Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 12400. Отображено 199.
27-09-2011 дата публикации

СПОСОБ МОДИФИЦИРОВАНИЯ ДОЭВТЕКТИЧЕСКИХ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ

Номер: RU2430176C2

Изобретение относится к литейному производству, а именно к модифицированию доэвтектических алюминиево-кремниевых сплавов. Способ включает введение в перегретый до 850-895°С расплав модифицирующей добавки, в качестве которой в расплав вводят кобальт в составе лигатуры Al-Co. После растворения лигатуры температуру расплава понижают до 750°С. В частных случаях осуществления изобретения содержание кобальта в лигатуре Al-Co составляет 3,0%. Получаются алюминиево-кремниевые сплавы, в которых достигнут высокий эффект измельчения выделений эвтектического кремния, повышается плотность сплавов и достигаются стабильные во времени механические свойства литых изделий. 1 з.п. ф-лы, 1 табл.

Подробнее
24-07-2024 дата публикации

ДЕТАЛЬ ИЗ ВЫСОКОПРОЧНОГО КОМПОЗИТНОГО МОДИФИЦИРОВАННОГО АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Номер: RU2823557C2

Изобретение относится к металлургии, а именно к получению деталей из высокопрочного композитного алюминиевого сплава. Способ получения детали из модифицированного алюминиевого сплава включает стадии S1-S5. На стадии S1 и S2 обеспечивают расплав алюминиевого сплава и модификатор соответственно. Содержание модификатора составляет 0,4-0,6 мас.% от общего количества модифицированного алюминиевого сплава. Модификатор представляет собой комбинацию из алюминиевого сплава, содержащего редкоземельный металл, и лигатуры алюминий-титан или из алюминиевого сплава, содержащего редкоземельный металл, и лигатуры алюминий-титан-бор, при этом алюминиевый сплав, содержащий редкоземельный металл, содержит стронций, титан или титан и бор, причем массовое соотношение общего количества редкоземельного металла: стронция:титана или титана и бора составляет 1:(0,1-1,2):(0,1-1,2), редкоземельный металл в алюминиевом сплаве, содержащем редкоземельный металл, представляет собой один или более металлов, выбранных из ...

Подробнее
10-10-2015 дата публикации

СПОСОБ ПОЛУЧЕНИЯ АВТОМАТНОГО АЛЮМИНИЕВОГО СПЛАВА, СОДЕРЖАЩЕГО МАГНИЙ И СВИНЕЦ

Номер: RU2564643C2

Изобретение относится к цветной металлургии, в частности к производству деформируемых автоматных сплавов на основе алюминия, содержащих магний и свинец. Способ включает загрузку в печь и расплавление всех предусмотренных компонентов шихты, кроме магния и свинца, которые вводят в расплав в виде лигатуры, содержащей 70-40% магния и 30-60% свинца, после чего расплав перемешивают, рафинируют, отстаивают и кристаллизуют. Способ позволяет наиболее точно выполнять требования международных стандартов по содержанию свинца и магния в автоматных сплавах за счет значительного снижения брака по химическому составу. 1 табл.

Подробнее
10-12-2003 дата публикации

СПЛАВ НА ОСНОВЕ МАГНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2218438C2

Изобретение относится к сплавам на основе магния, в частности к составу магниевых сплавов и способам их получения, которые находят широкое применение в автомобильной промышленности. Предложен сплав на основе магния, содержащий следующие компоненты, вес.%: алюминий 2,5-3,4, цинк 0,11-0,25, марганец 0,24-0,34, кремний 0,8-1,1, магний - остальное. Предложен способ, включающий загрузку компонентов, заливку расплавленного магния и введение титансодержащего плава с флюсом при постоянном перемешивании. Загрузку легирующих компонентов: алюминия, цинка, марганца и кремния осуществляют в виде твердой лигатуры алюминий-цинк-марганец-кремний. Затем проводят заливку расплавленного магния, а перед введением титансодержащего плава с флюсом расплав нагревают, проводят выдержку при перемешивании. В частных воплощениях изобретения соотношение лигатуры к магнию составляет 1:(18-20), расплав нагревают до 720-740oС; выдержку проводят в течение 1-1,5 ч. Техническим результатом изобретения является снижение себестоимости ...

Подробнее
27-10-2003 дата публикации

СПЛАВ НА ОСНОВЕ МАГНИЯ И СПОСОБ ЕГО ОБРАБОТКИ В ЖИДКОМ, ТВЕРДОЖИДКОМ И ТВЕРДОМ СОСТОЯНИЯХ ДЛЯ ПОЛУЧЕНИЯ ИЗДЕЛИЙ С ОДНОРОДНОЙ МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ

Номер: RU2215057C2

Изобретение относится к цветной металлургии, в частности к получению сплавов на основе магния, и способам их обработки. Сплавы на основе магния используются в качестве конструкционного материала при изготовлении отливок, изделий и деформированных полуфабрикатов для применения в автомобильной, авиационной, ракетно-космической, электронной и других отраслях промышленности. Предложенный сплав содержит следующие компоненты, вес.%: цинк 0,1-30, легкие редкоземельные металлы (ЛРЗМ) 0,05-1,0, марганец 0,001-0,5, алюминий 0,001-0,1, железо 0, 0001-0,05, кремний 0,0001-0,05, магний остальное. Предложен способ обработки заявленного сплава, включающий приготовление шихты, приготовление расплава, введение лигатур магний-марганец, магний-цирконий, магний-иттрий и магний-ЛРЗМ, рафинирование расплава, его выстаивание и последующее литье. Перед введением в расплав лигатуры подогревают до температуры на 20-50oС ниже температуры неравновесного солидуса соответствующей лигатуры, при этом лигатуры магний-ЛРЗМ ...

Подробнее
10-03-2009 дата публикации

СПОСОБ МОДИФИЦИРОВАНИЯ ЭВТЕКТИЧЕСКИХ СИЛУМИНОВ

Номер: RU2348718C2

Изобретение относится к металлургии алюминиевых сплавов и может найти применение для модифицирования силуминов. Осуществляют расплавление силумина, последующий нагрев до температуры модифицирования и введение модификатора в расплавленный силумин при температуре модифицирования. Затем осуществляют перемешивание и выдержку расплава силумина с модификатором. Модифицирование силумина осуществляют фосфором в количестве 0,07% от веса силумина. Модификатор вводят в расплав в виде лигатуры Cu-10%P, a модифицирование проводят при температуре на 250-300°С выше температуры ликвидус сплава. Повышают длительность сохранения эффекта модифицирования эвтектических силуминов. 1 табл.

Подробнее
10-11-2007 дата публикации

СПОСОБ ПРОИЗВОДСТВА БЕЗУГЛЕРОДИСТЫХ ЛИТЕЙНЫХ ЖАРОПРОЧНЫХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ

Номер: RU2310004C2

Изобретение относится к области металлургии, в частности к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке безуглеродистых коррозионно-стойких литейных жаропрочных сплавов, предназначенных для литья лопаток стационарных энергетических и газоперекачивающих газотурбинных установок и других деталей с монокристаллической структурой. Техническим результатом является снижение потерь хрома на угар и окисление при выплавке сплавов, что позволит получать содержание хрома в готовом металле в нужных пределах за счет снижения содержания в сплаве кислорода (не более 0,0010%) и использовать при выплавке до 40 мас.% отходов, повысить жаростойкость сплава при сохранении содержания углерода, серы и азота. Способ включает расплавление в вакууме чистых шихтовых материалов, обезуглероживающее рафинирование с введением окислителя в атмосфере инертного газа и последующее введение в вакууме хрома, активных легирующих элементов, РЗМ и рафинирование кальцием. При этом после ...

Подробнее
03-05-2017 дата публикации

Способ получения слитков из бор-содержащего материала на основе алюминия

Номер: RU2618300C1

Изобретение относится к области металлургии, в частности к борсодержащим материалам на основе алюминия, получаемым в виде слитков и предназначено для получения листового проката, в том числе толщиной менее 0,3 мм, к которому предъявляются требования низкого удельного веса и повышенной прочности в сочетании с радиационнозащитными свойствами. Способ получения слита из сплава на основе алюминия, содержащего бор для изготовления листового проката, включает приготовление расплава алюминия, формирование в нем борсодержащих частиц, получение слитка путем кристаллизации расплава и его гомогенизацию, причем готовят алюминиевый расплав, содержащий от 3 до 4,6 мас.% меди, от 2,3 до 2,7 мас.% магния и от 0,3 до 0,7 мас.% марганца, бор вводят в расплав в виде лигатуры в количестве, обеспечивающем в структуре слитка образование не мене 5 об.% борсодержащих частиц, формирование которых осуществляют при температуре расплава в пределах от 940 до 1000°С в течение 30-5 мин с получением в структуре слитка ...

Подробнее
20-10-2004 дата публикации

ЛИГАТУРА ДЛЯ ТИТАНОВЫХ СПЛАВОВ

Номер: RU2238344C1

Изобретение относится к металлургии цветных металлов, в частности к производству лигатур, применяемых для легирования титановых сплавов. Предложена лигатура для получения титановых сплавов, содержащая следующие компоненты, мас.%: ванадий 26-35, молибден 26-35, хром 13-20, железо 0,1-0,5, цирконий 0,05-6,0, кремний максимум 0,35, максимум 0,2 каждого элемента из группы, содержащей кислород, углерод и азот. Техническим результатом изобретения является возможность получения высокооднородных по химическому составу высоколегированных титановых сплавов с содержанием алюминия не более 5 мас.%. 1 табл.

Подробнее
05-09-2017 дата публикации

Способ получения слитков и тонколистового проката из бор-содержащего алюминиевого сплава

Номер: RU2630185C1

Изобретение относится к области металлургии, в частности к борсодержащим алюминиевым сплавам, к которым предъявляют требования по поглощению нейтронного излучения в сочетании с низким удельным весом и высокой прочностью. Способ получения тонколистового проката из слитков борсодержащего алюминиевого сплава включает приготовление алюминиевого расплава, содержащего медь, введение бора в количестве от 2 до 2,8 масс. % в виде боридных частиц, получение слитка путем кристаллизации расплава, горячую прокатку, промежуточный отжиг, холодную прокатку, при этом в алюминиевый расплав вводят от 1,8 до 2,5 масс. % меди и от 1,4 до 2,2% марганца, литой слиток подвергают горячей прокатке при температуре от 400 до 450°C, а после холодной прокатки проводят отжиг при температуре от 360 до 400°C. Способ позволяет реализовать структуру тонколистового проката, обеспечивающую наилучшее сочетание эксплуатационных свойств, в частности прочности и пластичности. В частном случае способ позволяет получить прокат толщиной ...

Подробнее
10-08-2013 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СЕРОГО ЧУГУНА

Номер: RU2489511C2

Изобретение относится к области металлургии и может быть использовано для получения тонкостенных корпусных отливок ответственного назначения из серого чугуна в сельскохозяйственной, автомобильной, нефтегазовой и других отраслях машиностроения. Способ включает получение расплава, содержащего в качестве основных легирующих элементов углерод, кремний, марганец, хром, титан, цирконий, медь при следующем соотношении компонентов, мас.%: 2,9-3,6 углерода, 1.4-1.8 кремния, 0,2-0,5 марганца, 0,03-0,08 хрома, 0,03-0,08 титана, 0,02-0,10 циркония, 0,2-1,5 меди, железо - остальное, и введение в расплав на дно заливочного ковша 0,03-0,10 мас.% комплексной добавки на основе олова, содержащей, мас.%: 14 висмута, 14 селена, 9 бора, 7 сурьмы, 7 олова. Техническим результатом изобретения является улучшение обрабатываемости и обеспечение высокой прочности за счет стабилизации перлитной структуры в первичных дендритах и снижения склонности чугуна к образованию тройной фосфидно-цементитной эвтектики. 3 табл ...

Подробнее
27-12-2023 дата публикации

Способ получения сплавов на основе алюминия, содержащих тугоплавкие легирующие элементы

Номер: RU2810405C1

Изобретение относится к цветной металлургии, а именно к технологии производства сплавов на основе алюминия, содержащих тугоплавкие легирующие элементы, температура плавления которых превышает 1500 °С. Способ включает растворение лигатур тугоплавких металлов в перегретом расплаве алюминия, при этом введение лигатур тугоплавких металлов проводят перед перегревом расплава алюминия до 1000οС, после достижения этой температуры расплав перемешивают с интервалом 15-20 мин в течение 1-5 ч, охлаждая до температуры разливки. Технический результат заключается в увеличении скорости растворения и усвоения тугоплавких элементов или их соединений, сокращении общего времени плавки, и исключении наличия крупных нерастворившихся нежелательных включений тугоплавких элементов или их соединений, ухудшающих механические и коррозионные свойства, в готовом слитке. 1 ил.

Подробнее
20-06-2016 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ АЛЮМИНИЙ-СКАНДИЙ-ИТТРИЙ

Номер: RU2587700C1

Изобретение относится к области металлургии цветных металлов и может быть использовано для производства лигатуры алюминий-скандий-иттрий, применяемой для модифицирования алюминиевых сплавов. Способ получения лигатуры алюминий-скандий-иттрий включает приготовление флюса, содержащего смесь солей фторида иттрия, фторида алюминия, фторида скандия, фторида калия, хлорида магния, плавление алюминиевого сплава и флюса и осуществление высокотемпературной обменной реакции фторида скандия с алюминием в среде расплавленных галогенидов металлов, при этом флюс содержит компоненты в следующем соотношении, мас.%: фторид иттрия 3-10, фторид алюминия 11-15, фторид скандия 21-24, фторид калия 13-20, хлорид магния - остальное, причем в качестве восстановителя используют алюминиево-магниевый сплав, содержащий от 15 до 30% магния, который подают через приемник на пенокерамические фильтры через расплавленные фториды во встречном потоке аргона, выдерживают в тигле и затем разделяют расплав солей и алюминиево-скандиево-иттриевый ...

Подробнее
27-06-2012 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СПЛАВА НА ОСНОВЕ АЛЮМИНИЯ СИСТЕМЫ Al-Pb

Номер: RU2454472C1

Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец. В расплавленный в тигле алюминий с добавлением бериллиевой лигатуры вводят магний в количестве не более 3% от массы алюминия, одновременно готовят расплав алюминия с 10-16% свинца от массы алюминия. Затем расплав алюминия со свинцом переливают в расплав алюминия с магнием, перемешивают, разливают на гранулы путем истечения расплава через отверстие в дне тигля. Получают сплав, обладающий высокой степенью усвоения свинца и более равномерным распределением свинцовых включений в алюминии. 1 табл., 3 пр.

Подробнее
29-05-2019 дата публикации

АЛЮМИНИЕВЫЙ СПЛАВ

Номер: RU2689825C1

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, которые могут быть использованы, для получения термонагруженных деталей для автомобильной промышленности путем прессования выдавливанием, ковки или литья в многократные формы. Алюминиевый сплав содержит, мас.%: 0,2-1,8 Si, 0,2-1,8 Mg, 0,8-2,5 Mn, 0,2-1,5 Fe, 0,05-0,75 Zr, 0,03-0,18 Ti, необязательно, один или более из следующих элементов: макс. 0,1 Cr, макс. 0,05 Cu, 0,2-1,8 Zn, 0,02-0,5 Er; и, необязательно, 0,01-0,2 измельчающей зерно добавки, содержащей Ti и B; остальное - алюминий и неизбежные примеси. Изобретение направлено на получение сплава с повышенной термостойкостью при хороших значениях твердости. 3 н. и 18 з.п. ф-лы, 1 пр., 4 табл.

Подробнее
22-10-2021 дата публикации

СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВО-КРЕМНИЕВЫХ СПЛАВОВ

Номер: RU2757879C1

Изобретение относится к области цветной металлургии и может быть использовано при производстве алюминиево-кремниевых сплавов. Способ модифицирования алюминиево-кремниевых сплавов включает введение модификатора в расплав, перемешивание и выдержку, при этом в качестве модификатора используют прессовку, полученную из порошков с размером частиц 1-5 мкм, содержащую, мас. %: 40-60 композиционного порошка, состоящего из 28-30 Si и 70-72 Аl2O3, получаемого методом механически активированного самораспространяющегося высокотемпературного синтеза, 35-45 порошка силумина, 5-15 порошка меди или вольфрама. Изобретение позволяет повысить прочность алюминиево-кремниевого сплава в 1,2 раза, пластичность - в 2,5 раза и уменьшить пористость в 2-4 раза. 5 пр., 1 табл.

Подробнее
20-12-2002 дата публикации

СПОСОБ ВЫПЛАВКИ СПЛАВОВ МЕДЬ-ХРОМ-ЦИРКОНИЙ

Номер: RU2001102896A
Принадлежит:

Способ выплавки сплавов медь-хром-цирконий, включающий расплавление меди под слоем флюса, раскисление лигатурой, содержащей металл-раскислитель, введение хрома, например, в виде лигатуры с медью, отстаивание и разливку сплава, отличающийся тем, что раскисление ведут лигатурой магний-цирконий, а оставшуюся часть циркония вводят в виде лигатуры с медью после введения хрома.

Подробнее
10-03-2008 дата публикации

СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU2006131265A
Принадлежит:

... 1. Сплав на основе алюминия, содержащий литий, магний, бериллий, медь, цирконий, железо, никель, отличающийся тем, что сплав дополнительно содержит серебро, кремний, окись бериллия при следующем соотношении компонентов, мас.%: Литий 1,5-3,0 Магний 1,7-2,8 Бериллий 2,0-5,0 Медь 0,3-0,9 Цирконий 0,05-0,3 Железо 0,01-0,1 Никель 0,01-0, 1 Серебро 0,01-0,3 Кремний 0,01-0,1 Окись бериллия 0,1-0,5 Алюминий остальное 2. Способ получения сплава на основе алюминия, включающий загрузку в тигель вакуумной индукционной печи шихтовых материалов, за исключением магния и лития, расплавление их в вакууме, подачу гелия, введение в расплав лигатур Al-Mg и Al-Li, подогрев расплава с одновременным электромагнитным перемешиванием и слив расплава в атмосфере гелия в изложницу, отличающийся тем, что бериллий вводят в виде порошка с размером частиц не более 250 меш в струю сливаемого расплава.

Подробнее
10-03-2016 дата публикации

АЛЮМИНИЕВЫЙ СПЛАВ, ОБЛАДАЮЩИЙ УЛУЧШЕННОЙ УСТОЙЧИВОСТЬЮ К ОКИСЛЕНИЮ, УСТОЙЧИВОСТЬЮ К КОРРОЗИИ ИЛИ УЛУЧШЕННЫМ СОПРОТИВЛЕНИЕМ УСТАЛОСТИ, И ПРОДУКТ ИЗ УКАЗАННОГО СПЛАВА, ПОЛУЧЕННЫЙ ЛИТЬЕМ ПОД ДАВЛЕНИЕМ ИЛИ ЭКСТРУЗИЕЙ

Номер: RU2562589C9

Изобретение относится к алюминиевым сплавам, полученным без вреда для окружающей среды и имеющим отличную устойчивость к окислению. Способ получения продукта из алюминиевого сплава включает получение магниевой лигатуры путем введения в расплав магния частиц на основе Ca размером 0,1-500 мкм в количестве 0,001-30 мас.%, введение полученной лигатуры в расплав алюминия в количестве 0,0001-30 мас. частей на 100 мас. частей Al, выдерживание или перемешивание расплава в течение от 1 до 400 мин и последующую экструзию или литье под давлением полученного сплава. При этом полученный алюминиевый сплав содержит от 0,1 мас.% до 15 мас.% магния и кальций в количестве от 0,0001 мас. части до 10 мас. частей на 100 мас. частей алюминия, причем кальций содержится в алюминиевой матрице в виде по меньшей мере одного из соединений, выбранных из MgCa, AlCa, AlCa, (Mg,Al)Ca. Техническим результатом изобретения является повышение устойчивости сплава к окислению. 5 н. и 15 з.п. ф-лы, 7 табл., 21 ил.

Подробнее
08-02-2018 дата публикации

Лигатура алюминий-титан-бор

Номер: RU2644221C1

Изобретение относится к металлургии алюминия, в частности к лигатурам для модифицирования алюминия и его сплавов. Лигатура алюминий-титан-бор для модифицирования алюминия и его сплавов содержит не менее 90 вес.% частиц диборида титана и не более 10 вес.% частиц алюминида титана или борида алюминия, при этом соотношение титана к бору в лигатуре составляет (1,918-2,356):1. Изобретение направлено на сокращение расхода титансодержащей легирующей присадки, повышение модифицирующей способности лигатуры и физико-механических характеристик модифицированного алюминия. 1 пр., 5 табл., 2 ил.

Подробнее
10-03-2013 дата публикации

СПОСОБ ВНЕПЕЧНОГО МОДИФИЦИРОВАНИЯ ЛЕГКИХ СПЛАВОВ

Номер: RU2011136570A
Принадлежит:

... 1. Способ внепечного модифицирования зеренной структуры слитков легких сплавов, включающий после дегазации и фильтрования, введение в поток расплава на пути в кристаллизатор модифицирующего прутка, содержащий переходные металлы или их соединения, кавитационную обработку расплава, отличается тем, что с целью разрушения агломератов активных инокуляторов и ускорения растворения прутка поток расплава, подаваемый из миксера в кристаллизатор по литейному желобу, проходит через специальную литейную коробку, в которую одновременно подается расплавляемый лигатурный пруток и источник ультразвука таким образом, чтобы глубина расплава в коробке под источником ультразвука, погруженного в расплав, составляла (λ/20 длины волны ультразвука на частоте источника ультразвука.2. Способ по п.1 отличается тем, что для повышения эффективности внепечного модифицирования в распределительную коробку помещают, по меньшей мере, два источника ультразвука, наклоненными навстречу друг другу, а лигатурный пруток вводят ...

Подробнее
20-01-1997 дата публикации

ПРОТЕКТОРНЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Номер: RU95105030A
Принадлежит:

Изобретение относится к технике защиты от коррозии стальных изделий в электропроводящих средах, в первую очередь стальных трубопроводов и конструкций в почвах и воде. Оно может быть использовано и для защиты оборудования и изделий из других металлов и сплавов, корродирующих с более положительным потенциалом в данной среде и находящихся в электрическом контакте с предлагаемым протекторным сплавом. Протекторный сплав на основе алюминия содержит цинк и олово при следующем соотношении компонентов, мас.%: цинк - 7 - 25, олово - 0,01 - 0,05, алюминий - остальное. Способ получения протекторного сплава включает контакт расплавленного сплава-основы с веществом, содержащим легирующий компонент, в качестве которого используют соль или оксид олова, и последующее скоростное охлаждение сплава. Кроме того, соль или оксид олова вводят в расплав погружением ниже зеркала расплава.

Подробнее
10-01-2015 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВ ИЗ БОР-СОДЕРЖАЩЕГО АЛЮМОМАТРИЧНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА

Номер: RU2013129492A
Принадлежит:

Способ получения борсодержащего алюмоматричного композиционного материала в виде листов, включающий приготовление алюминиевого расплава, содержащего магний, кремний и медь, формирование в нем борсодержащих частиц, получение слитка путем кристаллизации расплава, гомогенизации слитков, получение листов путем прокатки слитков и их термообработки, отличающийся тем, что в алюминиевый расплав вводят от 0,5% до 0,9% кремния, от 1,3% до 1,9% магния и от 0,2% до 0,4% меди, а температуру расплава в процессе формирование в нем борсодержащих частиц поддерживают в пределах от 850 до 930°C в течение 30-45 мин, чтобы в структуре листов борсодержащие частицы присутствовали преимущественно в виде равномерно распределенного соединения AlBсо средним размером не более 30 мкм и массовой долей от 4 мас.% до 8 мас.%.

Подробнее
23-10-1991 дата публикации

Лигатура для выплавки силуминов

Номер: SU1686015A1
Принадлежит:

Изобретение относится к литейному производству и может быть использовано для изготовления медистых силуминов при необходимости модифицирования железосодержащей фазы. Цель изобретения - повышение технологических показателей при получении медистых силуминов. Состав обеспечивает достижение поставленной цели за счет того, что дополнительно к марга- нецсодержащему компоненту лигатура содержит медь, оксид (I или II) меди и алюминиевый сплав, способствующие выведению фосфора из марганецсодержащего компонента. При этом достигается дисперсность кремнийсодержащей фазы при сохранении дисперсности железосодержащей фазы. 7 табл.

Подробнее
30-04-1932 дата публикации

Способ получения кремнистых бронз

Номер: SU26056A1
Принадлежит:

Подробнее
01-01-1958 дата публикации

Приспособление для определения степени загрузки двигателя

Номер: SU116432A1
Автор: Лосев В.И.
Принадлежит:

Подробнее
15-07-1986 дата публикации

PROCEDURE FOR THE PRODUCTION OF COMPOUND ALLOYS ON ALUMINUM AND BORON BASIS, AND YOUR USE.

Номер: AT0000020606T
Принадлежит:

Подробнее
15-10-2004 дата публикации

GOLDLEGIERUNGEN AND VORLEGIERUNGEN TO THEIR PRODUCTION

Номер: AT0000278045T
Принадлежит:

Подробнее
11-11-2004 дата публикации

Method for grain refinement of magnesium alloy castings

Номер: AU2004201727A1
Принадлежит:

Подробнее
19-01-2012 дата публикации

Formed articles including master alloy, and methods of making and using the same

Номер: AU2005329365B2
Принадлежит:

The application relates to the problem of alloying a melt, preferably a titanium melt, with oxygen by adding formed articles such as pellets containing a master alloy such as Ti02. The articles should fully and homogeneously disperse in the melt, while the carbon content of the melt should be kept below an allowable maximum, preferably below 0.04 wt. %. The formed article may also comprise iron or palladium. To solve this problem, the formed article consists of 70-82wt. % of a master alloy an 18-30wt. % of a high-carbon organic polymer such as ethylene vinyl acetate or a low density polyethylene. The homogeneous dispersion is achieved e.g. by the formed articles having a similar size as the other raw feed materials which are added to the melt.

Подробнее
08-10-2003 дата публикации

PROCESS FOR THE PRODUCTION OF AL-FE-V-SI ALLOYS

Номер: AU2002246311A1
Принадлежит:

Подробнее
19-04-2007 дата публикации

Method of grain refining cast magnesium alloy

Номер: AU2002300325B2
Принадлежит:

Подробнее
12-09-2019 дата публикации

Lightweight high-conductivity heat-resistant aluminium wire and preparation method therefor

Номер: AU2017239456B2
Принадлежит: Shelston IP Pty Ltd.

A lightweight high-conductivity heat-resistant aluminium wire and a preparation method therefor, said wire including 0.035-0.06 wt% of B, 0.1-0.2 wt% of Zr, 0.1-0.3 wt% of Er and unavoidable impurities, the remainder being Al. The preparation steps are smelting, on-the-spot rapid component analysis, refining, rapid cooling casting, blank annealing, extruding and drawing. The conductivity of the aluminium wire at 20°C is greater than or equal to 62% IACS.

Подробнее
18-10-1999 дата публикации

Magnesium alloying

Номер: AU0002915899A
Принадлежит:

Подробнее
10-05-2002 дата публикации

PRODUCTION OF ULTRA-FINE GRAIN STRUCTURE IN AS-CAST ALUMINUM ALLOYS

Номер: CA0002361484A1
Автор: CHU, MEN GLENN
Принадлежит:

A method of controlling grain size in as-cast aluminum alloy having the steps of a) providing a molten aluminum alloy including an alloying element selected from the group consisting of Ti, Sc, Zr, V, Hf, Nb and Y; b) adding a grain refiner to the molten aluminum alloy to form a melt; and c) solidifying the melt to form an ingot. The grain refiner includes Ti and B or C, and is added to the melt in an amount to yield the concentration in the melt of B or C from the grain refiner of about 0.003-0.010 wt. %. Grains in the as-cast aluminum alloy are about 200 microns or less in size.

