
US 2010.005O158A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2010/0050158A1

Daniel (43) Pub. Date: Feb. 25, 2010

(54) SYSTEMAND PROCESS FOR DEBUGGING (30) Foreign Application Priority Data
OBJECTORIENTED PROGRAMMING CODE
LEVERAGING PREPROCESSORS Aug. 21, 2008 (EP) EPO8305492

Publication Classification
(75) Inventor: Maxime Daniel, Besne (FR) (51) Int. Cl.

C d Add G06F 9/44 (2006.01)
orrespondence CSS
IBM - EU c/o Myers Andras Sherman LLP (52) U.S. Cl. .. T17/125
19900 MacArthur Blvd., Suite 1150 (57) ABSTRACT
Irvine, CA 926.12 (US) A process and system for debugging of a computer program,

is provided. One implementation involves including mark-up
(73) Assignee: International Business Machines information into Source code of the application program,

Corporation, Armonk, NY (US) generating a debug-enabled version of the computer program
including debugging methods based on the mark-up informa

(21) Appl. No.: 12/247,092 tion, and providing the debug-enabled version of the program
computer to a debugger for debugging purposes using the

(22) Filed: Oct. 7, 2008 debugging methods.

- O

140

105
User

interface Variables
View Symbolic

info DB

Debugger Application

Patent Application Publication Feb. 25, 2010 Sheet 1 of 8 US 2010/0050158A1

140

User
interface Variables

view Symbolic
info DB

Debugger Application

FIG. 1

Patent Application Publication Feb. 25, 2010 Sheet 2 of 8 US 2010/0050158A1

20
Break asked 200 1.

Thread stopped 2O1

Display breakpoint info 2O2

Collect variables 210
in Scope

Filter variables 211

Sort variables 212

Select a variable 220

230
YES

Complex type? scopepsis
Fetch variable value

Fetch variable 250
identifier

Display variable 251 Display variable

More variables?

NO

Wait next user 270
Command i

FIG.2

Patent Application Publication Feb. 25, 2010 Sheet 3 of 8 US 2010/005O158A1

300

330
Complex type? YES

NO

Fetch field value Or w
apply method

Display field/method

360

More fields/methods?

NO

Wait next user
Command

-30
310

311

312

32O

350 Fetch field identifier or
Call method

Display field/method 351

370

FG. 3

Patent Application Publication Feb. 25, 2010 Sheet 4 of 8 US 2010/0050158A1

Context change 400

402 -40
Display breakpoint info

Collect variables 410
in Scope

Filter variables 411

Select a variable 42O
440

O 430

Already displayed?

YES-450
Complex type?

NO

Fetch variable value

Refresh variable

480

More variables?

NO

Wait next user command 1490 FIG. 4

Branch to 230-260
from Fig.2

Handle complex type

Patent Application Publication Feb. 25, 2010 Sheet 5 of 8 US 2010/005O158A1

-50
Receive variable 5OO

Imethod

Push variable/method 501 519

502

NO

Pop variable/method
from stack

504

Complex type? Fetch variable method
YES-507

signs Refresh variable ?method
NO -509

Details displayed 2
Display null variable

?method

Type changed?
NO

Refresh variable
Collect fields/methods /method

Fifter fields/methods

| Sort fields/methods

Select a field/method

Push field/method
On stack

517
More fields
Imethods?

FIG. 5

Patent Application Publication Feb. 25, 2010 Sheet 6 of 8 US 2010/0050158A1

-60

Name Value

O args String IO (id=35)
E O employee Employee (id=16)

O birth Year 111
O encodedValue int 59247

gende i:' ' male" (id4
d hexaview "e76f" (id=44)

US 2010/0050158A1 Feb. 25, 2010 Sheet 7 of 8 Patent Application Publication

SºOJITOS
| 2

Patent Application Publication Feb. 25, 2010 Sheet 8 of 8 US 2010/0050158A1

622

JTAG112C Busses Processor(S)
600

Level Two

Host-to-PC
Bridge

606
JTAG112C B USS6S 610

Service PrOCeSSOr
Interface & ISA
Access Passthru

612

LAN Card
630

614

... It Service M USB N-645 emory
Processor 618

616 M

675
NVRAM 690

620 ring 662

664 Parallel

640

670 668
FIG. 8

US 2010/005O158A1

SYSTEMAND PROCESS FOR DEBUGGING
OBJECTORIENTED PROGRAMMING CODE

LEVERAGING PREPROCESSORS

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority of EP08305492,
filed on Aug. 21, 2008.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates generally to software
program debugging tools and more particularly to Software
debugging tools for object-oriented Software programs.
0004 2. Background Information
0005. In existing Software debugging tools (debuggers),
while debugging applications written in object-oriented (OO)
programming languages, objects are presented into a debug
ger according to their structure, that is, the fields that their
class define. This requires that the fields cleanly map the
semantics of the objects. However, frequently a class defines
parts (or whole) of its semantics through methods, while its
fields mostly map to implementation details that may or may
not help the developer depending on his focus on the class or
classes that use it, and his level of knowledge of the class
internals. In certain cases the developer intimately knows the
class, but the class implementation, for performance reasons
or otherwise, encodes its semantics in very difficult to under
stand fields.

