Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 18602. Отображено 200.
20-05-2008 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ ТЕРМОСТОЙКОГО КОМПОЗИТНОГО МАТЕРИАЛА, СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛОКНИСТОЙКОНСТРУКЦИИ, ВОЛОКНИСТАЯ КОНСТРУКЦИЯ, ИЗГОТОВЛЕННАЯ ДАННЫМ СПОСОБОМ, И КОМПОЗИТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ДАННУЮ КОНСТРУКЦИЮ

Номер: RU2324597C2

Изобретение относится к технологии получения пористых трехмерных волокнистых конструкций, изготовленных из термостойких или жаростойких волокон, и может быть использовано при изготовлении деталей из термоконструкционного композитного материала. В волокнистую конструкцию встраиваются углеродные нанотрубки путем их выращивания на термостойких волокнах основы. Обогащение деталей из композитного материала углеродными нанотрубками обеспечивает более упорядоченное уплотнение деталей, улучшение механических свойств, теплопроводности, повышение сопротивляемости износу. 5 н. и 26 з.п. ф-лы, 6 ил.

Подробнее
10-09-2011 дата публикации

НАНОСТРУКТУРИРОВАННЫЙ ФУНКЦИОНАЛЬНО-ГРАДИЕНТНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2428395C2

Изобретение относится к области машиностроительной керамики, в частности к керамоматричному композиционному материалу на основе карбида кремния, упрочненного углеродными волокнами. Предложен композиционный материал, включающий матрицу из реакционносвязанного карбида кремния, армированную пучками углеродных волокон, и расположенный по крайней мере на одной из ее поверхностей рабочий слой из реакционно-связанного карбида кремния. Матрица и рабочий слой состоят из 75-92 об.% карбида кремния, который представлен первичными зернами и наноразмерными вторичными зернами, и 8-25 об.% свободного кремния. Соотношение объемных содержаний матрицы и армирующих пучков волокон возрастает в пределах от 25/75 до 60/40 в направлении к рабочему слою. Способ получения композиционного материала включает стадии формования заготовки, отверждения, карбонизации и силицирования. Перед формованием производят обработку армирующих пучков углеродных волокон суспензией, содержащей частицы карбида кремния в количестве ...

Подробнее
27-01-2008 дата публикации

КЕРАМИЧЕСКИЙ ФИЛЬТР ДЛЯ ФИЛЬТРАЦИИ РАСПЛАВЛЕННОГОМЕТАЛЛА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2315650C2

Изобретение относится к области изготовления керамических изделий. Предлагается упрочненный волокном керамический фильтр для фильтрации расплавленного металла, который содержит порошок и волокна, связанные сетью графитизируемого углерода, предлагается способ изготовления таких фильтров, включающий пропитку вспененного материала суспензией, содержащей керамический порошок, волокна и предшественник графитизируемого углеродного связующего, сушку и обжиг в отсутствии окисляющего агента при 500-1000°С до частичной или полной графитизации углерода. Полученный фильтр обладает повышенной механической прочностью и жесткостью. 2 н. и 15 з.п. ф-лы.

Подробнее
27-11-2004 дата публикации

УГЛЕРОД-УГЛЕРОДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ПОВЫШЕНИЯ ЕГО СТОЙКОСТИ К ОКИСЛЕНИЮ

Номер: RU2240991C2

Изобретение относится к получению композиционных материалов, получаемых пропиткой углерод/углеродных материалов, применяемых в областях, где действуют высокие температуры, например для изготовления тормозов для самолетов. Композиционный материал, стойкий к окислению при высоких температурах, представляет собой волокнистый углерод/углеродный или графитоподобный материал, полученный в результате контакта указанного материала с проникающим солевым раствором на основе фосфорной кислоты, который содержит ионы, образовавшиеся из комбинации следующих ингредиентов: 10-80 вес.% вода, 20-70 вес.% H3PO4, 0-25 вес.% MnHPO4·1,6 H2O, 0-30 вес.% Al(H2PO4)3, 0-2 вес.% B2O3, 0-10 вес.% Zn3(PO4)2 и 0,1-25 вес.% моно-, ди- или триосновного фосфата щелочного металла, причем раствор содержит, по меньшей мере, один ингредиент, выбранный из Al(H2PO4)3, MnHPO4·1,6 H2O и Zn3(PO4)2. Изобретение позволяет получать устойчивые к окислению в условиях высоких температур и агрессивного воздействия катализаторов окисления ...

Подробнее
07-02-2017 дата публикации

Высокотермостойкий радиопрозрачный неорганический стеклопластик и способ его получения

Номер: RU2610048C2

Изобретение относится к радиопрозрачным композиционным материалам. Технический результат – повышение работоспособности аппретирующей пленки, уменьшение кислотности наносимой на стеклоткань суспензии. Высокотермостойкий радиопрозрачный неорганический стеклопластик выполнен на основе фосфатного связующего и аппретированного волокнистого наполнителя. Предварительно на стеклоткань наносили защитное покрытие. Защитное покрытие – неорганическое покрытие, нанесенное на ткань методом «золь-гель» технологии из насыщенных водных растворов солей алюминия и (или) хрома. В качестве связующего использована водная суспензия, состоящая из фосфатной связки с корундовым микропорошком 5-10%, водного шликера кварцевого стекла с полидисперсным зерновым составом твердой фазы 0,1-100 мкм в количестве 50-55% и щелочной кремнезоли в количестве 35-40%. После формования и отверждения при температуре 300-400°С материал дополнительно упрочняют разовой или многократной (3-5 раз) пропиткой насыщенным водным раствором ...

Подробнее
27-08-2006 дата публикации

ОГНЕУПОРНАЯ ТОРКРЕТ-МАССА

Номер: RU2282603C2

Огнеупорная торкрет-масса (ОТМ) предназначена преимущественно для расходуемой футеровки промежуточного ковша для машин непрерывного литья заготовок. ОТМ содержит компоненты в следующем соотношении, мас.%: органическое волокно 0,1-1,0, неорганическое волокно 0,1-0,4, полимерное связующее с пластификатором на основе сложного эфира 2,0-5,0, периклазсодержащий заполнитель - остальное. ОТМ может также содержать 0,5-4,0 мас.% триполифосфата натрия и 0,2-2,0 мас.% фенолформальдегидной смолы. Технический результат изобретения - повышение пористости, снижение теплопроводности, повышение механической прочности и адгезии при нанесении, улучшение эксплуатационных свойств, а также возможность нанесения утолщенного слоя торкрет-массы. 1 з.п ф-лы, 1 табл.

Подробнее
14-11-2019 дата публикации

ЭКСТРУДИРУЕМАЯ КЕРАМИЧЕСКАЯ КОМПОЗИЦИЯ И СПОСОБ ПОЛУЧЕНИЯ

Номер: RU2706077C2
Принадлежит: Зе Боинг Компани

Изобретение относится к получению керамических сотовых структур для извлечения диоксида углерода или других газообразных химических соединений из газовых потоков или в качестве каталитических преобразователей. Экструдируемый керамический композиционный материал содержит предварительно спеченный порошкообразный материал керамической матрицы, множество частиц, имеющих аспектное отношение от примерно 1 до примерно 100, связующее вещество или экструзионную добавку и жидкость-носитель. Матрица содержит по меньшей мере один порошкообразный цеолит и второй порошкообразный материал из группы, включающей титанаты, оксиды алюминия, оксиды кремния, оксиды циркония, алюмосиликаты, кордиерит и любую их смесь. Указанное множество частиц представляет собой структурно армирующие частицы и/или частицы, модифицирующие теплопроводность. Экструдируемый керамический материал подвергают экструзии и термообрабатывают при температуре от 300 до 700°С. Технический результат изобретения – получение изделий с повышенной ...

Подробнее
04-03-2019 дата публикации

ДЕТАЛЬ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА ОКСИД/ОКСИД С ТРЕХМЕРНЫМ УСИЛЕНИЕМ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Номер: RU2681176C2
Принадлежит: САФРАН СЕРАМИКС (FR)

Изобретение относится к детали из композиционного материала оксид/оксид, которая содержит волокнистое усиление, образованное множеством слоев нитей основы и слоев нитей утка, связанных между собой посредством трехмерного тканья, при этом пространства между нитями усиления заполнены матрицей из жаропрочного оксида. Деталь отличается тем, что волокнистое усиление имеет переплетение тканья, выбранное среди следующих переплетений: интерлок, множественное полотняное, множественное сатиновое и множественное саржевое, и плотность переплетения по основе и по утку, составляющую от 4 до 20 нитей/см. Объемное содержание волокон в волокнистом усилении составляет от 40 до 51%. После формирования матрицы внутри структуры блоки матрицы имеют размеры, меньшие пятикратного максимального сучения нитей, что позволяет предупредить появление трещин в конечном материале детали. 2 н. и 5 з.п. ф-лы, 10 ил., 1 табл.

Подробнее
27-07-2012 дата публикации

КЕРАМОМАТРИЧНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ С УПРОЧНЕННЫМ АРМИРУЮЩИМ КОМПОНЕНТОМ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2457192C2

Изобретение относится к области машиностроительной керамики и может быть использовано для изготовления конструкционных деталей, работающих в условиях высоких механических нагрузок. Керамоматричный композиционный материал с упрочненным армирующим компонентом в виде пучков углеродных филаментов, покрытых слоем карбида кремния, и матрицы на основе карбида кремния содержит углеродные филаменты внутри пучков, связанные между собой углеродной межфиламентной фазой, упрочненной углеродными нанотрубками. Слой карбида кремния содержит наноразмерные зерна, а матрица дополнительно содержит свободный кремний. При получении керамоматричного композиционного материала пучки углеродных филаментов обрабатывают под воздействием ультразвуковых колебаний суспензией, содержащей 2-8 мас.% углеродных нанотрубок и 5-20 мас.% полимерного связующего в органическом растворителе, после чего наносят полимерный слой на пучки путем их обработки суспензией, содержащей, 10-30 мас.% полимерного связующего и 3-15 мас.% терморасширенного ...

Подробнее
27-02-2009 дата публикации

КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Номер: RU2347771C2

Изобретение относится к композиционным материалам, а именно к композиционным материалам на основе стеклокристаллических матриц, армированных углеродными наполнителями для изготовления теплонагруженных деталей с острой кромкой, таких как стойки, проставки переходных устройств, элементы резьбового крепежа и т.д. на основе ленточных и жгутовых препрегов, применяющихся в авиационной, космической технике и в машиностроении. Техническим результатом изобретения является повышение жаростойкости и термостойкости материала при рабочих температурах до 800°С при снижении коэффициента термического расширения. Предложен керамический композиционный материал, включающий стекломатрицу и углеродный волокнистый наполнитель при следующем соотношении компонентов в мас.%: стекломатрица - 60,5-73,5, углеродный волокнистый наполнитель - 26,5-39,5, причем стекломатрица содержит следующие компоненты в мас.%: Al2O3 - 21,0-21,9; SrO - 4,7-19,4; BaO - 1,0-14,0; TiO2 - 11,7-12,2, Al2TiO5 - 1,8-6,5, SiO2 - остальное.

Подробнее
23-03-2022 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ДЕТАЛИ ИЗ КОМПОЗИТНОГО МАТЕРИАЛА

Номер: RU2768291C2

Изобретение относится к получению детали из композитного материала, которая может быть частью горячей секции газовой турбины авиационного или аэрокосмического двигателя, или промышленной турбины, или частью турбинного двигателя. Способ включает по меньшей мере следующие этапы. 1) Введение промотора адгезии в поры волокнистой преформы, образованной из огнеупорных волокон с нанесённым покрытием, имеющим на своей поверхности OH-группы. Промотор адгезии содержит электроноакцепторную группу G1, которая является реакционноспособной в отношении реакции замещения или нуклеофильного присоединения к ОН-группам, и реакционноспособную группу G2, выбранную из: гидроксильной группы, эпоксида, атома галогена, аминогруппы, карбонильной группы, углерод-углеродной двойной связи или углерод-углеродной тройной связи. 2) Прививка промотора адгезии к поверхности покрытия посредством реакции замещения или нуклеофильного присоединения группы G1 к OH-группам, причем прививка осуществляется посредством первого нагревания ...

Подробнее
15-01-2018 дата публикации

СПОСОБ ОБРАБОТКИ НИТЕЙ ИЗ КАРБИДА КРЕМНИЯ

Номер: RU2641045C2
Принадлежит: ГЕРАКЛ (FR)

Изобретение относится к способу обработки нитей из карбида кремния, применяемых для армирования композиционных материалов. Способ включает стадию химической обработки нитей водным раствором кислоты, содержащим фтористоводородную кислоту и азотную кислоту, при температуре 10-30°С для удаления диоксида кремния, который присутствует на поверхности нитей, и для образования слоя микропористого углерода. Указанный водный раствор содержит фтористоводородную кислоту в количестве 0,5-4 моль/л и азотную кислоту в количестве 0,5-5 моль/л, при этом молярное отношение HF/HNOсоставляет менее чем 1,5. Изобретение также относится к способу получения волокнистой заготовки, включающему образование волокнистой структуры, включающей обработанные нити из карбида кремния, и применения указанной заготовки для получения детали, изготовленной из композиционного материала. Технический результат изобретения – улучшение поверхности нитей для последующего связывания с пироуглеродом. 3 н. и 9 з.п. ф-лы, 2 ил., 6 пр.

Подробнее
27-11-2002 дата публикации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Номер: RU2193539C2

Изобретение относится к авиационной, космической технике, электротехнике, автомобиле- и приборостроению, а именно к композиционным материалам на основе стекломатриц, армированных непрерывными углеродными наполнителями. Предложенный композиционный материал включает стекломатрицу 60-66 мас.%, содержащую SiO2, В2О3, а в качестве армирующего углеродного наполнителя, в количестве 34-40 мас.%, используют высокопрочный углеродный жгут на основе полиакрилнитрила, при этом стекломатрица дополнительно содержит SiOC, при следующем соотношении компонентов матрицы, мас.%: SiO2 58,9-69,3; В2О3 13,5-15; SiOC 15,7-27,6. Изобретение позволяет улучшить фазовую термостабильность и увеличить уровень разрушающего напряжения при изгибе при увеличении уровня рабочих температур выше 500oС. Предложенный композиционный материал содержит экологически-, пожаро- и взрывобезопасные компоненты. 1 з. п.ф-лы, 2 табл.

Подробнее
20-01-2010 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ОГНЕУПОРНОГО МАТЕРИАЛА

Номер: RU2379261C1

Изобретение относится к производству огнеупоров, а именно к способам получения огнеупорных уплотняющих и облицовочных материалов, и может быть использовано для изготовления уплотнительных, разделительных, герметизирующих и т.п. изделий в виде лент, шнуров, пластин, профилей и т.п., применяемых в производствах с высокими рабочими температурами при выплавке металла и для разлива металла в непрерывные заготовки, отлива слитков, фасонов и т.д. Приготавливают перемешиванием огнеупорное связующее в виде суспензии из водного раствора стекла плотностью от 1,01 до 1,22 кг/дм3, распущенного в нем муллитокремнеземистого волокна до концентрации от 4 до 5 мас.% и сульфата алюминия. Сульфат алюминия добавляют в количестве, при котором pH суспензии близка к нейтральной среде. Приготовленное связующее (суспензию) заливают в реактор и при непрерывном перемешивании вводят порошок оксида магния и оксида алюминия. Оксиды магния и алюминия берут в соотношении алюмомагниевой шпинели MgAl2O4. Соотношение между ...

Подробнее
10-10-1999 дата публикации

КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО ЭЛЕКТРОИЗОЛЯЦИОННОГО СТЕКЛОТЕКСТОЛИТА

Номер: RU2139267C1

Изобретение относится к электроизоляционным конструкционным стеклотекстолитам и может быть использовано в качестве электроизоляторов. Композиция для изготовления высокотемпературного электроизоляционного стеклотекстолита на основе стеклоткани, алюмофосфатного связующего, порошкообразного наполнителя оксида алюминия α-Al2O3, термообработанных, измельченных обрезков или порошкообразных отходов того же стеклотекстолита содержит компоненты в следующем соотношении, мас. %: стеклоткань 19-26, алюмофосфатное связующее 29-36, термообработанные измельченные обрезки или порошкообразные отходы того же стеклотекстолита 11,4-19, порошкообразный наполнитель оксид алюминия α-Al2O3 - остальное. Технический результат изобретения: повышение механической прочности материала, снижение себестоимости, уменьшение расхода сырьевых компонентов (порошка оксида алюминия). 1 табл.

Подробнее
27-02-2012 дата публикации

ОБЛИЦОВОЧНАЯ ПЛИТКА

Номер: RU113737U1

... 1. Облицовочная плитка, характеризующаяся тем, что включает в себя основу из искусственной керамики, слой карбоновой ткани, удерживаемый на основе при помощи полиуретанового лака, слой полиэфирного лака, уложенного на карбоновую ткань, и слой полиуретанового или акрилового лака с цветным пигментом, уложенного на слой полиэфирного лака. ! 2. Облицовочная плитка, характеризующаяся тем, что включает в себя основу из текстолита, слой карбоновой ткани, удерживаемый на основе при помощи полиуретанового лака, слой полиэфирного лака, уложенного на карбоновую ткань, и слой полиуретанового или акрилового лака с цветным пигментом, уложенного на слой полиэфирного лака. ! 3. Облицовочная плитка, характеризующаяся тем, что включает в себя основу из пластика, слой карбоновой ткани, удерживаемый на основе при помощи полиуретанового лака, слой полиэфирного лака, уложенного на карбоновую ткань, и слой полиуретанового или акрилового лака с цветным пигментом, уложенного на слой полиэфирного лака.

Подробнее
20-06-2010 дата публикации

КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Номер: RU2392250C1

Изобретение относится к керамическим композиционным материалам и может быть использовано при изготовлении теплонагруженных узлов и деталей горячего тракта перспективных газотурбинных установок и газотурбинных двигателей транспортных систем и энергомашиностроения, работающих при температурах до 1600°С в условиях воздействия окислительных сред. Техническим результатом изобретения является увеличение жаростойкости композиционного материала при рабочей температуре 1600°С в течение длительного времени (200 часов). Керамический композиционный материал содержит углеродные волокна и матрицу, включающую следующие компоненты, мас.%: Si 20-35, С 25-40, SiB4 2-4, SiO2 0,1-0,9, HfO2 1-3, SiC - остальное. 2 табл.

Подробнее
27-10-2009 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКОГО ФИЛЬТРУЮЩЕГО ЭЛЕМЕНТА С ВОЛОКНИСТОЙ СТРУКТУРОЙ

Номер: RU2371423C1

Изобретение относится к химической технологии керамики, а именно к изготовлению керамических изделий с композитной волокнистой структурой материала, используемых в качестве высокотемпературных фильтрующих элементов и теплоизоляции. Технический результат - повышение качества фильтрующего элемента и химической стойкости в хлорсодержащих средах. Способ изготовления керамического фильтрующего элемента с волокнистой структурой включает диспергацию керамических волокон до заданного отношения L/d, приготовление суспензии из керамических волокон, керамической связки и связующего, осаждение, сушку и обжиг. Приготовление суспензии осуществляют путем получения коллоидного раствора кремнезоля в дисперсионной кислой среде, введения муллитовых волокон с последующей гомогенизацией. В полученную суспензию вводят связующее в виде коллоидного раствора органического высокомолекулярного соединения из ряда крахмалов. Обжиг осуществляют в интервале температур образовании альфа-тридимитной модификации кремнезема ...

Подробнее
10-08-2003 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ВОЛОКНИСТЫХ ФОРМОВАННЫХ ИЗДЕЛИЙ

Номер: RU2209724C1

Изобретение относится к получению теплоизоляционных формованных изделий и может найти применение в металлургии, авиа- и ракетостроении, энергетике, в том числе атомной, металлообрабатывающей и других областях промышленности. Технический результат: сокращение длительности изготовления волокнистых формованных изделий различной формы и толщины, улучшение их механических свойств при сохранении теплофизических характеристик. Указанный технический результат достигается тем, что в способе изготовления волокнистых формованных изделий, включающем распушивание минерального волокна в воде, перемешивание его со связующим в виде сульфата алюминия и водного раствора аммиака, отливку полученной гидромассы в форму вакуум-пресса, формование и сушку, согласно изобретению распушивание волокна и перемешивание его со связующим осуществляют одновременно со скоростью 1350-1450 об/мин, сушку проводят при 230-270oС в течение 7-9 ч со скоростью нагрева изделия не более 1 град/мин, а охлаждение до 50-60oС ведут со ...

Подробнее
20-01-2023 дата публикации

Способ получения термостойкого радиотехнического материала

Номер: RU2788505C1

Изобретение относится к конструкционным, электротехническим и теплозащитным материалам и предназначено для использования в теплонагруженных изделиях и конструкциях радиотехнического назначения. Технический результат заключается в получении термостойкого радиотехнического материала со стабильными геометрическими размерами при нагреве выше 300°С с сохранением стабильных прочностных характеристик, а также низкими значениями пористости и водопоглощения материала. Получают композицию путем смешения алюмохромфосфатного связующего марки Фоскон-351 с порошком белого электрокорунда, наносят ее на кварцевую и многослойную кремнеземную стеклоткань, аппретированные спиртоацетоновым раствором кремнийорганической смолы КМ-9К. Слои ткани укладывают друг на друга в заданном порядке, отверждают под вакуумом, термообрабатывают при температуре 300°С в течение 3-4 ч и охлаждают до комнатной температуры. Полученную заготовку пропитывают кремнийорганической смолой марки МФСС-8 в течение 1-2 ч, сушат на воздухе ...

Подробнее
09-07-1995 дата публикации

СПОСОБ ПОЛУЧЕНИЯ САМОНЕСУЩЕГО КЕРАМИЧЕСКОГО ТЕЛА

Номер: RU2039023C1

Изобретение касается способа изготовления композиционных изделий сложной формы. Для этого заготовку исходного металла размещают в слое дисперсного инертного огнеупорного материала или в контакте с брикетом, сформованным из этого материала, и нагревают в газообразной среде, реакционноспособной по отношению к металлу заготовки. Нагрев ведут до температуры, большей точки плавления металла заготовки, но меньшей точки плавления продукта взаимодействия металла с газообразной средой, в течение времени, достаточного для взаимодействия металла со средой и его миграции через последовательно образующиеся слои в сторону среды. При этом, по меньшей мере, на часть поверхности металла наносят барьерное средство из материала, проницаемого для газообразной среды, но непроницаемого для металла или продукта его взаимодействия со средой. Барьерное средство можно размещать на заданном расстоянии от заготовки и/или частично заполнять им пространство между заготовкой и слоем (или брикетом) инертного огнеупорного ...

Подробнее
20-06-1997 дата публикации

КЛЕЯЩАЯ И ПОКРЫВАЮЩАЯ ТЕПЛОСТОЙКАЯ КОМПОЗИЦИЯ, ПОКРЫТИЕ ДЛЯ ИЗЛОЖНИЦЫ, ПОЛОТНО, СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОСТОЙКОГО ПОКРЫТИЯ В ВИДЕ ПОЛОТНА ИЗ ЭТОЙ КОМПОЗИЦИИ

Номер: RU2081718C1

Изобретение относится к клеящим и покрывающим композициям, обладающих хорошей теплостойкостью и превосходным сопротивлением износу, а также большим сроком службы после отверждения. Сущность изобретения: композицию изготавливают из двух компонентов: порошковой смеси, содержащей оксид циркония 20 - 70 мас. ч., алюминат натрия 1 - 10 мас. ч., оксид иттрия 0,4 - 10,5 мас. ч., диоксид кремния 9,5 - 78,6 мас. ч., и связующего - силиката натрия 12,36 - 84,55 мас. ч., в который добавлено 5 - 50,7 мас. ч. воды. Для использования в качестве покрытия для изложницы в композицию добавляют волокнистый теплостойкий материал в количестве 2 - 17 мас. ч. С помощью композиции может быть получено теплостойкое покрытие в виде полотна. 5 с.п. ф-лы.

Подробнее
20-07-1997 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ИЗДЕЛИЙ ИЗ УГЛЕРОД-КАРБИДОКРЕМНИЕВОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА И УГЛЕРОД-КАРБИДОКРЕМНИЕВЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Номер: RU2084425C1

Использование: изобретение относится к области углеродкарбидокремниевых конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды и может быть использовано в химической, нефтяной и металлургической промышленности, а также в авиатехнике для создания изделий и элементов конструкций, подвергающихся воздействию агрессивных сред. Сущность изобретения: способ получения изделий из углеродкарбидокремниевого композиционного материала включает изготовление углепластиковых заготовок на основе углеродного волокна и термореактивного связующего, ее термообработку до образования коксовой матрицы, армированной углеродным волокном, насыщение заготовки пироуглеродом и силицирование. Перед силицирование дополнительно проводят термообработку при 1900 - 2000oC для кристаллизации осажденного пироуглерода и образования поровых каналов. Силицирование может проводиться смесью кремния и бора. Полученный материал содержит 30 - 72 мас. % углеродного волокна, 0,5 - 5 мас.

