
(19) United States
US 2004O130927A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0130927 A1
Schulz et al. (43) Pub. Date: Jul. 8, 2004

(54) PIPELINEACCELERATOR HAVING
MULTIPLE PIPELINE UNITS AND RELATED
COMPUTING MACHINE AND METHOD

(75) Inventors: Kenneth R. Schulz, Manassas, VA
(US); John W. Rapp, Manassas, VA
(US); Larry Jackson, Manassas, VA
(US); Mark Jones, Centreville, VA
(US); Troy Cherasaro, Culpeper, VA
(US)

Correspondence Address:
Bryan A. Santarelli
GRAYBEALJACKSON HALEY LLP
Suite 350
155 - 108th Avenue NE
Bellevue, WA 98004-5901 (US)

(73) Assignee: Lockheed Martin Corporation

(21) Appl. No.: 10/683,932

Filed: Oct. 9, 2003

PROCESSOR CLOCK

PROCESSING
UNIT

MEMORY
66

PROCESSING

ACCELERATOR
CONFIGURATION

REGISTRY
70

MESSAGE
CONFIGURATION

REGISTRY
72

8

HANDLER
MEMORY

68

MESSAGE
HANDLER

64

54
RAWDATAN 58

PROCESSED DATA OUT

Related U.S. Application Data

(60) Provisional application No. 60/422,503, filed on Oct.
31, 2002.

Publication Classification

(51) Int. Cl. ... G11C 11/22
(52) U.S. Cl. .. 365/145

(57) ABSTRACT

A pipeline accelerator includes a bus and a plurality of
pipeline units, each unit coupled to the bus and including at
least one respective hardwired-pipeline circuit. By including
a plurality of pipeline units in the pipeline accelerator, one
can increase the accelerator's data-processing performance
as compared to a single-pipeline-unit accelerator. Further
more, by designing the pipeline units So that they commu
nicate via a common bus, one can alter the number of
pipeline units, and thus alter the configuration and function
ality of the accelerator, by merely coupling or uncoupling
pipeline units to or from the bus. This eliminates the need to
design or redesign the pipeline-unit interfaces each time one
alters one of the pipeline units or alters the number of
pipeline units within the accelerator.

HARDWARE
PIPELINE

HARDWARE
PPELINE

FRMWARE
MEMORY

74, 52
PIPELINE

ACCELERATOR

HARDWARE
PPELINE

US 2004/0130927 A1 Jul. 8, 2004 Sheet 1 of 8 Patent Application Publication

(LHV HOIHd) L ’914

ÅRHOVNEW
ZZ

Patent Application Publication Jul. 8, 2004 Sheet 2 of 8 US 2004/0130927 A1

S

S.

S.

US 2004/0130927 A1

8/

Patent Application Publication

35

US 2004/0130927 A1 Patent Application Publication

75

9 "SDI

US 2004/0130927 A1

wg, sna NOIIVOINñWWOO
CNÅS

Patent Application Publication Jul. 8, 2004

US 2004/0130927 A1

SONÅS

Patent Application Publication Jul. 8, 2004 Sheet 7 of 8

Patent Application Publication

US 2004/O130927 A1

PIPELINE ACCELERATOR HAVING MULTIPLE
PIPELINE UNITS AND RELATED COMPUTING

MACHINE AND METHOD

CLAIM OF PRIORITY

0001. This application claims priority to U.S. Provisional
Application Ser. No. 60/422,503, filed on Oct. 31, 2002,
which is incorporated by reference.

CROSS REFERENCE TO RELATED
APPLICATIONS

0002 This application is related to U.S. Patent App. Ser.
NOS. entitled IMPROVED COMPUTING ARCHI
TECTURE AND RELATED SYSTEM AND METHOD
(Attorney Docket No. 1934-11-3), entitled COM
PUTING MACHINE HAVING IMPROVED COMPUT
ING ARCHITECTURE AND RELATED SYSTEMAND
METHOD (Attorney Docket No. 1934-12-3),
entitled PIPELINE ACCELERATOR FOR IMPROVED
COMPUTING ARCHITECTURE AND RELATED SYS
TEM AND METHOD (Attorney Docket No. 1934-13-3),
and entitled PROGRAMMABLE CIRCUIT AND
RELATED COMPUTING MACHINE AND METHOD
(Attorney Docket No. 1934-14-3), which have a common
filing date and owner and which are incorporated by refer
CCC.

BACKGROUND

0003) A common computing architecture for processing
relatively large amounts of data in a relatively short period
of time includes multiple interconnected processors that
share the processing burden. By sharing the processing
burden, these multiple processors can often process the data
more quickly than a Single processor can for a given clock
frequency. For example, each of the processors can proceSS
a respective portion of the data or execute a respective
portion of a processing algorithm.

0004 FIG. 1 is a schematic block diagram of a conven
tional computing machine 10 having a multi-processor
architecture. The machine 10 includes a master processor 12
and coprocessors 14-14, which communicate with each
other and the master processor via a buS 16, an input port 18
for receiving raw data from a remote device (not shown in
FIG. 1), and an output port 20 for providing processed data
to the remote Source. The machine 10 also includes a
memory 22 for the master processor 12, respective memo
ries 24-24 for the coprocessors 14-14, and a memory 26
that the master processor and coprocessors share via the bus
16. The memory 22 Serves as both a program and a working
memory for the master processor 12, and each memory
24-24, serves as both a program and a working memory for
a respective coprocessor 14-14. The shared memory 26
allows the master processor 12 and the coprocessors 14 to
transfer data among themselves, and from/to the remote
device via the ports 18 and 20, respectively. The master
processor 12 and the coprocessors 14 also receive a common
clock signal that controls the Speed at which the machine 10
processes the raw data.
0005. In general, the computing machine 10 effectively
divides the processing of raw data among the master pro
cessor 12 and the coprocessors 14. The remote Source (not
shown in FIG. 1) Such as a sonar array loads the raw data

Jul. 8, 2004

via the port 18 into a section of the shared memory 26, which
acts as a first-in-first-out (FIFO) buffer (not shown) for the
raw data. The master processor 12 retrieves the raw data
from the memory 26 via the bus 16, and then the master
processor and the coprocessors 14 process the raw data,
transferring data among themselves as necessary via the bus
16. The master processor 12 loads the processed data into
another FIFO buffer (not shown) defined in the shared
memory 26, and the remote Source retrieves the processed
data from this FIFO via the port 20.
0006. In an example of operation, the computing machine
10 processes the raw data by Sequentially performing n+1
respective operations on the raw data, where these opera
tions together compose a processing algorithm Such as a Fast
Fourier Transform (FFT). More specifically, the machine 10
forms a data-processing pipeline from the master processor
12 and the coprocessors 14. For a given frequency of the
clock signal, Such a pipeline often allows the machine 10 to
process the raw data faster than a machine having only a
Single processor.

0007. After retrieving the raw data from the raw-data
FIFO (not shown) in the memory 26, the master processor
12 performs a first operation, Such as a trigonometric func
tion, on the raw data. This operation yields a first result,
which the processor 12 stores in a first-result FIFO (not
shown) defined within the memory 26. Typically, the pro
ceSSor 12 executes a program Stored in the memory 22, and
performs the above-described actions under the control of
the program. The processor 12 may also use the memory 22
as working memory to temporarily Store data that the
processor generates at intermediate intervals of the first
operation.

0008 Next, after retrieving the first result from the first
result FIFO (not shown) in the memory 26, the coprocessor
14 performs a Second operation, Such as a logarithmic
function, on the first result. This Second operation yields a
Second result, which the coprocessor 14 Stores in a Second
result FIFO (not shown) defined within the memory 26.
Typically, the coprocessor 14 executes a program Stored in
the memory 24, and performs the above-described actions
under the control of the program. The coprocessor 14 may
also use the memory 24 as working memory to temporarily
Store data that the coprocessor generates at intermediate
intervals of the Second operation.
0009. Then, the coprocessors 24-24 sequentially per
form third-n" operations on the second-(n-1)" results in
a manner Similar to that discussed above for the coprocessor
24.

