
(19) United States
US 2008O165198A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0165198A1
Bakalash et al. (43) Pub. Date: Jul. 10, 2008

(54) METHOD OF PROVIDING A PC-BASED
COMPUTING SYSTEM WITH PARALLEL
GRAPHICS PROCESSING CAPABILITIES

(76) Inventors: Reuven Bakalash, Shdema (IL);
Offir Remez, Hod HaSharon (IL);
Gigy Bar-Or, Kochav Yair (IL); Efi
Fogel, Tel Aviv (IL); Amir
Shaham, Givat Shmuel (IL)

Correspondence Address:
Thomas J. Perkowski, Esq., P.C.
1266 East Main Street
Stamford, CT 06902

(21) Appl. No.: 11/977,164

(22) Filed: Oct. 23, 2007

Related U.S. Application Data

(63) Continuation of application No. 10/579,682, filed on
Mar. 23, 2007, filed as application No. PCT/IL04/
01069 on Nov. 19, 2004.

(60) Provisional application No. 60/523,084, filed on Nov.
19, 2003, provisional application No. 60/523,102,
filed on Nov. 19, 2003.

Publication Classification

(51) Int. Cl.
G06F 5/80 (2006.01)

(52) U.S. Cl. .. 345/.505
(57) ABSTRACT

A method of providing a PC-based computing system with
parallel graphics processing capabilities, wherein the PC
based computing system includes (i) system memory (ii) an
operating system (OS, (iii) one or more graphics applications,
stored in said system memory, (iv) one or more graphic librar
ies, (v) a central processing unit (CPU) for executing the OS,
graphics applications, drivers and graphics libraries, (vi) an
CPU interface module for interfacing with the CPU, (vii) a PC
bus, and (viii) a display Surface for displaying images of 3D
objects. The method involves interfacing a hardware hub
having a hub router, with the CPU interface module using the
PC bus. The hardware hub is interfaced with a plurality of
graphic processing units (GPUs), using the PC bus, so that the
GPUs are arranged in a parallel architecture and operating
according to a parallelization mode of operation so that the
GPUS Support multiple graphics pipelines and process data in
a parallel manner. GPU drivers are stored in the system
memory, for allowing the GPUs to interact with the graphic
libraries. Software hub drivers are installed within the system
memory for performing the following functions: (i) control
ling the hardware hub, (ii) interacting with the OS and graphic
libraries, and (iii) forwarding graphic commands and geo
metrical data stream or a portion thereof to one or more GPUs
during the generation of frames of pixel data.

Hardware
Hub

US 2008/O165198A1 Jul. 10, 2008 Sheet 1 of 9 Patent Application Publication

qnH ?leM?OS

US 2008/O165198A1 Jul. 10, 2008 Sheet 2 of 9 Patent Application Publication

OZZ

072

US 2008/O165198A1 Jul. 10, 2008 Sheet 3 of 9 Patent Application Publication

099099079099OZ90 || 9

US 2008/O165198A1 Jul. 10, 2008 Sheet 4 of 9 Patent Application Publication

007

US 2008/O165198A1 Jul. 10, 2008 Sheet 5 of 9 Patent Application Publication

009

099

099

079

099

US 2008/O165198A1 Jul. 10, 2008 Sheet 6 of 9

009

Patent Application Publication

099

US 2008/O165198A1 Jul. 10, 2008 Sheet 7 of 9 Patent Application Publication

0 || /

uo?eo||ddwy so?u deus)

US 2008/O165198A1 Jul. 10, 2008 Sheet 8 of 9 Patent Application Publication

puE

008

US 2008/O165198A1

006

Patent Application Publication

US 2008/O165198A1

METHOD OF PROVIDING A PC-BASED
COMPUTING SYSTEM WITH PARALLEL
GRAPHICS PROCESSING CAPABILITIES

RELATED CASES

0001. The Present application is a Continuation of
copending application Ser. No. 10/579,682 filed May 17,
2006, which is a National Stage Entry of International Appli
cation No. PCT/IL2004/001069 filed Nov. 19, 2004, which is
based on U.S. Provisional Application Nos. 60/523,084 filed
Nov. 19, 2003, and 60/523,102 filed Nov. 19, 2003; wherein
each said Application is commonly owned by LUCID
INFORMATION TECHNOLOGY LTD., and incorporated
herein by reference in its entirety, as if set forth fully herein.

BACKGROUND OF INVENTION

Field of the Invention

0002 The present invention relates to a method and sys
tem for 3-D (three-dimensional) multiple graphic processing.
More particularly, the invention relates to a method and sys
tem for improving the parallelization of image processing by
Graphic Processing Units (GPUs), based on unified frame
work of three parallelization methods, which are time divi
Sion, image division and object division methods.

DEFINITIONS, ACRONYMS AND
ABBREVIATIONS

0003. Throughout this patent Specification, the following
definitions are employed:
0004 GPU: GPU (Graphic Processing Unit) like the CPU
(Central Processing Unit), a GPU is a single-chip processor
which is used primarily for computing 3-D functions. This
includes tasks Such as, lighting effects, object transforma
tions, and 3-D motion. These are mathematically-intensive
tasks, which otherwise, would put quite a strain on the CPU,
but since the specialized GPU can handle most of the 3-D
calculations, it helps the computer to perform these tasks
more efficiently, and, of course, faster.
0005 Polygon: Polygons in 3-D graphics are two-dimen
sional primitives, allowing generating and displaying of 3-D
complex graphical objects. The polygons are the faces of the
object and are composed from Nvertices. Actually, a polygon
is a closed plane figure, bounded by three or more line seg
mentS.

