Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 1481. Отображено 100.
16-09-1996 дата публикации

ПАРОГАЗОТУРБИННАЯ ПРИВОДНАЯ УСТАНОВКА ПРЕИМУЩЕСТВЕННО ДЛЯ БЛОЧНЫХ АВТОНОМНЫХ ЭЛЕКТРО-ТЕПЛОСТАНЦИЙ

Номер: RU0000002837U1

1. Парогазотурбинная приводная установка, преимущественно для блочных автономных электро - теплостанций, содержащая турбинный привод нагрузочного устройства и воздушного компрессора и камеру сгорания с контуром подачи в нее горючего и системой впрыска воды, предварительно прошедшей через теплообменник-испаритель, установленный в линии выхлопа турбогаза, отличающаяся тем, что она дополнительно содержит автономную турбину, связанную с компрессором, теплообменник-пароперегреватель, теплообменник-конденсатор и отстойник-деаэратор, включенные в замкнутый паровой контур привода турбины компрессора с выводом отработанного пара из турбины в камеру сгорания, при этом высоконапорный тракт подвода пара к турбине состоит из последовательно соединенных насоса возвратной воды, теплообменника-испарителя и теплообменника-пароперегревателя, размещенного на выходе из камеры сгорания, а в магистрали выхлопа продуктов сгорания за теплообменником-испарителем установлен теплообменник-конденсатор внешней системы отвода тепла и деаэратор-отстойник с патрубками для забора возвратной воды и выброса газообразных продуктов. 2. Установка по п. 1, отличающаяся тем, что внешний контур теплообменника-конденсатора через циркуляционный насос связан с хранилещем жидкого горючего, основного или резервного. 3. Установка по пп. 1 и 2, отличающаяся тем, что вал агрегатов турбокомпрессорной группы через отключающуюся муфту присоединен к стартерному двигателю внутреннего сгорания, преимущественно карбюраторного типа. (19) RU (11) (13) 2 837 U1 (51) МПК F01K 21/04 (1995.01) F02C 3/30 (1995.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 93018737/06, 12.04.1993 (46) Опубликовано: 16.09.1996 (71) Заявитель(и): Научно-производственное объединение "Энергомаш" им. акад.В.П.Глушко (73) Патентообладатель(и): Научно-производственное объединение "Энергомаш" им. акад.В.П.Глушко Ñòðàíèöà: 1 U 1 2 8 3 7 R U U 1 (57) Формула полезной модели 1. ...

Подробнее
20-10-2001 дата публикации

ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ПРОИЗВОДСТВА ЭНЕРГИИ

Номер: RU0000020133U1

Технологическая линия производства энергии, включающая взаимосвязанные между собой и смонтированные на основании функциональные узлы - парогенератор с подогревательными, испарительными и перегревательными агрегатами и камерой сгорания, теплообменники, конденсатор, преобразователь тепла с уплотнительными элементами, воздушный ресивер и привод, отличающаяся тем, что технологическая линия снабжена размещенными на функциональных узлах системой перекрестного и многоместного перевода недоиспользованного тепла в преобразователе, выполненной в виде пароводяного, газовоздушного контуров и сборника излучаемого элементами технологической линии тепла, выполненного в виде кожуха охватывающего парогенератор, преобразователь и теплообменники и соединенного через нагнетатель-смеситель с парогенератором, приспособлением каталитической диссоциации рабочего тела, которое выполнено в виде элементов размещенных внутри пароводяного контура технологической линии, приспособлением увеличения массы и температуры рабочего тела, которое выполнено в виде смонтированных на преобразователе буферных камер с катализатором, приспособлением снижения работы сжатия и увеличения работы расширения, которое выполнено в виде расположенного в преобразователе взаимосвязанных между собой конденсатного насоса, распылительной форсунки и рабочей камеры, снабженной узлом вихревого уплотнения, который выполнен с внутренним оребрением, приспособлением формирования холодного конденсата, которое выполнено в виде вихревой трубы взаимосвязанной с воздушным ресивером и охладителя конденсата для уплотнительных элементов преобразователя, а парогенератор имеет нагнетатель-смеситель и газовую вихревую трубу, причем нагнетатель-смеситель соединен со сборником излучаемого тепла и газовоздушным контуром. (19) RU (11) 20 133 (13) U1 (51) МПК F01K 21/04 (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 2001115994/20 , 14.06.2001 (24) Дата начала отсчета ...