0010) The n" operation, which is performed by the
coprocessor 24, yields the final result, i.e., the processed
data. The coprocessor 24, loads the processed data into a
processed-data FIFO (not shown) defined within the
memory 26, and the remote device (not shown in FIG. 1)
retrieves the processed data from this FIFO.
0011 Because the master processor 12 and coprocessors
14 are simultaneously performing different operations of the
processing algorithm, the computing machine 10 is often
able to process the raw data faster than a computing machine
having a Single processor that Sequentially performs the
different operations. Specifically, the Single processor can
not retrieve a new set of the raw data until it performs all n+1

US 2004/O130927 A1

operations on the previous Set of raw data. But using the
pipeline technique discussed above, the master processor 12
can retrieve a new set of raw data after performing only the
first operation. Consequently, for a given clock frequency,
this pipeline technique can increase the Speed at which the
machine 10 processes the raw data by a factor of approxi
mately n+1 as compared to a single-processor machine (not
shown in FIG. 1).
0012 Alternatively, the computing machine 10 may pro
ceSS the raw data in parallel by Simultaneously performing
n+1 instances of a processing algorithm, Such as an FFT, on
the raw data. That is, if the algorithm includes n+1 Sequen
tial operations as described above in the previous example,
then each of the master processor 12 and the coprocessors 14
Sequentially perform all n+1 operations on respective Sets of
the raw data. Consequently, for a given clock frequency, this
parallel-processing technique, like the above-described
pipeline technique, can increase the Speed at which the
machine 10 processes the raw data by a factor of approxi
mately n+1 as compared to a single-processor machine (not
shown in FIG. 1).
0013 Unfortunately, although the computing machine 10
can proceSS data more quickly than a Single-processor
computing machine (not shown in FIG. 1), the data-pro
cessing Speed of the machine 10 is often Significantly leSS
than the frequency of the processor clock. Specifically, the
data-processing Speed of the computing machine 10 is
limited by the time that the master processor 12 and copro
ceSSorS 14 require to proceSS data. For brevity, an example
of this speed limitation is discussed in conjunction with the
master processor 12, although it is understood that this
discussion also applies to the coprocessors 14. AS discussed
above, the master processor 12 executes a program that
controls the processor to manipulate data in a desired
manner. This program includes a Sequence of instructions
that the processor 12 executes. Unfortunately, the processor
12 typically requires multiple clock cycles to execute a
Single instruction, and often must execute multiple instruc
tions to process a Single value of data. For example, Suppose
that the processor 12 is to multiply a first data value A (not
shown) by a second data value B (not shown). During a first
clock cycle, the processor 12 retrieves a multiply instruction
from the memory 22. During Second and third clock cycles,
the processor 12 respectively retrieves A and B from the
memory 26. During a fourth clock cycle, the processor 12
multiplies A and B, and, during a fifth clock cycle, Stores the
resulting product in the memory 22 or 26 or provides the
resulting product to the remote device (not shown). This is
a best-case Scenario, because in many cases the processor 12
requires additional clock cycles for overhead tasks Such as
initializing and closing counters. Therefore, at best the
processor 12 requires five clock cycles, or an average of 2.5
clock cycles per data value, to process A and B.

0.014 Consequently, the speed at which the computing
machine 10 processes data is often significantly lower than
the frequency of the clock that drives the master processor
12 and the coprocessors 14. For example, if the processor 12
is clocked at 1.0 Gigahertz (GHz) but requires an average of
2.5 clock cycles per data value, then the effective data
processing speed equals (1.0 GHz)/2.5=0.4 GHz. This effec
tive data-processing Speed is often characterized in units of
operations per Second. Therefore, in this example, for a

Jul. 8, 2004

clock speed of 1.0 GHz, the processor 12 would be rated
with a data-processing Speed of 0.4 Gigaoperations/second
(GopS).
0015 FIG. 2 is a block diagram of a hardwired data
pipeline 30 that can typically proceSS data faster than a
processor can for a given clock frequency, and often at
Substantially the same rate at which the pipeline is clocked.
The pipeline 30 includes operator circuits 32-32, which
each perform a respective operation on respective data
without executing program instructions. That is, the desired
operation is “burned in” to a circuit 32 Such that it imple
ments the operation automatically, without the need of
program instructions. By eliminating the Overhead associ
ated with executing program instructions, the pipeline 30
can typically perform more operations per Second than a
processor can for a given clock frequency.
0016 For example, the pipeline 30 can often solve the
following equation faster than a processor can for a given
clock frequency:

0017 where X represents a sequence of raw data values.
In this example, the operator circuit 32 is a multiplier that
calculates 5x, the circuit 32 is an adder that calculates
5X+3, and the circuit 32 (n=3) is a multiplier that calculates
(5x+3)2.
0018. During a first clock cycle k=1, the circuit 32
receives data value X and multiplies it by 5 to generate 5x.
0019. During a second clock cycle k=2, the circuit 32
receives 5x from the circuit 32 and adds 3 to generate
5X+3. Also, during the Second clock cycle, the circuit 32
generates 5X.
0020. During a third clock cycle k=3, the circuit 32
receives 5x+3 from the circuit 32 and multiplies by
2 (effectively left shifts 5x,+3 by x) to generate the first
result (5x+3)2. Also during the third clock cycle, the
circuit 32 generates 5X and the circuit 32 generates 5X+3.
0021. The pipeline 30 continues processing Subsequent
raw data values X in this manner until all the raw data values
are processed.
0022 Consequently, a delay of two clock cycles after
receiving a raw data value X-this delay is often called the
latency of the pipeline 30-the pipeline generates the result
(5x1+3)2, and thereafter generates one result—e.g., (5x2+
3)2, (5x+3)2, ... , 5x,-3)2" each clock cycle.
0023 Disregarding the latency, the pipeline 30 thus has a
data-processing Speed equal to the clock Speed. In compari
Son, assuming that the master processor 12 and coprocessors
14 (FIG. 1) have data-processing speeds that are 0.4 times
the clock Speed as in the above example, the pipeline 30 can
process data 2.5 times faster than the computing machine 10
(FIG. 1) for a given clock speed.
0024. Still referring to FIG. 2, a designer may choose to
implement the pipeline 30 in a programmable logic IC
(PLIC), such as a field-programmable gate array (FPGA),
because a PLIC allows more design and modification flex
ibility than does an application specific IC (ASIC). To
configure the hardwired connections within a PLIC, the
designer merely Sets interconnection-configuration registers
disposed within the PLIC to predetermined binary states.

US 2004/O130927 A1

The combination of all these binary states is often called
“firmware.” Typically, the designer loads this firmware into
a nonvolatile memory (not shown in FIG. 2) that is coupled
to the PLIC. When one “turns on the PLIC, it downloads
the firmware from the memory into the interconnection
configuration registers. Therefore, to modify the functioning
of the PLIC, the designer merely modifies the firmware and
allows the PLIC to download the modified firmware into the
interconnection-configuration registers. This ability to
modify the PLIC by merely modifying the firmware is
particularly useful during the prototyping Stage and for
upgrading the pipeline 30“in the field”.
0.025. Unfortunately, the hardwired pipeline 30 may not
be the best choice to execute algorithms that entail Signifi
cant decision making, particularly nested decision making. A
processor can typically execute a nested-decision-making
instruction (e.g., a nested conditional instruction Such as “if
A, then do B, else if C, do D, ..., else don') approximately
as fast as it can execute an operational instruction (e.g.,
“A+B”) of comparable length. But although the pipeline 30
may be able to make a relatively simple decision (e.g.,
“A>B?”) efficiently, it typically cannot execute a nested
decision (e.g., “if A, then do B, else if C, do D, ..., else do
n”) as efficiently as a processor can. One reason for this
inefficiency is that the pipeline 30 may have little on-board
memory, and thus may need to access external working/
program memory (not shown). And although one may be
able to design the pipeline 30 to execute Such a nested
decision, the size and complexity of the required circuitry
often makes Such a design impractical, particularly where an
algorithm includes multiple different nested decisions.
0026 Consequently, processors are typically used in
applications that require Significant decision making, and
hardwired pipelines are typically limited to "number crunch
ing” applications that entail little or no decision making.
0027) Furthermore, as discussed below, it is typically
much easier for one to design/modify a processor-based
computing machine, Such as the computing machine 10 of
FIG. 1, than it is to design/modify a hardwired pipeline such
as the pipeline 30 of FIG. 2, particularly where the pipeline
30 includes multiple PLICs.
0028 Computing components, such as processors and
their peripherals (e.g., memory), typically include industry
Standard communication interfaces that facilitate the inter
connection of the components to form a processor-based
computing machine.
0029. Typically, a standard communication interface
includes two layers: a physical layer and a Services layer.
0030 The physical layer includes the circuitry and the
corresponding circuit interconnections that form the inter
face and the operating parameters of this circuitry. For
example, the physical layer includes the pins that connect
the component to a bus, the buffers that latch data received
from the pins, and the drivers that drive Signals onto the pins.
The operating parameters include the acceptable Voltage
range of the data Signals that the pins receive, the Signal
timing for writing and reading data, and the Supported
modes of operation (e.g., burst mode, page mode). Conven
tional physical layers include transistor-transistor logic
(TTL) and RAMBUS.
0031. The services layer includes the protocol by which
a computing component transferS data. The protocol defines

Jul. 8, 2004

the format of the data and the manner in which the compo
nent Sends and receives the formatted data. Conventional
communication protocols include file-transfer protocol
(FTP) and transmission control protocol/internet protocol
(TCP/IP).
0032 Consequently, because manufacturers and others
typically design computing components having industry
Standard communication interfaces, one can typically design
the interface of Such a component and interconnect it to
other computing components with relatively little effort.
This allows one to devote most of his time to designing the
other portions of the computing machine, and to easily
modify the machine by adding or removing components.
0033. Designing a computing component that Supports an
industry-standard communication interface allows one to
Save design time by using an existing physical-layer design
from a design library. This also insures that he/she can easily
interface the component to off-the-shelf computing compo
nentS.