0006 Frame Buffer: a Frame Buffer (FB) is a buffer that
stores the contents of an image, pixel by pixel. Generally, the
portion of memory is reserved for holding the complete bit
mapped image that is sent to the monitor, for display.
0007 Typically the frame buffer is stored in the memory
chips on the video adapter. In some instances, however, the
Video chipset is integrated into the motherboard design, and
the frame buffer is stored in the general main memory.
0008 Object compositing unit: performs re-composition
of multiple three-dimensional rasters into final image. The
merged data is resolved for the closest pixel to the viewer in
3-D space, based on the depth value of pixels. The new
method, based on autonomous associative decision, allows
the use of multiple GPUs for any frame complexity.
0009 Display list: a Display List is a description of the
3-D scene through a list of graphic primitives, such as poly
gons and attributes. The display list provides intermediate
image storage for quick image retrieval.

Jul. 10, 2008

0010 Vertex array: a Vertex Array is an array of vertices
describing the 3-D scene.
0011. A Vertex Array provides intermediate image storage
for quick image retrieval.
0012 Alpha blending: Alpha blending controls the way in
which the graphic information is displayed. Such as levels of
transparency, or opacity.

BRIEF DESCRIPTION OF THE STATE OF THE
ART

0013 The three-dimensional graphic pipeline architecture
breaks-down into segmented stages of CPU, Bus, GPU vertex
processing and GPU fragment (pixel) processing. A given
pipeline is only as strong as the weakest link of one of the
above stages, thus the main bottleneck determines the overall
throughput. Enhancing performance is all that required for
reducing or eliminating bottlenecks. The major bottleneck
strongly depends on the application. Extreme cases are CAD
like (Computer Aided Design) applications, characterized by
an abundance of polygons (vertices), VS. Video-game appli
cations having a small polygon count but intensive fragment
activity (e.g., texturing). The first class Suffers from vertex
processing bottlenecks, while the second class Suffers from
fragment bottlenecks. Both are frequently jammed over the
PC bus. Many applications have mixed characteristics, where
bottlenecks may randomly alternate between extremes, on a
single frame basis.
0014. The only way to improve the performance of the
GPU is by means of parallelizing multiple GPUs according to
one of the bottleneck solving methods. There are two pre
dominant methods for rendering graphic data with multiple
GPUs. These methods include time division (time domain
composition), in which each GPU renders the next successive
frame, and image division (screen space composition), in
which each GPU renders a subset of the pixels of each frame.
The third one, much less popular, is the object division (poly
gon decomposition) method.
0015. In the time division method each GPU renders the
next Successive frame. It has the disadvantage of having each
GPU render an entire frame. Thus, the speed at which each
frame is rendered is limited to the rendering rate of a single
GPU. While multiple GPUs enable a higher frame rate, a
delay can be imparted in the response time (latency) of the
system to a user's input. This occurs because, while at any
given time, only one GPU is engaged in displaying a rendered
frame, each of the GPUs is in the process of rendering one of
a series of frames in a sequence. To maintain the high frame
rate, the system delays the user's input until the specific GPU,
which first received the signal cycles through the sequence, is
again engaged in displaying its rendered frame. In practical
applications, this condition serves to limit the number of
GPUs that are used in a system. With large data sets, there is
another bottleneck, due to the fact that each GPU must be able
to access all the data. This requires either maintaining mul
tiple copy operations of large data sets or possible conflicts in
accessing the single copy operation.
0016. Image division method splits the screen between N
GPUs, such that each one displays 1/N of the image. The
entire polygon set is transferred to each GPU for processing,
however, the pixel processing is significantly reduced to the
window size. Image division has no latency issues, but it has
a similar bottleneck with large data sets, since each GPU must
examine the entire database to determine which graphic ele

US 2008/O165198A1

ments fall within the portion of the screen allocated to said
GPU. Image division method suits applications with inten
sive pixel processing.
0017 Object division method is based on distribution of
data subsets between multiple GPUs. The data subsets are
rendered in the GPU pipeline, and converted to Frame Buffer
(FB) of fragments (sub-image pixels). The multiple FB's
Sub-images have to be merged (composited) to generate the
final image to be displayed. Object division delivers parallel
rendering on the level of a single frame of very complex data
consisting of large amount of polygons. The input data is
decomposed in the polygon level and re-composed in the
pixel level. A proprietary driver intelligently distributes data
streams, which are generated by the application, between all
GPUs. The rasters, generated by the GPUs, are composited
into final raster, and moved to the display. The object division
method well Suits applications that need to render a vast
amount of geometrical data. Typically, these are CAD, Digital
Content Creation, and comparable visual simulation applica
tions, considered as “viewers.” meaning that the data has been
pre-designed such that their three-dimensional positions in
space are not under the interactive control of the user. How
ever, the user does have interactive control over the viewer's
position, the direction of view, and the scale of the graphic
data. The user also may have control over the selection of a
subset of the data and the method by which it is rendered. This
includes manipulating the effects of image lighting, colora
tion, transparency and other visual characteristics of the
underlying data.
0018. In above applications, the data tends to be very
complex, as it usually consists of massive amount of geo
metrical entities at the display list or vertex array.
0019. Thus, the construction time of a single frame tends

to be very long (e.g., typically 0.5 sec for 20 million poly
gons), which in turn slows down the overall system perfor
aCC.