SUMMARY OF THE INVENTION

0006. The invention provides a process and system for
debugging of an object oriented computer program. One
embodiment involves including mark-up information into
Source code of the application program, the mark-up infor
mation associated with eligible debugging methods, then
generating a debug-enabled version of the computer program
including debugging methods based on the mark-up informa
tion, and providing the debug-enabled version of the program
computer to a debugger for debugging purposes using the
debugging methods.
0007. Other aspects and advantages of the present inven
tion will become apparent from the following detailed
description, which, when taken in conjunction with the draw
ings, illustrate by way of example the principles of the inven
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 For a fuller understanding of the nature and advan
tages of the invention, as well as a preferred mode of use,
reference should be made to the following detailed descrip
tion read in conjunction with the accompanying drawings, in
which:
0009 FIG. 1 shows a functional block diagram of a com
puting system implementing an embodiment of the invention.
0010 FIGS. 2-5 show flowcharts of a debugging process,
according to an embodiment of the invention.
0011 FIG. 6 shows an example view for debugging,
according to an embodiment of the invention.
0012 FIG. 7 shows a functional block diagram of a pro
cessing system implementing leveraging preprocessors in
debugging application programs, according to an embodi
ment of the invention.
0013 FIG. 8 shows an example computer system suitable
for implementing the present invention.

Feb. 25, 2010

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0014. The following description is made for the purpose of
illustrating the general principles of the invention and is not
meant to limit the inventive concepts claimed herein. Further,
particular features described herein can be used in combina
tion with other described features in each of the various
possible combinations and permutations. Unless otherwise
specifically defined herein, all terms are to be given their
broadest possible interpretation including meanings implied
from the specification as well as meanings understood by
those skilled in the art and/or as defined in dictionaries, trea
tises, etc. The invention provides a system and process for
debugging objectoriented programs (code) by identifying all
possible eligible methods that have no parameters and return
ing a value, and then selecting among these possible eligible
methods using pattern-based filtering of methods, wherein
the selected eligible methods are leveraged for debugging. In
one embodiment of the invention, all methods that take no
parameter and return a value are possibly eligible for appli
cation of the invention. A developer uses explicit markers to
sort those that are elected as semantic fields from those that
are not. The former results into additional methods named
after a recognizable pattern and a pattern-based filtering of
methods is used to determine eligible methods. The debugger
may apply further matching and filtering rules to select even
fewer methods (e.g., the debugger may be equipped with
built-in or user level matching rules Such as “all instance
methods whose name starts with get”). The recognizable
pattern may be unique or multiple, and can be disclosed to and
changed by the developer or not depending upon the imple
mentation.
0015 The following description first explains identifying
all possible eligible methods that have no parameters and
returning a value, and then explains selecting among Such
methods using a pattern-based filtering of the possible eli
gible methods. Specifically, all methods that take no param
eter and return a value are possible eligible methods for
application of the invention. Certain methods of the class
under test may include defining semantic fields of the class.
Then, a recognizable pattern is used to sort out eligible meth
ods out of the set of possible eligible methods. A debugger
according to the invention recognizes and leverages those
methods at debug time. As such, the invention provides a
process for including mark-up information in the source code
of an object oriented application program, and leveraging the
mark-up information to generate a debug-enabled version of
the application program. Such a debug-enabled version of the
application program comprises eligible methods named after
a recognizable pattern. Then, a pattern-based filtering of
methods is used to select among possible eligible methods.
0016. In object oriented programming, a class is template
for creating objects, and defines attributes (e.g., name, value)
and methods (e.g., associated Subroutines, functions, behav
iours) of each object. FIG. 1 shows a functional block dia
gram of a computer system 10 in which an embodiment of the
invention is implemented. Said embodiment of the invention
is applicable to debugging (e.g., testing and Solving program
ming issues such as errors) of objected oriented programs
using a graphical user interface (GUI) debugger. A full
fledged graphical windowing system is not required, and
character-based interfaces may be used, provided that infor
mation can be presented to the user (e.g., Software developer/
programmer) in a multi-views and multi-lines format.

US 2010/005O158A1

0017. The debugging computer system provides a debug
ging session, wherein an object oriented Software application
100 is running on a computing system. The application 100,
at the moments in time that are of interest to debugging, runs
(executes) under the control of a debugger 120 (e.g., a soft
ware module). The application 100 may run on a computer
based system that may include a single machine that com
prises a single core processor, or a networked system that
comprises multiple machines, some of which include a single
processor or some of which include multiple processors, etc.
0018. The debugging computer system further includes
database 105 of symbolic information about the application
100 under test. The database 105 may include various struc
tures, use diverse storage technologies, be packaged with the
executable components of the application 100, etc. The
debugger 120 is configured to query information in the data
base 105 about the application 100, at the level of detail
needed to implement its base debugging functions and imple
ment debugging functions according to the invention.
0019. In one implementation, the debugger 120 comprises
a specialized software module configured to control execu
tion of the application 100 under test, and to provide the user
of the debugger 120 with tools to diagnose the execution of
the application 100 from multiple points of view. The debug
ger 120 further interacts with the application 100 to selec
tively interrupt execution of one or more process threads of
the application 100 at precise points in time depending on
specific conditions. As such, the debugger 120 controls
execution of the application 100 on behalf of the user, lever
ages the symbolic information 105 to provide debugging
functions, and interacts with the user via a user interface
module 140.
0020. The user interface module 140 is configured to
enable the user to interact with the debugger 120 and control
execution of the application 100, and to diagnose the behavior
of the application 100. The user interface 140 provides sev
eral views and dialogs, that may leverage a graphical user
interface or rely upon character-based multi-line views and
dialogs. Said views and dialogs provides controls (e.g., inter
faces) to at least present the user with breakpoints which are
points at which the execution of one or more threads of the
application 100 can be interrupted. Said views may also pro
vide controls to resume the execution of the application 100 in
various manners (e.g., step by step, up to the following break
point, etc.).
0021 Preferably, said views further include a view 141
which, for a given moment in time at which a given thread of
the application 100 is stopped at a given point in the execut
able code of the application, presents the user with the vari
ables that are in context. Such variable values are in memory
and the application 100 typically uses their addresses to fetch
them. The debugger 120 leverages the symbolic information
database 105 to fetch types, etc.
0022. The view 141 provides controls for filtering part of
the available information, and, for presenting variables that
are not of elementary types via means that makes this practi
cal within a finite view (i.e., types more complex than simple
types of a considered programming language such as int and
other integral types, chars, strings of chars, booleans, etc.).
0023 The view 141 also provides controls for the user to
choose how much of the internal presentation structure of the
view should be displayed. It is important to consider the
relationship between the view 141 and structured variables
(e.g., objects, and depending on the programming language,

