Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 15191. Отображено 100.
10-06-2002 дата публикации

ПОТОЧНАЯ ЛИНИЯ ДЛЯ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ

Номер: RU0000023292U1

Поточная линия для получения пентаоксида ванадия, включающая последовательно установленные бак раствора щелочи, реактор для выщелачивания технического пентаоксида ванадия, нутч-фильтр для отделения нерастворимого остатка, реактор-кристаллизатор, фильтр-пресс и печь для разложения метаванадата аммония, отличающаяся тем, что дополнительно установлены реактор для выщелачивания нерастворимого остатка, снабженный баком-дозатором гипохлорита натрия и баком-нейтрализатором, снабженным баком-дозатором восстановителя, при этом реактор для выщелачивания нерастворимого остатка установлен между нутч-фильтром и реактором-кристаллизатором и соединен с баком раствора щелочи, а бак-нейтрализатор установлен на магистрали слива раствора из фильтр-пресса. (19) RU (11) 23 292 (13) U1 (51) МПК C01G 31/02 (2000.01) C22B 34/22 (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 2001130623/20 , 16.11.2001 (24) Дата начала отсчета срока действия патента: 16.11.2001 (46) Опубликовано: 10.06.2002 (73) Патентообладатель(и): ООО Научно-производственная экологическая фирма "ЭКО-технология" 2 3 2 9 2 (72) Автор(ы): Кудрявский Ю.П., Трапезников Ю.Ф., Глухих С.М., Казанцев В.П., Аликин В.И., Потеха С.И., Бездоля И.Н., Тарасенко В.В. R U Адрес для переписки: 618400, Пермская обл., г. Березники, ул. Деменева, 7, кв.3, Ю.П. Кудрявскому (71) Заявитель(и): ООО Научно-производственная экологическая фирма "ЭКО-технология" 2 3 2 9 2 R U (57) Формула полезной модели Поточная линия для получения пентаоксида ванадия, включающая последовательно установленные бак раствора щелочи, реактор для выщелачивания технического пентаоксида ванадия, нутч-фильтр для отделения нерастворимого остатка, реактор-кристаллизатор, фильтр-пресс и печь для разложения метаванадата аммония, отличающаяся тем, что дополнительно установлены реактор для выщелачивания нерастворимого остатка, снабженный баком-дозатором гипохлорита натрия и баком-нейтрализатором, ...

Подробнее
10-10-2004 дата публикации

ПРОИЗВОДСТВЕННЫЙ УЧАСТОК ДЛЯ ПОЛУЧЕНИЯ ТОВАРНОГО ПЕНТАОКСИДА ВАНАДИЯ

Номер: RU0000041021U1

Производственный участок для получения товарного пентаоксида ванадия, включающий реактор для выщелачивания технологического пентаоксида ванадия, соединенный с баком для приготовления и подачи раствора щелочи, бак-дозатор для подачи в реактор раствора гипохлорида натрия, фильтр для отделения после выщелачивания нерастворимого остатка, бак-кристаллизатор метаванадата аммония, нижний слив которого направлен на фильтр, выход твердой фазы из которого имеет соединения с прокалочной печью, отличающийся тем, что дополнительно установлен бак-сборник маточного растворов и промвод метаванадата аммония, а после прокалочной печи абсорбер с ложным днищем и шаровой насадкой для очистки пылегазовой смеси, отходящей из прокалочной печи от соединений ванадия, абсорбер соединен через разбрызгивающие устройство с баком для приготовления и подачи раствора щелочи, сливной патрубок абсорбера через запорное устройство соединен с циркуляционным баком, нижний патрубок которого имеет соединения с разбрызгивающим устройством абсорбера и реактором для выщелачивания, бак-сборник маточных растворов и промвод соединен с реактором для обезвреживания стоков, один из верхних патрубков которого имеет соединение через дозатор с баком-сборником растворов, содержащих соли железа (II), а другой патрубок соединен с емкостью для щелочных реагентов, патрубок нижнего слива оксигидратной пульпы через запорную аппаратуру и транспортную магистраль соединен с дополнительно установленным фильтр-прессом для выделения из пульпы осадка оксигидратов металлов, корыто фильтра-пресса через шнековый питатель соединено со смесителем, в который направлены через дозирующие устройство и запорную аппаратуру, транспортную магистраль и трубопроводы из бункеров-дозаторов магнийсодержащий оксидные материалы, инертные наполнители, нерастворимый остаток и раствор, содержащего хлорид магния, смеситель имеет соединение с узлом формования, термообработки и отверждения композиционной смеси. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 41 021 (13) ...

Подробнее
10-05-2008 дата публикации

ПРОИЗВОДСТВЕННОЕ ОТДЕЛЕНИЕ ДЛЯ ПОЛУЧЕНИЯ ОКСИДОВ МЕТАЛЛОВ

Номер: RU0000072963U1

Производственное отделение для получения оксидов металлов, включающее транспортируемую емкость с хлоридами металлов, имеющую герметичное соединение с емкостью для приготовления и дозировки исходных хлоридных растворов, снабженную мешалкой и патрубками на крышке емкости, обогреваемый реактор с мешалкой для осаждения оксигидраторв металлов, фильтровальное оборудование, бак-сборник маточного раствора, бак-репульпатор, сушильную камеру, прокалочную печь, бункер-сборник готовых продуктов, затарочную машину, запорно-регулирующую арматуру, насосы, трубопроводы, отличающееся тем, что один из патрубков на крышке емкости с исходными растворами хлоридов ниобия и/или тантала имеет соединение с баком-сборником промвод оксидов ниобия и/или тантала, другой патрубок подсоединен к баку-дозатору соляной кислоты, на крышке реактора для осаждения оксигидратов ниобия и/или тантала имеется загрузочный люк, в который направлен выход из дозатора твердых хлоридов натрия и/или калия, соединенный с расходной емкостью хлоридов натрия и/или калия, один из патрубков на крышке реактора имеет соединение с баком-сборником маточных растворов, а другой патрубок соединен с баком-дозатором раствора гидроксида натрия, соединенным с емкостью, снабженной мешалкой для приготовления исходного раствора гидроксида натрия, сушильная камера для оксигидратов ниобия и/или тантала установлена непосредственно после фильтра - 1, выход прокаленного осадка из прокалочной печи направлен в загрузочный конус бака-репульпатора, подсоединенного к линии раздачи дистиллированной воды, патрубок нижнего слива суспензии из бака-репульпатора соединен с фильтром - 2, имеющим соединение с линией раздачи дистиллированной воды, слив промвод с фильтра - 2 соединен со сборником промвод, выход влажного осадка оксидов ниобия и/или тантала направлен в вакуум-сушильный агрегат, соединенный с бункером-сборником готового продукта и затарочной машиной. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 72 963 (13) U1 (51) МПК C01G C01G C22B C22B 33/00 (2006. ...

Подробнее
10-05-2008 дата публикации

ТЕХНОЛОГИЧЕСКОЕ ОТДЕЛЕНИЕ ДЛЯ ПРОИЗВОДСТВА ОКСИДОВ МЕТАЛЛОВ

Номер: RU0000072964U1

Технологическое отделение для производства оксидов металлов, включающее транспортируемую емкость с хлоридами металлов, имеющую герметичное соединение с емкостью для приготовления и дозировки исходных хлоридных растворов, снабженную мешалкой, обогреваемый реактор с мешалкой для осаждения оксигидраторв металлов, фильтровальное оборудование, бак-сборник маточного раствора, бак-репульпатор, сушильную камеру, прокалочную печь, бункер-сборник готовых продуктов, затарочную машину, запорно-регулирующую арматуру, насосы, трубопроводы, отличающееся тем, что один из патрубков на крышке емкости с исходными растворами хлоридов ниобия и/или тантала имеет соединение с баком-сборником промвод, оксидов ниобия и/или тантала, другой патрубок подсоединен к баку-дозатору соляной жидкости, на крышке реактора для осаждения оксигидратов ниобия и/или тантала имеется патрубок для соединения с баком-сборником маточных растворов и патрубок, соединяющий реактор с расходной емкостью с аммиачной водой, снабженной обогреваемой рубашкой и барботером сжатого воздуха, выход аммиачно-воздушной смеси из расходной емкости с аммиачной водой направлен в диспергатор, помещенный в реакторе для осаждения оксигидратов ниобия и/или тантала, емкость для приготовления исходных хлоридных растворов и реактор для осаждения оксигидратов ниобия или тантала имеют соединение с баком-дозатором водного раствора поверхностно-активных веществ, сушильная камерой для обезвоживания оксигидратов ниобия и/или тантала установлена непосредственно после фильтра - 1, выход прокаленного осадка из прокалочной печи направлен в загрузочный конус бака-репульпатора, подсоединенного к линии раздачи дистиллированной воды, патрубок нижнего слива суспензии из бака-репульпатора соединен с фильтром - 2, имеющим соединения с линией раздачи дистиллированной воды, слив промвод с фильтра - 2 соединен со сборником промвод, выход влажного осадка оксидов ниобия и/или тантала из фильтра - 2 направлен в распылительную сушилку, снабженную циклоном и ...

Подробнее
10-07-2008 дата публикации

АППАРАТУРНО-ТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС ДЛЯ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ

Номер: RU0000074636U1
Принадлежит: ООО "Энергострой"

Аппаратурно-технологический комплекс для получения пентаоксида ванадия, включающий реактор с мешалкой для щелочной обработки исходных ванадийсодержащих материалов, соединенный с баком для приготовления и подачи раствора гидроксида натрия, бак-кристаллизатор метаванадата аммония, фильтр - 1 для выделения осадка метаванадата аммония из суспензии и его промывки, прокалочную печь, бак-сборник маточных растворов и промвод метаванадата аммония, реактор для обезвреживания и нейтрализации ванадийсодержащих сточных вод, соединенный через дозатор с баком-сборником железо (II) - содержащих растворов и баком для приготовления и подачи раствора гидроксида натрия, реактор для обезвреживания и нейтрализации ванадийсодержащих сточных вод соединен с фильтром - 2, отличающийся тем, что реактор для щелочной обработки исходных ванадийсодержащих материалов имеет герметичное соединение с транспортируемой емкостью с окситрихлоридом ванадия, причем выход окситрихлорида ванадия из транспортируемой емкости через запорно-регулирующую арматуру направлен в распределительное устройство, расположенное в реакторе ниже уровня мешалки, бак-кристаллизатор имеет соединения с последовательно установленным баком-дозатором и расходно-накопительным баком для приготовления и подачи раствора хлорида аммония, на крышке бака-кристаллизатора имеется загрузочный люк, в который направлен выход из бункера-сборника хлорида натрия, после фильтра - 1 установлен бак-репульпатор метаванадата аммония, патрубок нижнего слива суспензии имеет соединение с фильтром - 1. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 74 636 (13) U1 (51) МПК C22B 34/22 (2006.01) C01G 31/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2008105007/22 , 11.02.2008 (24) Дата начала отсчета срока действия патента: 11.02.2008 (45) Опубликовано: 10.07.2008 (73) Патентообладатель(и): ООО "Энергострой" (RU) Ñòðàíèöà: 1 U 1 7 4 6 3 6 R U U 1 Формула полезной ...

Подробнее
27-02-2009 дата публикации

ПРОМЫШЛЕННЫЙ УЧАСТОК ДЛЯ ПЕРЕРАБОТКИ НЕФТЕСОДЕРЖАЩИХ ОТХОДОВ

Номер: RU0000080838U1

Промышленный участок для переработки нефтесодержащих отходов, включающий приемные емкости, насосы, трубопроводы с запорно-регулирующей арматурой, промежуточные емкости с мешалками, соединенными с узлом для приготовления и дозировки химических реагентов для обработки нефтесодержащих отходов, выход из промежуточных емкостей направлен в трехфазную центрифугу, соединенную со сборниками нефтяной и водной фаз и контейнерами для сбора твердой фазы, выделенной из нефтесодержащих отходов, выход из которых соединен шнековым транспортером с питающим бункером, выход из которого направлен в камеру для термообработки, выполненной в виде наклонной вращающейся трубчатой печи, обогреваемой топочными газами и снабженной разгрузочным устройством, выход из которого направлен в сборники термообработанной твердой фазы, после которых установлена система брикетирования, отличающийся тем, что система брикетирования имеет соединения со шнековым смесителем, имеющим загрузочный люк для термообработанной твердой фазы, загрузочный люк, соединенный с бункером измельченного хлорида магния, вход в который направлен из узла дробления твердого хлорида магния, патрубок для подачи в смеситель магнезиального молока из обогреваемого реактора, снабженного перемешивающим устройством, конусом для загрузки магнийсодержащих оксидных материалов и патрубком для подвода в реактор воды, выход товарных продуктов из системы брикетирования оборудован разгрузочным устройством, направленным в расходно-накопительной емкостью. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 80 838 U1 (51) МПК C01G 31/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2008146535/22, 25.11.2008 (24) Дата начала отсчета срока действия патента: 25.11.2008 (45) Опубликовано: 27.02.2009 (73) Патентообладатель(и): ООО Научно-производственная экологическая фирма "ЭКО-технология" (RU) U 1 8 0 8 3 8 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели ...

Подробнее
10-03-2009 дата публикации

АППАРАТУРНО-ТЕХНОЛОГИЧЕСКАЯ СИСТЕМА ПРОИЗВОДСТВЕННОГО ОБОРУДОВАНИЯ ДЛЯ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ НЕФТЕСОДЕРЖАЩИХ ОТХОДОВ С ПОЛУЧЕНИЕМ ТОВАРНЫХ ПРОДУКТОВ

Номер: RU0000081185U1

Аппаратурно-технологическая система производственного оборудования для комплексной переработки нефтесодержащих отходов с получением товарных продуктов, включающая сборник исходных нефтесодержащих отходов, соединенный с обогреваемой емкостью, снабженной перемешивающим устройством, к которой подсоединен блок для приготовления и дозировки химических реагентов, высокоскоростную центрифугу, сборники очищенных от твердых частиц нефтяной и водной фаз, контейнеры для сбора осадка, устройство для термообработки осадка, сборник термообработанных осадков, склад готовой продукции, отличающаяся тем, что контейнеры для сбора осадка имеют соединения со смесителем, к которому подсоединен дозатор известняковой муки, получаемой на установке дробления и измельчения известнякового камня, в качестве устройства для термообработки осадка установлена вращающаяся трубчатая прокалочная печь, имеющая топку, соединенную со сборником нефтепродуктов, выделенных из исходных нефтесодержащих отходов, выход прокаленного материала из прокалочной печи через разгрузочный узел направлен в дробильно-размолочное отделение, имеющее фасовочную машину. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 81 185 U1 (51) МПК C01G 31/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2008147318/22, 01.12.2008 (24) Дата начала отсчета срока действия патента: 01.12.2008 (45) Опубликовано: 10.03.2009 (73) Патентообладатель(и): ООО Научно-производственная экологическая фирма "ЭКО-технология" (RU) U 1 8 1 1 8 5 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели Аппаратурно-технологическая система производственного оборудования для комплексной переработки нефтесодержащих отходов с получением товарных продуктов, включающая сборник исходных нефтесодержащих отходов, соединенный с обогреваемой емкостью, снабженной перемешивающим устройством, к которой подсоединен блок для приготовления и дозировки химических реагентов, высокоскоростную ...

Подробнее
10-06-2009 дата публикации

ПРОИЗВОДСТВЕННОЕ ОТДЕЛЕНИЕ ДЛЯ ПЕРЕРАБОТКИ ОКСИТРИХЛОРИДА ВАНАДИЯ С ПОЛУЧЕНИЕМ ПЕНТАОКСИДА ВАНАДИЯ

Номер: RU0000083497U1

Производственное отделение для переработки окситрихлорида ванадия с получением пентаоксида ванадия, включающее транспортируемую емкость с исходным окситрихлоридом ванадия, герметично соединенную через запорно-регулирующую арматуру с реактором, снабженным мешалкой и распределительным устройством для подачи окситрихлорида ванадия под слой раствора гидроксида натрия ниже уровня мешалки, реактор для разложения окситрихлорида ванадия соединен с последовательно установленным дозатором и баком для приготовления раствора гидроксида натрия, бак-кристаллизатор метаванадата аммония, снабженный мешалкой и оборудованный патрубком для подачи хлорида аммония, фильтр-1 для выделения из суспензии осадка метаванадата аммония и его промывки, бак-репульпатор метаванадата аммония, нижний слив из которого направлен на фильтр-1, после фильтра-1 для выделения из суспензии метаванадата аммония установлена прокалочная печь и бак-сборник маточных растворов и промвод метаванадата аммония, соединенный с реактором с мешалкой для обезвреживания ванадийсодержащих растворов и сточных вод, на крышке реактора имеются патрубки, один из которых подсоединен к дозатору и баку с раствором, содержащим хлорид железа (II), другой патрубок подсоединен к дозатору и баку для приготовления раствора гидроксида натрия, патрубок нижнего слива реактора имеет соединение через насос с фильтр-прессом 2 для выделения из пульпы осадка оксигидратов железа (II и III) с примесями соединений ванадия, отличающееся тем, что после реактора для разложения окситрихлорида ванадия установлен фильтр-пресс-3 для выделения из пульпы осадка оксигидрата титана, корыто фильтр-пресса-3 имеет разгрузочный люк, снабженный запорно-распределительным устройством, соединяющим фильтр-пресс-3 и бак-репульпатор осадка оксигидрата титана, имеющий подсоединения к фильтр-прессу-3 и дозатору раствора гидроксида натрия, выход очищенного от осадка растворов метаванадата натрия направлен в сборно-расходную емкость, соединенную с баком для кристаллизации ...

Подробнее
10-06-2009 дата публикации

СИСТЕМА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ ДЛЯ ПЕРЕРАБОТКИ ОКСИТРИХЛОРИДА ВАНАДИЯ С ПОЛУЧЕНИЕМ ТОВАРНОГО ПЕНТАОКСИДА ВАНАДИЯ

Номер: RU0000083505U1

Система технологического оборудования для переработки окситрихлорида ванадия с получением пентаоксида ванадия, включающая реактор с мешалкой для щелочной обработки окситрихлорида ванадия, герметично соединенный с транспортируемой емкостью исходного технического окситрихлорида ванадия, последовательно соединенный с дозатором и баком для приготовления и подачи раствора гидроксида натрия, бак-кристаллизатор метаванадата аммония, соединенный с дозатором хлорида аммония и баком для приготовления раствора NHCl, фильтром-1 для выделения из суспензии осадка метаванадата аммония и его промывки, бак-репульпатор осадка метаванадата аммония, соединенный с фильтром-1, прокалочную печь, бак-сборник маточных растворов и промвод метаванадата аммония, реактор для обезвреживания от ванадия ванадийсодержащих сточных вод - маточных растворов и промвод метаванадата аммония, соединенный через дозатор с баком-сборником железо(II)-содержащих растворов, дозатором и баком для приготовления и подачи раствора гидроксида натрия, фильтр-2, для выделения из пульпы осадка оксигидратов железа (II и III) с примесями ванадия, отличающаяся тем, что патрубок нижнего слива реактора для щелочной обработки окситрихлорида ванадия направлен через насос и запорно-регулирующую арматуру на фильтр-3, корыто которого через разгрузочно-распределительное устройство соединено со сборником титанового кека-осадка оксигидрата титана, выход из которого направлен в обогреваемый бак с мешалкой для репульпации титанового кека, на крышке бака имеется патрубок для подсоединения к дозатору раствора гидроксида натрия, слив пульпы из бака через насос направлен на фильтр-3, выход очищенного от твердой фазы раствора метаванадата натрия из фильтра-3 направлен в сборно-усреднительную емкость, соединенную с реактором для щелочной обработки окситрихлорида ванадия, с баком-сборником маточных растворов и промвод метаванадата аммония, корыто фильтра-2 имеет соединения с загрузочным узлом, последовательно установленных сушильной камеры ...