0020. Therefore, there is a need to provide a system which
can guarantee the best system performance, being exposed to
high traffic over the PC (Personal Computer) Bus.

OBJECTS OF THE PRESENT INVENTION

0021. Accordingly, it is an object of the present invention
to amplify the strength of the GPU by means of parallelizing
multiple GPUs.
0022. It is another object of the present invention to pro
vide a system, wherein the construction time of a single frame
does not slow down the overall system response.
0023. It is still another object of the present invention to
provide a system and method, wherein the graphic pipeline
bottlenecks of vertex processing and fragment processing are
transparently and intelligently resolved.
0024. It is still a further object of the present invention to
provide a system and method that has high Scalability and
unlimited Scene complexity.
0025. It is still a further object of the present invention to
provide a process overcoming difficulties that are imposed by
the data decomposition, which is partition of data and graphic
commands between GPUs.
0026. It is still a further object of the present invention to
provide a method and system for an intelligent decomposition
of data and graphic commands, preserving the basic features
of graphic libraries as state machines and complying with
graphic standards.

Jul. 10, 2008

0027. Other objects and advantages of the invention will
become apparent as the description proceeds.

SUMMARY OF THE INVENTION

0028. The present invention is directed to a system for
improving the parallelization of image processing, using one
or more parallelization modes, wherein the image that is
displayed on at least one computer Screen by one or more
Graphic Processing Units, which comprises: one or more
Software applications, for issuing graphic commands; one or
more graphic libraries, for storing data used to implement the
graphic commands; one or more Software Hub Drivers, for
controlling a Hardware Hub, for interacting with the opera
tion system of the computer and the graphic libraries, for
performing real-time analysis of a data stream, from which
frames of the image are generated, for determining the par
allelization mode of each GPU, and for forwarding the data
stream or a portion thereof to each GPU; one or more GPU
Drivers, for allowing the GPUs to interact with the graphic
libraries; and at least one I/O module for interconnecting
between the Software module and the Hardware Hub,
wherein, the Hardware Hub distributes between the GPUs,
for each frame, graphic commands and the data stream or a
portion thereof, according to their relative complexity within
the image, and defines the complexity The Software Hub
Driver also composites a graphics output for display, using
the outputs obtained from at least one GPU, while alternating,
whenever required, the parallelization mode for the each
frame.
0029 Parallelization is based on an object division mode
or on an image division mode or on a time division mode or on
any combination thereof. The hardware hub comprises a
compositing unit for composing a complete frame from pro
cessed portions of the data stream. The hardware hub com
prises a hub router for routing polygonal data, for routing
graphic command stream, for routing pixel data and for rout
ing the results of composition, while operating in the object
division mode or in the image division mode or in the time
division mode or in any combination thereof. The hardware
hub comprises a control unit for receiving commands from
the Software Hub Driver within the I/O module. The hard
ware hub comprises a memory unit for storing intermediate
processing results of one or more GPUs and data required for
composition and transferring the processed data for display.
0030 Preferably, the Software Hub Driver is capable of
performing the following operations: interception of the
graphic commands from the standard graphic library by
means of the OS interface and utilities; forwarding and cre
ating graphic commands to the GPU Driver by means of the
OS interface and utilities; controlling the Hardware Hub,
registry and installation operations by means of the OS inter
face and utilities: maintaining the consistency of graphic
machine states across the GPUs, based on the input graphic
commands stream, while using state monitoring; estimating
the type of graphic load and overload in the executed appli
cation graphic context, while using application and graphic
resources analysis; load estimation of the GPUs load balance
based on graphic commands stream and time measurements,
while using application and graphic resources analysis;
adjusting the load distribution between GPUs according to
feedback received from each GPU regarding the load balance,
while using application and graphic resources analysis; per
forming manipulation in graphic functions according to the
current parallelization mode; and controlling the distributed

US 2008/O165198A1

graphic functions, while modifying the graphic commands
and the data stream according to the current parallelization
mode.

0031. The present invention is directed to a method for
improving the parallelization of image processing, using one
or more parallelization modes, wherein the image that is
displayed on at least one computer Screen by one or more
Graphic Processing Units. Software applications are pro
vided for issuing graphic command and graphic libraries are
provided for storing data used to implement the graphic com
mands. A Software Hub Drivers is provided for controlling a
Hardware Hub, for interacting with the operation system of
the computer and the graphic libraries, for performing real
time analysis of a data stream, from which frames of the
image are generated, for determining the parallelization
mode of each GPU, and for forwarding the data stream or a
portion thereof to each GPU. GPU Drivers are provided for
allowing the GPUs to interact with the graphic libraries and
an I/O module is provided for interconnecting between the
Software module and the Hardware Hub. Graphic commands
and the data stream or a portion thereof are distributed
between the GPUs for each frame by the Hardware Hub,
according to their relative complexity within the image,
wherein the complexity is defined by the Software Hub
Driver. The Software Hub Driver also composites a graphics
output for display, using the outputs obtained from at least
one GPU, while alternating, whenever required, the parallel
ization mode for the each frame.