Feb. 25, 2010

other structures that are supported by dedicated language
features, such as arrays, tuples, etc.). A typical object, or class
instance, may have many fields. Some of these fields can be
objects, or even of the type of the considered object itself. The
view 141 provides controls for the user to focus on presenting
a subpart of the available information as desired.
0024 For example, the view 141 may provide controls
Such as scrolling controls for a windowing system wherein
the information is presented into what may be considered as
an infinite view, a small part of which is presented to the user
on a display and scroll bars are provided to move up or down
parts of the available information.
0025. Another control of the view 141 includes presenting
information using a tree (hierarchical) metaphor, wherein
only digging deeper into the tree the user can view further
information. For example, having a Java class X {int i: X
next; at hand, the tree metaphor would involve presenting
the user with only the following view:

0026 +this-X at 000fff
0027 where the + is in fact a control that enables the user
to instruct the view 141 to expand the tree; doing so could, for
a given execution of the application, result into:

0028 -this-X at 000fff
0029 i-0
0030) +next=X at 000fff.

0031. Another control of the view 141 includes filters that
leverage properties that are more related (e.g., field visibility,
inherited fields, etc.) or less related (e.g., field name, name
matching a regular expression, etc.) to the semantics of the
programming language used by the application 100.
0032. Other controls for the view 141 provides strategies
for rendering information on a display for the user may also
be implemented. Such strategies may also be combined. The
rendering presented in the above examples are eventually
subject to various embodiments of the debugger 120. The
operation of an example debugger 120 may rely upon one or
more processes described below, as described in relation to
FIGS. 2-6. Only methods that have a suitable signature can be
used (i.e., methods defining semantic fields). Such methods
present pseudo-field values along with fields of object-typed
variables on a user interface for debugging purposes. A rec
ognizable pattern is used to sort out eligible methods out of
the set of possible eligible methods. A pattern-based filtering
of methods is used to select among the eligible methods.
0033 FIG. 2 shows an example process 20 according to
which the debugger 120 presents a user with the information
available at a given breakpoint in execution of the application
100. At block 200 a break in the execution of the application
100 is requested (e.g., via the user interface 140 or from an
internal condition monitored by the debugger 120). The break
can affect one or more threads of the application 100. At block
201, one or more of the threads are stopped by the debugger
120. At block 202, using the interface 140 the debugger 120
presents the user with information about the current point of
execution of the application 100. At block 210 the debugger
collects the variables that are in scope at the current point of
execution. At block 211, optionally the debugger 120 filters
out some of the variables based on various criteria, and only
retain the remaining for presentation. At block 212, option
ally the debugger 120 sorts the variables according to sorting
criteria associated with the view or the debugger itself. At
block 220, the debugger 120 selects the first variable in scope
and removes it from the list of variables to handle. At block

US 2010/005O158A1

230, if the variable is of complex type, then the process
proceeds to block 250, otherwise the process proceeds in
sequence to block 240.
0034. At block 240, since the variable is of simpletype, the
debugger 120 fetches the value of that variable, which
depending on the runtime environment may involve various
techniques. For a compiled language such as C++, this would
involve computing the memory address and size of the vari
able, then interpreting the resulting memory chunk according
to the variable type. For an interpreted language like Java in
which a virtual machine is equipped with dedicated applica
tion programming interfaces (APIs) to do so, this would
involve communicating with the virtual machine through the
appropriate API to obtain the value.
0035. At block 241, the debugger 120 presents informa
tion about said variable into the view 141 and the process
proceeds to block 260. The information displayed may
include the type, name and value of the said variable (other
information about said variable may also be displayed).
0036. At block 260, if additional variables remain in scope
that have not been presented yet, the process loops back to
block 220, otherwise the process proceeds to block 270 for
completion, and the debugger 120 awaits a next command.
0037. At block 250, referenced above, since said variable

is of complex type, the debugger 120 fetches an identifier for
the variable (e.g., memory address of the variable, or any
other value guaranteed to identify the variable). At block 251,
the debugger presents information about the variable into the
view 141, and the process proceeds to block 260. The display
of information about the variable in view 141 may include the
type, name and identifier of the variable. The user is also
enabled to request the details of the variable value, which may
involve explicit graphics (e.g., when a click-able plus sign is
provided) or may not involve explicit graphics (e.g., the user
utilizes a contextual menu). The information presented may
include (automatically or on demand) the string representa
tion of the variable (e.g., in Java, this would result from the
call of the tostring() method upon the object, since all classes
ultimately inherit from Object).
0038 According to an embodiment of the invention, the
debugger further presents in the view 141 the result of the
execution of eligible methods upon object-typed variables,
along with the (true) fields of the said variables. Whenever
fields of an object type are considered, for all methods that
have a return type and do not take parameters, the process
involves deriving a pseudo-field name from the method name,
running the method to obtain a pseudo-field value, and lever
aging those names and values as if they were the names and
values of a regular field. For selecting among eligible meth
ods, a recognizable pattern is used to sort out eligible methods
out of the set of possible eligible methods. A pattern-based
filtering of methods is used to select among the eligible meth
ods.
0039 FIG. 3 shows an example process 30 according to
which the debugger 120 presents a user with the details of a
complex variable. At block 300 the user interacts with the
debugger to request that the details of a complex variable that
is in context to be presented. An example interaction would be
for the user interacting with the variable as presented in view
141 by clicking the plus sign at its left, using a contextual
menu upon it.
0040. At block 310, the debugger 120 interacts with the
symbolic information 105 to determine the names and types
of the fields of the variable and to elaborate a list of all

