If an SPU processing
the shared data is the first SPU involved, then the initialization
unit 814 of that SPU will create the shared parameters and
place those parameters (or pointers to Such parameters) in the
shared parameter data memory buffer 802. It will then return
a pointer to the shared parameter data. If the SPU processing
the shared data is not the first processor, that SPUs initial

10

15

25

30

35

40

45

50

55

60

65

10
ization unit will get the pointer to the shared parameter and
return the pointer to the shared parameter to the buffer sync
controller.

In terms of the shared parameter data, two variables are
preferably provided, namely, WL (writer lock) and RC
(reader count). WL and RC are preferably stored in shared
parameter data memory buffer 802, or index pointerpointing
to such variables may alternatively be stored in parameter
data buffer memory 802. The WL variable sets a flag, e.g.,
WL=1, in connection with a SPU writing data to the shared
memory, a procedure generally referred to as a WRITE. When
the WL flag is set to a predetermined status (such as WL=1),
no other SPU may access the shared data.
The variable RC tracks the number of SPUs reading the

shared data in the shared memory, generally referred to as a
READ. In accordance with the present invention, in order for
a WRITE to shared memory to proceed, it is preferable that no
other processor is attempting to read the shared data. Thus, for
example, this condition of “no read' attempts can be set via
the setting of RC to a predetermined value, such as Zero. Once
new data is written, and no further writing is done which can
be indicated by WL being set to zero, a multiple number of
SPUs may then READ the data in shared memory with each
READ, RC can be set to a value corresponding to the number
of SPUs accessing the shared data. Accordingly, with the
present invention, where an SPU 208 tries to read or write
shared data and the data is being accessed and updated by
another SPU, the SPU cannot start reading or otherwise pro
cessing the data until the data is released for sharing in
memory. This is especially important in application Such as
image processing applications, where each processor in a
multiprocessor System is assigned to process a part of an
image frame which should be processed within the display
time of the frame. As a consequence thereof, synchronization
of processor operation is needed.

During a writing operation, the control unit 812 is operative
to receive the pointer to the shared parameter and the pointer
to the shared data which should be writtento. The control unit
then determines if it is ready to write the data. Next, the
synchronization unit 816 checks the shared parameter data to
determine ifa write can be accomplished. Such as by checking
the value of variables WL and RC. If a grant signal comes
from the synchronization unit 816, the control unit 812 calls
the data-transfer unit 818 to transfer the data. Finally, the data
transfer unit 818 transfers the shared data to the shared
memory area for access by a subsequent SPU.
The shared parameter data can also include, but is not

limited to, other memory information (e.g., start address, size,
etc.), type of synchronization (type and parameter according
to a set of parameters), state of synchronization, and type of
data buffer (e.g., kind of buffer, data granularity, size, etc.).
Additionally, the shared parameter data includes variables
WL and RC previously discussed. The shared parameter data
is shared among the SPUs and the information contained
therein ensures that shared data being accessed by each SPU
is current.

FIG. 11 illustrates processor and shared data interaction in
connection with processing a data stream of information
(such as packets), for example with an image processing
application processing image frames. Processor 204 or an
SPU can initialize the shared parameter data buffer memory
(sync buffer) which stores the shared parameter data or point
ers to such data in system memory. Thus, the PUhere writes
(as indicated by arrow 902) shared data Do for FRAME 0 as
shown in shared memory. Pseudo code for creating a synchro

US 7,428,619 B2
11

nization object buffer syncB, a memory location in shared
memory 214 for holding the shared data, D, is illustrated
below.

Initialize synchronization
create buffer (syncB)
Main loop:
Create data Dm
Write Dm to synch3

In connection with processing of data Do, SPUs 208 need
to READ and WRITE (process) such data. In FIG. 11, once
the data is placed in the shared memory, shared data d0, and
d0 is read and processed by the Subprocessors. Once the
processing of the data for Frame 0 is complete, PU 204 can
then obtain the next frame, Frame 1, which can be processed
in the same manner as Frame 0. Pseudo code implementing a
READ of shared data by a subprocessor unit (SPU) is illus
trated below:

Initialize synchronization:
Get data from sync buffer (synch3)
Main loop:
Sub loop:
get place of data . . . i
get data from and calculate loop while (I-num)
In summary, as shown in FIG. 11, the PU204 prepares Do

and the SPUs 208A, 208B will use D. When an SPU tries to
read the part of Do and Do is not written by the PU, the SPU
has to wait. When the PU finishes the write to Do, the SPU
starts to read. The sync buffer utilizes such data synchroniza
tion. The sync buffer may also care about the location of the
buffer. For example, a sync buffer A may have fragment areas
A1, A2, A3,..., AN. A processor (e.g., a consumer) may want
to read A3 and the other processor (e.g., a producer) creates
A3 and the consumer will be released immediately.