0032. Whenever the parallelization mode is an Object
division parallelization mode, the following steps are per
formed: for each frame, generating a stream of graphic opera
tions and polygonal data; marking the polygonal data and
graphic commands by means of the Software Hub Driver for
distribution between multiple GPUs; sending the marked data
to the Hardware Hub; distributing the marked data via the
Hub Router to the multiple GPUs; rendering the data by
means of GPUs; retrieving the data from the Frame Buffers
and forwarding the retrieved data to the compositing unit via
the Hub Router; compositing the content of the Frame Buffers
into a single Frame Buffer; and forwarding the content of the
single Frame Buffer to at least one designated GPU for dis
play.
0033. Whenever the parallelization mode is an Image divi
sion parallelization mode, the following steps are performed:
Subdividing the screen to portions and assigning different
viewports to GPUs by means of the Software Hub Driver;
moving the entire polygonal data and graphic commands to
the Hub Router; transmitting the entire polygonal data and
graphic commands to GPUs, wherein each GPU receives the
same data; rendering the data by means of GPUs; forwarding
a portion of the content stored in the Frame Buffers to com
positing unit in Hardware Hub for the complete image cre
ation; and forwarding the image to at least one designated
GPU for display.
0034. Whenever the parallelization mode is a Time divi
sion parallelization mode, the following steps are performed:
forwarding to each one of the multiple GPUs the entire
amount of polygons for rendering; redirecting the entire
polygonal data and graphic commands by means of Software
Hub Driver to all GPUs, while alternating between them;
rendering the data by means of GPUs; transferring rendered
data from at least one GPU via the Hub Router; and redirect
ing the resulting content of the Frame Buffer via Hub Router
to at least one designated GPU for display.

Jul. 10, 2008

0035. The distribution of polygons between multiple
GPUs is performed by distributing blocks of data between
multiple GPUs and by testing each graphic operation for
blocking mode, in which one or more parallelization modes
are carried out, thereafter. The data is redirected in regular
non-blocking path to at least one designated GPU. This pro
cess is repeated until a blocking operation is detected. Then
GPUs are synchronized by performing a flush operation in
order to terminate rendering and cleanup the internal pipeline
in each GPU; performing a composition operation for merg
ing the contents of the Frame Buffers into a single Frame
Buffer and by transmitting the single Frame Buffer back to all
GPUs. Then the composited complete frame is terminated at
all GPUs, except one or more designated GPUs, whenever a
Swap operation is detected and displaying the image by
means of the one or more designated GPUs. the same data is
processed by all GPUs, as long as the blocking mode is active
and the Swap operation is not detected. Whenever the block
ing mode is inactive, the designated data is further processed
by multiple GPUs.

BRIEF DESCRIPTION OF THE DRAWINGS

0036. For a more complete understanding of the present
invention, the following Detailed Description of the Illustra
tive Embodiment should be read in conjunction with the
accompanying Drawings, wherein:
0037 FIG. 1 is a block diagram of a multiple GPU archi
tecture system, according to an embodiment of the present
invention;
0038 FIG. 2 is a block diagram of Hardware Hub compo
nents, according to an embodiment of the present invention;
0039 FIG. 3 is a block diagram of Object division paral
lelization mode, according to an embodiment of the present
invention;
0040 FIG. 4 is a block diagram of Image division paral
lelization mode, according to an embodiment of the present
invention;
0041 FIG. 5 is a block diagram of Time division parallel
ization mode, according to an embodiment of the present
invention;
0042 FIG. 6 is a schematic block diagram of a possible
integration of the Software Hub Driver into the operating
system environment, according to an embodiment of the
present invention;
0043 FIG. 7 is a functional block diagram presenting the
main tasks of the Software Hub Driver, according to an
embodiment of the present invention;
0044 FIG. 8 is a flow chart presenting an process for
distribution of the polygons between the multiple GPUs,
according to an embodiment of the present invention; and
0045 FIG. 9 discloses a sample configuration of the sys
tem, employing 8 GPUs, according to an embodiment of the
present invention.
0046. It will be appreciated that for simplicity and clarity
of illustration, elements shown in the figures have not neces
sarily been drawn to scale. For example, the dimensions of
Some of the elements may be exaggerated relative to other
elements for clarity. Further, where considered appropriate,

US 2008/O165198A1

reference numerals may be repeated between the figures to
indicate corresponding or analogous elements.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The Multiple 3-D Graphic Pipeline
0047. The current invention calls for the introduction of an
extended PC graphic architecture including novel operational
component, the 3-D pipeline Hub.
0048 FIG. 1 presents multiple GPU architecture system
100, according to an embodiment of the present invention.
The hub 110 is located in a unique position on the PC bus,
between the CPU (Central Processing Unit) and a cluster of
GPUs 130. The multiple graphic pipeline architecture, as
described in FIG. 1, consists of Software Application 121,
Graphic Library 122, Software Hub Driver 123, GPU Driver
124, Hardware Hub 110, cluster of GPUs 130, and display (s)
140. Usually, one of the GPUs is designated as a display unit.
It should be noted, that it is possible to have more than one
display unit, or include a display unit directly inside the
Hardware Hub. A display unit can drive multiple screens, as
well.
0049. The Hub mechanism consists of a Hardware Hub
component 110, located on the PC bus between I/O (Input/
Output) chipset 160, being a I/O module, and a cluster of
GPUs 130, and a Software module comprising Software Hub
Driver 123, executed by the PC.
0050. The Hardware Hub 110 carries on at least the fol
lowing action: distributes decomposed polygon stream and
graphic commands between GPUs; composites graphics out
put for display according to different parallel modes; makes
cache of data; and alternates modes of parallelism.
0051. The Software Hub Driver 123, besides controlling
the Hardware Hub 110, also carries on at least the following
actions: interacts with the OS (Operation System) and
graphic library, such as OpenGL, DirectX; performs real
time analysis of the data stream; determines the paralleliza
tion mode; and—decomposes the data and command stream.
0052 One advantage of this method is that the unique
location of the Hardware Hub 110 allows it to control the
graphic pipeline, while being transparent to the application
121. The application 121, along with Graphic Library 122,
Such as OpenGL, keeps working as it was a single GPU.
0053 Another advantage of this method is that the unique
location of the Hardware Hub 110 allows it to control a
graphic pipeline between the User Interface 150 and Display
140, while being transparent to the GPU. Each GPU of the
cluster keeps working as if it is the only graphic processor
hooked on the I/O chipset 160.
0054 Still another advantage of this method is that the
unique location of the Hardware Hub 110 allows it to control
the graphic pipeline for different parallelization modes:
image division mode, time division mode or object division
mode.
0055. A further advantage of this method is that the unique
location of the Hardware Hub 110 allows it to sense in real
time the varying parameters of application's load, Such as
polygon count, texture Volume, human interaction, and to
intelligently decide and carry on the current optimal parallel
ization method.
0056. It should be noted that according to all embodiments
of the present invention, the display(s) 140 may be connected
directly or indirectly to the Hardware Hub 110.