Feb. 25, 2010

methods that can be called upon the variable, said methods
having no parameter and return a value. As above, pattern
based filtering of methods is used to select among the eligible
methods. For each of those selected methods, the debugger
remembers its name and its return type. Optionally, the
debugger associates a short name to each method, deriving
that short name from the method name using rules (e.g.,
method "getName” may be associated to name “name by a
rule 'strip leading get and lowercase leading letter”), and uses
the resulting short names for sorting in block 312 further
below.
0041 At block 311, optionally the debugger filters out
some of the fields and methods based upon various criteria
and only retain the remaining ones for presentation.
0042. At block 312, optionally, the debugger sorts the
collection of fields and methods according to sorting criteria
associated with the view or the debugger itself. Depending on
the sorting criteria, the fields and methods may be interleaved.
0043. At block 320, the debugger selects the first field or
method of the variable and removes it from the list of fields
and variables to be considered.
0044. At block 330, if the field or the method return value

is of complex type, then the process proceeds to block 350,
otherwise the process proceeds in sequence to block 340.
0045. At block 340, if a field was obtained at block 320,
the debugger 120 determines the value of the field for the
considered variable. Depending on the runtime environment,
this may involve various techniques (e.g., for a compiled
language such as C++, this would involve computing the
memory address and size of the field, then interpreting the
resulting memory chunk according to the field type; for an
interpreted language Such as Java in which a virtual machine
is equipped with dedicated APIs to do so, this would involve
communicating with the virtual machine through the appro
priate API to obtain the value). Ifat block 320 a method was
obtained, then in block 340 herein the debugger calls that
method upon the variable at hand to get a value.
0046. At block 341, if a field was obtained at block 320,
then the debugger displays the field related information via
the view 141, then proceeds to block 360. The information
displayed may include the type, name, and value of the said
field (other information may be displayed). If at block 320 a
method was obtained, the debugger performs the same as for
a field, using a subpart of the pattern-based method name
(indicating the method is an eligible method) as if it was a
field name, and the value computed at block 340 as a field
value. For example, assuming that SEMANTIC FIELD be
the marker, then a method named SEMANTIC FIELD gen
der would be presented as a semantic field named gender.
0047. At block 350, if a field was obtained at block 320,
then since the field is of complex type, the debugger fetches
an identifier for the field (e.g., this can be its memory address,
or any other value guaranteed to identify the field). If a
method was obtained at 320, then at 350 the debugger calls
that method upon the variable at hand to obtain any missing
information (e.g., determine if the value is null or it points to
a specific memory location).
0048. At block 351, if a field was obtained at 320, then the
debugger presents the field into the view 141, then the process
proceeds to 360. The presentation of the field typically
includes the type, name (if its enclosing type) and identifier of
the field. The user is also enabled to request for the details of
the field value. This may involve explicit graphics (e.g., when
a click-able plus sign is provided) or may not involve explicit

US 2010/005O158A1

graphics (e.g., when a contextual menu is provided). The
information that is presented may include (automatically or
on demand, the string) representation of the field (e.g., in
Java, this would result from the call of the toString() method
upon the object, since all classes ultimately inherit from
Object). If a method was obtained at 320, then at 351 the
debugger performs the same as for a field, using the pattern
based marker for the method (indicating the method is an
eligible method) as if it was a field name, and the information
computed at 350. The simple name is a subpart of the com
plete, pattern-based method name, wherein for example,
assuming that SEMANTIC FIELD be the marker, then a
method named SEMANTIC FIELD gender would be pre
sented as a semantic field named gender.
0049. At block 360, if there are more fields or methods to
handle for the considered complex variable, the process loops
back to block 320, otherwise, the process proceeds to block
370 for completion and awaiting next commands.
0050 FIG. 4 shows an example process 40 according to
which the debugger 120 refreshes the contents of the view
141. The variables in scope here include parameters (on the
stack) and global variables (e.g., the static fields of selected
classes in Java). At block 400 the context changes. This
maybe as a result of stepping though the code of the applica
tion 100. Note that the current thread of the application 100 is
still stopped, after having been resumed for the execution of
one or more instructions. It is expected that if the user
requested for the application 100 to resume and a breakpoint
is reached, either that breakpoint is close enough from the
former point in execution, or the process 20 of FIG. 2 is
utilized instead of process 40.
0051. At block 402, the debugger 120 presents the user in
the user interface 140 with information about the current
point of execution of the application 100. At block 410, the
debugger collects the variables that are in scope at the current
point of execution (again). At block 411, optionally the
debugger filters out some of the variables, based upon various
criteria, and only retains the remaining ones as needing to be
presented. At block 412, optionally the debugger sorts the
variables according to Sorting associated with the view or the
debugger itself. At block 420, the debugger 120 selects the
first variable in scope and removes it from the list of variables
to handle. At block 430 the debugger 120 tests whether the
current variable was already displayed in view 141 or not. If
not, the process proceeds to block 440, otherwise the process
continues to block 450.

0052 At block 440, the debugger 120 utilizes the process
20 of FIG. 2 starting at block 230 and ending before block
260, then branches to block 480 instead of 260 from block
241 and 251. In effect, the debugger handles the display of a
variable that was not in scope at the former breakpoint.
0053 At block 450, the variable being considered was
already displayed in view 141, wherein the debugger 120
considers whether the variable is of complex type or not. If the
variable is of complex type, the process branches to block
470, otherwise the process continues to block 460. At block
460, since the variable being considered is of simple type, the
debugger fetches the values of the variable. At block 461, the
debugger refreshes the variable display into the view 141,
then proceeds to block 480. In one implementation, a brute
force approach is used to simply display the variable as if it
had not been seen at the previous step. In another implemen

Feb. 25, 2010

tation, it is determined which variables may have changed,
and which have not changed, and only the ones changed are
refreshed.