Подробнее
16-12-2014 дата публикации

ZIRCONIUM-NIOBIUM OXYGEN-CONTAINING ALLOY AND METHOD FOR MANUFACTURING THEROF

Номер: CA0002536742C

... ²²²The invention relates to zirconium and niobium-based alloys and to methods for ²the production thereof and can be used for nuclear energy engineering. Said ²invention makes it possible to produce a zirconium-based alloy for producing ²elements exhibiting improved technological and performance characteristics and ²used for the active zone of a nuclear reactor. The inventive zirconium-based ²alloy comprises the following components: 0.9-1.1 mass % niobium, 0.05-0.09 ²mass % oxygen, the rest being zirconium. The structure of said alloy consists ²of alpha-zirconium having oxygen inhomogeneity zones equal to or less than 30 ²nm, nonstoichiometric zirconium suboxyde and beta-niobium. The inventive ²method for producing said alloy consists in producing a mixture from zirconium-²containing material and niobium pentaoxlde in the form of oxygen-containing ²and basic niobium-containing material, preparing said mixture for melting, ²melting the mixture and in forming a billet.² ...

Подробнее
21-04-1992 дата публикации

THIRD ELEMENT ADDITIONS TO ALUMINUM-TITANIUM MASTER ALLOYS

Номер: CA0001298993C
Принадлежит: SIGWORTH GEOFFREY K, SIGWORTH, GEOFFREY K.

Provided is an improved aluminum-titanium master alloy containing carbon in a small but effective content and not more than about 0.1%. After melting, the master alloy is superheated to about 1200-1250.degree.C to put the carbon into solution, then the alloy is cast in a workable form. The master alloy in final form is substantially free of carbides greater than about 5 microns in diameter. The alloy of this invention is used to refine aluminum products that may be rolled into thin sheet, foil, or fine wire and the like.

Подробнее
30-09-1999 дата публикации

MAGNESIUM ALLOYING

Номер: CA0002324961A1
Принадлежит:

A method is provided for producing an Mg-Al alloy in an alloying vessel containing molten Mg or molten Mg alloy. The method includes the steps of establishing the temperature of the molten Mg or Mg alloy in the range of 650- 750 ~C and thereafter adding a solid master alloy containing Al and Mn to the alloying vessel whereby Mn is released for reaction with Fe in the alloying vessel.

Подробнее
15-04-2003 дата публикации

GRAIN REFINING AGENT FOR CAST ALUMINUM PRODUCTS

Номер: CA0002359181A1
Принадлежит:

The invention relates to a grain refining agent for cast aluminum products containing titanium, comprising particles formed of a matrix of a ductile material, in which are uniformly dispersed boron particles having an average particle size of 0.1 to 10 .mu.m. Where the cast aluminum products contain no titanium, the ductile material comprises titanium. The grain refining agent according to the invention does not require to be formed into a master alloy prior to being added to the molten aluminum to be cast.

Подробнее
10-10-2019 дата публикации

HIGH TEMPERATURE OXIDATION RESISTANT CO-BASED GAMMA/GAMMA PRIME ALLOY DMREF-CO

Номер: CA0003094330A1
Принадлежит: OYEN WIGGS GREEN & MUTALA LLP

A senes of alloys of Co, Ni, Al, W, Ta, and Cr, wherein the alloy comprises a solid solution of gamma and gamma prime alloy phases, the Ni content is greater than 25% at.%, the Al content is greater than 10 at, %, the Cr content is greater than 2 at.%, and the Nr Co ratio is between 0.5 and 1.5. In one or more examples, the alloy further comprises one or more of C, B, and a reactive element metal. Embodiments of the alloy simultaneously possess a high solvus temperature, a high fraction of the strengthening ?'-L12 phase, good oxidation resistance and highly favorable solidification characteristics.

Подробнее
30-04-2020 дата публикации

COPPER-CONTAINING, HIGH-TOUGHNESS AND RAPIDLY DEGRADABLE MAGNESIUM ALLOY, PREPARATION METHOD THEREFOR AND USE THEREOF

Номер: CA3117103A1
Принадлежит:

Provided are a copper-containing, high-toughness and rapidly degradable magnesium alloy, a preparation method therefor and the use thereof, wherein same relate to the field of materials for oil and gas exploitation. When the magnesium alloy is in an as-cast state, an extrusion state or an aging state, a strengthening phase thereof mainly comprises an Mg12CuRE-type long period phase and an Mg5RE phase and an Mg2Cu phase, the Mg12CuRE-type long period phase has a volume fraction of 3-60%, the Mg5RE phase has a volume fraction of 0.5-20%, and the Mg2Cu phase has a volume fraction of 0.5-15%, wherein RE is a rare-earth metal element. A fracturing ball, made of the magnesium alloy, can alleviate the problem that a fracturing ball has a low strength and is difficult to degrade in the prior art, thereby obtaining a copper-containing, high-toughness and rapidly degradable magnesium alloy, wherein the corrosion rate thereof can reach up to 3000 mm/a, and at the same time, the tensile strength thereof ...

Подробнее
01-06-2021 дата публикации

UNLEADED FREE-CUTTING BRASS ALLOYS WITH EXCELLENT CASTABILITY, METHOD FOR PRODUCING THE SAME, AND APPLICATION THEREOF

Номер: CA3012592C
Принадлежит: FORTUNE MFG CO LTD, FORTUNE MFG. CO., LTD.

The present invention is directed to an unleaded free cutting brass alloy with excellent machinability, leak-tightness, reca stability, and mechanical properties, wherein the brass alloy comprises 65 to 75 weight% of copper, 22.5 to 32.5 weight% of zinc, 0.5 to 2.0 weight% of silicon, and other unavoidable impurities; wherein the total content of copper and zinc in the brass alloy is 97.5 weight% or more.

Подробнее
14-06-2001 дата публикации

METHOD FOR PRODUCING AN ALUMINUM-TITANIUM-BORON PREALLOY FOR USE AS A GRAIN REFINER

Номер: CA0002394485A1
Принадлежит:

The invention relates to a method for producing a grain refiner on the basis of an aluminum-titanium-boron prealloy. According to the inventive method, starting materials that contain Ti and B are introduced into an aluminum melt while TiB2 particles are formed, and the prealloy melt produced is allowed to solidify. The prealloy is set in motion at a temperature between the liquidus temperature (TLAl3Ti) of the Al3Ti phase and the solidus temperature (TSV) of the prealloy for a period (.DELTA.td) sufficient to disperse the TiB2 particles in the melt. The melt is simultaneously cooled off at a first rate of cooling (v1) so that the TiB2 particles function as the nuclei for the Al3Ti phase that is formed below the liquidus temperature (TLAl3Ti) and the surface of the TiB2 particles is at least partially covered by an Al3Ti coating. The prealloy is then cooled off to a temperature below the solidus temperature (TSV) of the prealloy at a second rate of cooling (v2) that is higher than the first ...

Подробнее
18-04-2002 дата публикации

ALUMINUM ALLOYS HAVING IMPROVED CAST SURFACE QUALITY

Номер: CA0002424595A1
Принадлежит:

Aluminum alloy compositions are disclosed, which include small amounts of calcium that result in improved surface properties of the cast aluminum. The calcium, and up to 0.25% grain refiners, are added along with alkaline earth metals, transition metals and/or rare earth metals to the aluminum alloy as a melt. The addition results in improved appearance, substantially reduced surface imperfections and reduced surface oxidation in cast ingot aluminum and aluminum alloys. The addition of small amounts of these additives, surprisingly were found to substantially eliminate vertical folds, pits and ingot cracking in more than one ingot casting technique. The additions also improved the appearance of the ingots, including reflectance. As a result, the ingots could be reduced or worked essentially right out of the casting without first conditioning the surface by, for example, scalping. Also disclosed is a method of improving the surface properties and preventing surface imperfections and cracking ...

Подробнее
19-04-2016 дата публикации

ALUMINUM ALLOY AND MANUFACTURING METHOD THEREOF

Номер: CA0002721761C

Provided are an aluminium alloy and a manufacturing method thereof. In the method, aluminium and a magnesium (Mg) master alloy containing a calcium (Ca)- based compound are provided. A melt is prepared, in which the Mg master alloy and the Al are melted. The aluminum alloy may be manufactured by casting the melt.

Подробнее
24-04-1993 дата публикации

PROCESS FOR GRAIN REFINEMENT OF ALUMINIUM CASTING ALLOYS, INPARTICULAR ALUMINIUM/SILICON CASTING ALLOYS

Номер: CA0002080888A1
Принадлежит:

For the grain refinement of aluminium casting alloys, in particular aluminium/silicon casting alloys, gallium phosphide and/or indium phosphide are/is added to the melt, optionally in addition to further grain-refine-ment and/or modification additions. The addition of gallium phosphide and/or indium phosphide results in a good grain refinement with low shrink-hole tendency and does not have an adverse effect on modification processes.

Подробнее
12-04-1990 дата публикации

ALUMINUM TITANIUM BASIC ALLOY.

Номер: CH0000673843A5
Автор: SIGWORTH, GEOFFREY K.
Принадлежит: KB ALLOYS INC, KB ALLOYS INC.

Подробнее
26-07-2010 дата публикации

ПРОВОЛОКА для легирования жидкой стали ВанадиЕМ

Номер: UA0000091486C2

Изобретение относится к черной металлургии и касается внепечной обработки металлургических расплавов порошкообразными реагентами. Проволока для легирования жидкой стали ванадием состоит из стальной оболочки и порошкового заполнителя, содержащего, мас. %: ванадий - 70-85; кремний не более 2,0; алюминий не более 4,0; углерод не более 0,30; марганец не более 0,50; никель не более 0,15 фосфор не более 0,10; серу не более 0,10; медь не более 0,10; мышьяк не более 0,10; железо - остальное. При этом соотношение между содержанием ванадия и содержанием железа в составе заполнителя составляет величину (2,8-10,5): 1, а соотношение между толщиной стальной оболочки проволоки, в мм, и количеством порошкового заполнителя в проводе, в масс. долях, находится в пределах (0,4-0,9): 1. Технический результат - повышение и стабилизация на высоком уровне степени усвоения ванадия.

Подробнее
12-12-2011 дата публикации

ЛИТЕЙНЫЙ СПЛАВ АЛЮМИНИЯ, СОДЕРЖАЩИЙ МАГНИЙ И КРЕМНИЙ

Номер: UA0000096812C2

Изобретение относится к цветной металлургии, в частности к литейным сплавам на основе алюминия, и может быть использовано при изготовлении деталей, которые работают при повышенных температурах. Сплав содержит следующие компоненты, масс. %: магний 4,0-16,0, кремний 2,0-9,0, марганец 0,05-1,5, скандий 0,01-0,6, цирконий 0,05-0,5, по крайней мере, один или несколько элементов, выбранных из группы, включающей: хром 0,05-0,5, медь 0,1-2,0, никель 0,05-1,0, гафний 0,01-0,6 и один или несколько элементов выбранных из группы, включающей: титан 0,05-0,6, бор 0,005-0,05, иттрий 0,01-0,85, германий 0,001-0,2, при 0,001 %< (титан+бор+иттрий+германий) <1,5 %, алюминий – остальное. Способ получения сплава предусматривает охлаждение расплава со скоростью, достаточной для того, чтобы легирующие элементы не выделялись из твердого раствора в процессе охлаждения в виде грубых кристаллов и обеспечили формирование дисперсных частиц упрочняющей L12 фазы при последующей термической обработке. Способ термической ...

Подробнее
10-07-2009 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ЛЕГИРОВАННОГО КИСЛОРОДОМ ТИТАНА

Номер: UA0000087282C2

Изобретение относится к металлургической области, в частности относится к получению легированного кислородом титана, полученного магнийтермическим восстановлением четыреххлористого титана. Способ получения легированного кислородом титана, в частности губчатого, предусматривает нагревание и временную выдержку титана в герметически замкнутой среде с кислородсодержащим соединением. Путем заполнения герметически закрытой среды титаном, нагревания его до температуры взаимодействия с кислородом воды и временной выдержки с определенным количеством воды получают легированный кислородом титан.

Подробнее
26-04-2010 дата публикации

РАСХОДНЫЙ ЭЛЕКТРОД ДЛЯ ПОЛУЧЕНИЯ СЛИТКА СЛОЖНОЛЕГИРОВАННОГО МЕТАЛЛА МЕТОДОМ ПЕРЕПЛАВКИ В КРИСТАЛЛИЗАТОРЕ

Номер: UA0000090377C2

Изобретение относится к отрасли специальной электрометаллургии, а именно - к конструкции расходного электрода для получения слитка сложнолегированного сплава методом переплавки в кристаллизаторе. Расходный электрод для получения слитка сложнолегованого сплава методом переплавки в кристаллизаторе состоит из полученной любым известным способом цилиндрической заготовки из металла-основы сплава с диаметром, который равен его диаметру. Цилиндрическая заготовка содержит несквозные отверстия, в которые вложены чистые легирующие элементы или их лигатуры, и общий объем этих отверстий превышает объем легирующих элементов или их лигатур, причем на части длины заготовки L, при переплавке которой в кристаллизаторе поддержана стационарная глубина ванны расплава H, несквозные отверстия выполнены равномерно размещенными по ее высоте и кругу горизонтальными рядами, число которых выбрано из соотношения L/H, а на части длины указанной заготовки, при переплавке которой в кристаллизаторе глубина ванны расплава ...

Подробнее
30-08-2012 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СПЛАВОВ АЛЮМИНИЯ СО СВИНЦОМ

Номер: EA0201101412A1
Принадлежит:

Изобретение относится к цветной металлургии и может быть применено при получении сплавов системы алюминий-свинец. В способе получения сплава алюминия со свинцом в расплав алюминия вводят расплав магния в количестве не более 3% от массы алюминия, одновременно готовят расплав алюминия с 10-16% свинца от массы алюминия. Техническим результатом изобретения является высокая степень усвоения свинца и более равномерное распределение свинцовых включений в алюминии.

Подробнее
26-04-2011 дата публикации

СПОСОБ ПОЛУЧЕНИЯ Лигатуры AL-В

Номер: UA0000094254C2

Изобретение относится к цветной металлургии и может использоваться в производстве боросодержащих лигатур для модифицирования алюминия и его сплавов. Способ получения лигатуры Al-В включает расплавление алюминия и введение боросодержащих добавок. В качестве боросодержащей добавки используют бориды алюминия, полученные диффузионным путем, на поверхности алюминиевого катода в водном растворе электролита, содержащего бор при напряжении 55-100 В, плотности тока 0,4-1,2 А/см2 в течение 45-70 минут. Сформированная по указанному способу диффузионная зона имеет тонкодисперсную структуру, состоящую из мелкокристаллических интерметаллидов боридов алюминия. Лигатура с такими наноструктурными элементами имеет наибольшую способность к измельчению зерна.

Подробнее
10-11-2011 дата публикации

СПОСОБ ПОЛУЧЕНИЯ РАСПЫЛЕННОГО ДИСПЕРСНОУПРОЧНЕННОГО ПОРОШКА МЕТАЛЛА

Номер: UA0000064257U

Способ получения распыленного дисперсноупрочненного порошка металла включает операции получения его расплава, введение в него легирующих добавок и распыление полученного расплава их смеси. Металл нагревают до температуры, превышающей температуру плавления основного металла на 12-18 %. Легирующая добавка состоит из дисперсных частиц твердой тугоплавкой составляющей с плотностью близкой к плотности основного металла и металла, подобного металлу основы расплава, и вводится в количестве 12-14 об. %.

Подробнее
26-04-2011 дата публикации

СПЛАВ Лигатура НИКЕЛЬ-вольфрам

Номер: UA0000058637U

Сплав лигатура никель-вольфрам относится к отрасли металлургии, в частности к разработке лигатур для легирования литейных жаропрочных никелевых сплавов в наземных энергетических и газоперекачивающих установках.

Подробнее
10-07-2008 дата публикации

ДРІТ ДЛЯ ЛЕГУВАННЯ СТАЛІ ВАНАДІЄМ

Номер: UA0000083444C2

Винахід належить до чорної металургії, а саме до позапічної обробки металургійних розплавів порошкоподібними реагентами. Дріт для легування сталі ванадієм складається з металевої оболонки та порошкового заповнювача, що містить ванадій. Відношення між вмістом ванадію в порошковому заповнювачі та вмістом порошкового заповнювача в дроті складає величину (0,58-1,40):1, а співвідношення між складовими частками дроту встановлено наступним, мас. %: порошковий заповнювач – 62-81, металева оболонка – 19-38. Як порошковий заповнювач може використовуватися сплав ванадію з залізом, причому вміст ванадію в сплаві становить 50-85 мас. %. Технічний результат - підвищення та стабілізація засвоєння ванадію, зменшення браку металу, зниження витрати дроту.

Подробнее
15-04-2003 дата публикации

КОМПОЗИТНИЙ ЕЛЕКТРОД ДЛЯ МАГНІТОКЕРОВАНОГО ЕЛЕКТРОШЛАКОВОГО ПЛАВЛЕННЯ ТИТАНОВИХ СПЛАВІВ (ВАРІАНТИ)

Номер: UA0000055501 C2

Винахід відноситься до металургії, а саме до електрометалургійного виробництва титанових сплавів. Композитний електрод для магнітокерованого електрошлакового плавлення титанових сплавів виконаний у вигляді циліндричного, співвісного електроду, стрижня із металургійного флюсу, а зовнішній шар електрода виконаний у вигляді труби з титану губчастого з легуючими домішками. В запропонованому ще одному варіанті конструктивної реалізації даного винаходу електрод може складатись із трьох частин: внутрішньої, виготовленої у вигляді стрижня із металургійного флюсу, середньої - із титану губчастого, і зовнішньої - із матеріалу, який має легуючі домішки.

Подробнее
25-04-2013 дата публикации

СПОСОБ выплавки АЛЮМИНИЕВОГО СПЛАВА

Номер: UA0000079716U

Способ выплавки алюминиевого сплава включает расплавление алюминия в одной плавильной печи, а лигатуры в другой плавильной печи, и перемешивание жидкого алюминия с жидкой лигатурой, содержащей модифицирующие элементы.

Подробнее
25-06-2008 дата публикации

СПОСІБ ОДЕРЖАННЯ МІДНОХРОМОВОЇ СТАЛІ

Номер: UA0000083329C2

Винахід належить до чорної металургії і стосується плавлення міднохромової сталі. Спосіб включає підготовку шихти, яка містить ферохром, легуючі елементи, сталевий чи чавунний брухт, відходи власного виробництва, розкислювачі та мідь, подальше плавлення шихти та прикінцеве розкислення одержаної з неї сталі. Мідь вводять на початку плавлення шихти у 100% обсязі відносно необхідного її рівня в сталі. Реалізація винаходу забезпечує задовільну оброблюваність міднохромової сталі з концентрацією вуглецю близько 1,2 % як після випалення так і після загартування.

Подробнее
24-04-2007 дата публикации

СПОСІБ ЛЕГУВАННЯ МЕТАЛУ

Номер: UA0000078938C2

Винахід належить до металургії і стосується способу легування металу. В рідкий метал додатково вводять дрібнодисперсну тверду шихту основного металу в кількості до 10 мас. % при температурі розплаву 1,05 - 1,30 в Кельвінах точки досягнення мікрооднорідного стану рідкого розплаву в період 5-15 хвилин до випуску розплаву з печі. В результаті посилюється вплив легуючих матеріалів.

Подробнее
24-04-2007 дата публикации

ПОРОШКОВИЙ ДРІТ ДЛЯ ПРИСАДКИ НІОБІЮ ДО МЕТАЛУРГІЙНИХ РОЗПЛАВІВ

Номер: UA0000022598U

Порошковий дріт для присадки ніобію до металургійних розплавів складається з металевої оболонки і порошкового наповнювача, що містить ніобій і залізо. Порошковий дріт як порошковий наповнювач містить фероніобій.

Подробнее
30-10-2012 дата публикации

Модификатор для алюминиевых сплавов

Номер: BY0000016519C1

Модификатор для алюминиевых сплавов, содержащий порошки карбида кремния, фосфористой меди и лигатуры, отличающийся тем, что порошок лигатуры включает алюминий и 5 % магния при следующем соотношении компонентов модификатора, мас. %: карбид кремния 3-10 фосфористая медь 3-7 лигатура остальное, при этом размер частиц карбида кремния составляет 0,1-1,0 мкм, фосфористой меди - 0,1-1,0 мм, лигатуры - 0,2-1,0 мм.

Подробнее
14-08-2009 дата публикации

СПОСОБ ПОЛУЧЕНИЯ СВИНЦОВО-СУРЬМЯНИСТОГО-МЕДНО-ТЕЛЛУРИСТОГО СПЛАВА (ССУМТ)

Номер: KZ0000021586A4

Изобретение относится к металлургии, в частности к способом приготовления сплавов на основе свинца, предназначенных для использования в кабельном производстве. Задачей настоящего изобретения является снижение температуры при вводе лигатуры в расплавленный свинец и сокращение выхода дроссов за счет использования легкоплавкой лигатуры при получении сплава. Для этого в известный способ получения свинцово-сурьмянистого-медно-теллуристого сплава ССуМТ, включающий приготовление лигатуры, содержащей сурьму, теллур, медь, расплавление свинца и вмешивание расчетного количества, полученной лигатуры в расплавленный свинец, при этом лигатуру готовят состава, вес.%: сурьма-9-12, теллур-0,9-1,2, медь-0,9-1,2, свинец остальное, а вмешивание лигатуры в расплавленный свинец осуществляют при температуре 400-420ºС. Использование технического решение позволяет значительно снизить температуру получения сплава и в 4-5 раз снизить выход образующихся дроссов.

Подробнее
15-03-2007 дата публикации

СПОСІБ ВИГОТОВЛЕННЯ ВКЛАДИШІВ ПІДШИПНИКІВ КОВЗАННЯ З АНТИФРИКЦІЙНИМ ШАРОМ НА ОСНОВІ КАЛЬЦІЄВОГО БАБІТУ

Номер: UA0000078355C2

Винахід належить до металургії та машинобудування і стосується виготовлення вкладишів підшипників ковзання заливкою бабіту у бронзовий або сталевий каркас. При приготуванні шихтового матеріалу до його складу додають переплав раніше отриманої при обробці таких вкладишів бабітової стружки, легованої магнієм з вмістом 0,06-0,07 мас. %, Кількість переплаву у складі шихти доводять до 66-73 мас. %. Спосіб дозволяє підвищити кількість переплаву у складі шихти, яка готується перед заливкою вкладишів.

Подробнее
30-12-2013 дата публикации

Лигатура для легирования платиновых сплавов

Номер: BY0000017834C1

Лигатура для легирования платиновых сплавов, содержащая цирконий, отличающаяся тем, что дополнительно содержит растворенный в ней кислород в количестве 25-29 ат. %.

Подробнее
10-03-2010 дата публикации

Порошковая проволока ДЛЯ ОБРАБОТКИ металлургических расплавов

Номер: UA0000048140U

Порошковая проволока для обработки металлургических расплавов состоит из металлической оболочки и порошкового наполнителя, содержащего ниобий. Введенный порошковый наполнитель содержит ванадий или вольфрам или молибден, или титан, или хром, или цирконий, или другой тугоплавкий металл, или их смесь.

Подробнее
19-06-2018 дата публикации

Method for preparing copper, chrome and zirconium alloy bar through continuous extrusion

Номер: CN0108179305A
Автор: XU GAOLEI
Принадлежит:

Подробнее
29-05-2013 дата публикации

Preparation method of high-performance gold bonding wire for package

Номер: CN103122421A
Принадлежит:

The invention discloses a preparation method of a high-performance gold bonding wire for package. The low-arc high-strength high-performance gold bonding wire with high mechanical property, small resistivity and high recrystallization temperature is obtained mainly through the technologies of formula optimizing, process improving, device adding and the like and meets the advanced package requirements of LQFP (Low Quad Flat Package), QFN (Quad Flat No lead) and the like. The preparation method mainly comprises the steps of: adjusting an intermediate alloy preparing method, thereby obtaining an intermediate alloy with more even ingredients and higher purity; applying a directional solidification continuous casting technology to a fusion casting process of a gold casting blank, thereby obtaining a single-crystal fusion casting blank with few internal defects and excellent electrical performance; increasing a peeling process during coarse drawing, thus removing surface defects from a gold wire ...

Подробнее
05-10-2016 дата публикации

Process and intermediate for producing alloy aluminum

Номер: CN0105986137A
Автор: ZOU JIANMING
Принадлежит:

Подробнее
16-02-2018 дата публикации

Aluminum alloy material for club and preparing method thereof

Номер: CN0107699753A
Автор: ZHOU LIANGZHENG
Принадлежит:

Подробнее
12-09-2007 дата публикации

Aluminum-molybdenum-titanium intermediate alloy for preparing titanium alloy

Номер: CN0101033517A
Принадлежит:

This invention relates to an AlMoTi intermediate alloy used in preparation of Ti alloy including the following basic composition in weight percentage: Al 35-55%, Ti 2-9% and Mo for rest, which can eliminate Mo segregration or Mo inclusion.

Подробнее
31-05-2017 дата публикации

Composite rare earth additive for modification of copper-based shape memory alloy

Номер: CN0106756405A
Автор: ZHANG FENG, YANG CHEN
Принадлежит:

Подробнее
08-05-2020 дата публикации

Preparation method and device of high-strength and high-toughness high-medium-absorption aluminum-based composite material

Номер: CN0111118329A
Автор:
Принадлежит:

Подробнее
02-08-2019 дата публикации

Preparation method of Al-Cu alloy supersaturated solid solution

Номер: CN0110079751A
Автор:
Принадлежит:

Подробнее
01-05-2013 дата публикации

Er-containing high-niobium Ti-Al intermetallic compound material and preparation method thereof

Номер: CN103074520A
Принадлежит:

The invention discloses an Er-containing high- niobium Ti-Al intermetallic compound material and a preparation method thereof, and belongs to intermetallic compound materials. The material is composed of the following elements in mole percent: 41-46 percent of Al, 5-15 percent of niobium, no more than 0.4 percent of Er, and the balance of Ti and unavoidable impurities. The preparation method comprises the following steps: adding titanium sponge, high-purity aluminium, Al- niobium intermediate alloy and Al-Er intermediate alloy into a water cooled copper crucible vacuum induction smelting furnace as per the composition, vacuumizing to 2.0-3.0*10<-3>mbar, rising the smelting power to 160-180 kW at the speed of 5-10 kW/min and stopping at 160-180 kW, smelting for 1-3 minutes at a constant power, obtaining melt, mixing the melt uniformly; and casting the melt into a metal mold preheated to 300-350 DEG C, forming an Er-containing high-niobium Ti-Al intermetallic compound material ingot, and ...

Подробнее
30-03-2016 дата публикации

As-cast aluminum-manganese alloy material containing rare-earth erbium and preparation method thereof

Номер: CN0105441723A
Автор: WEN XINGQIN
Принадлежит:

Подробнее
17-09-2014 дата публикации

Top border of door frame of vertical hinged door

Номер: CN104047505A
Автор: XU XINGHONG
Принадлежит:

The invention discloses a top border of a door frame of a vertical hinged door. The top border comprises an upper beam, wherein two sides of the upper part of the upper beam are connected to a group of clamping heads, the lower part of the upper beam is connected to a border and a lower beam, a reinforcing plate is arranged between the upper beam and the lower beam, the edge of the lower beam is hinged to two side plates, a hollow guide rail is arranged on the lower beam between the side plates, and sealing edges are both arranged on the bottom ends of the side plates at two sides of the lower beam. The top border has the advantages of simple and smart structural design and convenience for installation and use, and the top border is more convenient and easier to install; after using the structure, the door frame can be integrally increased, so that a side seam is smaller to prevent the door frame or a window from excessively ventilating.