Jul. 10, 2008

0057 Reference is now made to FIG. 2, which discloses
the components of the Hardware Hub 110, according to an
embodiment the present invention. Control Unit 210, accepts
proprietary commands from the Software Hub Driver over the
bus, and accordingly controls the other units. Hub Router 230
routs polygonal data and graphic command stream from left
to right, routs pixel data from right to compositing unit, and
routs compositing results to the right. Compositing Unit 240
performs various compositing schemes according to parallel
ization mode. Auxiliary Memory block 220 is used for storing
intermediate processing results of one or more GPUs, data
required for composition and transferring the processed data
for display.
0058. The Hardware Hub 110 utilizes its units according
to parallelization modes: an Object division mode, an Image
division mode, a Time division mode. These modes are adap
tively handled by the Hardware Hub 110 according to appli
cation needs.
0059 FIG.3 discloses the operation of the Object division
parallelization mode, according to an embodiment the
present invention. The CPU executes the 3-D graphic appli
cation 310, which along with Standard graphic library, gen
erates a stream of graphic operations and polygonal data.
They are typically organized in data blocks either as Display
List, Vertex Array or free polygons, which are polygons that
are neither organized in Display List nor in Vertex Array. The
Software Hub Driver at step 320 marks the polygonal data and
graphic commands for distribution between multiple GPUs,
in a way that the overall load is balanced. The marked data is
forwarded to Hardware Hub. At step 330 it is distributed via
the Hub Router to multiple GPUs. After the rendering process
in GPUs at step 340 is accomplished, the Frame Buffers are
retrieved and forwarded via the Hub Router to the composit
ing unit at step 350. Here the frame buffers are composited to
a single frame buffer, which is forwarded to the designated
GPU for display. The single frame buffer is displayed at step
360.
0060 FIG. 4 discloses the operation of the Image division
parallelization mode, according to an embodiment the
present invention. In this mode the Software Hub Driver
assigns different viewports to GPUs in order to subdivide the
screen between them. The viewports aspects are set according
to load balancing considerations, to keep the overall GPU
load evenly balanced. In step 420, the entire polygonal data
and graphic commands are moved to the Hub Router at Hard
ware Hub, and they are transmitted at step 430 to multiple
GPUs. All GPUs receive the same data. After rendering at
step 440, the partial frame buffers are brought to compositing
unit in Hardware Hub for the full image creation at step 450,
and then this image is moved out to designated GPU for
display. The full image is displayed at step 460.
0061 FIG. 5 discloses the operation of the Time division
parallelization mode, according to an embodiment the
present invention. In time division the processing of each
frame takes N frame time units, while NGPUs (or N clusters
of GPUs) are participating. The entire amount of polygons is
forwarded to each GPU, for rendering. At each frame time
unit, the Software Hub Driver redirects the polygonal data
and graphic commands at step 530 to a cluster of GPUs at a
time, while alternating between them. The data is transferred
to the above cluster of GPUs via the Hub Router, rendered in
the GPUs at step 540, and then the resulting frame buffer at
step 550 is redirected via Hub Router to the designated GPU
for display. All GPUs are coordinated by Software Hub
Driver to create a continuous sequence of frames. The result
ing frame buffer is displayed at step 560.

US 2008/O165198A1

0062. The Hardware Hub competence is its scaling tech
nology: Architecture and cluster of proprietary processes
devoted to scale existing GPUs performance in PC based
systems, by enabling the use of multiple GPUs in parallel on
the level of chip, card or chip IP (Intellectual Property) core,
and handling multiple bus paths between the CPU and GPU.
The technology achieves linear increase in performance. It is
invariant to a graphics vendor and also it is transparent to an
application. In the present invention, the graphic pipeline
bottlenecks of Vertex processing, fragment processing and
bus transfer are completely and intelligently resolved. As
bottlenecks may shift between frames, the Hardware Hub is
designed with a smart real-time feedback system between the
Control Unit 210, disclosed in FIG. 2, and Software Hub
Driver 123, disclosed in FIG. 1, by means of the bus, utilizing
the different parallelization modes to overcome different
bottlenecks and maintain maximum performance at the frame
level.

The Software Hub Driver

0063. The Software Hub Driver is a software package
residing in the PC and coexisting with computer's operating
system, standard graphic library, application and Vendor's
GPU. Driver. FIG. 6 is a schematic block diagram of a possible
integration of the Software Hub Driver 630 into the operating
system environment according to an embodiment the present
invention. Next to graphic application block 610 there is
standard graphic library block 620. The Software Hub Driver
630 is located beneath the standard graphic library 620, inter
cepting the graphic command and data stream on the way to
the Vendor's GPU Driver 640. The Software Hub Driver 630
also controls the Hardware Hub 660.