Подробнее
10-11-2005 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ ТЕРМОСТОЙКОГО КОМПОЗИТНОГО МАТЕРИАЛА, СПРОСОБ ИЗГОТОВЛЕНИЯ ВОЛОКОННИСТОЙ КОНСТРУКЦИИ, ВОЛОКНИСТАЯ КОНСТРУКЦИЯ, ИЗГОТОЛВЕННАЯ ДАННЫМ СПОСОБОМ, И КОМПОЗИТНЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ ДАННУЮ КОНСТРУКЦИЮ

Номер: RU2005106198A
Принадлежит:

... 1. Способ изготовления пористой трехмерной волокнистой конструкции, содержащей трехмерную основу из упорядоченных термостойких волокон, отличающийся тем, что в волокнистую конструкцию встраивают углеродные нанотрубки, сформированные посредством их выращивания на термостойких волокнах основы после ее пропитки составом, содержащим, по меньшей мере, один катализатор роста углеродных нанотрубок, с обеспечением возможности получения трехмерной конструкции, состоящей из термостойких волокон и обогащенной углеродными нанотрубками. 2. Способ по п.1, отличающийся тем, что включает следующие, выполняемые последовательно, шаги: пропитывают двумерные слои термостойких волокон составом, содержащим, по меньшей мере, один катализатор роста углеродных нанотрубок, формируют трехмерную основу путем наложения друг на друга и скрепления пропитанных двумерных слоев и обеспечивают рост углеродных нанотрубок в пределах трехмерной основы. 3. Способ по п.2, отличающийся тем, что двумерные слои скрепляют друг с ...

Подробнее
27-01-1998 дата публикации

ВЯЗКИЙ КЕРАМИЧЕСКИЙ МАТЕРИАЛ

Номер: RU96103195A
Принадлежит:

Вязкий керамический материал, содержащий карбид бора, карбид кремния и карбид титана, отличающийся тем, что он дополнительно содержит диборид титана и углеволокно при следующем соотношении компонентов, мас.%: Карбид бора - 60 - 78 Карбид кремния - 5 - 22 Карбид титана - 3 - 11 Диборид титана - 3 - 15 Углеволокно - 0,3 - 15,0х ...

Подробнее
20-07-1998 дата публикации

СПОСОБ ХИМИЧЕСКОЙ ИНФИЛЬТРАЦИИ В ПАРОВОЙ ФАЗЕ МАТЕРИАЛА В СРЕДУ ВОЛОКНИСТОГО СУБСТРАТА

Номер: RU96110215A
Принадлежит:

... 1. Способ химической инфильтрации в паровой фазе материала в среду волокнистого субстрата, состоящего из электропроводящих волокон, включающий следующие этапы: помещение субстрата в камеру, нагрев субстрата за счет прямой электромагнитной связи между индуктором и субстратом, с образованием градиента температуры в среде субстрата, имеющего более высокое значение в частях, удаленных от наружных поверхностей субстрата, по сравнению с его поверхностью, и подачу в камеру реакционной газовой фазы предшественника инфильтруемого материала, образованию которого создают благоприятные условия в частях субстрата с более высокой температурой, отличающийся тем, что субстрат формируют из волокнистой структуры, в которой отношение ρr/ρc между поперечным электрическим сопротивлением и продольным электрическим сопротивлением равно по меньшей мере 1,3, а отношение λr/λc между поперечной теплопроводностью и продольной теплопроводностью не превышает 0,9 и субстрат полностью размещают в поле, продуцируемом индуктором ...

Подробнее
10-08-2002 дата публикации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ

Номер: RU2000123759A
Принадлежит:

... 1. Композиционный материал, армированный пучками волокон, имеющий керамическую матрицу, отличающийся тем, что композиционный материал содержит две различные фракции пучков волокон, фракцию армирующих пучков волокон и фракцию матричных пучков волокон, с различной средней длиной пучков волокон, которые минимально разделены в общем распределении пучков волокон относительно длины пучков волокон. 2. Композиционный материал по п. 1, отличающийся тем, что по меньшей мере часть пучков волокон, содержащихся в композиционном материале, имеет, по меньшей мере частично, по меньшей мере, один защитный слой. 3. Композиционный материал по любому из пп. 1 и 2, отличающийся тем, что волокна пучков волокон являются волокнами из группы углеродных волокон, графитных волокон, SiC-волокон, волокон оксида алюминия, Аl2О3SiO2 -волокон, Аl2О3SiO2В2О3-волокон, карбонизированных типов целлюлозных волокон, древесных волокон и других органических волокон, так же как волокон, имеющих высокую стойкость к повышенным температурам ...

Подробнее
29-07-2020 дата публикации

Способ изготовления изделий из композитного C/C-SIC материала и продуктов на их основе

Номер: RU2728429C1

Группа изобретений относится к формованию керамических изделий, содержащих углеродные волокна, в частности к изготовлению изделий из композитного C/C-SiC материала. Способ включает следующие стадии: изготовление композитного порошка из углеродного волокна и фенольной смолы методом испарения растворителя, в соответствии с трехмерной моделью изделия формование из композитного порошка из углеродного волокна исходной формованной заготовки с помощью способа 3D-печати; первичную обработку посредством уплотнения исходной сформованной заготовки для получения пористого тела С/С, проведение реакции силицирования в расплаве, высокотемпературной десиликации и вторичного уплотнения пористого тела С/С для получения готового C/C-SiC изделия. Обеспечивается возможность получения изделия из композитного C/C-SiC материала сложной структуры с коротким циклом и низкими затратами, а готовое изделие из композитного C/C-SiC материала имеет низкое содержание остаточного кремния и превосходные технические характеристики ...

Подробнее
10-03-2015 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КЕРАМОМАТРИЧНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Номер: RU2544206C1

Изобретение относится к области композиционных материалов с керамической матрицей, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах. Изготавливают каркас из термостойких волокон, заполняют его дисперсным наполнителем и пропитывают коксообразующим связующим. В качестве дисперсного наполнителя используют тугоплавкие металлы, такие как B, Si, Ti, Zr, Hf, в капсуле из соответствующего нитрида или без таковой. Затем осуществляют формование пластиковой заготовки и ее термообработку в среде азота при температуре образования карбидов и/или карбонитридов соответствующих металлов. Полученную пористую заготовку силицируют паро-жидкофазным методом путем капиллярной конденсации паров кремния, нагревают до 1700-1850°C и выдерживают в указанном интервале температур в течение 1-3 часов. Технический результат - обеспечение возможности изготовления крупногабаритных тонкостенных изделий без применения механической обработки, а также повышение надежности ...

Подробнее
10-07-2015 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ КОМПОЗИЦИОННОГО МАТЕРИАЛА

Номер: RU2555715C1

Изобретение относится к области композиционных материалов состава SiC/C-SiC-Si, предназначенных для работы в условиях окислительной среды и механического нагружения при высоких температурах. Формируют каркас из карбидокремниевых волокон, содержащих в своей структуре свободный углерод и связанный с атомами кремния кислород. Затем уплотняют его коксопироуглеродной матрицей до ее содержания, составляющего 0,9-1,5 от содержания кислорода в карбидокремниевых волокнах в пересчёте на плотность пластиковой заготовки. После этого проводят силицирование полученной заготовки в вакууме парожидкофазным методом путем нагрева и охлаждения в парах кремния, чередующееся с дополнительным частичным уплотнением пористой заготовки коксопироуглеродной матрицей. Введение в поры материала заготовки кремния при силицировании и коксопироуглеродной матрицы при частичном доуплотнении ею материала осуществляют порционно не менее чем за два приема; при этом на первом этапе введения в поры материала кремния заготовку ...

Подробнее
10-07-2001 дата публикации

ПОКРЫТЫЕ ОРИГИНАЛЬНЫМ БОРНИТРИДНЫМ ПОКРЫТИЕМ ВОЛОКНИСТЫЕ ЗАГОТОВКИ, СОДЕРЖАЩИЕ ИХ КОМПОЗИТЫ И ИХ ИЗГОТОВЛЕНИЕ

Номер: RU99116587A
Принадлежит:

... 1. Волокнистая преформа, упрочняющие волокна которой покрыты покрытием из нитрида бора для образования промежуточной фазы между этими волокнами и матрицей, уплотняющей эту преформу, отличающаяся тем, что упомянутое покрытие из нитрида бора, образованное на упомянутых предварительно изготовленных волокнистых преформах, обладает зернистой структурой с микропорами между образующими эту структуру зернами. 2. Волокнистая преформа по п.1, отличающаяся тем, что средняя толщина названного выше покрытия составляет 0,1 - 1,2 мкм. 3. Волокнистая преформа по любому из пп.1 или 2, отличающаяся тем, что средняя толщина названного выше покрытия, образующего упрочняющую промежуточную фазу, составляет величину 0,4 - 1,2 мкм. 4. Волокнистая преформа по любому из пп.1-3, отличающаяся тем, что она образована огнеупорными волокнами, выбранными из группы, содержащей углеродные волокна и керамические волокна карбидного, нитридного или оксидного типа, в частности волокна из карбида кремния. 5. Термоструктурируемые ...

Подробнее
20-05-2014 дата публикации

КЕРАМИЧЕСКИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ АЛЮМОКИСЛОРОДНОЙ КЕРАМИКИ, СТРУКТУРИРОВАННОЙ НАНОСТРУКТУРАМИ TiN

Номер: RU2012147349A
Принадлежит:

Керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами TiN, включающий алюмокислородную матрицу и дисперсную фазу, отличающийся тем, что материал содержит, мас.%: AlO- 84,1% и TiN - 15,9% с диаметром нанонитей TiN 40-70 нм.

Подробнее
10-08-2015 дата публикации

ГЕРМЕТИЧНОЕ ИЗДЕЛИЕ ДЛЯ РАБОТЫ ПОД ИЗБЫТОЧНЫМ ДАВЛЕНИЕМ

Номер: RU2559407C1

Изобретение относится к конструкциям, работающим в условиях теплового и механического нагружения в окислительной среде, и может быть использовано при создании ракетно-космической техники, где к изделиям предъявляется требование по герметичности. Герметичное изделие выполнено из углерод-карбидокремниевого материала (УККМ), компоненты которого имеют близкий КЛТР. В соответствии с заявляемым техническим решением оно выполнено по всей его толщине или, по крайней мере, со стороны наружной или внутренней поверхности из УККМ на основе каркаса тканепрошивной или объемно-тканой структуры с ориентацией слоев ткани параллельно рабочей поверхности изделия при содержании прошивных или перевязочных нитей 4-8 об.%; при этом материал имеет открытую пористость не более 0,1 %. Прошивные или перевязочные нити каркаса предпочтительно не имеют сквозного прохода с внутренней поверхности изделия на наружную поверхность. Со стороны внутренней и/или наружной поверхности изделия может быть нанесено герметичное покрытие ...

Подробнее
10-04-2006 дата публикации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Номер: RU2273617C1

Изобретение относится к композиционным материалам на основе стекломатриц, армированных непрерывными углеродными наполнителями, используемым для изготовления кольцевых элементов, применяющихся в авиационной, космической технике и машиностроении. Технический результат - снижение температуры начала уплотнения, снижение температуры формования на 100-200°С, повышение плотности, ударной вязкости и снижение пористости композиционного материала, что позволяет изготавливать изделия сложных форм с необходимым уровнем физико-механических характеристик. Предложен композиционный материал следующего химического состава, мас.%: стекломатрица - 35-75, углеродный волокнистый наполнитель - 25-65. Стекломатрица содержит следующие компоненты (мас.%): SiO2 - 30-65, В2O3 - 2-10, SiOC - 1-15, раствор канифольной смолы - 30-45. Углеродный волокнистый наполнитель выполнен в виде нити, жгута, ленты, ткани. Изделие выполнено из предложенного композиционного материала. 2 н. и 1 з.п. ф-лы, 2 табл.

Подробнее
27-10-2003 дата публикации

Композиция для изготовления высокотемпературного электроизоляционного стеклотекстолита

Номер: RU2002109847A
Принадлежит:

Композиция для изготовления высокотемпературного электроизоляционного стеклотекстолита, состоящая из чередующихся слоев кремнеземной ткани и неорганического связующего, содержащего порошок оксида алюминия в форме α-Al2О3и зернистостью М5-М20, отличающаяся тем, что в качестве неорганического связующего использована смесь бариево-глиноземистого цемента, содержащего 90-100% моноалюмината бария и порошка оксида алюминия с содержанием α-Al2О3не менее 98% в соотношении 1:1, разведенная водой при в/т=0,3-0,32 (в/т - соотношение воды и твердого вещества), при этом соотношение кремнеземной ткани, содержащей не менее 94% SiO2 и неорганического связующего следующее, %: Кремнеземная ткань 60-40 Неорганическое связующее 40-60 ...

Подробнее
15-06-1981 дата публикации

Шихта для изготовления огнеупорногоМАТЕРиАлА

Номер: SU669710A1
Принадлежит:

Подробнее
20-03-1973 дата публикации

Огнеупорный материал

Номер: SU374256A1
Принадлежит:

Подробнее
15-04-1993 дата публикации

Устройство для получения композиционного изделия

Номер: SU1809828A3

Сущность изобретения: устройство содержит перфорированный контейнер, поде- ленный на секции. В контейнере находится проницаемый наполнитель и масса основного металла, который находится в контакте со слоем проницаемого наполнителя. Секции контейнера расположены с образованием одного или нескольких компенсационных соединений для компенсации периферийного теплового расширения секций . Секции контейнера выполнены из материала , коэффициент теплового расширения которого значительно больше, чем у наполнителя. 5 з.п. ф-лы, 9 ил.

Подробнее
21-07-2011 дата публикации

Hochtemperaturfester Hybridwerkstoff aus Calciumsilikat und Kohlenstoff

Номер: DE102010004933A1
Автор:
Принадлежит:

Die Erfindung betrifft einen temperaturfesten keramischen Hybridwerkstoff mit einer Matrix aus Calcium-Silitkat-Hydrat, in die Kohlenstoff eingebettet ist, wobei der Kohlenstoff überwiegend aus Graphitpartikel (GP) mit einer geordneten graphitischen Gitterstruktur besteht und einen Gewichtsanteil von bis zu 40% ausmacht. Die Matrix besteht aus Tobermorit und/oder Xonotlit (X) und kann Wollastonitstäbchen und/oder körniges Silikat (SK) enthalten. Die Abmessung der Graphitpartikel (GP) beträgt 0,013 mm. Der Hybridwerkstoff eignet sich besonders für Gießvorrichtungen von NE-Metallen.

Подробнее
11-07-1991 дата публикации

KERAMISCHE ZUSAMMENSETZUNG

Номер: DE0004000162A1
Принадлежит:

Подробнее
29-12-1977 дата публикации

VERFAHREN ZUR HERSTELLUNG EINES UEBERTRAGUNGSKOERPERS AUF BASIS VON ASBESTFASERN

Номер: DE0002629680B2
Автор:
Принадлежит:

Подробнее
21-07-1977 дата публикации

FEUERFESTE ISOLIERUNGSZUSAMMENSETZUNG UND VERFAHREN ZU IHRER HERSTELLUNG

Номер: DE0002700374A1
Автор: PARK JOSEPH, PARK,JOSEPH
Принадлежит:

Подробнее
10-01-2008 дата публикации

FASERVERBUNDWERKSTOFF UND VERFAHREN ZUR HERSTELLUNG

Номер: DE0069837677T2
Принадлежит: NGK INSULATORS LTD, NGK INSULATORS LTD.

Подробнее
07-08-2008 дата публикации

HERSTELLUNGSVERFAHREN EINES WABENFILTERS ZUR REINIGUNG VON ABGAS

Номер: DE0060317174T2
Принадлежит: IBIDEN CO LTD, IBIDEN CO. LTD.

Подробнее
09-04-2009 дата публикации

Verfahren zum Herstellen eines hochfesten Verbundkörpers aus Glas und Fasern

Номер: DE0010359491B4
Принадлежит: SCHOTT AG

Verfahren zum Herstellen eines hochfesten Verbundkörpers aus Glas und Fasern, mit den folgenden Verfahrensschritten: 1.1 einem Kieselglaspulver werden Fasern zugesetzt, die eine gegenüber Glas erhöhte Festigkeit aufweisen; 1.2 der Anteil der Fasern beträgt zwischen 10 und 20 Gew.%, bezogen auf die Gesamtmenge aus Kieselglas und Fasern; 1.3 wobei die Fasern der Aufschlämmung aus Kieselglas orientiert oder in zufälliger Ausrichtung zugesetzt werden; 1.4 aus der Gesamtmenge von Kieselglas und Fasern wird ein Vorformling nach dem Schlickergussverfahren hergestellt; 1.5 der Vorformling wird gesintert, so dass der Verbundkörper entsteht, 1.6 wobei der Glaskörper porös ist.

Подробнее
15-12-2016 дата публикации

Plateletverstärkter Sinterformkörper, dessen Verwendung und Verfahren zu seiner Herstellung

Номер: DE0019850366B4
Принадлежит: CERAM GMBH, CeramTec GmbH

Sinterformkörper mit einem Matrixwerkstoff, dadurch gekennzeichnet, daß der Matrixwerkstoff mindestens eines der Platelets gemäß einer der allgemeinen Formeln Me1Al11O17, Me2Al12O19 und/oder Me3Al12O18 enthält, wobei Me1 für ein Alkalimetall, Me2' für Cadmium, Blei oder Quecksilber und Me3 für ein Seltenerdmetall steht und der Matrixwerkstoff tetragonal stabilisiertes Zirkoniumdioxid enthält.

Подробнее
02-10-2019 дата публикации

oxidkeramischer Faserverbundwerkstoff sowie Verfahren und Vorrichtung zu dessen Herstellung

Номер: DE102014115414B4
Принадлежит: WPX FASERKERAMIK GMBH, WPX Faserkeramik GmbH

Kontinuierliches Verfahren zur Herstellung eines oxidkeramischen Faserverbundwerkstoffs (1), wobei der Faserverbundwerkstoffs (1) einen Kern (2) aus einer Mehrzahl von oxidkeramischen Multifilamentfasern (12) aufweist, wobei der Kern (2) eingebettet ist in eine Matrix (4) aus einem gesinterten Metalloxid, mit folgenden Verfahrensschrittena. Ausbilden eines kontinuierlichen Rovings (10) durch Bilden eines zwangsgeführten Bündels von endlosen oxidkeramischen Multifilamentfasern (12), wobei die Multifilamentfasern (12) im Roving (10) unidirektional ausgerichtet sind,b. Infiltrieren des Rovings mit einem Schlicker (32), der ein feinkörniges sinterfähiges Metalloxid in einer wässrigen Suspension umfasst,c. Einstellen einer gewünschten Querschnittsform des Rovings (10) durch mechanische Behandlung des Rovings (10),d. Bilden eines Grünlings (20) als Formkörper,e. Trocknen des Grünlings (20), undf. Sintern des Grünlings (20) unter Bildung des oxidkeramischen Faserverbundwerkstoffs (1).

Подробнее
03-08-1995 дата публикации

Reinforced ceramic moulding useful for e.g. turbocharger rotor blade

Номер: DE0019502385A1
Принадлежит:

Reinforcement of a ceramic moulding comprises adding ceramic fibres to a ceramic matrix. The fibres consist of Si, N, O and C, in which the total content of C and O is at most 10 wt. % and the ratio 0.08-2. The reinforced ceramic mouldings are claimed.

Подробнее
28-08-2003 дата публикации

Friction component mfr. - involves forming internal chambers or external recesses in carbon@ fibre preform, using cores and impregnating structure with fluid silicon

Номер: DE0009422458U1
Автор:

In a process for prodn. of a friction element, esp. a brake or clutch disc a porous carbon preform (1) is produced with internal chambers and/or external recesses (7) for cooling and or stiffening purposes. The porous structure (1) is filled with liq. silicon and the prod. is made ceramic, after which the chambers and/or recesses (7) maintain the same size and shape.

Подробнее
24-07-2003 дата публикации

Faserverstärkte keramische Verbundwerkstoffe

Номер: DE0010164229A1
Принадлежит:

Faserverstärkte keramische Verbundwerkstoffe, dadurch gekennzeichnet, daß sie mindestens zwei Lagen aus multidirektionalem Fasergewebe als Verstärkung enthalten, wobei mindestens 5% der Fläche jeder Fasergewebelage von Matrixmaterial durchsetzt ist, Reibscheiben, die diese als Kern- oder Tragzone enthalten, Verfahren zu deren Herstellung und deren Verwendung als Brems- oder Kupplungsscheiben.

Подробнее
26-04-2017 дата публикации

Composite material, components comprising same and method of using same

Номер: GB0002543614A
Принадлежит:

A composite material comprises 50 to 95 mass % grains of primary material selected from the group consisting of talc, mica, graphite and hexagonal boron nitride, and 0.01 to 40 mass % fibres having a length of 0.05 to 20 mm, and a ratio of length todiameter of at least 5. The grains of the primary material have a mean size of 3 to 150 microns. Preferably the composite comprises 0.01 to 40 mass % grains of secondary material selected from ceramic material, cubic boron nitride (cBN) or diamond. The fibres may comprise carbon, metal or ceramic material, and may be continuous fibres, single fibres, tangled fibres, chopped fibres or multi-fibres. Preferably the composite material comprises an inorganic binder. The composite material may be used as a component for an ultra-high pressure press, such as a gasket 10, containment vessel, electrically conducting heater element, an electrical insulation component or a reaction component.

Подробнее
21-11-1984 дата публикации

COMPOSITE FRICTION DISC

Номер: GB0008426127D0
Автор:
Принадлежит:

Подробнее
22-02-1989 дата публикации

Graphite fiber reinforced silica matrix composite

Номер: GB0002208076A
Принадлежит:

A graphite fiber reinforced silica matrix composite comprising a plurality of graphite fibers bonded together in a silica matrix comprised of silica, boron phosphate and beta-spodumene modified with a minor amount of an alkaline earth metal oxide is disclosed. The extremely low, nearly zero, coefficient of thermal expansion coupled with the moderate thermal conductivity and low density of the composite make the composite particularly suitable as a substrate material for high energy laser mirrors.

Подробнее
22-08-1990 дата публикации

CERAMIC CORE MOLDING COMPOSITION

Номер: GB0002202542B

Подробнее
29-06-1994 дата публикации

Preparation and coating of composite surfaces

Номер: GB0002273718A
Принадлежит:

A process is disclosed for coating a ceramic composite in which the composite has a pattern of grooves cut into the surface followed by coating to increase adhesion and inhibit cracking of the coating.

Подробнее
10-06-1992 дата публикации

Fiber-containing composite.

Номер: GB0002250516A
Принадлежит:

Fibrous material is coated with boron nitride and a silicon-wettable material, the coated fibrous material is admixed with an infiltration-promoting material which is at least partly elemental carbon and the mixture is formed into a preform which is infiltrated with a molten solution of boron and silicon producing a composite containing boron nitride coated fibrous material.

Подробнее
15-05-2019 дата публикации

Керамический композиционный материал

Номер: RU0000189195U1

Полезная модель относится к керамическим композиционным материалам, в частности к дисперсно-упрочненным материалам, сочетающим высокую прочность, трещиностойкость и твердость, и может быть использована в медицине при производстве имплантатов.Задача (технический результат) предлагаемой полезной модели заключается в разработке керамического композиционного материала, сочетающего высокую прочность, трещиностойкость и твердость.Поставленная задача достигается тем, что композиционный керамический материал состоит из матрицы и трех видов упрочнителей: в качестве матрицы субмикронный (диапазон размеров от 0,2 до 1 мкм) порошок оксида алюминия (AlO), в качестве первого упрочнителя - армирующие субмикронные (диапазон размеров от 0,1 до 0,8 мкм) частицы диоксида циркония (ZrO), в качестве второго упрочнителя - пластинчатая фаза, состоящая из алюмината стронция (SrAlO), имеющая длину пластин от 1 до 5 мкм и ширину от 0,2 до 1 мкм, в качестве третьего упрочнителя - диоксид циркония с размером частиц 20-60 нм, находящийся внутри пластинчатой фазы алюмината стронция (SrAlO), и имеет следующее соотношение матрицы и упрочнителей мас. %: 50:50, причем упрочнители между собой имеют следующее соотношение: SrAlOдо 20 мас. %, наноразмерный ZrOдо 20 мас. %, остальное субмикронный ZrO. Свойства материала: предел прочности при изгибе=1400-1600 МПа, вязкость разрушения K=15-17 МПа⋅м, твердость HV=15-17 ГПа. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 189 195 U1 (51) МПК C04B 35/119 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C04B 35/119 (2019.02); C04B 35/78 (2019.02); C04B 35/6455 (2019.02) (21)(22) Заявка: 2018139642, 12.11.2018 (24) Дата начала отсчета срока действия патента: Дата регистрации: 15.05.2019 (45) Опубликовано: 15.05.2019 Бюл. № 14 Адрес для переписки: 630073, г. Новосибирск, пр. К. Маркса, 20, НГТУ U 1 R U 1 8 9 1 9 5 (56) Список документов, цитированных в отчете о поиске: US 2012/0163744 A1, 28.06.2012. RU ...