0034). And designing a computing machine using com
puting components that Support a common industry-stan
dard communication interface allows the designer to inter
connect the components with little time and effort. Because
the components Support a common interface, the designer
can interconnect them via a System bus with little design
effort. And because the Supported interface is an industry
Standard, one can easily modify the machine. For example,
one can add different components and peripherals to the
machine as the System design evolves, or can easily add/
design next-generation components as the technology
evolves. Furthermore, because the components Support a
common industry-Standard Services layer, one can incorpo
rate into the computing machine's Software an existing
Software module that implements the corresponding proto
col. Therefore, one can interface the components with little
effort because the interface design is essentially already in
place, and thus can focus on designing the portions (e.g.,
Software) of the machine that cause the machine to perform
the desired function(s).
0035. But unfortunately, there are no known industry
Standard Services layerS for components, Such as PLICs,
used to form hardwired pipelines such as the pipeline 30 of
FG, 2.

0036 Consequently, to design a pipeline having multiple
PLICs, one typically spends a significant amount of time and
exerts a significant effort designing “from Scratch' and
debugging the Services layer of the communication interface
between the PLICs. Typically, such an ad hoc services layer
depends on the parameters of the data being transferred
between the PLICs. Likewise, to design a pipeline that
interfaces to a processor, one would have to spend a Sig
nificant amount of time and exert a significant effort in
designing and debugging the Services layer of the commu
nication interface between the pipeline and the processor.
0037 Similarly, to modify such a pipeline by adding a
PLIC to it, one typically spends a Significant amount of time
and exerts a Significant effort designing and debugging the
Services layer of the communication interface between the
added PLIC and the existing PLICs. Likewise, to modify a
pipeline by adding a processor, or to modify a computing
machine by adding a pipeline, one would have to spend a

US 2004/O130927 A1

Significant amount of time and exert a significant effort in
designing and debugging the Services layer of the commu
nication interface between the pipeline and processor.
0.038 Consequently, referring to FIGS. 1 and 2, because
of the difficulties in interfacing multiple PLICs and in
interfacing a processor to a pipeline, one is often forced to
make Significant tradeoffs when designing a computing
machine. For example, with a processor-based computing
machine, one is forced to trade number-crunching Speed and
design/modification flexibility for complex decision-making
ability. Conversely, with a hardwired pipeline-based com
puting machine, one is forced to trade complex-decision
making ability and design/modification flexibility for num
ber-crunching Speed. Furthermore, because of the difficulties
in interfacing multiple PLICs, it is often impractical for one
to design a pipeline-based machine having more than a few
PLICs. As a result, a practical pipeline-based machine often
has limited functionality. And because of the difficulties in
interfacing a processor to a PLIC, it would be impractical to
interface a processor to more than one PLIC. AS a result, the
benefits obtained by combining a processor and a pipeline
would be minimal.

0.039 Therefore, a need has arisen for a new computing
architecture that allows one to combine the decision-making
ability of a processor-based machine with the number
crunching Speed of a hardwired-pipeline-based machine.

SUMMARY

0040 According to an embodiment of the invention, a
pipeline accelerator includes a bus and a plurality of pipeline
units each coupled to the bus and each including at least one
respective hardwired-pipeline circuit.
0041. By including a plurality of pipeline units in the
pipeline accelerator, one can increase the accelerator's data
processing performance as compared to a single-pipeline
unit accelerator. Furthermore, by designing the pipeline
units So that they communicate with each other and with
other peers via a common bus, one can alter the number of
pipeline units, and thus alter the configuration and function
ality of the accelerator, by merely coupling or uncoupling
pipeline units to or from the bus. This eliminates the need to
design or redesign the pipeline-unit interfaces each time one
alters one of the pipeline units or alters the number of
pipeline units within the accelerator.

BRIEF DESCRIPTION OF THE DRAWINGS

0.042 FIG. 1 is a block diagram of a computing machine
having a conventional multi-processor architecture.
0.043 FIG. 2 is a block diagram of a conventional
hardwired pipeline.
0044 FIG. 3 is a block diagram of a computing machine
having a peer-vector architecture according to an embodi
ment of the invention.

004.5 FIG. 4 is a block diagram of a pipeline unit of the
pipeline accelerator of FIG. 3 according to an embodiment
of the invention.

0.046 FIG. 5 is a block diagram of a pipeline unit of the
pipeline accelerator of FIG.3 according to another embodi
ment of the invention.

Jul. 8, 2004

0047 FIG. 6 is a block diagram of the pipeline accel
erator of FIG. 3 including multiple pipeline units according
to an embodiment of the invention.

0048 FIG. 7 is a block diagram of the pipeline accel
erator of FIG. 3 including multiple pipeline units according
to another embodiment of the invention.

0049 FIG. 8 is a block diagram of the pipeline accel
erator of FIG. 3 including groups of multiple pipeline units
according to an embodiment of the invention.

DETAILED DESCRIPTION

0050 FIG. 3 is a schematic block diagram of a comput
ing machine 40, which has a peer-vector architecture accord
ing to an embodiment of the invention. In addition to a host
processor 42, the peer-vector machine 40 includes a pipeline
accelerator 44, which performs at least a portion of the data
processing, and which thus effectively replaces the bank of
coprocessors 14 in the computing machine 10 of FIG. 1.
Therefore, the host-processor 42 and the accelerator 44 (or
units thereof as discussed below) are "peers” that can
transfer data vectors back and forth. Because the accelerator
44 does not execute program instructions, it typically per
forms mathematically intensive operations on data Signifi
cantly faster than a bank of coprocessors can for a given
clock frequency. Consequently, by combining the decision
making ability of the processor 42 and the number-crunch
ing ability of the accelerator 44, the machine 40 has the same
abilities as, but can often proceSS data faster than, a con
ventional computing machine Such as the machine 10.
Furthermore, as discussed below, providing the accelerator
44 with a communication interface that is compatible with
the communication interface of the host processor 42 facili
tates the design and modification of the machine 40, par
ticularly where the processor's communication interface is
an industry Standard. And where the accelerator 44 includes
multiple pipeline units (e.g., PLIC-based circuits), providing
each of these units with the same communication interface
facilitates the design and modification of the accelerator,
particularly where the communication interfaces are com
patible with an industry-standard interface. Moreover, the
machine 40 may also provide other advantages as described
below and in the previously cited patent applications.