0064 FIG. 7 is a functional block diagram presenting the
main tasks of the Software Hub Driver, according to an
embodiment the present invention. OS interface and Utilities
block 710 is responsible for interception of the graphic com
mands from the standard graphic library, forwarding and
creating graphic commands to Vendor's GPU Driver, control
ling the Hardware Hub, registry and installation, OS services
and utilities. State Monitoring block 720 is responsible for
maintaining consistency of graphic machine states across the
GPUs, based on the input graphic commands stream. Appli
cation and graphic resources analysis block 730 is respon
sible for the application observation-estimating the type of
graphic load and bottleneck in the current application graphic
context, graphic resources (GPUs) load estimation for load
balance based on graphic commands stream and time mea
surements, handling the feedback from GPUs in regard to
load balancing. Parallelism policy management block 740 is
based on load analysis. All parallelization modes, which are
the Object division mode, Image division mode and Time
division mode, are combined together in order to achieve best
performance and optimal load handling. Parallelization
policy is based on the analysis of the load, and it must pre
serve the state of the graphic system at all relevant GPUs
across the electronic circuit or chip. For example, changing of
a state by adding a new light source in the scene at Some time
point, must affect all subsequent polygons at different GPUs.
Parallelism policy management block 740 is responsible for
the interpretation of the policy for specific manipulation in
graphic functions. Distributed graphic functions control

Jul. 10, 2008

block 750 is responsible for modification of graphic com
mand and data stream based on the parallelization policy.

Object Division Decomposition Process

0065. Object division is a well-known concept, but data
decomposition (partition of data and graphic commands
between GPUs), while being also a known concept, has not
been applied yet effectively, as it imposes various great dif
ficulties. These difficulties are handled successfully by a pro
posed process and its implementation, according to the
present invention.
0066. The decomposition, and more importantly, the com
position, must be accurate and efficient. Certain operations
must be performed in the order they are submitted by the
application. For example, in case of semi-transparency, the
commands and polygon stream must keep a certain order for
creating a correct graphic result.
0067 Intelligent decomposition of data and graphic com
mands is needed, preserving the basic features of graphic
libraries as state machines, and complying with the graphic
standards. The proposed decomposition process, according to
the present invention, is performed by the Software Hub
Driver. CPU runs the 3-D graphic application, generating
flow of graphic commands and data. They are typically orga
nized in blocks, such as Display Lists or Vertex Arrays, stored
in the system memory.
0068 According to the present invention, the Software
Hub Driver, running in the CPU, decomposes the set of scene
polygons (or vertices). Their physical distribution is per
formed by the Hardware Hub.
0069. The polygons are rendered in the GPU, while main
taining the resulting Frame Buffer in local memory. All FBs
are transferred, via Hub Router, to compositing unit in Hard
ware Hub, to be merged into single FB. Finally, the compos
ited FB is forwarded for display.
(0070. The Software Hub Driver carries out the following
process of distribution of the polygons between the multiple
GPUs. It is assumed, that the regular way the graphic appli
cation works, remains unchanged. Perframe, a typical appli
cation generates a stream of graphic calls that includes blocks
of graphic data; each block consists of a list of geometric
operations, such as single vertex operations or buffer based
operations (vertex array). Typically, the decomposition pro
cess splits the data between GPUs preserving the blocks as
basic data units. Geometric operations are attached to the
block(s) of data, instructing the way the data is handled. A
block is directed to designated GPUs. However, there are
operations belonging to the group of Blocking Operations,
such as Flush, Swap, Alpha blending, which affect the entire
graphic system, setting the system to blocking mode. Block
ing operations are exceptional in that they require a composed
valid FB data, thus in the parallel setting of the present inven
tion, they have an effect on all GPUs. Therefore, whenever
one of the Blocking operations is issued, all the GPUs must be
synchronized. Each frame has at least 2 blocking operations:
Flush and Swap, which terminate the frame.
0071 FIG. 8 is a flow chart presenting the process for
distribution of the polygons between the multiple GPUs,
according to an embodiment the present invention. The frame
activity starts with distributing blocks of data between GPUs.
Each graphic operation is tested for blocking mode at step
820. In a regular (non-blocking) path, data is redirected to the
designated GPU at the step 830. This loop is repeated until a
blocking operation is detected.

US 2008/O165198A1

0072. When the blocking operation is detected, all GPUs
must be synchronized at step 840 by at least the following
sequence: —performing a flush operation in order to termi
nate rendering and clean up the internal pipeline (flushing) in
GPU; - performing a composition in order to merge the
contents of FBS into a single FB; and—transmitting the con
tents of said single FB back to all GPUs, in order to create a
common ground for continuation.
0073. The Swap operation activates the double buffering
mechanism, Swapping the back and front color buffers. If
Swap is detected at step 850, it means that a composited
complete frame must be terminated at all GPU, except GPU0.
All GPUs have the final composed contents of a FB desig
nated to store said contents, but only the one connected to the
screen (GPU0) displays the image at step 860.
0074 Another case is operations that are applied globally
to the scene and need to be broadcasted to all the GPUs. If one
of the other blocking operations is identified, such as Alpha
blending for transparency, then all GPUs are flushed as before
at step 840, and merged into a common FB. This time the
Swap operation is not detected (step 850), and therefore all
GPUs have the same data, and as long as the blocking mode
is on (step 870), all of them keep processing the same data
(step 880). If the end of the block mode is detected at step 870,
GPUs return working on designated data (step 830).