Подробнее
08-11-2012 дата публикации

Composite Material of Electroconductor Having Controlled Coefficient of Thermical Expansion

Номер: US20120280184A1

The present invention relates to a composite material comprising a ceramic component, characterized in that it has a negative coefficient of thermal expansion, and carbon nanofilaments, to its obtainment process and to its uses as electrical conductor in microelectronics, precision optics, aeronautics and aerospace.

Подробнее
10-01-2013 дата публикации

Method for manufacturing high-density fiber reinforced ceramic composite materials

Номер: US20130011654A1
Принадлежит: Korea Institute of Energy Research KIER

Disclosed herein is a method of manufacturing a high-density fiber reinforced ceramic composite material, including the steps of: 1) impregnating a fiber preform material multi-coated with pyrolytic carbon and silicon carbide to form impregnated fiber reinforced plastic composite material; 2)carbonizing the impregnated fiber reinforced plastic composite material to form carbonized fiber composite material; 3) a primary reaction-sintering of the fiber composite material; 4) cooling the primarily reaction-sintered fiber composite material down to room temperature and then impregnating the primarily reaction-sintered fiber composite material with a solution in which a polymer precursor for producing silicon carbide (SiC) is dissolved in a hexane (n-hexane) solvent; and 5) a secondary reaction-sintering of the fiber composite material; and a high-density fiber reinforced ceramic composite material manufactured using the method.

Подробнее
31-01-2013 дата публикации

Turbine engine turbine blade made of a ceramic-matrix composite with recesses made by machining

Номер: US20130028746A1
Принадлежит: Herakles SA, SNECMA SAS

A turbine engine turbine blade of ceramic matrix composite. The root of the blade includes a single densified fiber preform including at least one recess made by machining, each point of the root of the blade being situated at a distance from a free surface of the root that is no greater than twice the maximum penetration distance into the preform of densification gas for densifying the preform, and the distal portion of the root of the blade includes a distal wall that is continuous and in a single piece.

Подробнее
04-04-2013 дата публикации

Method for fabricating ceramic material

Номер: US20130082426A1
Принадлежит: Individual

A method for a fabricating a ceramic material includes providing a mixture of a reactive metallic filler material with a preceramic polysilazane material. The preceramic polysilazane material is then polymerized to form a green body. The green body is then thermally treated in an environment that is substantially free of oxygen to convert the polymerized preceramic polysilazane material into a ceramic material that includes at least one nitride phase that is a reaction product of the reactive metallic filler material and a preceramic polysilazane material.

Подробнее
11-04-2013 дата публикации

Alumina-Based Ceramic Materials and Process for the Production Thereof

Номер: US20130090231A1
Принадлежит: ISIS INNOVATION LIMITED

The present invention provides a process for producing a ceramic material, which comprises: (a) forming a green compact by compacting a powder comprising alumina and carbon, wherein the powder is substantially free of silicon carbide and wherein the amount of carbon present in the powder does not exceed 0.1% by weight of the powder; and (b) sintering the green compact under non-oxidising conditions to form a ceramic material comprising alumina and carbon, wherein the green compact is sintered at a temperature of less than 1550° C. Ceramic materials obtainable by said process are also provided. 1. A process for producing a ceramic material , which comprises:(a) forming a green compact by compacting a powder comprising alumina and carbon, wherein the powder is substantially free of silicon carbide and wherein the amount of carbon present in the powder does not exceed 0.1% by weight of the powder; and(b) sintering the green compact under non-oxidising conditions to form a ceramic material comprising alumina and carbon, wherein the green compact is sintered at a temperature of less than 1550° C.2. A process according to claim 1 , wherein the powder comprises alumina particles having an average diameter of from about 1 nm to about 1 μm.3. A process according to claim 1 , wherein the powder contains carbon in the form of carbon particles.4. A process according to claim 3 , wherein the carbon particles have an average diameter of from about 1 nm to about 1 μm.5. A process according to claim 4 , wherein the particles are in the form of graphite particles.6. A process according to claim 1 , wherein the powder contains carbon in the form of an organic precursor.7. A process according to claim 1 , wherein carbon is present in the powder in an amount of from about 0.01% to about 0.05% by weight of the powder.8. A process according to claim 1 , wherein the green compact is sintered at a temperature of from about 1350° C. to about 1500° C.9. A process according to claim 1 , ...

Подробнее
18-04-2013 дата публикации

LIQUID CHEMICAL DEPOSTION APPARATUS AND PROCESS AND PRODUCTS THEREFROM

Номер: US20130095306A1
Принадлежит:

A method, apparatus and material produced thereby in an amorphous or crystalline form having multiple elements with a uniform molecular distribution of elements at the molecular level. 1. A crystalline material of macroscopic dimension comprising a uniform microstructure that consists of a dense network of grains wherein the grains have an atomic scale chemical uniformity and uniform physical dimensions in the range of 1 nm to 100 nm.2. The material of claim 1 , wherein the material is a metal claim 1 , superalloy claim 1 , semiconductor or a ceramic.3. The material of having sufficient thickness to exist as a self-standing body.4. The material of as a laminate on a supporting substrate material.5. A composite body comprising a substrate that has a mismatched material deposited on one or more surfaces.6. A composite body of claim 5 , wherein the deposited mismatched material has a crystalline structure that is different from the substrate.7. A composite body of claim 5 , wherein substrate and the mismatched material have a coefficient of expansion that differs by 10% or more.8. A composite body of claim 5 , wherein the substrate and the mismatched material have crystalline lattice constants that differ by 5% or more.9. A composite body of claim 5 , wherein an amorphous boundary layer serves as a mechanical interface between the mismatched materials.10. A composite body of claim 5 , wherein the uniform gain size of the deposited mismatched material has a grain size ranging from 1 nm to 500 micron.11. A composite body of claim 5 , wherein the mismatched material is a metal claim 5 , superalloy claim 5 , semiconductor claim 5 , ceramic claim 5 , or an electroceramic.12. The composite body of claim 5 , wherein the amorphous mismatched material is deposited on the substrate prior to annealing which nucleates less than all of the deposited mismatched material to form an amorphous boundary layer between the substrate and the nucleated mismatched material. This application ...

Подробнее
09-05-2013 дата публикации

METHOD FOR PRODUCING LAMINATED ELECTRONIC COMPONENT, AND LAMINATED ELECTRONIC COMPONENT

Номер: US20130115411A1
Принадлежит: TDK Corporation

A method of manufacturing a laminated electronic part includes fabricating first and second laminated sheets by laminating an insulating function layer made of an unsintered ceramic material and a conductor layer, having a plurality of conductors two-dimensionally arranged in a vertical direction and in a horizontal direction to make up part of circuit components; cutting the first and second laminated sheets into sticks to create a plurality of first and second laminate sticks; fabricating a third laminated sheet by rotating the second laminate sticks by 90°, arranging the second laminate sticks to be each sandwiched between the first laminate sticks, and thermocompression bonding them for integration; singulating the third laminated sheet into chips and creating sintered bodies by sintering the unsintered chips to integrate the first laminate with the second laminate. 1. A method of manufacturing a laminated electronic part , comprising:fabricating a first laminated sheet by laminating one or more insulating function layers mainly made of an unsintered ceramic material and one or more conductor layers, each having a plurality of conductors two-dimensionally arranged in a vertical direction and in a horizontal direction, said conductors making up at least part of circuit components;fabricating a second laminated sheet by laminating one or more insulating function layers mainly made of an unsintered ceramic material and one or more conductor layers, each having a plurality of conductors two-dimensionally arranged in a vertical direction and in a horizontal direction, said conductors making up at least part of circuit components;cutting said first laminated sheet into sticks such that said sticks include a plurality of conductors arranged either in the vertical direction or in the horizontal direction, thereby creating a plurality of first laminate sticks;cutting said second laminated sheet into sticks such that said sticks include a plurality of conductors arranged ...

Подробнее
09-05-2013 дата публикации

PROCESS FOR PRODUCING A CERAMIC MATRIX COMPOSITE PART

Номер: US20130116109A1
Принадлежит:

The invention relates to a process for producing a ceramic matrix composite (CMC) part by infiltration of a suspension (S) of a ceramic powder into a fibrous reinforcement (). A suspension (S) of ceramic powder containing particles of chosen particle size, dispersed in at least one solvent, is prepared. The infiltration of the suspension is carried out in a single step in the fibrous reinforcement () positioned between a mould () and a permeable membrane (), which makes it possible to apply a vacuum (V) and to subsequently remove the solvent from the suspension through the permeable membrane (). The invention applies to the production of large-sized parts of complex shape, in particular in the field of aeronautics and aerospace engineering. 1. Process for producing a ceramic matrix composite (CMC) part by infiltration of a suspension of a ceramic powder into a fibre reinforcement , characterized in that it comprises the following steps:{'b': 42', '42', '14', '114, 'a) preparing a suspension (S) of ceramic powder containing particles () of chosen particle sizes dispersed in at least one solvent, in which the ceramic powder contains particles () having a diameter which is from 5 to 10 times smaller than the size of the voids delimited by the fibres of which the fibre reinforcement (; ) is composed, and in which the suspension has a loading rate of particles sufficient that only a single infiltration step is required;'}{'b': 14', '114', '12', '112, 'b) positioning a fibre reinforcement (; ) in a mould (; );'}{'b': 16', '116', '14', '114, 'c) positioning a permeable membrane (; ) of chosen permeability on the fibre reinforcement (; );'}{'b': 24', '124, 'd) positioning an impermeable membrane (; ), which forms a counter-mould;'}e) establishing a vacuum between the impermeable membrane and the permeable membrane;f) injecting the suspension of ceramic powder of step a) into the fibre reinforcement, the injection being carried out in a single infiltration step;g) removing ...

Подробнее
06-06-2013 дата публикации

Component, in particular for a fitting, a piece of furniture and/or a domestic appliance, method for producing a component, and a fitting, piece of furniture and/or domestic appliance

Номер: US20130142457A1
Принадлежит: Paul Hettich GmbH and Co KG

A component for one or more of a fitting, a piece of furniture, and a domestic appliance. The component includes a formed body including one or more of a hard-material-containing composite, a metal-ceramic composite, and a hard material. A method of producing the component includes providing the formed body and shaping it by thermal spraying or mechanical forming.

Подробнее
04-07-2013 дата публикации

PROCESS OF PRODUCING CERAMIC MATRIX COMPOSITES AND CERAMIC MATRIX COMPOSITES FORMED THEREBY

Номер: US20130167374A1
Принадлежит: GENERAL ELECTRIC COMPANY

A process for producing a silicon-containing CMC article. The process entails depositing one or more coating layers on silicon carbide (SiC) fibers, drawing the coated SiC fibers through a slurry to produce slurry-coated fiber material, and then processing the slurry-coated SiC fiber material to form unidirectional prepreg tapes. The tapes are stacked and then fired to yield a porous preform. The porous preform is then further densified by infiltrating the porosity therein to yield a CMC article. Infiltration can be achieved by a series of polymer infiltration and pyrolysis (PIP) steps, by melt infiltration (MI) after filling the porosity in the preform with carbon or one or more refractory metal, by chemical vapor infiltration (CVI), or by a combination of these infiltration techniques. 1. A process for producing a silicon-containing CMC article , the process comprising:depositing one or more coating layers on silicon carbide fibers;drawing the coated silicon carbide fibers through a slurry to produce slurry-coated fiber material;producing unidirectional prepreg tapes from the slurry-coated fiber material;stacking the tapes to form a preform;firing the preform to yield a porous fired preform; and thendensifying the porous fired preform by infiltrating porosity therein to yield a CMC article.2. The process of claim 1 , wherein the composition of the slurry comprises an approximately 1:1 stoichiometric mixture of elemental silicon and carbon black that react during firing of the preform at temperatures of about 1430° C. to about 1460° C.3. The process of claim 1 , wherein the composition of the slurry comprises one or more organic binders that are pyrolyzed during the firing step to form a network of carbon char.4. The process of claim 1 , wherein the composition of the slurry comprises one or more refractory materials.5. The process of claim 4 , wherein the composition of the refractory materials is chosen from the group consisting of molybdenum claim 4 , molybdenum ...

Подробнее
18-07-2013 дата публикации

CERAMIC MEMBER

Номер: US20130183503A1
Принадлежит: Sumitomo Osaka Cement Co., Ltd.

Provided is a ceramic member in which the difference in thermal expansion coefficient between an insulating ceramic material and an electrically conductive ceramic material is extremely small and therefore any mismatch caused in association with this difference in thermal expansion coefficient does not occur, and which does not undergo any failure such as breakage, cracking, detachment or destruction. The ceramic member () includes an electrically conductive ceramic material () which contains yttrium oxide as the main component and additionally contains a fibrous electrically conductive substance such as carbon nanotubes in an amount of 0.1 to 3 vol % inclusive and an insulation ceramic material () which contains yttrium oxide as the main component, wherein the electrically conductive ceramic material () and the insulation ceramic material () are adhered to each other in an integrated manner through an adhesive layer () which includes an inorganic adhesive material. 1. A ceramic member comprising a conductive ceramic including yttrium oxide as a main component and containing 0.1 volume % to 3 volume % of a fibrous conductive substance and an insulating ceramic including yttrium oxide as a main component are adhered or joined.2. The ceramic member according to claim 1 ,wherein the fibrous conductive substance is a nanofiber having an aspect ratio of 10 or more.3. The ceramic member according to claim 2 ,wherein the nanofiber is a carbon nanotube.4. The ceramic member according to claim 1 ,wherein the conductive ceramic and the insulating ceramic are adhered through an adhesive layer made of an inorganic adhesive material.5. The ceramic member according to claim 4 ,wherein thermal expansion coefficients of the conductive ceramic and the insulating ceramic and a thermal expansion coefficient of the adhesive layer are substantially matched.6. The ceramic member according to claim 1 ,wherein the conductive ceramic and the insulating ceramic are joined through heating. ...

Подробнее
18-07-2013 дата публикации

PROCESS FOR PRODUCING CERAMIC FIBER-REINFORCED COMPOSITE MATERIAL AND CERAMIC FIBER-REINFORCED COMPOSITE MATERIAL

Номер: US20130184141A1
Принадлежит: JAPAN AEROSPACE EXPLORATION AGENCY

To obtain a ceramic fiber-reinforced composite material, by melt-infiltrating a composite material substrate obtained by forming ceramic fibers into a composite with a matrix formed of an inorganic substance, with an alloy having a composition that is constituted by a disilicate of at least one or more transition metal among transition metals that belong to Group 3A, Group 4A or Group 5A of the Periodic Table and silicon as the remainder, and having the silicon content ratio of 66.7 at % or more. 1. A process for producing a ceramic fiber-reinforced composite material that is formed by infiltrating the entirety or a part of pores that are present in a composite material substrate obtained by forming ceramic fibers into a composite with a matrix formed of an inorganic substance , with an infiltrating material ,wherein the infiltrating material is an alloy having a composition that is constituted by a disilicate of at least one or more transition metal among transition metals selected from scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium and tantalum belonging to Group 3A, Group 4A or Group 5A of the Periodic Table and silicon as the remainder, has a silicon content ratio (including the silicon in the transition metal disilicate) of 66.7 at % or more, and gives a melting point that is lower than that of a single body of silicon, andthe process comprises melt-infiltrating the pores that are present in the composite material substrate with the infiltrating material under a temperature environment at a temperature equal to or more than the melting point of the alloy as the infiltrating material.2. The process for producing a ceramic fiber-reinforced composite material according to claim 1 , comprising:providing the entirety or a part of the pores that are present in the composite material substrate with free carbon prior to the melt infiltration; andreacting the alloy as the infiltrating material and the free carbon in the pores during the melt ...

Подробнее
01-08-2013 дата публикации

FORMATION OF SILICON CARBIDE-SILICON NITRIDE NANOPARTICLE CARBON COMPOSITIONS

Номер: US20130196844A1

A composition having nanoparticles of silicon carbide and a carbonaceous matrix or silicon matrix. The composition is not in the form of a powder. A composition having silicon and an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining silicon and the organic compound and heating to form silicon carbide or silicon nitride nanoparticles. 1. A composition comprising:nanoparticles of silicon carbide; and 'wherein the composition is not in the form of a powder.', 'a carbonaceous matrix or silicon matrix;'}2. The composition of claim 1 , wherein the composition comprises at least 5% by weight of the nanoparticles.3. The composition of claim 1 , wherein the composition comprises at least 99% by weight of the nanoparticles.4. The composition of claim 1 , wherein the average diameter of the nanoparticles is less than 100 nm.5. The composition of claim 1 , wherein the nanoparticles comprise α-SiC.6. The composition of claim 1 , wherein the nanoparticles comprise β-SiC.7. The composition of claim 1 , wherein the carbonaceous matrix comprises graphitic carbon claim 1 , carbon nanotubes claim 1 , or amorphous carbon.8. The composition of claim 1 , wherein the composition further comprises:nanoparticles comprising silicon nitride.9. The composition of claim 1 , wherein the composition further comprises:nanoparticles comprising silicon boron carbide.10. The composition of claim 1 , wherein the composition further comprises:fibers, carbon fibers, ceramic fibers, or metal fibers.11. The composition of claim 1 , wherein the composition contains less than 20% by volume of voids.12. An article comprising the composition of claim 1 , wherein the article is in the form of a solid claim 1 , unbroken mass having a minimum size of at least 1 mm in all dimensions.13. A composition comprising:silicon; and an organic compound having a char yield of at least 60% by weight; and', 'a thermoset made from the organic ...

Подробнее
15-08-2013 дата публикации

METHOD FOR PRODUCING SILICON CARBIDE CERAMIC AND METHOD FOR PRODUCING HONEYCOMB STRUCTURE

Номер: US20130207322A1
Принадлежит: NGK Insulators, Ltd.

Provided is a method for producing a silicon carbide ceramic easily and simply producing a silicon carbide ceramic having a small amount in resistivity change due to temperature change and being capable of generating heat by current application; and having a forming raw material preparing step of mixing two or more kinds of silicon carbide ceramic powders containing 4H—SiC silicon carbide crystals at respectively different content ratio to prepare a forming raw material; a forming step of forming the forming raw material into a formed body; and a firing step of firing the formed body to produce a silicon carbide ceramic being adjusted at a content ratio of 4H—SiC silicon carbide crystal to a desired value. 1. A method for producing a silicon carbide ceramic comprising:a forming raw material preparing step of mixing a plural kinds of silicon carbide ceramic powders containing 4H—SiC silicon carbide crystals at respectively different content ratio to prepare a forming raw material;a forming step of forming the forming raw material to form a formed body; anda firing step of firing the formed body to produce a silicon carbide ceramic being adjusted at a content ratio of 4H—SiC silicon carbide crystal to a desired value.3. A method for producing a silicon carbide ceramic according to claim 2 , wherein a difference between the content ratio of the 4H—SiC silicon carbide crystals in the silicon carbide crystals in the low 4H—SiC silicon carbide ceramic powders and the content ratio of the 4H—SiC silicon carbide crystals in the silicon carbide crystals in the high 4H—SiC silicon carbide ceramic powders is 5 to 30 mass %.4. A method for producing a silicon carbide ceramic according to claim 1 , wherein the silicon carbide ceramic to be produced contains 0.1 to 25 mass % of 4H—SiC silicon carbide crystals and 50 to 99.9 mass % of 6H—SiC silicon carbide crystals in the silicon carbide crystals.5. A method for producing a silicon carbide ceramic according to claim 1 , wherein a ...

Подробнее
22-08-2013 дата публикации

Nanotape and nanocarpet materials

Номер: US20130216811A1
Принадлежит: UNIVERSITY OF HAWAII

Provided are nanostructure-containing nanotape materials. The materials may be incorporated at the interface between two other structures to provide strength and toughness at the interface. The materials may also be applied to a standalone structure to provide strength and toughness. Also provided are related methods of fabricating the nanotape materials, as well as gas diffusion membranes and fuel cells that include nanostructured materials.

Подробнее
29-08-2013 дата публикации

CUT-OUT SINTERED CERAMIC SHEET AND METHOD OF MANUFACTURING THE SAME

Номер: US20130224499A1
Автор: Kanbe Sei, Nishi Ikuo
Принадлежит: MARUWA CO., LTD.

A method of manufacturing a cut-out sintered ceramic sheet including forming a ceramic green sheet, sintering the formed ceramic green sheet, adhering a plastic resin film onto which adhesive is applied on at least one surface of the sintered ceramic sheet, and shearing the sintered ceramic sheet. 1. A method of manufacturing a cut-out sintered ceramic sheet , comprising the steps of:providing a sintered ceramic sheet having a plastic film adhered to at least one surface thereof; andshearing the sintered ceramic sheet.2. The method of claim 1 , wherein the sintered ceramic sheet is sheared using dies.3. The method of claim 1 , wherein the plastic film extends to an end portion of a sheared edge of the sintered ceramic sheet.4. The method of claim 1 , wherein the sintered ceramic sheet is sheared between edges of upper and lower dies having a clearance between each edge from about 5-50 μm.5. The method of claim 4 , wherein the sintered ceramic sheet is sandwiched between the upper die and a second pressing module in a lower side of the upper die claim 4 , and sandwiched and fixed by the lower die juxtaposed on the second pressing module and a first pressing module opposite in an upper side of the lower die claim 4 , wherein the upper and lower dies are relatively displaced with a predetermined load.6. The method of claim 1 , wherein the sintered ceramic sheet is sheared to separate the sintered ceramic sheet into an inner area and an outer area surrounding the inner area.7. The method of claim 1 , wherein the sintered ceramic sheet is sheared to separate the sintered ceramic sheet into an inner area claim 1 , an annular area surrounding the inner area claim 1 , and an outer area surrounding the annular area.8. The method of claim 1 , wherein the sintered ceramic sheet is manufactured according to the method including the steps of:forming a ceramic green sheet;sintering the formed ceramic green sheet; andadhering the plastic film to at least one surface of the ...

Подробнее
05-09-2013 дата публикации

HEATING DEVICE

Номер: US20130228566A1
Принадлежит: NGK Insulators, Ltd.

A heating apparatus A includes a susceptor having a heating face of heating a semiconductor. The susceptor includes a plate shaped main body and a surface corrosion resistant layer including the heating face. The surface corrosion resistant layer is made of a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ=47 to 50° by CuKα X-ray. 1. A heating apparatus comprising a susceptor , said susceptor comprising a heating face of heating a semiconductor:wherein said susceptor comprises a plate shaped main body and a surface corrosion resistant layer comprising an upper face providing said heating face;wherein said surface corrosion resistant layer comprises a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components; andwherein said ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ=47 to 50° taken by using CuKα ray.2. The heating apparatus of claim 1 , said susceptor further comprising a back face covering layer covering a back face of said plate shaped main body claim 1 , said back face covering layer comprising a ceramic material comprising magnesium claim 1 , aluminum claim 1 , oxygen and nitrogen as main components claim 1 , wherein said ceramic material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ=47 to 50° taken by using CuKα ray.3. The heating apparatus of claim 1 , said susceptor further comprising a side face corrosion resistant layer covering a side face of said plate shaped main body claim 1 , said side face corrosion resistant layer comprising a ceramic material comprising magnesium claim 1 , aluminum claim 1 , oxygen and nitrogen as main components claim 1 , wherein said ceramic material comprises a main phase comprising magnesium ...

Подробнее
10-10-2013 дата публикации

METHOD FOR PRODUCING LAMINATED ELECTRONIC COMPONENT, AND LAMINATED ELECTRONIC COMPONENT

Номер: US20130266758A2
Принадлежит: TDK Corporation

A method of manufacturing a laminated electronic part includes fabricating first and second laminated sheets by laminating an insulating function layer made of an unsintered ceramic material and a conductor layer, having a plurality of conductors two-dimensionally arranged in a vertical direction and in a horizontal direction to make up part of circuit components; cutting the first and second laminated sheets into sticks to create a plurality of first and second laminate sticks; fabricating a third laminated sheet by rotating the second laminate sticks by 90°, arranging the second laminate sticks to be each sandwiched between the first laminate sticks, and thermocompression bonding them for integration; singulating the third laminated sheet into chips and creating sintered bodies by sintering the unsintered chips to integrate the first laminate with the second laminate. 1. A method of manufacturing a laminated electronic part , comprising:fabricating a first laminated sheet by laminating one or more insulating function layers mainly made of an unsintered ceramic material and one or more conductor layers, each having a plurality of conductors two-dimensionally arranged in a vertical direction and in a horizontal direction, said conductors making up at least part of circuit components;fabricating a second laminated sheet by laminating one or more insulating function layers mainly made of an unsintered ceramic material and one or more conductor layers, each having a plurality of conductors two-dimensionally arranged in a vertical direction and in a horizontal direction, said conductors making up at least part of circuit components;cutting said first laminated sheet into sticks such that said sticks include a plurality of conductors arranged either in the vertical direction or in the horizontal direction, thereby creating a plurality of first laminate sticks;cutting said second laminated sheet into sticks such that said sticks include a plurality of conductors arranged ...