Подробнее
10-09-2014 дата публикации

High-strength magnesium alloy material and preparation method thereof

Номер: CN104032196A
Принадлежит:

The invention discloses a preparation method of a high-strength high-plasticity magnesium alloy material, which is characterized by comprising the following steps: metal preheating: melting pure magnesium, an aluminum ingot and a zinc ingot, holding at 600-750 DEG C, and heating to 750-850 DEG C; sequentially adding Al-Mn interalloy, Al-Li interalloy, Al-Zr interalloy, Al-Sb interalloy and Al-Mo interalloy, melting, and holding at 760-880 DEG C for 20-40 minutes; adding quartz powder, and removing slag; casting into a cast ingot at 600-750 DEG C; and carrying out solution strengthening and aging treatment to obtain the final product. The method for making the magnesium alloy material is easy to operate and implement, lowers the production cost, and has considerable economic benefit; the obtained product well integrates high strength, high plasticity and favorable weldability; the yield stress is higher than 260 MPa, the tensile strength is higher than 360 MPa, and the elongation at break ...

Подробнее
10-09-2014 дата публикации

Lead-based bearing alloy for crankshaft bearing of automobile engine and manufacturing method thereof

Номер: CN104032187A
Автор: SUN FEI, ZHAO YONG
Принадлежит:

The invention relates to a lead-based bearing alloy for a crankshaft bearing of an automobile engine and a manufacturing method thereof. The lead-based bearing alloy is prepared from the following components by weight percent: 3% to 5% of stannum, 6% to 8% of antimony, 0.05% to 0.25% of nickel, 0.1% to 0.3% of arsenic, 0.3% to 0.8% of cadmium, 0.5% to 0.9% of lanthanum and cerium and the balance of lead. According to the lead-based bearing alloy, the lead, the antimony and the stannum are taken as a master alloy in which the nickel, the cadmium, the arsenic, the rare earth lanthanum and the rare earth cerium are creatively added, so that the performance of the alloy material is improved; the plasticity, toughness, strength and friction resistance of the alloy are improved; the heat treatment in the traditional production process is omitted. Meanwhile, the manufacturing cost of the lead-based bearing alloy is greatly lowered. The lead-based bearing alloy provided by the invention is specially ...

Подробнее
02-03-2016 дата публикации

Sound spring copper

Номер: CN0105369056A
Принадлежит:

Подробнее
04-05-2018 дата публикации

A Mg - Mn - Sn - Ti magnesium alloy material and its preparation method and application

Номер: CN0107988536A
Автор:
Принадлежит:

Подробнее
26-08-2015 дата публикации

Aluminum alloy gearbox casing

Номер: CN104862539A
Автор: GAO XUAN
Принадлежит:

An aluminum alloy gearbox casing comprises a lower casing body and an upper casing body connected with the lower casing body. The inner surface of the upper casing body and the inner surface of the lower casing body are coated with zirconium-oxide ceramic material layers, and the outer surface of the upper casing body and the outer surface of the lower casing body are coated with heat resisting paint; a passivated surface treatment process is carried out on aluminum alloy of the component, the problem that any surface black dots appear is solved, and the obtained surfaces are tidy; and due to the fact that the inner surfaces of the casing bodies are in long-term contact with oil of a gearbox, and can be damaged, the inner surfaces of the aluminum alloy casing bodies are coated with zirconium-oxide coatings, and the anti-corrosion performance is improved.

Подробнее
02-08-2012 дата публикации

Magnesium-aluminum based alloy

Номер: US20120195789A1

The present invention relates magnesium-aluminum based alloys having a small grain size and to a method of their production. The alloys are particularly useful in casting applications. The alloys comprise a grain refiner, the grain refiner having the chemical formula: Mg 100-x-y-z Al x C y R z wherein R is an element selected from the group consisting of silicon, calcium, strontium or a rare earth element, x is from 10 to 60 At. %, y is from 5 to 50 At. %, and z is from 0 to 20 At. %, provided that x+y+z is less than 100 At. %.

Подробнее
07-02-2013 дата публикации

Amorphous nickel-free zirconium alloy

Номер: US20130032252A1
Автор: Jian Xu, Qiang He
Принадлежит: Institute of Metal Research of CAS

An amorphous Nickel-Free Zirconium alloy which is readily formed through copper mold casting, comprising a composition consisting of four elements in which the first element is Zr, the second element is Ti, the third element is Cu and the fourth element is Al, wherein an atomic percent of the first to the fourth elements in the composition are represented by a, b, c and d respectively, wherein a=45˜69%, b=0.25˜8%, c=21˜35%, and d=7.5˜15%, where a sum of a, b, c and d is smaller than or equal to 100%. The composition of the amorphous alloy within the above range is melted in a copper mold to form bulk amorphous materials or parts which have characteristics of high tensile strength, high fracture toughness, low Young's modulus and high corrosion resistance.

Подробнее
21-02-2013 дата публикации

Lead-Free Solder Compositions

Номер: US20130045131A1
Принадлежит: Honeywell International Inc

A solder may include zinc, aluminum, magnesium and gallium. The zinc may be present in an amount from about 82% to 96% by weight of the solder. The aluminum may be present in an amount from about 3% to about 15% by weight of the solder. The magnesium may be present in an amount from about 0.5% to about 1.5% by weight of the solder. The gallium may be present in an amount between about 0.5% to about 1.5% by weight of the solder.

Подробнее
18-04-2013 дата публикации

COPPER-BASED ALLOYS, PROCESSES FOR PRODUCING THE SAME, AND PRODUCTS FORMED THEREFROM

Номер: US20130094989A1
Автор: Trumble Kevin Paul
Принадлежит: PURDUE RESEARCH FOUNDATION

Copper-manganese alloys, optionally with potentially other alloying elements, whose compositions are at or sufficiently near the congruent (minimum) melting point of the Cu—Mn system to substantially avoid dendritic growth during solidification. Processes for producing such alloys are also provided, as well as products produced from such alloys. 1. A copper-manganese alloy containing copper and manganese in amounts at or sufficiently near the congruent melting point of the Cu—Mn alloy system to sufficiently avoid dendritic growth during solidification of the copper-manganese alloy to avoid the formation of microporosity attributable to dendritic growth.2. The copper-manganese alloy according to claim 1 , wherein the copper-manganese alloy contains at least 25 weight percent and not more than 40 weight percent manganese.3. The copper-manganese alloy according to claim 1 , wherein the copper-manganese alloy contains at least 32 weight percent and not more than 36 weight percent manganese.4. The copper-manganese alloy according to claim 1 , wherein the copper-manganese alloy further contains one or more of iron claim 1 , nickel claim 1 , aluminum claim 1 , silicon claim 1 , tin and lead.5. The copper-manganese alloy according to claim 1 , wherein the copper-manganese alloy does not contain lead.6. A process of producing a copper-manganese alloy containing copper and manganese in amounts at or sufficiently near the congruent melting point of the Cu—Mn alloy system to sufficiently avoid dendritic growth during solidification of the copper-manganese alloy to avoid the formation of microporosity attributable to dendritic growth claim 1 , the process comprising combining copper and ferromanganese as a source of manganese.7. The process according to claim 6 , wherein the ferromanganese contains about 75 to 80 weight percent manganese with the balance carbon claim 6 , iron and incidental impurities.8. The process according to claim 6 , wherein the combining step comprises ...

Подробнее
25-04-2013 дата публикации

METAL COMPOSITES AND METHODS FOR FORMING SAME

Номер: US20130098510A1
Автор: Kui Hin-Wing
Принадлежит:

A metal composite comprising a spinodal structure having at least one ductile phase and method of making same is disclosed. The metal composite is formed by forming an alloy comprising a positive heat of mixing in the liquid state; purifying the alloy; and forming a network structure of the alloy comprising at least one ductile sub-network. 1. A method comprising:forming an alloy;purifying the alloy; andforming a network structure of the alloy comprising at least one ductile sub-network structure.2. The method of wherein the alloy formed comprises a ratio of Tto Tgreater than or equal to about 0.35.3. The method of claim 2 , wherein the alloy formed comprises a ratio of Tto Tgreater than or equal to about 0.49.4. The method of claim 2 , wherein the alloy formed comprises a metal and a metalloid.5. The method of claim 4 , wherein purifying the alloy comprises:heating the alloy to form a molten alloy; andcontacting the molten alloy with a flux material.6. The method of claim 2 , wherein forming a network structure comprises cooling the molten alloy.7. The method of claim 6 , wherein cooling the molten alloy comprises undercooling the molten alloy.8. The method of claim 7 , wherein the molten alloy is cooled to a ΔT of about 100° K to about 500° K9. The method of claim 4 , wherein the alloy formed comprises a metal selected from the group consisting of Fe claim 4 , Co claim 4 , Cu claim 4 , Ni claim 4 , Pd claim 4 , Pt claim 4 , Mn claim 4 , Al claim 4 , Ti claim 4 , Zr claim 4 , Cr claim 4 , W claim 4 , and combinations thereof.10. The method of claim 9 , wherein the alloy formed comprises a metal selected from the group consisting of Fe claim 9 , Co claim 9 , Ni claim 9 , and combinations thereof.11. The method of claim 10 , wherein the alloy formed comprises Ni.12. The method of claim 10 , wherein the alloy formed comprises Co.13. The method of claim 10 , wherein the alloy formed comprises Fe.14. The method of claim 4 , wherein the alloy formed comprises a metalloid ...

Подробнее
11-07-2013 дата публикации

BRASS ALLOY COMPRISING SILICON AND ARSENIC AND A METHOD OF MANUFACTURING THEREOF

Номер: US20130177472A1
Принадлежит: RAUFOSS WATER & GAS AS

An improved brass alloy providing improved ability for machining is detailed that is free of lead and is at the same time environmental friendly. The alloy comprises added alloying elements in an amount that is identified through an iterative process during manufacturing of the alloy. 1. A brass alloy comprising copper and zinc , characterized in that the brass alloy further comprises 0.5 to 2 wt % amount of silicon , at least one alloying element , wherein the wt % amount of the at least one alloying element is identified through an iterative process when producing the brass alloy , wherein the level of the wt % alloying element is identified as a level leaving no free amount of the alloying element in the brass alloy.2. The brass alloy according to claim 1 , wherein the amount of copper is in the range of 60 to 69 at wt % copper claim 1 , the amount of silicon is in the range of 0.5 to 2.0 wt % silicon claim 1 , the alloying element is arsenic added in the range of 0.005 to 0.015 wt % arsenic claim 1 , the remaining amount of wt % is zinc.3. The brass alloy according to claim 2 , wherein the alloying element is arsenic and phosphorus added respectively in the range of 0.005 to 0.015 wt % arsenic and 0.005 to 0.02 wt % phosphorus.4. A method for producing a brass alloy according to claim 1 , characterized in comprising steps of:a) using a clean oven by replacing used heat resistant stones with unused heat resistant stones,b) providing charge of the oven by adding wt % of material from a list of materials comprising Cu elektro, Zn 1020ZN, Cu/As 70/30 and Si,c) heating the oven,d) providing a sample casting of material while maintaining heating the oven,e) providing an analysis of the sample casting determining if chemistry of the sample casting is in accordance with expected properties,f) if step e) indicates any deviation further alloying elements are added to the hot oven and step e) and step f) is iteratively performed until the chemistry is in accordance with ...

Подробнее
08-08-2013 дата публикации

APPARATUS AND METHOD FOR PRODUCING MG(2)Si(1-x)SN(x) POLYCRYSTAL

Номер: US20130199337A1
Принадлежит:

Provided are an apparatus and a method for producing an inexpensive MgSiSnpolycrystal that can be effectively used as thermoelectric conversion materials that can be expected to have a high performance index by doping if necessary. 1. An apparatus for producing an MgSiSnpolycrystal , comprising at least:{'sub': 2', '1-x', 'x, 'a reaction vessel for synthesizing an MgSiSnpolycrystal represented by the following formula (1) by charging a mixture of Mg particles and Si particles or Mg particles and Sn particles, or Mg—Si alloy particles or Mg—Sn alloy particles as a main starting material to cause a reaction;'}an inorganic fiber layer which is fixedly provided above the starting material charged into the reaction vessel and has air permeability, and in which the air permeability can be caused to disappear by a product generated by chemical reaction of vaporized Mg with oxygen during the synthesis of the polycrystal;heating means for heating the reaction vessel; and {'br': None, 'sub': 2', '1-x', 'x, 'MgSiSn\u2003\u2003(1)'}, 'control means for controlling a heating temperature and heating time of the reaction vessel,'}(in the formula (1), x is 0 to 1).2. The production apparatus according to claim 1 , wherein the inorganic fiber layer includes an upper inorganic fiber layer and a lower inorganic fiber layer claim 1 , and has Mg particles disposed on the whole surroundings of portions which are between the upper and lower inorganic fiber layers and in which the layers come into contact with an inner wall face of the reaction vessel.3. The production apparatus according to claim 1 , wherein the reaction vessel has a release layer on the inner wall face in contact with at least the starting material.4. The production apparatus according to claim 1 , wherein the reaction vessel has a release layer on the starting material so as to cover the whole starting material.5. A method for producing an MgSiSnpolycrystal represented by the following formula (1) in air using the ...

Подробнее
19-09-2013 дата публикации

ALUMINUM ALLOY HAVING IMPROVED OXIDATION RESISTANCE, CORROSION RESISTANCE, OR FATIGUE RESISTANCE, AND DIE-CAST MATERIAL AND EXTRUDED MATERIAL PREPARED BY USING THE ALUMINUM ALLOY

Номер: US20130243643A1
Принадлежит:

Provided are an aluminum (Al) alloy prepared environment friendly and having excellent oxidation resistance properties, and a method of preparing the Al alloy. An oxidation-resistant Al alloy according to an embodiment of the present invention is casted by adding a magnesium (Mg) master alloy, in which a calcium (Ca)-based compound is distributed in an Mg matrix, into molten Al. An Al matrix includes the Ca-based compound. The Al alloy has superior oxidation resistance to a corresponding Al alloy not including the Ca-based compound. 1. An aluminum (Al) alloy casted by adding a magnesium (Mg) master alloy , in which a calcium (Ca)-based compound is distributed in an Mg matrix , into molten Al ,wherein an Al matrix includes the Ca-based compound, andwherein the Al alloy has superior oxidation resistance, corrosion resistance against salt water, or fatigue resistance to a corresponding Al alloy not including the Ca-based compound.2. The Al alloy of claim 1 , wherein the Ca-based compound comprises at least one of an Mg—Ca compound claim 1 , an Al—Ca compound claim 1 , and an Mg—Al—Ca compound claim 1 , and wherein the Mg—Ca compound comprises MgCa claim 1 , the Al—Ca compound comprises at least one of AlCa and AlCa claim 1 , and the Mg—Al—Ca compound comprises (Mg claim 1 ,Al)Ca.3. The Al alloy of claim 1 , wherein the Mg master alloy is prepared by adding a Ca-based additive into molten parent material including pure Mg claim 1 , or an Mg alloy including Al claim 1 , as a parent material.4. The Al alloy of claim 1 , wherein the Ca-based compound is formed by dispersively adding a Ca-based additive onto a surface of an upper part of molten Mg claim 1 , and then exhausting at least a portion of the Ca-based additive in the molten Mg.5. The Al alloy of claim 4 , wherein the Ca-based compound is formed by exhausting the Ca-based additive in the molten Mg in such a way that the Ca-based additive does not substantially remain in the Mg master alloy.6. The Al alloy of claim ...

Подробнее
28-11-2013 дата публикации

Process for Producing an ALSCCA Alloy and also an AISCCA Alloy

Номер: US20130312876A1
Автор: PALM Frank
Принадлежит: EADS DEUTSCHLAND GmbH

A method for adding calcium to an aluminum-scandium alloy to produce an aluminum-scandium-calcium alloy involves combining aluminum, scandium, and calcium in a melt and the common melt is quenched at a high velocity. 112-. (canceled)13. A method for adding calcium to an aluminum-scandium alloy for producing an aluminum-scandium-calcium alloy , the method comprising the steps:a) combining aluminum, scandium and calcium together in a common melt; andb) quenching the common melt,{'sup': '3', 'wherein the calcium is added to the alloy in a ratio so that a density less than 2.6 g/cmis achieved.'}14. The method according to claim 13 , wherein the calcium is added to the alloy at a ratio of more than 0.5 wgt.-%.15. The method according to claim 13 , wherein the common melt is quenched by a rapid solidification process at a speed of more than 100 K/s.16. The method according to claim 13 , wherein the common melt is sprayed onto a substrate as a nozzle jet by a nozzle claim 13 , wherein the substrate is cooled and rotated during the application of the common melt.17. The method according to claim 16 , wherein the substrate is rotated so quickly that the quenched common melt is spun off from the substrate from an impact region of the nozzle jet on the substrate.18. The method according to claim 13 , wherein the method is carried out under atmospheric conditions.19. The method according to claim 13 , wherein step a) comprises the step of:combining an aluminum-magnesium master alloy, an aluminum-scandium pre-alloy, or an aluminum-calcium pre-alloy into the common melt.20. An aluminum-scandium-calcium alloy having a calcium ratio of more than 0.5 wgt.-% claim 13 , wherein the alloy has a density of less than 2.6 g/cm.21. The alloy according to claim 20 , wherein the alloy comprises 0.2 wgt-% to 3 wgt.-% scandium.22. The alloy according to claim 20 , wherein the alloy comprises:0.1 wgt.-% to 1.5 wgt.-% zirconium;1.0 wgt.-% to 8.0 wgt.-% magnesium; oradmixtures and undesired ...

Подробнее
26-12-2013 дата публикации

METHOD FOR THE MELTING OF NEAR-BETA TITANIUM ALLOY CONSISTING OF (4.0-6.0)% AL - (4.5-6.0)% MO - (4.5-6.0)% V - (2.0-3.6)% CR, (0.2-0.5)% FE - (0.1-2.0)% ZR

Номер: US20130340569A1
Принадлежит: Public Stock Company "VSMPO-AVISMA Corp

This invention relates to nonferrous metallurgy, namely to manufacture of near-beta titanium alloys containing titanium and such alloying elements as molybdenum, vanadium, chromium, zirconium, iron and aluminum. The provided alloy contains the following components, in weight percentages: molybdenum—25 to 27; vanadium—25 to 27; chromium—14 to 16; titanium—9 to 11; with balance aluminum and iron and zirconium in the form of commercially pure metals. The technical result of this invention is capability to produce a near-beta titanium alloy with high chemical homogeneity alloyed by refractory elements and having aluminum content <6 wt %, wherein the alloy is characterized by a combination of stable high strength and high impact strength. 1Molybdenum—25-27Vanadium—25-27Chromium—14-16Titanium—9-11Aluminum—balance;. A method for melting of near-β titanium alloy consisting of (4.0-6.0)% Al, (4.5-6.0) wt % Mo, (4.5-6.0) wt % V, (2.0-3.6) wt % Cr, (0.2-0.5) wt % Fe, and (0.1-2.0) wt % Zr, the method comprising preparing a master alloy having two or more alloying elements, alloying the blend, fabricating consumable electrode, and alloy melting in vacuum-arc furnace, wherein Al, Mo, V, and Cr are introduced into the alloyed blend in the form of a complex master alloy made via an aluminothermic process and having the following weight percentages of the elements: This application is a national stage application under 35 U.S.C. 371 of International Patent Application Serial No. PCT/RU2011/000731, entitled “METHOD FOR MELTING A PSEUDO 13-TITANIUM ALLOY COMPRISING (4.0-6.0)% AL—(.-.)% MO—(4.5-6.0)% V—(2.0-3.6)% CR—(0.2-0.5)% FE—(0.1-2.0)% ZR”, filed Sep. 23, 2011, which claims the benefit of Russian Provisional Patent Application No. 2010139693 filed Sep. 27, 2010, the disclosures of which are incorporated herein by reference.This invention relates to nonferrous metallurgy, namely to the manufacture of near-beta titanium alloys containing titanium and such alloying elements as ...

Подробнее
03-04-2014 дата публикации

Alloy production method and alloy produced by the same

Номер: US20140093420A1
Автор: Se-Kwang Kim

Provided are an alloy production method that may easily distribute a compound in a matrix of an alloy while maintaining the quality of a molten metal, and an alloy produced by the same. In accordance with an exemplary embodiment, the method includes forming a molten metal in which a mother alloy including at least one kind of first compound and a casting metal are melted, and casting the molten metal, wherein the mother alloy is a magnesium mother alloy or aluminum mother alloy.

Подробнее
01-01-2015 дата публикации

LEAD-FREE SOLDER COMPOSITIONS

Номер: US20150004427A1
Принадлежит:

A solder may include zinc, aluminum, magnesium and gallium. The zinc may be present in an amount from about 82% to 96% by weight of the solder. The aluminum may be present in an amount from about 3% to about 15% by weight of the solder. The magnesium may be present in an amount from about 0.5% to about 1.5% by weight of the solder. The gallium may be present in an amount between about 0.5% to about 1.5% by weight of the solder. 1. A solder composition comprising:about 82 to 96 weight percent zinc;about 3 to about 15 weight percent aluminum;about 0.5 to about 1.5 weight percent magnesium; andabout 0.5 to about 1.5 weight percent gallium.2. The solder composition of claim 1 , comprising:about 0.75 to about 1.25 weight percent magnesium; andabout 0.75 to about 1.25 weight percent gallium.3. The solder composition of claim 1 , comprising:about 1.0 weight percent magnesium; andabout 1.0 weight percent gallium.4. The solder composition of claim 1 , and further comprising:about 0.1 to about 2.0 weight percent tin.5. The solder composition of claim 1 , and further comprising at least one dopant present in an amount from about 0.001 to about 0.5 weight percent.6. The solder composition of claim 5 , wherein the at least one dopant comprises one or more of indium claim 5 , phosphorous claim 5 , germanium or copper.7. The solder composition of claim 5 , wherein the dopant comprises phosphorous and at least one member selected from the group consisting of tin and copper.8. The solder composition of claim 1 , and further comprising:about 10 ppm to about 1000 ppm phosphorous; andabout 0.1 to about 2 weight percent tin.9. The solder composition of claim 1 , and further comprising:about 25 ppm to about 300 ppm phosphorous; andabout 0.5 to about 1.5 weight percent tin.10. The solder composition of claim 1 , and further comprising:about 25 ppm to about 300 ppm phosphorous; andabout 0.1 to about 1 percent copper.11. The solder composition of claim 1 , and further comprising:less than ...

Подробнее
03-01-2019 дата публикации

AGE-HARDENABLE STERLING SILVER ALLOY WITH IMPROVED "TARNISHING" RESISTANCE AND MASTER ALLOY COMPOSITION FOR ITS PRODUCTION

Номер: US20190003015A1
Принадлежит:

The present invention relates to a sterling silver alloy, copper-free in its basic embodiment, age-hardenable, with improved resistance to tarnishing, thanks to the presence of palladium in combination with zinc and indium, this alloy being mainly used for the realization of precious articles; the present invention also relates to a master alloy composition suitable for the production of said sterling silver alloy. 1. An age-hardenable sterling silver alloy , characterised in that it consists of at least:silver (Ag): from 92.5 to 96.8% by weight;palladium (Pd): from 0.7 to 1.9% by weight;zinc (Zn): from 1 to 5.8% by weight;indium (In): from 1 to 5.8% by weight;wherein thesum of zinc (Zn) and Indium (In) is from 2.5 to 6.8% by weight, when zinc (Zn) and indium (In) are both present in the final (ready-to-use) alloy;and optionallygermanium (Ge) and/or silicon (Si); maximum 0.25% by weight;copper (Cu): maximum 3% by weight;tin (Sn) and/or gallium (Ga): maximum 2% by weight;hardened to a value of about 82-120 HV by means of thermal treatment carried out on “as cast” or previously homogenized material.2. An alloy according to claim 1 , characterised in that it consists of:silver (Ag): from 92.5 to 96.6% by weight;palladium (Pd): from 0.9 to 1.5% by weight;zinc (Zn): from 1 to 5.6% by weight;indium (In): from 1 to 5.6% by weight;sum of zinc (Zn) and indium (In): from 2.5 to 6.6% by weight.3. An alloy according to or claim 1 , characterised in that it consists of:silver (Ag): from 92.5 to 94% by weight;palladium (Pd): from 0.9 to 1.5% by weight;zinc (Zn): from 1 to 5.6% by weight;indium (In): from 1 to 5.6% by weight;sum of zinc (Zn) and indium (In): from 2.5 to 6.6% by weight.4. An alloy according to claim 1 , characterised in that said sum of zinc (Zn) and indium (In) is not less than 3.75% by weight.5. An alloy according to claim 1 , characterised in that said copper (Cu) has a value in the range of 1 to 2.5% by weight.6. An alloy according to claim 1 , characterised in ...

Подробнее
14-01-2016 дата публикации

ALUMINUM-MOLYBDENUM-ZIRCONIUM-TIN MASTER ALLOYS

Номер: US20160010186A1
Принадлежит:

The present invention relates to titanium base alloys, and more particularly to aluminum-molybdenum-zirconium-tin master alloys, which are suitable for further alloying into titanium base alloys. The present invention also relates to methods for producing aluminum-molybdenum-zirconium-tin master alloys, which are useful in providing titanium base alloys containing refractory materials of greater homogeneity. In accordance with the present invention, the tin: zirconium ratio is reduced from about 1:2 to about 1:1, thereby lowering the amount of excess zirconium. After the highest melting point tin: zirconium intermetallic phases have been precipitated, there is little or no excess zirconium to precipitate out with aluminum; therefore, all of the aluminum is available to combine with molybdenum to precipitate the target lower melting point intermetallic phases. 1. An aluminum-molybdenum-zirconium-tin master alloy composition formed by a single stage thermite reaction , said composition comprising about 36 weight % aluminum , 36 weight % molybdenum , about 12 weight % zirconium , and about 12 weight % tin , wherein the alloy is in a form of an ingot.2. The composition as recited in claim 1 , wherein the ingot has a weight of about 120 pounds.3. The composition as recited in claim 2 , wherein the ingot has a weight of about 100 pounds.4. The composition as recited in claim 1 , wherein the alloy is used for disks claim 1 , blades and seals of turbine engines.5. The composition as recited in claim 1 , wherein the alloy is used for airframe parts.6. The composition as recited in claim 1 , wherein the composition is produced by melting pure titanium with the alloy.7. The composition as recited in claim 1 , further comprising about 4 weight % titanium. This application claims priority to U.S. provisional application Ser. No. 61/782,163 which was filed in the United States Patent and Trademark Office on Mar. 14, 2013.The present invention relates to titanium base alloys, and ...

Подробнее
11-01-2018 дата публикации

HIGH-PERFORMANCE 5000-SERIES ALUMINUM ALLOYS AND METHODS FOR MAKING AND USING THEM

Номер: US20180010215A1
Принадлежит:

5000 series aluminum wrought alloys with high strength, high formability, excellent corrosion resistance, and friction-stir weldability, and methods of making those alloys. 1. An aluminum alloy comprising:about 3% to about 5% by weight magnesium;about 0.1% to about 4% by weight zinc;about 0.6% to about 1% by weight manganese;about 0.1% to about 0.3% by weight chromium;about 0.4% to about 0.8% by weight zirconium;aluminum as the remainder; and{'sub': 3', '2', '3, 'sup': 20', '3, 'a dispersion of coherent AlZr nanoscale precipitates with an Llcrystal structure in an aluminum matrix, the AlZr nanoscale precipitates having an average radius of no more than about 20 nm and having an average number density of no less than about 5×10per m.'}2. The aluminum alloy of claim 1 , further comprising scandium at a concentration of no more than about 0.15% by weight.3. The aluminum alloy of claim 1 , further comprising copper at a concentration of no more than about 1% by weight.4. The aluminum alloy of claim 1 , further comprising a dispersion of the incoherent AlMn dispersoids having an average radius in the range of about 50 nm to about 200 nm.5. The aluminum alloy of claim 1 , further comprising a dispersion of AlMn claim 1 , AlCr or AlCrintermetallic phases in the range of about 50 nm to about 800 nm in size.6. The aluminum alloy of claim 5 , further comprising a dispersion of the incoherent AlMn dispersoids having an average radius in the range of about 50 nm to about 200 nm.7. The aluminum alloy of claim 1 , wherein the alloy has mechanical strength comparable to commercial high-strength AA7039-T6 and AA7075-T6 alloys.8. The aluminum alloy of claim 1 , wherein the alloy has the same or better corrosion resistance compared to commercial AA5083 alloy.9. The aluminum alloy of claim 1 , wherein the alloy has better creep resistance compared to commercial AA5083 alloy at a temperature range from about 25° C. to about 450° C.10. The An aluminum alloy of claim 1 , wherein the ...