Adaptive Handling of Graphic Load by Combining Three
Division Methods

0075. In addition, the present invention introduces a
dynamic load-balancing technique that combines the object
division method with the image division and time division
methods in image and time domains, based on the load exhib
its by previous processing stages. Combining all the three
parallel methods into a unified framework dramatically
increases the effectiveness of our invention.
0076 Parallel processing is implemented by a pipeline,
such as any common GPU allows the data to be processed in
parallel, in time, image and object domains. The processing
performed on the graphical processing system, either in par
allel on multi-GPU or sequential, results in a sequence of
complete raster images stored in a frame buffer, and sent to
the display unit. These images are referred as frames in short.
A frame consists of fragments. A fragment is an extended
pixel stored in memory, which consists of attributes such as
color, alpha, depth, stencil, etc. When processing is per
formed in parallel in the time domain, typically each GPU is
responsible for the production of a complete frame. In the
other two domains, which are the image and object domains,
all GPU operate in parallel to produce a single frame. Screen
space parallel-processing implies that each GPU renders a
Subset of the fragments of each frame, and object parallel
processing implies that the input data for each frame, in
particular the geometric data (e.g., the polygon set represent
ing the scene) is distributed between the multiple GPUs.
0077. Each one of three domains (time, image and object
domains) has advantages and disadvantages. The effective
ness of each discipline is a dynamic function based on input
data. Moreover, in many cases no single discipline is Superior.
In these cases a combination of two or even all the three
disciplines may yield the most optimum results.
0078. The present invention provides a parallel-process
ing system for three-dimensional data. It provides a novel
process for object parallel-processing that consists of effi
cient decomposition of the data between the different GPU,
and then the composition of the frames produced on the
various GPUs into a final frame ready to be rendered.

Jul. 10, 2008

007.9 The present invention provides a method to inte
grate all the three parallel modes dynamically into a unified
framework to achieve maximum load balancing. At each
frame, the set of available GPUs can be reconfigured based on
the time it took to render the previous frames, and the bottle
necks exhibited during the processing of these frames.
0080 FIG. 9 discloses a sample configuration of the sys
tem, employing eight (8) GPUs, according to an embodiment
of the present invention. According to the above sample con
figuration, a balanced graphic application is assumed. The
GPUs are divided into two groups for time division parallel
ism. GPUs indexed with 1, 2.3, and 4 are configured to pro
cess even frames and GPUs indexed with 5.6, 7, and 8 are
configured to process odd frames. Within each group, two
GPU subgroups are set for image division: the GPUs with the
lower indexes (1.2 and 5.6 respectively) are configured to
process half of the screen, and the high-indexed GPU (3.4 and
7.8 respectively) are configured to process the other half.
Finally, for the object division, GPUs indexed with 1, 3.5 and
7 are fed with half of the objects, and GPUs indexed with 2.4.
6 and 8 are fed with the other half of the objects.
I0081. If at some point the system detects that the bottle
necks exhibited in previous frames occurat the raster stage of
the pipeline, it means that fragment processing dominates the
time it takes to render the frames and that the configuration is
imbalanced. At that point the GPUs are reconfigured, so that
each GPU will render a quarter of the screen within the
respective frame. The original partition for time division,
between GPUs 1, 2, 3,4 and between 5,6,7,8 still holds, but
GPU. 2 and GPU 5 are configured to render the first quarter of
screen in even and odd frames respectively. GPUs 1 and GPU
6—the second quarter, GPU 4 and GPU 7 the third quarter,
and GPU3 and GPU 8 the forth quarter. No object division
is implied.
I0082 In addition, if at some point the system detects that
the bottleneck exhibited in previous frames occurs at the
geometry stage of the pipe, the GPUs are reconfigured, so that
each GPU will process a quarter of the geometrical data
within the respective frame. That is, GPU 3 and GPU 5 are
configured to process the first quarter of the polygons in even
and odd frames respectively. GPU 1 and GPU 7 the second
quarter, GPU 4 and GPU 6—the third quarter and GPU 2 and
GPU 8 the forth quarter. No image division is implied.
I0083. It should be noted, that taking 8 GPUs is sufficient in
order to combine all three parallel modes, which are time,
image and object division modes, perframe. Taking the num
ber of GPUs larger than 8, also enables combining all 3
modes, but in a non-symmetric fashion. The flexibility also
exists in frame count in a time division cycle. In the above
example, the cluster of 8 GPUs was broken down into the two
groups, each group handling a frame. However, it is possible
to extend the number of frames in a time division mode to a
sequence, which is longer than 2 frames, for example 3 or 4
frames.

I0084. Taking a smaller number of GPUs still allows the
combination of the parallel modes, however the combination
of two modes only. For example, taking only 4 GPUs enables
to combine image and object division modes, without time
division mode. It is clearly understood from FIG. 9, while
taking the group of GPU1, GPU2, GPU3 and GPU4, which is
the left cluster. Similarly, the group of GPU1, GPU2, GPU5
and GPU6, which is the upper cluster, employs both object
and time division modes. Finally, the configuration of the
group of GPU2, GPU4, GPU5 and GPU6, which is the middle
cluster, employs image and time division modes.