Writing information to shared memory occurs in connec
tion with a WRITE command by an SPU. A WRITE in con
junction with buffer sync controller 800 occurs in connection
with an SPU accessing data from shared memory and then
changing the data therein. When a write request by a SPU
occurs, a wait for an unlock is encountered, e.g., WL=0; WL
is then set to lock (e.g., WL-1); a wait for a status indicating
that no other processor is reading data is encountered (e.g.,
RC=O); a WRITE to the shared memory occurs; and an
unlock condition is then set (e.g., WL is reset to Zero). This
procedure is outlined in the flowchart of FIG. 12.
A READ occurs in connection with a processor (204.208)

accessing data from shared memory without causing the data
to change therein. The memory location is merely read. In
connection with control unit 812 or buffer sync controller
800, control unit 812 initiates a READ request to synchroni
Zation unit 816 after receiving a request to read shared data
from an SPU. Synchronization unit 816 determines whether a
READ is allowed based on the shared parameter data. If the
shared parameter data is in the proper State, a GRANT signal
is issued from the synchronization unit 816 to the control unit
812. In response thereto, the control unit 812 issues a request
to the data transfer unit 818 to permit the transfer of data to be
read by the SPU. In response to the Grant signal issued from
the data transfer unit 818, control unit 812 issues a signal
granting access to the shared memory and permission to read
shared data by the SPU, which is requesting permission to
read shared data. As this pertains to a READ request, a wait
for the unlock condition (e.g., WL=0) is encountered, the
Reader Count variable is the incremented (e.g., RC=RC1); a
READ of data from the shared memory occurs; and the

10

15

25

30

35

40

45

50

55

60

65

12
Reader Count RC is decremented after the READ is accom
plished. This procedure is outlined in the flowchart of FIG.
13.
The present invention is especially useful imaging appli

cations, such as with a codec code used in JPEG and MPEG
coding and decoding. It is also useful for any application that
uses multiple processors (e.g., PU and SPUs) that communi
cation with one another.

Although the invention herein has been described with
reference to particular embodiments, it is to be understood
that these embodiments are merely illustrative of the prin
ciples and applications of the present invention. It is therefore
to be understood that numerous modifications may be made
to the illustrative embodiments and that other arrangements
may be devised without departing from the spirit and scope of
the present invention as defined by the appended claims.
The invention claimed is:
1. A method of providing synchronization of shared data

access among a plurality of processors in a multi-processor
system comprising:

creating a synchronization object buffer in a shared
memory external to the plurality of processors;

storing data shared by the plurality of processors in the
synchronization object buffer in the shared external
memory;

storing, in the shared memory, shared parameter data
including one or more conditions relating to access to
the data shared by a plurality of processors, the shared
parameter data also including start address information
and size information of the data shared by the plurality of
processors;

modifying in the shared memory the shared parameter data
based on the access by the processors to the shared data;
and

preventing and granting access to the shared data by the
processors based on the shared parameter data main
tained in the shared memory.

2. A method according to claim 1, wherein the one or more
conditions includes a first condition indicating the number of
the processors accessing the shared data and a second condi
tion indicating whether the access to the shared data is being
denied in writing to the shared data.

3. A method as according to claim 2, wherein the access to
read the shared data is granted upon the second condition
indicating that none of the processors are writing to the shared
data.

4. A method according to claim 3, wherein access to write
to the shared data by one of the processors is granted upon the
second condition being set to deny access to the shared data
by all other of the processors following an indication by the
second condition that none of the processors were writing to
the shared data.

5. A system for providing synchronization of shared data
access among a plurality of processors comprising:

a plurality of processors, and
a shared memory external to the processors,
a first one of the plurality of processors operable to creating

a synchronization object buffer in the shared external
memory, the synchronization object buffer storing
shared data that is shared by the plurality of processors,

each of the processors including a buffer sync controller for
processing shared parameter data maintained in the
shared memory and to control access to the shared data
shared by the plurality of processors in accordance with
the state of the shared parameter data maintained in the
shared memory,

US 7,428,619 B2
13

wherein the shared parameter data includes start address
information and size information of the shared data.

6. A system according to claim 5, wherein the shared
parameter data indicates the number of processors reading the
shared data.

7. A system according to claim 5, wherein the shared
parameter data indicates whether one of the processors is
writing to the shared data.

8. A system according to claim 5, wherein the plurality of
processors includes at least at least two or more Sub-proces
SOS.

9. A system according to claim 8, further comprising a
direct memory access controller for controlling access to the
shared data by the plurality of processors.

10. A system according to claim 5, wherein the shared
parameter data includes a first condition indicating the num
ber of the processors accessing the shared data and a second
condition indicating whether the access to the shared data is
being denied in writing to the shared data.