0054. At block 470, since the variable being considered is
of complex type, it is refreshed accordingly (an example is
described in conjunction with FIG.5 further below). At block
480, if there are more variables in scope that have not been
presented yet, the process loops back to block 420, otherwise
the process proceeds to block 490 for completion and await
ing a next user command.
0055 FIG. 5 shows an example process 50 according to
which the debugger 120 refreshes display of a variable of
complex type. The process 50 is inherently recursive, and
generally involves matching the tree that represented the pre
vious value of the variable with its current value, pruning dead
branches as needed. The process 50 makes explicit use of a
stack. At block 500, the process receives a variable of com
plex type from block 450 (FIG. 4). At block 501, the variable
is pushed on the stack. At block 502, if the stack is empty, the
process proceeds to block 519, otherwise the process pro
ceeds to block 503. At block 503, a variable or method is
popped from the stack. At block 504, if a popped variable is of
complex type, the process proceeds to block 507, otherwise
the process proceeds to block 505. At block 504, for a popped
method, a short name is computed for the method as in block
310 (FIG. 3), and the debugger then calls the method on the
variable at hand, as in block 340, to obtain a value, and passes
the obtained name and value to Subsequent process block(s).
Blocks 505-519 are now described first in relation with vari
ables and methods.

For Variables

0056. At block505, since the variable is of simpletype, the
value of the variable is fetched. At block 506 the value of the
variable is refreshed in the view 141, and the process proceeds
to block 502. At block 507, since the variable is of complex
type, it is checked against Void (e.g. null in Java, or 0 in C
programming language). If the variable is Void, the process
proceeds to block 508, else the process proceeds to block 509.
0057. At block 508, since the variable of complex type is
void, it is displayed as such in the view 141 (this includes
pruning the subtree that previously showed detailed values
for the same variable at the previous breakpoint, if any). The
process then proceeds to block 502.
0058. At block 509, since a variable of complex type is
non-void, it is checked if its details were displayed or not. If
not, the process proceeds to block 510, otherwise the process
proceeds to block 511.
0059. At block 510, since a non-void variable of complex
type was displayed without its details, or was displayed with
details but changed its type, the display of its value is
refreshed (e.g., display the same information as that in block
351 in FIG. 3). The process then proceeds to step 502.
0060. At block 511, since a non-void variable of complex
type was displayed with its details, it is checked if its type has
changed or not. If yes, the process proceeds to block 510, else
the process proceeds to block 512.
0061. At block 512, since a non-void variable of complex
type was displayed with its details and its type has not
changed, its fields and suitable methods are collected. There
are both real fields and semantic fields, as for any complex
type variable or method result.

US 2010/005O158A1

0062. At block 513, optionally the debugger filters out
Some of the fields/methods, based upon various criteria, and
only retains the remaining ones as needing to be presented.
0063. At block 514, optionally the debugger sorts the
fields/methods according to Sorting criteria associated with
the view or the debugger itself.
0064. At block 515, the first field/methods that is still to be
handled is selected and removed from the list of fields/meth
ods to handle.
0065. At block 516, the field/method is pushed onto the
stack.
0066. At block 517, if there are more fields/methods on the
stack to handle, the process loops back to block 515, else the
process loops back to block 502.
0067. At block 519, the stack is empty and all visible
variables have been refreshed, wherein the process proceeds
to block 480 (FIG. 4).

For Methods

0068 Blocks505-511 use the pattern-based marker for the
method (indicating the method is an eligible method) and
return the value computed at block 503 as if they were the
name and value of a field. The simple name is a subpart of the
complete, pattern-based method name, wherein for example,
assuming that SEMANTIC FIELD be the marker, then a
method named SEMANTIC FIELD gender would be pre
sented as a semantic field named gender.
0069 Block 512, collect fields and suitable methods.
0070 Block 513 is applied to fields and methods.
(0071 Block 514 is applied to fields and methods.
0072 Block 515 selects a field or a method.
0073 Block 516 pushes a field or a method upon the stack.
0074 Another example involves calling methods more
sparingly. The debugger presents methods as special fields,
and provides the user with controls to call them, either indi
vidually or batches at a time. There is a continuum of possible
implementations ranging from systematic execution (de
scribed hereinabove) to the display of a “refresh' indicator
close to each special field, which the user would have to click
to obtain the corresponding value.
0075 Embodiments of the present invention are appli
cable to all object programming languages that are equipped
with debug-time runtime introspection, at least to the point of
enabling the execution of methods which are selected at runt
ime. This includes at least most interpreted programming
languages, certain semi-interpreted programming languages
(e.g., Java), and certain compiled programming languages. In
the case of compiled programs, it is common practice to pass
compiler specific options to produce a debug-enabled version
of the executable application; that version carries sufficient
information for the debugger to interpret memory and regis
ters contents, and to modify the memory and registers con
tents with the effect of assigning new values to attributes or
running methods of objects; this is not using introspection per
se, but points to the same needed basic abilities, i.e., access to
an object instance, access to its type description, read its
attributes, execute its methods.
0076 All methods that take no parameter and return a
value are possibly eligible for application of the invention. A
developer uses explicit markers to sort those that are elected
as semantic fields from those that are not. The former results
into additional methods named after a recognizable pattern
and a pattern-based filtering of methods is used to determine
eligible methods.
0077. The debugger may apply further matching and fil
tering rules to select even fewer methods (e.g., the debugger
may be equipped with built-in or user level matching rules