Подробнее
20-06-2009 дата публикации

ТЕХНОЛОГИЧЕСКИЙ ПЕРЕДЕЛ ДЛЯ ПОЛУЧЕНИЯ ПЕНТАОКСИДА ВАНАДИЯ

Номер: RU0000083774U1

Технологический передел для получения пентаоксида ванадия, включающий реактор с мешалкой для щелочной обработки окситрихлорида ванадия, герметично соединенный с транспортируемой емкостью исходного окситрихлорида ванадия и последовательно соединенный с дозатором и баком для приготовления и подачи раствора гидроксида натрия, бак-кристаллизатор метаванадата аммония соединен с дозатором хлорида аммония и баком для приготовления раствора хлорида аммония, фильтром-1 для выделения осадка метаванадата аммония из суспензии и его промывки, бак-репульпатор осадка метаванадата аммония, соединенный с фильтром-1, прокалочную печь, бак-сборник маточных растворов и промвод метаванадата аммония, реактор для обезвреживания от ванадия ванадийсодержащих сточных вод - маточных растворов и промвод метаванадата аммония, соединенный через дозатор с баком-сборником железо(II)-содержащих растворов, дозатором и баком для приготовления и подачи раствора гидроксида натрия, фильтр-2 для выделения из пульпы осадка оксигидратов железа (II и III) с примесями ванадия, отличающийся тем, что патрубок нижнего слива реактора для щелочной обработки окситрихлорида ванадия направлен через насос и запорно-регулирующую арматуру на фильтр-3, корыто которого через разгрузочно-распределительное устройство соединено со сборником титанового кека - осадка оксигидрата титана, выход из которого направлен в обогреваемый бак с мешалкой для репульпации титанового кека, на крышке бака имеется патрубок для подсоединения к дозатору раствора гидроксида натрия, слив пульпы из этого бака через насос направлен на фильтр-3, выход очищенного от твердой фазы раствора метаванадата натрия из фильтра-3 направлен в сборно-усреднительную емкость, соединенную с баком-кристаллизатором метаванадата аммония. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 83 774 U1 (51) МПК C22B 34/22 (2006.01) C01G 31/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) ...

Подробнее
10-07-2009 дата публикации

ПОТОЧНАЯ ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ПЕРЕРАБОТКИ ОКСИТРИХЛОРИДА ВАНАДИЯ С ПОЛУЧЕНИЕМ ПЕНТАОКСИДА ВАНАДИЯ И УТИЛИЗАЦИЕЙ ОТХОДОВ ПРОИЗВОДСТВА

Номер: RU0000084383U1

Поточная технологическая линия для переработки окситрихлорида ванадия с получением пентаоксида ванадия и утилизацией отходов производства, включающая реактор для разложения окситрихлорида ванадия в щелочном растворе, соединенный через распределительное устройство с транспортируемой емкостью для окситрихлорида ванадия, бак с мешалкой для приготовления исходного раствора щелочи, сборно-расходную емкость раствора метаванадата щелочного металла, бак с мешалкой для приготовления исходного раствора хлорида аммония, линию раздачи дистиллированной воды, бак-кристаллизатор метаванадата аммония, фильтр - 1 для выделения из суспензии осадка метаванадата аммония, прокалочную печь, оборудованную затарочным узлом, баки-сборники ванадийсодержащих маточных растворов и промвод, установку для извлечения из маточных растворов и промвод соединений ванадия, в состав которой входит баковое оборудование, реакторы, дозатор химических реагентов, фильтры, трубопроводы, сушильная камера и/или прокалочная печь, насосы, запорно-регулирующая арматура, сборная емкость для очищенных от соединений ванадия хлоридных растворов, отличающаяся тем, что реактор для разложения окситрихлорида ванадия имеет соединение с баком для приготовления и подачи солевого раствора гидроксида калия, соединенного с фильтр-прессом - 2 и баком с исходным раствором гидроксида калия, бак-кристаллизатор метаванадата аммония соединен с сборно-расходным баком фильтратов - растворов метаванадата калия после выделения осадка оксигидрата титана и с баком для приготовления и подачи смешанного раствора хлоридов аммония и калия, патрубок нижнего слива пульпы из реактора для разложения технического окситрихлорида ванадия в солевом растворе гидроксида калия соединен с входным патрубком фильтр-пресса - 2, выход из которого твердой фазы - осадка оксигидрата титана через корыто фильтр-пресса - 2 направлен в бак-репульпатор оксигидрата титана, соединенный с баком для приготовления и подачи раствора гидроксида калия, выход твердой фазы из ...

Подробнее
05-07-2017 дата публикации

НАНОСТРУКТУРНЫЙ КОМПОЗИТ ДЛЯ ГЛУБОКОГО УДАЛЕНИЯ КИСЛОРОДА ИЗ ВОДЫ

Номер: RU0000172363U1

Полезная модель относится к композитным материалам, а именно к нанокомпозитам на основе ионообменных матриц, и может быть использована для глубокого обескислороживания воды. Технический результат заключается в разработке нового композитного материала, обладающего высокой скоростью и степенью поглощения растворенного в воде кислорода, и достигается тем, что наноструктурный композит для глубокогоудаления кислорода из воды состоит из ионообменной матрицы Lewatit K 2620 или Lewatit SP-112H, обработанной раствором 6% сульфата меди, а затем 6% щелочным раствором дитионита натрия. Полученные материалы отличаются изопористой структурой и монодисперсным распределением частиц меди по размеру. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 172 363 U1 (51) МПК C02F 1/20 (2006.01) C01G 3/00 (2006.01) B01J 39/18 (2006.01) B82B 1/00 (2006.01) B82Y 30/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2016140241, 12.10.2016 (24) Дата начала отсчета срока действия патента: 12.10.2016 Дата регистрации: Приоритет(ы): (22) Дата подачи заявки: 12.10.2016 (45) Опубликовано: 05.07.2017 Бюл. № 19 2217382 C1, 27.11.2003. US 20120051999 A1, 01.03.2012. US 20110175039 A1, 21.07.2011. ХОРОЛЬСКАЯ С.В., Кооперативные взаимодействия наночастиц металла (Cu, Ag, Bi, Ni) в ионообменной матрице при восстановлении растворенного в воде кислорода, Диссертация на соискание ученой степени кандидата химических наук, Воронеж, (см. прод.) R U (54) НАНОСТРУКТУРНЫЙ КОМПОЗИТ ДЛЯ ГЛУБОКОГО УДАЛЕНИЯ КИСЛОРОДА ИЗ ВОДЫ (57) Реферат: Полезная модель относится к композитным для глубокогоудаления кислорода из воды материалам, а именно к нанокомпозитам на состоит из ионообменной матрицы Lewatit K 2620 основе ионообменных матриц, и может быть или Lewatit SP-112H, обработанной раствором использована для глубокого обескислороживания 6% сульфата меди, а затем 6% щелочным воды. Технический результат заключается в раствором дитионита натрия. Полученные ...

Подробнее
19-04-2012 дата публикации

ELECTROSPUN SINGLE CRYSTAL MoO3 NANOWIRES FOR BIO-CHEM SENSING PROBES

Номер: US20120094124A1

Single crystal M o O 3 nanowires were produced using an electrospinning technique. High resolution transmission electron microscopy (HRTEM) revealed that the 1-D nanostructures are from 10-20 nm in diameter, on the order of 1-2 μm in length, and have the orthorhombic M o O 3 structure. The structure, crystallinity, and sensoric character of these electrostatically processed nanowires are discussed. It has been demonstrated that the non-woven-network of M o O 3 nanowires exhibits higher sensitivity and an n-type response to NH 3 as compared to the response of a sol-gel based sensor.

Подробнее
19-04-2012 дата публикации

Method for producing alkali metal niobate particles, and alkali metal niobate particles

Номер: US20120094126A1

Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of particles of the fine particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. Specifically disclosed are a method of producing particulate sodium-potassium niobate represented by the formula (1): Na x K (1-x) NbO 3 (1), the method including four specific steps, wherein a high-concentration alkaline solution containing Na + ion and K + ion is used as an alkaline solution; and particulate sodium-potassium niobate having a controlled shape and size.

Подробнее
26-04-2012 дата публикации

Chemical looping air separation unit and methods of use

Номер: US20120100055A1
Автор: Justin M. Weber
Принадлежит: Individual

The disclosure provides for oxygen separation from air by utilizing an initial oxygen carrier which undergoes an endothermic reduction reaction to produce a carrier product and gaseous oxygen. The gaseous oxygen is withdrawn, and the carrier product is subsequently further reduced with a fuel in a combustion process, releasing heat and generating a oxygen acceptor. The oxygen acceptor is oxidized in an exothermic reaction. The method thus couples the exothermic oxidation reaction, the endothermic reduction reaction, and the chemical energy supplied by the fuel for a net heat release. In an embodiment, the initial oxygen carrier is CuO, the carrier product is Cu 2 O, and the oxygen acceptor is Cu.

Подробнее
03-05-2012 дата публикации

Methods Of Making A Niobium Metal Oxide and Oxygen Reduced Niobium Oxides

Номер: US20120107224A1
Принадлежит: Cabot Corp

Methods to at least partially reduce a niobium oxide are described wherein the process includes mixing the niobium oxide and niobium powder to form a powder mixture that is then heat treated to form heat treated particles which then undergo reacting in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the niobium powder, and at a temperature and for a time sufficient to form an oxygen reduced niobium oxide. Oxygen reduced niobium oxides having high porosity are also described as well as capacitors containing anodes made from the oxygen reduced niobium oxides.

Подробнее
26-07-2012 дата публикации

Modified tungsten oxide and process for its preparation

Номер: US20120186982A1
Принадлежит: Eni Spa

The present invention relates to a modified tungsten oxide having an atomic concentration of 0.5 to 7.0%, preferably from 2.0 to 5.0%, of nitrogen atoms in lattice position, with respect to the total number of atoms of the oxide, having a surface morphology, detectable by means of a scanning electron microscope, characterized by nanostructures in the form of vermiform or branched open swellings, preferably having a length ranging from 200 to 2,000 nm, and a width ranging from 50 to 300 nm, having an appearance similar to Rice Krispies. The present invention also relates to a process for the preparation of the above oxide by the anodization of metallic tungsten, and also a photoanode comprising the above oxide.

Подробнее
09-08-2012 дата публикации

Recognition dictionary creating device, voice recognition device, and voice synthesizer

Номер: US20120203553A1
Автор: Yuzo Maruta
Принадлежит: Mitsubishi Electric Corp

A recognition dictionary creating device includes a user dictionary in which a phoneme label string of an inputted voice is registered and an interlanguage acoustic data mapping table in which a correspondence between phoneme labels in different languages is defined, and refers to the interlanguage acoustic data mapping table to convert the phoneme label string registered in the user dictionary and expressed in a language set at the time of creating the user dictionary into a phoneme label string expressed in another language which the recognition dictionary creating device has switched.

Подробнее
27-09-2012 дата публикации

Inorganic compounds

Номер: US20120244354A1
Принадлежит: HC Starck GmbH

A niobium suboxide powder comprising niobium suboxide particles having a bulk nitrogen content of between 500 to 20,000 ppm. The nitrogen is distributed in the bulk of the powder particles. The nitrogen at least partly is present in the form of at least one of Nb 2 N crystals or niobium oxynitride crystals.

Подробнее
04-10-2012 дата публикации

High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture

Номер: US20120251885A1
Принадлежит: Blue Juice Inc

The present invention is generally directed to the field of lithium-ion batteries. It is more specifically directed to electrode materials used in lithium ion batteries, electrodes including the materials, devices incorporating the electrodes and related methods of manufacture. In a composition aspect of the present invention, a composition comprising at least 50 mg of Li 4 Ti 5 O 12 or doped Li 4 Ti 5 O 12 is provided. The Li 4 Ti 5 O 12 or doped Li 4 Ti 5 O 12 is made using a thermal spray process, and is greater than 95% spinel crystal form. The BET surface area of the Li 4 Ti 5 O 12 or doped Li 4 Ti 5 O 12 is greater than 1 m 2 /g.

Подробнее
01-11-2012 дата публикации

Synthesis of Nanoparticles by Means of Ionic Liquids

Номер: US20120275991A1

A method for producing nanoscale particles by means of ionic liquids produces highly crystalline particles. The ionic liquids can be easily regenerated.

Подробнее
22-11-2012 дата публикации

Shaped metal-containing components and reaction based methods for manufacturing the same

Номер: US20120295783A1
Принадлежит: Georgia Tech Research Corp

Methods of converting shaped templates into shaped metal-containing components, allowing for the production of freestanding, porous metal-containing replicas whose shapes and microstructures are derived from a shaped template, and partially or fully converting the shaped templates to produce metal-containing coatings on an underlying shaped template are described herein. Such coatings and replicas can be applied in a variety of fields including, but not limited to, catalysis, energy storage and conversion, and various structural or refractory materials and structural or refractory composite materials.

Подробнее
27-12-2012 дата публикации

Method for producing ammonium tungstate aqueous solution

Номер: US20120328506A1

A method for producing an ammonium tungstate aqueous solution includes the steps of: adding sulfuric acid to a solution containing tungstate ions; bringing the solution having the sulfuric acid added therein, into contact with an anion exchange resin; and bringing the anion exchange resin into contact with an aqueous solution containing ammonium ions.

Подробнее
27-12-2012 дата публикации

Nanostructures, their use and process for their production

Номер: US20120329686A1
Принадлежит: Yeda Research and Development Co Ltd

A lubricating and shock absorbing materials are described, which are based on nanoparticles having the formula A 1-x -B x -chalcogenide. Processes for their manufacture are also described.

Подробнее
21-03-2013 дата публикации

ELECTRODE BODY AND SECONDARY BATTERY USING SAME

Номер: US20130071754A1
Автор: Miki Hidenori, Oki Hideki
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A main object of the present invention is to provide an electrode body which can obtain a high capacity secondary battery. The invention provides an electrode body having an active material composed of a metal oxide and a conductive auxiliary agent obtained by causing a partial deficiency to an oxygen atom in the metal oxide and introducing a nitrogen atom into the metal oxide, whereby the above object can be achieved. 1. An electrode body comprising:an active material composed of a metal oxide; anda conductive auxiliary agent obtained by causing a partial deficiency to an oxygen atom in the metal oxide and introducing a nitrogen atom into the metal oxide.2. An electrode body comprising:an active material; and{'sup': '−4', 'a conductive auxiliary agent composed of a conductive metal oxide having an electron conductivity of 10S/cm or more and a charge and discharge capacity.'}3. The electrode body according to claim 2 , wherein the active material is composed of a metal oxide claim 2 , and the conductive metal oxide is obtained by causing a partial deficiency to an oxygen atom in the metal oxide and introducing a nitrogen atom into the metal oxide.4. The electrode body according to claim 1 , wherein the metal oxide is LiTiO.5. A conductive auxiliary agent for a secondary battery claim 1 , obtained by removing a part of an oxygen atom in LiTiOand introducing a nitrogen atom into LiTiO claim 1 , and having an electron conductivity of 10S/cm or more.6. A secondary battery claim 1 , comprising the electrode body according to used in at least one of a cathode layer and an anode layer.7. A secondary battery claim 2 , comprising the electrode body according to used in at least one of a cathode layer and an anode layer.8. The electrode body according to claim 3 , wherein the metal oxide is LiTiO. The present invention relates to an electrode body which can obtain a high capacity secondary battery.In order to improve the performance of a secondary battery, a lot of ideas have ...

Подробнее
04-04-2013 дата публикации

METHOD OF MAKING NANOMATERIAL AND METHOD OF FABRICATING SECONDARY BATTERY USING THE SAME

Номер: US20130084238A1

Disclosed are a method of making a nanomaterial and a method of fabricating a lithium secondary battery using the same. The method of making a nanomaterial includes preparing a mixed solution including a metal salt aqueous solution and an alkylamine, and hydrothermally treating the mixed solution. 1. A method of making a nanomaterial comprising:preparing a mixed solution comprising a metal salt aqueous solution and an alkylamine; andhydrothermally treating the mixed solution.2. The method of making a nanomaterial of claim 1 , wherein the metal salt comprises a chloride claim 1 , a sulfate claim 1 , a nitrate claim 1 , and a combination thereof.3. The method of making a nanomaterial of claim 1 , wherein the metal salt comprises a copper salt claim 1 , a nickel salt claim 1 , a lead salt claim 1 , or a combination thereof.4. The method of making a nanomaterial of claim 3 , wherein the metal salt comprises copper chloride (CuCl) claim 3 , copper sulfate (CuSO) claim 3 , or a combination thereof.5. The method of making a nanomaterial of claim 1 , wherein the metal salt and the alkylamine in the mixed solution are present in a mole ratio of about 3:1 to about 15:1.6. The method of making a nanomaterial of claim 1 , wherein the alkylamine comprises a compound represented by the following Chemical Formula 1 claim 1 , a compound represented by the following Chemical Formula 2 claim 1 , or a combination thereof:{'br': None, 'sub': 3', '2', 'm', '2, 'CH(CH)NH\u2003\u2003[Chemical Formula 1]'}{'br': None, 'sub': 2', '2', 'n', '2, 'NH(CH)NH\u2003\u2003[Chemical Formula 2]'}wherein, in the above Chemical Formula 1, m is an integer ranging from 7 to 20, and in the above Chemical Formula 2, n is an integer ranging from 4 to 20.7. The method of making a nanomaterial of claim 6 , wherein the alkylamine comprises decylamine claim 6 , dodecylamine claim 6 , tetradecylamine claim 6 , hexadecylamine claim 6 , octadecylamine claim 6 , or a combination thereof.8. The method of making a ...

Подробнее
11-04-2013 дата публикации

NEGATIVE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERY, METHOD OF PREPARING SAME, AND RECHARGEABLE LITHIUM BATTERY INCLUDING SAME

Номер: US20130087737A1
Принадлежит: Samsung SDI Co., Ltd.

Negative active materials for rechargeable lithium batteries, manufacturing methods thereof, and rechargeable lithium batteries including the negative active materials are provided. The negative active material includes a compound represented by the Formula LiVMO. In one embodiment, the compound has an average particle size ranging from about 50nm to about 30 μm. In another embodiment, the negative active material has a ratio of (003) plane diffraction intensity to (104) plane diffraction intensity ranging from about 1:1 to about 1:0.01 when measured using a Cu K α X-ray. According to another embodiment, after five charge/discharge cycles performed at 0.5C, a specific surface area of the negative active material increases to less than about 20 times a specific surface area before the five charge/discharge cycles. The negative active materials may improve battery capacity, and cycle-life characteristics. 1. A method for manufacturing a negative active material for a rechargeable lithium battery represented by Formula 1 , the method comprising:mixing a lithium source material and a vanadium source material in a mixed solvent of an acid and water to prepare an intermediate product; and {'br': None, 'sub': 1+x', '1−x-y', 'y', '2+z, 'LiXMO\u2003\u2003Formula 1'}, 'drying or decomposing by heat the intermediate productwherein 0.01≦x≦0.5, 0 Подробнее

11-04-2013 дата публикации

Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust cleaning device

Номер: US20130088120A1
Принадлежит: Canon Inc

A piezoelectric material including a barium bismuth niobate-based tungsten bronze structure metal oxide having a high degree of orientation is provided. A piezoelectric element, a liquid discharge head, an ultrasonic motor, and a dust cleaning device including the piezoelectric material are also provided. A piezoelectric material includes a tungsten bronze structure metal oxide that includes metal elements which are barium, bismuth, and niobium, and tungsten. The metal elements satisfy following conditions on a molar basis: when Ba/Nb=a, 0.30≦a≦0.40, and when Bi/Nb=b, 0.012≦b≦0.084. The tungsten content on a metal basis is 0.40 to 3.00 parts by weight relative to 100 parts by weight of the tungsten bronze structure metal oxide. The tungsten bronze structure metal oxide has a c-axis orientation.