Подробнее
10-01-2019 дата публикации

ANTI-FATIGUE IN-SITU ALUMINUM-BASED COMPOSITE MATERIAL FOR HEAVY-LOAD HUBS AND PREPARATION METHOD THEREFOR

Номер: US20190010580A1
Принадлежит:

Provided are an anti-fatigue in-situ aluminium-based nanocomposite material for heavy-load automobile hubs and a preparation method therefor. By means of the fine adjustment of components and a forming process, in situ nano-compositing, micro-alloying and rapid compression moulding techniques are combined. That is, after the addition of elements Zr and B, an in-situ reaction occurs to form a nano ZrB2 ceramic reinforcement which is distributed in aluminium crystals and crystal boundaries and bonded to a metallurgical interface kept firm with the matrix. Moreover, with rare earth elements Er and Y and element Zr as addition ingredients and after the increase in the contents of Cr and Mn, a structure having fine aluminium crystal grains with a large number of micro-alloyed nano precipitated particles contained in the grains, fine and round eutectic silicon grains and a fine Mg2Si phase mainly dispersed inside the grains is obtained in the process of the rapid compression moulding and thermal treatment of the hubs; and thus, the tensile strength, the yield strength and the fatigue strength of an alloy are effectively improved. 1. An anti-fatigue in-situ aluminum based composite material for heavy-load hubs , comprising , by mass percent , the following chemical components: 6.8-7.5 of Si , 3.0-5.0 of Zr , 0.5-1.0 of B , 0.3-0.45 of Mg , 0.18-0.25 of Er , 0.18-0.25 of Y , 0.15-0.22 of Cr , 0.1-0.12 of Mn , 0.1-0.15 of Ti , 0.08-0.12 of Fe , 0.05-0.1 of Cu , and the balance of Al , characterized in that: said composite material is prepared according to the following steps: microalloying A356.2 aluminum alloy melt , carrying out in-situ nano compounding for the microalloyed A356.2 aluminum alloy melt , carrying out pressurized gravity casting rapid sequential solidification molding for the A356.2 aluminum alloy melt that has been subjected to in-situ nano compounding , and finally , carrying out thermal treatment for the hub formed with casting , combining microalloying , ...

Подробнее
21-01-2016 дата публикации

RADIOLUCENT MOLYBDENUM-CONTAINING MASTER ALLOYS

Номер: US20160017461A1
Принадлежит:

The present invention relates to a method for producing a Mo-containing master alloy that is radiolucent. In accordance with the present invention, two elements may be used to reduce the density of a Mo-containing master alloy enough to make the master alloy radiolucent, aluminum or titanium. Aluminum is required in the particular titanium alloy in the same weight ratio as Mo and cannot be used to decrease the master alloy density without skewing the ratio. Since the master alloy is being added to a titanium melt, much more titanium can be used to reduce the master alloy density.

Подробнее
18-01-2018 дата публикации

HIGH-STRENGTH DISSOLVABLE ALUMINUM ALLOY AND PREPARATION METHOD THEREFOR

Номер: US20180016662A1
Принадлежит:

The present invention relates to a technical field of functional materials, and in particular to a high-strength dissolvable aluminum alloy and a preparation method therefor. In order to solve the problem of a relatively low strength of the existing dissolvable materials, a high-strength dissolvable aluminum alloy material and a preparation method therefor are provided. The raw materials of the high-strength dissolvable aluminum alloy comprise: aluminum, a functional metal, and a metal oxide; the addition amounts of the aluminum and the functional metals are: 60-99 wt. % of aluminum, 0.9-39.9 wt. % of the functional metals; and the addition amount of the metal oxide is: 0.01-11 wt. %. The high-strength dissolvable aluminum alloy can not only meet the usage requirements of high mechanical strength in service, but can also rapidly degrade after the service is completed. In addition, the preparation method of this material is simple, low in cost, and easy for large-scale production. 1. A high-strength soluble aluminum alloy , wherein raw materials of the high-strength soluble aluminum alloy comprise aluminum , functional metals and metallic oxide , addition amounts of aluminum and the functional metals are as follows: 60-99 wt. % of aluminum and 0.9-39.9 wt. % of functional metals , and an addition amount of the metallic oxide is 0.01-11 wt. %.2. The high-strength soluble aluminum alloy according to claim 1 , wherein the raw materials of the high-strength soluble aluminum alloy comprise aluminum claim 1 , functional metals and metallic oxide claim 1 , an addition amount of aluminum is 98-99 wt. % claim 1 , and an addition amount of the functional metals and the metallic oxide is 1-2 wt. %.3. The high-strength soluble aluminum alloy according to claim 1 , wherein addition amounts of aluminum and the functional metals are as follows: 60-99 wt. % of Al claim 1 , 0.1-20 wt. % of Sn claim 1 , 0-10 wt. % of Si claim 1 , 0.1-10 wt. % of Mn claim 1 , 0-10 wt. % of Mg claim 1 , ...

Подробнее
22-01-2015 дата публикации

High-Purity Titanium Ingots, Manufacturing Method Therefor, and Titanium Sputtering Target

Номер: US20150021174A1
Принадлежит:

Provided is a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more, wherein at least one nonmetallic element selected from S, P, and B is contained in a total amount of 0.1 to 100 mass ppm as the additive component and the variation in the content of the nonmetallic element between the top, middle, and bottom portions of the ingot is within ±200%. Provided is a method of manufacturing a titanium ingot containing a nonmetallic element in an amount of 0.1 to 100 mass ppm, wherein S, P, or B, which is a nonmetallic element, is added to molten titanium as an intermetallic compound or a master alloy to produce a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more. It is an object of the present invention to provide a high-purity titanium having decreased intra- and inter-ingot variations in the content of the nonmetallic element, a uniform structure, and improved strength by containing at least one nonmetallic element selected from S, P, and B. 1. A high-purity titanium ingot having a purity , excluding an additive element and gas components , of 99.99 mass % or more , wherein at least one nonmetallic element selected from sulfur (S) , phosphorus (P) , and boron (B) is contained in a total amount of 0.1 to 100 mass ppm as the additive component and the variation in the content of the nonmetallic element between the top , middle , and bottom portions of the ingot is within ±200%.2. The titanium ingot according to claim 1 , wherein the variation in the content of the nonmetallic element in a plane in a radial direction at the middle portion of the ingot is within ±200%.3. The titanium ingot according to claim 2 , wherein the variation in the content of the nonmetallic element between different ingots is within ±200%.4. The titanium ingot according to claim 2 , wherein the variation in the content of the nonmetallic element is within ±100%.5. ...

Подробнее
10-02-2022 дата публикации

ZINC ALLOY AND MANUFACTURING METHOD THEREOF

Номер: US20220042143A1
Принадлежит:

The present application relates to a zinc alloy and a manufacturing method thereof. The zinc alloy of the present application contains Al at an amount of 3.5-4.3 wt % and Mg at an amount of 0.005-0.018 wt %, and the rest of the alloy is Zn and unavoidable impurities. The alloy has excellent crack resistance, high casting yield, excellent polishing and electroplating properties, and can meet the high surface quality requirements of castings. It is suitable for die-casting production of components of plumbing and sanitary ware, hardware accessories, electronic appliances, toys and the like. 1. A zinc alloy , wherein the zinc alloy contains Al at an amount of 3.5-4.3 wt % and Mg at an amount of 0.005-0.018 wt % , and a remainder of the alloy is Zn and unavoidable impurities.2. The zinc alloy according to claim 1 , wherein the amount of Al in the zinc alloy is 3.7 to 4.2 wt %.3. The zinc alloy according to claim 1 , wherein the amount of Al in the zinc alloy is 3.9-4.1 wt %.4. The zinc alloy according to claim 1 , wherein the amount of Mg in the zinc alloy is 0.005-0.015 wt %.5. The zinc alloy according to claim 2 , wherein the amount of Mg in the zinc alloy is 0.005-0.015 wt %.6. The zinc alloy according to claim 3 , wherein the amount of Mg in the zinc alloy is 0.005-0.015 wt %.7. The zinc alloy according to claim 1 , wherein Cu with an amount of 0.2-1.0 wt % can be selectively added to the zinc alloy.8. The zinc alloy according to claim 2 , wherein Cu with an amount of 0.2-1.0 wt % can be selectively added to the zinc alloy.9. The zinc alloy according to claim 3 , wherein Cu with an amount of 0.2-1.0 wt % can be selectively added to the zinc alloy.10. The zinc alloy according to claim 4 , wherein Cu with an amount of 0.2-1.0 wt % can be selectively added to the zinc alloy.11. The zinc alloy according to claim 1 , wherein the amount of Cu in the zinc alloy is 0.5-1.0 wt %.12. The zinc alloy according to claim 2 , wherein the amount of Cu in the zinc alloy is 0.5-1.0 ...

Подробнее
24-04-2014 дата публикации

METHOD FOR PRODUCING FERROALLOY CONTAINING NICKEL

Номер: US20140109724A1
Принадлежит: OUTOKUMPU OYJ

The invention relates to a method for producing a ferroalloy containing nickel. From a fine-grained raw material containing iron and chromium and a fine-grained raw material containing nickel, a mixture is formed with binding agent, the mixture is agglomerated so that first formed objects of desired size are obtained. The objects formed are heat treated in order to strengthen the objects so that the heat treated objects withstand conveyance and loading into a smelter furnace. Further, the objects are smelted under reducing circumstances in order to achieve ferrochromenickel, a ferroalloy of a desired composition containing at least iron, chromium and nickel. 1. A method for producing a nickel containing ferroalloy , comprising:forming a mixture of a raw material containing iron and chromium, a raw material containing nickel, and a binder material,agglomerating the mixture to form objects having a desired size,heat-treating the objects at a temperature sufficient for removal of water of crystallization bound in the raw material, whereby the raw material containing nickel is calcinated and the objects are strengthened so that the heat-treated objects are conveyable, andsmelting the objects under reducing conditions in order to produce ferrochromenickel containing chromium and nickel in a ratio between 1.5 and 5,and wherein the raw material containing iron and chromium supplies substantially all the iron and chromium in the ferrochromenickel.2. A method according to claim 1 , wherein agglomeration comprises pelletizing.3. A method according to claim 1 , wherein heat-treating comprises sintering.4. A method according to claim 1 , wherein the proportion of nickel in the nickel-bearing raw material in the mixture to be agglomerated is 10-25 weight %.5. A method according to claim 1 , comprising smelting the objects under reducing conditions in order to produce ferrochromenickel with a ratio of chromium to nickel between 2.0 and 3.1.6. A method according to claim 1 , ...

Подробнее
28-01-2021 дата публикации

PROCESS OF PREPARING A LITHIUM ALUMINUM ALLOY

Номер: US20210025036A1
Принадлежит:

A process for producing lithium aluminum ingots is provided. In one embodiment, the process includes preparing a master alloy comprising about 70 to 90 percent by weight lithium and 10 to 30 percent by weight aluminum and dissolving the master alloy in lithium at a temperature of from about 230° C. to 330° C. to provide a lithium aluminum ingot having between about 1500 to 2500 ppm by weight aluminum. In another embodiment, the process may produce a lithium aluminum ingot having about 0.001 to about 1.0 percent aluminum. 1. A process of preparing a plurality of lithium aluminum ingots comprising:(a) preparing a master alloy comprising about 70 to 90 percent by weight lithium and 10 to 30 percent by weight aluminum and(b) dissolving the master alloy of step (a) in lithium at a temperature of from about 230° C. to 360° C. to provide a uniform alloy composition,(c) producing a plurality of lithium aluminum ingots from the uniform alloy composition wherein each lithium aluminum ingot has between about 1500 to 2500 ppm by weight aluminum.2. The process of claim 1 , wherein preparing the master alloy comprises melting the aluminum and adding lithium.3. The process of further comprising mixing the lithium and the aluminum to produce a homogenous mixture.4. The process of claim 1 , wherein the master alloy of step (a) has a melting point temperature between about 185° C. and about 330° C.5. The process of claim 4 , wherein the master alloy of step (a) has a melting point temperature between about 200° C. and about 300° C.6. The process of claim 5 , wherein the master alloy of step (a) has a melting point temperature between about 240° C. and about 260° C.7. The process of claim 1 , wherein the lithium aluminum ingot of step (c) is homogenous.8. The process of claim 7 , wherein dissolving the master alloy of step (a) in lithium further comprises cooling the master alloy and lithium at a rate selected to form the uniform alloy composition.9. The process of claim 8 , wherein ...

Подробнее
01-02-2018 дата публикации

SCANDIUM-CONTAINING MASTER ALLOYS AND METHOD FOR MAKING THE SAME

Номер: US20180030577A1
Принадлежит:

A method () is provided for making a scandium-containing alloy. The method includes providing a molten metal (), and mixing the molten metal with a scandium-containing precursor () which undergoes thermal decomposition at the temperature of the molten metal to produce scandium oxide, thereby producing a scandium-containing alloy. 1. A method for making a scandium-containing alloy , comprising:providing a molten metal; andmixing the molten metal with a scandium-containing precursor which undergoes thermal decomposition at the temperature of the molten metal to produce scandium oxide, thereby producing a scandium-containing alloy.2. The method of claim 1 , wherein the scandium-containing precursor undergoes thermal decomposition upon contact with the molten metal to produce scandium oxide.3. The method of claim 2 , wherein the scandium-containing precursor undergoes thermal decomposition at the temperature of the molten metal to produce scandium oxide and a gaseous decomposition product.4. The method of claim 1 , wherein the scandium-containing precursor contains carbon.5. The method of claim 1 , wherein the scandium-containing precursor contains at least one carbonyl moiety.6. The method of claim 1 , wherein the scandium-containing precursor is scandium oxalate.7. The method of claim 1 , wherein the scandium-containing precursor is scandium carbonate.8. The method of claim 1 , wherein the molten metal comprises aluminum.9. The method of claim 1 , wherein the molten metal comprises magnesium.10. The method of claim 1 , wherein the molten metal comprises aluminum and magnesium.11. The method of claim 1 , wherein the molten metal has a temperature of at least 600° C. when it is mixed with the scandium compound.12. The method of claim 1 , wherein the molten metal has a temperature within the range of about 600° C. to about 900° C. when it is mixed with the scandium compound.13. The method of claim 1 , wherein mixing the molten metal and the scandium-containing precursor ...

Подробнее
01-02-2018 дата публикации

PLASTIC DEFORMATION MAGNESIUM ALLOY HAVING EXCELLENT THERMAL CONDUCTIVITY AND FLAME RETARDANCY, AND PREPARATION METHOD

Номер: US20180030578A1
Принадлежит:

Disclosed is a magnesium alloy that has high thermal conductivity and flame retardancy and facilitates plastic working, wherein magnesium is added with 0.5 to 5 wt % of zinc (Zn) and 0.3 to 2.0 wt % of at least one of yttrium (Y) and mischmetal, with, as necessary, 1.0 wt % or less of at least one selected from among calcium (Ca), silicon (Si), manganese (Mn) and tin (Sn), the total amount of alloy elements being 2.5 to 6 wt %. A method of manufacturing the same is also provided, including preparing a magnesium-zinc alloy melt in a melting furnace, adding high-melting-point elements in the form of a master alloy and melting them, and performing mechanical stirring during cooling of a cast material in a continuous casting mold containing the magnesium alloy melt, thus producing a magnesium alloy cast material having low segregation, after which a chill is removed from the cast material or diffusion annealing is performed, followed by molding through a tempering process such as rolling, extrusion or forging. This magnesium alloy is improved in ductility by the action of alloy elements for inhibiting the formation of lamella precipitates due to a low-melting-point eutectic phase in a magnesium matrix structure, can be extruded even at a pressure of 1,000 kgf/cmor less due to the increased plasticity thereof, and can exhibit thermal conductivity of 100 W/m·K or more and flame retardancy satisfying the requirements for aircraft materials and is thus suitable for use in fields requiring fire safety, thereby realizing wide application thereof as a heat sink or a structural material for portable appliances, vehicles and aircraft components and contributing to weight reduction. 1. A magnesium alloy having high thermal conductivity and flame retardancy and facilitating plastic working , which is configured such that magnesium is added with 0.5 to 5 wt % of zinc and 0.3 to 2.0 wt % of at least one of yttrium and mischmetal as high-melting-point oxide-film-forming elements , ...

Подробнее
07-02-2019 дата публикации

UNLEADED FREE-CUTTING BRASS ALLOYS WITH EXCELLENT CASTABILITY, METHOD FOR PRODUCING THE SAME, AND APPLICATION THEREOF

Номер: US20190040499A1
Принадлежит: Fortune Manufacturing Co., Ltd.

The present invention is directed to an unleaded free cutting brass alloy with excellent machinability, leak-tightness, reca stability, and mechanical properties, wherein the brass alloy comprises 65 to 75 weight % of copper, 22.5 to 32.5 weight % of zinc, 0.5 to 2.0 weight % of silicon, and other unavoidable impurities; wherein the total content of copper and zinc in the brass alloy is 97.5 weight % or more. 120.-. (canceled)21. An unleaded free-cutting brass alloy , comprising:copper: 65 to 75 weight %,zinc: 22.5 to 32.5 weight %,silicon: 0.5 to 2.0 weight %, andother unavoidable impurities,wherein the total content of copper and zinc in the brass alloy is 97.5 weight % or more.22. The brass alloy according to claim 21 , further comprising at least one element selected from the group consisting of 0.1 to 1.0 weight % of aluminum claim 21 , 0.01 to 0.55 weight % of tin claim 21 , 0.01 to 0.55 weight % of manganese claim 21 , 0.01 to 0.8 weight % of nickel claim 21 , 0.01 to 0.55 weight % of antimony claim 21 , and 0.001 to 0.1 weight % of boron claim 21 , wherein the total content of the element(s) is 2.5 weight % or less.23. The brass alloy according to claim 21 , wherein the γ-phase of the brass alloy is uniformly distributed between phase boundaries of the α-phase and the β-phase of the brass alloy in a granular shape.24. The brass alloy according to claim 21 , wherein the brass alloy comprises 1.1 to 1.35 weight % of silicon.25. The brass alloy according to claim 22 , comprising 0.2 to 0.5 weight % of aluminum.26. The brass alloy according to claim 22 , comprising 0.01 to 0.2 weight % of tin.27. The brass alloy according to claim 22 , comprising 0.01 to 0.25 weight % of manganese.28. The brass alloy according to claim 22 , comprising 0.01 to 0.55 weight % of nickel.29. The brass alloy according to claim 22 , comprising 0.1 to 0.45 weight % of antimony.30. The brass alloy according to claim 22 , comprising 0.001 to 0.05 weight % of boron.31. A casting process ...

Подробнее
06-02-2020 дата публикации

METHOD FOR LOWERING OIL PIPE IN GAS WELL WITHOUT WELL-KILLING, SOLUBLE BRIDGE PLUG AND MATERIAL PREPARATION METHOD THEREOF

Номер: US20200040682A1
Принадлежит:

The present invention discloses a method for lowering an oil pipe in a gas well without well-killing, a soluble bridge plug and a material preparation method thereof, wherein, the method comprises the steps of: lowering a bridge plug in a wellbore such that the bridge plug blocks the wellbore at a predetermined location in the wellbore; injecting water in the wellbore after the pressure in the wellbore has been relieved so as to replace gases in the wellbore; and lowering an oil pipe in the wellbore to the location of the bridge plug. The method for lowering an oil pipe in a gas well without well-killing, the soluble bridge plug and the material preparation method thereof provided in the present invention successfully solve the problem of high cost for lowering an oil pipe under pressure after a fracturing fluid has been injected into the casing. 1. A method of lowering an oil pipe in a gas well without well-killing , wherein the method comprises the steps of:lowering a bridge plug in a wellbore such that the bridge plug blocks the wellbore at a predetermined location in the wellbore;injecting water in the wellbore after pressure in the wellbore has been relieved so as to replace gases in the wellbore; andlowering an oil pipe in the wellbore to the location of the bridge plug.2. The method of lowering an oil pipe in a gas well without well-killing according to claim 1 , wherein the bridge plug is lowered to the predetermined location in the wellbore in an under-pressure condition by means of a cable claim 1 , a setting mechanism connected to the cable is connected above the bridge plug claim 1 , and the setting mechanism is controlled by the cable to push the bridge plug to block the wellbore.3. The method of lowering an oil pipe in a gas well without well-killing according to claim 2 , wherein claim 2 , when lowering the bridge plug claim 2 , pressure is applied from outside the well into the wellbore to push the bridge plug to move until the bridge plug reaches ...

Подробнее
03-03-2022 дата публикации

Porous silver powders and method for preparing the same

Номер: US20220062985A1
Автор: Jong Goo Kang
Принадлежит: Individual

Provided is a porous silver powder and a preparation method thereof. More specifically, the present invention relates to porous silver powder that is easy to prepare, improves a sterilization effect because an specific surface area and a porosity are easily adjustable, improves electrical conductivity when molded as sintered body, contributes to reducing use of expensive silver when applied in various industrial fields, thus achieving price competitiveness, and is harmless to the human body because a particle size is adjustable to prevent the porous silver powder from being absorbed into the body; and a preparation method thereof.

Подробнее
13-02-2020 дата публикации

CAST ALUMINUM ALLOYS FOR AUTOMOTIVE APPLICATIONS BY MICROSTRUCTURE REFINEMENT USING TSP TREATMENT

Номер: US20200047246A1
Принадлежит:

A method of casting an aluminum alloy is provided. The method includes casting a master aluminum alloy having a trisilanol phenyl polyhedral oligomeric silsesquioxanes (TSP) modifier into an ingot and adding the master aluminum alloy ingot into a molten base aluminum alloy to form a modified aluminum alloy. The modified aluminum alloy is heated for a period of time and then cast into a cast component. A variation of the method includes mixing a powdered aluminum alloy with a powdered TSP and pressing the mixture of powdered TSP and powdered aluminum alloy into a compacted preform prior to casting the master aluminum alloy. The compacted preform is melted during the step of casting the master aluminum alloy. 1. A method of casting an aluminum alloy comprising:casting a master aluminum alloy having a trisilanol phenyl polyhedral oligomeric silsesquioxanes (TSP) modifier into an ingot;adding the master aluminum alloy ingot into a molten base aluminum alloy to form a modified aluminum alloy;heating the modified aluminum alloy for a period of time; andcasting the modified aluminum alloy into a cast component.2. The method according to further comprising claim 1 , prior to casting the master aluminum alloy:mixing a powdered aluminum alloy with a powdered TSP; andpressing the mixture of powdered TSP and powdered aluminum alloy into a compacted preform,wherein the compacted preform is melted during the step of casting the master aluminum alloy.3. The method according to claim 2 , wherein a plurality of compacted preforms are pressed and subsequently melted during the step of casting the master aluminum alloy.4. The method according to claim 1 , wherein the modified aluminum alloy is degassed prior to casting.5. The method according to claim 1 , wherein the master aluminum alloy is an aluminum-silicon (AlSi) based alloy.6. The cast component according to the method of comprising a microstructure having fibrous eutectic Si.7. The method according to claim 1 , wherein the ...

Подробнее
22-02-2018 дата публикации

Formable Superalloy Single Crystal Composition

Номер: US20180051360A1
Принадлежит: UNITED TECHNOLOGIES CORPORATION

A formable nickel based superalloy composition including a two phase γ/γ′ precipitation hardenable nickel base superalloy with a sum of primarily γ′ forming elements in atom % is in the range of about 10-16, forming about a 40-64 volume % of the γ′ precipitate, cast in form of a single crystal. 1. A formable nickel based superalloy composition , comprising:a two phase γ/γ′ precipitation hardenable nickel base superalloy with a sum of primarily γ′ forming elements in atom % in the range of about 10-16, forming about a 40-64 volume % of the γ′ precipitate, cast in form of a single crystal.2. The composition as recited in claim 1 , wherein the γ′ forming elements are Nb+Ta+Ti+Al.3. The composition as recited in claim 1 , wherein the type γ′ precipitate are Ni(Al claim 1 ,X).4. The composition as recited in claim 1 , wherein the γ′ forming elements are Nb+Ta+Ti+Al and the type γ′ precipitate are Ni(Al claim 1 ,X).5. The composition as recited in claim 1 , wherein the two phase γ/γ′ precipitation hardenable nickel base superalloy is formed as a thin sheet metal.6. The composition as recited in claim 1 , wherein the two phase γ/γ′ precipitation hardenable nickel base superalloy is procured from a single crystal body.7. The composition as recited in claim 1 , further comprising subjecting the two phase γ/γ′ precipitation hardenable nickel base superalloy to a wrought process that imparts more than 0.1% plastic strain to achieve the final shape.8. The composition as recited in claim 1 , further comprising subjecting the two phase γ/γ′ precipitation hardenable nickel base superalloy to a hot wrought process.9. The composition as recited in claim 1 , further comprising subjecting the two phase γ/γ′ precipitation hardenable nickel base superalloy to a cold wrought process.10. The composition as recited in claim 1 , further comprising subjecting the two phase γ/γ′ precipitation hardenable nickel base superalloy to at least one wrought process such as bending claim 1 , rolling ...

Подробнее
15-05-2014 дата публикации

Method for Making a Strong Aluminum Alloy

Номер: US20140130637A1

A method is used to make an aluminum alloy with excellent tensile strength, low density and excellent radiation. The method includes the steps of providing a base material, adding 0.06 wt % to 0.30 wt % of zirconium and 0.06 wt % to 0.30 wt % of vanadium to the base material, and melting the basic material with the zirconium and vanadium to provide an aluminum alloy. The base material includes 92.55 wt % to 97.38 wt % of aluminum, 0.9 wt % to 1.8 wt % of silicon, less than 0.5 wt % of iron, 0.6 wt % to 1.2 wt % of copper, 0.4 wt % to 1.1 wt % of manganese, 0.6 wt % to 1.4 wt % of magnesium, less than 0.40 wt % of chromium, less than 0.25 wt % of zinc and less than 0.20 wt % of titanium. 1. A method for making a strong aluminum alloy including the steps of providing a base material consisting essentially of 92.55% to 97.38% of aluminum , 0.9% to 1.8% of silicon , less than 0.5% of iron , 0.6% to 1.2% of copper , 0.4% to 1.1% of manganese , 0.6% to 1.4% of magnesium , less than 0.40% of chromium , less than 0.25% of zinc and less than 0.20% of titanium; adding 0.06% to 0.16% of zirconium and 0.06% to 0.30% of vanadium to the base material , the above all percentages being by weight , and melting the basic material with the zirconium and vanadium to provide an aluminum alloy having a strength of 400 Mpa after a T6 heat treatment.2. The method for making a strong aluminum alloy according to claim 1 , wherein the step of melting the base material with the zirconium and vanadium includes the step of providing an induction furnace for melting the base material with the zirconium and vanadium in argon to provide an aluminum alloy melt.3. The method for making a strong aluminum alloy according to claim 2 , further including the steps of subjecting the aluminum alloy melt to degassing and slag-removing; turning the aluminum alloy melt into an aluminum alloy nugget by direct chill casting; andpressurizing the aluminum alloy nugget to turn the aluminum alloy nugget into another ...