0051) Still referring to FIG. 3, in addition to the host
processor 42 and the pipeline accelerator 44, the peer-vector
computing machine 40 includes a processor memory 46, an
interface memory 48, a pipeline bus 50, one or more
firmware memories 52, an optional raw-data input port 54,
a processed-data output port 58, and an optional router 61.
0052 The host processor 42 includes a processing unit 62
and a message handler 64, and the processor memory 46
includes a processing-unit memory 66 and a handler
memory 68, which respectively Serve as both program and
working memories for the processor unit and the message
handler. The processor memory 46 also includes an accel
erator-configuration registry 70 and a message-configuration
registry 72, which Store respective configuration data that
allow the host processor 42 to configure the functioning of
the accelerator 44 and the format of the messages that the
message handler 64 Sends and receives.
0053. The pipeline accelerator 44 is disposed on at least
one PLIC (FIG. 4) and includes hardwired pipelines 74

US 2004/O130927 A1

74, which process respective data without executing pro
gram instructions. The firmware memory 52 stores the
configuration firmware for the accelerator 44. If the accel
erator 44 is disposed on multiple PLICs, then these PLICs
and their respective firmware memories may be disposed in
multiple pipeline units, which are discussed further below in
conjunction with FIGS. 4-8. Alternatively, the accelerator 44
may be disposed on at least one ASIC, and thus may have
internal interconnections that are unconfigurable once the
ASIC is formed. In this alternative, the machine 40 may omit
the firmware memory 52. Furthermore, although the accel
erator 44 is shown including multiple pipelines 741-74, it
may include only a single pipeline. In addition, although not
shown, the accelerator 44 may include one or more proces
SorS Such as a digital-signal processor (DSP). Moreover,
although not shown, the accelerator 44 may include a data
input port and/or a data output port.
0.054 And although the host processor 42 and pipeline
accelerator 44 are discussed as being disposed on different
ICs, the host processor and pipeline accelerator may be
disposed on the Same IC.
0.055 The general operation of the peer-vector machine
40 is discussed in previously cited U.S. patent app. Ser. No.

entitled IMPROVED COMPUTING ARCHITEC
TURE AND RELATED SYSTEMAND METHOD (Attor
ney Docket No. 1934-11-3), the structure and operation of
the host processor 42 is discussed in previously cited U.S.
patent app. Ser. No. entitled COMPUTING
MACHINE HAVING IMPROVED COMPUTING ARCHI
TECTURE AND RELATED SYSTEM AND METHOD
(Attorney Docket No. 1934-12-3), and the structure and
operation of the pipeline accelerator 44 is discussed in
previously cited U.S. patent app. Ser. No. entitled
PIPELINEACCELERATOR FOR IMPROVED COMPUT
ING ARCHITECTURE AND RELATED SYSTEMAND
METHOD (Attorney Docket No. 1934-13-3) and below in
conjunction with FIGS. 4-8.
0056 FIG. 4 is a block diagram of a unit 78 of the
pipeline accelerator 44 of FIG. 3 according to an embodi
ment of the invention.

0057 The accelerator 44 includes one or more such
pipeline units 78 (only one shown in FIG. 4), each of which
includes a pipeline circuit 80, such as a PLIC or an ASIC. As
discussed further below and in previously cited U.S. patent
app. Ser. No. entitled PIPELINE ACCELERATOR
FOR IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-13-3), each pipeline unit 78 is a “peer” of the host
processor 42 (FIG. 3) and of the other pipeline units of the
accelerator 44. That is, each pipeline unit 78 can commu
nicate directly with the host processor 42 or with any other
pipeline unit. Thus, this peer-vector architecture prevents
data “bottlenecks” that otherwise might occur if all of the
pipeline units 78 communicated through a central location
Such as a master pipeline unit (not shown) or the host
processor 42. Furthermore, this architecture allows one to
add or remove peers from the peer-vector machine 40 (FIG.
3) without significant modifications to the machine.
0.058. The pipeline circuit 80 includes a communication
interface 82, which transferS data between a peer, Such as the
host processor 42 (FIG. 3), and the following other com
ponents of the pipeline circuit: the hardwired pipelines

Jul. 8, 2004

74-74, via a communication shell 84, a pipeline controller
86, an exception manager 88, and a configuration manager
90. The pipeline circuit 80 may also include an industry
standard bus interface 91 and a communication bus 93,
which connects the interface 82 to the interface 91. Alter
natively, the functionality of the interface 91 may be
included within the communication interface 82 and the bus
93 omitted.

0059 By designing the components of the pipeline circuit
80 as Separate modules, one can often Simplify the design of
the pipeline circuit. That is, one can design and test each of
these components Separately, and then integrate them much
like one does when designing Software or a processor-based
computing system (such as the system 10 of FIG. 1). In
addition, one can Save in a library (not shown) hardware
description language (HDL) that defines these compo
nents-particularly components, Such as the communication
interface 82, that designers will probably use frequently in
other pipeline designs-thus reducing the design and test
time of future pipeline designs that use the same compo
nents. That is, by using the HDL from the library, the
designer need not redesign previously implemented compo
nents from Scratch, and thus can focus his efforts on the
design of components that were not previously imple
mented, or on the modification of previously implemented
components. Moreover, one can save in the library HDL that
defines multiple versions of the pipeline circuit 80 or mul
tiple versions of the entire pipeline accelerator 44 So that one
can pick and choose among existing designs.

0060 Still referring to FIG. 4, the communication inter
face 82 sends and receives (via the bus interface 91 of
present) data in a format recognized by the message handler
64 (FIG. 3), and thus typically facilitates the design and
modification of the peer-vector machine 40 (FIG. 3). For
example, if the data format is an industry Standard Such as
the Rapid I/O format, then one need not design a custom
interface between the host processor 42 and the pipeline unit
78. Furthermore, by allowing the pipeline unit 78 to com
municate with other peers, Such as the host processor 42
(FIG. 3), via the pipeline bus 50 instead of via a non-bus
interface, one can change the number of pipeline units by
merely connecting or disconnecting them (or the circuit
cards that hold them) to the pipeline bus instead of rede
Signing a non-buS interface from Scratch each time a pipeline
unit is added or removed.

0061 The hardwired pipelines 741-74, perform respec
tive operations on data as discussed above in conjunction
with FIG. 3 and in previously cited U.S. patent app. Ser.
NOS. entitled IMPROVED COMPUTING ARCHI
TECTURE AND RELATED SYSTEM AND METHOD
(Attorney Docket No. 1934-11-3) and entitled PIPE
LINE ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3), and the com
munication shell 84 interfaces the pipelines to the other
components of the pipeline circuit 80 and to other circuits
(such as a data memory 92 discussed below) of the pipeline
unit 78.

0062) The controller 86 synchronizes the hardwired pipe
lines 741-74, in response to SYNC signals and special
pipeline-bus communications (i.e., "events”) from other
peers, and monitors and controls the Sequence in which the

US 2004/O130927 A1

pipelines perform their respective data operations. For
example, a peer, Such as the host processor 42, may pulse a
SYNC signal or send an event to the pipeline unit 78 via the
pipeline bus 50 to indicate that the peer has finished sending
a block of data to the pipeline unit and to cause the
hardwired pipelines 741-74, to begin processing this data.
Typically, a SYNC signal is used to synchronize a time
critical operation, and an event is used to Synchronize a
non-time-critical operation. Typically, an event is a data-leSS
communication that is often called a “doorbell'. But an
event may include data, in which case it is often called an
“event message”. SYNC signals and events are discussed
further in previously cited U.S. patent app. Ser. No.
entitled PIPELINE ACCELERATOR FOR IMPROVED
COMPUTING ARCHITECTURE AND RELATED SYS
TEM AND METHOD (Attorney Docket No. 1934-13-3).
0.063. The exception manager 88 monitors the status of
the hardwired pipelines 741-74, the communication inter
face 82, the communication shell 84, the controller 86, and
the bus interface 91 (if present), and reports exceptions to
the host processor 42 (FIG. 3). For example, if a buffer in
the communication interface 82 overflows, then the excep
tion manager 88 reports this to the host processor 42. The
exception manager may also correct, or attempt to correct,
the problem giving rise to the exception. For example, for an
overflowing buffer, the exception manager 88 may increase
the size of the buffer, either directly or via the configuration
manager 90 as discussed below.
0064. The configuration manager 90 sets the soft con
figuration of the hardwired pipelines 741-74, the commu
nication interface 82, the communication shell 84, the con
troller 86, the exception manager 88, and the interface 91 (if
present) in response to Soft-configuration data from the host
processor 42 (FIG. 3)-as discussed in previously cited
U.S. patent app. Ser. No. entitled IMPROVED
COMPUTING ARCHITECTURE AND RELATED SYS
TEM AND METHOD (Attorney Docket No. 1934-11-3),
the hard configuration denotes the actual topology, on the
transistor and circuit-block level, of the pipeline circuit 80,
and the Soft configuration denotes the physical parameters
(e.g., data width, table size) of the hard-configured compo
nents. That is, Soft configuration data is similar to the data
that can be loaded into a register of a processor (not shown
in FIG. 4) to set the operating mode (e.g., burst-memory
mode) of the processor. For example, the host processor 42
may send Soft-configuration data that causes the configura
tion manager 90 to set the number and respective priority
levels of data and event queues in the communication
interface 82. The exception manager 88 may also send
Soft-configuration data that causes the configuration man
ager 90 to, e.g., increase the Size of an overflowing buffer in
the communication interface 82.