Подробнее
11-04-2013 дата публикации

CHIRAL NEMATIC NANOCRYSTALLINE METAL OXIDES

Номер: US20130089492A1
Принадлежит:

A mesoporous metal oxide materials with a chiral organization; and a method for producing it, in the method a polymerizable metal oxide precursor is condensed inside the pores of chiral nematic mesoporous silica by the so-called “hard templating” method. As a specific example, mesoporous titanium dioxide is formed inside of a chiral nematic silica film templated by nanocrystalline cellulose (NCC). After removing the silica template such as by dissolving the silica in concentrated aqueous base, the resulting product is a mesoporous titania with a high surface area. These mesoporous metal oxide materials with high surface area and chiral nematic structures that lead to photonic properties may be useful for photonic applications as well as enantioselective catalysis, photocatalysis, photovoltaics, UV filters, batteries, and sensors. 1. A mesoporous metal oxide having chirality and crystallinity.2. The mesoporous metal oxide of claim 1 , wherein said oxide is titanium oxide.3. The mesoporous metal oxide of claim 2 , wherein said titanium oxide is anatase titanium oxide.4. The mesoporous metal oxide of claim 1 , wherein said chirality is in a length scale ranging from nanometers to centimetres.5. The mesoporous metal oxide of claim 2 , wherein said chirality is in a length scale ranging from nanometers to centimetres.6. A process for producing a mesoporous metal oxide having chirality claim 2 , comprising: introducing a metal oxide precursor into a mesoporous silica template defining chirality claim 2 , converting said precursor to metal oxide claim 2 , and removing said silica template.7. A process according to claim 6 , wherein said precursor is a precursor of a metal oxide selected from the group consisting of titanium oxide claim 6 , tin dioxide claim 6 , iron oxide claim 6 , tantalum oxide and vanadium oxide.8. A process according to claim 6 , wherein said precursor is a precursor of titanium oxide.9. A process according to claim 6 , wherein said precursor is a ...

Подробнее
11-04-2013 дата публикации

LITHIUM ION SECONDARY BATTERY

Номер: US20130089787A1
Автор: Nagai Hiroki
Принадлежит:

Disclosed is a lithium ion secondary battery which includes a positive electrode, a negative electrode and a nonaqueous electrolyte solution. The positive electrode contains, as the positive electrode active material, a lithium-transition metal composite oxide having a layered structure. The positive electrode active material includes at least one metal element Mfrom among Ni, Co and Mn, and includes at least one metal element M′ from among Zr, Nb and Al, and further includes W. When 2 g of a powder of the positive electrode active material and 100 g of pure water are stirred together to prepare a suspension and the suspension is filtered to obtain a filtrate, the amount of W eluted into the filtrate, as measured by inductively coupled plasma mass spectrometry, is 0.025 mmol or less per gram of filtrate. 1. A lithium ion secondary battery comprising a positive electrode , a negative electrode and a nonaqueous electrolyte solution , whereinthe positive electrode has, as a positive electrode active material, a lithium-transition metal composite oxide having a layered structure;{'sup': '0', 'the positive electrode active material contains at least one metal element Mfrom among nickel, cobalt and manganese, and contains at least one metal element M′ from among zirconium, niobium and aluminum, and moreover contains tungsten; and'}when 2 g of a powder of the positive electrode active material and 100 g of pure water are stirred together to prepare a suspension and the suspension is filtered to obtain a filtrate, an amount of tungsten eluted into the filtrate, as measured by inductively coupled plasma mass spectrometry, is 0.025 mmol or less per gram of the filtrate.3. The lithium ion secondary battery according to claim 1 , wherein M′ is zirconium.4. The lithium ion secondary battery according to claim 2 , wherein d:e is from 2:1 to 1:10.5. The lithium ion secondary battery according to claim 1 , whereinthe positive electrode active material is in the form of secondary ...

Подробнее
11-04-2013 дата публикации

METHOD FOR PRODUCING CONDUCTING MATERIAL, CONDUCTING MATERIAL, AND BATTERY

Номер: US20130089788A1
Автор: FURUYA Tatsuya
Принадлежит: SONY CORPORATION

Provided are a method for producing a novel conducting material which functions as an active material and has electron conductivity, the conducting material, and a battery. 1. A method for producing a conducting material , comprising the step of carrying out treatment of applying a high-frequency wave to a LiTiOsintered body.2. The method for producing a conducting material according to claim 1 , wherein the treatment of applying the high-frequency wave is carried out in an atmosphere containing nitrogen.3. The method for producing a conducting material according to claim 1 , wherein the step of carrying out the treatment of applying the high-frequency wave to the LiTiOsintered body is a step of carrying out RF magnetron sputtering in an atmosphere containing nitrogen with the use of the LiTiOsintered body as a target.4. A conducting material claim 1 , wherein a chemical state of titanium has been changed by carrying out treatment of applying a high-frequency wave to a LiTiOsintered body.5. The conducting material according to claim 4 , comprising a LiTiOphase claim 4 , an anatase-type TiOphase claim 4 , and a rutile-type TiOphase.6. A battery comprising:a positive electrode;a negative electrode; andan electrolyte,{'sub': 4', '5', '12, 'wherein the negative electrode contains, as an active material, a conducting material in which a chemical state of titanium has been changed by carrying out treatment of applying a high-frequency wave to a LiTiOsintered body.'} The present invention relates to a method for producing a conducting material, the conducting material, and a battery.Ceramic materials have been used as industrial materials in various machine tools, machine elements and the like. In recent years, in electrical and electronic fields, there is a growing need for conducting ceramic materials which exhibit electrical conductivity.Ceramic materials such as LiTiO, which are used for active materials of lithium ion secondary batteries, have no or poor electrical ...

Подробнее
25-04-2013 дата публикации

METHOD OF MANUFACTURING METAL OXIDE FILM, METAL OXIDE FILM, ELEMENT USING THE METAL OXIDE FILM, SUBSTRATE WITH METAL OXIDE FILM, AND DEVICE USING THE SUBSTRATE WITH METAL OXIDE FILM

Номер: US20130101867A1
Принадлежит: SUMITOMO METAL MINING CO., LTD.

Provided is a method of manufacturing a metal oxide film to be formed through the following processes: a coating process of forming a coating film on a substrate by using a coating liquid for forming metal oxide film containing any of various organometallic compounds; a drying process of making the coating film into a dried coating film; and a heating process of forming an inorganic film from the dried coating film under an oxygen-containing atmosphere having a dew-point temperature equal to or lower than −10° C. 1. A method of manufacturing a metal oxide film to be formed through the following processes: a coating process of coating a substrate with a coating liquid for forming metal oxide film containing an organometallic compound as a main component to form a coating film; a drying process of drying the coating film to form a dried coating film; and a heating process of mineralizing the dried coating film to form an inorganic film having an inorganic component , which is a metal oxide , as a main component , whereinthe heating process is a process of performing a heating treatment to elevate a temperature of the dried coating film, which has the organometallic compound as a main component and has been formed in the drying process, up to a temperature or higher at which at least mineralization of the organometallic compound components occurs, under an oxygen-containing atmosphere having a dew-point temperature equal to or lower than −10° C., and then removing an organic component contained in the dried coating film by thermal decomposition, burning, or thermal decomposition and burning, thereby forming a metal oxide fine-particle layer densely packed with metal oxide fine particles having a metal oxide as a main component, andthe organometallic compound is formed of any one or more types of an organic aluminum compound, an organic silicon compound, an organic scandium compound, an organic titanium compound, an organic vanadium compound, an organic chromium ...

Подробнее
25-04-2013 дата публикации

LITHIUM SECONDARY BATTERY

Номер: US20130101900A1
Автор: Nagai Hiroki
Принадлежит:

Provided is a lithium secondary battery that comprises a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte. The positive electrode active material is a nickel-containing lithium complex oxide having a layered structure. The oxide has a composition in which W and Zr are added, and contains no Nb. 1. A lithium secondary battery , comprising:a positive electrode having a positive electrode active material;a negative electrode having a negative electrode active material; anda non-aqueous electrolyte,wherein the positive electrode active material is a nickel-containing lithium complex oxide having a layered structure, and the oxide has a composition in which W and Zr are added, and contains no Nb.2. The lithium secondary battery according to claim 1 , wherein an addition amount of W and an addition amount of Zr in the nickel-containing lithium complex oxide are such that a proportion of the number of moles of W in the total number of moles of W and Zr ranges from 30% to less than 100%.3. The lithium secondary battery according to claim 1 , wherein the nickel-containing lithium complex oxide is an oxide containing nickel claim 1 , cobalt and manganese.4. A vehicle claim 1 , comprising the lithium secondary battery according to . The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery that comprises, as a positive electrode active material, a nickel-containing lithium complex oxide.Recent years have witnessed a growing importance of lithium secondary batteries as power sources installed in vehicles, and as power sources in personal computers, cell phones and the like. Lithium ion secondary batteries, in particular, are lightweight and afford high energy densities, and are thus expected to become preferred high-output power sources installed in vehicles. Typical examples of positive electrode active ...

Подробнее
02-05-2013 дата публикации

Method for producing chromium (iii) oxide

Номер: US20130108543A1
Принадлежит: LANXESS DEUTSCHLAND GMBH

Process for preparing chromium(III) oxide, comprising the steps of: a) Decomposing an alkali metal ammonium chromate double salt at a temperature of 200 to 650° C., especially of 250 to 550° C., b) washing the decomposition product obtained after a) and c) calcining the product obtained after b) at a temperature of 700 to 1400° C., especially of 800 to 1300° C.

Подробнее
16-05-2013 дата публикации

CATHODE FOR SECONDARY BATTERY

Номер: US20130119325A1
Принадлежит: LG CHEM, LTD.

Disclosed is a cathode for secondary batteries comprising a compound having a transition metal layer containing lithium as at least one compound selected from the following formula 1: (1−x)Li(LiMMa)OA*xLiPO(1) wherein M is an element stable for a six-coordination structure, which is at least one selected from transition metals that belong to first and second period elements; Ma is a metal or non-metal element stable for a six-coordination structure; A is at least one selected from the group consisting of halogen, sulfur, chalcogenide compounds and nitrogen; 0 Подробнее

16-05-2013 дата публикации

BATTERY ELECTRODE, NONAQUEOUS ELECTROLYTE BATTERY, AND BATTERY PACK

Номер: US20130122348A1
Принадлежит:

According to one embodiment, a battery electrode includes an active material layer and a current collector is provided. The active material layer contains particles of a monoclinic β-type titanium complex oxide and particles of a lithium titanate having a spinel structure. When a particle size frequency distribution of particles contained in the active material layer is measured by the laser diffraction and scattering method, a first peak Pappears in a range of 0.3 μm to 3 μm and a second peak Pappears in a range of 5 μm to 20 μm in the frequency distribution diagram. The ratio F/Fof the frequency Fof the first peak Pto the frequency Fof the second peak Pis 0.4 to 2.3. 1. A battery electrode comprising an active material layer and a current collector , wherein;the active material layer contains particles of a monoclinic β-type titanium complex oxide and particles of a lithium titanate having spinel structure;{'sub': 1', '2, 'a first peak Pappears in a range of 0.3 μm to 3 μm and a second peak Pappears in a range of 5 μm to 20 μm in a particle size frequency distribution diagram when a particle size frequency distribution of particles contained in the active material layer is measured by the laser diffraction and scattering method; and'}{'sub': P1', 'P2', 'P1', '1', 'P2', '2, 'the ratio F/Fof the frequency Fof the first peak Pto the frequency Fof the second peak Pis 0.4 to 2.3.'}2. The battery electrode according to claim 1 , wherein;a peak P(020) appears in the range of 48.0° to 49.0° and a peak P(001) appears in the range of 12° to 16° in a powder X-ray diffraction diagram when the electrode is subjected to measurement by a powder X-ray diffractometry using a Cu-Kα ray source; and{'b': 1', '1, 'the ratio I(020)/I(001) of intensity I(020) of the peak P(020) to intensity I(001) of the peak P(001) is 0.89 to ..'}3. The battery electrode according to claim 1 , wherein the active material layer has a pore volume of 0.20 ml/g to 0.25 ml/g.4. The battery electrode ...

Подробнее
16-05-2013 дата публикации

ELECTRODE, NONAQUEOUS ELECTROLYTE BATTERY, AND BATTERY PACK

Номер: US20130122349A1
Принадлежит:

According to one embodiment, an electrode includes a current collector, an active material-containing layer, a first peak, a second peak and a pore volume. The active material-containing layer contains an active material having a lithium absorption potential of 0.4 V (vs. Li/Li) or more. The first peak has a mode diameter of 0.01 to 0.1 μm in a diameter distribution of pores detected by mercury porosimetry. The second peak has a mode diameter of 0.2 μm (exclusive) to 1 μm (inclusive) in the diameter distribution of pores. The pore volume detected by the mercury porosimetry is within a range of 0.1 to 0.3 mL per gram of a weight of the electrode excluding a weight of the current collector. 1. An electrode comprising:a current collector;{'sup': '+', 'an active material-containing layer formed on the current collector and containing an active material having a lithium absorption potential of 0.4 V (vs. Li/Li) or more;'}a first peak having a mode diameter of 0.01 to 0.1 μm in a diameter distribution of pores detected by mercury porosimetry;a second peak having a mode diameter of 0.2 μm (exclusive) to 1 μm (inclusive) in the diameter distribution of pores; anda pore volume detected by the mercury porosimetry within a range of 0.1 to 0.3 mL per gram of a weight of the electrode excluding a weight of the current collector.2. The electrode according to claim 1 ,wherein the active material comprises a titanium composite oxide having a monoclinic system β-type structure.3. The electrode according to claim 2 ,{'sup': '2', 'wherein a specific surface area detected by a BET method of the titanium composite oxide is within a range of 1 to 30 m/g.'}4. The electrode according to claim 2 ,wherein the titanium composite oxide is in a form of secondary particles comprising aggregation of fibrous primary particles.5. The electrode according to claim 4 ,wherein a diameter of the fibrous primary particles is within a range of 0.1 to 10 μm, and a diameter of the secondary particles is ...

Подробнее
16-05-2013 дата публикации

CATHODE ACTIVE MATERIAL AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME

Номер: US20130122363A1
Принадлежит: LG CHEM, LTD.

Disclosed is a cathode active material for secondary batteries comprising at least one compound selected from the following formula 1: (1−s−t)[Li(LiMnNiCo)O]*s[LiCO]*t[LiOH] (1) wherein 0 Подробнее

16-05-2013 дата публикации

Spinel-Type Lithium Transition Metal Oxide and Positive Electrode Active Material for Lithium Battery

Номер: US20130122372A1
Принадлежит: Mitsui Mining & Smelting Co., Ltd.

Provided is spinel-type lithium transition metal oxide (LMO) used as a positive electrode active material for lithium battery, said LMO being capable of simultaneously achieving all output characteristics (rate characteristics), high temperature cycle life characteristics, and rapid charging characteristics. The disclosed is spinel-type lithium transition metal oxide including, besides Li and Mn, one or more elements selected from a group consisting of Mg, Ti, Ni, Co, and Fe, and having crystallite size of between 200 nm and 1000 nm and strain of 0.0900 or less. Because the crystallite size is markedly large, oxygen deficiency is markedly little, and the structure is strong, when the LMO is used as a positive electrode active material for lithium secondary batteries, all output characteristics (rate characteristics), high temperature cycle life characteristics, and rapid charging characteristics can be achieved simultaneously. 1. A spinel-type lithium transition metal oxide comprising , besides Li and Mn , one or more elements selected from a group consisting of Mg , Ti , Ni , Co , and Fe , and having crystallite size of between 200 nm and 1000 nm measured by following measurement method and strain of 0.0900 or less measured by following measurement method:(Crystallite size and measurement method of strain)Providing a sample in powder form, the crystallite size and strain are measured by the Rietveld method using a fundamental method, wherein:an x ray diffractometer using a Cu—Kα beam is used for the measurements of x ray diffraction patterns, peaks of the x ray diffraction patterns obtained from a range of diffraction angle 2θ=10 to 120° are analyzed using an analysis software to determine the crystallite size and strain;in the measurement method it is hypothesized that the crystal structure belongs to the cubic crystal from the space group Fd-3m of Origin Choice 2, and that Li is present at the 8a site thereof, Mn, a substitute element of Mn, and an extra Li ...

Подробнее
16-05-2013 дата публикации

LITHIUM ION SECONDARY BATTERY

Номер: US20130122373A1
Принадлежит: NEC ENERGY DEVICES, LTD.

Provided is a lithium ion secondary battery which is low in capacity drop of the battery during fast-charge and has high energy density. In the present lithium ion secondary battery, the positive electrode contains a lithium nickel manganese oxide represented by formula (I): 1. A lithium ion secondary battery comprising a positive electrode and a negative electrode , wherein the positive electrode comprises a lithium nickel manganese oxide represented by the following formula (I){'br': None, 'sub': x', 'a', 'b', '2-a-b', '4, 'i': 'M', 'LiNi1MnO\u2003\u2003(I)'}{'sup': 2', '—1', '2', '−1, 'wherein in formula (I), M1 represents at least one selected from the group consisting of Ti, Si, Co, Fe, Cr, Al, Mg, B and Li; 0 Подробнее

23-05-2013 дата публикации

HIGH-VOLTAGE LITHIUM BATTERY CATHODE MATERIAL

Номер: US20130126802A1

The present invention advantageously provides a high-voltage lithium battery cathode material and its general formula for the composition of the high-voltage lithium battery cathode material presented in this invention: 111-. (canceled)12. A method of preparing a high-voltage lithium battery cathode material , comprising: preparing a first soluble-salt mixed aqueous solution I , having a metal ion concentration of 0.5-2.0 mol/L by mixing soluble manganese salts , soluble nickel salts and soluble salts doped by a metal M having a molar ratio of Mn:Ni:M of 0.5:(0.5-X): X , wherein 0 Подробнее

23-05-2013 дата публикации

METHOD FOR PRODUCING AMMONIUM DICHROMATE

Номер: US20130129604A1
Принадлежит: LANXESS DEUTSCHLAND GMBH

Process for preparing ammonium dichromate, comprising the steps of 1. Process for preparing ammonium dichromate , comprising the steps ofc) thermally decomposing an alkali metal ammonium chromate double salt, especially a sodium ammonium chromate double salt or hydrates thereof, at a temperature up to 200° C., especially of 75 to 190° C., to form ammonium dichromate andd) removing the ammonium dichromate from the decomposition product obtained after step c), by crystallization, {'br': None, 'sub': x', '4', 'y', '4, 'M(NH)CrO'}, 'characterized in that the alkali metal ammonium chromate double salt corresponds to the formula'}or hydrates thereof,in whichM is Na or K, particular preference being given to Na,x is from 0.1 to 0.9, preferably from 0.4 to 0.7, 'the sum of x and y is 2.', 'y is from 1.1 to 1.9, preferably from 1.3 to 1.6, and'}2. Process according to claim 1 , characterized in that the alkali metal ammonium chromate double salt has a molar ammonium:alkali metal ratio of ≧2.3. Process according to claim 1 , characterized in that the thermal decomposition of the alkali metal ammonium chromate double salt takes place in the solid state at a temperature of 120 to 190° C. claim 1 , especially of 120 to 170° C.4. Process according to claim 1 , characterized in that the thermal decomposition of the alkali metal ammonium chromate double salt takes place in aqueous solution at a temperature of 75 to 110° C.5. Process according to one or more of to claim 1 , characterized in that an aqueous solution of the decomposition product as per step c) is concentrated by evaporation before step d).6. Process according to any of to claim 1 , characterized in that the alkali metal ammonium chromate double salt used claim 1 , especially sodium ammonium chromate double salt claim 1 , is prepared by adding NHat a temperature of 55 to 95° C. to an aqueous solution of alkali metal dichromate or hydrates thereof claim 1 , especially of NaCrOor NaCrO*2HO. The invention relates to a ...