Подробнее
03-03-2016 дата публикации

NANOPARTICLE-STABILIZED IMMISCIBLE ALLOYS

Номер: US20160060730A1
Принадлежит: WISCONSIN ALUMNI RESEARCH FOUNDATION

Solid immiscible alloys and methods for making the solid immiscible alloys are provided. The microstructure of the immiscible alloys is characterized by a minority phase comprising a plurality of particles of an inorganic material dispersed in a majority phase comprising a continuous matrix of another inorganic material. The methods utilize nanoparticles to control both the collisional growth and the diffusional growth of the minority phase particles in the matrix during the formation of the alloy microstructure. 1. A solid immiscible alloy material comprising:(a) an immiscible alloy comprising a majority phase comprising a continuous matrix of a first inorganic material; and a minority phase comprising a plurality of particles of a second inorganic material dispersed in the majority phase, wherein the minority phase particles have an average diameter of no greater than about 20 μm; and(b) nanoparticles comprising a thermally stable material coating the surfaces of the dispersed minority phase particles, wherein the average smallest diameter for the distribution of the nanoparticles is no greater than about 250 nm.2. The alloy material of claim 1 , wherein the minority phase particles have an average diameter of no greater than about 15 μm and the average smallest diameter for the distribution of the nanoparticles is no greater than about 150 nm.3. The alloy material of claim 1 , wherein the minority phase particles have an average diameter of no greater than about 11 μm and no more than about 1% of the minority phase particles have a diameter greater than about 20 μm.4. The alloy material of claim 1 , wherein the first inorganic material is a metal claim 1 , the second inorganic material is a metal or metalloid and the thermally stable material is a ceramic.5. The alloy material of claim 4 , wherein the immiscible alloy is an aluminum-based alloy.6. The alloy material of claim 1 , wherein the area fraction of the minority phase particles varies by no more than ...

Подробнее
21-02-2019 дата публикации

Cr-Fe-Mn-Ni-V-BASED HIGH-ENTROPY ALLOY

Номер: US20190055630A1
Принадлежит:

The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Cr: 3-18 at %; Fe: 3-60 at %; Mn: 3-40 at% ; Ni: 20-80 at %: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less. 1. A high-entropy alloy comprising:Cr: 3-18 at %; Fe: 3-60 at %; Mn: 3-40 at %; Ni: 20-80 at %; V: 3-12 at %; and unavoidable impurities, whereinthe ratio of the V content to the Ni content (V/Ni) is 0.5 or less.2. The high-entropy alloy of claim 1 , wherein the alloy is a single phase of a face centered cubic structure.3. The high-entropy alloy of claim 1 , wherein the sum of the Fe content and the Mn content is less than 50 at %.4. The high-entropy alloy of claim 1 , wherein the alloy has tensile strength of 1000 MPa or greater and elongation of 30% or greater at an ultra-low temperature (77K).5. The high-entropy alloy of claim 1 , wherein the alloy has tensile strength of 1000 MPa or greater and elongation of 60% or greater at an ultra-low temperature (77K).6. The high-entropy alloy of claim 1 , wherein the alloy has tensile strength of 800 MPa or greater and elongation of 30% or greater at room temperature (298K). The present invention relates to a high-entropy alloy, which is designed using thermodynamic calculations among computational simulation techniques, and more particularly to, a Cr—Fe—Mn—Ni—V-based high-entropy alloy having excellent low temperature tensile strength and elongation by setting up an alloy composition region having a single-phase microstructure of a face centered cubic (FCC) at 700° C. or higher through ...

Подробнее
04-03-2021 дата публикации

PREPARATION METHOD OF A LITHIUM-CONTAINING MAGNESIUM/ALUMINUM MATRIX COMPOSITE

Номер: US20210062315A1
Принадлежит:

The present invention relates to a preparation method of a lithium-containing magnesium/aluminum matrix composite. The preparation method is performed according to the following steps: (1) preparing magnesium ingots or aluminum ingots, preparing lithium metal, and preparing flux and reinforcements; (2) heating the flux to prepare flux melt, and adding the reinforcements to the flux melt to prepare a liquid-solid mixture; (3) pouring the liquid-solid mixture in a normal-temperature crucible, and performing cooling to obtain a precursor; (4) preheating a crucible, adding raw materials, and performing melting to form a raw material melt; (5) controlling a temperature of the raw material melt to 973-993K, adding the lithium metal, performing stirring, adding the precursor, performing stirring and mixing, raising temperature to 993-1013K, and performing standing; and (6) scumming operation should be carried out, and performing temperature casting on composite melt. 1. A preparation method of a lithium-containing magnesium/aluminum matrix composite , comprising the following steps:{'sub': 2', '3', '2', '2', '3', '2', '2, '(1) preparing magnesium ingots or aluminum ingots as raw materials, preparing lithium metal, and preparing flux and reinforcements, wherein the flux contains components in percentage by mass of 65%-85% of lithium chloride, 15%-35% of lithium fluoride and less than or equal to 20% of lithium bromide, the reinforcements are elemental metal powder, rare earth oxide, carbide, boride or metal oxide, the elemental metal powder is W, Mo or Ni, the rare earth oxide is LaO, CeOor YO, the carbide is TiC or SiC, the boride is ZrB, and the metal oxide is MgO or SiO, the reinforcements are 0.1%-30% of total volume of the raw materials, the reinforcements are 1%-50% of total volume of the flux, and the lithium metal is 0.1%-10% of total mass of the raw materials;'}(2) putting the flux into a clay crucible or a graphite crucible, performing heating to 673-773K to make ...

Подробнее
20-02-2020 дата публикации

HIGH-STRENGTH AND LOW-MODULUS BETA-TYPE Si-CONTAINING TITANIUM ALLOY, PREPARATION METHOD THEREFOR AND USE THEREOF

Номер: US20200056267A1

The present invention belongs to the field of titanium alloy materials, and disclosed are a high-strength and low-modulus β-type Si-containing titanium alloy, a preparation method therefor and the use thereof. The preparation method involves: preparing an alloy component with, in atomic percentage, 60-70% of Ti, 10-20% of Nb, 5-15% of Zr, 1-10% of Ta and 1-5% of Si and using sponge titanium, sponge zirconium, a tantalum-niobium intermediate alloy and silicon as raw materials, and then uniformly smelting the alloy component to obtain a solidified ingot; then, subjecting the resulting ingot to high temperature plastic deformation with a deformation temperature of 800-900° C. and a deformation rate of 60-80%, and water-quenching same to room temperature; and finally, heating the resulting test sample to a recrystallization temperature, maintaining the temperature for 1-4 h, and carrying out an annealing treatment and air-cooling same to room temperature to obtain the high-strength and low-modulus β-type Si-containing titanium alloy. The resulting titanium alloy has a higher strength, a greater plasticity, a lower elastic modulus and a finer grain size, and is more suitable for use as a medical implant material.

Подробнее
01-04-2021 дата публикации

METHODS FOR PRODUCING 2024 AND 7075 ALUMINUM ALLOYS BY RECYCLING WASTE AIRCRAFT ALUMINUM ALLOYS

Номер: US20210095360A1
Автор: LIN Rui, LIU Bo, ZHANG Shengen
Принадлежит:

The present invention relates to techniques for producing 2024 and 7075 aluminum alloys by recycling waste aircraft aluminum alloys, which belong to technical fields for circular economy. The present invention develops techniques for obtaining the 2024 and 7075 aluminum alloys by subjecting waste aircraft aluminum alloys as raw materials to pretreatment, smelting, impurity removal, melt ingredient assay, ingredient adjustment, refining, and casting. Through utilizing the waste package aluminum alloys and the waste aluminum pop-top cans to adjust the ingredients, the waste aircraft aluminum alloys would be recycled at a lower cost without downgrading. The present invention has some advantages, such as low cost, and applicability for industrial production, as well as prominent economic benefit. 1. A method for producing 2024 and 7075 aluminum alloys by recycling waste aircraft aluminum alloys , comprising:subjecting the waste aircraft aluminum alloys to a pretreatment selected from the group consisting of breaking, iron removal by magnetic separation, removal of heavy metals by flotation, removal of polymers and composite materials by air elutriation, removal of glass by eddy current sorting, and combination(s) thereof;smelting the pretreated waste aircraft aluminum alloys till complete melting at a smelting temperature from 700° C. to 800° C.;purifying aluminum liquid using a foam ceramic filter plate having a pore diameter of 10 ppi to separate the impurities not molten in the aluminum liquid;testing the ingredients in the aluminum liquid, and comparing the ingredients with target aluminum alloy ingredients; and adjusting the ingredients in the aluminum liquid using other waste aluminum alloys and interalloys, till the ingredients thereof meet requirement for the target aluminum alloy ingredients;purifying the aluminum liquid using a foam ceramic filter plate having a pore diameter of 20 ppi to separate the impurities not molten in the aluminum liquid;refining the ...

Подробнее
23-04-2015 дата публикации

PROCESS FOR PREPARING SCALABLE QUANTITIES OF HIGH PURITY MANGANESE BISMUTH MAGNETIC MATERIALS FOR FABRICATION OF PERMANENT MAGNETS

Номер: US20150110664A1
Принадлежит: BATTELLE MEMORIAL INSTITUTE

A scalable process is detailed for forming bulk quantities of high-purity α-MnBi phase materials suitable for fabrication of MnBi based permanent magnets. 1. A process for preparing a high-purity α-MnBi magnetic material , comprising:melting a selected ratio of manganese (Mn) metal and bismuth (Bi) metal together that is greater in manganese (Mn) metal than in bismuth (Bi) metal to form an alloy comprising between about 40 wt % and about 50 wt % α-MnBi material and residual fractions of unreacted manganese (Mn) metal and unreacted bismuth (Bi) metal therein;heat treating the alloy in an oxygen-free or reducing gas atmosphere in a dual-temperature regime at selected temperatures and selected pressures for a time sufficient to increase the fraction or purity of α-MnBi material therein to at least about 60 wt %;milling the composite alloy to agglomerate unreacted manganese (Mn) metal and unreacted bismuth (Bi) metal together, and to fracture the at least about 60 wt % purity α-MnBi magnetic material therein; andvacuum heat treating the fractured α-MnBi magnetic material in a vacuum at a vacuum pressure and temperature to obtain an alloy product with a fraction or purity of α-MnBi phase magnetic material therein of at least about 90 wt %.2. The process of claim 1 , wherein the melting is performed in an arc melter or an induction melter.3. The process of claim 1 , wherein the melting yields a composite alloy in the form of a solid pellet or solid ingot.4. The process of claim 1 , wherein heat treating the composite alloy includes:i) heating the composite alloy at a first temperature less than or equal to about 266° C. in an oxygen-free gas atmosphere for a time up to about 8 hours to form α-MnBi phase material therein; andii) heating the composite alloy at a second temperature between about 266° C. and about 358° C. in an oxygen-free atmosphere for a time up to about 5 hours sufficient to form a selected quantity of β-MnBi material in the composite alloy.5. The process ...

Подробнее
20-04-2017 дата публикации

Method for inhibiting dezincification of brass

Номер: US20170107598A1
Автор: Chang-Yu Hung, Wei-Te Wu
Принадлежит: National Chung Hsing University

A brass alloy with dezincification inhibition capability and good cutting and mechanical properties is provided. The brass alloy includes niobium and brass. Niobium is in an amount ranging from 0.01 to 0.15 part by weight and brass is in an amount ranging from 99.85 to 99.99 parts by weight based on 100 parts by weight of the brass alloy.

Подробнее
02-04-2020 дата публикации

MG-GD-Y-ZN-ZR ALLOY AND PROCESS FOR PREPARING THE SAME

Номер: US20200102631A1
Принадлежит:

A Mg—Gd—Y—Zn—Zr alloy with high strength and toughness, corrosion resistance and anti-flammability and a process for preparation thereof are disclosed. The components and the mass percentages thereof in the Mg—Gd—Y—Zn—Zr alloy are: 3.0%≤Gd≤9.0%, 1.0%≤Y≤6.0%, 0.5%≤Zn≤3.0%, 0.2%≤Zr≤1.5%, the balance being Mg and inevitable impurities. The process for preparation thereof comprises: adding pure Mg into a smelting furnace for heating, then introducing mixed gases of COand SFinto the furnace for protection; adding other raw materials in sequence when the pure Mg is completely melted; preparing an ingot; conducting a homogenization treatment on the ingot prior to extrusion; conducting an aging treatment on the extruded alloy. A wrought magnesium alloy having superior overall performances and good fracture toughness, corrosion resistance and anti-flammability, with a small amount of rare earth element is obtained by adjusting the proportion of the alloy elements and by conventional casting, extrusion and heat treatment processes. The cost of the alloy is reduced while the strength of the alloy is maintained. 1. A Mg—Gd—Y—Zn—Zr alloy wherein the components and the mass percentages thereof in the Mg—Gd—Y—Zn—Zr alloy comprise from 3.0% to 9.0% Gd , from 0.8% to 6.0% Y , from 0.5% to 3.0% Zn , from 0.2% to 1.5% Zr , the balance being Mg and inevitable impurities.2. The Mg—Gd—Y—Zn—Zr alloy according to claim 1 , wherein Gd+Y is 11.0% or less.3. The Mg—Gd—Y—Zn—Zr alloy according to claim 1 , the alloy comprising 8.0% Gd claim 1 , 3.0% Y claim 1 , 1.0% Zn claim 1 , 0.5% Zr claim 1 , the balance being Mg and inevitable impurities.4. The Mg—Gd—Y—Zn—Zr alloy according to claim 1 , the alloy comprising Gd: 8.4% claim 1 , Y: 2.4% claim 1 , Zn: 0.6% claim 1 , Zr: 0.4% claim 1 , the balance being Mg and inevitable impurities.5. The Mg—Gd—Y—Zn—Zr alloy according to claim 1 , the alloy comprising Gd: 6.7% claim 1 , Y: 1.3% claim 1 , Zn: 0.6% claim 1 , Zr: 0.5% claim 1 , the balance being ...

Подробнее
18-04-2019 дата публикации

Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor

Номер: US20190112693A1
Принадлежит: Individual

Disclosed is a magnesium alloy that has high thermal conductivity and flame retardancy and facilitates plastic working, wherein magnesium is added with 0.5 to 5 wt % of zinc and 0.6 to 3.5 wt % of tin (Sn) as a high-melting-point oxide-film-forming element, with, as necessary, 1.5 wt % or less of at least one selected from among calcium (Ca), silicon (Si), manganese (Mn) and mischmetal, the total amount of alloy elements being 2.5 to 6.3 wt %. A method of manufacturing the same is also provided, including melting high-melting-point alloy elements in the form of a master alloy in a magnesium—zinc alloy melt, followed by casting, removing a chill from the cast material, diffusion annealing, and then molding through a tempering process such as rolling, extrusion or forging. This magnesium alloy is improved in ductility by the action of alloy elements for inhibiting the formation of plate-like precipitates in a magnesium matrix structure, can be extruded even at a pressure of 1,000 kgf/cm2 or less due to the increased plasticity thereof, and can exhibit thermal conductivity of 100 W/m·K or more and flame retardancy satisfying the requirements for aircraft materials and is thus suitable for use in fields requiring fire safety, thereby realizing wide application thereof as a heat sink or a structural material for portable appliances, vehicles and aircraft components and contributing to weight reduction.

Подробнее
21-05-2015 дата публикации

METHODS FOR INDUSTRIAL-SCALE PRODUCTION OF METAL MATRIX NANOCOMPOSITES

Номер: US20150135902A1
Принадлежит:

Apparatus and methods for industrial-scale production of metal matrix nanocomposites (MMNCs) are provided. The apparatus and methods can be used for the batch production of an MMNC in a volume of molten metal housed within the cavity of a production chamber. Within the volume of molten metal, a flow is created which continuously carries agglomerates of nanoparticles, which have been introduced into the molten metal, through a cavitation zone formed in a cavitation cell housed within the production chamber. 1. A method for the production of metal matrix nanocomposites , the method comprising:(a) introducing nanoparticle agglomerates into a volume of molten metal contained within a cavity defined by a production chamber;(b) mechanically mixing the nanoparticle agglomerates in the volume of molten metal, wherein the mixing reduces the size of the nanoparticle agglomerates;(c) creating a cavitation zone within a sub-volume of the molten metal contained in a cavitation cell that is immersed in the larger volume of molten metal contained within the production chamber cavity; and(d) dispersing the nanoparticles in the size-reduced nanoparticle agglomerates as individual nanoparticles in the molten metal by pumping the size-reduced nanoparticle agglomerates into the cavitation zone, wherein the dispersed individual nanoparticles pass out of the cavitation cell and back into the larger volume of molten metal.2. The method of claim 1 , wherein the metal matrix nanocomposite has a mass of at least 10 kg.3. The method of claim 1 , wherein the cavity of the production chamber has a volume of at least three liters.4. The method of claim 1 , wherein the volume ratio of the sub-volume of molten metal in the cavitation cell to the total volume of molten metal in the production chamber cavity is no greater than about 1:2.5. The method of claim 1 , wherein the volume ratio of the sub-volume of molten metal in the cavitation cell to the total volume of molten metal in the production ...

Подробнее
23-04-2020 дата публикации

SnBiSb Series Low-temperature Lead-free Solder and its Preparation Method

Номер: US20200123634A1

A SnBiSb series low-temperature lead-free solder and a preparation method thereof, which belongs to the technical field of low-temperature soldering. The lead-free solder includes by weight the following composition: 32.8-56.5% of Bi, 0.7-2.2% of Sb, with the remainder being Sn, wherein the weight percentages of Bi and Sb satisfy a relationship of b=0.006a2−0.672a+19.61=c, wherein the symbol a represents the weight percentage of Bi, the symbol b represents the weight percentage of Sb, and the range of c is −1.85≤c≤1.85. The solder alloy has a peritectic or near peritectic structure with a low melting point, and has an excellent mechanical performance and reliability, and applicable to the field of low-temperature soldering. 1. A SnBiSb series low-temperature lead-free solder , comprising: by weight 32.8-56.5% of Bi , 0.7-2.2% of Sb , and Sn , wherein a weight percentage of Bi and a weight percentage of Sb satisfy a relationship of b=0.006a−0.672a+19.61+c , wherein a is the weight percentage of Bi , b is the weight percentage of Sb , and a range of c is −1.85≤c≤1.85.2. The SnBiSb series low-temperature lead-free solder according to claim 1 , wherein the Bi is 41.8-50% by weight and the Sb is 0.7-2.0% by weight.3. The SnBiSb series low-temperature lead-free solder according to claim 1 , wherein the range of c is −1.85≤c≤−0.001 claim 1 , 0.001≤c≤1.85 claim 1 , −1.5≤c≤−0.005 claim 1 , 0.005≤c≤1.5 claim 1 , −1.5≤c≤−0.008 or 0.008≤c≤1.5.4. The SnBiSb series low-temperature lead-free solder according to claim 1 , wherein the SnBiSb series low-temperature lead-free solder further comprises one or more metal elements selected from the group consisting of Ce claim 1 , Ti claim 1 , Cu claim 1 , Ni claim 1 , Ag and In.5. The SnBiSb series low-temperature lead-free solder according to claim 4 , wherein the SnBiSb series low-temperature lead-free solder comprises 0.01-2.5% of Ce by weight claim 4 , 0.05-2.0% of Ti by weight claim 4 , 0.01-0.8% of Cu by weight claim 4 , 0.03-1.5% ...

Подробнее
23-04-2020 дата публикации

1 GPA HIGH-STRENGTH HIGH-MODULUS ALUMINUM-BASED LIGHT MEDIUM-ENTROPY ALLOY AND PREPARATION METHOD THEREOF

Номер: US20200123635A1
Принадлежит:

A 1 GPa high-strength high-modulus aluminum-based light medium-entropy alloy and a preparation method thereof. An atomic expression of the designed medium-entropy alloy is AlLiMgZnCu, subscripts representing the molar percentage of each corresponding alloy element, where x+y+z+u+v=100, x is 79.5-80.5, y is 1.5-2.5, z is 1.5-2.5, u is 13.5-14.5, and v is 1.5-2.5. The phase structure of the involved alloy is mainly based on a face-centered cubic (FCC) solid solution. The present invention obtains high performance aluminum alloy ingots through vacuum induction smelting and direct casting, and features low energy consumption, decreased cost, and simple operation in the preparation process, which cater to the high requirements on cost, strength and plasticity of light alloys applied in the high-end manufacturing industries such as aerospace and automobile electronics nowadays.

Подробнее
02-06-2016 дата публикации

MELTING METHOD FOR ALLOYS

Номер: US20160153072A1
Принадлежит:

A method for producing metal alloys. The method allows the production of metal alloys consisting of at least two metals having a high melting point difference. Here, the higher melting metal is melted first and the lower melting metal is melted with a delay by means of heat transfer whereupon the metals mix together. This enables to obtain metal alloys with high purity and low evaporation losses, which in particular allow the use of contaminated starting components such as recycled metal. 1. A method for producing a metal alloy including at least two metals , including the steps of:providing a solid body of a first metal or a first metal alloy in a crucible,adding a second metal onto the solid body in the crucible,melting the second metal;providing that the melting point of the second metal is higher than the melting point of the first metal or the first metal alloy; andwherein at least the melting of the second metal takes place under vacuum.2. The method of claim 1 , wherein the solid body includes the following steps:introducing the first metal or the first metal alloy into the crucible;melting the first metal or the first metal alloy; andsolidifying the melt of the first metal or the first metal alloy to the solid body.3. The method according to claim 1 , wherein the second metal is added in solid form.4. The method according to claim 1 , wherein the second metal is added in the form of granules claim 1 , grains claim 1 , wires claim 1 , pellets claim 1 , chips claim 1 , or mixtures thereof.5. The method according to claim 1 , wherein the second metal is added in average grain sizes of less than 25 mm.6. The method according to claim 1 , wherein the melting is conducted under vacuum of less than 100 mbar absolute.7. The method according to claim 1 , including using an electron beam gun is used as a heat source.8. The method according to claim 1 , wherein the crucible has a thermal conductivity of at least 40 W/(m*K).9. The method according to claim 1 , wherein ...

Подробнее
21-08-2014 дата публикации

Brass with excellent corrosion resistance

Номер: US20140234156A1
Автор: Toru Uchida
Принадлежит: TOTO LTD

Disclosed is a brass that possesses high corrosion resistance even without undergoing a heat treatment step contemplated for dezincification corrosion suppression. This brass includes 55% by mass to 75% by mass of Cu (copper), 0.01% by mass to 1.5% by mass of Si (silicon), Sn (tin) and Al (aluminum) in such amounts as to satisfy a prescribed relationship with an apparent Zn content, less than 0.25% by mass of Mn (manganese) as an optional ingredient, less than 0.05% by mass of Ti (titanium) as an optional ingredient, less than 0.3% by mass of Mg (magnesium) as an optional ingredient, less than 0.15% by mass of P (phosphorus) as an optional ingredient, and less than 0.004% by mass of a rare earth metal as an optional ingredient with the balance consisting of Zn (zinc) and unavoidable impurities, the apparent zinc content being 37 to 45.

Подробнее
31-05-2018 дата публикации

Lead-Free Easy-Cutting High-Strength Corrosion-Resistant Silicon-Brass Alloy and the Preparation Method and Use Thereof

Номер: US20180148813A1
Принадлежит:

The present invention relates to a lead-free easy-cutting high-strength corrosion-resistant silicon-brass alloy and the preparation method and use thereof. The mass percent composition of the alloy is: 56-60% Cu, 38-42% Zn, 0.003-0.01% B, 0.03-0.06% Ti, and 1.0-1.5% Si and 0.5-0.9% Al or 0.5-0.8% Si and 1-1.5% Al, and the zinc equivalent of all components is between 48% and 50%. In the present invention, the phase composition and the distribution state of the alloy can be regulated by controlling the contents of Si and Al elements, as well as by adding a B and Ti composite grain refiner, in order to obtain a copper alloy with the advantages of excellent comprehensive performance of strength, process ability and dezincification resistance, a high production yield, and low costs, which can replace lead brass and bismuth brass for plumbing, bathroom and a variety of corrosion-resistant parts, and has a bright prospect of popularization and application. 1. A lead-free easy-cutting high-strength corrosion-resistant silicon-brass alloy , the brass alloy consisting of components in following percentages listed in (1) or (2):(1) 56˜60 wt % Cu, 1.0˜1.5% wt % Si, 0.5˜0.9% wt % Al, 38%˜42% wt % Zn, 0.003˜0.01% wt % B, 0.03˜0.06% wt % Ti, and unavoidable trace impurities;(2) 56˜60 wt % Cu, 0.5˜0.8% wt % Si, 1˜1.5%% wt % Al, 38%˜42% wt % Zn, 0.003˜0.01% wt % B, 0.03˜0.06% wt % Ti, and unavoidable trace impurities; anda zinc equivalent of all the components is between 48% and 50%.2. The lead-free easy-cutting high-strength corrosion-resistant silicon-brass alloy according to claim 1 , wherein a structure of the lead-free easy-cutting high-strength corrosion-resistant silicon-brass alloy comprises component phase β and component phase γ claim 1 , where the β phase is a matrix of grains with a grain size of 200-400 μm and the γ phase is fine spherical grains uniformly and dispersedly distributed in the grains of the β phase.3. A method of preparing a lead-free easy-cutting high- ...

Подробнее
17-06-2021 дата публикации

MAGNETIC CALORIFIC COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING THEREOF

Номер: US20210183546A1
Принадлежит:

Provided is a magnetic calorific composite material containing a magnetic calorific material and an alloy binder having a melting point in a range of 100° C. to 150° C., in which a content of the alloy binder is 7.5 to 22.5 wt %. 1. A magnetic calorific composite material comprising:a magnetic calorific material; andan alloy binder having a melting point in a range of 100° C. to 150° C.,wherein a content of the alloy binder is 7.5 wt % to 22.5 wt %.2. The magnetic calorific composite material of claim 1 ,{'sub': '13', 'wherein the magnetic calorific material is a La(FeSi)-based material.'}3. The magnetic calorific composite material of claim 1 , {'br': None, 'sub': 1-a', 'a', 'b', 'c', '1-b-c', '13', 'd, 'LaA(FeBSi)H\u2003\u2003(I)'}, 'wherein the magnetic calorific material is represented by Formula (I)in Formula (I),{'sub': '13', 'claim-text': [{'br': None, 'i': 'a≤', '0≤0.5,'}, {'br': None, 'i': 'b≤', '0.75≤0.95,'}, {'br': None, 'i': 'c≤', '0≤0.3,'}, {'br': None, 'i': 'd≤', '0.1≤2.0, and'}, {'br': None, 'i': 'b−c≤', '0.05≤1−0.2.'}], 'A is at least one selected from the group consisting of cerium (Ce), praseodymium (Pr), and neodymium (Nd), which are rare earth elements, B is at least one selected from the group consisting of manganese Mn) and cobalt (Co), which are 3d transition elements, and the magnetic calorific composite material has a NaZn-type crystal structure satisfying the relationships of'}4. The magnetic calorific composite material of claim 1 ,wherein the alloy binder is an alloy containing Sn and one or two or more selected from the group consisting of In, Ag, Pb, and Cd.5. The magnetic calorific composite material of claim 1 ,wherein the alloy binder contains 40 wt % or more of Sn.6. A method for manufacturing a magnetic calorific composite material containing a magnetic calorific material and an alloy binder having a melting point in a range of 100° C. to 150° C. claim 1 , the method comprising:pressurizing a mixture of the magnetic calorific ...