0065. The industry-standard bus interface 91 is a con
ventional bus-interface circuit that reduces the size and
complexity of the communication interface 82 by effectively
offloading Some of the interface circuitry from the commu
nication interface. Therefore, if one wishes to change the
parameters of the pipeline bus 50 or router 61 (FIG. 3), then
he need only modify the interface 91 and not the commu
nication interface 82. Alternatively, one may dispose the
interface 91 in an IC (not shown) that is external to the
pipeline circuit 80. Offloading the interface 91 from the
pipeline circuit 80 frees up resources on the pipeline circuit

Jul. 8, 2004

for use in, e.g., the hardwired pipelines 741-74, and the
controller 86. Or, as discussed above, the bus interface 91
may be part of the communication interface 82.
0066 Still referring to FIG. 4, in addition to the pipeline
circuit 80, the pipeline unit 78 of the accelerator 44 includes
the data memory 92, and, if the pipeline circuit is a PLIC, a
firmware memory 52.
0067. The data memory 92 buffers data as it flows
between another peer, such as the host processor 42 (FIG.
3), and the hardwired pipelines 741-74, and is also a
working memory for the hardwired pipelines. The commu
nication interface 82 interfaces the data memory 92 to the
pipeline bus 50 (via the communication bus 94 and industry
Standard interface 91 if present), and the communication
shell 84 interfaces the data memory to the hardwired pipe
lines 741-74.
0068. The data memory 92 (or other portion of the
pipeline unit 78) may also store a profile of the pipeline unit.
The profile describes the pipeline unit 78 sufficiently for the
host processor 42 (FIG. 3) to appropriately configure itself,
the pipeline unit, and other peers of the peer-vector machine
40 (FIG. 3) for intercommunication. For example, the
profile may identify the data operations and communication
protocols that the pipeline unit 78 is capable of implement
ing. Consequently, by reading the profile during initializa
tion of the peer-vector machine 40, the host processor 42 can
properly configure the message handler 64 (FIG. 3) to
communicate with the pipeline unit 78. This technique is
analogous to the “plug and play technique by which a
computer can configure itself to communicate with a newly
installed peripheral Such as a disk drive. Configuration of the
host processor 42 and pipeline unit 78 are discussed further
in previously cited U.S. patent app. Ser. Nos.
entitled IMPROVED COMPUTING ARCHITECTURE
AND RELATED SYSTEM AND METHOD (Attorney
Docket No. 1934-11-3) and entitled PROGRAM
MABLE CIRCUIT AND RELATED COMPUTING
MACHINE AND METHOD (Attorney Docket No. 1934
14-3).
0069. As discussed above in conjunction with FIG. 3,
where the pipeline circuit 80 is a PLIC, the firmware
memory 52 stores the firmware that sets the hard configu
ration of the pipeline circuit. The memory 52 loads the
firmware into the pipeline circuit 80 during the configuration
of the accelerator 44, and may receive modified firmware
from the host processor 42 (FIG. 3) via the communication
interface 82 during or after the configuration of the accel
erator. The loading and receiving of firmware is further
discussed in previously cited U.S. patent app. Ser. Nos.

entitled IMPROVED COMPUTING ARCHITEC
TURE AND RELATED SYSTEMAND METHOD (Attor
ney Docket No. 1934-11-3), entitled COMPUTING
MACHINE HAVING IMPROVED COMPUTING ARCHI
TECTURE AND RELATED SYSTEM AND METHOD
(Attorney Docket No. 1934-12-3), and entitled
PROGRAMMABLE CIRCUIT AND RELATED COM
PUTING MACHINE AND METHOD (Attorney Docket
No. 1934-14-3).
0070 Still referring to FIG. 4, the pipeline unit 78 may
include a circuit board or card 98 on which are disposed the
pipeline circuit 80, data memory 92, and firmware memory
52. The circuit board 98 may be plugged into a pipeline-bus

US 2004/O130927 A1

connector (not shown) much like a daughter card can be
plugged into a slot of a mother board in a personal computer
(not shown). Although not shown, the pipeline unit 78 may
include conventional ICS and components Such as a power
regulator and a power Sequencer; these ICS/components may
also be disposed on the card 98 as is known.
0.071) Further details of the structure and operation of the
pipeline unit 78 are discussed in previously cited U.S. patent
app. Ser. No. entitled PIPELINE ACCELERATOR
FOR IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-13-3) in.
0072 FIG. 5 is a block diagram of a pipeline unit 100 of
the pipeline accelerator 44 of FIG. 3 according to another
embodiment of the invention. The pipeline unit 100 is
similar to the pipeline unit 78 of FIG. 4 except that the
pipeline unit 100 includes multiple pipeline circuits
80-here two pipeline circuits 80a and 80b. Increasing the
number of pipeline circuits 80 typically allows an increase
in the number n of hardwired pipelines 741-74, and thus an
increase in the functionality of the pipeline unit 100 as
compared to the pipeline unit 78. Furthermore, the pipeline
unit 100 includes a firmware memory 52a for the pipeline
circuit 80a and a firmware memory 52b for the pipeline
circuit 80b. Alternatively, the pipeline circuits 80a and 80b
may share a Single firmware memory.
0073. In the pipeline unit 100, the services components,

i.e., the communication interface 82, the controller 86, the
exception manager 88, the configuration manager 90, and
the optional industry-standard bus interface 91, are disposed
on the pipeline circuit 80a, and the pipelines 741-74n and
the communication shell 84 are disposed on the pipeline
circuit 80b. By locating the services components and the
pipelines 741-74 on separate pipeline circuits 80a and 80b,
respectively, one can include a higher number n of pipelines
and/or more complex pipelines than he/she can where the
Service components and the pipelines are located on the
Same pipeline circuit. Alternatively, the portion of the com
munication shell 84 that interfaces the pipelines 741-74 to
the interface 82 and to the controller 86 may be disposed on
the pipeline circuit 80a.
0.074. Further details of the structure and operation of the
pipeline unit 100 are discussed in previously cited U.S.
patent app. Ser. No. PIPELINE ACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-13-3).
0075 FIG. 6 is a block diagram of the accelerator 44 of
FIG. 3 having multiple pipeline units 78 (FIG. 4) or 100
(FIG. 5) according to an embodiment of the invention. For
clarity, the accelerator 44 is discussed as having multiple
pipeline units 78-78, it being understood that the accel
erator may include multiple pipeline units 100 or a combi
nation of units 78 and 100. By including multiple pipeline
units 78, one can increase the functionality and processing
power of the accelerator 44 as compared to an accelerator
having only one pipeline unit. Furthermore, because each
pipeline unit 78 typically has a common industry-standard
interface, one can easily modify the accelerator 44 by adding
or removing pipeline units.
0.076. In one implementation of the multiple-pipeline
accelerator 44, the industry-standard bus interface 91 is

Jul. 8, 2004

omitted from each pipeline unit 78-78, and a single
external (to the pipeline units) interface 91 and communi
cation bus 94 are common to all of the pipeline units.
Including a Single external buS interface 91 frees up
resources on the pipeline circuits 80 (FIG. 4) as discussed
above in conjunction with FIG. 4. The pipeline units 78
78, may all be disposed on a single circuit board (not shown
in FIG. 6), each pipeline unit may be disposed on a
respective circuit board, or groups of multiple pipeline units
may be respectively disposed on multiple circuit boards. In
the latter two implementations, the bus interface 91 is
disposed on one of the circuit boards. Alternatively, the
pipeline units 78-78, may each include a respective indus
try-standard buS interface 91 as discussed above in conjunc
tion with FIG. 4, and thus may each communicate directly
with the pipeline bus 50 or router 61 (FIG. 3). In this
implementation, the pipeline units 78-78, may be disposed
on a single or multiple circuit boards as discussed above.

0077. Each of the pipeline units 78-78, is a peer of the
host processor 42 (FIG. 3) and of each other. That is, each
pipeline unit 78 can communicate directly with any other
pipeline unit via the communication bus 94, and can com
municate with the host processor 42 via the communication
bus 94, the bus interface 91, the router 61 (if present), and
the pipeline bus 50. Alternatively, where the pipeline units
78-78, each include a respective bus interface 91, then each
pipeline unit can communicate directly with the host pro
cessor 42 via the router 61 (if present) and the pipeline bus
50.