Подробнее
17-10-2013 дата публикации

CERAMIC COATED ARTICLE AND PROCESS FOR APPLYING CERAMIC COATING

Номер: US20130273327A1
Принадлежит: Applied Materials, Inc.

To manufacture a ceramic article, a ceramic body comprising AlOis roughened to a roughness of approximately 140 micro-inches (μin) to 240 μin. The ceramic body is subsequently cleaned and then coated with a ceramic coating. The ceramic coating comprises a compound of YAlO(YAM) and a solid solution of Y-xZrO. The ceramic coating is then polished. 1. A method of manufacturing a ceramic article , comprising:{'sub': 2', '3, 'roughening a ceramic body comprising AlOto a roughness of approximately 140 micro-inches (μin) to approximately 240 μin;'}cleaning the ceramic body;coating the ceramic body with a ceramic coating, wherein the ceramic coating comprises a yttrium containing oxide; andmachining the ceramic coating, wherein the ceramic article comprises the ceramic body and the ceramic coating.2. The method of claim 1 , wherein the roughening is performed based on blasting the ceramic body with ceramic beads having a size range of 0.2-2 mm.3. The method of claim 1 , wherein the cleaning comprises:cleaning the ceramic body using a first ultrasonic cleaning process in a de-ionized (DI) water bath;subsequently cleaning the ceramic body using a second ultrasonic cleaning process in an acetone bath; andsubsequently cleaning the ceramic body using a third ultrasonic cleaning process in the DI water bath.4. The method of claim 1 , further comprising:performing an additional cleaning of the ceramic article after performing the polishing.5. The method of claim 1 , wherein machining the ceramic coating comprises polishing the ceramic coating claim 1 , and wherein the ceramic coating has an initial thickness of approximately 17.5-21.0 mil before performing the polishing and a final thickness of approximately 8-10 mil after performing the polishing.6. The method of claim 1 , wherein coating the ceramic body comprises:heating the ceramic body to a temperature of approximately 50° C. to 70° C.;plasma spraying the ceramic body using a plasma spray power of approximately 35 W to ...

Подробнее
31-10-2013 дата публикации

Friction discs having a structured ceramic friction layer and method of manufacturing the friction discs

Номер: US20130284558A1
Принадлежит: SGL CARBON SE

A cylindrical ring-shaped friction disc contains a support body, at least one friction layer, and in each case an intermediate layer arranged between the support body and the friction layer. The intermediate layer has mutually adjoining flat regions with different coefficients of thermal expansion. A method teaches how to produce such a friction disc, and to the use the friction disc as parts of brake and clutch systems, in particular for motor vehicles.

Подробнее
31-10-2013 дата публикации

Method of producing an internal cavity in a ceramic matrix composite

Номер: US20130285296A1
Принадлежит: General Electric Co

A process for producing an internal cavity in a CMC article and mandrels used therewith. The process entails incorporating a mandrel made of a fusible material that is melted and drained during a thermal treatment of a CMC preform to form the CMC article. The mandrel material is preferably non-wetting and non-reactive with any constituents of the CMC preform during the thermal treatment. The mandrel is preferably tin or an alloy of tin.

Подробнее
21-11-2013 дата публикации

MOUNTING MEMBER FOR POLLUTION CONTROL ELEMENT, MANUFACTURING METHOD THEREOF, AND POLLUTION CONTROL DEVICE

Номер: US20130305697A1
Автор: Sako Kenji
Принадлежит: 3M INNOVATIVE PROPERTIES COMPANY

A mounting member that can sufficiently suppress scattering of inorganic fiber material when a pollution control element is assembled in a casing, and that can maintain sufficiently high contact pressure between the inner surface of the casing and the pollution control element, even after the organic binder has combusted. The mounting member of the present invention is for wrapping and mounting a pollution control element () in a casing (), and provides a mat () made from inorganic fiber material, and an aggregated substance () containing an organic binder and inorganic fine particles that is impregnated throughout most of the mat (). 1. A mounting member for wrapping and mounting a pollution control element in a casing of a pollution control device , comprising:a needle punched mat having inorganic fiber material; andan aggregated substance containing aggregates of an organic binder and inorganic fine particles, which aggregates are impregnated throughout most of the needle punched mat,wherein the mat is impregnated with the aggregates after the mat is needle punched.2. The mounting member according to claim 1 , wherein the organic binder is acrylic latex having glass transition temperature (Tg) of 15° C. or less.3. The mounting member according to claim 1 , wherein the total content of the organic binder in the mat is in the range of greater than 0 up to and including 5% by weight.4. The mounting member according to claim 1 , wherein the inorganic particles are made using at least one material selected from the group consisting of metal-oxide claim 1 , nitride claim 1 , carbide and combinations thereof.5. The mounting member according to claim 1 , wherein the inorganic fine particles have an average particle diameter of 1 micrometer or less.6. The mounting member according to claim 1 , wherein each aggregate of the aggregated substance has an average particle diameter of 1 micrometer or more.7. A pollution control device comprising:a casing,a pollution control ...

Подробнее
12-12-2013 дата публикации

CERAMIC MULTILAYER SUBSTRATE AND MANUFACTURING METHOD THEREFOR

Номер: US20130330509A1
Автор: OTSUBO Yoshihito
Принадлежит: MURATA MANUFACTURING CO., LTD.

A ceramic multilayer substrate includes a ceramic substrate including a plurality of ceramic layers and electrodes (surface electrodes and internal electrodes) disposed on or in the ceramic layers, which are stacked on each other. A recessed portion is defined on a principal surface of any of the ceramic layers by the electrode and the surrounding ceramic layer. The electrodes (surface electrodes and internal electrodes) are buried or embedded in the ceramic layers. A peripheral portion of the surface electrode is preferably covered with a covering ceramic layer so as to prevent short-circuiting between adjacent electrodes even if surface electrodes and internal electrodes are disposed at narrow intervals and at high density. 1. (canceled)2. A ceramic multilayer substrate comprising:a ceramic substrate defined by a stack including a plurality of ceramic layers and electrodes disposed on or in the ceramic layers; whereina recessed portion is defined on a principal surface of any of the ceramic layers by one of the electrodes and a surrounding one of the ceramic layers.3. The ceramic multilayer substrate according to claim 2 , wherein another one of the ceramic layers is stacked on the ceramic layer on which the recessed portion is defined so as to provide a gap between the one of the electrodes and the surrounding one of the ceramic layers.4. The ceramic multilayer substrate according to claim 2 , wherein the one of the electrodes is buried or embedded in the surrounding one of the ceramic layers.5. The ceramic multilayer substrate according to claim 2 , wherein the recessed portion is arranged on the principal surface of the ceramic layer that defines an outermost layer of the ceramic substrate claim 2 , the electrode that defines the recessed portion is a surface electrode claim 2 , and a peripheral portion of the surface electrode is covered with a covering ceramic layer.6. A manufacturing method of a ceramic multilayer substrate including a ceramic substrate ...

Подробнее
19-12-2013 дата публикации

Alumina composite, method for manufacturing alumina composite, and polymer composition containing alumina composite

Номер: US20130338292A1
Принадлежит: Taimei Chemicals Co Ltd

For the purpose of producing an alumina composite in which the integrity between alumina and an inorganic material is further improved, a dispersion liquid preparation step, a solidification step and a burning step are performed, wherein the dispersion liquid preparation step comprises preparing a dispersion liquid in which an inorganic material such as a carbon material is homogeneously dispersed in an alumina raw material solution having an organic additive dissolved therein, the solidification step comprises drying the dispersion liquid to produce a solid raw material, and burning step comprises burning the solid raw material in a non-acidic atmosphere while contacting hydrogen chloride with the solid raw material. In this manner, an alumina composite can be produced, in which at least a portion of an inorganic material such as a carbon material is embedded in the inside of each of α-alumina single crystal particles the constitute alumina particles.

Подробнее
16-01-2014 дата публикации

POLYMERIC COMPOSITIONS CONTAINING MICROSPHERES

Номер: US20140014874A1

Disclosed herein is a composition having a thermoset polymer and a plurality of hollow microsphere homogenously dispersed in the composition. The polymer is a cyanate ester thermoset, a phthalonitrile thermoset, a crosslinked acetylene thermoset, or a hydrosilation thermoset. Also disclosed herein is a method of: providing a thermosetting compound; adding microspheres to the thermosetting compound; and mixing the thermosetting compound while initiating crosslinking of the thermosetting compound. 1. A composition comprising:a cyanate ester thermoset; anda plurality of hollow microspheres homogenously dispersed in the composition.3. The composition of claim 1 , wherein the composition comprises from about 1 wt % to about 35 wt % of the microspheres.4. The composition of claim 1 , wherein the microspheres comprise silica.5. The composition of claim 1 , wherein the composition has a char yield at 1000° C. under nitrogen of at least about 60%.6. A ceramic composition having a density less than 1 g/mL claim 1 , made by heating the composition of to a temperature of at least about 500° C. in an oxidizing atmosphere.7. A method comprising:providing a cyanate ester compound;adding microspheres to the cyanate ester compound; andmixing the cyanate ester compound while initiating crosslinking of the cyanate ester compound.9. The method of claim 7 , wherein from about 1 wt % to about 35 wt % of the microspheres are used.10. The method of claim 7 , wherein the microspheres comprise silica.11. A method comprising:{'claim-ref': {'@idref': 'CLM-00007', 'claim 7'}, 'heating the product of the method of to a temperature of at least about 500° C. in an oxidizing atmosphere.'}12. A composition comprising:a cyanate ester compound; anda plurality of hollow microspheres.14. The composition of claim 12 , wherein the composition comprises from about 1 wt % to about 35 wt % of the microspheres.15. The composition of claim 12 , wherein the microspheres comprise silica. This application is a ...

Подробнее
27-02-2014 дата публикации

COMPOSITE LAMINATE CERAMIC ELECTRONIC COMPONENT

Номер: US20140057087A1
Принадлежит: MURATA MANUFACTURING CO., LTD.

A composite laminate ceramic electronic component that includes co-fired low dielectric constant ceramic layers and high dielectric constant ceramic layers. The low dielectric constant ceramic layers and high dielectric constant ceramic layers are each composed of a glass ceramic containing: a first ceramic composed of at least one of MgAlOand MgSiO; a second ceramic composed of BaO, REO(RE is a rare-earth element), and TiO; glass containing each of 44.0 to 69.0% by weight of RO (R is an alkaline-earth metal), 14.2 to 30.0% by weight of SiO, 10.0 to 20.0% by weight of BO, 0.5 to 4.0% by weight of AlO, 0.3 to 7.5% by weight of LiO, and 0.1 to 5.5% by weight of MgO; and MnO. The content ratios of the glass, etc. are varied between the low dielectric constant ceramic layers and the high dielectric constant ceramic layers. 1. A composite laminate ceramic electronic component comprising:a first ceramic layer; anda second ceramic layer adjacent the first ceramic layer, wherein the first ceramic layer has a lower dielectric constant than that of the second ceramic layer,wherein the first ceramic layer and the second ceramic layer each comprise a glass ceramic containing:{'sub': 2', '4', '2', '4, '(1) a first ceramic comprising at least one of MgAlOand MgSiO;'}{'sub': 2', '3', '2, '(2) a second ceramic comprising BaO, REO, and TiO;'}{'sub': 2', '2', '3', '2', '3', '2, '(3) glass containing each of 44.0 to 69.0% by weight of RO, 14.2 to 30.0% by weight of SiO, 10.0 to 20.0% by weight of BO, 0.5 to 4.0% by weight of AlO, 0.3 to 7.5% by weight of LiO, and 0.1 to 5.5% by weight of MgO; and'}(4) MnO,wherein RE is a rare-earth element, and R is at least one alkaline-earth metal selected from Ba, Ca, and Sr, contains 47.55 to 69.32% by weight of the first ceramic;', 'contains 6 to 20% by weight of the glass;', 'contains 7.5 to 18.5% by weight of the MnO; and', {'sub': 2', '3', '2, 'contains, as the second ceramic, each of 0.38 to 1.43% by weight of BaO, 1.33 to 9.5% by weight of ...

Подробнее
06-03-2014 дата публикации

BONDED COMPACT AND METHOD OF PRODUCING GREEN BONDED COMPACT

Номер: US20140065375A1
Принадлежит: NGK Insulators, Ltd.

Provided is a method of producing “a ceramic green bonded compact in which a ceramic green film is bonded on each bonding surface of a ceramic green substrate having hole portions,” the method imparting good adhesiveness to a thin green film while suppressing the green substrate from having deformation. In this method, first, a layer of a paste for bonding is formed on each bonding surface of green sheets prepared. Next, each bonding surface of the green sheets on which the paste layer is formed is brought into contact, in a state in which the paste layer is wet, with each bonding surface of a porous ceramic green substrate prepared. While this state is maintained, pores in the green substrate absorb a dispersion medium in the paste layer in the wet state. As a result, the paste layer is dried, thereby completely bonding the green substrate and the green sheets. 1. A bonded compact which is a fired compact , comprising:a plate-like substrate having hole portions and being formed of an inorganic material; anda film, which is bonded on each bonding surface of the substrate, and has a thinner thickness than that of the substrate, the film being formed of an inorganic material having one of a different composition and a different microstructure from that of the substrate,wherein a ratio (T1/L1) of a thickness (T1) of a thinnest portion of the substrate to a maximum length (L1) in a cross-sectional shape of each of the hole portions in the substrate is 0.04 or more and 0.69 or less.2. A bonded compact according to claim 1 , wherein the film is formed of a dense inorganic material having a smaller porosity than that of the substrate.3. A bonded compact according to claim 1 , wherein:the bonding surface of the substrate has a part on which the film is formed and a part on which no film is formed; anda ratio (TB′/TB) of a thickness (TB′) of an edge portion of the film*, the edge portion corresponding to a boundary between the part on which the film is formed and the part on ...

Подробнее
20-03-2014 дата публикации

Spinel Ceramics Via Edge Bonding

Номер: US20140079909A1

A spinel ceramic made from the process comprising the steps of polishing one edge of a first spinel part to a surface roughness of less than 1 nm, polishing one edge of a second spinel part to a surface roughness of less than 1 nm, joining the polished edge of the first spinel part to the polished edge of the second spinel part, heating the first and second spinel parts to about 1000-1200° C., and maintaining said heating for about 3-6 hours resulting in bonded spinel parts. 1. A spinel ceramic made from the process comprising the steps of:polishing one edge of a first spinel part to a surface roughness of less than 1 nm;polishing one edge of a second spinel part to a surface roughness of less than 1 nm;joining the polished edge of the first spinel part to the polished edge of the second spinel part;heating the first and second spinel parts to about 1000-1200° C.; andmaintaining said heating for about 3-6 hours resulting in bonded spinel parts.2. The spinel ceramic of wherein the bonded spinel parts form a spinel ogive dome.3. The spinel ceramic of wherein the spinel ogive dome is a monolithic part with an almost invisible bondline.4. The spinel ceramic of wherein said spinel ceramic comprises a monolithic spinel ogive dome with a nearly invisible bondline wherein said spinel (MgAlO) is a rugged claim 1 , hard and strong ceramic material which transmits from the UV to the infrared in the range of from about 0.2 to about 5 μm.5. A spinel ceramic made from the process comprising the steps of:polishing a first edge of a first spinel transparent tile, having dimensions of about 3″×3″×½″ thick, wherein said polishing results in less than 1 nm surface roughness;polishing a first edge of a second spinel transparent tile, having dimensions of about 3″×3″×½″ thick, wherein said polishing results in less than 1 nm surface roughness;joining the polished edges;applying a load to the tiles;heating the tiles up to 1100° C. at 5° C./min and holding for 6 hours; andcooling slowly ...

Подробнее
10-04-2014 дата публикации

Ceramic matrix composite, method of making a ceramic matrix composite, and a pre-preg composite ply

Номер: US20140099484A1
Принадлежит: General Electric Co

A composite, method of making the composite and a pre-pre composite ply are provided. The composite includes a first layer, a second layer and a third layer. The first layer includes at least one ply of unidirectional tape. The second layer is adjacent the first layer and includes at least one composite ply. The at least one composite ply includes a thin continuous matrix ply sheet having a plurality of randomly oriented unidirectional tape segments thereon. The third layer is adjacent the second layer and includes at least one ply of unidirectional tape. The ceramic matrix composite provides about 15% to about 20% strength relative to a composite comprising all unidirectional plies and the ceramic matrix composite has a bending length of 3 cm to 25 cm based on a Shirley stiffness test.

Подробнее
01-01-2015 дата публикации

PROCESS KIT FOR EDGE CRITICAL DIMENSION UNIFORMITY CONTROL

Номер: US20150001180A1
Принадлежит: Applied Materials, Inc.

A tunable ring assembly, a plasma processing chamber having a tunable ring assembly and method for tuning a plasma process is provided. In one embodiment, a tunable ring assembly includes an outer ceramic ring having an exposed top surface and a bottom surface and an inner silicon ring configured to mate with the outer ceramic ring to define an overlap region, the inner silicon ring having an inner surface, a top surface and a notch formed between the inner surface and the top surface, the inner surface defining an inner diameter of the ring assembly, the notch is sized to accept an edge of a substrate, an outer portion of the top surface of the inner silicon ring configured to contact in the overlap region and underlying an inner portion of the bottom surface of the outer ceramic ring.

Подробнее
06-01-2022 дата публикации

PROCESS FOR OBTAINING COMPOSITE, ULTRA-REFRACTORY, FIBRE-REINFORCED CERAMIC MATERIALS

Номер: US20220002208A1
Принадлежит: CONSIGLIO NAZIONALE DELLE RICERCHE

The present invention relates to a process for preparing a composite, ultra-refractory, fibre-reinforced ceramic material obtained through the infiltration of carbon and/or silicon carbide fibres with a ceramic suspension comprising yttrium, lanthanum and/or scandium compounds, and the subsequent densification of the composite. The fibre-reinforced UHTC compounds obtained by the process can be used for making items intended for use in extreme temperature and pressure conditions. 1. A process for preparing a composite , ultra-refractory , fibre-reinforced ceramic material comprising:(i) infiltrating a plurality of fibres selected from carbon fibres, silicon carbide fibres and combinations thereof, with a ceramic suspension, thereby obtaining an infiltrated composite material, and drying the infiltrated composite material, wherein the ceramic suspension comprises:(A) a mixture of solid ceramic phases comprising:{'sub': 2', '2', '2', '2', '2, '(a) an amount greater than or equal to 55 vol. % of an ultra-refractory ceramic component selected from the group consisting of ZrB, HfB, TaB, TiB, NbB, ZrC, HfC, TiC, NbC, TaC and mixtures thereof;'}(b) 0-30 vol. % of SiC;(c) 0.1-15 vol. % of at least one compound selected from the group consisting of scandium, yttrium, lanthanum compounds and mixtures thereof; and(B) a dispersant selected from the group consisting of water, organic solvents, liquid organic precursors of SiC, liquid organic precursors of carbon and mixtures thereof;(ii) consolidating the dried composite material at a temperature comprised in the range 1700°-2000° C.2. The process according to claim 1 , wherein the fibres are carbon fibres.3. The process according to claim 1 , wherein the ceramic suspension comprises:(A) a mixture of solid ceramic phases comprising:{'sub': 2', '2', '2', '2', '2, '(a) 55-96 vol. %, of an ultra-refractory ceramic component selected from the group consisting of ZrB, HfB, TaB, TiB, NbB, ZrC, HfC, TiC, NbC, TaC and mixtures thereof ...

Подробнее
02-01-2020 дата публикации

Method for the production of a part made from a composite material

Номер: US20200001504A1
Принадлежит: Safran Ceramics SA

A method of fabricating a composite part, includes forming a fiber preform for the part that is to be obtained by depositing a plurality of fiber structures impregnated with a thermoplastic polymer onto a surface, with deposition being performed by automated fiber placement; eliminating the thermoplastic polymer present in the preform by dissolution with a solvent; and injecting a liquid impregnation composition into the pores of the fiber preform after eliminating the thermoplastic polymer in order to form a matrix in the pores of the fiber preform.

Подробнее
05-01-2017 дата публикации

REFRACTORY METAL BORIDE CERAMICS AND METHODS OF MAKING THEREOF

Номер: US20170001914A1

A composition having nanoparticles of a refractory-metal boride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component, boron, and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles, boron, and an organic compound having a char yield of at least 60% by weight to form a precursor mixture. A composition having nanoparticles of a refractory-metal boride that is not in the form of a powder. 1. A composition comprising: nanoparticles or particles of a refractory metal; and', 'a refractory-metal compound capable of decomposing into refractory-metal particles;, 'a metal component selected fromelemental boron; and an organic compound having a char yield of at least 60% by weight; and', 'a thermoset made from the organic compound., 'an organic component selected from2. The composition of claim 1 , wherein the refractory metal is titanium.3. The composition of claim 1 , wherein the refractory metal is a group IV-VI transition metal claim 1 , zirconium claim 1 , hafnium claim 1 , tungsten claim 1 , niobium claim 1 , molybdenum claim 1 , chromium claim 1 , tantalum claim 1 , or vanadium.4. The composition of claim 1 , wherein the metal component isa salt, a hydride, a carbonyl compound, or a halide of the refractory metal;particles of the refractory metal, tungsten powder or tantalum powder; ortitanium hydride, zirconium hydride, or hafnium hydride.5. The composition of claim 1 , wherein the organic compound:contains only carbon and hydrogen;contains aromatic and acetylene groups;contains only ...

Подробнее
05-01-2017 дата публикации

HIGH DENSITY CARBON-CARBON FRICTION MATERIALS

Номер: US20170001917A1
Принадлежит:

A method for making a carbon-carbon composite brake disc by infiltrating a porous carbon preform with a resin and carbonizing the resin-infiltrated preform at a high pressure of at least about 5,000 psi to form a densified carbon-carbon composite disc brake with a final density of at least about 1.9 g/cc. The porous carbon preform includes a plurality of fabric sheets having non-woven oxidized polyacrylonitrile fibers, pitch fibers, or rayon fibers and a basis weight in the range from about 1250 to about 3000 grams per square meter. The fabric sheets are needled together. The porous carbon preform is infiltrated with resin, which includes at least one of an isotropic resin or a mesophase resin. 1. A method for making a carbon-carbon composite brake disc , comprising: a plurality of fabric sheets comprising non-woven fibers selected from the group consisting of oxidized polyacrylonitrile fibers, pitch fibers, or rayon fibers, wherein each fabric sheet of the plurality of fabric sheets has a basis weight in the range from about 1250 to about 3000 grams per square meter, and', 'needling fibers selected from the group consisting of oxidized polyacrylonitrile fibers, pitch fibers, or rayon fibers, wherein the needling fibers join together the plurality of fabric sheets;, '(i) infiltrating a porous carbon preform with a resin to form a resin-infiltrated preform, wherein the resin comprises at least one of an isotropic resin or a mesophase resin, and wherein the porous carbon preform is derived from(ii) carbonizing the resin-infiltrated preform at a pressure of at least about 5,000 psi to form a densified carbon-carbon composite disc brake; and(iii) repeating steps (i)-(ii) until the densified carbon-carbon composite disc brake has a density of at least about 1.9 g/cc.2. The method of claim 1 , wherein the resin-infiltrated preform is not subjected to a resin-stabilization cycle prior to carbonizing the resin-infiltrated preform.3. The method of claim 1 , wherein ...

Подробнее
04-01-2018 дата публикации

CERAMIC MATRIX COMPOSITE ARTICLES HAVING DIFFERENT LOCALIZED PROPERTIES AND METHODS FOR FORMING SAME

Номер: US20180002238A1
Принадлежит: GENERAL ELECTRIC COMPANY

Ceramic matrix composite articles include, for example a first plurality of plies of ceramic fibers in a ceramic matrix defining a first extent, and a local at least one second ply in said ceramic matrix defining a second extent on and/or in said first plurality of plies with the second extent being less than said first extent. The first plurality of plies has a first property, the at least one second ply has at least one second property, and said first property being different from said at least one second property. The different properties may include one or more different mechanical (stress/strain) properties, one or more different thermal conductivity properties, one or more different electrical conductivity properties, one or more different other properties, and combinations thereof. 1. A method for use in forming a ceramic matrix composite article , the method comprising:laying up a first plurality of plies comprising ceramic fibers defining a first extent;laying up at least one second ply defining a second extent on and/or in the layup of the first plurality of plies, the second extent being less than the first extent; andwherein the first plurality of plies comprises a first property, the at least one second ply comprises at least one second property, and the first property being different from the at least one second property.2. The method of wherein the laying up the at least one second ply comprises laying up the at least one second ply comprising ceramic fibers.3. The method of wherein the laying up the at least one second ply comprises laying up a plurality second plies claim 1 , and wherein the plurality of second plies comprises a plurality of second properties different from the first property.4. The method of wherein the first property comprises a first fiber volume fraction claim 1 , the at least one second property comprises at least one second fiber volume fraction claim 1 , and the first fiber volume fraction being different from the at least ...

Подробнее
02-01-2020 дата публикации

LIGHT-TRANSMITTING CERAMIC SINTERED BODY AND METHOD FOR PRODUCING SAME

Номер: US20200002231A1
Принадлежит: AGC Inc.