Подробнее
17-06-2021 дата публикации

Mn-Bi-Sb-BASED MAGNETIC SUBSTANCE AND METHOD OF MANUFACTURING THE SAME

Номер: US20210183547A1

Disclosed are a Mn—Bi—Sb-based magnetic substance and a method of manufacturing the same. Particularly, the Mn—Bi—Sb-based magnetic substance includes Mn and Bi forming a hexagonal crystal structure, and a portion of Bi elements forming the crystal structure is substituted with Sb so as to improve the magnetic properties thereof.

Подробнее
29-09-2022 дата публикации

BIODEGRADABLE Zn-Mg-Bi ZINC ALLOY AND PREPARATION METHOD THEREOF

Номер: US20220307110A1

A biodegradable Zn—Mg—Bi zinc alloy and a preparation method thereof. The method including: melting magnesium under an inert atmosphere to obtain a magnesium melt; adding bismuth particles to the magnesium melt followed by reaction under stirring and heat preservation treatment to obtain a Mg—Bi alloy melt; allowing the Mg—Bi alloy melt to stand in a furnace; subjecting the Mg—Bi alloy melt to refining, slagging-off, casting and demoulding to obtain Mg-50 wt. % Bi alloy ingot; melting zinc to obtain a zinc melt; adding the Mg-50 wt. % Bi alloy ingot and pure magnesium or pure bismuth followed by heating to a preset temperature, stirring and heat preservation to obtain a Zn—Mg—Bi alloy melt; allowing the Zn—Mg—Bi alloy melt to stand in a furnace followed by refining, slagging-off, casting and demoulding to obtain the biodegradable Zn—Mg—Bi zinc alloy.

Подробнее
30-05-2019 дата публикации

PROCESS FOR PREPARATION OF THE INTERMETALLIC COMPOUND Nb3Sn BY MELT METALLURGICAL PROCEDURE

Номер: US20190161829A1
Принадлежит:

The invention relates to a process for preparation of the intermetallic compound NbSn by melt metallurgical procedure. The process comprises the steps of pressing Nb particles and Sn particles to form a start electrode, whereby the pressed start electrode is remelted in a vacuum in an electric arc, whereby a first moulded body is obtained. Alternatively, the process comprises the steps of remelting an Nb start electrode in an electric arc in a vacuum, whereby Sn particles are being introduced into the molten Nb forming during the remelting, whereby a first moulded body is obtained. The molar ratio of Nb and Sn is selected appropriately such that the first moulded body obtained contains at least 50% by weight of the intermetallic compound NbSn as the A15 phase as well as free Nb and/or Sn and inevitable impurities, if applicable. 1. A process for preparation of the intermetallic compound NbSn by a melt metallurgical procedure , the process comprising:i. Pressing Nb particles and Sn particles to form a start electrode, whereby the pressed start electrode is remelted in a vacuum in an electric arc, whereby a first moulded body is obtained orii. Re-melting an Nb start electrode in a vacuum in an electric arc, whereby Sn particles are introduced into the molten Nb that forms in the process during the reforming, whereby a first moulded body is obtained,{'sub': '3', 'whereby the molar ratio of Nb and Sn is selected appropriately such that the first moulded body obtained contains at least 50% by weight of the intermetallic compound NbSn as A15 phase and, if applicable, free Nb and/or Sn and inevitable impurities.'}2. The process of claim 1 , further comprising:a. Mechanical disintegration of the first moulded body to form particles;b. Mixing of the particles obtained in step a. with Nb particles and/or Sn particles and pressing the mixture to form a second moulded body, whereby the fraction, in the second moulded body, of the particles obtained in step a. is at most 80% by ...

Подробнее
21-05-2020 дата публикации

CU-BASED MICROCRYSTAL ALLOY AND PREPARATION METHOD THEREOF

Номер: US20200157659A1
Автор: An Wei, GUO QIANG, WANG Mengde
Принадлежит:

The disclosure relates to a Cu-based microcrystal alloy and a preparation method thereof. Through being measured in percentage by mass, the Cu-based microcrystal alloy provided by the disclosure includes 20 to 30 percent of Mn, 0.01 to 10 percent of Al, 5 to 10 percent of Ni, 0.3 to 1.5 percent of Ti, 0 to 1.5 percent of Zr, 0.05 to 2 percent of Si and 45 to 74.64 percent of Cu. 1. A Cu-based microcrystal alloy , comprising , based on a total mass of the Cu-based microcrystal alloy and in mass percentage:20 to 30 percent of Mn,0.01 to 10 percent of Al,5 to 10 percent of Ni,0.3 to 1.5 percent of Ti,0 to 1.5 percent of Zr,0.05 to 2 percent of Si, and45 to 74.64 percent of Cu.2. The Cu-based microcrystal alloy according to claim 1 , wherein based on the total mass of the Cu-based microcrystal alloy and in mass percentage claim 1 , the Cu-based microcrystal alloy comprises 0.5 to 0.8 percent of Ti.3. The Cu-based microcrystal alloy according to claim 2 , wherein based on the total mass of the Cu-based microcrystal alloy and in mass percentage claim 2 , the Cu-based microcrystal alloy comprises 1.2 to 1.5 percent of Zr.4. The Cu-based microcrystal alloy according to claim 3 , wherein based on the total mass of the Cu-based microcrystal alloy and in mass percentage claim 3 , the Cu-based microcrystal alloy comprises 0.1 to 1.5 percent of Si.5. The Cu-based microcrystal alloy according to claim 4 , wherein based on the total mass of the Cu-based microcrystal alloy and in mass percentage claim 4 , the Cu-based microcrystal alloy comprises 23 to 28 percent of Mn.6. The Cu-based microcrystal alloy according to claim 5 , wherein based on the total mass of the Cu-based microcrystal alloy and in mass percentage claim 5 , the Cu-based microcrystal alloy comprises 3 to 8 percent of Al.7. The Cu-based microcrystal alloy according to claim 6 , wherein based on the total mass of the Cu-based microcrystal alloy and in mass percentage claim 6 , the Cu-based microcrystal alloy comprises ...

Подробнее
22-06-2017 дата публикации

CR, NI, MO AND CO ALLOY FOR USE IN MEDICAL DEVICES

Номер: US20170175235A1
Принадлежит:

One aspect generally relates to a Cr, Ni, Mo and Co alloy, with tightly controlled levels of impurities. One aspect relates to an alloy including about 10 to about 30 weight % Cr, about 20 to about 50 weight % Ni, about 2 to about 20 weight % Mo, about 10 to about 50 weight % Co, and less than about 0.01 weight % Al, wherein each weight % is based on the total weight of the alloy. 1. An alloy comprising:about 10 to about 30 weight % Cr;about 20 to about 50 weight % Ni;about 2 to about 20 weight % Mo;about 10 to about 50 weight % Co; andless than about 0.01 weight % Al;wherein each weight % is based on the total weight of the alloy.2. The alloy of further comprising less than about 0.005 weight % Mg claim 1 , based on the total weight of the alloy.3. The alloy of further comprising less than about 0.005 weight % Ca claim 1 , based on the total weight of the alloy.4. The alloy of further comprising less than about 0.005 weight % Ce claim 1 , based on the total weight of the alloy.5. The alloy of further comprising less than about 0.1 weight % Ti claim 1 , based on the total weight of the alloy.6. The alloy of further comprising from about 0.0001 to about 1 weight % Fe.7. The alloy of claim 1 , wherein at least one of the following is satisfied:a) the content of C in the alloy is less than about 0.1 weight %;b) the content of B in the alloy is less than about 0.01 weight %;c) the content of P in the alloy is less than about 0.01 weight %;d) the content of S in the alloy is less than about 0.005 weight %;wherein each weight % is based on the total weight of the alloy.8. The alloy of claim 1 , wherein at least one of the following is satisfied:a) the content of Mn in the alloy is less than about 0.05 weight %;b) the content of Si in the alloy is less than about 0.05 weight %;wherein each weight % is based on the total weight of the alloy.9. The alloy of claim 1 , wherein at least one of the following is satisfied:a) the content of 0 in the alloy is in the range from ...

Подробнее
08-07-2021 дата публикации

ALUMINUM ALLOY AND PREPARATION METHOD AND APPLICATION THEREOF

Номер: US20210207249A1
Принадлежит:

A die-cast aluminum alloy and a preparation method and application thereof are disclosed. Based on the total weight of the aluminum alloy, the aluminum alloy includes: 8-11 wt % of Si, 2.5-5 wt % of Cu, 0.5-1.5 wt % of Mg, 0.1-0.3 wt % of Ni, 0.6-1.2 wt % of Fe, 0.1-0.3 wt % of Cr, 0.03-0.05 wt % of Sr, 0-0.3 wt % of Er, 80.25-88.1 wt % of Al, and 0.1 wt % or below of impurities. 1. A die-cast aluminum alloy , comprising , based on the total weight of the aluminum alloy:8-11 wt % of Si;2.5-5 wt % of Cu;0.5-1.5 wt % of Mg;0.1-0.3 wt % of Ni;0.6-1.2 wt % of Fe;0.1-0.3 wt % of Cr;0.03-0.05 wt % of Sr;0-0.3 wt % of Er;80.25-88.1 wt % of Al; and0.1 wt % or below of impurities.2. The aluminum alloy according to claim 1 , wherein:the Si is of 9-10 wt %;the Cu is of 3-4 wt %;the Mg is of 0.6-1 wt %;the Ni is of 0.1-0.3 wt %;the Fe is of 0.6-1 wt %;the Cr is of 0.1-0.3 wt %;the Sr is of 0.03-0.05 wt %;the Er is of 0.1-0.25 wt %;the Al is of 83-86.1 wt %; andthe impurities is of 0.1 wt % or below.3. The aluminum alloy according to claim 1 , wherein the weight ratio of Cu to Mg is 2.5-7:1.4. A method for preparing the die-cast aluminum alloy according to claim 1 , comprising:(1) heating to melt an aluminum ingot, and then adding an aluminum silicon alloy, an aluminum copper alloy, an aluminum magnesium alloy, an aluminum nickel alloy, an aluminum iron alloy, and an aluminum chromium alloy for a first smelting to obtain a molten alloy mixture;(2) refining and de-slagging the molten alloy mixture, and then adding an aluminum strontium alloy and optionally an aluminum erbium alloy for a second smelting to obtain a molten aluminum alloy; and(3) cooling the molten aluminum alloy and standing to be cast into a die-cast aluminum alloy.5. The method according to claim 4 , wherein step (1) comprises:(1-1) heating to melt the aluminum ingot to obtain molten aluminum, and keeping the temperature of the molten aluminum at 720° C.-740° C.; and(1-2) the first smelting comprising: under the ...

Подробнее
28-06-2018 дата публикации

ALLOY MATERIAL, BONDED MAGNET, AND MODIFICATION METHOD OR RARE-EARTH PERMANENT MAGNETIC POWDER

Номер: US20180182517A1
Принадлежит:

An alloy material, a bonded magnet, and a modification method of a rare-earth permanent magnetic powder are provided by the present application. A melting point of the alloy material is lower than 600° C. and a composition of the alloy material by an atomic part is REMN, wherein RE is one or more of non-heavy rare-earth Nd, Pr, Sm, La and Ce, M is one or more of Cu, Al, Zn and Mg, N is one or more of Ga, In and Sn, x=10-35 and y=1-15. 1. An alloy material , wherein a melting point of the alloy material is lower than 600° C. and a composition of the alloy material by an atomic part is REMN , wherein RE is one or more of non-heavy rare-earth Nd , Pr , Sm , La and Ce , M is one or more of Cu , Al , Zn and Mg , N is one or more of Ga , In and Sn , x=10-35 and y=1-15.2. The alloy material as claimed in claim 1 , wherein the alloy material is an alloy powder claim 1 , and preferably claim 1 , the granularity of the alloy powder is 160-40 μm.3. A modification method of a rare-earth permanent magnetic powder claim 1 , wherein the modification method comprising:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, 'step S1, mixing the alloy material as claimed in with a rare-earth permanent magnetic powder to obtain a mixed powder, wherein a mass proportion of the alloy material in the mixed powder is 1-10%, preferably 2-5%; and'}step S2, in a first inert atmosphere or a vacuum state, performing a heat treatment on the mixed powder to obtain a modified rare-earth permanent magnetic powder.4. The modification method as claimed in claim 3 , wherein the step S2 comprises:step S21, in the first inert atmosphere or the vacuum state, heating the mixed powder for 5-30 min at 675-900° C. to obtain a pretreated powder; andstep S22, heating the pretreated powder for 2-12 h at 500-600° C. to obtain the modified rare-earth permanent magnetic powder.5. The modification method as claimed in claim 3 , wherein the alloy material is an alloy powder whose granularity is 160-40 μm claim 3 , and ...

Подробнее
16-07-2015 дата публикации

Brass alloy with dezincification inhibition capability and good cutting and mechanical properties

Номер: US20150197831A1
Автор: Chang-Yu Hung, Wei-Te Wu
Принадлежит: National Chung Hsing University

A brass alloy with dezincification inhibition capability and good cutting and mechanical properties is provided. The brass alloy includes niobium and brass. Niobium is in an amount ranging frosts 0.01 to 0.15 part by weight and brass is in an amount ranging from 99.85 to 99.99 parts by weight based on 100 parts by weight of the brass alloy.

Подробнее
25-09-2014 дата публикации

METHOD OF PRODUCTION OF ALUMINUM ALLOY WITH REFINED Al-Fe-Si-BASED COMPOUNDS AND PRIMARY CRYSTAL Si

Номер: US20140283651A1
Принадлежит:

A method of production of inexpensive aluminum alloy is provided which enables precipitation of fine particles of Al—Fe—Si-based compounds and primary crystal Si to an aluminum alloy melt which is comprised of Si: 10 to 20 mass %, Fe: 0.5 to 4 mass %, P: 0.003 to 0.02 mass %, and further, if necessary, one or more of Mn, Ni, and Cr or furthermore, if necessary, one or more of Mg, Ti, Cr, Zr, and V, and has a balance of Al and unavoidable impurities. To the melt is added 0.01 to 1 mass %, in terms of silicide, of a substance, which includes fine particles of a metal silicide which are present as a solid phase in the melt, when the Al—Fe—Si-based compound is crystallized. 1. A method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si characterized by adding to an aluminum alloy melt which contains Si: 10 to 20 mass % , Fe: 0.5 to 4 mass % , and P: 0.003 to 0.02 mass % and has a balance of Al and unavoidable impurities , a substance which contains fine particles of a metal silicide which are present as a solid phase in the melt at the time of precipitation of an Al—Fe—Si-based compound , in 0.01 to 1 mass % as a silicide.2. A method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si characterized by adding to an aluminum alloy melt which contains Si: 10 to 20 mass % , Fe: 0.5 to 4 mass % , Mn: 0.6×Fe mass % or less , and P: 0.003 to 0.02 mass % and has a balance of Al and unavoidable impurities , a substance which contains fine particles of a metal silicide which is present as a solid phase in the melt at the time of precipitation of an Al—Fe—Si-based compound , in 0.01 to 1 mass % as a silicide.3. The method of production of aluminum alloy with refined Al—Fe—Si-based compounds and primary crystal Si according to wherein said aluminum alloy melt further contains one or both of Ni: 0.5 to 6 mass % and Cu: 0.5 to 8 mass %.4. The method of production of aluminum alloy with refined Al—Fe—Si ...

Подробнее
22-07-2021 дата публикации

MAGNESIUM ALLOY, PREPARATION METHOD OF MAGNESIUM ALLOY SECTION BAR AND PREPARATION METHOD OF MAGNESIUM ALLOY RIM

Номер: US20210222272A1
Автор: MA Chunjiang, YANG Jun
Принадлежит:

The present invention discloses a magnesium alloy, a preparation method of a magnesium alloy section bar and a preparation method of a magnesium alloy rim, wherein the magnesium alloy contains the following components in percentage by weight: 5.5-6.0% of Zn, 0.3-0.6% of Zr, 0.5-2.0% of lanthanum-rich mixed rare earth and the balance of Mg. 1. A magnesium alloy , comprising the following components in percentage by weight: 5.5-6.0% of Zn , 0.3-0.6% of Zr , 0.5-2.0% of yttrium-rich mixed rare earth and the balance of Mg.2. The magnesium alloy according to claim 1 , wherein the yttrium-rich mixed rare earth consists of Y and other rare earth elements claim 1 , and the content of Y is 25-30 wt %.3. The magnesium alloy according to claim 2 , wherein the yttrium-rich mixed rare earth comprises the following earths in percentage by weight: 25-30% of Y claim 2 , 15-20% of Nd claim 2 , 12-16% of Gd claim 2 , 10-15% of Dy and the balance of other rare earths.4. The magnesium alloy according to claim 3 , wherein the yttrium-rich mixed rare earth consists of the following raw materials in percentage by weight: 25-30% of Y claim 3 , 15-20% of Nd claim 3 , 12-16% of Gd claim 3 , 10-15% of Dy claim 3 , 8-12% of La claim 3 , 6-10% of Ce claim 3 , 3-6% of Pr claim 3 , 2-5% of Ho and 1-3% of Er.5. A preparation method of a magnesium alloy section bar used as a bicycle rim claim 3 , comprising the following steps:{'claim-ref': {'@idref': 'CLM-00001', 'claim 1'}, '1) preparing magnesium alloy bar stock according to a component formula of the magnesium alloy according to ;'}2) putting the magnesium alloy bar stock and a bicycle rim section bar mold into a heating furnace for heating to 300-400° C., and then taking the magnesium alloy bar stock out and putting into an extruder preheated to 300-380° C. in advance for rim section bar extrusion production to obtain a magnesium alloy section bar which meets the requirements for rim mechanical properties.6. The preparation method of a ...

Подробнее
18-06-2020 дата публикации

Heat Resistant High Chemical Versatility Alluminum Alloy to Produce Aerosol Cans

Номер: US20200190632A1
Автор: GALLIA Sebastian Abel
Принадлежит:

A heat resistant high chemical versatility aluminum alloy to produce aerosol cans contains alloyings in the following weight percentages: 0≤Si≤0.60%, 0≤Fe≤0.80%, 0≤Mn≤0.80%, 0≤Ti≤0.10%, 0.05≤Zr≤0.30%, 0≤Cu≤0.10%, 0≤Mg≤0.10%, 0≤Zn≤0.30%, 0≤V≤0.03%, with the remainder being Al. 12-. (canceled)3. A heat resistant high chemical versatility aluminum alloy to produce aerosol cans containing the following alloyings in weight percent:0≤Si≤0.60%;0≤Fe≤0.80%;0≤Mn≤0.80%;0≤Ti≤0.10%;0.05≤Zr≤0.30%;0≤Cu≤0.10%;0≤Mg≤0.10%;0≤Zn≤0.30%;0≤V≤0.03%; andAl as the remainder.4. The aluminum alloy according to claim 3 , wherein the alloyings in weight percent are:Si: 0.08%;Fe: 0.25%;Mn: 0.32%;Ti: 0.09%;Zr: 0.15%;Cu: 0.001%;Mg: 0.001%;Zn: 0.004%;V: 0.001%; andAl as the remainder. Nowadays, aerosol cans are produced from different 1000 and 3000 series aluminum alloys as per the European Norm EN 573-3. The most common alloys are EN AW 1070A, with a total Aluminum (Al) content of 99.7%, EN AW 3102 with an approximate 0.3% content of Manganese (Mn), and EN AW 3207 with an approximate 0.6% content of Mn. According to this standard, alloys have specifically the following alloying concentrations in percentage weight:EN AW 1070: Si≤0.20; Fe≤0.25; Cu≤0.03; Mn≤0.03; Mg≤0.03; Zn≤0.07; Ti≤0.03; V≤0.05; Al=99.7 minimum.EN AW 3102: Si≤0.40; Fe≤0.70; Cu≤0.10; Mn=0.05-0.40; Zn≤0.30; Ti≤0.10; Al=remainder.EN AW 3207: Si≤0.30; Fe≤0.45; Cu≤0.10; Mn 0.40-0.80; Mg≤0.10; Zn≤0.10; Al=remainder.Aluminum ingots or discs made from the aforementioned alloys are used for the container production process. The production process can be divided in 3 great manufacturing stages.1Stage: Continuous Process to Manufacture Spools2Stage: Process to Manufacture Ingots3Stage: Aerosol Container Manufacturing ProcessGiven the mechanic features of aluminum for high mechanical distress and hardening by hammering, these make it ideal to manufacture aerosol containers using extrusion by impact. The 3000 series alloys, such as those in EN ...

Подробнее
19-07-2018 дата публикации

CORRODIBLE DOWNHOLE ARTICLE

Номер: US20180202027A1
Принадлежит:

A magnesium alloy is suitable for use as a corrodible downhole article, wherein the alloy includes: (a) 11-15 wt % Y, (b) 0.5-5 wt % in total of rare earth metals other than Y, (c) 0-1 wt % Zr, (d) 0.1-5 wt % Ni, and (e) at least 70 wt % Mg. It has been surprisingly found by the inventors that by increasing the Y content of the alloy to the range specified above, increased age hardening response and hence increased 0.2% proof stress can be achieved. 1. A magnesium alloy suitable for use as a corrodible downhole article , wherein the alloy comprises:(a) 11-15 wt % Y,(b) 0.5-5 wt % in total of rare earth metals other than Y,(c) 0-1 wt % Zr,(d) 0.1-5 wt % Ni, and(e) at least 70 wt % Mg.2. A magnesium alloy as claimed in comprising 11-14 wt % Y.3. A magnesium alloy as claimed in comprising 1.5-2.5 wt % in total of rare earth metals other than Y.4. A magnesium alloy as claimed in claim 1 , wherein the rare earth metals other than Y comprise Nd.5. A magnesium alloy as claimed in comprising 0-0.2 wt % Zr.6. A magnesium alloy as claimed in comprising 1.0-3.0 wt % Ni.7. A magnesium alloy as claimed in comprising at least 75 wt % Mg.8. A magnesium alloy as claimed in having a corrosion rate of at least 50 mg/cm/day in 15% KCl at 93° C.9. A magnesium alloy as claimed in having a 0.2% proof stress of at least 275 MPa when tested using standard tensile test method ASTM B557-10.10. A magnesium alloy as claimed in having a 0.2% proof stress claim 1 , after being subjected to an ageing process claim 1 , of at least 280 MPa when tested using standard tensile test method ASTM B557-10.11. A magnesium alloy as claimed in having a 0.2% proof stress claim 1 , after being subjected to an ageing process claim 1 , which is at least 10 MPa higher than before the ageing process when tested using standard tensile test method ASTM B557-10.12. A magnesium alloy as claimed in having a 0.2% proof stress claim 1 , after being subjected to an ageing process claim 1 , which is at least 5% higher than ...

Подробнее
06-08-2015 дата публикации

AL-NB-B MASTER ALLOY FOR GRAIN REFINING

Номер: US20150218673A1
Автор: Nadendla Hari Babu
Принадлежит:

A method of producing a master alloy for refining the grain size of a bulk alloy comprises the step of providing an Al—B alloy and adding Nb in elemental form to form an Al—Nb—B master alloy. The Al—B alloy may be prepared by providing an Al—B alloy with a higher boron content than is required and diluting it with elemental aluminium. 1. A method of producing a master alloy for refining the grain size of a bulk alloy , comprising the step of providing an Al—B alloy and adding Nb in elemental form to form an Al—Nb—B master alloy.2. A method as claimed in claim 1 , wherein said Al—B alloy is prepared by providing an Al—B alloy with a higher boron content than is required and diluting it with elemental aluminium.3. A method as claimed in claim 2 , wherein the Al—B alloy with a higher boron content is Al-5B.4. A master alloy obtained by means of a method as claimed in .5. A method of refining the grain of a metal alloy by adding a master alloy as claimed in .6. A method as claimed in claim 5 , wherein said metal alloy comprises:(i) an Al—Si alloy comprising at least 3% w/w silicon or(ii) a magnesium alloy.7. A method as claimed in claim 6 , wherein the metal alloy is an Mg—Al alloy.8. A method as claimed in claim 6 , wherein the metal alloy is an Al—Si alloy comprising from 3 to 25 wt% silicon. The present application relates to a method of making a master alloy (also known as a masterbatch alloy) for refining the grain size of a metal alloy, and to the subsequent use as a grain refiner of the metal alloy. In particular, it relates to the preparation of a master alloy for refining the grain size of aluminium-silicon alloys and magnesium alloys (both including and excluding aluminium).An important objective in the production of metal alloys is the reduction in grain size of the final product. This is known as “grain refinement” and is commonly addressed by adding so-called “grain refiners” which are substances thought to promote inoculation of metal alloy crystals. Grain ...

Подробнее
25-06-2020 дата публикации

METHOD FOR SYNTHESIS OF TRANSITION METAL DICHALCOGENIDE ALLOYS USING LIGHT SOURCES AND TRANSITION METAL DICHALCOGENIDE ALLOYS SYNTHESIZED BY THE SAME

Номер: US20200199710A1

Provided is a method for preparing a transition metal dichalcogenide alloy, which includes: a step of stacking two or more transition metal dichalcogenide compound thin films having different bandgaps on a substrate; a step of irradiating light to the two or more transition metal dichalcogenide compound thin films having different bandgaps; and a step of preparing a transition metal alloy by evaporating a dichalcogenide compound of the transition metal dichalcogenide compound thin film by the light. 1. A method for preparing a transition metal dichalcogenide alloy , comprising:a step of stacking two or more transition metal dichalcogenide compound thin films having different bandgaps on a substrate;a step of irradiating light to the two or more transition metal dichalcogenide compound thin films having different bandgaps; anda step of preparing a transition metal alloy by evaporating a dichalcogenide compound of the transition metal dichalcogenide compound thin film by the light.2. The method for preparing a transition metal dichalcogenide alloy according to claim 1 , wherein the light heats the thin films to a temperature higher than the evaporation temperature of the dichalcogenide compound.3. The method for preparing a transition metal dichalcogenide alloy according to claim 1 , wherein the light is irradiated in a pulsed manner.4. The method for preparing a transition metal dichalcogenide alloy according to claim 1 , wherein the alloy comprises a metallic bond between transition metals of the two or more transition metal dichalcogenide compound thin films having different bandgaps.5. A transition metal dichalcogenide alloy prepared by the method for preparing a transition metal dichalcogenide alloy according to . This application claims the benefit under 35 USC § 119(a) of Korean Patent Application No. 10-2018-0165868 filed on Dec. 20, 2018, in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference for all ...

Подробнее
11-08-2016 дата публикации

Quasicrystal and alumina mixed particulate reinforced magnesium-based composite material and method for manufacturing the same

Номер: US20160230251A1
Принадлежит: NORTH UNIVERSITY OF CHINA

A reinforced magnesium matrix composite includes a quasicrystal and alumina mixture particles reinforcement phase and a magnesium alloy matrix, where the weight ratio of the quasicrystal and alumina mixture particles reinforcement phase to the magnesium alloy matrix is (4-8) to 100; the magnesium alloy matrix including by weight 1000 parts of magnesium, 90 parts of aluminum, 10 parts of zinc, 1.5-5 parts of manganese, 0.5-1 part of silicon and 0.1-0.5 part of calcium; the quasicrystal and alumina mixture particles reinforcement phase including by weight 40 parts of magnesium, 50-60 parts of zinc, 5-10 parts of yttrium and 8-20 parts of nanometer alumina particles of which the diameter is 20-30 nm; and the quasicrystal and alumina mixture particles reinforcement phase having a size of 100-200 mesh.