0078. The operation of the multi-pipeline-unit accelerator
44 is now described by way of two examples.

0079. In a first example, the pipeline unit 78 transfers
data to the pipeline 78, which processes the data in a
time-critical manner; thus, the pipeline units 78 and 78, use
one or more SYNC signals to synchronize the data transfer
and processing. Typically, a SYNC signal is fast enough to
trigger a time-critical function, but requires Significant hard
ware resources, comparatively, an event typically is not fast
enough to trigger a time-critical function, but requires Sig
nificantly fewer hardware resources. AS discussed in previ
ously cited U.S. patent app. Ser. No. entitled PIPE
LINE ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3), because a
SYNC signal is routed directly from peer to peer, it can
trigger a function more quickly than an event, which
traverses, e.g., the pipeline bus 50 (FIG. 3), and the com
munication bus 94. But because they are separately routed,
the SYNC Signals require dedicated circuitry, Such as rout
ing lines and buffers of the pipeline circuit 80 (FIG. 4).
Conversely, because they use the existing data-transfer
infrastructure (e.g. the pipeline bus 50 and the communica
tion bus 94), the events require fewer dedicated hardware
resources. Consequently, designers tend to use events to
trigger all but the most time-critical functions.
0080 First, the pipeline unit 78, sends data to the pipeline
unit 78, by driving the data onto the communication bus 94.
Typically, the pipeline unit 78 generates a message that
includes the data and a header that contains the address of
the pipeline unit 78, If the pipeline unit 78 were to send the
data to multiple pipeline units 78, then it may do So in one
of two ways. Specifically, the pipeline unit 78 may sequen

US 2004/O130927 A1

tially Send Separate messages to each of the destination
pipeline units 78, each message including a header contain
ing the address of a respective destination unit. Alterna
tively, the pipeline unit 78 may simultaneously send the
data to each of the destination pipeline units 78 by including
in Single message the data and a header containing the
addresses of each destination pipeline unit. The Sending of
data is further discussed in previously cited U.S. patent app.
Ser. No. entitled PIPELINEACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-13-3).
0081) Next, the pipeline unit 78, receives the data.
Because the pipeline units 78-78, are each coupled to the
common communication bus 94, each pipeline unit 78-78,
determines whether or not it is an intended recipient of the
data. For example, each pipeline unit 78-78, determines
whether its address is included in the header of the message.
In this example, the units 78-78, determine that they are
not intended recipients of the data, and thus ignore the data,
i.e., do not load the data into their data memories 92 (FIG.
4). Conversely, the pipeline unit 78, determines that it is an
intended recipient of the data, and thus loads the data into its
data memory 92. The receiving of data is discussed further
in U.S. patent app. Ser. No. entitled PIPELINE
ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3).
0082 Then, when the pipeline unit 78, is ready to process
the received data, a peer, Such as the pipeline unit 78, or an
external device (not shown) pulses a SYNC signal to cause
the pipeline unit 78 to process the data in a timely manner.
There exist a number of techniques by which the peer/device
that pulses the SYNC signal may determine when the
pipeline unit 78, is ready to process the received data. For
example, the peer/device may merely pulse the SYNC signal
a predetermined time after the pipeline unit 78 sends the
data. Presumably, the predetermined time is long enough to
allow the pipeline unit 78, to receive and load the data into
its data memory 92 (FIG. 4). Alternatively, the pipeline unit
78, may pulse a SYNC signal to inform the peer/device that
it is ready to process the received data.
0083) Next, in response to the pulsed SYNC signal, the
pipeline unit 78 processes the received data. The processing
of data by a pipeline unit is discussed further in previously
cited U.S. patent app. Ser. No. entitled PIPELINE
ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3).
0084. Then, when the pipeline unit 78, is finished pro
cessing the data, a peer, an external device (not shown), or
the unit 78, itself may pulse a SYNC signal to notify the
pipeline unit 78 to Send more data.
0085. In a second example, the host processor 42 (FIG.
3) transfers data to the pipeline 78, which processes the data
in a non-time-critical manner; thus the host processor and
the pipeline unit 78, use one or more events to Synchronize
the data transfer and processing for the reasons discussed
above.

0086) First, the host processor 42 (FIG. 3) sends data to
the pipeline unit 78, by driving the data onto the pipeline bus

Jul. 8, 2004

50 (FIG. 3). Typically, the host processor 42 generates a
message that includes the data and a header containing the
address of the pipeline unit 78. If the host processor 42 were
to send the data to multiple pipeline units 78, then it may do
So in one of the two ways discussed above in conjunction
with the first example.

0087 Next, the pipeline unit 78, receives the data from
the pipeline bus 50 (FIG. 3) via the industry-standard bus
interface 91 and the communication bus 94. Because the
pipeline units 78-78, are each coupled to the common
communication bus 94, each pipeline unit determines
whether it is an intended recipient of the data in the manner
discussed above in conjunction with the first example.
0088. Then, when the pipeline unit 78, is ready to process
the received data, a peer, Such as the host processor 42 (FIG.
3), or an external device (not shown), generates an event on
the pipeline bus 50 or directly on the communication bus 94
to cause the pipeline unit 78, to process the data in a timely
manner. There exist a number of techniques by which the
peer/device that generates the event may determine when the
pipeline unit 78, is ready to process the received data. For
example, the peer/device may merely generate the event a
predetermined time after the host processor 42 sends the
data. Presumably, the predetermined time is long enough to
allow the pipeline unit 78, to receive and load the data into
its data memory 92 (FIG. 4). Alternatively, the pipeline unit
78, may generate an event to inform the peer/device that it
is ready to process the received data.
0089 Next, the pipeline unit 78, receives the event. The
receiving of an event is discussed in previously cited U.S.
patent app. Ser. No. entitled PIPELINE ACCEL
ERATOR FOR IMPROVED COMPUTING ARCHITEC

TURE AND RELATED SYSTEMAND METHOD (Attor
ney Docket No. 1934-13-3).
0090 Then, in response to the received event, the pipe
line unit 78, processes the received data. The processing of
data by a pipeline unit 78, is discussed further in previously
cited U.S. patent application Ser. No. entitled PIPE
LINE ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3).
0091 Next, when the pipeline unit 78, is finished pro
cessing the data, a peer, an external device (not shown), or
the unit 78, itself may generate an event to notify the host
processor 42 (FIG. 3) to send more data.
0092 Still referring to FIG. 6, alternative implementa
tions of the accelerator 44 are contemplated. For example,
although the above-discussed first and Second examples of
operation respectively use SYNC signals and events exclu
Sively, it is contemplated that the accelerator 44 can use both
SYNC signals and events in combination. Furthermore,
other peers can use one or more of the multiple pipeline units
78 or 100 merely for bulk storage of data in their respective
data memories 92. In addition, a designer may replace the
host processor 42 (FIG. 3) with one or more of the pipeline
units 78 or 100, which together form a “host” peer that
performs the functions of the host processor. Moreover, one
or more of the pipeline units 78 or 100 may act as one or
more message-distribution peers. For example, Suppose that
the host processor 42 generates a message for transmission
to multiple Subscriber peers. The host processor 42 may send

US 2004/O130927 A1

the message to a message-distribution peer, which then
distributes the message to each of the Subscriber peers.
Consequently, the message-distribution peer, not the host
processor 42, undertakes the burden of distributing the
message, and thus allows the host processor to devote more
time and resources to other tasks.

0093 FIG. 7 is a block diagram of the accelerator 44
(FIG. 3) having multiple pipeline units 78 (FIG. 4) or 100
(FIG. 5) according to another embodiment of the invention.
0094) The accelerator 44 of FIG. 7 is the same as the
accelerator 44 of FIG. 6, except that the accelerator 44 of
FIG. 7 includes a communication-bus router 110 for routing
data between the pipeline units 78-78, and other peers, such
as the host processor 42 (FIG. 3), and devices (not shown)
that are coupled to the pipeline bus 50 (FIG.3). For clarity,
the accelerator 44 of FIG. 7 is discussed as having multiple
pipeline units 78-78, it being understood that the accel
erator may include multiple pipeline units 100 or a combi
nation of units 78 and 100.