Подробнее
23-05-2013 дата публикации

TRANSITION METAL COMPOSITE HYDROXIDE AND LITHIUM COMPOSITE METAL OXIDE

Номер: US20130130090A1
Принадлежит: Sumitomo Chemical Company, Limited

Provided are a transition metal mixed hydroxide comprising an alkali metal other than Li, SOand a transition metal element, wherein the molar ratio of the molar content of the alkali metal to the molar content of the SOis not less than 0.05 and less than 2, and a lithium mixed metal oxide obtained by calcining a mixture of the transition metal mixed hydroxide and a lithium compound by maintaining the mixture at a temperature of 650 to 100000. 1. A transition metal mixed hydroxide containing an alkali metal other than Li , SOand a transition metal element , wherein the molar ratio of the molar content of the alkali metal to the molar content of the SOis not less than 0.05 and less than 2.2. The transition metal mixed hydroxide according to claim 1 , wherein the molar ratio is not less than 1 and less than 2.3. The transition metal mixed hydroxide according to claim 1 , wherein the transition metal element represents Ni claim 1 , Mn and Fe.4. The transition metal mixed hydroxide according to claim 3 , wherein the molar ratio of Ni:Mn:Fe is (1-x-y):x:y claim 3 , wherein x is not less than 0.3 and not more than 0.7 and y is more than 0 and less than 0.2.5. The transition metal mixed hydroxide according to claim 1 , wherein the molar ratio of the molar content of the alkali metal to the molar content of the transition metal mixed hydroxide is 0.00001 to 0.003.6. The transition metal mixed hydroxide according to claim 1 , wherein the alkali metal is K.7. A method for producing a lithium mixed metal oxide claim 1 , the method comprising calcining a mixture of the transition metal mixed hydroxide according to and a lithium compound by maintaining the mixture at a temperature of 650 to 1000° C.8. The method according to claim 7 , wherein the transition metal mixed hydroxide is obtained by a method comprising the following steps (1) and (2):{'sub': '4', '(1) a step of bringing an aqueous solution containing a transition metal element and SOinto contact with an alkali ...

Подробнее
23-05-2013 дата публикации

SURFACE STABILIZED ELECTRODES FOR LITHIUM BATTERIES

Номер: US20130130095A1
Принадлежит: UCHICAGO ARGONNE, LLC

A stabilized electrode comprising a metal oxide or lithium-metal-oxide electrode material is formed by contacting a surface of the electrode material, prior to cell assembly, with an aqueous or a non-aqueous acid solution having a pH greater than 4 but less than 7 and containing a stabilizing salt, to etch the surface of the electrode material and introduce stabilizing anions and cations from the salt into said surface. The structure of the bulk of the electrode material remains unchanged during the acid treatment. The stabilizing salt comprises fluoride and at least one cationic material selected from the group consisting of ammonium, phosphorus, titanium, silicon, zirconium, aluminum, and boron. 1. A stabilized electrode comprising a metal oxide or lithium-metal-oxide electrode material , wherein the electrode is formed by contacting a surface of the electrode material , prior to cell assembly , with an aqueous or a non-aqueous acid solution having a pH greater than 4 but less than 7 and containing a stabilizing salt to etch the surface of the electrode material and introduce stabilizing anions and cations from the salt into said surface while the structure of the bulk of the electrode material remains unchanged; wherein the stabilizing salt comprises fluoride and at least one cationic material selected from the group consisting of ammonium , phosphorus , titanium , silicon , zirconium , aluminum , and boron.2. The stabilized electrode of claim 1 , wherein said stabilizing salt comprises one or more of phosphorus claim 1 , aluminum claim 1 , and boron.3. The stabilized electrode of claim 1 , wherein said electrode material has the general formula of ×LiM′O.(1−x)LiMOin which M′ is one or more metal ions with an average tetravalent oxidation state and 0≦x<1 claim 1 , and in which M is one or more metal ions with an average trivalent oxidation state.4. The stabilized electrode of claim 3 , wherein M′ is selected from Mn claim 3 , Ti claim 3 , and Zr claim 3 , and M ...

Подробнее
30-05-2013 дата публикации

POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERY AND SECONDARY BATTERY USING THE SAME

Номер: US20130136987A1
Принадлежит: NEC ENERGY DEVICES, LTD.

Provided is a lithium ion positive electrode active material for a secondary battery that can realize a high operating voltage and a high capacity while suppressing capacity drop with cycles by using a low-cost material. A positive electrode active material for a secondary battery, which is a lithium manganese composite oxide represented by the following general formula (I) 1. A positive electrode active material for a secondary battery , which is a lithium manganese composite oxide represented by the following general formula (I){'br': None, 'sub': a', 'x', '2-x-y', 'y', '4-w', 'w, 'Li(MMnY)(OZ) \u2003\u2003(I)'}wherein in the formula (I), 0.5≦x≦1.2, 0 Подробнее

20-06-2013 дата публикации

Process for Producing Defect-Free Lithium Metal Phosphate Electrode Materials

Номер: US20130157133A1
Автор: Chen Jiajun, Graetz Jason
Принадлежит: Brookhaven Science Associates, LLC

A method of synthesizing defect-free phospho-olivine materials is disclosed. The method is based on direct hydrothermal synthesis of phospho-olivine compound(s) and subsequent lattice reordering at or near the transition temperature to eliminate lattice defects or on one-pot in situ hydrothermal synthesis of phospho-olivine compound(s), where the cation ordering occurs during dwell time after rapid synthesis to eliminate lattice defects. The disclosed methods produce defect-free phospho-olivine compound(s) having a crystal lattice with a Pnma space group. In order to determine the exact transition temperature for complete removal of single- or mixed-transition metals from lithium sites or to monitor the crystal growth and removal of single- or mixed-transition metals from lithium sites during the hydrothermal synthesis, the method encompasses a procedure for determining and monitoring defects in the phospho-olivine phases using X-ray diffraction. 2. The method according to claim 1 , wherein the defect-free phospho-olivine structure has less than about 2% defects.3. The method according to claim 2 , wherein the defect-free phospho-olivine structure has less than about 0.5% defects.4. The method according to claim 1 , wherein the phospho olivine crystal lattice has a Pnma space group.5. The method according to claim 1 , further comprising determining the transition temperature for defect elimination in the phospho-olivine crystal lattice by in situ X-ray diffraction.6. The method according to claim 1 , further comprising adding a reducing agent to the aqueous solution of Li claim 1 , M claim 1 , and PO to minimize M oxidation.7. The method according to claim 6 , wherein the reducing agent is selected from the group consisting of L-ascorbic acid claim 6 , sucrose claim 6 , hydrazine claim 6 , citric acid claim 6 , and a combination thereof.8. The method according to claim 1 , wherein the reactor is an autoclave.9. The method according to claim 8 , wherein the autoclave ...

Подробнее
20-06-2013 дата публикации

Lithium Rechargeable Battery

Номер: US20130157137A1
Автор: Fukushima Takaashi
Принадлежит: KYOCERA CORPORATION

A lithium rechargeable battery having a nonaqueous electrolyte held between a positive electrode and a negative electrode is provided. The lithium rechargeable battery has a high energy density and a high battery capacity by enhancing a filling factor of an active material of the positive electrode or the negative electrode. In the lithium rechargeable battery includes the positive electrode, the negative electrode, and the nonaqueous electrolyte held between the positive electrode and the negative electrode, the positive electrode or the negative electrode is comprised of a lithium titanate sintered body. The lithium titanate sintered body has a mean fine pore diameter of 0.10 to 0.20 μm, a specific surface area of 1.0 to 3.0 m/g, and a relative density of 80 to 90%. 14-. (canceled)5. A lithium rechargeable battery , comprising:a positive electrode;a negative electrode; anda nonaqueous electrolyte held between the positive electrode and the negative electrode, whereinthe positive electrode or the negative electrode is comprised of a lithium titanate sintered body, and{'sup': '2', 'the lithium titanate sintered body has a mean fine pore diameter of 0.10 to 0.20 μm, a specific surface area of 1.0 to 3.0 m/g, and a relative density of 80 to 90%.'}6. The lithium rechargeable battery according to claim 5 , wherein a mean grain size of grains constituting the lithium titanate sintered body is 0.5 μm or less.7. The lithium rechargeable battery according to claim 5 , wherein bending strength of the lithium titanate sintered body is 50 MPa or more.8. The lithium rechargeable battery according to claim 6 , wherein bending strength of the lithium titanate sintered body is 50 MPa or more.9. The lithium rechargeable battery according to claim 5 , wherein the lithium titanate sintered body contains at least one kind of titanium oxide crystal grains having a rutile-type crystal structure and titanium oxide crystal grains having an anatase-type crystal structure claim 5 , and{'sub ...

Подробнее
27-06-2013 дата публикации

LITHIUM-TITANIUM COMPLEX OXIDE, AND BATTERY ELECTRODE AND LITHIUM ION SECONDARY BATTERY CONTAINING SAME

Номер: US20130161558A1
Принадлежит: TAIYO YUDEN CO., LTD.

A lithium-titanium complex oxide in a particulate form whose main ingredient is LiTiOcontains potassium (K), wherein (S/S)/(C) is 12 or less and preferably (S/S)−(S/S) is 0.01 or less, where Sis the K2p peak area of potassium (K) and Sis the Ti2p peak area of titanium (Ti) based on X-ray photoelectron spectral measurement of the particle surface, Cis the content ratio (percent by mass) of potassium (K), Sis the K2p peak area of potassium (K) and Sis the Ti2p peak area of titanium (Ti) based on X-ray photoelectron spectral measurement in the interior of the particle. The lithium-titanium complex oxide is suitable for manufacture of high-capacity batteries. 1. A lithium-titanium complex oxide in a particulate form whose main ingredient is LiTiOand which contains potassium (K) , wherein{'sub': SK', 'STi', 'k', 'SK', 'STi', 'k, '(S/S)/(C) is 12 or less, where Sis a K2p peak area of potassium (K) and Sis a Ti2p peak area of titanium (Ti) based on X-ray photoelectron spectral measurement of the particle surface, and Cis a content ratio (percent by mass) of potassium (K).'}2. A lithium-titanium complex oxide according to claim 1 , wherein (S/S)−(S/S) is 0.01 or less claim 1 , where Sis a K2p peak area of potassium (K) and Sis a Ti2p peak area of titanium (Ti) based on X-ray photoelectron spectral measurement on an interior of the particle claim 1 , and Sand Sare defined above.3. A lithium-titanium complex oxide according to claim 1 , containing 0.01 to 0.25 percent by mass of potassium (K).4. A lithium-titanium complex oxide according to claim 1 , wherein a mol ratio of lithium to titanium claim 1 , or Li/Ti claim 1 , is 0.76 to 0.84.5. A lithium-titanium complex oxide according to claim 1 , further containing sulfur.6. A positive electrode for a battery containing the lithium-titanium complex oxide according to as a positive electrode active material.7. A negative electrode for a battery containing the lithium-titanium complex oxide according to as a negative electrode ...

Подробнее
11-07-2013 дата публикации

TETRAFLUOROBORATE COMPOUNDS, COMPOSITIONS AND RELATED METHODS OF USE

Номер: US20130178405A1
Автор: THOMSON ROD
Принадлежит: Vitech International, Inc.

Tetrafluoroboric acid and an organic nitrogenous base, related compounds and compositions, as can be used in conjunction with various methods of cleaning and/or the treatment of substrate surfaces. 1. A compound for removing contaminants from a surface , said compound comprising:a tetrafluoroboric acid component; andan organic nitrogenous base component.2. The compound of wherein said organic nitrogenous base component is urea.3. The compound of in a composition comprising a surfactant.4. The compound of wherein said surfactant is a nonionic surfactant.5. The compound of in a composition comprising a corrosion inhibitor.6. The compound of in a fluid medium.7. The compound of incorporated into a vehicle wash system.8. A composition comprising tetrafluoroboric acid claim 6 , urea and a corrosion inhibitor component.9. The composition of wherein said tetrafluoroboric acid is about 0.5 to about 75 weight percent of said composition claim 8 , and said urea is about 0.5 to about 35 weight percent of said composition.10. The composition of comprising water in an amount at least partially sufficient for compositional weight percent.11. The composition of comprising a surfactant.12. The composition of applied to an automotive vehicle surface.13. A compound claim 8 , said compound the reaction product of tetrafluoroboric acid and urea.14. The compound of in aqueous solution.15. A composition comprising the reaction product of tetrafluoroboric acid and urea claim 13 , said reaction product dissolved in water.16. The composition of comprising a nonionic surfactant. This application is a divisional of and claims priority benefit from application Ser. No. 12/291,285 filed Nov. 7, 2008 and issued as U.S. Pat. No. 8,389,453 on Mar. 5, 2013, which claimed priority benefit from application Ser. No. 61/002,246 filed Nov. 7, 2007—each of which is incorporated herein by reference in its entirety.Acids perform a wide variety of unique cleaning functions in both industrial and domestic ...

Подробнее
15-08-2013 дата публикации

ACTIVE MATERIAL FOR BATTERY, NONAQUEOUS ELECTROLYTE BATTERY, AND BATTERY PACK

Номер: US20130209863A1
Принадлежит:

According to one embodiment, there is provided a active material for a battery including a complex oxide containing niobium and titanium. A ratio M/Mof a mole of niobium Mto a mole of titanium Min the active material satisfies either the following equation (I) or (II). 1. An active material for a battery comprising a complex oxide containing niobium and titanium , wherein a ratio M/Mof a mole of niobium Mto a mole of titanium Min the active material satisfies either the following equation (I) or (II){'br': None, 'i': ≦M', '/M, 'sub': Nb', 'Ti, '0.5<2\u2003\u2003(I)'}{'br': None, 'i': Подробнее

15-08-2013 дата публикации

SECONDARY BATTERY

Номер: US20130209879A1
Принадлежит:

A secondary battery includes a positive electrode current collector and a positive electrode mixture layer which is coated over the positive electrode current collector . The positive electrode mixture layer includes a positive electrode active material , an electrically conductive material , and a binder . In addition, the positive electrode active material has secondary particles formed by an aggregation of a plurality of primary particles of a lithium transition metal oxide, a hollow portion formed in the secondary particle , and through holes penetrating the secondary particles so as to connect the hollow portion and the outside. A ratio (Vbc/Va) of an inner volume Vbc of holes formed inside the positive electrode mixture layer to an apparent volume Va of the positive electrode mixture layer satisfies 0.25≦(Vbc/Va). In addition, in a section of the positive electrode mixture layer , a ratio (Vb/Vc) of an inner volume Vb of holes B formed inside the positive electrode active material to an inner volume Vc of holes C formed outside the positive electrode active material satisfies 0.05≦(Vb/Vc)≦2.5. 1. A secondary battery comprising:a current collector; anda positive electrode mixture layer which is coated over the current collector, whereinthe positive electrode mixture layer includes a positive electrode active material, an electrically conductive material, and a binder,the positive electrode active material has:secondary particles formed by an aggregation of a plurality of primary particles of a lithium transition metal oxide;a hollow portion formed in the secondary particle; andthrough holes penetrating the secondary particles so as to connect the hollow portion and the outside,a ratio (Vbc/Va) of an inner volume Vbc of holes formed inside the positive electrode mixture layer to an apparent volume Va of the positive electrode mixture layer satisfies 0.25≦(Vbc/Va), andin a section of the positive electrode mixture layer, a ratio (Vb/Vc) of an inner volume Vb of ...

Подробнее
15-08-2013 дата публикации

SECONDARY BATTERY

Номер: US20130209888A1
Автор: Nagai Hiroki
Принадлежит:

A secondary battery according to the present invention has a current collector and a positive electrode mixture layer that coats the current collector. The positive electrode mixture layer includes a positive electrode active material, an electrically conductive material, and a binder, and the positive electrode active material is constituted by hollow-structure secondary particles formed by the aggregation of a plurality of primary particles of a lithium transition metal oxide and has a through hole penetrating from outside to a hollow portion. In addition, a particle porosity A of the positive electrode active material satisfies 2.0(%)≦A≦70(%). Furthermore, a DBP absorption A of the positive electrode active material satisfies 23 (mL/100 g)≦A. Moreover, the tap density A of the positive electrode active material satisfies 1.0 (g/mL)≦A≦1.9 (g/mL). 1. (canceled)2. (canceled)3. A secondary battery comprising:a current collector; anda positive electrode mixture layer coated on the current collector, whereinthe positive electrode mixture layer includes a positive electrode active material, an electrically conductive material, and a binder,the positive electrode active material is constituted by hollow-structure secondary particles formed by the aggregation of a plurality of primary particles of a lithium transition metal oxide and has a through hole penetrating from outside to a hollow portion,{'b': 1', '1, 'a particle porosity A of the positive electrode active material satisfies 25(%)≦A≦70(%),'}{'b': 2', '2, 'a DBP absorption A of the positive electrode active material satisfies 23 (mL/100 g)≦A, and'}{'b': 3', '3, 'a tap density A of the positive electrode active material satisfies 1.0 (g/mL)≦A≦1.9 (g/mL).'}411. The secondary battery according to claim 3 , wherein the particle porosity A of the positive electrode active material satisfies A≦66(%).522. The secondary battery according to claim 3 , wherein the DBP absorption A of the positive electrode active material ...

Подробнее
22-08-2013 дата публикации

TREATMENT OF TANTALUM- AND/OR NIOBIUM-CONTAINING COMPOUNDS

Номер: US20130216455A1
Принадлежит:

A process for treating a feedstock comprising tantalum- and/or niobium-containing compounds is provided. The process includes contacting the feedstock with a gaseous fluorinating agent, thereby to fluorinate tantalum and/or niobium present in the feedstock compounds. The resultant fluorinated tantalum and/or niobium compounds are recovered. 1. A process for treating a feedstock comprising tantalum- and/or niobium-containing compounds , which process includescontacting the feedstock with a gaseous fluorinating agent, thereby to fluorinate tantalum and/or niobium present in the feedstock compounds; andrecovering the resultant fluorinated tantalum and/or niobium compounds.2. A process according to claim 1 , wherein the feedstock comprises at least one mineral containing the tantalum- and/or niobium compounds claim 1 , and wherein the tantalum- and/or niobium-containing compounds comprise oxides of the formula MOwhere M is Ta or Nb.3. A process according to claim 2 , which is characterized thereby that it is carried out in the substantial absence of moisture claim 2 , so that it is a dry process claim 2 , with few harmful and/or hazardous liquid waste products being produced.4. A process according to or claim 2 , wherein the gaseous fluorinating agent comprises gaseous fluorine and/or gaseous anhydrous hydrogen fluoride as a reactive gas which claim 2 , in a fluorinating reaction claim 2 , fluorinates the tantalum- and niobium-containing compounds.7. A process according to claim 4 , wherein the degree of fluorination is controlled such that oxyfluoride compounds of tantalum and niobium claim 4 , in accordance with formula MOFin which M is Ta or Nb claim 4 , x and z are each >0 claim 4 , and y≧0 claim 4 , are produced.8. A process according to claim 7 , wherein the fluorinating agent includes claim 7 , in addition to the reactive gas comprising gaseous fluorine (F) and/or gaseous anhydrous hydrogen fluoride and which is hence a first reactive gas claim 7 , also a second ...