Feb. 25, 2010

Such as “all instance methods whose name starts with get”).
The recognizable pattern may be unique or multiple, and can
be disclosed to and changed by the developer or not depend
ing upon the implementation.
0078. The invention only leverages the user code as it is
written and can be readily adopted by diverse debuggers,
without requiring sharing of knowledge about the debugger
implementations. The invention can be reused with logging
frameworks since the invention enables writing of rendering
methods that are available with the code under test, wherein
said methods can be reused for other debugging purposes, and
especially logging. The invention further provides efficient
encapsulation, wherein the effort of bridging the internals
towards semantics is left with the class under test author,
which is the most capable of doing so.
0079. As noted, according to an embodiment of the inven
tion, mark-up information is included in the source code of an
application program. The mark-up information is then pro
cessed to generate a debug-enabled version of the application
program. Such a debug-enabled version of the application
program may comprise eligible debugging methods named
after a recognizable pattern. An example debugger includes a
built-in filtering rule (naming rule) that keeps eligible meth
ods named after said recognizable pattern, and a short name
derivation rule that leverages said recognizable pattern.
0080. In one implementation, the mark-up information
comprises specific keywords that are included into comments
of the Source code of the considered programming language
for the application program. A preprocessor P1 then pro
cesses the application program source code (including the
mark-up information) and generates a debug-enabled version
of the application program. The debug-enabled version of the
application program may be compiled depending upon the
language (for all languages except purely interpreted ones).
Then the result is provided to a debugger described further
above, and may be further parameterized to filter methods and
derive their short names (details further below).
I0081 Eligible methods naming rules must enable the fil
tering of the eligible methods. One example involves a rec
ognizable pattern that is both compatible with the considered
programming language, and very unlikely to appearin typical
method names (e.g., a name starting with DEBUG , or a
name such as 77EG6534). Different patterns may be used,
with or without offering the user the choice of using some or
all of them at any given time.
I0082 Said naming rules must also carry the desired short
name of a method (if specified). One example involves using
the recognizable pattern (e.g., DEBUG , wherein *
denotes the short name).
I0083 Said naming rules may also carry other parameters
(if needed), wherein in one example a developer associates a
debug level to each eligible method, or associates one or more
debug channels to each eligible method. The user can decide
at which level or upon which channel the debugger focuses.
I0084. After P1 preprocessing, then, optionally, a produc
tion version of the application program is generated which is
more compact than the debug-enabled version, and poten
tially more compact than the original application program.
The production version of the application program may com
prise a copy of the original application program without
methods marked by the developer as needed for debugging
purposes only.
I0085 For example, a preprocessor P2 processes the source
code of the application program and generates source code
for a production version of the application program, which is
provided to a production system (i.e., sent to a production

US 2010/005O158A1

environment, after having been transformed from Sources to
whatever the production system consumes, using the normal,
existing means to do so).
I0086 For each mark-up that signifies to P1 that an eligible
method is needed, P1 generates a wrapper method with the
appropriate name. A developer would have the choice to
develop methods that have the appropriate name beforehand,
and to mark Such method as e.g., “use for debug”. Certain
mark-up information may be dedicated to P2 as needed.
0087 An example source code including mark-up infor
mation and result of processing by P1, P2 are provided in
Tables 1-3 below, respectively (comments start with //). Fur
ther, FIG. 6 shows an example view 60 resulting from the
code in Tables 1-3.

TABLE 1.

Original application source code with mark-up (e.g., comments that
contain DEBUG)

public class Employee { // WITH A BUG
public intencoded Value;
private static final int BIRTH YEAR MASK = 0xFF:
private static final int GENDER MASK = 0xE000;
public static final String
FEMALE = “female,
MALE = "male':

public Employee(int birthYear, boolean female) {
if (birthYear > 2100) {
throw new IllegalArgumentException(year of birth must be
<= 2100);

if (birthYear < 1900) {
throw new IllegalArgumentException(year of birth must be
>= 1900);

this.encoded Value = birth Year:
if (female) {

his.encodedValue |= GENDER MASK;

// DEBUG String getBirth Year birth Year
public int getBirthYear() {

return this.encoded Value & BIRTH YEAR MASK:

// DEBUG String getGender gender
public String getGender() {

return (this.encodedValue & GENDER MASK) == 0 ?
FEMALE: MALE:

private String DEBUG hexaView() {
return IntegertoHexString(this.encoded Value);

// DEBUG }
public static void main(String args) {

Employee employee = new Employee(1903, false);
System.out.println(employee.getBirthYear());

E

TABLE 2

Result of P1 - debug-enabled application

public class Employee { // WITH A BUG
public intencoded Value;
private static final int BIRTH YEAR MASK = 0xFF:
private static final int GENDER MASK = 0xE000;
public static final String
FEMALE = “female,
MALE = "male':

public Employee(int birthYear, boolean female) {
if (birthYear > 2100) {

Feb. 25, 2010

TABLE 2-continued

Result of P1 - debug-enabled application

throw new IllegalArgumentException(“year of birth must be <=
2100);

if (birthYear < 1900) {
throw new IllegalArgumentException(“year of birth must be >=
1900);

this.encoded Value = birthYear:
if (female) {

his.encodedValue |= GENDER MASK;

private int DEBUG birthYear() {
return getBirthYear();

public int getBirthYear() {
return this.encodedValue & BIRTH YEAR MASK:

private String DEBUG gender() {
return getGender();

public String getGender() {
return (this.encodedValue & GENDER MASK) == 0:2
FEMALE: MALE:

private String DEBUG hexaView() {
return IntegertoHexString(this.encoded Value);

public static void main(String args) {
Employee employee = new Employee(1903, false);
System.out.println(employee.getBirthYear());

TABLE 3

Result of P2 - production-ready application

public class Employee { // WITH A BUG
public int encoded Value;
private static final int BIRTH YEAR MASK = 0xFF:
private static final int GENDER MASK = 0xE000;
public static final String
FEMALE = “female',
MALE = "male':

public Employee(int birthYear, boolean female) {
if (birthYear > 2100) {
throw new IllegalArgumentException(“year of birth must be <=
2100);

if (birthYear < 1900) {
throw new IllegalArgumentException(“year of birth must be >=
1900);

this.encoded Value = birthYear:
if (female) {
this.encodedValue |= GENDER MASK:

public int getBirthYear() {
return this.encodedValue & BIRTH YEAR MASK:

public String getGender() {
return (this.encodedValue & GENDER MASK) == 0:2
FEMALE: MALE:

public static void main(String args) {
Employee employee = new Employee(1903, false);
System.out.println(employee.getBirthYear());