0.095 The communication-bus router 110 is coupled to
the pipeline units 78-78, via respective branches 94-94 of
the communication bus 94, and is coupled to the industry
standard bus interface 91 (if present) via a bus 112. Alter
natively, as discussed above in conjunction with FIG. 6,
each pipeline unit 78-78, may include a respective interface
91 on board, and thus the external interface 91 can be
omitted such that the router 110 is directly coupled to the
pipeline bus 50 (or router 61 if present) of FIG. 3.
0096. The router 110 routes signals from the pipeline bus
50 (FIG. 3) to the respective destination pipeline unit or
units 78-78, and also routes signals from a Source pipeline
unit to one or more destination pipeline units or to the
pipeline bus. Consequently, the router 110 offloads from
each of the pipeline units 78-78, the function of determin
ing whether a Signal on the communication buS 94 is
intended for that pipeline unit. This offloading may free up
resources on the pipeline circuit 80 (FIG. 4) of each pipeline
unit 78-78, and thus may allow an increase in the func
tionality of each pipeline unit.
0097. Still referring to FIG. 7, the operation of the
multi-pipeline-unit accelerator 44 with the router 110 is now
described. Because the operation is similar to that described
above for the accelerator 44 of FIG. 6, the below description
highlights the operational differences between the accelera
tors of FIGS. 6 and 7.

0098. In a first example, the pipeline unit 78 transfers
data to the pipeline 78, which processes the data in a
time-critical manner; thus, the pipeline units 78 and 78, use
one or more SYNC signals to synchronize the data transfer
and processing as discussed above in conjunction with the
first example of FIG. 6.
0099 First, the pipeline unit 78, sends data to the pipeline
unit 78, by driving the data onto the branch 94 of the
communication bus. Typically, the pipeline unit 78 gener
ates a message that includes the data and a header that
contains the address of the pipeline unit 78.
0100 Next, the router 110 receives the data, determines
that the destination of the data is the pipeline unit 78, and
drives the data onto the branch 94 of the communication
bus. Typically, the router 110 determines the destination of

Jul. 8, 2004

the data by analyzing the header of the message containing
the data and extracting the destination address from the
header. Consequently, because the router 110 determines the
proper destination of the data, the pipeline unit 78, can
merely accept the data from the router without determining
whether it is an intended recipient of the data. Alternatively,
the pipeline 78, may determine whether it is an intended
recipient of the data, and generate an exception (discussed in
previously cited U.S. patent app. Ser. Nos. entitled
IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-11-3), entitled COMPUTING MACHINE
HAVING IMPROVED COMPUTING ARCHITECTURE
AND RELATED SYSTEM AND METHOD (Attorney
Docket No. 1934-12-3), and entitled PIPELINE
ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3) if it is not an
intended recipient. The pipeline unit 78, can send this
exception to the host processor 42 (FIG. 3) via the router
110, the industry-standard bus interface 91 (if present), the
router 61 (if present), and the pipeline bus 50 (FIG. 3).
0101 Then, the pipeline unit 78, loads the data from the
bus branch 94. The loading of data by a pipeline unit is
further discussed in previously cited U.S. patent app. Ser.
No. entitled PIPELINE ACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-13-3).
0102) Next, when the pipeline unit 78, is ready to process
the received data, a peer, Such as the pipeline unit 78, or an
external device (not shown) pulses a SYNC signal to cause
the pipeline unit 78 to process the data in a timely manner
as discussed above in conjunction with the first example of
F.G. 6.

0103) Then, in response to the pulsed SYNC signal, the
pipeline unit 78 processes the received data as discussed
above in conjunction with the first example of FIG. 6.
0.104) Next, when the pipeline unit 78, is finished pro
cessing the data a peer, an external device (not shown), or
the unit 78, itself may pulse a SYNC signal to notify the
pipeline unit 78 to Send more data.
0105. In a second example, the host processor 42 (FIG.
3) transfers data to the pipeline 78, which processes the data
in a non-time-critical manner; thus the host processor and
the pipeline unit 78, use one or more events to Synchronize
the data transfer and processing for the reasons discussed
above in conjunction with FIG. 6.

0106 First, the host processor 42 (FIG. 3) sends data to
the pipeline unit 78, by driving the data onto the pipeline bus
50 (FIG. 3). Typically, the host processor 42 generates a
message that includes the data and a header containing the
address of the pipeline unit 78.

0107 Next, the router 110 receives the data from the
pipeline bus 50 (FIG. 3) via the industry-standard bus
interface 91 (if present) and the bus 112.
0108. Then, the router 110 determines that the destination
of the data is the pipeline unit 78, and drives the data onto
the branch 94 of the communication bus. Typically, the
router 110 determines the destination of the header as

US 2004/O130927 A1

discussed above in conjunction with the first example of
FIG. 7. Consequently, because the router 110 determines the
proper destination of the data, the pipeline unit 78 can
merely accept the data from the router without determining
whether it is an intended recipient of the data. Alternatively,
the pipeline 78, may determine whether it is an intended
recipient of the data, generate an exception (discussed in
previously cited U.S. patent app. Ser. Nos. entitled
IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-11-3), entitled COMPUTING MACHINE
HAVING IMPROVED COMPUTING ARCHITECTURE
AND RELATED SYSTEM AND METHOD (Attorney
Docket No. 1934-12-3), and entitled PIPELINE
ACCELERATOR FOR IMPROVED COMPUTING
ARCHITECTURE AND RELATED SYSTEM AND
METHOD (Attorney Docket No. 1934-13-3) if it is not an
intended recipient, and Send the exception to the host
processor 42 (FIG. 3) as discussed above in conjunction
with the second example of FIG. 6.
0109) Next, the pipeline unit 78, loads the data from the
bus branch 94. The loading of data by a pipeline unit is
further discussed in previously cited U.S. patent app. Ser.
No. entitled PIPELINE ACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-13-3).
0110. Then, when the pipeline unit 78, is ready to process
the received data, a peer, Such as the host processor 42 (FIG.
3), or an external device (not shown), generates an event on
the pipeline bus 50 or on one of the branches 94-94 of
the communication bus to cause the unit 78 to process the
data in a timely manner as discussed above in conjunction
with the second example of FIG. 6.
0111 Next, the router 110 receives the event, determines
that it is intended for the pipeline unit 78, and drives the
event onto the bus branch 94.
0112 Then, the pipeline unit 78, loads the event from the
bus branch 94. The loading of an event by a pipeline unit 78
is discussed in previously cited U.S. patent app. Ser. No.

entitled PIPELINE ACCELERATOR FOR
IMPROVED COMPUTING ARCHITECTURE AND
RELATED SYSTEM AND METHOD (Attorney Docket
No. 1934-13-3).
0113. Next, in response to the received event, the pipeline
unit 78 processes the received data.
0114. Then, when the pipeline unit 78, is finished pro
cessing the data, a peer, an external device (not shown), or
the unit 78, itself may generate an event to notify the host
processor 42 (FIG. 3) to send more data.
0115 Still referring to FIG. 7, although the first and
Second examples of operation respectively use SYNC Sig
nals and events exclusively, it is contemplated that the
accelerator 44 can use a combination of both SYNC signals
and events.

0116 FIG. 8 is a block diagram of the accelerator 44 of
FIG. 3 including multiple groups 120 of multiple pipeline
units 78 (FIG. 4) or 100 (FIG. 5) according to an embodi
ment of the invention. Including multiple groups 120 of
pipeline units increases the functionality of the accelerator

Jul. 8, 2004

44, and allows a designer to increase the accelerator's
efficiency by grouping pipeline units that perform related
operations. For clarity, the accelerator 44 of FIG. 8 is
discussed as having multiple pipeline units 78, it being
understood that the accelerator may include multiple pipe
line units 100 or a combination of units 78 and 100.
Furthermore, the pipeline units 78 do not include industry
standard bus interfaces 91 (this interface is external in this
embodiment), although they may in another embodiment.
0117 The accelerator 44 includes six groups 120-120
of pipeline units 78, each group having three pipeline units
and a respective intra-group communication-bus router 110
110 that interconnects the pipeline units to each other and
to the other pipeline-unit groups. Although the accelerator
44 is discussed as including six groups 120-120 of three
pipeline units 78 each, other implementations of the accel
erator may include virtually any number of groups of any
number pipeline units, and not all the groups need have the
Same number of pipeline units. Furthermore, the communi
cation-bus routers 110-110 may be omitted as discussed
above in conjunction with the accelerator 44 of FIG. 6.
0118. The pipeline-unit group 120, includes three pipe
line units 78-78, which are connected to an intra-group
communication-bus router 110 via branches 94, 94, and
94, respectively, of a communication bus in a manner
similar to that discussed above in conjunction with FIG. 7.
The other groups 120-120 are similar.
0119) The communication-bus routers 110-110 of the
groups 120-120 are connected to a first-level router 122
via respective branches 124-124 of a first-level bus 126.
The router 122 and bus 126 allow the pipeline units
78-78 to communicate with each other.
(0120) Similarly, the communication-bus routers 110
110 are connected to a first-level router 122 via respective
branches 128-128 of a first-level bus 126. The router 122.
and bus 126 allow the pipeline units 78-78s to commu
nicate with each other.