Подробнее
22-08-2013 дата публикации

PROCESS FOR PREPARING CHROMIUM(III) OXIDE

Номер: US20130216471A1
Принадлежит: LANXESS DEUTSCHLAND GMBH

The present invention relates to a process for preparing chromium(III) oxide by reaction of alkali metal chromate with gaseous ammonia, subsequent hydrolysis, isolation of the hydrolysis product and calcination. 1. Process for preparing chromium(III) oxide , which comprises the steps:a) reaction of alkali metal chromate with gaseous ammonia, in particular at a temperature of from 200 to 800° C., of the water for the hydrolysis being reduced before the hydrolysis or', 'of the alkaline mother liquor being reduced during or after the hydrolysis, to a value of from 4 to 11, preferably from 5 to 10,', 'by means of an acid,, 'b) hydrolysis of the reaction product obtained in step a) with the pH'}c) isolation of the hydrolysis product which has precipitated in step b), preferably at a pH of from 4 to 11, in particular from 5 to 10, and optionally washing and optionally drying andd) calcination of the hydrolysis product obtained in step c) at a temperature of from 700 to 1400° C., in particular from 800 to 1300° C.2. Process according to claim 1 , characterized in that the reaction of the alkali metal chromate with gaseous ammonia is carried out in an indirectly heated reactor claim 1 , in particular in a rotary tube furnace or in a fluidized bed.3. Process according to claim 1 , characterized in that the alkali metal chromate is sodium dichromate claim 1 , sodium dichromate dihydrate or potassium dichromate.4. according to claim 1 , characterized in that the lowering of the pH is carried out by addition of inorganic or organic acids claim 1 , in particular by introduction of carbon dioxide.5. Process according to one or more of to claim 1 , characterized in that the calcined product from step d) is suspended in water claim 1 , optionally washed again with water one or more times and subsequently dried.6. Process according to one or more of to claim 1 , characterized in that the calcined and optionally washed and optionally dried product from step d) is subjected to milling ...

Подробнее
22-08-2013 дата публикации

ACTIVE MATERIAL FOR BATTERIES, NON-AQUEOUS ELECTROLYTE BATTERY, AND BATTERY PACK

Номер: US20130216868A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

According to one embodiment, an active material for batteries includes monoclinic β-type titanium composite oxide containing at least one element selected from the group consisting of V, Nb, Ta, Al, Ga, and In, the at least one element being contained in an amount of 0.03 wt % or more and 3 wt % or less. 1. An active martial for batteries comprising monoclinic β-type titanium composite oxide containing at least one element selected from the group consisting of V , Nb , Ta , Al , Ga , and In , the at least one element being contained in an amount of 0.03 wt % or more and 3 wt % or less.2. The active material of claim 1 , wherein the at least one element occupies a Ti site of the titanium composite oxide.3. A non-aqueous electrolyte battery comprising:an outer case:a positive electrode housed in the outer case;a negative electrode housed in the outer case with being spatially separated from the positive electrode and containing an active material; anda non-aqueous electrolyte contained in the outer case, whereinthe active material comprises monoclinic β-type titanium composite oxide containing at least one element selected from the group consisting of V, Nb, Ta, Al, Ga, and In, the at least one element being contained in an amount of 0.03 wt % or more and 3 wt % or less.4. The battery of claim 3 , wherein the at least one element is Nb alone or a mixture of Nb and V claim 3 , Nb and Ta claim 3 , or Nb claim 3 , V claim 3 , and Ta.5. The battery of claim 3 , wherein the at least one element occupies a Ti site of the monoclinic β-type titanium composite oxide.6. The battery of claim 3 , wherein the positive electrode comprises lithium nickel composite oxide or lithium manganese composite oxide.7. The battery of claim 3 , wherein the outer case is formed of a laminated film.8. The battery of claim 3 , which is for in-vehicle use.9. A battery pack comprising a plurality of the non-aqueous electrolyte batteries defined in claim 3 , in which the batteries are connected to ...

Подробнее
29-08-2013 дата публикации

METHOD FOR LEACHING OF COPPER AND MOLYBDENUM

Номер: US20130220078A1
Принадлежит: Metaleach Limited

A method for leaching copper and molybdenum from an ore, residue and/or concentrate containing such, in which more than 1% of the total molybdenum is present as a sulfide and in which more than 1% of the total copper is present as an oxide, the method comprising the steps of: Exposing the ore, residue and/or concentrate to an aqueous solution of chlorine (I)-based oxidising species of a p H of at least 3.0; Allowing and/or facilitating the oxidation of the molybdenum by the chlorine-based oxidising species thereby providing a treated ore, residue and/or concentrate and a reduced aqueous solution of chlorine-based oxidising species; and Leaching the treated ore, residue and/or concentrate by exposing the treated ore, residue and/or concentrate to an aqueous ammoniacal ammonium carbonate solution to form a pregnant leach solution containing both copper and molybdenum; Passing the pregnant leach solution containing both copper and molybdenum to a means for metal recovery. 1. A method for leaching copper and molybdenum from an ore , residue and/or concentrate containing such , in which more than 1% of the total molybdenum is present as a sulfide and in which more than 1% of the total copper is present as an oxide , the method comprising the steps of:Exposing the ore, residue and/or concentrate to an aqueous solution of chlorine (I)-based oxidising species of a pH of at least 3.0;Allowing and/or facilitating the oxidation of the molybdenum by the chlorine-based oxidising species thereby providing a treated ore, residue and/or concentrate and a reduced aqueous solution of chlorine-based oxidising species; andLeaching the treated ore, residue and/or concentrate by exposing the treated ore, residue and/or concentrate to an aqueous ammoniacal ammonium carbonate solution to form a pregnant leach solution containing both copper and molybdenum;Passing the pregnant leach solution containing both copper and molybdenum to a means for metal recovery.2. The method according to ...

Подробнее
05-09-2013 дата публикации

Solid ammonia storage and delivery material

Номер: US20130230443A1
Принадлежит: Individual

Disclosed is a method for the selective catalytic reduction of NO x in waste/exhaust gas by using ammonia provides by heating one or more salts of formula M a (NH 3 ) n X z , wherein M represents one or more cations selected from alkaline earth metals and transition metals, X represents one or more anions, a represents the number of cations per salt molecule, z represents the number of anions per salt molecule, and n is a number of from 2 to 12, the one or more salts having been compressed to a bulk density above 70% of the skeleton density before use thereof.

Подробнее
12-09-2013 дата публикации

PROCESSES FOR MAKING HIGH IRON CONTENT STABLE FERRIC CHLORIDE SOLUTIONS

Номер: US20130236379A1
Принадлежит:

Processes for forming high iron content ferric chloride solutions, reconstituting ferric chloride solutions, and transporting the stable ferric chloride solutions with the high iron content are disclosed. 1. A process for making a high iron content ferric chloride solution , comprising:evaporating water from a ferric chloride solution having an iron content about 15 weight percent or less to increase the iron content to about 23 to 26 weight percent.2. The process of claim 1 , wherein the iron content is increased to 24 to 25 weight percent.3. The process of claim 1 , wherein the iron content is increased to 24.5 weight percent.4. The process of claim 1 , wherein the ferric chloride solution further comprises hydrochloric acid and evaporating the water from the ferric chloride solution concomitantly decreases a concentration of the hydrochloric acid in the ferric chloride solution.5. The process of claim 4 , wherein the concentration of the hydrochloric acid in the ferric chloride solution after evaporating the water is substantially zero.6. The process of claim 1 , further comprising reconstituting the ferric chloride solution with the iron content of about 23 to 26 weight percent by diluting the ferric chloride solution to a desired iron content with water.7. The process of claim 1 , further comprising reconstituting the ferric chloride solution with the iron content of about 23 to 26 weight percent by diluting the ferric chloride solution to a desired iron content with water and hydrochloric acid.8. A method of moving a solution claim 1 , comprising:transporting a ferric chloride solution with the iron content of about 23 to 26 weight percent at a temperature of about 8° C. or more.9. The method of claim 8 , wherein the ferric chloride solution has an iron content of about 24 to 25 weight percent weight percent and is at a temperature about 30° C. or more.10. The method of claim 8 , wherein the ferric chloride solution has an iron content of about 24.5 weight ...

Подробнее
19-09-2013 дата публикации

SEPARATION OF TUNGSTEN FROM AMMONIUM MOLYBDATE SOLUTIONS

Номер: US20130243673A1
Принадлежит: Orchard Material Technology, LLC

Disclosed is process for the separation of tungsten from molybdenum and more particularly from ammonium molybdate solutions. The method comprises dissolving technical grade molybdenum trioxide in an aqueous ammonium hydroxide solution and further adding certain metal generating compounds to the aqueous solution thereby generating a tungsten-containing precipitate. Calcium, iron and manganese are the preferred metal generating compounds of the invention. Certain temperature and pH values of the system, as disclosed, are preferred for the precipitation of the tungsten from the ammonia molybdate solution. 1. A process for the separation of tungsten from molybdenum comprising the steps of(a) dissolving a compound containing molybdenum and tungsten in an ammoniacal solution and (b) adding at least one metal ion generating compound to the solution, the metal ion generating compound being selected from calcium, iron and manganese;wherein a precipitate comprising tungsten is generated.2. The process of claim 1 , wherein the precipitate comprising tungsten is generated in an amount of less than 125 ppm.3. The process of claim 1 , wherein the molybdenum containing compound is technical grade molybdenum trioxide.4. The process of claim 1 , wherein the ammoniacal solution is ammonium hydroxide.5. The process of claim 1 , wherein the calcium ion generating compound is selected from calcium acetate claim 1 , calcium hydroxide claim 1 , calcium chloride claim 1 , and calcium nitrate.6. The process of claim 5 , wherein the temperature of the system is between 10° C. and 50° C.7. The process of claim 1 , wherein the iron ion generating compound isselected from ferric sulfate, ferrous molybdate, ferric molybdate, ferric nitrate, and ferric chloride.8. The process of claim 7 , wherein the temperature of the system is between 50° C. and 70° C.9. The process of claim 1 , wherein the manganese ion generating compound is manganous chloride or manganous nitrate.10. The process of claim 9 , ...

Подробнее
26-09-2013 дата публикации

METHOD FOR LEACHING COPPER FROM COPPER SULFIDE ORE

Номер: US20130247720A1
Автор: Manabe Manabu
Принадлежит: JX NIPPON MINING & METALS CORPORATION

The present invention provides a method of leaching copper from a copper sulfide ore, wherein operating costs and environmental impacts can be effectively reduced. The present invention is a method of leaching copper from a copper sulfide ore by a process of leaching a layer of stacked ores, wherein the leaching solution containing Fe (III) ion and other leaching solution containing iodide ion are fed through routes independent of each other to a layer of stacked ores containing a copper sulfide ore. 1. A method of leaching copper from a copper sulfide ore by a process of leaching a layer of stacked ores , wherein a leaching solution containing Fe (III) ion and other leaching solution containing iodide ion are fed through routes independent of each other to a layer of stacked ores containing a copper sulfide ore.2. A method of leaching copper from a copper sulfide ore according to claim 1 , wherein a major component of the ore containing the copper sulfide ore is chalcopyrite. The present invention relates to a method of leaching copper from a copper sulfide ore. Specifically, the present invention relates to a method of leaching copper effectively reducing operating costs and environmental impacts in leaching copper from stacked ore bodies by stacking a copper sulfide ore, and particularly a copper sulfide ore containing poorly soluble ores in mineral acids such as chalcopyrite and by feeding an acid from the top of the heap to leach copper.It has been known that in a hydrometallurgical process of copper, leaching of copper is significantly promoted by adding iodine or iodide ion and Fe (III) ion to the leaching solution in order to recover copper by leaching a poorly soluble copper sulfide ore in mineral acids such as chalcopyrite (Patent Literature 1).On the one hand, there is a problem of channeling phenomenon which causes only the flow paths of the leaching solution to be leached in the process of leaching copper. In contrast, when iodine, being a simple ...

Подробнее
26-09-2013 дата публикации

MATERIAL FOR LITHIUM SECONDARY BATTERY OF HIGH PERFORMANCE

Номер: US20130248758A1
Принадлежит: LG CHEM, LTD.

Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LiMOwherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of LiCOwith a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a LiCOcontent of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure. A secondary battery comprising such a cathode active material exhibits a high capacity and excellent characteristics, and can be produced by an environmentally friendly method with low production costs and high production efficiency. 1. A cathode active material comprising a lithium mixed transition metal oxide having a composition represented by Formula I below , wherein the lithium mixed transition metal oxide is prepared by a solid-state reaction of LiCOand a mixed transition metal precursor under an oxygen-deficient atmosphere , and having a LiCOcontent of less than 0.07% by weight of the cathode active material as determined by pH titration:{'br': None, 'sub': x', 'y', '2, 'LiMO\u2003\u2003(I)'}wherein:{'sub': 1−k', 'k', '1−a−b', '1/2', '1/2', 'a', 'b, 'M=M′A, wherein M′ is Ni(NiMn)Co, 0.65≦a+b≦0.85 and 0.1≦b≦0.4;'}A is a dopant;0≦k≦0.05; andx+y≈2 and 0.95≦x≦1.05.2. The cathode active material according to claim 1 , wherein LiCOis contained in an amount such that less than 20 mL of a 0.1M HCl titrant solution is added during pH titration of a solution of water-soluble bases extracted from the cathode active material to reach a value of less than 5 claim 1 , wherein ...

Подробнее
26-09-2013 дата публикации

POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM ION SECONDARY BATTERY, METHOD OF PREPARING POSITIVE ELECTRODE ACTIVE MATERIAL AND LITHIUM ION SECONDARY BATTERY INCLUDING POSITIVE ELECTRODE ACTIVE MATERIAL

Номер: US20130248779A1

Provided is a positive electrode active material for a lithium ion secondary battery expressed by the following Chemical Formula 1 and containing antimony. 1. A positive electrode active material for a lithium ion secondary battery expressed by the following Chemical Formula I and comprising antimony ,{'br': None, 'i': y', '−y, 'sub': 2', '3', '(1-x)', 'x', '2, 'LiMnO-(1)LiMSbO\u2003\u2003(1)'}where M is one or more selected from the group consisting of nickel (Ni), cobalt (Co), and manganese (Mn), and 0 Подробнее

26-09-2013 дата публикации

Process for the Conversion of Molybdenite to Molydenum Oxide

Номер: US20130251609A1
Принадлежит: KENNECOTT UTAH COPPER LLC

Molybdic oxide is recovered from molybdenite by a multistep process in which (A) the molybdenite is converted to soluble and insoluble molybdic oxide by pressure oxidation, (B) the insoluble molybdic oxide is converted to soluble molybdic oxide by alkaline digestion and then combined with the soluble molybdic oxide, and (C) the molybdenum values of the combined streams are extracted into an organic phase using a nonprimary amine. The extracted molybdenum values are recovered from the organic phase using aqueous ammonia to form ammonium dimolybdate (ADM) which is recovered as refined crystals from a two-step calcination process. Hallmarks of the process include one or more of economic ammonia recovery and recycle, use of ferrous sulfate to remove arsenic and/or phosphorus from the Mo-loaded aqueous ammonia strip liquor, two-stage calcination of ADM crystals, recovery of rhenium from a filtrate of the residual molybdenum precipitation stage, selenium removal from the liquid fraction from which rhenium is recovered, and caustic boil of the mother liquor from which the selenium is precipitated. 1. A process for converting molybdenite to molybdenum oxide , the process comprising the steps of:A. Contacting under pressure oxygen and an aqueous suspension of molybdenite to form an acidic solution comprising dissolved molybdenum and a solid fraction comprising insoluble molybdic oxide;B. Separating the acidic solution comprising dissolved molybdenum from the solid fraction comprising the insoluble molybdic oxide;C. Converting at least a portion of the insoluble molybdic oxide of the solid fraction of step A to acid-soluble molybdic oxide;D. Combining the acidic solution comprising dissolved molybdenum of step A with the acid-soluble molybdic oxide of step C to dissolve the acid-soluble molybdic oxide;E. Extracting the dissolved molybdenum of step D into an organic solvent comprising a nonprimary amine to produce a molybdenum-rich organic phase and a molybdenum-depleted ...

Подробнее
26-09-2013 дата публикации

COMPOSITE POSITIVE ELECTRODE ACTIVE MATERIAL, ELECTRODE FOR LITHIUM SECONDARY BATTERY INCLUDING COMPOSITE POSITIVE ELECTRODE ACTIVE MATERIAL, AND LITHIUM SECONDARY BATTERY

Номер: US20130252100A1

Provided are a composite positive electrode active material, an electrode for a lithium secondary battery including the composite positive electrode active material, and a lithium secondary battery, and more particularly, a composite positive electrode active material including lithium composite oxide, activated carbon, and carbon black, an electrode for a lithium secondary battery including the composite positive electrode active material, and a lithium secondary battery. The present disclosure may provide a lithium secondary battery having improved rate characteristics in a low-temperature atmosphere. 1. A composite positive electrode active material comprising:80 to 98 parts by weight of a positive electrode active material expressed by the following Chemical Formula 1;1 to 15 parts by weight of activated carbon; and1 to 5 parts by weight of carbon black, based on 100 parts by weight of the composite positive electrode active material,{'sup': 2', '2', '2', '2, 'claim-text': {'br': None, 'sub': 2', '3', '2, 'xLiMnO-(1−x) LiMO\u2003\u2003[Chemical Formula 1]'}, 'wherein a specific surface area of the activated carbon is in a range of 800 0 m/g to 3000 m/g and a specific surface area of the carbon black is in a range of 1000 m/g to 2000 m/gwhere M is one or more selected from the group consisting of magnesium (Mg), nickel (Ni), cobalt (Co), chromium (Cr), aluminum (Al), vanadium (V), iron (Fe), copper (Cu), zinc (Zn), titanium (Ti), strontium (Sr), manganese (Mn), boron (B), and lanthanum (La), and 0 Подробнее

03-10-2013 дата публикации

SECONDARY BATTERY AND ELECTROLYTE SOLUTION FOR SECONDARY BATTERY TO BE USED IN SAME

Номер: US20130260218A1
Принадлежит: NEC Corporation

Provided is a secondary battery having a good battery property at a high temperature. A secondary battery according to an exemplary embodiment of the invention comprises a negative electrode and an electrolyte liquid; wherein the negative electrode is formed by binding a negative electrode active substance on a negative electrode collector with a negative electrode binder; and wherein the electrolyte liquid comprises a compound (A) having a C═S bond. In this embodiment, the negative electrode active substance is formed by covering at least one of a metal (a) that can be alloyed with lithium and a metal oxide (b) that can absorb and desorb a lithium ion with a carbon material (c). Alternatively, the negative electrode active substance comprises a metal (a) that can be alloyed with lithium and the negative electrode binder negative electrode is a polyimide or a polyamide-imide. 1. A secondary battery , comprising a negative electrode and an electrolyte liquid;wherein the negative electrode contains a negative electrode active substance, a negative electrode collector and a negative electrode binder which binds the negative electrode active substance to the negative electrode collector;wherein the negative electrode active substance contains at least one of a metal (a) that can be alloyed with lithium and a metal oxide (b) that can absorb and desorb a lithium ion, and a carbon material (c) which covers at least one of the metal (a) and the metal oxide (b); andwherein the electrolyte liquid comprises compound (A) having a C═S bond.4. The secondary battery according to claim 3 , wherein compound (A) has a partial structure represented by above-mentioned formula (iii).5. The secondary battery according to claim 1 , wherein the electrolyte liquid comprises compound (A) and a non-aqueous electrolyte solvent claim 1 , and wherein a content of compound (A) in the electrolyte liquid is 0.005 to 20 mass % with respect to a total of compound (A) and the non-aqueous electrolyte ...

Подробнее
03-10-2013 дата публикации

SECONDARY BATTERY

Номер: US20130260250A1
Автор: Ide Kazuto, YADA Chihiro
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A secondary battery is provided with a positive electrode active material layer a containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer, and a modification material disposed at an interface between an electrolyte material and at least one electrode active material among the positive electrode active material and the negative electrode active material, and having a higher relative permittivity than the relative permittivity of the electrolyte material. 1. A secondary battery comprising:a positive electrode active material layer containing a positive electrode active material;a negative electrode active material layer containing a negative electrode active material;an electrolyte layer formed between the positive electrode active material layer and the negative electrode active material layer; anda modification material disposed at an interface between an electrolyte material and at least one electrode active material among the positive electrode active material and the negative electrode active material, and having a higher relative permittivity than the relative permittivity of the electrolyte material.2. The secondary battery according to claim 1 , wherein the modification material is a solid.3. The secondary battery according to l wherein the modification material is an oxide.4. (canceled)5. The secondary battery according to claim 1 , wherein the modification material is BaTiO.6. The secondary battery according to claim 1 , wherein the modification material is at least one of LiBO claim 1 , LiTaOand LiNbO.7. The secondary battery according to claim 1 , wherein the electrolyte material is a compound represented by a general formula LiAlGe(PO) claim 1 , with x satisfying 0≦x≦2.8. The secondary battery according to claim 1 , wherein the electrode active ...