US 2010/005O158A1

0088 FIG. 7 shows an example functional block diagram
of a system 65, according to an embodiment of the invention.
0089 Source files 70 of the application program to be
debugged are processed by a processor 71 (i.e., P1) to gener
ate debug-ready sources 72. A processor 73 (i.e., P2) pro
cesses the source files 70 and generates production sources
74.
0090 The processor 71 may comprise a software module
configured for processing the mark-up information in the
source files 70 as described herein. The processor 71 is con
figured for reading source files 70 of the target language
including mark-up information (e.g., embedded into com
ments), and generating debug-ready source files 72. The
debug-ready sources 72 comprises a version of the sources 70
augmented with debug-only methods which take no param
eter, return a result, and have a name that encodes a marker
and a simple/short name (that the debugger will be able to
decode).
0091. The processor 72 is configured for reading source

files 70 of the target language including mark-up information,
and generating production Source files 74. The processor 72
may comprise a software module from processor 71, or a
single Software module used with different options can pro
vide functionality of processors 71,72. Production sources 74
comprise a version of the source files 70 without the debug
methods that the author of sources 70 deems desirable for
debug purposes only.
0092 Optionally, depending on the target language of the
sources 70, the following can be in the realm of program
ming-language to machine binary compilers, programming
language to virtual machine binary compilers, or pure inter
preted target languages, in which case the sources 72 and 74
are executed and debugged directly on the target system. A
compiler 75 transforms source files to binaries suitable for
execution in a target computing system, wherein a same pro
gram typically produces the applications 76.78, and the sym
bolic information leveraged by debuggers 77.
0093. The application 76 comprises a binary, debug-ready
application that has all the methods generated by the proces
sor P1. The database 77 includes symbolic information asso
ciated to the debug-ready application 76; note that in this
embodiment the present invention is implemented in P1 and
affects processing by P2, leveraging the normal operation of
the compiler 75. The application 78 comprises a binary, pro
duction application that includes no debug-only methods.
0094. The developer of the class under test selects which
methods will be used as special fields. As the writer of the
code of the application under test, the developer is uniquely
positioned to decide whether a given method has side effects
or not, and may not select methods that have side effects,
thereby eliminates the risk of modifying the behaviour of the
application program under test. The developer is provided an
opportunity to decide the short name of each special field,
which may potentially vary from the method name. The
developer is also provided with an opportunity to introduce as
many special fields deemed necessary, without impacting the
production version of the application.
0095. The invention promotes programming of as many
special fields as needed, and provides appropriate mecha
nisms to release production-grade systems that are unencum
bered with debug-only code. The invention further provides
more efficient encapsulation, wherein the effort of bridging
the internals towards semantics is left with the author/devel
oper of the class under test.

Feb. 25, 2010

0096. The invention further provides lightweight runtime
by use of markers to exclude renderers that are not necessary.
The invention provides Versatility (e.g., levels, channels,
parameters). A preferred embodiment leverages the full Java
programming language, making certain desirable patterns
simple to implement.
0097. In one example, Java annotations (available since
Java 5) are, at the conceptual level, a preferable manner of
marking methods for the purpose of the present invention.
Such annotations are more flexible than comments and better
linked to the methods they decorate. However, they have the
drawback that they are not available in most languages, and
that a processor that understands them is needed. While such
processors exist, understanding how they work and leverag
ing them can be more complex than a very simple comments
grammar. An implementation targeting the Java language
would then prefer annotations, while other implementations
would use the simpler and more generally available tech
niques described above.
0.098 FIG. 8 illustrates an information handling system
601 which is a simplified example of a computer system
capable of performing the computing operations described
herein. Computer system 601 includes processor 600 which is
coupled to hostbus 602. A level two (L2) cache memory 604
is also coupled to host bus 602. Host-to-PCI bridge 606 is
coupled to main memory 608, includes cache memory and
main memory control functions, and provides bus control to
handle transfers among PCI bus 610, processor 600, L2 cache
604, main memory 608, and hostbus 602. Main memory 608
is coupled to Host-to-PCI bridge 606 as well as hostbus 602.
Devices used solely by host processor(s) 600, such as LAN
card 630, are coupled to PCI bus 610. Service Processor
Interface and ISA Access Pass-through 612 provides an inter
face between PCI bus 610 and PCI bus 614. In this manner,
PCI bus 614 is insulated from PCI bus 610. Devices, such as
flash memory 618, are coupled to PCI bus 614. In one imple
mentation, flash memory 618 includes BIOS code that incor
porates the necessary processor executable code for a variety
of low-level system functions and system boot functions.
(0099 PCI bus 614 provides an interface for a variety of
devices that are shared by host processor(s) 600 and Service
Processor 616 including, for example, flash memory 618.
PCI-to-ISA bridge 635 provides bus control to handle trans
fers between PCI bus 614 and ISA bus 640, universal serial
bus (USB) functionality 645, power management functional
ity 655, and can include other functional elements not shown,
such as a real-time clock (RTC), DMA control, interrupt
Support, and system management bus Support. Nonvolatile
RAM 620 is attached to ISA Bus 640. Service Processor 616
includes JTAG and I2C busses 622 for communication with
processor(s) 600 during initialization steps. JTAG/I2C busses
622 are also coupled to L2 cache 604, Host-to-PCI bridge
606, and main memory 608 providing a communications path
between the processor, the Service Processor, the L2 cache,
the Host-to-PCI bridge, and the main memory. Service Pro
cessor 616 also has access to system power resources for
powering down information handling device 601.
0100 Peripheral devices and input/output (I/O) devices
can be attached to various interfaces (e.g., parallel interface
662, serial interface 664, keyboard interface 668, and mouse
interface 670 coupled to ISA bus 640). Alternatively, many
I/O devices can be accommodated by a super I/O controller
(not shown) attached to ISA bus 640.