Подробнее
11-08-2016 дата публикации

Bi-BASED SOLDER ALLOY, METHOD OF BONDING ELECTRONIC COMPONENT USING THE SAME, AND ELECTRONIC COMPONENT-MOUNTED BOARD

Номер: US20160234945A1
Автор: Hiroaki Nagata
Принадлежит: SUMITOMO METAL MINING CO LTD

Provided is a Bi-based solder alloy containing a specific amount of Al in Bi—Ag and having particles including a Ag—Al intermetallic compound dispersed therein, a method of bonding a Ag-plated electronic component, a bare Cu frame electronic component, an Ni-plated electronic component, or the like using the same, and an electronic component-mounted board. A Bi-based solder alloy includes Ag and Al, is substantially free of Pb, and has a Bi content of 80 mass % or more, a solidus of a melting point of 265° C. or more, and a liquidus of 390° C. or less. A content of Ag is 0.6 to 18 mass %, a content of Al is 0.1 to 3 mass %, the content of Al is 1/20 to 1/2 of the content of Ag, and particles including a Ag—Al intermetallic compound are dispersed in the solder alloy.

Подробнее
09-09-2021 дата публикации

METHOD FOR PREPARING SINGLE CRYSTAL SUPERALLOY TEST BARS BY USING NI-W HETEROGENEOUS SEED CRYSTAL

Номер: US20210277500A1
Принадлежит: Northwestern Polytechnical University

In the method for preparing single crystal superalloy test bars by using a Ni—W heterogeneous seed crystal, on the premise of ensuring that the single crystal superalloy has the required orientation, by reusing the seed crystal, it is achieved that the trouble caused by the need of preparing a new seed crystal when a single crystal superalloy is produced by the seed crystal method every time is avoided, and the production cost is significantly reduced. In the present disclosure, the formation of the stray grains in mushy zone could be avoided by using a Ni—W heterogeneous seed crystal without mushy zone and a built-in corundum tube. 1. A method for preparing single crystal superalloys by using a Ni—W heterogeneous seed crystal , comprising:step 1, preparing a shell mould;step 2, preparing a seed crystal for preparing Ni—W heterogeneous single crystal test bars:preparing a single crystal test bar by a grain selection method;step 3, preparing a first Ni—W heterogeneous single crystal test bar with a [001] orientation which deviates from the axial direction by 0-12°:preparing a Ni—W heterogeneous single test bar with a [001] orientation which deviates from the axial direction by 0-12° by using the seed crystal obtained in step 2;step 4, preparing a first single crystal superalloy test bar:cutting the obtained first Ni—W heterogeneous single crystal test bar to obtain a Ni—W heterogeneous seed crystal that can be put into the shell mould;preparing a single crystal superalloy test bar by using the cut Ni—W heterogeneous seed crystal, specifically comprising:putting the obtained Ni—W heterogeneous seed crystal into the corundum tube in the shell mould; placing the shell mould filled with the Ni—W heterogeneous seed crystal in a directional solidification furnace; putting a purchased superalloy master alloy block into an electromagnetic melting crucible at the upper part of the furnace; heating the directional solidification furnace to a temperature of 1550° C. at a rate ...

Подробнее
30-07-2020 дата публикации

RADIATION RESISTANT HIGH-ENTROPY ALLOY AND PREPARATION METHOD THEREOF

Номер: US20200239984A1
Принадлежит:

The present invention provides a radiation resistant high-entropy alloy and a preparation method thereof. A general formula of the radiation resistant high-entropy alloy is TiZrHfVMoTaNb, where 0.05≤x≤0.25, 0.05≤y≤0.5, and x and y are molar ratios. The preparation method of the radiation resistant high-entropy alloy comprises the following steps: mixing Ti, Zr, Hf, V, Mo, Ta, and Nb in order, and conducting vacuum levitation induction melting or vacuum arc melting, to obtain the radiation resistant high-entropy alloy. The high-entropy alloy in the present invention has an excellent irradiation resistance, and does not suffer radiation hardening damage under simulated helium ion irradiation. When helium bubbles are of same sizes as those of conventional alloy, the bubble density of the high-entropy alloy is far lower than that of the conventional alloy, and the lattice constant thereof decreases abnormally after irradiation. 1. A radiation resistant high-entropy alloy , wherein its general formula is TiZrHfVMoTaNb , wherein 0.05≤x≤0.25 , 0.05≤y≤0.5 , and x and y are molar ratios.2. The radiation resistant high-entropy alloy according to claim 1 , wherein 0.1≤x≤0.2 and 0.1≤y≤0.2.3. A preparation method of the radiation resistant high-entropy alloy according to claim 1 , comprising the following steps: stacking Ti claim 1 , Zr claim 1 , Hf claim 1 , V claim 1 , Mo claim 1 , Ta claim 1 , and Nb in order claim 1 , and conducting vacuum levitation induction melting or vacuum arc melting claim 1 , to obtain the radiation resistant high-entropy alloy.4. The preparation method of the radiation resistant high-entropy alloy according to claim 3 , wherein during fusion alloying claim 3 , Ti claim 3 , Zr claim 3 , Ta claim 3 , and V are placed bottommost claim 3 , and Nb claim 3 , Mo claim 3 , and Hf are placed uppermost.5. The preparation method of the radiation resistant high-entropy alloy according to claim 3 , wherein in the melting process claim 3 , vacuumizing is conducted ...

Подробнее
07-09-2017 дата публикации

AL ALLOY CONTAINING CU AND C AND ITS MANUFACTURING METHOD

Номер: US20170253949A1
Принадлежит:

Provided is a method for manufacturing an Al alloy that includes Cu and C, by a manufacturing method provided with a step for adding graphite particles, and particles of a carbonization promoter containing boron or a boron compound, to Al molten metal that includes Cu. 1. A method for preparing an Al alloy containing Cu and C , characterized by comprising a step of adding graphite particles and carburization promoter particles containing boron or a boron compound to a molten Al containing Cu.2. The method of claim 1 , wherein temperature of the molten metal is 800° C. to 1000° C. when the graphite particles and carburization promoter particles are added to the molten metal.3. The method of or claim 1 , wherein the molten Al containing Cu claim 1 , to which the graphite particles and the carburization promoter particles are added claim 1 , is a molten metal of a Al—Cu binary alloy containing Cu with the balance of Al and inevitable impurities.4. The method of claim 3 , wherein the Al—Cu binary alloy contains 27 to 36 wt % Cu.5. The method of claim 1 , further comprising a step of adding at least Al to a molten metal obtained after the adding of the graphite particles and the carburization promoter particles.6. The method of claim 5 , further comprising a step of adding an alloy element other than Cu to a molten metal after the adding of the graphite particles and the carburization promoter particles.7. The method of claim 1 , wherein the molten Al containing the Cu claim 1 , to which the graphite particles and the carburization promoter have been added claim 1 , is a molten metal of an alloy containing Cu and an at least one alloy element other than Cu and the balance of Al and inevitable impurities.8. The method of claim 7 , wherein the at least one alloy element other than Cu includes Si.9. An Al alloy containing Cu and C claim 1 , which is prepared according to the method defined in .10. An Al alloy comprising Cu and C wherein C is disturbed in a metal structure. ...

Подробнее
14-10-2021 дата публикации

Suppression of Samson Phase Formation in Al-Mg Alloys by Boron Addition

Номер: US20210317549A1

An aluminum magnesium alloy with reduced Samson phase at grain boundaries made from the method of providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. A method of suppressing the Samson phase, AlMg, at grain boundaries in Aluminum, comprising providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture.

Подробнее
21-09-2017 дата публикации

ALLOY PRODUCTION METHOD AND ALLOY PRODUCED BY THE SAME

Номер: US20170266721A1
Автор: Kim Shae-Kwang
Принадлежит:

Provided are an alloy production method that may easily distribute a compound in a matrix of an alloy while maintaining the quality of a molten metal, and an alloy produced by the same. In accordance with an exemplary embodiment, the method includes forming a molten metal in which a mother alloy including at least one kind of first compound and a casting metal are melted, and casting the molten metal, wherein the mother alloy is a magnesium mother alloy or aluminum mother alloy.

Подробнее
21-09-2017 дата публикации

Tial intermetallic compound single crystal material and preparation method therefor

Номер: US20170268127A1

A TiAl intermetallic compound single crystal material and a preparation method therefor are disclosed. The alloy composition of the material comprises Ti a Al b Nb c (C, Si) d , wherein 43≦b≦49, 2≦c≦10, a+b+c=100, and 0≦d≦1 (at. %).

Подробнее
21-09-2017 дата публикации

HIGH-STRENGTH MUNITIONS STRUCTURES WITH INHERENT CHEMICAL ENERGY

Номер: US20170268856A1
Принадлежит:

Munitions structures comprising one or more high strength reactive alloys, in particular reactive bulk metallic glasses, have significant amounts of inherent chemical energy. This energy may be discharged by subjection of the munitions structure to rapid impulsive loading and fragmentation in the presence of oxygen and/or nitrogen. A munitions structure can be configured in both large and small penetrators, e.g. warheads and bullets, with increased lethality. The lethality of these munitions structures is augmented by means of rapidly and simultaneously imparting both mechanical energy (kinetic energy through impact and fragmentation) and chemical energy (blast and/or fireball) to a target. A high-strength reactive alloy can substitute at least in part one or both of explosives and inert structural materials in conventional munitions systems to improve performance and reduce parasitic weight of structural casing.

Подробнее
05-09-2019 дата публикации

HIGH-STRENGTH MAGNESIUM ALLOY WHICH CAN RAPIDLY REACT WITH A MEDIUM AND A PRODUCTION PROCESS THEREOF

Номер: US20190271061A1
Автор: HU Yi, TANG Tingji
Принадлежит:

The present invention provides a high-strength magnesium alloy which can react rapidly with a medium and production processes thereof. In one embodiment, the magnesium alloy comprises gadolinium, yttrium, aluminum, zinc, zirconium, rhenium, silicon, copper, iron, nickel, gallium, indium, beryllium, calcium and magnesium. In another embodiment, the magnesium alloy comprises gadolinium, yttrium, aluminum, zinc, zirconium, rhenium, silicon, copper, iron, nickel, lanthanum, cerium, manganese, gallium, indium, beryllium, calcium and magnesium. 1. A high-strength magnesium alloy which can rapidly react with a medium , said magnesium alloy comprises gadolinium , yttrium , aluminum , zinc , zirconium , rhenium , silicon , copper , iron , nickel , gallium , indium , beryllium , calcium and magnesium.2. The magnesium alloy of claim 1 , comprising by mass parts 1.0-8.0 parts of gadolinium claim 1 , 1.0-3.0 parts of yttrium claim 1 , 0.6-1.5 parts of aluminum claim 1 , 0.5-6.5 parts of zinc claim 1 , 0.1-0.5 part of zirconium claim 1 , 0-2.0 parts of rhenium claim 1 , a total of 0.05-2.0 parts of silicon claim 1 , copper claim 1 , iron claim 1 , nickel claim 1 , gallium and indium claim 1 , 0.1-0.5 part of beryllium and calcium claim 1 , and 83-97 parts of magnesium.3. The magnesium alloy of claim 2 , comprising by mass parts 3.0-6.0 parts of gadolinium claim 2 , 1.5-2.5 parts of yttrium claim 2 , 0.8-1.2 parts of aluminum claim 2 , 2.0-5.0 parts of zinc claim 2 , 0.2-0.4 part of zirconium claim 2 , 1.0-1.5 parts of rhenium claim 2 , a total of 0.1-1.5 parts of silicon claim 2 , copper claim 2 , iron claim 2 , nickel claim 2 , gallium and indium claim 2 , 0.2-0.4 part of beryllium and calcium claim 2 , and 85-95 parts of magnesium.4. The magnesium alloy of claim 1 , wherein said alloy has increased tensile strength and elongation as compared to those from control examples.5. A process for producing a high-strength magnesium alloy of which can rapidly react with a medium claim 1 ...

Подробнее
15-10-2015 дата публикации

HIGH ELASTICITY HYPER EUTECTIC ALUMINUM ALLOY AND METHOD FOR MANUFACTURING THE SAME

Номер: US20150292064A1
Автор: LEE Tae Gyu, PARK Hoon Mo
Принадлежит:

Disclosed herein is a high-elasticity hypereutectic aluminum alloy, including: titanium (Ti) and boron (B), wherein a composition ratio of Ti:B is 3.5 to 5:1, boron (B) is included in an amount of 0.5 to 2 wt %, and both AlTi and TiBare included as reinforcing agents. 1. A high-elasticity hypereutectic aluminum alloy , comprising: titanium (Ti) and boron (B) , wherein a composition ratio of Ti:B is between about 3.5 and about 5:1 , boron (B) is included in an amount of about 0.5 to 2 wt % , and both AlTi and TiBare included as reinforcing agents.2. A high-elasticity hypereutectic aluminum alloy , comprising: copper (Cu) in an amount of about 4.5 wt % , magnesium (Mg) in an amount of about 0.60 wt % , silicon (Si) in an amount of about 17 to 19 wt % , zinc (Zn) in an amount of about 0.50 wt % boron (B) in an amount of about 0.5 to 2 wt % , titanium (Ti) in an amount of about 4 to 6 wt % , and a balance of aluminum (Al) ,{'sub': 3', '2, 'wherein a composition ratio of Ti:B is between about 3.5 to about 5:1, and both AlTi and TiBare included as reinforcing agents.'}3. A high-elasticity hypereutectic aluminum alloy , essentially consisting of: copper (Cu) in an amount of about 4.5 wt % , magnesium (Mg) in an amount of about 0.60 wt % , silicon (Si) in an amount of about 17 to 19 wt % , zinc (Zn) in an amount of about 0.50 wt % , boron (B) in an amount of about 0.5 to 2 wt % , titanium (Ti) in an amount of about 4 to 6 wt % , and a balance of aluminum (Al) ,{'sub': 3', '2, 'wherein a composition ratio of Ti:B is between about 3.5 to about 5:1, and both AlTi and TiBare included as reinforcing agents.'}4. A method of manufacturing the high-elasticity hypereutectic aluminum alloy of claim 2 , comprising the steps of:introducing Al and an Al—B master alloy, and an Al—Ti master alloy or a Ti material into a melting furnace, wherein a composition ratio of Ti:B is between about 3.5 and about 5:1 and B is included in an amount of about 0.5 to 2 wt %, thereby preparing a molten ...

Подробнее
23-12-2021 дата публикации

Complex copper alloy including high-entropy alloy and method of manufacturing same

Номер: US20210395863A1
Принадлежит:

Provided is a complex copper alloy including a high-entropy alloy and a method of manufacturing the same. The complex copper alloy includes a metal matrix including copper or a copper alloy and a high-entropy alloy (HEA) existing in a crystal grain of the metal matrix. A method of manufacturing the complex copper alloy is a method of manufacturing a complex copper alloy, which includes a metal matrix including copper or a copper alloy, and a high-entropy alloy (HEA) existing in a crystal grain of the metal matrix. The method includes preparing a raw material of the metal matrix and raw material of the high-entropy alloy and melting and alloying the raw material of the metal matrix and the raw material of the high-entropy alloy. 1. A complex copper alloy comprising:Metal matrix including copper or a copper alloy; andHigh-entropy alloy (HEA) precipitations existing inside grains of the metal matrix.2. The complex copper alloy of claim 1 , wherein the copper alloy matrix has a first phase claim 1 , and the high-entropy alloy precipitates as a second phase that is separated from the first phase.3. The complex copper alloy of claim 1 , wherein the high-entropy alloy has a spherical shape.4. The complex copper alloy of claim 3 , wherein the high-entropy alloy has a size of 10 μm or less.5. The complex copper alloy of claim 1 , wherein the high-entropy alloy includes one or more alloy elements selected from the group consisting of Cr claim 1 , Mn claim 1 , Fe claim 1 , Co claim 1 , and Ni.6. The complex copper alloy of claim 5 , wherein the high-entropy alloy further includes one or more alloy elements selected from the group consisting of Al claim 5 , Ta claim 5 , Nb claim 5 , V claim 5 , Mo claim 5 , and W.7. The complex copper alloy of claim 1 , wherein the complex copper alloy has a following Chemical Formula 1:{'br': None, 'sub': 100-x', 'x', 'y', '100-y, '(CuZn)(HEA)\u2003\u2003[Chemical Formula 1]'}(in Chemical Formula 1, 0≤x≤45, 0 Подробнее

13-10-2016 дата публикации

Aluminum Alloy Refiner Material and Preparation Method Thereof

Номер: US20160298217A1
Принадлежит: CITIC Dicastal Co Ltd

The present invention provides an aluminum alloy refiner, which is characterized by being an amorphous alloy comprising 40 to 60 parts of Zr, 25 to 45 parts of Cu, 1 to 15 parts of Al, 1 to 10 parts of Pd and 1 to 10 parts of Nb in terms of mass fraction. The refiner provided by the present invention can be used to favorably refine crystal grains as well as improve the mechanical property of the aluminum alloy to a certain extent. Moreover, the intermediate alloy improves the strength and plasticity of the alloy, and a refined A356 aluminum alloy is very suitable for the manufacturing of automobile wheels.

Подробнее
11-10-2018 дата публикации

METHODS TO INCREASE SOLID SOLUTION ZIRCONIUM IN ALUMINUM ALLOYS

Номер: US20180291480A1
Принадлежит: GM GLOBAL TECHNOLOGY OPERATIONS LLC

A method of making an aluminum alloy containing zirconium includes heating a first composition including aluminum to a first temperature. The first temperature is greater than or equal to a liquidus temperature of the first composition. The method further includes adding a second composition including a copper-zirconium compound to the first composition. The method further includes decomposing at least a portion of the copper-zirconium compound into copper and zirconium. The method further includes forming a third composition by dissolving at least some of the copper from the decomposing in the aluminum of the first composition. The method further includes cooling the third composition to a second temperature to form a first solid material. The second temperature is less than or equal to a solidus temperature of the third composition. The method further includes heat treating the first solid material to form the aluminum alloy containing zirconium. 1. A method of making an aluminum alloy comprising zirconium , the method comprising:heating a first composition comprising aluminum to a first temperature of greater than or equal to a liquidus temperature of the first composition;adding a second composition comprising a copper-zirconium compound to the first composition;decomposing at least a portion of the copper-zirconium compound into copper and zirconium;forming a third composition by dissolving at least some of the copper from the decomposing in the aluminum of the first composition;cooling the third composition to a second temperature less than or equal to a solidus temperature of the third composition to form a first solid material; andheat treating the first solid material to form the aluminum alloy comprising zirconium.2. The method of claim 1 , wherein the forming the third composition further comprises dissolving at least some of the zirconium from the decomposing in the aluminum.3. The method of claim 1 , wherein the heat treating the first solid material ...

Подробнее
29-10-2015 дата публикации

Zirconium based bulk metallic glasses with hafnium

Номер: US20150307975A1
Принадлежит: Washington State University WSU

Various embodiments of zirconium based bulk metallic glass with hafnium are described herein. In one embodiment, an alloy composition includes zirconium (Zr), hafnium (Hf), copper (Cu), aluminum (Al), at least one element from a group consisting of niobium (Nb) and titanium (Ti), and at least one element from a group consisting of nickel (Ni), iron (Fe), and cobalt (Co).

Подробнее
18-10-2018 дата публикации

ALUMINUM ALLOY WITH ADDITIONS OF MAGNESIUM, CALCIUM AND AT LEAST ONE OF CHROMIUM, MANGANESE AND ZIRCONIUM, AND METHOD OF MANUFACTURING THE SAME

Номер: US20180298473A1
Принадлежит:

An aluminum alloy including aluminum, about 2.5 to about 17.4 weight percent by weight magnesium, about 50 to about 3000 ppm calcium, and at least one of chromium up to about 0.2 percent by weight, zirconium up to about 0.2 percent by weight and manganese up to about 0.3 percent by weight. 1. An aluminum alloy comprising:aluminum;about 2.5 to about 17.4 percent by weight magnesium;about 50 to about 3000 ppm calcium; and chromium up to about 0.2 percent by weight;', 'manganese up to about 0.3 percent by weight; and', 'zirconium up to about 0.2 percent by weight., 'at least one of2. The aluminum alloy of comprising said chromium.3. The aluminum alloy of wherein said chromium is present at about 0.01 to about 0.1 percent by weight.4. The aluminum alloy of comprising said manganese.5. The aluminum alloy of wherein said manganese is present at about 0.01 to about 0.2 percent by weight.6. The aluminum alloy of comprising both said chromium and said manganese.7. The aluminum alloy of comprising said zirconium.8. The aluminum alloy of wherein said zirconium is present at about 0.01 to about 0.1 percent by weight.9. The aluminum alloy of wherein said calcium is present at about 50 to about 2000 ppm.10. The aluminum alloy of wherein said calcium is present at about 500 ppm to about 1600 ppm.11. The aluminum alloy of wherein said magnesium is present at about 6 to about 17.4 percent by weight.12. The aluminum alloy of wherein said magnesium is present at about 10 to about 17.4 percent by weight.13. The aluminum alloy of wherein said magnesium is present at about 8 to about 13 percent by weight.14. The aluminum alloy of further comprising at least one of:silicon up to about 1.4 percent by weight;iron up to about 1.2 percent by weight;copper up to about 0.8 percent by weight;nickel up to about 0.1 percent by weight;zinc up to about 2.8 percent by weight;gallium up to about 0.05 percent by weight;vanadium up to about 0.05 percent by weight;scandium up to about 0.05 percent by ...

Подробнее
09-11-2017 дата публикации

HIGH QUALITY, VOID AND INCLUSION FREE ALLOY WIRE

Номер: US20170320172A1
Принадлежит:

Disclosed herein is a method of forming an alloy material for use in a wire. The method includes forming a master alloy containing lead and silver; and creating a molten wire alloy by combining the master alloy, additional lead, and a third material in a vessel. The method also includes flowing argon gas through and over the molten wire alloy. The method also includes drawing the molten alloy from the vessel through an actively cooled die, and solidifying the molten wire alloy to form a bar of wire alloy. 1. A method of forming an alloy material for use in a wire , the method comprising:forming a master alloy containing lead and silver;creating a molten wire alloy by combining the master alloy, additional lead, and a third material in a vessel;flowing argon gas through and over the molten wire alloy;drawing the molten wire alloy from the vessel through an actively cooled die; andsolidifying the molten wire alloy to form a bar of wire alloy.2. The method of claim 1 , wherein the third material is tin.3. The method of claim 1 , wherein creating the molten wire alloy further includes combining the master alloy claim 1 , the third material and a dopant.4. The method of claim 2 , wherein the wire alloy further includes a dopant selected from the group comprising phosphorus claim 2 , calcium claim 2 , and aluminum.5. The method of claim 1 , wherein the wire alloy has a melting point of about 310° C.6. The method of claim 1 , wherein the master alloy includes about 78.0 wt. % lead and about 22.0 wt. % silver.7. The method of claim 1 , wherein drawing the molten wire alloy includes cooling the molten wire alloy at a rate selected to form a uniform concentration of lead claim 1 , silver claim 1 , and the third material throughout the wire alloy bar.8. The method of claim 1 , wherein drawing the molten wire alloy includes drawing the molten wire alloy through a die at a draw speed such that the wire alloy solidifies with a uniform concentration of the lead claim 1 , the ...

Подробнее
17-10-2019 дата публикации

Method of casting articles from aluminium alloys

Номер: US20190316227A1
Принадлежит:

The invention relates to the field of aluminum metallurgy and can be used to produce ingots from high quality aluminum alloys when manufacturing aerospace and automotive products. The use of this invention relates to the technology of secondary modification. The method of casting products from aluminum alloys includes the following stages: a) aluminum melt preparation in the alloying furnace; b) addition alloy introduction into melt; c) degassing of the aluminum melt containing the addition alloy; d) addition alloy re-introduction; e) filtration of the aluminum melt obtained at stage d) and f) feeding the filtered melt into the crystallizer. It ensures the improved effectiveness of the aluminum melt modification with addition alloys without additional constructional changes in existing lines for aluminum ingot casting. It allows reducing the alloy modification costs, decreasing the grain in resulting alloys and improving plastic and mechanical properties of the obtained cast ingots and their products. 2. The method according to characterizes in that the molten metal filtration is carried out in two stages.3. The method according to differs in that the re-introduction of the addition alloy at stage d) is carried out before the first filtration stage.4. The method according to differs in that the re-introduction of the addition alloy at stage d) is carried out before the first filtration stage.5. The method according to claim 2 , characterized in that the re-introduction of the addition alloy at stage d) is carried out in two stages—before the first filtration stage and before the second filtration stage.6. The method according to any of - differs in that the first filtration stage uses the filtration system claim 2 , which allows filtering out contaminations up to 5-9 μm in size.7. The method according to any of - differs in that the first stage of filtration uses the refining unit with the system of filter cartridges.8. The method according to any of - differs in ...

Подробнее
17-10-2019 дата публикации

COMPOSITE OF ALUMINUM AND BORON NITRIDE NANOTUBES AND METHOD FOR MANUFACTURING SAME

Номер: US20190316233A1
Принадлежит: HITACHI METALS, LTD.

There is provided a composite of a metallic matrix and boron nitride nanotubes, the metallic matrix including aluminum or an aluminum alloy. Also, there is provided a method for manufacturing the composite. The method includes: a powder mixing step of mixing a powder of boron nitride nanotubes and a powder of an element soluble in a molten metal of the metallic matrix to prepare a powder mixture of boron nitride nanotubes and a metallic matrix-soluble element; an alloy melt mixing step of mixing the powder mixture and the molten metal of the metallic matrix to prepare a metallic matrix melt mixed with boron nitride nanotubes; and a casting step of solidifying the metallic matrix melt mixed with boron nitride nanotubes to obtain the composite. 1. A composite of a metallic matrix and boron nitride nanotubes , the metallic matrix comprising aluminum or an aluminum alloy , whereinthe boron nitride nanotubes are dispersed in the metallic matrix, and the metallic matrix is melt-solidified.2. The composite according to claim 1 , whereinthe aluminum alloy comprises aluminum as a main component and at least one of silicon, copper, magnesium, and nickel.3. A method for manufacturing a composite of a metallic matrix and boron nitride nanotubes claim 1 , the metallic matrix comprising aluminum or an aluminum alloy claim 1 , the method comprising:a powder mixing step of mixing a powder of boron nitride nanotubes and a powder of an element soluble in a molten metal of the metallic matrix to prepare a powder mixture of boron nitride nanotubes and a metallic matrix-soluble element;an alloy melt nixing step of mixing the powder mixture and the molten metal of the metallic matrix to prepare a metallic matrix melt mixed with boron nitride nanotubes; anda casting step of solidifying the metallic matrix melt mixed with boron nitride nanotubes to obtain the composite.4. The method for manufacturing a composite of a metallic matrix and boron nitride nanotubes according to claim 3 , ...

Подробнее
23-11-2017 дата публикации

METHOD FOR DEOXIDIZING AI-Nb-Ti ALLOY

Номер: US20170335431A1

Disclosed herein is a method for deoxidizing an Al—Nb—Ti alloy, which includes melting and holding an Al—Nb—Ti alloy containing from 50 to 75 mass % of Al, from 5 to 30 mass % of Nb, and 80 mass % or less in total of Al and Nb by a melting method using a water-cooled copper vessel in an atmosphere of 1.33 Pa to 2.67×10Pa at a temperature of 1,900 K or more, thereby decreasing an oxygen content thereof. The Al—Nb—Ti alloy is prepared using an alloy material formed of an aluminum material, a niobium material and a titanium material and containing oxygen in a total amount of 0.5 mass % or more. 1. A method for deoxidizing an Al—Nb—Ti alloy , the method comprising melting and holding an Al—Nb—Ti alloy comprising from 50 to 75 mass % of Al , from 5 to 30 mass % of Nb , and 80 mass % or less in total of Al and Nb by a melting method using a water-cooled copper vessel in an atmosphere of 1.33 Pa to 2.67×10Pa at a temperature of 1 ,900 K or more , thereby decreasing an oxygen content thereof ,wherein the Al—Nb—Ti alloy is being prepared from an alloy material comprising an aluminum material, a niobium material and a titanium material, and contains oxygen in a total amount of 0.5 mass % or more.2. The method for deoxidizing an Al—Nb—Ti alloy according to claim 1 , wherein a flux of CaO alone or a CaO—CaFflux obtained by blending more than 0 mass % and 95 mass % or less of calcium fluoride with calcium oxide is added during melting of the Al—Nb—Ti alloy by the melting method using the water-cooled copper vessel.3. The method for deoxidizing an Al—Nb—Ti alloy according to claim 1 , wherein the melting method using the water-cooled copper vessel is any one of an arc melting method claim 1 , a plasma arc melting method and an induction melting method.4. The method for deoxidizing an Al—Nb—Ti alloy according to claim 2 , wherein the melting method using the water-cooled copper vessel is any one of an arc melting method claim 2 , a plasma arc melting method and an induction ...