Подробнее
03-10-2013 дата публикации

LITHIUM-TITANIUM COMPLEX OXIDE, AND BATTERY ELECTRODE AND LITHIUM ION SECONDARY BATTERY USING SAME

Номер: US20130260251A1
Принадлежит: TAIYO YUDEN CO., LTD.

A lithium-titanium complex oxide containing LiTiOis characterized in that, based on SEM observation, the number-based percentage of particles whose size is less than 0.1 μm is 5 to 15% or 40 to 65%, the number-based percentage of particles whose size is 0.3 to 1.5 μm is 15 to 30%, the specific surface area measured by the BET method is 5.8 to 10.1 m/g, and the average particle size D50 according to the particle size distribution measured by laser diffraction measurement is preferably 0.6 to 1.5 μm. 1. A lithium-titanium complex oxide containing LTO , wherein , based on SEM observation , a number-based percentage of particles whose size is less than 0.1 μm is 5 to 15% or 40 to 65% , a number-based percentage of particles whose size is 0.3 to 1.5 μm is 15 to 30% , and a specific surface area measured by the BET method is 5.8 to 10.1 m/g.2. A lithium-titanium complex oxide according to claim 1 , wherein an average particle size D50 according to a particle size distribution measured by laser diffraction measurement is 0.6 to 1.5 μm.3. A positive electrode for a battery containing the lithium-titanium complex oxide according to as a positive electrode active material.4. A positive electrode for a battery containing the lithium-titanium complex oxide according to as a positive electrode active material.5. A negative electrode for a battery containing the lithium-titanium complex oxide according to as a negative electrode active material.6. A negative electrode for a battery containing the lithium-titanium complex oxide according to as a negative electrode active material.7. A lithium ion secondary battery having a positive electrode containing the lithium-titanium complex oxide according to claim 2 , or a negative electrode containing the lithium-titanium complex oxide according to .8. A lithium-titanium complex oxide according to claim 1 , wherein the particles whose size is less than 0.1 μm claim 1 , the particles whose size is 0.3 to 1.5 μm claim 1 , and particles ...

Подробнее
31-10-2013 дата публикации

SECONDARY BATTERY

Номер: US20130288121A1
Принадлежит: TOYOTA JIDOSHA KABUSHIKI KAISHA

A secondary battery includes: a positive electrode mixture layer containing a positive electrode active material and an electrically conductive material ; a positive electrode current collector on which the positive electrode mixture layer is coated; a negative electrode mixture layer containing a negative electrode active material ; and a negative electrode current collector on which the negative electrode mixture layer is coated, wherein a porosity A1 of the positive electrode mixture layer satisfies 0.30≦A1 and, at the same time, a porosity A2 of the negative electrode mixture layer satisfies 0.30≦A2. 1. A secondary battery comprising:a positive electrode mixture layer containing a positive electrode active material and an electrically conductive material;a positive electrode current collector on which the positive electrode mixture layer is coated;a negative electrode mixture layer containing a negative electrode active material; anda negative electrode current collector on which the negative electrode mixture layer is coated, whereina porosity A1 of the positive electrode mixture layer satisfies 0.30≦A1, anda porosity A2 of the negative electrode mixture layer satisfies 0.30≦A2,the positive electrode active material is made UD of secondary particles resulting from aggregation of a plurality of primary particles of a lithium-transition metal oxide,the secondary particles each have a holed hollow structure that has:a hollow portion; anda through-hole penetrating the secondary particles so as to connect the hollow portion and the outside.2. The secondary battery according to claim 1 , wherein the porosity A1 of the positive electrode mixture layer satisfies 0.38≦A1.3. The secondary battery according to claim 1 , wherein the porosity A1 of the positive electrode mixture layer satisfies A1≦0.60.4. The secondary battery according to claim 1 , wherein the porosity A2 of the negative electrode mixture layer satisfies 0.38≦A2.5. The secondary battery according to claim ...

Подробнее
07-11-2013 дата публикации

MOISTURE-LIMITED ELECTRODE ACTIVE MATERIAL, MOISTURE-LIMITED ELECTRODE AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME

Номер: US20130295440A1
Принадлежит:

Disclosed are an electrode active material containing moisture in an amount less than 2,000 ppm per 1 g of lithium metal oxide or moisture in an amount less than 7,000 ppm per 1 cmof the lithium metal oxide, and an electrode containing moisture in an amount less than 2,000 ppm per 1 cmof an electrode mix. 1. An electrode active material for secondary batteries enabling intercalation and deintercalation of lithium ions and comprising lithium metal oxide , wherein the electrode active material contains moisture in an amount less than 2 ,000 ppm per 1 g of the lithium metal oxide or moisture in an amount less than 7 ,000 ppm per 1 cmof the lithium metal oxide.2. The electrode active material according to claim 1 , wherein the electrode active material contains moisture in an amount not lower than 100 ppm and lower than 2 claim 1 ,000 ppm per 1 g of the lithium metal oxide.3. The electrode active material according to claim 1 , wherein the electrode active material contains moisture in an amount not lower than 100 ppm and lower than 1 claim 1 ,500 ppm per 1 g of the lithium metal oxide.4. The electrode active material according to claim 1 , wherein the electrode active material contains moisture in an amount not lower than 100 ppm and lower than 1 claim 1 ,000 ppm per 1 g of the lithium metal oxide.5. The electrode active material according to claim 1 , wherein the electrode active material contains moisture in an amount not lower than 350 ppm and lower than 7 claim 1 ,000 ppm per 1 g of the lithium metal oxide.6. The electrode active material according to claim 1 , wherein the lithium metal oxide is represented by the following Formula (1):{'br': None, 'sub': a', 'b', '4-c', 'c, 'LiM′OA\u2003\u2003(1)'}wherein M′ is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr;a and b are determined according to an oxidation number of M′ within ranges of 0.1≦a≦4 and 0.2≦b≦4;c is determined according to an oxidation number within a ...

Подробнее
07-11-2013 дата публикации

SECONDARY BATTERY

Номер: US20130295456A1
Принадлежит:

A secondary battery includes a positive electrode current collector and a positive electrode mixture layer coated on the positive electrode current collector . The positive electrode mixture layer includes a positive electrode active material and an electrically conductive material . A ratio (Vb/Va) of a volume Vb of holes formed inside the positive electrode mixture layer to an apparent volume Va of the positive electrode mixture layer satisfies 0.30≦(Vb/Va). In addition, in a micropore distribution of differential micropore volume with respect to a micropore diameter as measured by the mercury intrusion method, the positive electrode mixture layer has a first peak at which a micropore diameter D1 satisfies D1≦0.25 μm and a second peak at which a micropore diameter D2 is greater than the first peak micropore diameter D1.

Подробнее
14-11-2013 дата публикации

COMPOSITE METAL PRECURSOR, ELECTRODE ACTIVE MATERIAL PREPARED FROM THE SAME, POSITIVE ELECTRODE INCLUDING THE SAME, AND LITHIUM SECONDARY BATTERY EMPLOYING THE SAME

Номер: US20130302683A1
Принадлежит: Samsung SDI Co., Ltd.

A composite metal precursor including a composite metal hydroxide represented by Formula 1 below, wherein an amount of magnesium (Mg) in the composite metal hydroxide is less than or equal to 0.005 wt %, an electrode active material formed from the same, a positive electrode including the same, and a lithium secondary battery employing the same: 2. The composite metal precursor of claim 1 , wherein the composite metal precursor is a compound represented by Formula 2 below:{'br': None, 'sub': 1-x-y', 'x', 'y', 'a', '2, '(ABC)Mg(OH)\u2003\u2003[Formula 2]'}wherein in Formula 2, 0 Подробнее

28-11-2013 дата публикации

Purification Process

Номер: US20130312570A1
Автор: Barbosa Luis A.M.M.
Принадлежит:

A process for purifying Mo-99 from an acidic solution obtained by dissolving an irradiated solid target comprising uranium in an acidic medium, or from an acidic solution comprising uranium and which has previously been irradiated in a nuclear reactor, or from an acidic solution comprising uranium and which has been used as reactor fuel in a homogeneous reactor, the process comprising contacting the acidic solution with an adsorbent comprising a zirconium oxide, zirconium hydroxide, zirconium alkoxide, zirconium halide and/or zirconium oxide halide, and eluting the Mo-99 from the adsorbent using a solution of a strong base, the eluate then being subjected to a subsequent purification process involving an alkaline-based Mo-99 chromato-graphic recovery step on an anion exchange material. Also provided is apparatus for carrying out the process. 1. A process for purifying Mo-99 from an acidic solution obtained by dissolving an irradiated solid target comprising uranium in an acidic medium , or from an acidic solution comprising uranium and which has previously been irradiated in a nuclear reactor , or from an acidic solution comprising uranium and which has been used as reactor fuel in a homogeneous reactor , the process comprising contacting the acidic solution with an adsorbent comprising a zirconium oxide , zirconium hydroxide , zirconium alkoxide , zirconium halide and/or zirconium oxide halide , and eluting the Mo-99 from the adsorbent using a solution of a strong base , the eluate then being subjected to a subsequent purification process involving an alkaline-based Mo-99 chromatographic recovery step on an anion exchange material.2. A process according to claim 1 , wherein the adsorbent also comprises a titanium oxide and/or silicon oxide.3. A process according to claim 2 , wherein the zirconium compound is present at a concentration of from 5 to 70 mol % of the adsorbent composition.4. A process according to claim 1 , wherein the adsorbent is in the form of ...

Подробнее
28-11-2013 дата публикации

ANODE ACTIVE MATERIAL AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME

Номер: US20130316223A1
Принадлежит: LG CHEM, LTD.

Disclosed is an anode active material for secondary batteries enabling intercalation and deintercalation of lithium ions, the anode active material comprising lithium metal oxide containing a halogen atom. 1. An anode active material for secondary batteries enabling intercalation and deintercalation of lithium ions , the anode active material comprising lithium metal oxide containing a halogen atom.2. The anode active material according to claim 1 , wherein the halogen atom substitutes for a part of oxygen of lithium metal oxide.3. The anode active material according to claim 1 , wherein the lithium metal oxide is represented by the following Formula (1):{'br': None, 'sub': a', 'b', '4-c', 'c, 'LiM′OA\u2003\u2003(1)'}wherein M′ is at least one element selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al and Zr;a and b are determined according to an oxidation number of M′ within ranges of 0.1≦a≦4 and 0.2≦b≦4;c is determined according to an oxidation number within a range of 0 Подробнее

28-11-2013 дата публикации

NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND PRODUCTION METHOD THEREOF

Номер: US20130316242A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

According to one embodiment, a non-aqueous electrolyte secondary battery is provided. A negative electrode layer in the battery includes a lithium titanium oxide, and has first region(s) and a second region on a surface. The first region(s) is/are surrounded by the second region and have a lower lithium concentration. The second region has a higher lithium concentration. The negative electrode layer satisfies the formula (I): T Подробнее

05-12-2013 дата публикации

SODIUM SECONDARY BATTERY ELECTRODE AND SODIUM SECONDARY BATTERY

Номер: US20130323590A1
Автор: Kageura Jun-ichi
Принадлежит: Sumitomo Chemical Company, Limited

A sodium secondary battery electrode having an collector and an electrode mixture containing an electrode active material, a conductive material, and a binder, and wherein: the electrode active material has a sodium-containing transition metal compound, the conductivity of the electrode mixture is 5.0×10S/cm or more, and the density of the electrode mixture is 1.6 g/cmor more. 1. A sodium secondary battery electrode comprising an electrode mixture containing an electrode active material , a conductive material and a binder , and a current collector , wherein the electrode active material comprises a sodium-containing transition metal compound , the electrode mixture has a conductivity of 5.0×10S/cm or more , and the electrode mixture has a density of 1.6 g/cmor more.2. The sodium secondary battery electrode according to claim 1 , wherein the conductive material comprises a carbon material claim 1 , and the carbon material has a BET specific surface area of 10 m/g or more.3. The sodium secondary battery electrode according to claim 1 , wherein the sodium-containing transition metal compound is a sodium-containing transition metal oxide represented by the following formula (A):{'br': None, 'sub': x', '2, 'NaMO\u2003\u2003(A)'}wherein M is at least one element selected from the group consisting of Fe, Ni, Co, Mn, Cr, V, Ti, B, Al, Mg and Si, and x is more than 0 and not more than 1.2.4. The sodium secondary battery electrode according to claim 1 , wherein the binder comprises a copolymer having a structural unit derived from vinylidene halide.5. A sodium secondary battery comprising the electrode according to as a positive electrode.6. The sodium secondary battery according to claim 5 , further comprising a separator. The present invention relates to a sodium secondary battery electrode and a sodium secondary battery.A sodium secondary battery is a nonaqueous electrolyte secondary battery. Since sodium constituting a sodium secondary battery is a material which is ...

Подробнее
12-12-2013 дата публикации

Metal/Oxygen Battery with Internal Oxygen Reservoir

Номер: US20130330630A1
Принадлежит: ROBERT BOSCH GMBH

An electrochemical cell in one embodiment includes a negative electrode, a positive electrode spaced apart from the negative electrode, a separator positioned between the negative electrode and the positive electrode; and an active material particle within the positive electrode, the active material particle including an outer shell defining a core with a substantially constant volume and including a form of oxygen, the outer shell substantially impervious to oxygen and pervious to lithium. 1. An electrochemical cell , comprising:a negative electrode;a positive electrode spaced apart from the negative electrode;a separator positioned between the negative electrode and the positive electrode; andan active material particle within the positive electrode, the active material particle including an outer shell defining a core space with a substantially constant volume and including a form of oxygen, the outer shell substantially impervious to oxygen and pervious to lithium.2. The electrochemical cell of claim 1 , wherein:the active material particle has a diameter;the outer shell has a thickness; andthe thickness is less than about 10% of the diameter.3. The electrochemical cell of claim 2 , wherein the diameter is less than about 10 microns.4. The electrochemical cell of claim 3 , wherein the diameter is less than about 200 nanometers.5. The electrochemical cell of claim 2 , wherein the thickness is less than about 1 micron.6. The electrochemical cell of claim 5 , wherein the thickness is less than about 200 nanometers.7. The electrochemical cell of claim 1 , wherein the active material particle is configured such that when the positive electrode is in a fully lithiated state claim 1 , the core space includes a volume of LiO claim 1 , the volume of LiOless than the substantially constant volume of the core space.8. The electrochemical cell of claim 1 , wherein the outer shell comprises an oxide material.9. The electrochemical cell of claim 1 , wherein the outer shell ...

Подробнее
19-12-2013 дата публикации

NONAQUEOUS ELECTROLYTE BATTERY CONTAINING A NEGATIVE ELECTRODE OF LITHIUM-TITANIUM COMPOSITE OXIDE, BATTERY PACK AND VEHICLE

Номер: US20130337302A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

A nonaqueous electrolyte battery, containing a case and provided in the case, a positive electrode containing at least one selected from the group consisting of spinel type lithium-manganese-nickel composite oxide and lithium phosphate oxide having an olivine structure, a negative electrode and a nonaqueous electrolyte. The negative electrode comprises a lithium-titanium composite oxide, wherein a crystallite diameter of the lithium-titanium composite oxide is not larger than 6.9×10Å. The lithium-titanium composite oxide comprises: rutile TiO; anatase TiO; LiTiO; and a lithium titanate having a spinel structure. A main peak intensity relative to lithium titanate set at 100, as determined by X-ray diffractometry, of each of lithium titanate having a spinel structure, the rutile TiO, the anatase TiOand LiTiOis not larger than 7. 1. A nonaqueous electrolyte battery , comprising:a case;a positive electrode provided in the case;a negative electrode provided in the case and comprising a lithium-titanium composite oxide comprising Na and K, wherein an amount of K is larger than an amount of Na; anda nonaqueous electrolyte provided in the case.2. The battery according to claim 1 , wherein a sum of the amount of Na and the amount of K is from 0.10% by weight to 3.04% by weight of the lithium-titanium composite oxide.3. The battery according to claim 1 , wherein the lithium-titanium composite oxide comprises a crystallite diameter not larger than 6.9×10Å claim 1 , and in a X-ray diffractometry curve of the lithium-titanium composite oxide claim 1 , none of a main peak intensity of a rutile type TiO claim 1 , a main peak intensity of an anatase type TiOand a main peak intensity of LiTiOis larger than 7 when a main peak intensity of a lithium titanate having a spinel structure is set at 100.4. The battery according to claim 3 , wherein the crystallite diameter of the lithium-titanium composite oxide is not smaller than 1.5×10Å.5. The battery according to claim 3 , wherein the ...

Подробнее
26-12-2013 дата публикации

LITHIUM-TITANIUM COMPLEX OXIDE AND MANUFACTURING METHOD THEREOF, AND BATTERY ELECTRODE USING SAME

Номер: US20130343983A1
Принадлежит: TAIYO YUDEN CO., LTD.

A lithium-titanium complex oxide whose total water generation amount and total carbon dioxide generation amount measured by thermal decomposition GC-MS are preferably 1500 wt ppm or less and 2000 wt ppm or less, respectively, is obtained by subjecting a mixture of titanium compound and lithium compound to a heat treatment at 600° C. or above, cooling the obtained reaction product to 50° C. or below, and then subjecting the cooled reaction product to a reheat treatment involving heating to the maximum temperature of 300 to 700° C. and then cooling, wherein the dew point of the ambience of the reheat treatment is controlled at −30° C. or below at a temperature of 200° C. or above. 1. A lithium-titanium complex oxide , wherein a total water generation amount and total carbon dioxide generation amount measured by thermal decomposition gas chromatography mass spectrometry under heating from 60° C. to 900° C. at a rate of 20° C./min , are 1500 wt ppm or less and 2000 wt ppm or less , respectively.2. A positive electrode for a battery containing the lithium-titanium complex oxide according to as a positive electrode active material.3. A negative electrode for a battery containing the lithium-titanium complex oxide according to as a negative electrode active material.4. A lithium ion secondary battery having a positive electrode containing the lithium-titanium complex oxide according to claim 1 , or a negative electrode containing the lithium-titanium complex oxide according to .5. A method of manufacturing the lithium-titanium complex oxide of claim 1 , comprising:subjecting a mixture of titanium compound and lithium compound to a heat treatment at 600° C. or above, cooling the obtained reaction product to 50° C. or below, and then subjecting the cooled reaction product to a reheat treatment involving heating to the maximum temperature of 300 to 700° C. and then cooling; wherein a dew point of an ambience of the reheat treatment is controlled at −30° C. or below at a ...

Подробнее
09-01-2014 дата публикации

Method for manufacturing refractory grains containing chromium(iii) oxide

Номер: US20140011031A1

A method for manufacturing sintered refractory grains containing Cr 2 CO 3 from an initial refractory product including one or more chromium that includes: A) optionally, \crushing the starting refractory material; B) grinding a filler, comprising said starting refractory material in a liquid medium to obtain a suspension of particles of said starting refractory material; C) preparing a starting mixture including at least 1 wt % of particles of the suspension obtained during the preceding step; D) shaping the starting mixture into the shape of a preform; E) optionally drying the preform obtained in step D); F) sintering the preform so as to obtain a sintered body; G) optionally grinding the sintered body; and H) the optional selection by particle size.

Подробнее
13-02-2014 дата публикации

METATHETIC COPPER CONCENTRATE ENRICHMENT

Номер: US20140044617A1
Принадлежит: Polymet Mining Corp.