The present invention relates to a light-transmitting ceramic sintered body which contains air voids having pore diameters of 1 μm or more but less than 5 μm at a density within the range of from 10 voids/mmto 4,000 voids/mm(inclusive), while having a closed porosity of from 0.01% by volume to 1.05% by volume (inclusive). With respect to this light-transmitting ceramic sintered body, a test piece having a thickness of 1.90 mm has an average transmittance of 70% or more in the visible spectrum wavelength range of 500-900 nm, and the test piece having a thickness of 1.90 mm has a sharpness of 60% or more at a comb width of 0.5 mm. 1. A light-transmitting ceramic sintered body containing air bubbles each having a pore size of 1 μm or more and less than 5 μm in an amount of 10 bubbles/mmor more and 4 ,000 bubbles/mmor less , and having a closed porosity of 0.01 vol % or more and 1.05 vol % or less; andhaving an average transmittance of a test specimen of the light-transmitting ceramic sintered body having a thickness of 1.90 mm of 70% or more with respect to a visible spectrum with a wavelength of 500 to 900 nm, and a clarity in a comb width of 0.5 mm of a test specimen of the light-transmitting ceramic sintered body having a thickness of 1.90 mm of 60% or more.2. A light-transmitting ceramic sintered body containing air bubbles each having a pore size of 1 μm or more and less than 5 μm in an amount of 10 bubbles/mmor more and 4 ,000 bubbles/mmor less , and having a closed porosity of 0.01 vol % or more and 1.05 vol % or less; andhaving an average transmittance of a test specimen of the light-transmitting ceramic sintered body having a thickness of 0.80 mm of 74% or more with respect to a visible spectrum with a wavelength of 500 to 900 nm, and a clarity in a comb width of 0.5 mm of a test specimen of the light-transmitting ceramic sintered body having a thickness of 0.80 mm of 75% or more.3. A light-transmitting ceramic sintered body containing air bubbles each having ...

Подробнее
03-01-2019 дата публикации

METHOD AND APPARATUS FOR PRODUCING A REINFORCEMENT MESH

Номер: US20190002345A1
Принадлежит:

A method and an apparatus for producing a reinforcement mesh. Here, a reinforcement fiber strand is firstly saturated with a resin (H) and cured to form a cured, fiber-reinforced strand material. The strand material present as an endless material is then cut lengthwise into bars, which are then used as longitudinal bars or transverse bars for forming the reinforcement mesh. A connecting material is used at each intersection point between a longitudinal bar and a transverse bar and is dispensed in liquid form at the intersection point or is liquefied and then cured at the intersection point. A fixed connection is thus created between the longitudinal bars and the transverse bars at the intersection points. Between the intersection points, the longitudinal bars and the transverse bars have portions that are free of connecting material. 145. A method for producing a reinforcement mesh () , the method comprising:{'b': 29', '31', '30, 'feeding a reinforcement fiber strand () to a saturation station () via a conveying device (),'}{'b': '29', 'saturating the reinforcement fiber strand () with a resin (H),'}{'b': 29', '36, 'stripping an excess resin amount of the resin (H) from the saturated reinforcement fiber strand () in a stripping station (),'}{'b': 38', '37', '38, 'forming an uncured fiber-reinforced strand material () or curing the resin (H) in a curing station () to form a cured fiber-reinforced strand material (),'}{'b': 26', '38', '40, 'producing bars () by cutting the fiber-reinforced strand material () to a length in a cutting station (),'}{'b': 26', '46', '48, 'depositing a plurality of the bars () side-by-side as longitudinal bars () using a manipulator device (),'}{'b': 26', '47', '46', '48, 'depositing another plurality of the bars () as transverse bars () on the longitudinal bars () using the manipulator device (),'}{'b': 47', '46', '64, 'connecting the transverse bars () and the longitudinal bars () at intersection points () thereof by{'b': 64', '46', '47 ...

Подробнее
03-01-2019 дата публикации

Monolithic base and production method therefor

Номер: US20190002350A1
Принадлежит: NGK Insulators Ltd

The monolithic base is a porous alumina body that includes pores and that is configured by alumina particles as an aggregate and an oxide phase as a binding material. The alumina particles include microscopic alumina particles having a particle diameter of greater than or equal to 0.5 μm and less than or equal to 5 μm and coarse alumina particles having a particle diameter of greater than 5 μm. The number of microscopic alumina particles that are encapsulated in the oxide phase is greater than or equal to 50% of the total number of microscopic alumina particles and coarse alumina particles.

Подробнее
03-01-2019 дата публикации

METHOD FOR PRODUCING A SILICON CARBIDE SHAPED BODY

Номер: US20190002352A1
Принадлежит: Evonik Degsussa GmbH

The invention relates to a method for producing a shaped body that contains at least 85 vol. % crystalline silicon carbide and at most 15 vol. % silicon, comprising the following steps: a) providing a powdered mixture that contains at least 60 vol. % amorphous silicon carbide and at most 40 vol. % silicon having a crystallite size of 3-50 nm; b) shaping the mixture by b1) hot pressing, or b2) compacting at room temperature and subsequent sintering or hot pressing, wherein the sintering or hot pressing is carried out in an inert gas or vacuum at a temperature of at least 1400° C. The volume ratio SiC:Si in the powdered mixture is 95:5-99:1. 1. A process for producing a shaped body , the method comprising the steps of:a) providing a pulverulent mixture comprising at least 60% by volume of amorphous silicon carbide and not more than 40% by volume of silicon having a crystallite size of from 3 to 50 nm, andb) shaping the pulverulent mixture by either b1) hot pressing or b2) compacting at room temperature and subsequent sintering or hot pressing,wherein the shaped body comprise at least 85% by volume of crystalline silicon carbide and not more than 15% by volume of silicon, andthe sintering or hot pressing is carried out under inert gas or reduced pressure at a temperature of at least 1400° C.2. The process of claim 1 ,wherein the pulverulent mixture comprises at least 90% by volume of amorphous silicon carbide and not more than 10% by volume of silicon.3. The process of claim 1 ,wherein the temperature is from 1900 to 2100° C.4. The process of claim 1 , wherein a volume ratio of SiC:Si in the pulverulent mixture is from 95:5 to 99:1 and the temperature is from 2000 to 2100° C.5. The process claim 1 ,wherein the pulverulent mixture consists to an extent of at least total 98% by weight of amorphous silicon carbide and silicon.6. The process of claim 1 ,wherein no sintering aids are used.7. The process of claim 1 , wherein a BET surface area of the pulverulent mixture is ...

Подробнее
05-01-2017 дата публикации

METHOD FOR FABRICATING A CERAMIC MATERIAL

Номер: US20170002249A1
Принадлежит:

A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure. 1. A method for fabricating a ceramic material , the method comprising:infiltrating a porous structure with a mixture that includes a preceramic material and a filler, the filler including at least one free metal;rigidizing the preceramic material to form a green body; andthermally treating the green body to convert the rigidized preceramic material into a ceramic matrix within pores of the porous structure, wherein the thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or residual open pores of the porous structure.2. The method as recited in claim 1 , wherein the porous structure comprises a fibrous structure.3. The method as recited in claim 1 , wherein the at least one free metal comprises silicon.4. The method as recited in claim 1 , wherein the at least one free metal is selected from a group consisting of boron claim 1 , titanium claim 1 , vanadium claim 1 , chromium claim 1 , zirconium claim 1 , niobium claim 1 , molybdenum claim 1 , ruthenium claim 1 , rhodium claim 1 , hafnium claim 1 , tantalum claim 1 , tungsten claim 1 , rhenium claim 1 , osmium claim 1 , iridium and combinations thereof.5. The method as recited in claim 1 , wherein the filler includes ceramic particles coated with the at least one free metal.6. The method as ...

Подробнее
07-01-2016 дата публикации

Method for the production of a curved ceramic sound attenuation panel

Номер: US20160003106A1
Принадлежит: Herakles SA

A method of fabricating a sound attenuation panel of curved shape, the method including impregnating a fiber structure defining a cellular structure with a ceramic precursor resin; polymerizing the ceramic precursor resin while holding the fiber structure on tooling presenting a curved shape corresponding to the final shape of the cellular structure; docking the cellular structure with first and second skins, each formed by a fiber structure impregnated with a ceramic precursor resin, each skin being docked to the cellular structure before or after polymerizing the resin of the skins; pyrolyzing the assembly constituted by the cellular structure and the first and second skins; and densifying the assembly by chemical vapor infiltration.

Подробнее
12-01-2017 дата публикации

TURBINE STATOR VANE OF CERAMIC MATRIX COMPOSITE

Номер: US20170009593A1
Автор: WATANABE Fumiaki
Принадлежит: IHI CORPORATION

A stator vane is comprised of: an airfoil section elongated in a radial direction relative to an axis; an outer band section continuous to an outer end of the airfoil section and bent in a circumferential direction relative to the axis; a first hook section continuous to a leading end in the axial direction of the outer band section and bent outward in the radial direction; a second hook section continuous to a trailing end in the axial direction of the outer band section and bent outward in the radial direction; an inner band section continuous to an inner end of the airfoil section and bent in the circumferential direction; a flange section continuous to an end in the axial direction of the inner band section and bent inward in the radial direction; and a reinforcement fiber fabric continuous throughout these sections and unitized with a ceramic. 1. A stator vane arranged around an axis to form a turbine nozzle , comprising:an airfoil section elongated in a radial direction relative to the axis;an outer band section continuous to an outer end of the airfoil section and bent in a circumferential direction relative to the axis;a first hook section continuous to a leading end in the axial direction of the outer band section and bent outward in the radial direction;a second hook section continuous to a trailing end in the axial direction of the outer band section and bent outward in the radial direction;an inner band section continuous to an inner end of the airfoil section and bent in the circumferential direction;a flange section continuous to an end in the axial direction of the inner band section and bent inward in the radial direction; anda reinforcement fiber fabric continuous throughout the airfoil section, the outer band section, the first hook section, the second hook section, the inner band section and the flange section and unitized with a ceramic.2. The stator vane of claim 1 , further comprising:a cutout ranging from a leading edge in the axial direction ...

Подробнее
12-01-2017 дата публикации

Manufacturing of single or multiple panels

Номер: US20170009600A1
Принадлежит: Ansaldo Energia IP UK Ltd

A method of manufacturing of a structured cooling panel includes cutting of desized 2D ceramic into tissues; slurry infiltration in the tissues by at least one knife blade coating method; laminating the tissues in a multi-layer panel, with slurry impregnation after each layer, wherein the tissue has combined fibres and/or pre-build cooling holes; drying; de-moulding; sintering the multi-layer panel, wherein part of the combined fibres burns out during the sintering process leaving a negative architecture forming the cooling structure and/or the pre-build cooling holes define the cooling structure; finishing, using of i) post-machine, and/or ii) surface smoothening/rework, and/or iii) coating application, and/or other procedures.

Подробнее
17-01-2019 дата публикации

CERAMIC MATRIX COMPOSITE MANUFACTURING

Номер: US20190017704A1
Принадлежит: GOODRICH CORPORATION

A method of manufacturing a ceramic matrix composite component may include introducing a gaseous precursor into an inlet portion of a chamber that houses a porous preform and introducing a gaseous mitigation agent into an outlet portion of the chamber that is downstream of the inlet portion of the chamber. The gaseous precursor may include methyltrichlorosilane (MTS) and the gaseous mitigation agent may include hydrogen gas. The introduction of the gaseous precursor may result in densification of the porous preform(s) and the introduction of the gaseous mitigation agent may shift the reaction equilibrium to disfavor the formation of harmful and/or pyrophoric byproduct deposits, which can accumulate in an exhaust conduit of the system. 1. A method of manufacturing a ceramic matrix composite component , the method comprising:introducing a gaseous precursor into an inlet portion of a chamber that houses a porous preform; andintroducing a gaseous mitigation agent into an outlet portion of the chamber that is downstream of the inlet portion of the chamber.2. The method of claim 1 , wherein the gaseous precursor comprises methyltrichlorosilane (MTS).3. The method of claim 2 , wherein the gaseous mitigation agent comprises hydrogen gas.4. The method of claim 3 , wherein introducing the gaseous precursor is performed at a first molar flow rate and introducing the gaseous mitigation agent is performed at a second molar flow rate that is greater than the first molar flow rate.5. The method of claim 4 , wherein the second molar flow rate is between 50% and 300% higher than the first molar flow rate.6. The method of claim 4 , wherein the second molar flow rate is between 100% and 200% higher than the first molar flow rate.7. The method of claim 3 , wherein the gaseous precursor also comprises hydrogen gas.8. The method of claim 7 , wherein the methyltrichlorosilane comprises about 5% of the gaseous precursor.9. The method of claim 1 , wherein the gaseous mitigation agent ...

Подробнее
17-01-2019 дата публикации

ELECTROSTATIC CHUCK DEVICE AND METHOD FOR MANUFACTURING ELECTROSTATIC CHUCK DEVICE

Номер: US20190019713A1
Принадлежит:

An electrostatic chuck device includes: a base having one principal surface which is a placing surface on which a plate-shaped sample is placed, wherein the base is made from a sintered compact of ceramic particles, which include silicon carbide particles and aluminum oxide particles, as a forming material; and an electrostatic attraction electrode which is provided on a surface of the base on the side opposite to the placing surface of the base, or in the interior of the base, in which the volume resistivity value of the sintered compact is 0.5×10Ωcm or more in the entire range from 24° C. to 300° C., a graph which shows the relationship of the volume resistivity value of the sintered compact to a temperature at which the volume resistivity value of the sintered compact is measured has a maximum value in the range from 24° C. to 300° C., and the amount of metal impurities in the sintered compact other than aluminum and silicon in the sintered compact is 100 ppm or less. 1. An electrostatic chuck device comprising:a base having one principal surface which is a placing surface on which a plate-shaped sample is placed, wherein the base is made from a sintered compact of ceramic particles, which include silicon carbide particles and aluminum oxide particles, as a forming material; andan electrostatic attraction electrode which is provided on a surface of the base on the side opposite to the placing surface of the base, or in an interior of the base,{'sup': '15', 'wherein a volume resistivity value of the sintered compact is 0.5×10Ωcm or more in an entire range from 24° C. to 300° C.,'}a graph which shows a relationship of the volume resistivity value of the sintered compact to a temperature at which the volume resistivity value of the sintered compact is measured has a maximum value in the range from 24° C. to 300° C., andthe amount of metal impurities in the sintered compact other than aluminum and silicon is 100 ppm or less.2. The electrostatic chuck device according ...

Подробнее
24-04-2014 дата публикации

Composite materials and methods for making same

Номер: US20140109756A1
Принадлежит:

A siliconized boron carbide composite material is made by infiltrating molten silicon metal into a porous mass including boron carbide. The porous mass contains little or no reactable carbon. The infiltration is designed and intended such that the infiltrant is substantially non-reactive with the constituents of the porous mass. The composite body so formed contains boron carbide and silicon metal, but substantially no silicon carbide formed in-situ from a reaction of the silicon metal with a carbon source. Such siliconized boron carbide composite materials have utility in armor applications. 1. A composite material , comprising:a matrix component comprising silicon metal having dissolved therein at least one substance comprising boron;a reinforcement component comprising boron carbide, said reinforcement component dispersed throughout said matrix, said boron carbide being unaffected by said matrix component; andsaid composite material containing no beta-SiC.2. The composite material of claim 1 , wherein said silicon metal further has dissolved therein at least one substance comprising carbon.3. The composite material of claim 1 , wherein said reinforcement component comprises a morphology selected from the group consisting of fibers claim 1 , particulates claim 1 , platelets claim 1 , flakes claim 1 , microspheres claim 1 , and aggregate.4. The composite material of claim 1 , comprising no more than about 30 percent by volume of said matrix component.5. The composite material of claim 1 , wherein said boron carbide makes up at least 65 percent by volume of said composite material.6. The composite material of claim 1 , wherein said boron carbide is provided as particles.7. The composite material of claim 1 , wherein said reinforcement component comprises a plurality of grains of at least one filler material claim 1 , and wherein at least 90 volume percent of said filler material grains are smaller than about 55 microns in diameter.8. A component of a ballistic armor ...

Подробнее
29-01-2015 дата публикации

DIAMOND COMPOSITE AND A METHOD OF MAKING A DIAMOND COMPOSITE

Номер: US20150027065A1
Принадлежит:

The present invention relates to a diamond composite comprising diamond particles embedded in a binder matrix comprising SiC and a MAX-phase, where no diamond-to-diamond bonding are present. For the MAX-phase n=1-3, M is one or more elements selected from the group Sc, Ti, Zr, Hf, V, Nb, Ta, Cr and Mo, A is one or more elements selected from the group Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, and Pb and X is carbon and/or nitrogen. 1. A diamond composite comprising diamond particles embedded in a binder matrix comprising SiC and a Mn+1AXn-phase , where n=1-3 , M is one or more elements selected from the group Sc , Ti , Zr , Hf , V , Nb , Ta , Cr , and Mo , A is one or more elements selected from the group Al , Si , P , S , Ga , Ge , As , Cd , In , Sn , Tl , and Pb and X is carbon and/or nitrogen , wherein no diamond-to-diamond bonding is present.2. A diamond composite according to claim 1 , wherein the diamond particles constitute between 20 to 90 vol % of the total volume.3. A diamond composite according to claim 1 , wherein the amount of SiC in the binder is 1 to 55 vol % of the total volume.4. A diamond composite according to claim 1 , wherein the amount of Mn+1AXn-phase is 1 to 50 vol % of the total volume.5. A diamond composite according to claim 1 , wherein for the Mn+1AXn-phase claim 1 , n=1 and A is Si and/or Al.6. A diamond composite according to claim 1 , wherein for the Mn+1AXn-phase claim 1 , n=2 claim 1 , X is carbon and A is Si and/or Al.7. A diamond composite according to claim 1 , wherein for the Mn+1AXn-phase claim 1 , n=3 and A is Si and/or Al.8. A method of making a diamond composite comprising the steps of:providing diamond particles embedded in a binder matrix comprising SiC and a Mn+1AXn-phase, where n=1-3, M is one or more elements selected from the group Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, and Mo, A is one or more elements selected from the group Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, and Pb and X is carbon and/or nitrogen , wherein no diamond- ...

Подробнее
23-01-2020 дата публикации

Method of forming in-situ boron nitride for ceramic matrix composite environmental protection

Номер: US20200024197A1
Принадлежит: United Technologies Corp

A method for forming in situ a boron nitride reaction product locally on a reinforcement phase of a ceramic matrix composite material includes the steps of providing a ceramic matrix composite material having a fiber reinforcement material; and forming in situ a layer of boron nitride on the fiber reinforcement material.

Подробнее
28-01-2021 дата публикации

METHOD OF FORMING A BARRIER LAYER ON A CERAMIC MATRIX COMPOSITE

Номер: US20210024426A1

A method of forming a barrier layer on a ceramic matrix composite (CMC) is described. The method includes forming a particulate surface layer comprising silicon particles on an outer surface of a fiber preform. The particulate surface layer is nitrided to convert the silicon particles to silicon nitride particles. After the nitriding, the fiber preform and the particulate surface layer are infiltrated with a molten material comprising silicon. Following infiltration, the molten material is cooled, thereby forming a ceramic matrix composite with a barrier layer thereon, where the barrier layer comprises silicon nitride and less than 5 vol. % free silicon. The barrier layer may also include silicon carbide and/or one or more refractory metal silicides. 1. A method of forming a barrier layer on a ceramic matrix composite (CMC) , the method comprising:forming a particulate surface layer on an outer surface of a fiber preform, the particulate surface layer including silicon particles;nitriding the particulate surface layer to convert the silicon particles to silicon nitride particles;after the nitriding, infiltrating the fiber preform and the particulate surface layer with a molten material comprising silicon; andafter infiltration, cooling the molten material, thereby forming a ceramic matrix composite with a barrier layer thereon, the barrier layer comprising silicon nitride and less than 5 vol. % free silicon.2. The method of claim 1 , wherein forming the particulate surface layer comprises applying a slurry or a tape comprising the silicon particles to the outer surface of the fiber preform.3. The method of claim 2 , wherein the slurry further includes a liquid carrier comprising an aqueous or organic solvent claim 2 , the silicon particles being dispersed in the liquid carrier; andfurther comprising, after the applying, drying the slurry to remove the liquid carrier and deposit the silicon particles on the outer surface.4. The method of claim 2 , wherein applying ...

Подробнее
28-01-2021 дата публикации

CMC SYSTEM FOR IMPROVED INFILTRATION

Номер: US20210024427A1
Принадлежит: Rolls-Royce Corporation

A method is provided in which multiple layers are formed. Each of the layers includes at least a first set of ceramic fibers and a second set of ceramic fibers. The first set is arranged at an angle with respect to the second set. The first set and the second set define a plurality of pores therebetween. The layers are arranged on top of each other to form a porous preform. The pores of the layers arranged on top of each other are aligned. The pores define a plurality of channels extending continuously through the porous preform from a first side of the porous preform to a second side of the porous preform. Each channel comprises one inlet at the first side of the porous preform and one outlet at the second side of the porous preform. The porous preform is infiltrated with a matrix material. 1. A method comprising:forming a plurality of layers, each of the layers including at least a first set of ceramic fibers and a second set of ceramic fibers, wherein the first set is arranged at an angle with respect to the second set, wherein the first set and the second set define a plurality of pores therebetween;arranging the layers on top of each other to form a porous preform;aligning the pores of the layers arranged on top of each other, wherein the pores define a plurality of channels extending continuously through the porous preform from a first side of the porous preform to a second side of the porous preform, wherein the pores are aligned such that each channel extends orthogonal to the layers arranged on top of each other, and such that each channel is defined by a respective set of pores and has a uniform diameter that is equal to diameters of the respective set of pores, and wherein each channel comprises one inlet at the first side of the porous preform and one outlet at the second side of the porous preform; andinfiltrating the porous preform with a matrix material.26-. (canceled)7. The method of claim 1 , wherein the infiltrating the channels with the matrix ...

Подробнее
23-01-2020 дата публикации

COMPOSITE SINTERED BODY, ELECTROSTATIC CHUCK MEMBER, ELECTROSTATIC CHUCK DEVICE, AND METHOD FOR PRODUCING COMPOSITE SINTERED BODY

Номер: US20200027770A1
Принадлежит: Sumitomo Osaka Cement Co., Ltd.

A composite sintered body is a ceramic composite sintered body which includes metal oxide which is a main phase, and silicon carbide which is a sub-phase, in which crystal grains of the silicon carbide are dispersed in crystal grains of the metal oxide and at crystal grain boundaries of the metal oxide, and a proportion of the crystal grains of the silicon carbide dispersed in the crystal grains of the metal oxide is 25% or more in an area ratio with respect to a total crystal grains of the silicon carbide. 1. A composite sintered body which is a ceramic composite sintered body , comprising:a metal oxide which is a main phase; andsilicon carbide which is a sub-phase,wherein crystal grains of the silicon carbide are dispersed in crystal grains of the metal oxide and at crystal grain boundaries of the metal oxide, anda proportion of the crystal grains of the silicon carbide dispersed in the crystal grains of the metal oxide is 25% or more in an area ratio with respect to a total crystal grains of the silicon carbide.2. The composite sintered body according to claim 1 , wherein the metal oxide is aluminum oxide or yttrium oxide.3. The composite sintered body according to claim 1 , wherein an average crystal grain size of the metal oxide is 1.2 μm or more and 10 μm or less.4. An electrostatic chuck member comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'a plate-shaped base which is formed of, as a forming material, the composite sintered body according to , the base having one principal surface which is a placing surface on which a plate-shaped sample is placed; and'}an electrostatic attraction electrode provided on a side opposite to the placing surface of the base, or in an interior of the base.5. An electrostatic chuck device comprising:{'claim-ref': {'@idref': 'CLM-00004', 'claim 4'}, 'the electrostatic chuck member according to .'}6. A method for producing a composite sintered body claim 1 , comprising:a step of mixing metal oxide particles and silicon ...

Подробнее
02-02-2017 дата публикации

Uniformity of fiber spacing in cmc materials

Номер: US20170029339A1
Принадлежит: General Electric Co

A pliable tape is generally provided that includes: a plurality of fibers forming unidirectional arrays of tows encased within a matrix material, with four adjacent fibers in the tape define an interstitial spacing therebetween. The matrix material comprises filler particles dispersed between adjacent fibers in the tape. In one embodiment, the filler particles have a median particle size defining the interstitial spacing such that the interstitial spacing is about 0.75 to about 1.1 of the median particle size. In another embodiment, the filler particles have a median particle size that is related to the surface-to-surface spacing between adjacent fibers, with the ratio of the surface-to-surface spacing between adjacent fibers and the median particle size being about 0.3:1 to about 1:1. Methods are also provided for forming a ceramic matrix composite.

