24-02-2022 дата публикации
Номер: US20220058369A1
Systems and methods for automated stereology are provided. In some embodiments, an active deep learning approach may be utilized to allow for a faster and more efficient training of a deep learning model for stereology analysis. In other embodiments, existing deep learning models for stereology analysis may be re-tuned to develop greater accuracy for a given data set of interest, either with or without an active deep learning approach. A method can include: capturing a data set including a stack of images of a three-dimensional (3D) object; determining whether an existing deep learning model is appropriate for use on the stack of images (or for re-tuning); performing pre-processing on the data set; performing a training of a deep learning model; applying the deep learning model to obtain a confidence score for each label of the data set; reviewing, by a user, at least some labels in the active set to verify whether the label displays sufficient agreement with an expected result, and moving only those that display sufficient agreement to a training set; and performing a stereology analysis using the trained deep learning model.
Подробнее