US 2008/O165198A1

0085. It should be noted, that similarly to the above
embodiments, any combination between the parallel modes
can be scheduled to evenly balance the graphic load.
I0086. It also should be noted, that according to the present
invention, the parallelization process between all GPUs may
be based on an object division mode or image division mode
or time division mode or any combination thereof in order to
optimize the processing performance of each frame.
0087 While some embodiments of the invention have
been described by way of illustration, it will be apparent that
the invention can be put into practice with many modifica
tions, variations and adaptations, and with the use of numer
ous equivalents or alternative solutions that are within the
Scope of persons skilled in the art, without departing from the
spirit of the invention or exceeding the scope of the claims.

1. A method of providing a PC-based computing system
with parallel graphics processing capabilities, wherein said
PC-based computing system includes (i) system memory for
storing Software graphics applications, software drivers and
graphics libraries, (ii) an operating system (OS), Stored in
said system memory, (iii) one or more graphics applications,
stored in said system memory, for generating a stream of
geometrical data and graphics commands Supporting the rep
resentation of one or more 3D objects in a scene having 3D
geometrical characteristics and the viewing of images of said
one or more 3D objects in said scene during an interactive
process carried out between said PC-based computing system
and a user of said PC-based computing system, (iv) one or
more graphic libraries, stored in said system memory, for
storing data used to implement said stream of geometrical
data and graphics commands, (v) a central processing unit
(CPU) for executing said OS, said graphics applications, said
drivers and said graphics libraries, (vi) an CPU interface
module for interfacing with said CPU, (vii) a PC bus, and
(viii) a display Surface for displaying images of said 3D
objects, said method comprising the steps of:

(a) interfacing a hardware hub having a hub router, with
said CPU interface module using said PC bus;

(b) interfacing said hardware hub with a plurality of
graphic processing units (GPUs), using said PC bus,
wherein said GPUs are arranged in a parallel architec
ture and operating according to a parallelization mode of
operation so that said GPUS Support multiple graphics
pipelines and process data in a parallel manner, and
wherein each said GPU has a corresponding frame
buffer for storing a fragment or frame of pixel data
generated by said GPU;

(c) installing one or more GPU drivers, in said system
memory, for allowing said GPUs to interact with said
graphic libraries,

(d) installing one or more software hub drivers within the
system memory of said PC-based computing system, for
performing the following functions: (i) controlling said
hardware hub, (ii) interacting with said OS and said
graphic libraries, and (iii) forwarding said graphic com
mands and said geometrical data stream or a portion
thereof to each GPU; and

(e) for each image of said 3D object to be generated and
displayed, (i) said hardware hub distributing said
graphic commands and said stream of geometrical data
or a portion thereof, between said GPUs, and (ii) one or
more of said GPUs processing the stream of geometrical
data and graphical commands, orportion thereof, during
the generation of each said frame, while operating in
said parallelization mode, and compositing a pixel data
output for display as an image of said 3D object(s) on
said display Surface.

Jul. 10, 2008

2. The method of claim 1, wherein said CPU interface
module is an I/O interface module.

3. The method of claim 2, wherein said I/O interface mod
ule is an I/O chip or chipset.

4. The method of claim 1, wherein each said GPU has a
frame buffer (FB) for storing a fragment of pixel data.

5. The method of claim 1, wherein said geometrical data
comprises a set of scene polygons or vertices.

6. The method of claim 1, wherein said graphics commands
includes commands selected from the group consisting of
display lists and display vertex arrays.

7. The method of claim 1, wherein said hardware hub
further comprises a control unit for accepting commands
from said one or more software hub drivers, over said PC bus,
and controlling components within said hardware hub,
including said hub router.

8. The method of claim 1, wherein said hub router routes
said stream of geometrical data and graphic commands from
said graphics application to one or more of said GPUs, and
wherein said hub router routes pixel data results from said
GPUs during the composition of said frame of pixel data.

9. The method of claim 1, wherein said hardware hub
further comprises a memory unit for storing intermediate
processing results from one or more of said multiple GPUs
and data required for composition and transferring frames of
pixel data for display.

10. The method of claim 1, wherein said one or more
software hub drivers control said GPUs while said hardware
hub operates transparently to said graphics application so that
said multiple GPUs appear as only a single GPU to said
graphics application.

11. The method of claim 1, wherein said one or more
software hub drivers coordinate the operation of said GPUs so
generate a continuous sequence of frames of pixel data for
displaying a sequence of images of said 3D object on said
display Surface.

12. The method of claim 1, wherein said hardware hub
handles multiple bus paths between said CPU and said GPUs.

13. The method of claim 1, wherein said parallelization
mode of operation is a time division mode of parallel opera
tion, wherein each said GPU renders a different frame of pixel
data for display on said display Surface at a different moment
of time.

14. The method of claim 1, wherein said parallelization
mode of operation is an image division mode of parallel
operation, wherein each GPU renders a subset of the pixels
used to compose each frame of pixel data to be displayed on
said display Surface.

15. The method of claim 1, wherein said parallelization
mode of operation is an object division mode of parallel
operation, wherein the 3D object which is to be displayed as
an image consisting of a frame of pixels, is decomposed into
said stream of geometrical data and graphic commands which
are distributed to said GPUs for rendering the frames of pixel
data compositing the images to be displayed on said display
Surface.

16. The method of claim 1, wherein each said 3D object is
decomposable into a plurality of polygons, and wherein said
geometrical data comprises the vertices of said polygons.

17. The method of claim 1, wherein each pixel associated
with a frame of pixel data includes attributes selected from the
group consisting of color, alpha, position, depth, and stencil.

c c c c c