11. A system according to claim 5, wherein the shared
parameter data includes a writer lock parameter associated
with writing to the shared data and a reader count parameter
associated with the number of processors reading the shared
data.

12. A system according to claim 5, wherein the shared
parameter data is stored in a shared parameter data buffer in
the shared external memory.

13. A system as recited in claim 5, wherein the buffer sync
controller is integrated with the processors.

14. A method of providing synchronization of shared data
access among in a multi-processor system comprising:

creating a synchronization object buffer in a shared
memory external to a plurality of processors in the multi
processor system;

sharing data among the plurality of processors in accor
dance with one or more conditions provided by shared
parameter data maintained and modifiable in the shared
memory;

storing the shared data in the synchronization object buffer
in the shared memory; and

preventing and granting access to the shared data by one or
more of the processors based on the one or more condi
tions;

wherein the shared parameter data includes start address
information and size information of the shared data.

15. A buffer sync controller for providing synchronization
of shared memory access in a multi-processor system by a
plurality of processors, comprising:

an initialization unit for creating a synchronization object
buffer in a shared memory external to the plurality of
processors and for providing shared parameter data
including a first parameter and a second parameter main
tained in the shared external memory, the first parameter
being indicative of a number of processors reading
shared data and the second parameter being indicative of
whether the shared data is being written to by one of the
processors;

a control unit;
a synchronization unit for receiving a request for access to

the shared data from the control unit and for granting the
request for access based on the states of the first and
second parameters maintained in the shared memory;
and

a data transfer unit for receiving a request to transfer data
from the shared memory by the control unit and granting
the request to transfer data in connection with predeter
mined values of the first and second parameters;

5

10

15

25

30

35

40

45

50

55

60

65

14
wherein the shared data is stored in the synchronization

object buffer and the shared parameter data further
includes start address information and size information
of the shared data.

16. A method for providing synchronization for memory
access of data pursuant to a write to shared memory in a
multiprocessor system comprising:

creating a synchronization object buffer in a shared
memory external to a plurality of processors in the mul
tiprocessor system;

storing data shared by the plurality of processors in the
synchronization object buffer;

receiving a request to write to the synchronization object
buffer by a selected processor;

receiving a read count indication from a read count param
eter maintained in the shared external memory that no
other processors are reading data in the synchronization
object buffer;

receiving a write access condition from a write access
condition parameter maintained in the shared external
memory indicating the synchronization object buffer is
available to read;

setting the write access condition to prevent other proces
sors from access to the synchronization object buffer,

writing data to the synchronization object buffer after set
ting the access condition to prevent access by other
processors;

storing, in the shared external memory, shared parameter
data including start address information and size infor
mation associated with the synchronization object
buffer; and

setting the write access condition to enable other proces
sors to access the synchronization object buffer after
writing the data.

17. A method according to claim 16, further comprising
storing the write access condition and the read count condi
tion in the same region of memory as the synchronization
object buffer accessible by the processors.

18. A method for providing synchronization for memory
access pursuant to a read of shared memory area in a multi
processor system comprising:

requesting a read of data in a synchronization object buffer
of a shared memory external to the processors of the
multiprocessor system;

receiving an access flag from the shared external memory
indicating access to the synchronization object buffer;

incrementing a READ variable maintained in the shared
external memory indicative of the number of processors
reading the synchronization object buffer;

reading data in the synchronization object buffer, and
decrementing the READ variable following the reading of

the data;
wherein the access flag and the READ variable are part of

shared parameter data stored in the shared external
memory, the shared parameter data further including
start address information and size information of the
data in the synchronization object buffer.

19. Apparatus for providing synchronization of shared data
access among a plurality of processors comprising:

a processing element including two or more processing
units connected via a bus, the two or more processing
units being connectable to a memory and operable to
issue instructions,

wherein the processing units are programmed to share data
in accordance with one or more conditions provided by
shared parameter data stored in a shared memory exter
nal to the processing units and accessible to the process

US 7,428,619 B2
15

ing units, and to prevent and grant access to the shared
data by the processing units based on the one or more
conditions maintained in the shared memory;

wherein the shared data is stored in a synchronization
object buffer in the shared external memory, and
wherein the shared parameter data further includes start
address information and size information of the shared
data in the synchronization object buffer.

20. A medium storing instructions to cause one or more
processors to provide synchronization of shared data access
among a plurality of processors comprising instructions for:

creating a synchronization object buffer in a shared
memory external to a plurality of processors;

10

16
sharing data among the plurality of processors in accor

dance with one or more conditions provided by shared
parameter data stored in the shared external memory;

storing the shared data in the synchronization object buffer;
and

preventing and granting access to the shared data by one or
more of the processors based on the one or more condi
tions maintained in the shared memory;

wherein the shared parameter data includes start address
information and size information of the shared data.