0121 The first-level routers 122 and 122 are connected
to a second-level router 130 via respective branches 132
132 of a second-level bus 134. The router 130 and bus 134
allow the pipeline units 78-78s to communicate with each
other and with other peerS/devices as discussed below.
0.122 The pipeline bus 50 and a secondary pipeline bus
136 are coupled to the second-level router 130 via the
respective industry-standard bus interfaces 91 and 91. The
Secondary pipeline buS 136 may be connected to peers, Such
as the host processor 42 (FIG. 3), or peripherals, Such as a
hard-disk drive (not shown), that are not coupled to the
pipeline bus 50. Furthermore, either or both of the busses 50
and 136 may be coupled to peers or peripherals via a
network or the internet (neither shown) Such that the accel
erator 44 can be remotely located from other peers, Such as
the host processor 42 (FIG. 3).
0123. A bus 138 directly connects one or more SYNC
signals to all of the pipeline units 78-78s and to other
peers, such as the host processor 42 (FIG.3), or devices (not
shown).
0.124. Still referring to FIG. 8, in one example of opera
tion, each group 120-120 of pipeline units 78 processes
data from a respective Sensor of a Sonar array (not shown)

US 2004/O130927 A1

that is coupled to the Secondary pipeline buS 136. Because
the pipeline units 78-78 of the group 120 are intercon
nected by a Single router 110, these pipeline units can
communicate with each other more quickly than they can
with the pipeline units 78-78s of the other groups 120
120. This higher communication speed is also present in
each of the other groupS 120-120. Consequently, a
designer can increase the processing Speed of the accelerator
44 by grouping together pipeline units that frequently trans
fer data or otherwise communicate among themselves.
0.125. In general, the pipeline units 78-78s communi
cate with each other and with peers, Such as the host
processor 42 (FIG. 3), and devices coupled to the buses 50
and 136 in a manner similar to that discussed above in
conjunction with FIG. 7. For example, a sensor (not shown)
coupled to the bus 136 communicates with the pipeline unit
78 via the industry-standard bus interface 91, the second
level router 130, the first level router 122, and the intra
group router 110. Similarly, the pipeline unit 78 commu
nicates with the pipeline unit 78, via the routers 110, 122,
and 110s, and communicates with the pipeline unit 78 via
the routers 110, 122, 130, 122, and 110.
0.126 The preceding discussion is presented to enable a
perSon Skilled in the art to make and use the invention.
Various modifications to the embodiments will be readily
apparent to those skilled in the art, and the generic principles
herein may be applied to other embodiments and applica
tions without departing from the Spirit and Scope of the
present invention. Thus, the present invention is not
intended to be limited to the embodiments shown, but is to
be accorded the widest Scope consistent with the principles
and features disclosed herein.

What is claimed is:
1. A pipeline accelerator, comprising:
a communication bus, and
a plurality of pipeline units each coupled to the commu

nication bus and each comprising a respective hard
wired-pipeline circuit.

2. The pipeline accelerator of claim 1 wherein each of the
pipeline units comprises:

a respective memory coupled to the hardwired-pipeline
circuit; and

wherein the hardwired-pipeline circuit is operable to,
receive data from the communication bus,
load the data into the memory,
retrieve the data from the memory,
process the retrieved data, and
drive the processed data onto the communication bus.

3. The pipeline accelerator of claim 1 wherein each of the
pipeline units comprises:

a respective memory coupled to the hardwired-pipeline
circuit; and

wherein the hardwired-pipeline circuit is operable to,
receive data from the communication bus,
process the data,
load the processed data into the memory,

Jul. 8, 2004

retrieve the processed data from the memory, and
load the retrieved data onto the communication bus.

4. The pipeline accelerator of claim 1 wherein each of the
hardwired-pipeline circuits is disposed on a respective field
programmable gate array.

5. The pipeline accelerator of claim 1, further comprising:

a pipeline bus, and

a pipeline-buS interface coupled to the communication
bus and to the pipeline bus.

6. The pipeline accelerator of claim 1, further comprising:

wherein the communication bus comprises a plurality of
branches, a respective branch coupled to each pipeline
unit, and

a router coupled to each of the branches.
7. The pipeline accelerator of claim 1, further comprising:

wherein the communication bus comprises a plurality of
branches, a respective branch coupled to each pipeline
unit,

a router coupled to each of the branches,
a pipeline bus, and

a pipeline-buS interface coupled to the router and to the
pipeline bus.

8. The pipeline accelerator of claim 1, further comprising:
wherein the communication bus comprises a plurality of

branches, a respective branch coupled to each pipeline
unit,

a router coupled to each of the branches,
a pipeline bus,

a pipeline-buS interface coupled to the router and to the
pipeline bus, and

a Secondary bus coupled to the router.
9. The pipeline accelerator of claim 1 wherein:

the communication bus is operable to receive data
addressed to one of the pipeline units, and

the one pipeline circuit is operable to accept the data; and

the other pipeline circuits are operable to reject the data.
10. The pipeline accelerator of claim 1, further compris

ing:

wherein the communication bus comprises a plurality of
branches, a respective branch coupled to each pipeline
unit,

a router coupled to each of the branches and operable to,

receive data addressed to one of the pipeline units, and

provide the data to the one pipeline unit via the respec
tive branch of the communication bus.

11. A computing machine, comprising:

a proceSSOr,

a pipeline bus coupled to the processor, and

US 2004/O130927 A1

a pipeline accelerator comprising,
a communication bus,
a pipeline-buS interface coupled between the pipeline
bus and the communication bus, and

a plurality of pipeline units each coupled to the com
munication bus and each comprising a respective
hardwired-pipeline circuit.

12. The computing machine of clam 11 wherein:
the processor is operable to generate a message that

identifies one of the pipeline units and to drive the
message onto the pipeline bus,

the pipeline-buS interface is operable to couple the mes
Sage to the communication bus,

the pipeline units are each operable to analyze the mes
Sage,

the identified pipeline unit is operable to accept the
message, and

the other pipeline circuits are operable to reject the
meSSage.

13. The computing machine of claim 11, further compris
ing:

wherein the communication bus comprises a plurality of
branches, a respective branch coupled to each pipeline
unit,

wherein the processor is operable to generate a message
that identifies one of the pipeline units and to drive the
message onto the pipeline bus, and

a router coupled to each of the branches and to the
pipeline-buS interface and operable to receive the mes
Sage from the pipeline-buS interface and to provide the
message to the identified pipeline unit.

14. The computing machine of claim 11, further compris
ing:

wherein the communication bus comprises a plurality of
branches, a respective branch coupled to each pipeline
unit,

a Secondary bus, and
a router coupled to each of the branches, to the pipeline
buS interface, and to the Secondary bus.

15. A method, comprising:
Sending data to first of a plurality of pipeline units via a

communication bus, each pipeline unit including a
respective hardwired pipeline; and

processing the data with the first pipeline unit.

Jul. 8, 2004

16. The method of claim 15 wherein sending the data
comprises:

Sending the data to a router; and
providing the data to the first pipeline unit with the router

via a respective first branch of the communication bus.
17. The method of claim 15 wherein sending the data

comprises Sending the data to the first pipeline unit with a
processor.

18. The method of claim 15 wherein sending the data
comprises Sending the data to the first pipeline with a Second
of the plurality of pipeline units.

19. The method of claim 15, further comprising driving
the processed data onto the communication bus with the first
pipeline unit.

20. The method of claim 15 wherein processing the data
with the first pipeline unit comprises:

receiving the data from the communication bus with a
hardwired-pipeline circuit,

loading the data into a memory with the hardwired
pipeline circuit,

retrieving the data from the memory with the hardwired
pipeline circuit, and

processing the retrieved data with the hardwired-pipeline
circuit.

21. The method of claim 15, further comprising:
wherein processing the data with the first pipeline unit

comprises,

receiving the data from the communication bus with a
hardwired-pipeline circuit,

processing the received data with the hardwired-pipe
line circuit, and

loading the processed data into a memory with the
hardwired-pipeline circuit; and

retrieving the processed data from the memory and driv
ing the processed data onto the communication bus
with the hardwired-pipeline circuit.

22. The method of clam 15, further comprising:
generating a message that includes the data and that

identifies the first pipeline unit as a recipient of the
message, and

wherein Sending the data to the first pipeline unit com
prises determining from the message that the first
pipeline is a recipient of the message.