Подробнее
01-02-2018 дата публикации

APPARATUS AND METHODS FOR PROCESSING CERAMIC FIBER

Номер: US20180029928A1
Принадлежит:

The present application provides methods and apparatus for processing ceramic fibers for the manufacture of ceramic matrix composites (CMCs). One method may include providing at least one frame including a planar array of unidirectional ceramic fibers extending across a void thereof. The method may further include depositing a coating on the ceramic fibers of the at least one frame via a chemical vapor deposition (CVD) process. The method may also include impregnating the coated ceramic fibers with a slurry including a ceramic matrix precursor composition to form at least one CMC prepreg, such as a prepreg tape. The ceramic fibers may be substantially SiC fibers, for example. 1. A method of processing ceramic fiber for the manufacture of a ceramic matrix composite (CMC) article , comprising:providing at least one frame including a planar array of unidirectional ceramic fibers extending across a void thereof;depositing a coating on the ceramic fibers of the least one frame via a chemical vapor deposition (CVD) process; andimpregnating the coated ceramic fibers of the at least one frame with a slurry including a ceramic matrix precursor composition to form at least one CMC prepreg, wherein impregnating the coated ceramic fibers includes coupling a base plate to the at least one frame extending at least partially within the void thereof such that the coated ceramic fibers and the ceramic matrix precursor composition form at least one CMC prepreg tape.2. The method of claim 1 , wherein the CVD process includes positioning the at least one frame within a CVD reactor claim 1 , and wherein the CVD process is a batch CVD process.3. The method of claim 1 , wherein providing the at least one frame includes coupling the ceramic fibers to at least one frame.4. The method of claim 1 , wherein at least one of the ceramic fibers comprises a ceramic fiber tow.5. The method of claim 1 , wherein at least one of the ceramic fibers a non-bundled ceramic filament.6. The method of claim ...

Подробнее
17-02-2022 дата публикации

ARTICLES FOR CREATING HOLLOW STRUCTURES IN CERAMIC MATRIX COMPOSITES

Номер: US20220048825A1
Принадлежит:

The present disclosure relates to a method of fabricating a ceramic composite components. The method may include providing at least a first layer of reinforcing fiber material which may be a pre-impregnated fiber. An additively manufactured component may be provided on or near the first layer. A second layer of reinforcing fiber, which may be a pre-impregnated fiber may be formed on top the additively manufactured component. A precursor is densified to consolidates at least the first and second layer into a densified composite, wherein the additively manufactured material defines at least one cooling passage in the densified composite component. 113-. (canceled)14. A method of fabricating a composite component comprising:at least partially covering a core having an organic binder and at least one of Si, SiO, and SiO2 with a reinforcing fiber material, wherein the core defines at least one cooling passage in the composite component.15. The method for fabricating a composite component of claim 14 , wherein the core is formed by:(a) contacting a cured portion of a workpiece with a liquid photopolymer;(b) irradiating a portion of the liquid photopolymer adjacent to the cured portion through a window contacting the liquid photopolymer;(c) removing the workpiece from the uncured liquid photopolymer; and(d) repeating steps (a)-(c) until the core is formed.16. The method of fabricating a composite component of claim 14 , further comprising:performing an infiltration process with a ceramic matrix precursor material, wherein the precursor is densified and consolidates at least a first and second layer of the reinforcing fiber material into a densified composite, wherein the core defines at least one cooling passage in the densified composite component.17. The method of fabricating a composite component of claim 14 , wherein the reinforcing fiber material is pre-impregnated with a ceramic matrix precursor material.18. The method of fabricating a composite component of claim 14 ...

Подробнее
17-02-2022 дата публикации

Hafnon and Zircon Environmental Barrier Coatings for Silicon-Based Components

Номер: US20220048828A1
Принадлежит:

A method for coating a substrate includes spraying a combination of powders. The combination of powders includes: HfSiO; ZrSiO; and, optionally, at least one of HfOand ZrO. A molar ratio of said HfSiOand HfOcombined to said ZrSiOand ZrOcombined is from 2:1 to 4:1. A molar ratio of said HfSiOto said HfOis at least 1:3. 2. The method of wherein:{'sub': ['0.5', '0.5', '2', '2', '0.5', '0.5', '2', '2'], '#text': 'said molar ratio of said HfSiOand HfOcombined to said ZrSiOand ZrOcombined is from 7:3 to 3:1.'}3. The method of wherein:{'sub': '2', '#text': 'the combination of powders comprises said HfOat a single cation molarity of 0.10 to 0.45.'}4. The method of wherein:{'sub': '2', '#text': 'the combination of powders further comprises said ZrOat a single cation molarity of 0.050 to 0.150.'}5. The method of wherein:{'sub': ['2', '2'], '#text': 'a molar ratio of said HfOto said ZrOis at least 2:1.'}6. The method of wherein:{'sub': ['2', '2'], '#text': 'said molar ratio of said HfOto said ZrOis from 2:1 to 5:1.'}7. The method of wherein:{'sub': ['2', '2', '0.5', '0.5', '2', '0.5', '0.5', '2'], '#text': 'said molar ratio of said HfOto said ZrOis higher than a molar ratio of said HfSiOto said ZrSiO.'}8. The method of wherein:{'sub': ['0.5', '0.5', '2', '0.5', '0.5', '2', '2', '2'], '#text': 'the combination of powders comprises in single cation mol percent at least 95.0% combined said HfSiO, said ZrSiO, and said at least one of HfOand ZrO, if either.'}9. The method of wherein:{'sub': ['1.5', '2'], '#text': 'the combination of powders further comprises CaO, AlO, and SiO.'}10. The method of wherein the spraying is of layer and the method further comprises at least one of:applying a bond coat before the spraying; andapplying a further layer after the spraying.11. The method of including applying the further layer wherein:the further layer is an abradable layer applied by air plasma spray.12. The method of including applying the further layer wherein:the further layer has ...

Подробнее
30-01-2020 дата публикации

METHOD FOR PRODUCING SILICON-CARBIDE-BASED COMPOSITE

Номер: US20200031722A1
Принадлежит: IHI AEROSPACE CO., LTD.

A method for producing a silicon-carbide-based composite. In the production of a silicon-carbide-based composite comprising a carbon-fiber-reinforced/silicon carbide composite (a C/SiC composite) or a silicon-carbide-fiber-reinforced/silicon carbide composite (a SiC/SiC composite), a film boiling method is carried out, using an organosilicon polymer having a chlorine-free polysilane skeleton and/or a chlorine-free polycarbosilane skeleton. The organosilicon polymer is in a liquid form at room temperature. The molar ratio of Si and C in the matrix of the C/SiC composite or the SiC/SiC composite is Si:C=1:1.08 to 1:1.43. 1. A method for producing a silicon-carbide-based composite , wherein in the production of a silicon-carbide-based composite comprising a carbon-fiber-reinforced/silicon carbide composite (a C/SiC composite) or a silicon-carbide-fiber-reinforced/silicon carbide composite (a SiC/SiC composite) , a film boiling method is carried out using an organosilicon polymer having a chlorine-free polysilane skeleton and/or a chlorine-free polycarbosilane skeleton.2. The method for producing a silicon-carbide-based composite according to claim 1 , wherein the organosilicon polymer is in a liquid form at room temperature.3. The method for producing a silicon-carbide-based composite according to claim 1 , wherein a composition ratio (molar ratio) of Si and C in a matrix of the C/SiC composite or the SiC/SiC composite is Si:C=1:1.08 to 1:1.43.4. The method for producing a silicon-carbide-based composite according to claim 2 , wherein a composition ratio (molar ratio) of Si and C in a matrix of the C/SiC composite or the SiC/SiC composite is Si:C=1:1.08 to 1:1.43. The present invention relates to a method for producing a silicon-carbide-based composite, and more particularly relates to a method for producing a silicon-carbide-based composite that is capable of producing a silicon carbide composite cleanly and with high production efficiency.Conventionally, a silicon- ...

Подробнее
04-02-2021 дата публикации

METHOD FOR PREPARING CARBON-REINFORCED METAL-CERAMIC COMPOSITE MATERIAL

Номер: US20210032165A1
Принадлежит:

Disclosed is a method for preparing a carbon-reinforced metal-ceramic composite material, including: mixing raw materials of carbon, copper, zinc, titanium, copper oxide, calcium oxide and titanium dioxide, ball-milling the raw materials with a medium of ethanol to obtain a mixture, drying and milling the mixture to obtain a powder, sintering the powder with a laser having an irradiation power ranging from 100 to 600 W and an irradiation period of 3 min to 10 min to obtain a product, and rapidly cooling the product to allow a temperature of the product to be decreased to the room temperature within 5 min to obtain the carbon-reinforced metal-ceramic composite material. 1. A method for preparing a carbon-reinforced metal-ceramic composite material , comprising:mixing raw materials of carbon of 5 wt % to 8 wt %, copper of 10 wt % to 15 wt %, zinc of 10 wt % to 18 wt %, titanium of 20 wt % to 33 wt %, copper oxide of 5 wt % to 8 wt %, calcium oxide of 18 wt % and 35 wt % and titanium dioxide of a balance amount to 100 wt %, based on the total amount of the raw materials,ball-milling the raw materials with a medium of ethanol to obtain a mixture,drying and milling the mixture to obtain a powder,sintering the powder with a laser having an irradiation power ranging from 100 to 600 W and an irradiation period of 3 min to 10 min to obtain a product, andrapidly cooling the product to allow a temperature of the product to be decreased to the room temperature within 5 min to obtain the carbon-reinforced metal-ceramic composite material.2. The method according to claim 1 , wherein the ball-milling is performed at a ball-milling speed of 400 rpm for a period ranging from 8 to 24 h.3. The method according to claim 1 , wherein the drying is performed at a temperature in a range of 60 to 80° C.4. The method according to claim 1 , wherein the milling includes at least one of manual grinding and ball-milling.5. The method according to claim 1 , wherein carbon is provided by a carbon ...

Подробнее
04-02-2021 дата публикации

CERAMIC MATRIX COMPOSITE VANE WITH COOLING HOLES AND METHODS OF MAKING THE SAME

Номер: US20210032995A1
Принадлежит:

An airfoil for a gas turbine engine is made from ceramic matrix composite materials. The airfoil has an inner surface that defines a cooling cavity in the body and an outer surface that defines a leading edge, a trailing edge, a pressure side, and a suction side of the body. The airfoil is formed with a plurality of cooling passages that extend from the cooling cavity through the airfoil. 1. An airfoil for use in a gas turbine engine , the airfoil comprisingan airfoil shaped ceramic matrix composite body having an inner surface that defines a cooling cavity in the body and an outer surface that defines a leading edge, a trailing edge, a pressure side, and a suction side of the body, anda first hollow tube made from an environmental barrier material, the tube extends through the body between the inner surface and the outer surface to provide fluid communication between the cooling cavity and a gas path environment surrounding the outside surface.2. The airfoil of claim 1 , wherein the body includes a plurality of fibers and matrix material infiltrated with the fibers and the tube is embedded in the plurality of fibers such that the plurality of fibers are parted around the tube to avoid fracturing the plurality of fibers.3. The airfoil of claim 1 , wherein the body extends along an axis claim 1 , the airfoil further includes a plurality of tubes made from the environmental barrier material claim 1 , the plurality of tubes includes the first tube claim 1 , and the plurality of tubes are spaced apart from one another axially relative to the axis.4. The airfoil of claim 3 , wherein the environmental barrier material is different than a material of the ceramic reinforcement fiber preform and the ceramic matrix material.5. The airfoil of claim 1 , wherein the tube defines a cooling passageway and has a length that extends between a first end of the tube and a second end of the tube and a cross-sectional area of the passageway varies along the length of the tube.6. The ...

Подробнее
08-02-2018 дата публикации

Method for manufacturing a turbomachine blade made of composite material

Номер: US20180036914A1
Принадлежит: Safran Aircraft Engines SAS

A method of fabricating a turbine engine blade out of composite material including fiber reinforcement densified by a matrix, the method including using multilayer weaving to make a first fiber that has a first portion forming a blade root preform and extended by a second portion, the second portion forming a tenon preform; using multilayer weaving to make a second fiber preform, the second preform including a first portion made up of two skins defining between them an internal housing, the first portion forming an airfoil preform, and a second portion extending from an outside surface of the skins, the second portion forming a platform preform; assembling the first preform with the second preform in the non-consolidated state by engaging the second portion of the first preform in the internal housing; and co-densifying the first and second preforms as assembled together in this way to obtain a turbine engine blade.

Подробнее
09-02-2017 дата публикации

NANOPLATE-NANOTUBE COMPOSITES, METHODS FOR PRODUCTION THEREOF AND PRODUCTS OBTAINED THEREFROM

Номер: US20170037252A1
Принадлежит: Molecular Rebar Design, LLC

Compositions and methods of producing discrete nanotubes and nanoplates and a method for their production. The discrete nanotube/nanoplate compositions are useful in fabricated articles to provide superior mechanical and electrical performance. They are also useful as catalysts and catalyst supports for chemical reactions. 1. A composition comprising:inorganic plates with individual plate thickness of less than 10 nanometers wherein the plates are graphene nanoplates; anddiscrete multiwall carbon nanotubes having a diameter ranging from about 1 nanometer to 150 nanometers, an oxidation level of from about 1 weight % to about 15 weight %, and wherein the carbon nanotubes have an aspect ratio ranging from about 10 to 500.2. The composition of claim 1 , wherein the inorganic plates and discrete tubes are present at a weight ratio of about 1:100 to 100:1.3. The composition of claim 1 , wherein the inorganic plates are interspersed with the discrete multiwall carbon nanotubes.4. The composition of wherein the inorganic plates are oxidized.5. The composition of claim 1 , further comprising inorganic materials selected from the group consisting of: ceramics claim 1 , clays claim 1 , silicates claim 1 , metal complexes and salts.6. The composition of further comprising at least one electroactive material.7. The composition of further comprising at least one transition metal complex or active catalyst species.8. The composition of claim 1 , wherein the carbon nanotubes have an aspect ratio ranging from about 25 to 500.9. The composition of claim 7 , further comprising inorganic plates with individual plate thickness of less than 10 nanometers.10. The composition of claim 7 , wherein the inorganic plates are graphene nanoplates.11. The composition of claim 7 , wherein the inorganic plates and discrete tubes are present at a weight ratio of about 1:100 to 100:1.12. A method of preparing graphene carbon nanotube composites claim 7 , comprising the steps of:a) suspending non- ...

Подробнее
08-02-2018 дата публикации

TURBINE

Номер: US20180037511A1
Принадлежит: IHI CORPORATION

[Problem] To provide a turbine which is simple in structure and which allows a gas flow passage to be formed using a CMC over a wide range while suppressing thermal stress on turbine stator vanes, thereby achieving further improved jet engine performance and reduced fuel consumption. 1. A turbine provided in a jet engine , comprising:a plurality of turbine stator vanes arranged about an axis of the jet engine to form a turbine nozzle, the turbine stator vanes being made of a ceramic matrix composite and each comprising an airfoil portion extending radially with reference to the axis of the jet engine, an outer band portion extending continuously from a radially outer end of the airfoil portion circumferentially to one side with reference to the axis of the jet engine, and an inner band portion extending continuously from a radially inner end of the airfoil portion circumferentially to the same side,a support member made of a metal material and comprising a front hook portion to engage with a front portion of the outer band portion located on a gas upstream side and a rear hook portion to engage with a rear portion of the outer band portion located on a gas downstream side, anda turbine case made of a metal material to which the support member is attached.2. The turbine according to claim 1 , further comprising a seal member interposed between the outer band portion and the support member to create a seal at least between the front portion of the outer band portion and the front hook portion of the support member and between the rear portion of the outer band portion and the rear hook portion of the support member.3. The turbine according to claim 1 , wherein the support member has grooves in the front hook portion and the rear hook portion claim 1 , respectively claim 1 , to allow the front portion and the rear portion of the outer band portion to be circumferentially slid into the grooves in the front and rear hook portions claim 1 , respectively claim 1 , thereby ...

Подробнее
08-02-2018 дата публикации

VIBRATION ASSISTED DENSIFICATION OF A CARBON FIBER PREFORM

Номер: US20180037988A1
Принадлежит:

The disclosure describes in some examples a technique that includes the disclosure describes a technique that includes depositing a carbon powder and a resin powder on a surface of a fiber preform, where the fiber preform includes a plurality of fibers and defines interstitial spaces between the plurality of fibers, and vibrating the fiber preform to allow the carbon powder and the resin powder to infiltrate the interstitial spaces between the plurality of fibers of the fiber preform to form an infiltrated preform. 1. A method comprising:depositing a carbon powder and a resin powder on a surface of a fiber preform, wherein the fiber preform comprises a plurality of fibers and defines interstitial spaces between the plurality of fibers; andvibrating the fiber preform to allow the carbon powder and the resin powder to infiltrate the interstitial spaces between the plurality of fibers of the fiber preform to form an infiltrated preform.2. The method of claim 1 , further comprising:mixing the carbon powder and the resin powder to form a powder mixture prior to depositing the carbon powder and the resin powder on the surface of the fiber preform.3. The method of claim 2 , wherein the powder mixture comprises at least about 10 weight percent (wt. %) of the carbon powder.4. The method of claim 2 , wherein the powder mixture defines a mesh size greater than about 18.5. The method of claim 1 , wherein the carbon powder and the resin powder comprise at least about 5 wt. % of the infiltrated preform.6. The method of claim 1 , further comprising heating the infiltrated preform to carbonize the resin powder to form a composite article.7. The method of claim 1 , further comprising:machining a surface of a carbon-carbon composite component to form a carbon milling waste; andusing the carbon milling waste to form at least some of the carbon powder.8. The method of claim 7 , wherein using the carbon milling waste to form at least some of the carbon powder comprises sieving the ...

Подробнее
12-02-2015 дата публикации

Hybrid Part Made From Monolithic Ceramic Skin and CMC Core

Номер: US20150042023A1
Принадлежит: United Technologies Corp

A hybrid part for use in a gas turbine engine has a platform and an attachment feature. The platform and an exterior portion of the attachment feature are formed from a monolithic ceramic material. A ceramic matrix composite material is located adjacent interior portions of the platform and the attachment feature and is bonded to the monolithic ceramic material.

Подробнее
24-02-2022 дата публикации

REMOVING COLORIZATION ON SILICON CARBIDE CERAMIC MATRIX COMPOSITES

Номер: US20220055953A1
Автор: Lu Weiming, Nable Jun
Принадлежит:

A method of depositing silicon carbide on a preform to form a ceramic matrix composite comprises placing the preform into a reaction vessel, removing air from the reaction vessel and backfilling the reaction vessel with an inert gas to an operating pressure. The reaction vessel and the preform are heated to an operating temperature. A carrier gas and precursor materials are heated to a preheat temperature outside of the reaction vessel. The carrier gas and the precursor materials are introduced to the reaction vessel in a specified ratio. Off gasses, the precursor materials that are unspent, and the carrier gas are removed from the reaction vessel to maintain the specified ratio of the precursor materials in the reaction vessel. 1. A method of depositing silicon carbide on a preform to form a ceramic matrix composite , the method comprising:placing the preform into a reaction vessel;removing air from the reaction vessel and backfilling the reaction vessel with an inert gas to an operating pressure;heating the reaction vessel and the preform to an operating temperature;heating a carrier gas and precursor materials to a preheat temperature outside of the reaction vessel;introducing the carrier gas and the precursor materials to the reaction vessel, wherein the precursor materials are introduced in a specified ratio; andremoving off gasses, the precursor materials that are unspent, and the carrier gas from the reaction vessel to maintain the specified ratio of the precursor materials in the reaction vessel.2. The method of claim 1 , wherein the method further comprises:depositing a layer of silicon carbide on the preform with a chemical ratio of 1 atom of silicon to 1 atom of carbon.3. The method of claim 1 , wherein the method further comprises:stopping the flow of the precursor materials to the reaction vessel while removing the precursor materials that are unspent from the reaction vessel.4. The method of claim 1 , wherein the preform is made of a solid material ...

Подробнее
24-02-2022 дата публикации

METHOD OF MAKING A CERAMIC MATRIX COMPOSITE THAT EXHIBITS MOISTURE AND ENVIRONMENTAL RESISTANCE

Номер: US20220055955A1
Принадлежит:

A method of making a ceramic matrix composite that exhibits moisture and environmental resistance has been developed. The method includes depositing a diffusion barrier layer comprising boron nitride on silicon carbide fibers and depositing a moisture-tolerant layer comprising silicon-doped boron nitride on the diffusion barrier layer, where a thickness of the moisture-tolerant layer is from about 3 to about 300 times a thickness of the diffusion barrier layer. Thus, a compliant multilayer including the moisture-tolerant layer and the diffusion barrier layer is formed. A wetting layer comprising silicon carbide, boron carbide, and/or pyrolytic carbon is deposited on the compliant multilayer layer. After depositing the wetting layer, a fiber preform comprising the silicon carbide fibers is infiltrated with a slurry. After slurry infiltration, the fiber preform is infiltrated with a melt comprising silicon and then the melt is cooled, thereby forming a ceramic matrix composite. 1. A method of making a ceramic matrix composite that exhibits moisture and environmental resistance , the method comprising:depositing a diffusion barrier layer comprising boron nitride on silicon carbide fibers;depositing a moisture-tolerant layer comprising silicon-doped boron nitride on the diffusion barrier layer, a thickness of the moisture-tolerant layer being from about 3 to about 300 times a thickness of the diffusion barrier layer, thereby forming a compliant multilayer including the moisture-tolerant layer and the diffusion barrier layer;depositing a wetting layer comprising silicon carbide, boron carbide, and/or pyrolytic carbon on the compliant multilayer layer;after depositing the wetting layer, infiltrating a fiber preform comprising the silicon carbide fibers with a slurry; andafter infiltration with the slurry, infiltrating the fiber preform with a melt comprising silicon and then cooling the melt, thereby forming a ceramic matrix composite.2. The method of claim 1 , wherein ...

Подробнее
18-02-2021 дата публикации

METHOD FOR MANUFACTURING A PART MADE FROM A COMPOSITE MATERIAL BY MEANS OF THE INJECTION OF A LADEN CERAMIC SLURRY INTO A FIBROUS STRUCTURE

Номер: US20210046671A1
Принадлежит:

A process for manufacturing a composite part includes arranging a fibrous preform in a mold including an impregnation chamber which includes in its lower part a filter by making a first face of the preform rest on the filter, the impregnation chamber being closed by a flexible membrane placed opposite a second face of the preform, the membrane separating the impregnation chamber from a compaction chamber. The process further includes injecting a compression fluid into the compaction chamber so as to apply a first pressure on the membrane and injecting a slurry including ceramic particles into the impregnation chamber with a second pressure while maintaining the injection of the compression fluid, the second injection pressure of the slurry being lower than the first pressure on the membrane. 1. A process for manufacturing a composite part comprising:arranging a fibrous preform in a mold comprising an impregnation chamber which comprises in its lower part a filter by making a first face of the preform rest on said filter, the impregnation chamber being closed by a flexible membrane placed opposite a second face of the preform, said membrane separating the impregnation chamber from a compaction chamber; characterized in that the process further comprises the following steps:injecting a compression fluid into the compaction chamber so as to apply a first pressure on the membrane;injecting a slurry comprising ceramic particles into the impregnation chamber with a second pressure while maintaining the injection of the compression fluid, the second injection pressure of the slurry being lower than the first pressure on the membrane, andprogressively increasing the first pressure on the membrane and the second injection pressure of the slurry with maintenance of the second injection pressure of the slurry lower than the first pressure on the membrane.2. The process as claimed in claim 1 , wherein a pressure difference between the first pressure and the second pressure is ...

Подробнее
18-02-2021 дата публикации

System and method for making ceramic matrix composite vane with profiled end walls

Номер: US20210047934A1
Принадлежит: Rolls Royce PLC

Systems and methods of forming a ceramic matrix composite vane with profiled endwalls are provided using a multi-piece tooling. The multi-piece tooling includes core tools as well as profiled endwall tools having three dimensional contours formed in the tools that correspond to the three dimensional shape to be formed on the vane endwalls.

Подробнее
15-02-2018 дата публикации

A METHOD OF FABRICATING A COMPOSITE MATERIAL PART BY SELF-PROPAGATING HIGH TEMPERATURE SYNTHESIS

Номер: US20180044249A1
Принадлежит:

A method of fabricating a part made of ceramic matrix composite material, the method includes fabricating the part by forming a ceramic matrix in the pores of a fiber structure, the ceramic matrix being formed by self propagating high temperature synthesis from a powder composition present in the pores of the fiber structure, 1. A method of fabricating a part made of ceramic matrix composite material , the method comprising the following step:a) fabricating the part by forming a ceramic matrix in the pores of a fiber structure, the ceramic matrix being formed by self propagating high temperature synthesis from a powder composition present in the pores of the fiber structure; [{'sub': 2', '2, 'of SiNO formed by self propagating high temperature synthesis by chemical reaction between a silicon powder, a silica powder, and a gaseous phase comprising the element N; or'}, {'sub': '2', 'of phases of TiN and of TiB, these compounds being formed by self propagating high temperature synthesis by chemical reaction between a powder comprising titanium, a powder comprising boron, and a gaseous phase comprising the element N.'}], 'the matrix formed during step a) comprising a majority by weight2. A method according to claim 1 , wherein claim 1 , prior to step a) claim 1 , a preliminary step b) is performed of densifying the fiber structure by a method other than the method of self propagating high temperature synthesis.3. A method according to claim 1 , wherein an additional step c) of densifying the part is performed after step a).48.-. (canceled)9. A method according to claim 1 , wherein the following steps are performed before step a):inserting at least a first powder into the pores of the fiber structure; and theninserting at least a second powder different from the first into the pores of the fiber structure;a ceramic matrix of composition that varies on going towards the outside surface of the part being obtained after step a).10. A method according to claim 1 , comprising ...