In one aspect, the invention provides processes for producing an enriched copper concentrate from a copper-and-nickel-containing ore. Processes of the invention may include an initial step of comminuting the ore, to provide a ground ore comprising copper minerals and nickel minerals. The ground ore may be subjected to a floatation process, to separate the ground ore into distinct fractions, such as first and second concentrates. A first concentrate may for example be made up of copper-enriched-and-nickel-containing solids, while a second concentrate is made up of nickel-enriched-and-copper-containing solids. The floatation process may for example fractionate the ore so that the concentration of copper minerals is higher in the first concentrate than in the ore, and the concentration of the nickel minerals is higher in the second concentrate than the ore. 1. A process for producing an enriched copper concentrate from a copper-and-nickel-containing ore , comprising:comminuting the ore to provide a ground ore comprising copper minerals and nickel minerals;subjecting the ground ore to a floatation process, to separate the ground ore into a first concentrate comprising copper-enriched-and-nickel-containing solids and a second concentrate comprising nickel-enriched-and-copper-containing solids, wherein the concentration of the copper minerals is higher in the first concentrate than in the ore and the concentration of the nickel minerals is higher in the second concentrate than the ore;subjecting the second concentrate to a hydrometalurgical extraction, to extract a copper-containing leachate from the second concentrate; and,exposing the first concentrate to the copper-containing leachate under metathetic leaching conditions that are effective to increase the concentration of copper, and decrease the concentration of nickel, in the copper-enriched-and-nickel-containing solids, to provide the enriched copper concentrate.2. The process of claim 1 , wherein the copper mineral ...

Подробнее
13-02-2014 дата публикации

ZINC OXIDE PARTICLES, METHOD FOR PRODUCTION OF THE SAME, AND COSMETIC, HEAT RELEASING FILLER, HEAT RELEASING RESIN COMPOSITION, HEAT RELEASING GREASE, AND HEAT RELEASING COATING COMPOSITION COMPRISING THE SAME

Номер: US20140044971A1
Принадлежит: SAKAI CHEMICAL INDUSTRY CO., LTD.

It is an object of the present invention to provide zinc oxide particles which have excellent ultraviolet blocking performance and also excellent dispersibility, and therefore can be suitably used as an ultraviolet blocking agent for cosmetics. Provided are zinc oxide particles having a primary particle diameter of less than 0.1 μm, an aspect ratio of less than 2.5 and an oil absorption/BET specific surface area of 1.5 ml/100 mor less. 1. Zinc oxide particles having a primary particle diameter of less than 0.1 μm , an aspect ratio of less than 2.5 and an oil absorption/BET specific surface area of 1.5 ml/100 mor less.2. The zinc oxide particles according to claim 1 , which are obtained by aging zinc oxide fine particles in water in which a zinc salt is dissolved.3. The zinc oxide particles according to claim claim 1 , which have a total light transmittance of 20% or less at a wavelength of 310 nm claim 1 , a total light transmittance of 20% or less at a wavelength of 350 nm claim 1 , a parallel light transmittance of 70% or more at a wavelength of 500 nm and a parallel light transmittance of 70% or more at a wavelength of 700 nm.4. The zinc oxide particles according to claim 1 , which have an apparent density of 0.26 g/ml or more.5. The zinc oxide particles according to claim 1 , which have a sharpened gloss (20° gloss) of 110 or more as a coating film.61. A method for production of the zinc oxide particles according to claim claim 1 , comprising a step of aging zinc oxide fine particles in water in which a zinc salt is dissolved.7. A cosmetic comprising the zinc oxide particles according to claim 1 ,8. A heat releasing filler comprising the zinc oxide particles according to .9. A heat releasing resin composition comprising the zinc oxide particles according to .10. A heat releasing grease comprising the zinc oxide particles according to .11. A heat releasing coating composition comprising the zinc oxide particles according to .12. The zinc oxide particles according ...

Подробнее
27-02-2014 дата публикации

COMPOSITE CATHODE ACTIVE MATERIAL, CATHODE AND LITHIUM BATTERY CONTAINING THE MATERIAL AND METHOD OF PREPARING THE SAME

Номер: US20140057163A1
Принадлежит: Samsung SDI Co., Ltd.

A composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode. The composite cathode active material includes: a lithium transition metal oxide; and a lithium-containing impurity on a surface of the lithium transition metal oxide. The lithium-containing impurity includes free lithium in an amount of about 0.050 wt % or less based on a total weight of the composite cathode active material, and LiOH and LiCOin a mole ratio of LiOH to LiCOof about 0.50 or less. 1. A composite cathode active material comprising:a lithium transition metal oxide; anda lithium-containing impurity on a surface of the lithium transition metal oxide,wherein:the lithium-containing impurity comprises free lithium in an amount of about 0.050 wt % or less based on a total weight of the composite cathode active material, and{'sub': 2', '3', '2', '3, 'the lithium-containing impurity comprises LiOH and LiCO, and a mole ratio of LiOH to LiCOis about 0.50 or less.'}2. The composite cathode active material of claim 1 , wherein the lithium-containing impurity comprises the free lithium in an amount of about 0.045 wt % or less based on the total weight of the composite cathode active material.3. The composite cathode active material of claim 1 , wherein the mole ratio of LiOH to LiCOis about 0.480 or less.4. The composite cathode active material of claim 1 , wherein an amount of LiOH is about 0.07 wt % or less based on the total weight of the composite cathode active material.5. The composite cathode active material of claim 1 , wherein an amount of LiOH is about 0.065 wt % or less based on the total weight of the composite cathode active material.6. The composite cathode active material of claim 1 , wherein the lithium transition metal oxide comprises at least one compound represented by Formulae 1 to 5 below:{'br': None, 'sub': x', '1-y', 'y', '2-α', 'α, 'LiCoMOX\u2003\u2003'}{'br': None, 'sub': x', '1-y-z', 'y', ' ...

Подробнее
06-03-2014 дата публикации

SOLUTION-PROCESSED TRANSITION METAL OXIDES

Номер: US20140061550A1
Принадлежит:

Embodiments may pertain to methods for preparing a transition metal oxide. 1. A method comprising:combining a peroxide with a solution of an alcohol-based solvent and a transition metal; and2. The method of claim 1 , wherein said peroxide comprises hydrogen peroxide.3. The method of claim 1 , wherein said alcohol-based solvent is ethanol.4. The method of claim 1 , wherein said solution comprises:an amount of said alcohol-based solvent to affect a rate of reaction of said transition metal with said peroxide in combination.5. The method of claim 1 , wherein said transition metal comprises one of the group consisting essentially of vanadium claim 1 , molybdenum claim 1 , tungsten.6. The method of claim 1 , further comprising:drying said solution of said peroxide and said transition metal to form an at least partially dried transition metal oxide.7. The method of claim 6 , further comprising:combining at least one water-free solvent with said at least partially dried transition metal oxide.8. The method of claim 6 , the said drying comprises:creating said at least partially dried transition metal oxide in a vacuum environment.9. The method of claim 6 , further comprising:dispersing said at least partially dried transition metal oxide into a water-free solvent.10. The method of claim 9 , further comprising:forming a transition metal oxide film.11. The method of claim 10 , said forming comprises:spin-coating said dispersed solution onto a substrate to form said transition metal oxide film.12. The method of claim 11 , further comprising:forming an organic device that includes said transition metal oxide film.13. The method of claim 12 , wherein said organic device comprises at least one of an organic light emitting diode claim 12 , an organic solar cell claim 12 , or an organic photodetector.14. The method of claim 10 , wherein said forming comprisesannealing said transition metal oxide film at a temperature approximately between approximately 60.0° C. and approximately ...

Подробнее
06-03-2014 дата публикации

APPARATUS FOR PREPARING CATHODE ACTIVE MATERIAL PRECURSOR FOR LITHIUM SECONDARY BATTERIES AND METHOD FOR PREPARING THE SAME USING THE APPARATUS

Номер: US20140065058A1
Принадлежит:

Provided are an apparatus for preparing a cathode active material precursor for lithium secondary batteries including a cylindrical outer chamber, an inner cylinder that has the same central axis as the outer chamber and is mounted to rotatably move along the central axis, an electric motor to transfer power to rotate the inner cylinder, a reactant inlet disposed on the outer chamber, to add reactants to a space between the outer chamber and the inner cylinder, and an outlet disposed in the outer chamber, to obtain reaction products after reaction in the space between the outer chamber and the inner cylinder, and a method for preparing a cathode active material precursor for lithium secondary batteries using the apparatus. 1. An apparatus for preparing a cathode active material precursor for lithium secondary batteries , comprising:a cylindrical outer chamber;an inner cylinder that has the same central axis as the outer chamber and is mounted to rotatably move along the central axis;an electric motor to transfer power to rotate the inner cylinder;a reactant inlet disposed on the outer chamber, to add reactants to a space between the outer chamber and the inner cylinder; andan outlet disposed in the outer chamber, to obtain reaction products after reaction in the space between the outer chamber and the inner cylinder.2. The apparatus according to claim 1 , wherein the cylindrical outer chamber is fixed.3. The apparatus according to claim 1 , wherein the outer chamber and the inner cylinder are spaced from each other along the central axis by a predetermined distance.4. The apparatus according to claim 3 , wherein the distance between the outer chamber and the inner cylinder corresponds to a length in the central axial direction of each vortex cell in the form of ring pairs that rotate in opposite directions along the central axial direction due to rotational motion of the inner cylinder.5. The apparatus according to claim 4 , wherein the distance between the outer ...

Подробнее
20-03-2014 дата публикации

VANADIUM OXIDE PURIFICATION PROCESS

Номер: US20140079609A1
Автор: Drozd Michael Adam
Принадлежит:

Process for purifying vanadium oxide that includes cationic exchange resin and solvent extraction. 1. A process for purifying vanadium oxide , comprising:(a) loading vanadium oxide on a cationic exchange resin by contacting a first vanadium oxide-containing aqueous solution with the resin to provide a cationic exchange resin loaded with vanadium oxide;(b) stripping vanadium oxide from the cationic resin loaded with vanadium oxide by contacting the cationic exchange resin loaded with vanadium oxide with acid to regenerate the resin and to provide a second vanadium oxide-containing aqueous solution, wherein the concentration of vanadium oxide in the second solution relative to other cationic metals is greater than in the first solution;(c) extracting the second vanadium oxide-containing aqueous solution with an organic solvent comprising a chelating agent to provide an aqueous solution and an organic solvent containing vanadium oxide;(d) separating the organic solvent containing vanadium oxide from the aqueous solution; and(e) releasing vanadium oxide from the organic solvent by contacting the organic solvent containing vanadium oxide with an aqueous solution to provide a third vanadium oxide-containing aqueous solution, wherein the concentration of vanadium oxide in the third solution relative to other cationic metals is greater than in the second solution.2. The process of further comprising:(f) extracting the third vanadium oxide-containing aqueous solution with an organic solvent comprising a chelating agent to provide an aqueous solution and an organic solvent containing vanadium oxide;(g) separating the organic solvent containing vanadium oxide from the aqueous solution; and(h) releasing vanadium oxide from the organic solvent by contacting the organic solvent containing vanadium oxide with an aqueous solution to provide a fourth vanadium oxide-containing aqueous solution, wherein the concentration of vanadium oxide in the fourth solution relative to other ...

Подробнее
20-03-2014 дата публикации

NONAQUEOUS ELECTROLYTE BATTERY

Номер: US20140079990A1
Принадлежит: SANYO ELECTRIC CO., LTD.

The present invention provides a nonaqueous electrolyte battery having a high charge-discharge efficiency. The nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery including a positive electrode containing a positive electrode active material, a negative electrode, and a nonaqueous electrolyte, the positive electrode active material contains a lithium transition metal oxide having a crystalline structure belonging to the P6mc space group, and the nonaqueous electrolyte contains a fluorinated cyclic carbonate ester and a fluorinated chain ester. 110-. (canceled)11. A nonaqueous electrolyte battery comprising: a positive electrode containing a positive electrode active material; a negative electrode; and a nonaqueous electrolyte ,{'sub': '3', 'wherein the positive electrode active material contains a lithium transition metal oxide having a crystalline structure belonging to the P6mc space group, and'}the nonaqueous electrolyte contains a fluorinated cyclic carbonate ester and a fluorinated chain ester.12. The nonaqueous electrolyte battery according to claim 11 ,{'sub': x1', 'y1', 'α', 'β', 'γ, 'wherein the lithium transition metal oxide is represented by LiNaCoMO, wherein 0 Подробнее

27-03-2014 дата публикации

CATHODE COMPOSITE MATERIAL, METHOD FOR MAKING THE SAME, AND LITHIUM ION BATTERY USING THE SAME

Номер: US20140087256A1
Принадлежит:

A cathode composite material includes a cathode active material and a coating layer coated on a surface of the cathode active material. A material of the coating layer is a lithium metal oxide having a crystal structure belonging to C2/c space group of the monoclinic crystal system. The present disclosure also relates to a lithium ion battery including the cathode composite material. 1. A cathode composite material comprising: a cathode active material and a coating layer coated on a surface of the cathode active material , the coating layer comprises a lithium metal oxide having a crystal structure belongs to C2/c space group of the monoclinic crystal system , wherein a general formula of the lithium metal oxide is [LiM□][LiMNA□]O , wherein A represents a metal element having a +4 valence , M and N respectively represent doping chemical elements , “□” represents an atom vacancy occupying a Li site of [Li][LiA]O , 0≦2a<1 , 0≦2b+c<1/3 , and 0≦2c<2/3.2. (canceled)3. The cathode composite material of claim 1 , wherein A is selected from the group consisting of Ti claim 1 , Sn claim 1 , Mn claim 1 , Pb claim 1 , Te claim 1 , Ru claim 1 , Hf claim 1 , Zr claim 1 , and any combination thereof.4. The cathode composite material of claim 1 , wherein the M and N are respectively selected from the group consisting of alkali metal elements claim 1 , alkaline-earth metal elements claim 1 , Group-13 elements claim 1 , Group-14 elements claim 1 , transition metal elements claim 1 , rare-earth elements claim 1 , and any combination thereof.5. The cathode composite material of claim 4 , wherein M and N are respectively selected from the group consisting of Co claim 4 , Mn claim 4 , Ni claim 4 , Cr claim 4 , V claim 4 , Ti claim 4 , Sn claim 4 , Cu claim 4 , Al claim 4 , Fe claim 4 , B claim 4 , Sr claim 4 , Ca claim 4 , Ga claim 4 , Nd claim 4 , Mg claim 4 , and combinations thereof.6. The cathode composite material of claim 1 , wherein at least one of M and N comes from the cathode ...

Подробнее
03-04-2014 дата публикации

LITHIUM POWDER, LITHIUM VANADIUM OXIDE, LITHIUM SECONDARY BATTERY USING A GEL-POLYMER ELECTROLYTE, AND METHOD FOR PREPARING AN ELECTRODE THEREOF

Номер: US20140093774A1
Автор: Yoon Woo Young
Принадлежит:

A lithium secondary battery includes an anode part having lithium powder, a cathode part having a non-lithiated active material and a gel-polymer electrolyte. Thus, an effective surface area of an electrode involved in a battery reaction can increase, a dendrite growth using a gel-polymer electrode can be suppressed and a high capacity and long service life can be achieved by using a non-lithiated cathode instead of a conventional lithiated cathode. 1. A lithium secondary battery comprising:an anode part including lithium powder; a cathode part including a non-lithiated active material; and a gel-polymer electrolyte (GPE).2. The lithium secondary battery of claim 1 , wherein a diameter of the lithium powder is in a range of 100 nm to 40 μm.3. The lithium secondary battery of claim 1 , wherein the cathode part comprises the non-lithiated active material adhered to an aluminum substrate which is a cathode current collector.4. The lithium secondary battery of claim 1 , wherein the cathode part is prepared by grinding the non-lithiated active material or by graphite coating.5. The lithium secondary battery of claim 4 , wherein the non-lithiated active material is at least one selected from the group consisting of LiCoO claim 4 , LiMnO claim 4 , LiNiO claim 4 , LiCrO claim 4 , LiMnO claim 4 , and LiVO.6. The lithium secondary battery of claim 5 , wherein the non-lithiated active material is LiVO.7. A method of manufacturing a lithium secondary battery claim 5 , the method comprising:preparing lithium powder;preparing an anode by bonding the lithium powder;injecting a liquid gel-polymer electrolyte to uniformly permeate into the anode; andgelating the gel-polymer electrolyte,wherein the gel-polymer electrolyte surrounds individual particles of the lithium powder while gelating the gel-polymer electrolyte. The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery, which may be able to inhibit dendrite growth that is ...

Подробнее
10-04-2014 дата публикации

Method for preparing of spinel lithium titanium oxide nanofiber for negative electrode of lithium secondary battery

Номер: US20140099251A1
Автор: JO Mi-ru, KANG Yong-mook

Disclosed is a method of preparing spinel lithium titanium oxide nanofibers for a negative electrode of a lithium secondary battery, including (S1) mixing an organic material selected from the group consisting of polyvinylpyrrolidone, polymethylmethacrylate, polyethylene, polyethylene oxide and polyvinyl alcohol, a lithium precursor, and a titanium precursor with a solvent, thus preparing a mixture solution, (S2) electrospinning the mixture solution, thus preparing composite nanofibers, and (S3) heat-treating the composite nanofibers, thus removing the organic material. In the spinel lithium titanium oxide nanofibers for a negative electrode of a lithium secondary battery prepared using the method according to the present invention, the spinel lithium titanium oxide nanofibers can provide a large surface area per unit volume, thus increasing the contact area between the electrolyte and the conductor and decreasing the lithium ion diffusion distance, thereby greatly contributing to improving electronic conductivity and ionic conductivity. 1. A method of preparing spinel lithium titanium oxide nanofibers for a negative electrode of a lithium secondary battery , comprising:(S1) mixing an organic material selected from the group consisting of polyvinylpyrrolidone, polymethylmethacrylate, polyethylene, polyethylene oxide and polyvinyl alcohol, a lithium precursor, and a titanium precursor with a solvent, thus preparing a mixture solution;(S2) electrospinning the mixture solution, thus preparing composite nanofibers; and(S3) heat-treating the composite nanofibers, thus removing the organic material.2. The method of claim 1 , wherein the lithium precursor is selected from the group consisting of lithium acetate dihydrate claim 1 , lithium hydroxide and lithium nitrate.3. The method of claim 1 , wherein the titanium precursor is selected from the group consisting of titanium isopropoxide and titanium(IV) butoxide.4. The method of claim 1 , wherein the solvent is selected ...

Подробнее
06-01-2022 дата публикации

SOLID-LIQUID-SOLID HYDROMETALLURGICAL METHOD FOR THE SOLUBILIZATION OF METALS FROM SULFIDE COPPER MINERALS AND/OR CONCENTRATES

Номер: US20220002838A1
Принадлежит: NOVA MINERALIS S.A.

The present invention relates to a solid-liquid-solid hydrometallurgical method in the presence of hydrated and/or non-hydrated salts in an oversaturation conditions, which is achieved by the intentional and repetitive application of drying and wetting steps, enhancing the chemical and physical phenomena on the mineral or concentrate, thus provoking the crystallization, re-crystallization, and release of copper in a non-stoichiometric decomposition of the sulfide and its subsequent precipitation with chloride. The invention is made up of 3 steps called: (a) Wetting, (b) Drying and Oversaturation, (c) Washing and re-wetting, and these are conducted at temperatures ranging from 20-40° C. regardless of the redox potential with a minimum consumption of water and acid without requiring the addition of oxygen. The method allows diminishing the water and acid consumption, since the transformation of the sulfide can be carried out only in the presence of hydrated salts and/or the minimal addition of acid and water. Furthermore, the present invention allows reducing the use of water in the agglomeration and/or agglomeration-curing step, as when the hydrated salt is mixed with the mineral, the water molecules of the hydrated salt wet the mineral, reducing the volume of water that shall be added in the steps of wetting and agglomeration and/or curing. 1. A Solid-Liquid-Solid hydrometallurgical method for the solubilization of metals from minerals and/or concentrates of sulfide minerals of primary and/or secondary origin containing them , wherein said method comprises the following sequential and/or overlapped steps:I. Wetting, wherein the mineral or concentrate is wetted by the addition of water or water-acid and hydrated and/or non-hydrated chloride salts;II. Drying and Oversaturation, wherein the wetted mineral is dried by vaporization and/or evaporation, which may be carried out both in the heap as in the conveyor belt, generating oversaturation conditions, crystallization ...