US 2010/005O158A1

0101. In order to attach the computer system 601 to
another computer system to copy files over a network, LAN
card 630 is coupled to PCI bus 610. Similarly, to connect
computer system 601 to an ISP to connect to the Internet
using a telephone line connection, modem 675 is connected to
serial port 664 and PCI-to-ISA Bridge 635.
0102) While the computer system described in FIG. 8 is
capable of executing the processes described herein, this
computer system is simply one example of a computer sys
tem. Those skilled in the art will appreciate that many other
computer system designs having one or more processors are
capable of performing the processes described herein.
0103 As is knownto those skilled in the art, the aforemen
tioned example embodiments described above, according to
the present invention, can be implemented in many ways,
Such as program instructions for execution by a processor, as
Software modules, as computer program product on computer
readable media, as logic circuits, as silicon wafers, as inte
grated circuits, as application specific integrated circuits, as
firmware, etc. Though the present invention has been
described with reference to certain versions thereof, however,
other versions are possible. Therefore, the spirit and scope of
the appended claims should not be limited to the description
of the preferred versions contained herein.
0104 Those skilled in the art will appreciate that various
adaptations and modifications of the just-described preferred
embodiments can be configured without departing from the
scope and spirit of the invention. Therefore, it is to be under
stood that, within the scope of the appended claims, the inven
tion may be practiced other than as specifically described
herein.

What is claimed is:
1. A method of interactive debugging of an object-oriented

computer program, comprising:
including mark-up information into Source code of the

application program, the mark-up information associ
ated with eligible debugging methods;

generating a debug-enabled version of the computer pro
gram including debugging methods based on the mark
up information;

providing the debug-enabled version of the program com
puter to a debugger for debugging purposes using the
debugging methods.

2. The method of claim 1 wherein debugging methods
further include eligible debugging methods named after a
recognizable pattern.

3. The method of claim 2 wherein the debugger comprises
a debugger configured for filtering based on naming rules for
maintaining eligible methods named after said recognizable
pattern, and a short name derivation rule that leverages said
recognizable pattern.

4. The method of claim3 wherein the mark-up information
comprises specific keywords that are included into comments
of the Source code for the computer program.

5. The method of claim3 wherein the naming rules include:
a recognizable pattern for debugging methods that is both

compatible with the considered programming language
for the computer program, and unlikely to appear in
typical method names; and

rules for deriving a short name of a debugging method from
the method name.

Feb. 25, 2010

6. The method of claim 2 wherein the debugging methods
comprise debug-only methods which take no parameter,
return a result, and have a name that encodes a marker and a
short name.

7. The method of claim 6 wherein generating a debug
enabled version of the computer program further includes
generating wrapper debugging methods with the appropriate
aCS.

8. The method of claim 1 further including generating a
production version of the computer program.

9. A system for interactive debugging of a computer pro
gram, comprising:

a preprocessing module configured for receiving source
code of the computer program including mark-up infor
mation, the mark-up information associated with eli
gible debugging methods, and generating a debug-en
abled version of the computer program including
debugging methods based on the mark-up information;
and

a debugger configured for executing the debug-enabled
version of the program computer for debugging pur
poses using the debugging methods.

10. The system of claim 9 wherein debugging methods
further include eligible debugging methods named after a
recognizable pattern.

11. The system of claim 10 wherein the debugger is con
figured for filtering based on naming rules for maintaining
eligible methods named after said recognizable pattern, and a
short name derivation rule that leverages said recognizable
pattern.

12. The system of claim 11 wherein the mark-up informa
tion comprises specific keywords that are included into com
ments of the source code for the computer program.

13. The system of claim 11 wherein the naming rules
include:

a recognizable pattern for debugging methods that is both
compatible with the considered programming language
for the computer program, and unlikely to appear in
typical method names; and

rules for deriving a short name of a debugging method from
the method name.

14. The system of claim 10 wherein the debugging methods
comprise debug-only methods which take no parameter,
return a result, and have a name that encodes a marker and a
short name.

15. The system of claim 14 wherein the preprocessing
module is further configured for generating a debug-enabled
version of the computer program by generating wrapper
debugging methods with the appropriate names.

16. A computer program product for interactive debugging
of an application program, comprising a computer usable
medium including a computer readable program, wherein the
computer readable program when executed on a computer
causes the computer to:

receive source code of the application program including
mark-up information, the mark-up information associ
ated with eligible debugging methods, and generate a
debug-enabled version of the application program
including debugging methods based on the mark-up
information; and

executing the debug-enabled version of the application
program for debugging purposes using the debugging
methods.

US 2010/005O158A1

17. The computer program product of claim 16 wherein
debugging methods further include eligible debugging meth
ods named after a recognizable pattern, and instructions for
executing the debug-enabled version further include instruc
tions for filtering based on naming rules for maintaining
eligible methods named after said recognizable pattern, and a
short name derivation rule that leverages said recognizable
pattern.

18. The computer program product of claim 17 wherein the
naming rules include: a recognizable pattern for debugging
methods that is both compatible with the considered pro
gramming language for the application program, and unlikely

Feb. 25, 2010

to appear in typical method names; and rules for a desired
short name of a debugging method.

19. The computer program product of claim 17 wherein the
debugging methods comprise debug-only methods which
take no parameter, return a result, and have a name that
encodes a marker and a short name.

20. The computer program product of claim 19 wherein the
instructions to generate a debug-enabled version of the appli
cation program further includes instructions to generate a
debug-enabled version of the computer program by generat
ing wrapper debugging methods with the appropriate names.

c c c c c