Подробнее
07-02-2019 дата публикации

CERAMIC MATERIAL AND ELECTROSTATIC CHUCK DEVICE

Номер: US20190043746A1
Принадлежит:

Provided is a composite sintered body for an electrostatic chuck, which is not easily broken even if it is exposed to high-power plasma. Further, provided are an electrostatic chuck device using such a composite sintered body for an electrostatic chuck and a method of manufacturing a composite sintered body for an electrostatic chuck. The composite sintered body for an electrostatic chuck is a composite sintered body including an insulating ceramic and silicon carbide, in which crystal grains of the silicon carbide are dispersed in at least one selected from the group consisting of a crystal grain boundary and a crystal grain of a main phase formed by sintering crystal grains of the insulating ceramic. 1. A ceramic material that is a composite sintered body including an insulating ceramic and silicon carbide ,wherein crystal grains of the silicon carbide are dispersed in at least one selected from the group consisting of a crystal grain boundary and a crystal grain of a main phase formed by sintering crystal grains of the insulating ceramic,a content of crystal grains having a β-SiC type crystal structure is more than 60% by volume with respect to a total amount of the crystal grains of the silicon carbide,the composite sintered body includes pores which are present in a crystal grain boundary, anda ratio of an apparent density of the composite sintered body with respect to a hypothetical true density when the composite sintered body is assumed not to include the pores is 97% or more.2. The ceramic material according to claim 1 ,wherein the ceramic material includes a portion in which the crystal grains having the β-SiC type crystal structure are sintered with each other.3. The ceramic material according to claim 1 ,wherein a grain diameter obtained from an X-ray diffraction result of the crystal grain of the silicon carbide is 50 nm or more.4. The ceramic material according to claim 1 ,wherein the insulating ceramic is aluminum oxide.5. A ceramic material which is ...

Подробнее
25-02-2016 дата публикации

Method For Producing A Molded Body, As Well As A Molded Body

Номер: US20160052829A1
Принадлежит:

The invention relates to a method for producing a molded body as well as to a molded body, having a silicon carbide support matrix and an integral carbon structure, wherein a base body on the basis of a powder mixture containing silicon carbide or silicon and carbon and of a binder is built in layers in a generative method, and wherein a pyrolysis of the base body is effected for realizing the molded body after the binder has been cured, wherein the carbon content of the carbon structure is adjusted by way of the pyrolysis of the binder and by way of the carbon content of the powder mixture or infiltration of a carbon material into the silicon carbide support matrix. 122402123. A method for producing a molded body ( , ) , having a silicon carbide support matrix () and an integral carbon structure () ,{'b': 50', '51, 'wherein a base body on the basis of a powder mixture () containing silicon carbide or silicon and carbon and of a binder () is built in layers in a generative method,'}{'b': '56', 'and wherein a pyrolysis () of the base body is effected for realizing the molded body after the binder has been cured,'}wherein the carbon content of the carbon structure is adjusted by way of the pyrolysis of the binder and by way of the carbon content of the powder mixture or infiltration of a carbon material into the silicon carbide support matrix.2. The method according to claim 1 ,characterized in that{'b': '50', 'the powder mixture () presents a carbon content between 0 and 30% by weight.'}3. The method according to claim 2 ,characterized in that{'b': '50', 'the power mixture () presents a carbon content between 10 and 20% by weight.'}4. The method according to any one of the preceding claims claim 2 ,characterized in that{'b': '50', 'sub': 's50', 'the powder mixture () presents an SiC particle fraction having particles of an average grain size Dbetween 0.5 and 100 μm.'}5. The method according to claim 4 ,characterized in that{'sub': 's50', 'the average grain size Dis ...

Подробнее
25-02-2021 дата публикации

Method of densifying a ceramic matrix composite using a filled tackifier

Номер: US20210053882A1
Принадлежит: Raytheon Technologies Corp

A method of producing an enhanced ceramic matrix composite includes applying a tackifier compound to a fiber preform. The tackifier compound includes inorganic filler particles. The method further includes modifying the tackifier compound such that the inorganic filler particles remain interspersed throughout the fiber preform, and occupy pores of fiber preform.

Подробнее
13-02-2020 дата публикации

HIGH TEMPERATURE OXIDATION PROTECTION FOR COMPOSITES

Номер: US20200048151A1
Автор: Poteet Steven A.
Принадлежит: GOODRICH CORPORATION

An oxidation protection system disposed on a substrate is provided, which may comprise a base layer comprising a first pre-slurry composition comprising a first phosphate glass composition, and/or a sealing layer comprising a second pre-slurry composition comprising a second phosphate glass composition and a strengthening compound comprising boron nitride, a metal oxide, and/or silicon carbide. 1. A method for forming an oxidation protection system on a composite structure , comprising:forming a first slurry by combining a first pre-slurry composition with a first carrier fluid, wherein the first pre-slurry composition comprises a first phosphate glass composition;applying the first slurry to the composite structure;heating the composite structure to a temperature sufficient to form a base layer on the composite structure;forming a second slurry by combining a second pre-slurry composition with a second carrier fluid, wherein the second pre-slurry composition comprises a second phosphate glass composition and a strengthening compound comprising at least one of boron nitride, a metal oxide, or silicon carbide;applying the second slurry to the composite structure; andheating the composite structure to a temperature sufficient to form a sealing layer on the composite structure.2. The method of claim 1 , wherein the strengthening compound comprises boron nitride.3. The method of claim 1 , wherein the metal oxide comprises at least one of aluminum oxide claim 1 , silicon dioxide claim 1 , and titanium oxide.4. The method of claim 2 , wherein the second slurry comprises between 0.1 and 6 weight percent boron nitride.5. The method of claim 2 , wherein the second slurry comprises between 2 and 5 weight percent boron nitride.6. The method of claim 2 , wherein the second phosphate glass composition comprises a glass frit claim 2 , and wherein a weight ratio of boron nitride to the glass frit in the second slurry is between 5:100 to 15:100.7. The method of claim 2 , wherein ...

Подробнее
22-02-2018 дата публикации

Composite Articles Comprising Metal Carbide Fibers

Номер: US20180051396A1
Автор: Garnier John E.
Принадлежит:

A method of producing, from a continuous or discontinuous (e.g., chopped) carbon fiber, partially to fully converted metal carbide fibers. The method comprises reacting a carbon fiber material with at least one of a metal or metal oxide source material at a temperature greater than a melting temperature of the metal or metal oxide source material (e.g., where practical, at a temperature greater than the vaporization temperature of the metal or metal oxide source material). Additional methods, various forms of carbon fiber, metal carbide fibers, and articles including the metal carbide fibers are also disclosed. 1. An article comprising:metal carbide fibers dispersed in a matrix, the metal carbide fibers comprising metal carbide in fiber form, the metal carbide comprising at least one of aluminum carbide, beryllium carbide, calcium carbide, cerium carbide, chromium carbide, dysprosium carbide, erbium carbide, europium carbide, gadolinium carbide, hafnium carbide, holmium carbide, iron carbide, lanthanum carbide, lithium carbide, magnesium carbide, manganese carbide, molybdenum carbide, niobium carbide, neodymium carbide, praseodymium carbide, samarium carbide, scandium carbide, tantalum carbide, terbium carbide, thulium carbide, thorium carbide, titanium carbide, tungsten carbide, uranium carbide, vanadium carbide, ytterbium carbide, yttrium carbide, or zirconium carbide.2. The article of claim 1 , wherein the matrix comprises at least one of a ceramic material claim 1 , a refractory carbide material claim 1 , a metal material claim 1 , a polymer material claim 1 , or combinations thereof.3. The article of claim 1 , wherein the article is one of claim 1 , or a portion of an article selected from the group comprising a magnet claim 1 , laser claim 1 , maser claim 1 , recording device claim 1 , electrical motor claim 1 , chemical reducing agent claim 1 , ceramic capacitor claim 1 , battery electrode claim 1 , hydrogen storage device claim 1 , mercury vapor lamp claim 1 ...

Подробнее
23-02-2017 дата публикации

HIGHLY ORIENTED GRAPHITE

Номер: US20170053851A1
Принадлежит: KANEKA CORPORATION

Use of highly oriented graphite including graphite layers placed on top of one another and containing only a small amount of water allows for production of an electronic device that includes, as an element, highly oriented graphite in which no delamination occurs, that is highly reliable in use, and that has a good heat dissipation capability. 1. Highly oriented graphite , comprisinggraphite layers placed on top of one another,the highly oriented graphite having a thickness of not less than 20 mm in a direction of lamination of the graphite layers,{'sup': 2', '2, 'a quotient of (i) an amount of water absorption of the highly oriented graphite divided by (ii) an area of lamination surfaces of the graphite layers in the highly oriented graphite being not less than 0.005 mg/cmand not more than 6.0 mg/cm.'}2. The highly oriented graphite according to claim 1 ,wherein{'sup': '2', 'the quotient of (i) the amount of water absorption of the highly oriented graphite divided by (ii) the area of lamination surfaces of the graphite layers in the highly oriented graphite is not more than 0.8 mg/cm.'}3. Highly oriented graphite claim 1 , comprisinggraphite layers placed on top of one another,the highly oriented graphite having a water absorption rate of not less than 0.0010% and not more than 1.15%.4. The highly oriented graphite according to claim 3 ,whereinthe water absorption rate is not more than 0.16%.5. A method for producing highly oriented graphite according to claim 1 ,the method comprisingheat-treating a laminated body up to not less than 2400° C. under pressure, the laminated body including a plurality of polymeric films or carbonaceous films placed on top of one another,the method further comprisinga graphitizing step of graphitizing the laminated body, [{'sup': '2', 'a pressure of not less than 20 kg/cmbeing applied to the laminated body within any temperature range that is at least not less than 2400° C.,'}, 'the pressure being applied to only an area of not more ...

Подробнее
10-03-2022 дата публикации

HEAT-RESISTANT MEMBER

Номер: US20220073430A1
Принадлежит:

A heat-resistant member of the present disclosure is formed of an alumina-based ceramic containing alumina crystals and a glass formed of Si, Ca, Mg, and O, and an area ratio occupied by the glass in an inner portion is larger than an area ratio occupied by the glass in the surface portion. 1. A heat-resistant member comprisingan alumina-based ceramic containing alumina crystals and a glass formed of Si, Ca, Mg, and O,wherein an area ratio occupied by the glass in an inner portion is larger than an area ratio occupied by the glass in a surface portion.2. The heat-resistant member according to claim 1 , wherein the area ratio occupied by the glass in the inner portion is larger than the area ratio occupied by the glass in the surface portion by 4 area % or more.3. The heat-resistant member according to claim 1 , wherein the area ratio occupied by the glass in the surface portion is 20 area % or less.4. The heat-resistant member according to claim 1 , wherein an average equivalent circle diameter of the alumina crystals in the surface portion is smaller than an average equivalent circle diameter of the alumina crystals in the inner portion.5. The heat-resistant member according to claim 1 , wherein a mean distance between centers of gravity of the alumina crystals in the surface portion is less than a mean distance between centers of gravity of the alumina crystals in the inner portion. The present disclosure relates to a heat-resistant member.A heat-resistant member that is less likely to be damaged even when used at a temperature of approximately 600° C. is used in a product that is assumed to be used at high temperatures, such as a heater used for heating the interior of a vehicle, for example.Here, as a material of the heat-resistant member, an alumina-based ceramic that is resistant to oxidation even at a temperature of approximately 600° C. in an atmospheric environment and that can be used for a long period of time is widely employed (see Patent Document 1, for ...

Подробнее
04-03-2021 дата публикации

METHOD AND DEVICE FOR DEPOSITING A COATING ON A CONTINUOUS FIBRE

Номер: US20210062343A1
Принадлежит:

A process for depositing a coating on a continuous carbon or silicon carbide fibre from a coating precursor, includes at least heating a segment of the fibre in the presence of the coating precursor in a microwave field so as to bring the surface of the segment to a temperature enabling the coating to be formed on the segment from the coating precursor. 1. A process for depositing a coating on a continuous fibre of carbon or silicon carbide from a precursor of the coating , the process comprising:heating a segment of the fibre in the presence of the coating precursor in a microwave field so as to bring the surface of the segment to a temperature allowing the coating to form on the segment from the coating precursor, whereinthe segment of the fibre is in the presence of a gaseous phase of the coating precursor, the coating being formed by chemical vapor infiltration, the gaseous phase of the coating precursor being obtained by boiling a liquid phase of the coating precursor, the boiling resulting from contact between a hot portion of the fibre contiguous to the segment present in the microwave field and the liquid phase of the coating precursor, or whereinthe segment of fibre is in the presence of a supercritical phase of the precursor of the coating and the coating is formed by supercritical phase chemical deposition.2. The process as claimed in claim 1 , wherein claim 1 , when heating the segment of fibre claim 1 , the segment is in a first position claim 1 , and the process further comprises running the fibre so as to move the segment to a second position in which the segment is out of the microwave field.3. The process as claimed in claim 2 , wherein the running of the fibre is carried out continuously or semi-continuously.4. The process as claimed in claim 2 , wherein the unwinding of the fibre comprises unwinding the fibre from a first mandrel and winding the fibre onto a second mandrel.5. The process as claimed in claim 1 , wherein the coating is an interphase ...

Подробнее
17-03-2022 дата публикации

SILICON TO SILICON CARBIDE CONVERSION FOR CERAMIC MATRIX COMPOSITE FABRICATION

Номер: US20220081368A1
Принадлежит:

Disclosed are techniques and methods for producing silicon carbide and ceramic matrix composites from hydrocarbons. In one aspect, a method includes preforming a shape using silicon carbide fibers placed into a chamber, evacuating the chamber causing a silicon and polymer slurry to enter the chamber, and pressurizing the chamber causing the silicon and polymer slurry to permeate the silicon carbide fibers. The method includes heating the chamber to cause pyrolysis of the polymer and a hydrocarbon passed into the chamber into carbon and hydrogen gas. The carbon from the pyrolyzed polymer and hydrocarbon provide a coating of carbon on the silicon in the silicon and polymer slurry. The method includes heating the chamber to a higher temperature causing the silicon to melt and react with the carbon to form silicon carbide. The formed silicon carbide and the silicon carbide fibers form the ceramic matrix composite. 1. A method of producing a ceramic matrix composite , comprising:placing a silicon carbide preform in a chamber;evacuating the chamber using a vacuum to introduce a slurry mix of silicon particles and a polymer in the chamber to contact the silicon carbide preform;pressurizing the chamber causing the silicon particles and polymer slurry to permeate between the silicon carbide fibers of the silicon carbide preform;heating the chamber to a first elevated temperature causing pyrolysis of the polymer into carbon and hydrogen gas to densify silicon particles between the silicon carbide fibers of the silicon carbide preform;passing a hydrocarbon into the chamber, wherein the heated chamber causes pyrolysis of the hydrocarbon into carbon and hydrogen gas and to cause the carbon from the pyrolyzed polymer and the carbon from the pyrolyzed hydrocarbon to be coated on the silicon particles between the silicon carbide fibers of the silicon carbide preform;stopping the passing the hydrocarbon when a desired molar ratio of silicon:carbon is reached; andheating the chamber ...

Подробнее
27-02-2020 дата публикации

EROSION-RESISTANT CERAMIC MATERIAL, POWDER, SLIP AND COMPONENT

Номер: US20200062652A1
Принадлежит:

The use of magnesium oxide, reactive alumina and aluminium oxide as a base provides for a new erosion-resistant material upon sintering. 1. A powder comprising (in % by weight):aluminum oxide in an amount of from 92.0% to <99.0%; andspinel in a proportion of 8.0%-1.0%.2. A powder comprising (in % by weight):from 96.0% to 99.9% of aluminum oxide; andreactive magnesium oxide in an amount of from 0.1% to 4.0%, to form spinel with the aluminum oxide present.3. The powder as claimed in claim 1 , which contains γ′-aluminum oxide.4. The powder as claimed in claim 1 , which contains α-alumina as aluminum oxide.5. The powder as claimed in claim 1 , which contains tabular aluminas as aluminum oxide.6. The powder as claimed in claim 1 , which contains reactive alumina as aluminum oxide as an additive for reducing a water content and for improving a processability in a ceramic slip claim 1 , in a proportion of from 10% by weight to 25% by weight.7. The powder as claimed in claim 5 , wherein the tabular alumina has at least three different particle size fractions.8. The powder as claimed in claim 6 , wherein the reactive alumina has at least two different particle size fractions.9. The powder as claimed in claim 5 , wherein the tabular aluminas have a maximum particle size of up to 10 mm.10. The powder as claimed in claim 2 , wherein the reactive magnesium oxide has a citric acid activity of from 10 seconds to 250 seconds.11. A ceramic produced using a powder as claimed in claim 1 , comprising at least (in % by weight):aluminum oxide as matrix material in an amount of from 92.0% to <99.0%; andspinel in a proportion of 8.0%-1.0%.12. The ceramic as claimed in claim 11 , wherein aluminum oxide is present as α-alumina.13. The ceramic as claimed in claim 11 , wherein aluminum oxide is present as tabular aluminas.14. The ceramic as claimed in claim 11 , wherein aluminum oxide is present as reactive alumina in order to reduce a water content and to improve a processability in a ceramic ...

Подробнее
09-03-2017 дата публикации

ALUMINA-BASED FILLING SAND FOR SLIDING NOZZLE

Номер: US20170066689A1
Принадлежит:

An alumina-based filling sand for sliding nozzle comprising at least 50 wt % of mixed sand including 20 to 90 vol % of alumina sand and 80 to 10 vol % of silica sand, wherein the alumina sand has surface irregularities of 1.3 or less and comprises 50 wt % or more of an AlOcomponent. 1. An alumina-based filling sand for sliding nozzle comprising at least 50 wt % of mixed sand including 20 to 90 vol % of alumina sand and 80 to 10 vol % of silica sand , wherein the alumina sand has surface irregularities of 1.3 or less and comprises 50 wt % or more of an AlOcomponent.2. The alumina-based filling sand for sliding nozzle of claim 1 , wherein the alumina sand has 8 wt % or less of FeO.3. The alumina-based filling sand for sliding nozzle of claim 1 , wherein the alumina sand has an average particle diameter within a range from 0.2 to 1.0 mm.4. The alumina-based filling sand for sliding nozzle of claim 1 , wherein the silica sand had an average particle diameter within a range from 0.2 to 1.0 mm.5. The alumina-based filling sand for sliding nozzle of claim 1 , wherein the silica sand and the alumina sand both are coated with carbon claim 1 , or either the silica sand or the alumina sand is coated with carbon.6. The alumina-based filling sand for sliding nozzle of claim 1 , wherein the alumina sand has surface irregularities of 1.2 or less. The present invention relates to alumina-based filling sand for sliding nozzle. More specifically, the present invention relates to the alumina-based filling sand for sliding nozzle that forms an opening where the filling sand falls through smoothly without being molten and sintered by a molten metal (molten steel) poured into a ladle used in a steel mill and that does not allow the molten steel to permeate into the filling sand (in other words, the sand itself in a sliding nozzle is not melted and sintered by the molten steel and does not allow the molten steel to permeate into gaps between sand particles).A ladle for receiving molten ...

Подробнее
11-03-2021 дата публикации

INFILTRATION SYSTEM FOR A CMC MATRIX

Номер: US20210070663A1

A system of infiltration for producing a ceramic matrix composite (CMC) is provided in which a slurry is applied to an outer surface of a porous preform. The porous preform includes a framework of ceramic fibers. The slurry may include a solvent and a particulate. The porous preform may be infiltrated with the slurry. The particulate in the slurry may include a plurality of coarse particles and a plurality of fine particles. The coarse particles may have a d50 factor of 10-20 microns. The fine particles may have a d50 factor of 0.5-3 microns. A ratio of coarse particles to fine particles in the slurry may be between 1.5:1 and 4:1, inclusively. 1. A method of infiltration for producing a ceramic matrix composite (CMC) , the method comprising:applying a slurry to an outer surface of a porous preform comprising a framework of ceramic fibers, the slurry comprising a solvent and a particulate; andinfiltrating the porous preform with slurry, wherein the particulate in the slurry comprises a plurality of coarse particles and a plurality of fine particles, wherein the coarse particles have a d50 factor of 10-20 microns, wherein the fine particles have a d50 factor of 0.5-3 microns, and wherein a ratio of coarse particles to fine particles in the slurry is between 1.5:1 and 4:1, inclusively.2. The method of claim 1 , wherein a pH of the slurry is between 9 and 12 claim 1 , inclusively.3. The method of claim 1 , wherein the particulate comprises at least 55% of the slurry by volume.4. The method of claim 1 , wherein the particulate comprises at least 70% of the slurry by volume.5. The method of claim 1 , wherein the particulate includes silicon carbide.6. The method of claim 5 , wherein the solvent includes water and organic solvents.7. The method of claim 1 , wherein the porous preform is in a shape of a component for a gas turbine engine.8. The method of claim 1 , further comprising positioning the porous preform in a vacuum chamber; covering at least a portion of porous ...

Подробнее
15-03-2018 дата публикации

FAST-DENSIFIED CERAMIC MATRIX COMPOSITE

Номер: US20180072631A1
Автор: Pope Edward J.A.
Принадлежит:

A densified ceramic matrix composite (CMC) material densified CMC exhibits superior strength and toughness, relative to prior CMCs The material can be made by a process that includes impregnating a set of ceramic fibers with a non-fibrous ceramic material, resulting in a precursor matrix, stabilizing the precursor matrix, resulting in a stabilized matrix, and densifying the stabilized matrix using a frequency assisted sintering technology (FAST) process, resulting in the densified CMC material. 1. A FAST densified ceramic matrix composite material characterized by a porosity of less than 5%.2. The FAST densified ceramic matrix composite material of claim 1 , comprising a SiC fiber in a ceramic SiC matrix.3. The FAST densified ceramic matrix composite material of claim 1 , comprising a carbon fiber in a ceramic SiC matrix.4. The FAST densified ceramic matrix composite material of claim 1 , characterized by a porosity of less than 1%.5. The FAST densified ceramic matrix composite material of claim 1 , characterized by a porosity of less than 3%.6. The FAST densified ceramic matrix composite material of claim 1 , comprising an interface coating selected from pyrolytic carbon (PyC) or boron nitride (BN).7. The FAST densified ceramic matrix composite material of claim 1 , characterized by a bulk density greater than 3 g/cm. The present application is a divisional of application Ser. No. 15/372,212 filed Dec. 7, 2016, which claims priority under 35 U.S.C. §119(e) to provisional application Ser. No. 62/264,814 filed Dec. 8, 2015, which applications are incorporated herein by reference in their entireties.This invention was made with government support under contract N00014-13-P-1132 awarded by the Office of Naval Research (ONR). The government has certain rights in the invention.The present disclosure relates to methods and apparatus for fabricating ceramic matrix composites, and to the materials produced thereby.Ceramic matrix composites (CMCs) combine a ceramic fiber (e. ...

Подробнее
07-03-2019 дата публикации

REGENERATIVE BURNER MEDIA

Номер: US20190071362A1
Автор: Osborne Brian
Принадлежит:

A high strength ceramic body for use in a regenerative burner media bed, comprising a generally spherical refractory portion and a plurality of irregular aggregate portions distributed randomly throughout the generally spherical portion. The aggregate portions are selected from the group comprising tabular alumina, white fused alumina, mullite, chamotte, and combinations thereof. The generally spherical portion has a porosity of less than 1 percent and is more than 99.5 weight percent alumina. 1. A sintered , generally spherical ceramic body , comprising:a generally spherical alumina portion defining a matrix; anda plurality of aggregate bodies distributed throughout the matrix;wherein the aggregate bodies are made of a material selected from the group comprising tabular alumina, white fused alumina, mullite, chamotte and combinations thereof;wherein the respective aggregate bodies are no more than 5 mesh in diameter;wherein the matrix has a porosity of less than 3 percent;2. The sintered body of wherein the body has a porosity of less than 1 percent.3. The sintered body of herein the sintered body has a generally truncated prolate spheroid shape.4. The sintered body of wherein the diameter is about 19 millimeters.5. The sintered body of wherein the respective aggregate bodies are no more than 20 mesh in diameter.6. The sintered body of wherein the respective aggregate bodies are no more than 20 mesh in diameter.7. The sintered body of wherein the matrix has a silica content of between about 0.1 and 0.3 weight percent distributed substantially homogeneously therethroughout;wherein the matrix has a titania content of between about 0.1 and 0.5 weight percent distributed substantially homogeneously therethroughout;wherein the matrix has a calcia content of between about 0.05 and 0.2 weight percent distributed substantially homogeneously therethroughout;wherein the matrix has a soda content of between about 0.1 and 0.5 weight percent distributed substantially ...