Подробнее
07-01-2016 дата публикации

Metal Oxide Mesocrystal, and Method for Producing Same

Номер: US20160001268A1
Принадлежит: OSAKA UNIVERSITY

Various metal oxide mesocrystals can be synthesized in a simple manner by a method for producing a metal oxide mesocrystal, the method comprising the step of annealing an aqueous precursor solution comprising one or more metal oxide precursors, an ammonium salt, a surfactant, and water at 300 to 600° C. Composite mesocrystals consisting of a plurality of metal oxides or an alloy oxide can also be provided. 1. A method for producing a metal oxide mesocrystal , the method comprising the step of maintaining an aqueous precursor solution comprising one or more metal oxide precursors , an ammonium salt , a surfactant , and water at 300 to 600° C.2. The method according to claim 1 , wherein the one or more metal oxide precursors are a metal nitrate and/or a metal fluoride salt.3. The method according to claim 1 , wherein the ammonium salt is NHNO.4. The method according to claim 1 , wherein the surfactant is at least one member selected from the group consisting of anionic surfactants claim 1 , cationic surfactants claim 1 , amphoteric surfactants claim 1 , and nonionic surfactants.5. The method according to claim 1 , wherein claim 1 , in the aqueous precursor solution claim 1 , the ratio of metal oxide precursor to surfactant is 1 to 1000:1 (molar ratio) claim 1 , and the ratio of ammonium salt to surfactant is 1 to 1000:1 (molar ratio).6. (canceled)7. A mesocrystal consisting of at least one member selected from the group consisting of claim 1 , nickel oxide claim 1 , iron oxide claim 1 , cobalt oxide claim 1 , zirconium oxide claim 1 , and cerium oxide claim 1 , the mesocrystal having a specific surface area of 0.5 m/g or more and an average width of 0.01 to 1000 μm.8. (canceled)9. A mesocrystal consisting of nanoparticles of two or more metal oxides.10. The mesocrystal according to claim 9 , which has a specific surface area of 0.5 m/g or more.11. (canceled)12. The mesocrystal according to claim 9 , wherein the metal oxide nanoparticles consist of two or more ...

Подробнее
07-01-2021 дата публикации

TANTALUM CHLORIDE AND METHOD FOR PRODUCING TANTALUM CHLORIDE

Номер: US20210002143A1
Принадлежит:

The tantalum chloride according to the present invention contains TaCl, and has a total content of tantalum subchlorides of 1% by mass or less. 1. A tantalum chloride , the tantalum chloride containing TaCl , and having a total content of tantalum subchlorides of 1% by mass or less.2. The tantalum chloride according to claim 1 , wherein the total content of the tantalum subchlorides is 0.1% by mass or less.3. The tantalum chloride according to claim 1 , wherein the tantalum chloride has a total content of Ta and Cl of 99.999% by mass or more.4. The tantalum chloride according to claim 3 , wherein the total content of Ta and Cl is 99.9999% by mass or more.5. The tantalum chloride according to claim 1 , wherein the tantalum chloride has a total content of Na claim 1 , K claim 1 , Co claim 1 , Fe claim 1 , Ni claim 1 , Cu claim 1 , Cr claim 1 , Mg claim 1 , Al claim 1 , Nb claim 1 , W claim 1 , Mo claim 1 , U claim 1 , and Th as impurities of 1 ppm by mass or less.6. A method for producing a tantalum chloride by heating a tantalum raw material in a chlorine atmosphere to chlorinate the tantalum raw material claim 1 , the method comprising the steps of:using a tantalum chlorinating apparatus, filling a raw material reaction tube of the tantalum chlorinating apparatus with the tantalum raw material to form a packed bed of the tantalum raw material, and feeding a chlorine gas to the raw material reaction tube to provide the raw material reaction tube with a chlorine atmosphere; andsetting a reaction temperature of the tantalum raw material during heating to a temperature of 200° C. to 700° C., and setting a flow rate of the chlorine gas fed to the raw material reaction tube during heating of the tantalum raw material to 0.05 cm/s to 0.82 cm/s.7. The method according to claim 6 , wherein the chlorine gas is allowed to flow in a same direction as a filling direction of the tantalum raw material in the raw material reaction tube.8. The method according to claim 7 , wherein ...

Подробнее
04-01-2018 дата публикации

System and Method for Purifying Vanadium Pentoxide

Номер: US20180002190A1
Принадлежит:

The present invention provides a system and method for purifying vanadium pentoxide. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is purified by rectification, and then subjected to plasma oxidation, thereby obtaining a high-purity vanadium pentoxide product and chlorine gas. The chlorine gas is returned for low temperature chlorination. The system and method have advantages of favorable adaptability to raw material, no discharge of contaminated wastewater, low energy consumption and chlorine consumption in production, stable product quality, etc. 1. A system for purifying vanadium pentoxide , comprising a feeding device , a low temperature chlorination fluidized bed , a rectification and purification device , a plasma oxidation device , a tail gas washing absorber , an induced draft fan and a chimney;wherein the feeding device comprises an industrial grade vanadium pentoxide hopper, an industrial grade vanadium pentoxide screw feeder, a carbon powder hopper and a carbon powder screw feeder;the low temperature chlorination fluidized bed comprises a chlorination bed feeder, a chlorination fluidized bed body, a chlorination bed cyclone separator, a flue gas heat exchanger, a flue gas condenser, a chlorination bed acid-seal tank and a chlorination bed spiral slag-discharging device;the rectification and purification device comprises a distilling still, a rectifying column, a distillate condenser, a reflux liquid collecting tank, a silicon-containing vanadium oxytrichloride storage tank, a rectification ...

Подробнее
07-01-2021 дата публикации

CATALYST PRECURSOR FOR HYDROCRACKING REACTION AND METHOD FOR HYDROCRACKING HEAVY OIL BY USING SAME

Номер: US20210002563A1
Принадлежит:

The present invention relates to a catalyst precursor for forming a molybdenum disulfide catalyst through a reaction with sulfur in heavy oil and to a method for hydrocracking heavy oil by using same. According to the present invention, the yield of a low-boiling liquid product with a high economic value in the products by heavy oil cracking can be increased, and the yield of a relatively uneconomical gas product or coke (toluene insoluble component), which is a byproduct, can be significantly lowered. 1. A catalyst precursor for a hydrocracking reaction represented by the following Chemical Formula 1 or Chemical Formula 2 , which reacts with sulfur in a heavy oil to produce a molybdenum disulfide catalyst:{'br': None, 'sub': 2', '2', '2, 'Mo(O)(O)L\u2003\u2003[Chemical Formula 1]'}{'br': None, 'sub': 4', '2, 'Mo(CO)L′\u2003\u2003[Chemical Formula 2]'}whereinL and L′ are a ligand having a coordination number of 1, containing phosphorus as a central element.3. The catalyst precursor for a hydrocracking reaction of claim 2 , wherein Rto Rof Chemical Formula 3 are independently of one another hydroxy claim 2 , C-Calkoxy claim 2 , C-Ccycloalkyloxy claim 2 , or C-Caryloxy.4. The catalyst precursor for a hydrocracking reaction of claim 2 , wherein Rto Rof Chemical Formula 3 are independently of one another C-Calkyl claim 2 , C-Ccycloalkyl claim 2 , C-Ccycloalkyl C-Calkyl claim 2 , or C-Calkyl C-Ccycloalkyl.5. The catalyst precursor for a hydrocracking reaction of claim 2 , wherein Rto Rof Chemical Formula 3 are independently of one another C-Caryl claim 2 , C-Caryl C-Calkyl claim 2 , or C-Calkyl C-Caryl.7. The catalyst precursor for a hydrocracking reaction of claim 6 , wherein Rto Rof Chemical Formula 4 are independently of one another C-Calkyl claim 6 , C-Ccycloalkyl claim 6 , C-Ccycloalkyl C-Calkyl claim 6 , or C-Calkyl C-Ccycloalkyl.8. The catalyst precursor for a hydrocracking reaction of claim 1 , wherein the molybdenum disulfide catalyst is a molybdenum disulfide ...

Подробнее
01-01-2015 дата публикации

BIS(TRIMETHYLSILYL) SIX-MEMBERED RING SYSTEMS AND RELATED COMPOUNDS AS REDUCING AGENTS FOR FORMING LAYERS ON A SUBSTRATE

Номер: US20150004314A1
Принадлежит:

A first compound having an atom in an oxidized state is reacted with a bis(trimethylsilyl) six-membered ring system or related compound to form a second compound having the atom in a reduced state relative to the first compound. The atom in an oxidized state is selected from the group consisting of Groups 2-12 of the Periodic Table, the lanthanides, As, Sb, Bi, Te, Si, Ge, Sn, and Al. 2. The method of wherein R claim 1 , R claim 1 , R are each independently Calkyl; R claim 1 , R claim 1 , R claim 1 , Rare each independently H or Calkyl; and Rand Rare H.4. The method of wherein R claim 3 , R claim 3 , R are each independently Calkyl; R claim 3 , R claim 3 , R claim 3 , Rare each independently H or Calkyl; and R claim 3 , and Rare H.6. The method of wherein the atom is in a positive oxidation state of 1 claim 1 , 2 claim 1 , 3 claim 1 , 4 claim 1 , 5 claim 1 , or 6.7. The method of wherein R claim 1 , R claim 1 , R claim 1 , and Rare each independently hydrogen claim 1 , methyl claim 1 , ethyl claim 1 , n-propyl claim 1 , isopropyl claim 1 , n-butyl claim 1 , sec-butyl claim 1 , isobutyl claim 1 , t-butyl claim 1 , or phenyl.8. The method of wherein R claim 1 , R claim 1 , and R are each independently hydrogen claim 1 , methyl claim 1 , ethyl claim 1 , n-propyl claim 1 , isopropyl claim 1 , n-butyl claim 1 , sec-butyl claim 1 , isobutyl claim 1 , t-butyl claim 1 , or phenyl.9. The method of wherein the atom is Cu claim 1 , Cr claim 1 , Mn claim 1 , Fe claim 1 , Co claim 1 , Ti claim 1 , or Ni.10. The method of comprising a deposition cycle including:a) contacting a substrate with the vapor of the first compound having an atom in an oxidized state to form a first modified surface; andc) contacting the first modified surface with the vapor of the reducing agent.11. The method of wherein a metal-containing layer is deposited on the substrate.12. The method of wherein the metal-containing layer includes a metal atom in the zero oxidation state.14. The method of wherein ...

Подробнее
13-01-2022 дата публикации

NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR PRODUCING THE SAME

Номер: US20220013770A1
Принадлежит: SHIN-ETSU CHEMICAL CO., LTD.

A negative electrode active material containing negative electrode active material particles. The negative electrode active material particles include silicon compound particles each containing an oxygen-containing silicon compound. The silicon compound particle contains at least one of LiSiOand LiSiO. The silicon compound particle has, in a Si K-edge spectrum obtained from a XANES spectrum: a peak P derived from the Li silicate and located near 1847 eV; and a peak Q gentler than the peak P and located near 1851 to 1852 eV. This provides a negative electrode active material that is capable of stabilizing a slurry when the negative electrode active material is used for a secondary battery, and capable of increasing the battery capacity by improving the initial efficiency. 110-. (canceled)11. A negative electrode active material containing negative electrode active material particles , whereinthe negative electrode active material particles comprise silicon compound particles each containing a silicon compound that contains oxygen,{'sub': 2', '3', '2', '2', '5, 'the silicon compound particle contains at least one of LiSiOand LiSiO, and'} a peak P which is derived from the Li silicate and located near 1847 eV; and', 'a peak Q which is gentler than the peak P and located near 1851 to 1852 eV., 'the silicon compound particle has, in a Si K-edge spectrum obtained from a XANES spectrum12. The negative electrode active material according to claim 11 , wherein the peak Q is a peak derived from a cristobalite-type structure of SiO.13. The negative electrode active material according to claim 11 , wherein the negative electrode active material has such an intensity ratio satisfying the following formula 1:{'br': None, 'i': 'A≥B', '1.1\u2003\u2003(formula 1),'}{'sup': −1', '−1, 'where A represents a peak maximum value of amorphous Si present near 466 cm, and B represents a peak maximum value of crystalline Si present near 500 cm, the values being obtained from a Raman spectrum ...

Подробнее
07-01-2016 дата публикации

METHOD OF PREPARING A VANADIUM OXIDE COMPOUND AND USE THEREOF IN ELECTROCHEMICAL CELLS

Номер: US20160006028A1
Принадлежит:

Electrochemical cell comprising an anode and a cathode is provided. The anode and the cathode independently comprises or consists essentially of a vanadium oxide compound having general formula MVO, wherein M is selected from the group consisting of ammonium, alkali-metal, and alkaline-earth metal; and n is 1 or 2. Method of preparing a vanadium oxide compound having general formula MVOis also provided. 1. An electrochemical cell comprising an anode and a cathode , wherein the anode and the cathode independently comprises a vanadium oxide compound of general formula (I){'br': None, 'sub': n', '6', '16, 'MVO\u2003\u2003(I),'}wherein M is selected from the group consisting of ammonium, alkali-metal, and alkaline-earth metal; and n is 1 or 2.2. The electrochemical cell according to claim 1 , wherein M is selected from the group consisting of ammonium claim 1 , sodium claim 1 , potassium claim 1 , lithium claim 1 , calcium and magnesium.34.-. (canceled)5. The electrochemical cell according to claim 1 , wherein the vanadium oxide compound is a nanostructured vanadium oxide compound comprising nanobelts claim 1 , nanorods claim 1 , microrods claim 1 , nanofibers claim 1 , or combinations thereof.6. The electrochemical cell according to claim 5 , wherein the nanobelts have an average diameter in the range of about 50 nm to about 100 nm.7. The electrochemical cell according to claim 5 , wherein the nanorods have an average length in the range of about 1 μm to about 10 μm.8. The electrochemical cell according to claim 1 , wherein the anode and the cathode independently further comprise a binder.9. (canceled)10. The electrochemical cell according to claim 1 , wherein the anode and the cathode independently further comprise an electrically conductive agent.1112.-. (canceled)13. The electrochemical cell according to claim 10 , wherein the weight ratio of vanadium oxide compound:binder:electrically conductive agent is about 75:15:10.14. The electrochemical cell according to ...

Подробнее
04-01-2018 дата публикации

A METAL OXIDE NANOSTRUCTURED MATERIAL AND AN ELECTROCHEMICAL CELL COMPRISING THE SAME

Номер: US20180005771A1
Автор: LEE Pooi See, WANG Xu
Принадлежит:

A method for preparing a niobium, titanium or vanadium metal oxide nanostructured material is provided. The method comprises providing an aqueous reagent comprising (i) a soluble metal oxalate, and/or (ii) oxalic acid and a metal oxide precursor, adding a buffering agent to the aqueous reagent to form a mixture, and heating the mixture under hydrothermal conditions to obtain the metal oxide nanostructured material. The metal oxide nanostructured material may also be doped with a dopant metal such as titanium to enhance capacity and cycling stability. An electrode comprising the metal oxide nanostructured material, and an electrochemical cell containing the electrode are also provided. 1. A method for preparing a metal oxide nanostructured material , the method comprisinga) providing an aqueous reagent comprising (i) a soluble metal oxalate, and/or (ii) oxalic acid and a metal oxide precursor,b) adding a buffering agent to the aqueous reagent to form a mixture, andc) heating the mixture under hydrothermal conditions to obtain the metal oxide nanostructured material.2. The method according to claim 1 , wherein the metal oxide nanostructured material comprises an orthorhombic crystal structure.3. The method according to claim 1 , wherein metal of the metal oxide nanostructured material is selected from the group consisting of niobium claim 1 , titanium claim 1 , vanadium claim 1 , combinations thereof claim 1 , and alloys thereof.4. (canceled)5. The method according to claim 1 , wherein the soluble metal oxalate is selected from the group consisting of niobium (V) oxalate claim 1 , titanium oxalate claim 1 , vanadium oxalate claim 1 , ammonium niobium (V) oxalate claim 1 , ammonium titanium oxalate claim 1 , ammonium vanadium oxalate claim 1 , potassium titanium oxide oxalate claim 1 , and mixtures thereof.6. The method according to claim 1 , wherein the metal oxide precursor is selected from the group consisting of metal halides claim 1 , metal sulfates claim 1 , ...

Подробнее
20-01-2022 дата публикации

METAL-MOLYBDATE AND METHOD FOR MAKING THE SAME

Номер: US20220017382A1
Принадлежит:

A process for producing a metal-molybdate material is provided. The process includes a step of reacting a metal molybdenum (Mo) material in a liquid medium with a first acid to provide a Mo composition and combining the Mo composition with a metal source to provide a metal-Mo composition. The metal-Mo composition can be pH adjusted with a base to precipitate a plurality of metal-Mo particulates. 1. A metal-molybdate (metal-Mo) prepared by a process , the process comprising:reacting a metal molybdenum (Mo) material in a liquid medium with a first acid to provide a Mo composition;combining the Mo composition with a metal source to provide a metal-Mo composition; andpH adjusting the metal-Mo composition with a base to precipitate a plurality of metal-Mo particulates.2. A metal-molybdate (metal-Mo) prepared by a process , the process comprising:oxidizing, in whole or in part, a metal molybdenum (Mo) material in a liquid medium with a first acid to provide a Mo composition;combining the Mo composition with a metal source to provide a metal-Mo composition; andpH adjusting the metal-Mo composition with a base to precipitate a plurality of metal-Mo particulates.3. A metal-molybdate (metal-Mo) material , comprising:a plurality metal-Mo particulates comprising at least one bond between a metal, metalate, or a metallic salt, and a molybdate of the metal-Mo particulates, andwherein the bond is in a form of an oxo-bridge, a hydroxo-bridge, or a combination thereof.4. The material of claim 3 , wherein an average size of the plurality of metal-Mo particulates is in a range of from about 10 microns to about 1275 microns.5. The material of claim 3 , wherein an average size of the plurality of metal-Mo particulates is in a range of from about 10 microns to about 1015 microns.6. The material of claim 3 , wherein the metal-Mo material comprises an eluting efficiency of 30% or greater.7. The material of claim 3 , wherein the metal-Mo material comprises an eluting efficiency of 70% or ...

Подробнее
02-01-2020 дата публикации

Piezoelectric body film, piezoelectric element, and method for manufacturing piezoelectric element

Номер: US20200006622A1
Принадлежит: Fujifilm Corp

To provide a piezoelectric body film and a piezoelectric element from which an excellent piezoelectric characteristic can be obtained even in a high-temperature environment and a method for manufacturing a piezoelectric element. A piezoelectric body film of the present invention is a piezoelectric body film containing a perovskite-type oxide represented by Formula (1), in which a content q of Nb with respect to the number of all atoms in the perovskite-type oxide and a ratio r of a diffraction peak intensity from a (200) plane to a diffraction peak intensity from a (100) plane of the perovskite-type oxide, which is measured using an X-ray diffraction method, satisfy Formula (2), Formula (1) A 1+δ [(Zr y Ti 1-y ) 1-x Nb x ]O 2 , Formula (2) 0.35≤r/q<0.58, in this case, in Formula (1), A represents an A site element containing Pb, x and y each independently represent a numerical value of more than 0 and less than 1, standard values of δ and z each are 0 and 3, but these values may deviate from the standard values as long as the perovskite-type oxide has a perovskite structure, and, in Formula (2), a unit of q is atm %.

Подробнее