Подробнее
29-11-2018 дата публикации

Suppression of Samson Phase Formation in Al-Mg Alloys by Boron Addition

Номер: US20180340241A1

A method of suppressing the Samson phase, AlMg, at grain boundaries in Aluminum, comprising providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. An aluminum magnesium alloy with reduced Samson phase at grain boundaries made from the method of providing aluminum in a container, adding boron to the container, providing an inert atmosphere, arc-melting the aluminum and the boron, and mixing the aluminum and the boron in the container to form an alloy mixture. 1. A method of suppressing the Samson phase , AlMg , at grain boundaries in Aluminum , comprising:providing aluminum in a container;adding boron to the container;providing an inert atmosphere;arc-melting the aluminum and the boron; andmixing the aluminum and the boron in the container to form an alloy mixture.2. The method of suppressing the Samson phase claim 1 , AlMg claim 1 , at grain boundaries in Aluminum of wherein the boron traps the magnesium in a solid solution as AlMgBphase.3. The method of suppressing the Samson phase claim 2 , AlMg claim 2 , at grain boundaries in Aluminum of wherein the aluminum is AL-5083 or Al-5456 and wherein the boron reduces supersaturation of magnesium.4. The method of suppressing the Samson phase claim 3 , AlMg claim 3 , at grain boundaries in Aluminum of further comprising the steps of:adding copper to the container prior to the step of providing an inert atmosphere;arc-melting the aluminum and the boron and the copper; andmixing and homogenizing the aluminum and the boron and copper in the container to form an alloy mixture.5. The method of suppressing the Samson phase claim 4 , AlMg claim 4 , at grain boundaries in Aluminum of further comprising the steps of:repeating the step of arc-melting the aluminum and the boron and the copper in the container; andensuring homogeneity of the alloy mixture.6. The method of ...

Подробнее
17-12-2015 дата публикации

ZINC ALLOY AND PREPARATION METHOD THEREFOR

Номер: US20150361528A1
Автор: Kim Shae K.

The present invention provides a zinc alloy with improved alloy characteristics such as fluidity, castability, mechanical properties, corrosion resistance and elongation, and a preparation method therefor. The method for preparing the zinc alloy, according to one aspect of the present invention, comprising the steps of: providing zinc and a magnesium master alloy including a calcium-based compound; and forming a molten metal in which the magnesium master alloy and the zinc are melted; and casting the molten metal. The zinc alloy, according to another aspect of the present invention, includes a zinc base and the calcium-based compound present in the zinc base, wherein magnesium is applied to the zinc base. 1. A preparation method for a zinc alloy , the method comprising:providing a zinc and a magnesium master alloy that includes a calcium-based compound;forming a molten metal in which the magnesium master alloy and the zinc are melted; andcasting the molten metal.2. The method of claim 1 , wherein the forming the molten metal comprises claim 1 ,forming a zinc molten metal by melting the zinc; andadding the magnesium master alloy into the zinc molten metal and meting the magnesium master alloy.3. The method of claim 1 , wherein the forming the molten metal comprises claim 1 ,inputting the magnesium master alloy and the zinc into a melting furnace; andmelting the magnesium master alloy and the zinc together.4. The method of claim 1 , wherein the magnesium master alloy is 0.01 through 46 weight % in the zinc alloy.5. The method of claim 4 , wherein the magnesium master alloy is 5 through 30 weight % in the zinc alloy.6. The method of claim 1 , wherein the magnesium master alloy is formed by adding a calcium-based additive to pure magnesium or a magnesium alloy.7. The method of claim 6 , wherein the magnesium alloy comprises aluminum.8. The method of claim 6 , wherein the magnesium master alloy is formed by a method comprising:forming the molten metal by melting the pure ...

Подробнее
06-12-2018 дата публикации

SYSTEM AND METHOD TO STABILIZE TRANSITION METAL PRECIPITATES IN CAST ALUMINUM ALLOYS DURING PRIMARY SOLIDIFICATION

Номер: US20180347011A1
Принадлежит:

A system for casting an aluminum alloy includes a first chamber for containing a first melt at a first temperature, a second chamber for containing second melt at a second temperature that is lower than the first temperature, a mixing chamber in communication with the first chamber and the second chamber for simultaneously receiving and mixing the first melt from the first chamber with the second melt from the second chamber, and a mold chamber in communication with the mixing chamber and for receiving the mixed melt. 1. A system for casting an aluminum alloy comprising:a first chamber for containing a first melt at a first temperature;a second chamber for containing second melt at a second temperature that is lower than the first temperature;a mixing chamber in communication with the first chamber and the second chamber for simultaneously receiving and mixing the first melt from the first chamber with the second melt from the second chamber; anda mold chamber in communication with the mixing chamber and for receiving the mixed melt.2. The system of claim 1 , wherein the first melt comprises Aluminum and at least one peritectic transition metal element.3. The system of claim 1 , wherein the first melt comprises one of Zirconium claim 1 , Scandium claim 1 , Cobalt claim 1 , Chromium claim 1 , Niobium claim 1 , Tantalum claim 1 , Titanium claim 1 , Vanadium claim 1 , Tungsten claim 1 , Molybdenum claim 1 , Hafnium and Boron.4. The system of claim 1 , wherein the second melt has a composition that includes a higher percentage of Silicon than the first melt.5. The system of claim 1 , wherein the second melt has a composition that includes a higher percentage of Copper than the first melt.6. The system of claim 1 , wherein the second melt has a composition that includes a higher percentage of Magnesium than the first melt.7. The system of claim 1 , wherein the first temperature is higher than the liquidus temperature of an aluminum precipitate in the first melt and the ...

Подробнее
06-12-2018 дата публикации

Fine-Grained ND-FE-B Magnets Having High Coercivity and Energy Density

Номер: US20180350520A1
Автор: Li Wanfeng
Принадлежит:

Magnets and methods of making the magnets are disclosed. The magnets may have high coercivity and may be suitable for high temperature applications. The magnet may include a plurality of grains of a Nd—Fe—B alloy having a mean grain size of 100 to 500 nm. The magnet may also comprise a non-magnetic low melting point (LMP) alloy, which may include a rare earth element and one or more of Cu, Ga, and Al. The magnets may be formed from a Nd—Fe—B alloy powder produced using HDDR and jet milling, or other pulverization process. The powder may have a refined grain size and a small particle size and particle size distribution. The LMP alloy may be mixed with a powder of the Nd—Fe—B alloy or it may be diffused into a consolidated Nd—Fe—B bulk magnet. The LMP alloy may be concentrated at the grain boundaries of the bulk magnet. 1. A magnet comprising:a plurality of grains of a Nd—Fe—B alloy having a mean grain size of 100 to 500 nm; anda non-magnetic low melting point (LMP) alloy having a mean particle size of 100 nm to 900 nm and including a rare earth element and one or more of Cu, Ga, and Al.2. The magnet of claim 1 , wherein the LMP alloy is substantially a binary claim 1 , ternary claim 1 , or quaternary alloy of a rare-earth element and one or more of Cu claim 1 , Ga claim 1 , and Al.3. The magnet of claim 1 , wherein the magnet comprises from 0.1 wt. % to 10 wt. % of the LMP alloy.4. The magnet of claim 1 , wherein the rare earth element in the LMP alloy is Nd or Pr.5. The magnet of claim 1 , wherein an intergranular composition of the magnet has a higher concentration of the LMP alloy than an intragranular composition of the magnet.6. The magnet of claim 1 , wherein the plurality of grains of the Nd—Fe—B alloy have a mean grain size of 200 to 400 nm.720-. (canceled)21. The magnet of claim 1 , wherein the LMP alloy includes NdCu.22. The magnet of claim 1 , wherein the magnet comprises at least 10 wt. % of the LMP alloy.23. The magnet of claim 1 , wherein an ...

Подробнее
13-12-2018 дата публикации

High-strength and high-conductivity copper alloy and applications of alloy as material of contact line of high-speed railway allowing speed higher than 400 kilometers per hour

Номер: US20180355458A1
Принадлежит:

A high-strength and high-conductivity copper alloy and applications of the alloy as a material of a contact line of a high-speed railway allowing a speed higher than 400 kilometers per hour. The copper alloy has the following characteristics: (1) constituents of the copper alloy are in the form of CuXY, X is one or more selected from Ag, Nb and Ta, and Y is one of more selected from Cr, Zr and Si; (2) at a room temperature, the element X in the copper alloy exists in the form of a pure phase and solid solution atoms, the element Y exists in the form of a pure phase and solid solution atoms or a CuY compound and solid solution atoms, the content of the element X existing in the form of the solid solution atoms is lower than 0.5%, and the content of the element Y existing in the form of the solid solution atoms is lower than 0.1%; and (3) the copper alloy exists in the form of long strip rods or lines, the element X in the form of the pure phase is embedded in the copper alloy in the form of fibers disposed in parallel approximately, and the axial direction of the fibers is approximately in parallel with the axial direction of the copper alloy rods or lines; and the element Y existing in the copper alloy in the form of the pure phase or the CuY compound is embedded in the copper alloy in the form of particles. The copper alloy is suitable for being used as a material of a contact line of a high-speed railway allowing a speed higher than 400 kilometers per hour. 1. A copper alloy , having the following features:(1) The copper alloy composition conforms to the form: CuXY, of which X is selected from at least one of Ag, Nb and Ta, Y is from at least one of Cr, Zr and Si; in the copper alloy, the total content of X element shall be greater than 0.01% and no higher than 20%, the total content of Y element shall be greater than 0.01% and no higher than 2%, moreover, the Cr content ranges from 0.01% to 1.5%, Zr content ranges from 0.01% to 0.5%, and Si content ranges from 0. ...

Подробнее
20-12-2018 дата публикации

HIGH-STRENGTH AND HIGH-CONDUCTIVITY COPPER ALLOY AND APPLICATIONS OF ALLOY AS MATERIAL OF CONTACT LINE OF HIGH-SPEED RAILWAY ALLOWING SPEED HIGHER THAN 400 KILOMETERS PER HOUR

Номер: US20180363101A1
Принадлежит:

The present invention discloses a super-strong high-conductivity copper alloy and applications thereof as the contact wire materials of high speed railways allowing a speed of over 400 km per hour. The copper alloy comprises niobium, chromium, zirconium, titanium and remaining copper; the copper alloy exists in the form of long bar or wire, wherein niobium is distributed in the copper matrix in the form of nanofibers and solid solution atoms, chromium is distributed around the niobium fibers and the copper matrix in the form of nano-particles and solid solution atoms, zirconium is distributed around the niobium fibers and in the copper matrix in the form of copper-zirconium compound nano-particles and solid solution atoms; titanium is distributed in the copper matrix in the form of copper-titanium GP zone and solid solution atoms; the total amount of niobium, chromium and zirconium solid solution atoms contained in the copper alloy is less than 0.2%. 1. A copper alloy , comprising 3%-20% niobium , 0.01%-1% chromium , 0.01%-0.5% zirconium , 0.01%-0.2% titanium by weight percent and remaining copper; the copper alloy exists in the form of long bar or wire , wherein niobium is distributed in the copper matrix in the form of nanofibers and solid solution atoms , and most of niobium nanofibers are arranged approximately in parallel in the copper matrix , these fibers are approximately parallel to copper alloy rods or wires in the axial direction; chromium is distributed around the niobium fibers and the copper matrix in the form of nano-particles and solid solution atoms , zirconium is distributed around the niobium fibers and in the copper matrix in the form of copper-zirconium compound nano-particles and solid solution atoms; titanium is distributed in the copper matrix in the form of copper-titanium GP zone and solid solution atoms; the total amount of niobium , chromium and zirconium solid solution atoms contained in the copper alloy is less than 0.2%; part of ...

Подробнее
03-12-2020 дата публикации

METHOD FOR PRODUCING TI-AL ALLOY

Номер: US20200377972A1

A method includes the production of a primary ingot, the production of a secondary ingot, and the removal of a flux layer. A CaO—CaFflux in a content of 3-20 mass % and obtained by mixing 35-95 mass % of CaFwith CaO is added to a Ti—Al alloy material including a total of at least 0.1 mass % of oxygen and at least 40 mass % of Al, and the resultant substance is melted by a melting method using a water-cooled copper container in an atmosphere having a pressure of 1.33 Pa or higher and held to produce the primary ingot. The primary ingot is continuously drawn downwards while being melted by a melting method using a bottomless water-cooled copper casting mould in an atmosphere having a pressure of 1.33 Pa or higher to produce the secondary ingot. The flux layer deposited on the surface of the secondary ingot is mechanically removed. 1: A method for producing a Ti—Al alloy , the method comprising:{'sub': 2', '2', '2, '(a) producing a primary ingot by melting and holding a melting raw material under an atmosphere of 1.33 Pa or more by a melting method using a water-cooled copper vessel to produce a primary ingot, wherein the melting raw material is prepared by adding a CaO—CaFflux to a Ti—Al alloy and contains from 3 to 20 mass % of the CaO—CaFflux relative to the Ti—Al alloy, the Ti—Al alloy is composed of a titanium material and an aluminum material and comprises 0.1 mass % or more of oxygen and 40 mass % or more of Al, and the CaO—CaFflux is prepared by mixing calcium fluoride with calcium oxide and comprises 35 to 95 mass % of the calcium fluoride;'}(b) producing a secondary ingot by melting the primary ingot under an atmosphere of 1.33 Pa or more by a melting method using a bottomless water-cooled copper mold and continuously drawing the primary ingot downward to obtain the secondary ingot; and(c) mechanically removing a flux layer adhering to a surface of the secondary ingot.2. A method for producing a Ti—Al alloy , the method comprising:{'sub': 2', '2', '2, '(i) ...

Подробнее
15-03-2017 дата публикации

Aluminum superalloys for use in high temperature applications

Номер: EP3108025A4
Принадлежит: NanoAL LLC, Northwestern University

Подробнее
11-05-2018 дата публикации

一种环保型抗变色的紫铜排及其制备方法

Номер: CN106811618B
Автор: 王海燕

本发明提供一种环保型抗变色的紫铜排及其制备方法,该环保型抗变色的紫铜排是紫杂铜原料经多元中间合金精炼和抗变色改性处理得到,制备方法为:将电解铜熔化形成铜熔液,加入铜磷合金、铜镧合金和铜硼合金搅拌至熔化,静置,排渣,浇入模具成形,得到多元中间合金,再将多元中间合金加入紫杂铜原料中,熔炼精炼,浇入模具成形,得到紫铜排;将紫铜排表面抛光,清洗擦拭干净后,再采用超声波振荡脱脂清洗,浸泡于植酸/苯并三氮唑预处理液,清水冲洗,再喷涂或者刷涂抗变色处理液,冷风干燥,得到环保型抗变色的紫铜排。

Подробнее
07-06-2022 дата публикации

一种超细晶、高强韧耐热铝合金导线的制备方法

Номер: CN111057978B
Автор: 董兆虎
Принадлежит: Gansu Xibeizhiguang Cable Co ltd

一种超细晶、高强韧耐热铝合金导线的制备方法,其步骤为:(1)配料:由以下重量份的组分组成:工业纯铝100份、铝锆合金0.7份、铝铜合金0.4份、铝铒合金0.4份、细化剂Al‑5Ti‑B 0.0015份、变质剂Sr 0.06份、精炼剂六氯乙烷0.5份;(2)熔炼:将纯铝加入无芯中频感应电炉,使炉温升至740℃,在温度达到720℃时开始超声振动20s,待金属完全熔化后,钟罩压入法加入中间合金、变质剂和细化剂,期间进行电磁搅拌,而后开始精炼、扒渣;(3)将准备好的合金液浇铸成锭,后对合金锭进行多向锻造、均匀化处理、轧制、去应力退火、低温连续ECAP、沉淀强化、拉拔和绞合。

Подробнее
09-11-2018 дата публикации

铝硅合金车身支架及其高压真空压铸制备方法

Номер: CN106636788B
Автор: 勾建勇, 崔美卿

本发明涉及一种铝硅合金车身支架及其高压真空压铸制备方法。车身支架采用的铝合金材料组分的重量百分比为:9.5‑11.5%Si,Fe<0.1%,Cu<0.03%,0.5~0.7%Mn,0.3~0.5%Mg,Zn<0.07%,0.04‑0.15%Ti,0.01‑0.03%Sr,其余为Al。本发明所采用的铝合金成分尤其是微量元素的含量、Sr元素的加入方式、热处理工艺等保证车身支架同时具有高的强度与延展性的关键,经产品切片试验,T7处理后的抗拉强度大于240MPa;0.2%屈服强度大于180MPa,延伸率大于8%,完全满足承载式车身零部件的机械性能要求;本发明的铝合金车身支架高压真空铸造制备方法,能够适满足承载式车身支架对机械性能、生产效率、成本的要求,具有广阔的应用前景。

Подробнее
24-08-2021 дата публикации

一种消除连续挤压铝合金扁管表面铝屑的工艺方法

Номер: CN113290068A

本发明涉及消除连续挤压铝合金扁管表面铝屑的工艺方法,通过优化铝合金成分为:Cu:0.09‑0.12%,Si:0.03‑0.05%,Fe:0.12‑0.17%,Fe:Si≥3,Ti:0.006‑0.0075%,Ce及La混合稀土:0.045‑0.055%,余量为Al,以改善铝杆铸造性能和组织的均匀性;同时在炉内加稀土和在线加铝钛硼丝相结合的细化工艺,从而确保铝杆的疏松度达到1级。采用超高速在线均匀化热处理,使得铝杆在极短的时间内化学成分均匀化,消除晶内偏析。在改善金属的流动性的同时,优化挤压工艺参数,改变模具冷却工艺,保证挤压温度波动处于最小范围,实现恒温挤压;而在产品成形后对扁管的表面进行在线处理,最终达到消除铝扁管表面铝屑及减少压坑缺陷等技术目的。

Подробнее
15-01-2019 дата публикации

阳极氧化后具有良好光泽度的5系铝合金板带材及其制造方法

Номер: CN109207814A
Принадлежит: Chinalco Ruimin Co Ltd

本发明公开了一种高强度且阳极氧化后具有良好光泽度的5系铝合金板带材及其制造方法。按重量百分数之和为100%,所述铝合金板带材中各化学成分及其所占重量百分数为Si≤0.04%,Fe≤0.05%,Cu≤0.05%,Mn 0.4‑0.5%,Mg 3.0~3.5%,Ti 0.005‑0.012%,余量为Al及不可避免的杂质;且Fe/Si≤1.5;其是将铝锭、铝中间合金锭、镁锭经熔炼、铸造成大板锭,再对铸锭进行锯切、铣面后,经加热、热轧、冷轧等步骤制得。所得铝合金板带材具有较高的抗拉强度和屈服强度,且在经阳极氧化后具有很高的光泽度。

Подробнее
02-07-2019 дата публикации

一种压铸铝硅合金及其制备方法

Номер: CN109957687A
Автор: 张春姣, 胡宸, 赵海东

本发明公开了一种压铸铝硅合金及其制备方法。所述铝硅合金采用真空压铸和T6热处理工艺制备,其组成成分及其百分比质量为:硅8.50~11.0%,镁0.40~0.65%,锰0.45~0.65%,钛0.10~0.15%,锶100ppm~200ppm,铁≤0.12%,其他元素≤0.10%,剩余为铝。本发明制备的铝硅合金在铸态和热处理态都具有较高的强度和较高的韧性,且成形性能好,尺寸精度高;对大型复杂薄壁铸件,该合金铸态即可提供较高的性能,防止在热处理过程中变形。在汽车、轨道交通等领域中有着十分广阔的应用前景。

Подробнее
16-06-2017 дата публикации

一种阳极氧化用1090铝合金的铸造加工工艺

Номер: CN106854709A
Автор: 李世博
Принадлежит: Xinjiang Joinworld Co Ltd

本发明公开一种阳极氧化用1090铝合金的铸造加工工艺,步骤如下:将铝纯度为99.90~99.92%的电解铝液放入熔炼炉,加入质量比不少于20%的1090铝合金冷料,熔炼温度控制在710~735℃;熔炼完成后进行精炼,精炼温度控制在700~725℃,在45min之内完成精炼,精炼剂为六氯乙烷;精炼完成后,进行板锭铸造,铸造时采用双丝喂入的方式在搅拌除气箱前加入晶粒细化剂,在溜槽末端进行温度补偿,保证铸造温度稳定在690~700℃。本发明以低成本的工业纯铝生产出板锭晶粒度为一级的符合BSEN 573‑3‑2009标准的1090合金板锭,为低成本开发出高成型能力和高亮度的1090铝合金板锭提供基础。

Подробнее
27-05-2022 дата публикации

一种超轻高强镁锂合金的旋转模锻制备方法

Номер: CN114535478A
Принадлежит: Chongqing University

本发明公开了一种超轻高强镁锂合金的旋转模锻制备方法,包括以下步骤:A)获取以下原材料:纯镁锭、纯铝锭、镁锂中间合金、镁锆中间合金、或镁钙中间合金、或镁铈中间合金;B)将获取的原材料熔炼获得合金熔体;C)将制备所得的合金熔体进行浇铸成型后,冷却,进行机械加工处理,获得合金铸锭;D)对合金铸锭进行预热和挤压成型,获得镁锂合金的挤压棒材;E)将获得的挤压棒材通过室温多道次小应变的旋转模锻变形处理,获得棒状的超轻高强镁锂合金。本发明通过采用协调变形能力较好的Mg‑Li合金,经挤压后,通过室温小应变旋转模锻来提高合金的强度和塑性,制备出强度和塑性协同能力较好的镁锂合金。

Подробнее
28-04-2020 дата публикации

一种具有电磁波屏蔽性能的高强高导耐热Cu-Fe-Y-Mg合金材料及其制备方法

Номер: CN109022896B
Автор: 李周, 肖柱, 邱文婷, 龚深
Принадлежит: CENTRAL SOUTH UNIVERSITY

本发明公开了一种具有电磁波屏蔽性能的高强高导耐热Cu‑Fe‑Y‑Mg合金材料及其制备方法,所述铜合金包括Cu、Fe、Mg、Y元素;且Fe的质量百分含量大于等于5%并小于Cu的质量百分含量,所述Fe均匀分布于合金材料中。该铜合金在成分设计上用大量廉价的铁元素,由于熔融状态下铜和铁不混溶,熔炼过程中,起始合金以铜为主,加入少量铁进行熔炼,溶化后,通过中间合金的方式加入Cu‑Fe中间合金,在熔炼再通过合金元素钇和镁的联合添加,起到变质剂的作用,促进凝固状态下铁相在铜基体中的均匀分布,使该体系合金产品最终具有性能均匀的、电磁波屏蔽性能和高强高导耐热性能。该铜合金材料适合非真空大规模产业化制造。

Подробнее
07-12-2018 дата публикации

一种无稀土MnAlCuC永磁合金及其制备方法

Номер: CN106997800B
Принадлежит: Hangzhou Dianzi University

本发明涉及一种无稀土MnAlCuC永磁合金及其制备方法。本发明按原子百分比配置成理论成分为Mn 50+z Al 50‑x‑z Cu x C y ,采用非自耗真空电弧炉,将配比好的母合金原料放入通有循环冷却水的铜坩埚中,将合金反复熔炼3‑4遍,得到成分均匀的MnAlCuC合金铸锭;将上述MnAlCuC合金进行真空热处理,得到τ相的MnAlCuC合金;将上述τ相的MnAlCuC合金进行球磨处理,获得τ相MnAlCuC合金粉末,即高矫顽力无稀土MnAlCuC各向异性永磁合金。与现有的技术相比,本发明成本低,Mn含量低,制作工艺简单,制得的MnAlCuC永磁合金永磁性能好、矫顽力高,饱和磁化强度高。

Подробнее
10-12-2014 дата публикации

Титановый сплав с превосходными ингибированием отложения накипи и формуемостью и способы его получения, а также теплообменник или испаритель морской воды

Номер: RU2013125561A

1. Материал титанового сплава, содержащий:Р в количестве 0,005-0,30% мас. и Sn в количестве 0,01-3,0% мас. с остальным количеством до 100% мас. Ti и неизбежных примесей.2. Материал титанового сплава по п.1, который дополнительно содержит один или более элементов, выбранных из группы, состоящей из Cu, Fe и Ni, и удовлетворяющих следующей формуле (1):Cu + 4,9 Fe + 1,3 Ni + 0,5 Sn ≤1,6 (1),в которой Cu, Fe, Ni и Sn каждый представляют содержание (% мас.) соответствующих элементов в титановом сплаве в формуле (1).3. Материал титанового сплава по п.1, в котором содержание Cu составляет 0,3% мас. или менее.4. Материал титанового сплава по п.1, в котором средний размер зерна кристалла составляет 10 мкм или более.5. Материал титанового сплава по любому из пп.1-4, который используется в теплообменнике или в испарителе морской воды.6. Теплообменник или испаритель морской воды, в котором материал титанового сплава по любому из пп.1-4 используется для теплопередающей части, где вода или морская вода протекает в качестве теплоносителя.7. Способ получения материала титанового сплава по любому из пп.1-4, в котором Р-содержащее соединение, содержащее в качестве источника Р, по меньшей мере, один представитель, выбранный из группы, состоящей из Sn-P основного сплава, Cu-P основного сплава, Fe-P основного сплава, Ni-P основного сплава и Ti-P основного сплава, используется для исходного материала.8. Способ получения материала титанового сплава по любому из пп.1-4, включающий:плавку и отливку расплавленного материала, и затем осуществление, по меньшей мере, горячей обработки, в которойР-содержащее соединение плавится вместе с титаном в качестве плавкого материала на стадии плавки.9. Способ получения матери� РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 2013 125 561 A (51) МПК C22C 14/00 (2006.01) C02F 5/00 (2006.01) C02F 1/04 (2006.01) C22F 1/18 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ЗАЯВКА НА ИЗОБРЕТЕНИЕ (21)(22) Заявка: 2013125561/02, 03.06.2013 (71) Заявитель(и ...

Подробнее
12-07-2019 дата публикации

2a12铝合金铸造工艺

Номер: CN106513638B
Автор: 唐文杰
Принадлежит: Kezuo Jinniu Casting Co Ltd

一种2A12铝合金铸工艺,首先配制并熔炼中间合金铜铝合金、铝锰合金和铝钛合金,然后将纯铝置于坩埚中,分批次并按照前后顺序加入铜铝合金、铝锰合金和铝钛合金,边加入边充分搅拌;向坩埚中加入金属镁,制成铝合金液;在铝合金液进行精炼、除渣和变质处理;取样分析合格后,进行浇注,制成粗工件;对粗工件进行整理、校正;置于时效炉中时效处理后,经抛砂处理,机加工,制得成品。优点是:操作方便,工件通过铸造成型,可以节省原材料,降低生产成本,铸件的组织致密度好,光洁度高,工件质量好,尺寸变形小,成品率高,生产效率高。

Подробнее