Подробнее
07-03-2019 дата публикации

ARTICLES FOR CREATING HOLLOW STRUCTURES IN CERAMIC MATRIX COMPOSITES

Номер: US20190071363A1
Принадлежит:

The present disclosure relates to a method of fabricating a ceramic composite components. The method may include providing at least a first layer of reinforcing fiber material which may be a pre-impregnated fiber. An additively manufactured component may be provided on or near the first layer. A second layer of reinforcing fiber, which may be a pre-impregnated fiber may be formed on top the additively manufactured component. A precursor is densified to consolidates at least the first and second layer into a densified composite, wherein the additively manufactured material defines at least one cooling passage in the densified composite component. 1. A method of fabricating a composite component comprising:at least partially covering a core having an organic binder and at least a silicon component with a reinforcing fiber material, wherein the core includes at least one portion having a non-linear geometry.2. The method of fabricating a composite component of claim 1 , wherein the silicon component comprises at least one of Si claim 1 , SiO claim 1 , and SiO2.3. The method of fabricating a composite component of claim 1 , further comprising: performing an infiltration process with a ceramic matrix precursor material claim 1 , wherein the precursor is densified and consolidates at least a first and second layer of the reinforcing fiber material into a densified composite claim 1 , wherein the core defines at least one cooling passage in the densified composite component.4. The method of fabricating a composite component of claim 1 , wherein the reinforcing fiber material is pre-impregnated with a ceramic matrix precursor material.5. The method of fabricating a composite component of claim 1 , wherein covering the core further comprises:placing the core on at least one first layer of the reinforced fiber material, wherein the fiber material is pre-impregnated with a ceramic matrix precursor material;adding a second layer of pre-impregnated reinforcing fiber material on ...

Подробнее
07-03-2019 дата публикации

Rapid ceramic matrix composite fabrication of aircraft brakes via field assisted sintering

Номер: US20190072144A1
Принадлежит: Goodrich Corp

A method of making a ceramic matrix composite (CMC) brake component may include the steps of applying a pressure to a mixture comprising ceramic powder and chopped fibers, pulsing an electrical discharge across the mixture to generate a pulsed plasma between particles of the ceramic powder, increasing a temperature applied to the mixture using direct heating to generate the CMC brake component, and reducing the temperature and the pressure applied to the CMC brake component. The ceramic powder may have a micrometer powder size or a nanometer powder size, and the chopped fibers may have an interphase coating.

Подробнее
18-03-2021 дата публикации

PRODUCTION METHOD FOR COMPOSITE MATERIAL

Номер: US20210078910A1
Принадлежит: IHI CORPORATION

A production method for a composite material, which includes a porous substrate and a silicon carbide film formed on a surface of a material forming the porous substrate, includes causing a silicon source containing a silicon atom, a chlorine source containing a chlorine atom, and a carbon source containing a carbon atom to react with each other to form the silicon carbide film on the surface of the material forming the porous substrate. 1. A production method for a composite material including a porous substrate and a silicon carbide film formed on a surface of a material forming the porous substrate , the method comprising:causing a silicon source containing a silicon atom, a chlorine source containing a chlorine atom, and a carbon source containing a carbon atom to react with each other to form the silicon carbide film on the surface of the material.2. The production method for a composite material according to claim 1 , wherein a product generated by bringing the silicon source into contact with the chlorine source reacts with a gas of the carbon source.3. The production method for a composite material according to claim 2 , wherein the product is a gas containing SiClor SiCl.4. The production method for a composite material according to claim 1 , wherein the silicon source is a solid silicon and the chlorine source is a Clgas.5. The production method for a composite material according to claim 1 , wherein the silicon carbide film is formed by the reaction using a chemical vapor deposition method or a chemical vapor infiltration method.6. The production method for a composite material according to claim 1 , wherein a reaction pressure for forming the silicon carbide film is 0.1 to 20 Torr (13 to 2660 Pa).7. The production method for a composite material according to claim 1 , wherein the carbon source is at least one hydrocarbon of CH claim 1 , CH claim 1 , CH claim 1 , CH claim 1 , CH claim 1 , CH claim 1 , and CCl.8. The production method for a composite ...

Подробнее
18-03-2021 дата публикации

SENSOR ELEMENT, GAS SENSOR, AND METHOD FOR MANUFACTURING SENSOR ELEMENT

Номер: US20210080423A1
Принадлежит: NGK SPARK PLUG CO., LTD.

A sensor element () having a laminate structure, and extending in an axial direction AX, the sensor element including a first and second ceramic layers (B, ) disposed apart from each other in a laminating direction; a third ceramic layer () intervening between the first and second ceramic layers in the laminating direction and having a hollow space (G) formed therein; and an internal space which is the hollow space surrounded by the first ceramic layer, the second ceramic layer, and the third ceramic layer, wherein, at a periphery () of the internal space, a fourth ceramic layer () containing as a main component a ceramic material different from that contained as a main component in the first and third ceramic layers intervenes between the first ceramic layer and the third ceramic layer which are exposed to the internal space. Also disclosed is a method for manufacturing the gas sensor element. 1. A sensor element having a laminate structure , and extending in an axial direction , the sensor element comprising:a first ceramic layer and a second ceramic layer disposed apart from each other in a laminating direction;a third ceramic layer intervening between the first ceramic layer and the second ceramic layer in the laminating direction and having a hollow space formed therein; andan internal space which is the hollow space surrounded by the first ceramic layer, the second ceramic layer, and the third ceramic layer,wherein, at a periphery of the internal space, a fourth ceramic layer containing as a main component a ceramic material different from a ceramic material contained as a main component in the first ceramic layer and the third ceramic layer intervenes between the first ceramic layer and the third ceramic layer which are exposed to the internal space.2. The sensor element as claimed in claim 1 , wherein the fourth ceramic layer has a lower shrinkage-starting temperature than that of the first ceramic layer and the third ceramic layer.3. The sensor element as ...

Подробнее
22-03-2018 дата публикации

SIALON SINTERED BODY, METHOD FOR PRODUCING THE SAME, COMPOSITE SUBSTRATE, AND ELECTRONIC DEVICE

Номер: US20180079690A1
Принадлежит: NGK Insulators, Ltd.

A SiAlON sintered body according to the present invention is represented by SiAlON(0 Подробнее

31-03-2022 дата публикации

ALUMINA CERAMIC

Номер: US20220098111A1
Автор: FUKASAWA Yuji
Принадлежит: CoorsTek KK

Provided is an alumina ceramic with a low secondary electron emission coefficient and suitable for components of a high frequency generator, a plasma generator and so on. The alumina ceramic contains alumina as a main component, and at least two kinds of elements selected from an alkaline earth metal and from an element belonging to period 3, 4 or 5. The alkaline earth metal and the element belonging to period 3, 4 or 5 have a higher first ionization energy than aluminum. An electronegativity difference between the alkaline earth metal and the element belonging to period 3, 4 or 5 is 0 or more and 0.6 or less. A ratio (x/y) of the grain boundary area (x) to the grain area (y) in the alumina ceramic is 0.0001 to 0.001. 1. An alumina ceramic comprising alumina as a main component , and at least two kinds of elements selected from an alkaline earth metal and from an element belonging to period 3 , 4 or 5 , whereinthe alkaline earth metal and the element belonging to period 3, 4 or 5 have a higher first ionization energy than aluminum,an electronegativity difference between the alkaline earth metal and the element belonging to period 3, 4 or 5 is 0 or more and 0.6 or less, anda ratio (x/y) of the grain boundary area (x) to the grain area (y) in the alumina ceramic is 0.0001 to 0.001.2. The alumina ceramic according to claim 1 , wherein the density is 3.8 g/cmor more and 4.0 g/cmor less.3. The alumina ceramic according to claim 1 , wherein the alumina ceramic is used in a high frequency generator and a plasma generator.4. The alumina ceramic according to claim 2 , wherein the alumina ceramic is used in a high frequency generator and a plasma generator. The present invention relates to alumina ceramic used as components of a high frequency generator and a plasma generator.Dielectric ceramic is used as components of a high frequency generator and a plasma generator. Utilization of the dielectric ceramics has recently become popular in a region of 3 GHz or higher, and low ...

Подробнее
31-03-2022 дата публикации

Systems and Methods for Thermally Processing CMC Components

Номер: US20220098117A1
Принадлежит:

Systems and methods for thermally processing composite components are provided. In one exemplary aspect, a system includes a thermal system, a mover device, and a control system. The system also includes a plurality of vessels in which one or more components may be placed. The vessels are similarly shaped and configured. A vessel containing the one or more components therein may be mounted into a chamber defined by the thermal system during thermal processing. The thermal system and vessels include features that allow components to be thermally processed, e.g., compacted, burnt-out, and densified via a melt-infiltration process, a polymer impregnation and pyrolyzing process, or a chemical vapor infiltration process. utilizing the same thermal system and common vessel design. The control system may control the thermal system and mover device to automate thermal processing of the composite components. 19.-. (canceled)10. A system for manufacturing a composite component , the system comprising:a thermal system defining a chamber;a plurality of vessels each removably mountable within the chamber, wherein the composite component is removably insertable into a volume of any one of the plurality of vessels;a mover device for inserting and removing the composite component into and from any one of the plurality of vessels and mounting and removing any one of the plurality of vessels to and from the chamber of the thermal system; control the mover device to mount a first vessel of the plurality of vessels having the composite component in a first state into the chamber of the thermal system;', 'activate the thermal system to perform a first thermal process to transition the composite component from the first state to a second state;', 'control the mover device to remove the first vessel having the composite component in the second state from the chamber of the thermal system;', 'control the mover device to insert the composite component in the second state into a second ...

Подробнее
31-03-2022 дата публикации

METHOD OF PRESSURE SINTERING AN ENVIRONMENTAL BARRIER COATING ON A SURFACE OF A CERAMIC SUBSTRATE

Номер: US20220098122A1
Принадлежит: HONEYWELL INTERNATIONAL INC.

This disclosure provides a method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate to form an article. The method includes the steps of etching the surface of the ceramic substrate to texture the surface, disposing an environmental barrier coating on the etched surface of the ceramic substrate wherein the environmental barrier coating includes a rare earth silicate, and pressure sintering the environmental barrier coating on the etched surface of the ceramic substrate in an inert or nitrogen atmosphere at a pressure of greater than atmospheric pressure such that at least a portion of the environmental barrier coating is disposed in the texture of the surface of the ceramic substrate thereby forming the article. 1. A method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate to form an article , said method comprising the steps of:A. etching the surface of the ceramic substrate to texture the surface;B. disposing an environmental barrier coating on the etched surface of the ceramic substrate wherein the environmental barrier coating comprises a rare earth silicate and is free of cordierite; andC. pressure sintering the environmental barrier coating on the etched surface of the ceramic substrate in an inert or nitrogen atmosphere at a pressure of from about 20 psi to about 100 psi such that at least a portion of the environmental barrier coating is disposed in the texture of the surface of the ceramic substrate and such that the environmental barrier coating is disposed on and in direct contact with the substrate thereby forming the article;wherein said step of pressure sintering is conducted in a furnace.2. The method of wherein the environmental barrier coating is disposed on and in direct contact with the surface of the ceramic substrate such that there is no oxide layer and/or silica layer disposed between the environmental barrier coating and the surface of the ceramic substrate.3. ...

Подробнее
12-03-2020 дата публикации

Method of Forming CMC Component Cooling Cavities

Номер: US20200079697A1
Принадлежит:

A method of forming a composite component. The method includes laying up a plurality of composite plies to form a composite ply core. Another step of the method includes partially processing the composite ply core to form a green state core. The method further includes machining a cooling cavity on an exterior surface of the green state core. Additionally, the method includes inserting a filler material within the cooling cavity. A further step includes wrapping composite plies around the green state core and filler material to secure the filler material and form an outer enclosure. In one step, the method includes processing the green state core and outer enclosure to form the composite component. 1. A method of forming a composite component , comprising:laying up a plurality of composite plies to form a composite ply core;partially processing the composite ply core to form a green state core;machining a cooling cavity on an exterior surface of the green state core;inserting a filler material within the cooling cavity;wrapping composite plies around the green state core and filler material to secure the filler material and form an outer enclosure; andprocessing the green state core and outer enclosure to form the composite component.2. The method of claim 1 , further comprising:boring a film hole to fluidly couple the cooling cavity to an outer surface of the outer enclosure.3. The method of claim 1 , further comprising:machining a second cooling cavity on the exterior surface of the green state core; andinserting a second filler material within the second cooling cavity.4. The method of claim 3 , further comprising:machining a cross-over hole on the exterior surface of the green state core between the cooling cavity and the second cooling cavity.5. The method of claim 4 , further comprising:inserting a third filler material within the cross-over hole.6. The method of claim 1 , wherein at least one of the composite plies is a prepreg ply.7. The method of claim 1 , ...

Подробнее
25-03-2021 дата публикации

FLEXIBLE CERAMIC FILM

Номер: US20210086482A1
Принадлежит:

In one aspect, a film is disclosed, which comprises at least one ceramic material, and a binder mixed with the ceramic material, where the film has a thickness in a range of about 0.01 mm to about 2.5 mm. The film is flexible with a minimum bend radius that is equal to or less than about 2 times a thickness of the film. By way of example, the minimum bend radius of the flexible film can be in a range of about the thickness of the film to about twice the thickness of the film. For example, in some embodiments, the minimum bend radius of the film can be in a range of about 0.02 mm to about 5 mm. 1. A film comprising:at least one ceramic material, said ceramic material comprising any of porcelain, stoneware, earthenware and terracotta, anda binder mixed with said ceramic material,wherein said film has a thickness in a range of about 0.01 mm to about 2.5 mm.2. The film of claim 1 , wherein said binder comprises any of ammonium polyacrylate claim 1 , starch claim 1 , cellulose claim 1 , and latex.3. The film of claim 1 , wherein said film further comprises a plasticizer.4. The film of claim 3 , wherein said plasticizer comprises any of Poly(methacrylic acid sodium salt) or ammonium salt Glycerine.5. The film of claim 1 , wherein said film is flexible with a minimum bend radius equal to or less than about 2 times a thickness of the film.6. The film of claim 5 , wherein said bend radius of the film is in a range of about a thickness of the film to about 2 times a thickness of the film.7. The film of claim 1 , wherein said film is flexible and exhibits a minimum bend radius in a range of about 0.02 to about 5 mm.8. The film of claim 7 , wherein said film retains said bend radius for at least about six months.9. The film of claim 8 , wherein said film retains said bend radius for a time duration in a range of about six months to about 2 years.10. The film of claim 1 , further comprising a glass powder.11. The film of claim 10 , wherein said glass powder comprises at least ...

Подробнее
25-03-2021 дата публикации

EROSION-RESISTANT CERAMIC MATERIAL, POWDER, SLIP AND COMPONENT

Номер: US20210087115A1
Принадлежит:

The use of magnesium oxide, reactive alumina and aluminium oxide as a base provides for a new erosion-resistant material upon sintering. 1. A powder comprising (in % by weight):from 96.0% to 99.9% of aluminum oxide; andreactive magnesium oxide in an amount of from 0.1% to 4.0%, to form spinel with the aluminum oxide present.2. The powder as claimed in claim 1 , wherein the reactive magnesium oxide has a citric acid activity of from 10 seconds to 250 seconds.3. A ceramic produced using the powder as claimed in claim 1 , comprising at least (in % by weight):aluminum oxide as matrix material in an amount of from 92.0% to <99.0%; andspinel in a proportion of 8.0%-1.0%.4. The ceramic as claimed in claim 3 , wherein aluminum oxide is present as α-alumina.5. The ceramic as claimed in claim 3 , wherein aluminum oxide is present as tabular aluminas.6. The ceramic as claimed in claim 3 , wherein aluminum oxide is present as reactive alumina to reduce a water content and to improve a processability in a ceramic slip.7. A component comprising the ceramic as claimed in or produced from a powder or a slip.8. The component as claimed in claim 7 , wherein 90% of pores are smaller than 5 μm.9. The component as claimed in comprising aluminum oxide and spinel. This application is a divisional application of U.S. application Ser. No. 16/466,070, filed Jun. 03, 2019, and entitled “EROSION-RESISTANT CERAMIC MATERIAL, POWDER, SLIP AND COMPONENT,” which claims priority to PCT Application No. PCT/EP2017/078718, having a filing date of Nov. 9, 2017, which is based on German Application No. 10 2016 224 443.4, having a filing date of Dec. 8, 2016, the entire contents all of which are hereby incorporated by reference.The following relates to an erosion-resistant ceramic material, a powder, slip and a component.Ceramic heat shields (CHS) as example of components made of ceramic material display corrosion and erosion on the hot gas side during use. This process is due to the corrosion of the ...

Подробнее
21-03-2019 дата публикации

CERAMIC MATRIX COMPOSITE ARTICLES

Номер: US20190084891A1
Принадлежит:

A method for forming a ceramic matrix composite article includes laying up a first group of plies; laying up a second group of plies, the first and second groups of plies being adjacent to each other; compacting the first group of plies and the second group of plies in the same processing step; and performing a first infiltration process on the first group of plies. The method also includes performing a second infiltration process on the second group of plies, the first infiltration process being one of a melt infiltration process or a chemical vapor infiltration process, and the second infiltration process being the other of the melt infiltration process or the chemical vapor infiltration process. 1. A method for forming a ceramic matrix composite article comprising:laying up a first group of plies;laying up a second group of plies, the first and second groups of plies being adjacent to each other;compacting the first group of plies and the second group of plies in the same processing step;performing a first infiltration process on the first group of plies; andperforming a second infiltration process on the second group of plies, the first infiltration process being one of a melt infiltration process or a chemical vapor infiltration process, and the second infiltration process being the other of the melt infiltration process or the chemical vapor infiltration process.2. The method of claim 1 , wherein the first infiltration process is the melt infiltration process claim 1 , wherein the second infiltration process is the chemical vapor infiltration process claim 1 , and wherein performing the first infiltration process on the first group of plies comprises performing the first infiltration process on the first group of plies prior to performing the second infiltration process on the second group of plies.3. The method of claim 2 , further comprising:providing a barrier between a least a portion of the first group of plies and the second group of plies.4. The method ...

Подробнее
21-03-2019 дата публикации

CERAMIC MATRIX COMPOSITE ARTICLES

Номер: US20190084892A1
Принадлежит:

A ceramic matrix composite article includes a chemical vapor infiltration ceramic matrix composite base portion including ceramic fiber reinforcement material in a ceramic matrix material having between 0% and 5% free silicon. The ceramic matrix composite article further includes a melt infiltration ceramic matrix composite covering portion including a ceramic fiber reinforcement material in a ceramic matrix material having a greater percentage of free silicon than the chemical vapor infiltration ceramic matrix composite base portion. 1. A ceramic matrix composite article comprising:a chemical vapor infiltration ceramic matrix composite base portion comprising ceramic fiber reinforcement material in a ceramic matrix material having between 0% and 5% free silicon; anda melt infiltration ceramic matrix composite covering portion comprising a ceramic fiber reinforcement material in a ceramic matrix material having a greater percentage of free silicon than the chemical vapor infiltration ceramic matrix composite base portion.2. The ceramic matrix composite article of claim 1 , wherein the chemical vapor infiltration ceramic matrix composite base portion has substantially 0% free silicon.3. The ceramic matrix composite article of claim 1 , wherein the melt infiltration ceramic matrix composite covering portion substantially completely surrounds at least a portion of the chemical vapor infiltration ceramic matrix composite base portion.4. The ceramic matrix composite article of claim 1 , wherein the article is configured for use in a gas turbine engine.5. The ceramic matrix composite article of claim 4 , wherein the article is a nozzle claim 4 , wherein the melt infiltration ceramic matrix composite covering portion includes a first melt infiltration ceramic matrix composite covering portion forming a radially inner band of the nozzle and a second melt infiltration ceramic matrix composite covering portion forming a radially outer band of the nozzle claim 4 , and wherein ...

Подробнее
05-05-2022 дата публикации

LAMINATED MEMBER

Номер: US20220134712A1
Принадлежит: AGC Inc.

A laminated member includes a glass member of which a linear transmittance at a wavelength of 850 nm is 80% or more, a bonding layer provided on or above the glass member, the bonding layer being constituted by a resin, and a ceramic member provided on or above the bonding layer, the ceramic member being constituted by an SiC member or an AlN member.

Подробнее
05-05-2022 дата публикации

Method for preparing continuous fiber-reinforced ceramic matrix composite by flash sintering technology

Номер: US20220135489A1
Принадлежит: Shanghai Jiaotong University

The present disclosure discloses a method for preparing a continuous fiber-reinforced ceramic matrix composite by flash sintering technology, including: placing a continuous ceramic fiber preform in a mold, adding a nano-ceramic powder, and subjecting the resultant to mechanical oscillation and press forming in sequence to obtain a green body; heating the green body to a preset temperature and applying an electric field with a preset electric field intensity, until occurrence of flash sintering; and converting a power supply from a constant voltage state to a constant current state, holding at the temperature and cooling to obtain the continuous fiber-reinforced ceramic matrix composite.

Подробнее
12-05-2022 дата публикации

DOUBLE-NEGATIVE-INDEX CERAMIC AEROGELS FOR THERMAL SUPERINSULATION

Номер: US20220144714A1

A ceramic aerogel includes a porous framework including interconnected double-paned wall structures of a ceramic material, wherein each double-paned wall structure includes a pair of walls spaced apart by a gap. 1. A ceramic aerogel comprising a porous framework including interconnected double-paned wall structures of a ceramic material , wherein each double-paned wall structure includes a pair of walls spaced apart by a gap.2. The ceramic aerogel of claim 1 , wherein the porous framework is hyperbolic structured.3. The ceramic aerogel of claim 1 , wherein the interconnected double-paned wall structures define pores within the porous framework.4. The ceramic aerogel of claim 1 , wherein the ceramic material is a metal claim 1 , non-metal claim 1 , or metalloid nitride.5. The ceramic aerogel of claim 1 , wherein the ceramic material is hexagonal boron nitride.6. The ceramic aerogel of claim 1 , wherein the ceramic material is a metal claim 1 , non-metal claim 1 , or metalloid carbide.7. The ceramic aerogel of claim 1 , wherein the ceramic material is β silicon carbide.8. The ceramic aerogel of claim 1 , wherein the ceramic material is a metal claim 1 , non-metal claim 1 , or metalloid oxide.9. The ceramic aerogel of claim 1 , wherein the ceramic material is a metal claim 1 , non-metal claim 1 , or metalloid silicate.10. The ceramic aerogel of claim 1 , wherein the gap between the pair of walls is in a range of 1 nm to 50 nm.11. The ceramic aerogel of claim 1 , wherein each of the pair of walls has a thickness in a range of 1 nm to 150 nm.12. The ceramic aerogel of claim 1 , wherein each of the pair of walls includes one or more layers of the ceramic material.13. The ceramic aerogel of claim 1 , having a negative Poisson's ratio.14. The ceramic aerogel of claim 1 , having a negative linear thermal expansion coefficient.15. The ceramic aerogel of claim 1 , having a density of 50 mg/cmor less.16. The ceramic aerogel of claim 1 , having a maximum elastic strain of 50% or ...

Подробнее
28-03-2019 дата публикации

METHOD FOR MANUFACTURING CERAMIC MATRIX COMPOSITE

Номер: US20190092699A1
Принадлежит:

The present approach relates to the fabrication of a composite material via a multi-step heating process. In one heating stage an internal region of a preform is heated by application of electro-magnetic radiation. In another heating stage, a region near the surface of the preform is heated from the exterior inward. 1. A method to create a composite material , comprising:heating a first region of a preform comprising a plurality of plies via electro-magnetic radiation to a higher temperature than the remainder of the preform; andheating a second region of the preform via an isothermal source, wherein the heating is performed from the exterior inward, resulting in a final structure that comprises a minimum ply porosity of less than 10%.2. The method of claim 1 , wherein the minimum porosity is less than 8%.3. The method of claim 1 , wherein the second region of the preform comprises a region less than or equal to 2 mm from the surface of the preform.4. The method of claim 1 , wherein the step of heating the first region comprises performing a cold wall chemical vapor infiltration (CVI) on the preform.5. The method of claim 4 , wherein the step of heating the second region comprises performing an isothermal CVI on the preform.6. The method of claim 1 , wherein a plurality of fibers in the interior of the preform have higher conductivity than fibers proximate the surface of the preform.7. The method of claim 6 , wherein the plurality of fibers are held together via a resin.8. The method of claim 7 , wherein heating the first region of the preform results in a burnout of the resin provided in the preform to form a char comprising carbon claim 7 , silicon carbide claim 7 , silicon oxides claim 7 , or any combination thereof.9. The method of claim 1 , wherein the preform further comprises a plurality of slurry particles spacing apart fibers of the preform claim 1 , wherein the plurality of slurry particles comprise a semiconductor material.10. The method of claim 9 , ...

Подробнее