Подробнее
27-02-2005 дата публикации

ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ С ОТКРЫТОЙ ТЕПЛОФИКАЦИОННОЙ СИСТЕМОЙ

Номер: RU0000044171U1

Теплоэлектроцентраль с открытой теплофикационной системой, содержащая котлоагрегат, главный паропровод, теплофикационную паровую турбину с теплофикационным отбором пара, электрогенератор, деаэратор высокого давления, питательный насос высокого давления, открытую теплофикационную систему с сетевыми подогревателями, трубопроводами обратной и прямой сетевой воды, отличающаяся тем, что она дополнительно снабжена блоком парогазотурбинной установки с камерой дожигания низкого давления; блоком утилизации тепла парогазовой смеси, содержащим котел-утилизатор с парогенератором высокого и дополнительным парогенератором низкого давления; оросительным устройством, газоохладителем-конденсатором; блоком использования сепарированной воды, который трубопроводом питательной воды низкого давления связан через установку умягчения и деаэратор с входом парогенератора низкого давления котла-утилизатора, оросительная установка связана трубопроводом оросительной воды с установкой умягчения сырой воды базовой теплоэлектроцентрали; в свою очередь вход парогенератора высокого давления котла-утилизатора связан трубопроводом парогазовой смеси с выходом парогазовой турбинной установки; парогенератор низкого давления котла утилизатора соединен паропроводом низкого давления с дополнительной камерой дожигания парогазотурбинной установки; блок использования сепарированной воды соединен трубопроводом умягченной и деаэрированной питательной воды низкого давления, с блоком утилизации тепла парогазовой смеси и трубопроводом умягченной, подогретой и деаэрированной подпиточной воды с открытой теплофикационной системой базовой теплоэлектроцентрали; парогенератор высокого давления соединен трубопроводами питательной воды высокого давления и пара высокого давления с базовой теплоэлектроцентралью. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 44 171 (13) U1 (51) МПК F24D 1/00 (2000.01) F01K 23/10 (2000.01) F01K 21/04 (2000.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ...

Подробнее
10-09-2005 дата публикации

ПАРОГАЗОВАЯ УСТАНОВКА

Номер: RU0000047977U1

Парогазовая установка содержащая паровой котел с горелочными устройствами, газотурбинную установку с газопроводом продуктов сгорания газового топлива, соединенным с горелочными устройствами и имеющим ответвление газопровода, соединенное со сбросными соплами, запорно-регулирующую арматуру, отличающаяся тем, что сбросные сопла установлены в верхней части топки котла. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 47 977 (13) U1 (51) МПК F01K 21/00 (2000.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2005102504/22 , 02.02.2005 (24) Дата начала отсчета срока действия патента: 02.02.2005 (45) Опубликовано: 10.09.2005 (73) Патентообладатель(и): Открытое акционерное общество "Инжиниринговая компания "ЗИОМАР" (RU) U 1 4 7 9 7 7 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Парогазовая установка содержащая паровой котел с горелочными устройствами, газотурбинную установку с газопроводом продуктов сгорания газового топлива, соединенным с горелочными устройствами и имеющим ответвление газопровода, соединенное со сбросными соплами, запорно-регулирующую арматуру, отличающаяся тем, что сбросные сопла установлены в верхней части топки котла. 4 7 9 7 7 (54) ПАРОГАЗОВАЯ УСТАНОВКА R U Адрес для переписки: 142103, Московская обл., г. Подольск, ул. Железнодорожная, 2, ОАО "Инжиниринговая компания "ЗИОМАР", Е.А. Яньшину (72) Автор(ы): Щелоков В.И. (RU) , Евдокимов С.А. (RU) , Князьков В.П. (RU) , Двойнишников В.А. (RU) RU 5 10 15 20 25 30 35 40 45 50 47 977 U1 Полезная модель относится к теплоэнергетике и применима- в комбинированных парогазовых энергетических установках. Известна парогазовая установка, содержащая паровой котел с горелочными устройствами, газотурбинную установку (ГТУ) с газопроводом продуктов сгорания газового топлива, соединенным с горелочными устройствами и имеющим ответвление газопровода, соединенное со сбросными соплами, запорно-регулирующую арматуру [1]. Недостатком данной конструкции ...

Подробнее
20-01-2006 дата публикации

ПАРОГАЗОВАЯ УСТАНОВКА

Номер: RU0000050603U1

Парогазовая установка, состоящая из турбокомпрессора с расположенными между компрессором и турбиной камерами сгорания и смешения, двух теплообменников-испарителей и экономайзера, расположенными последовательно в выходной части турбокомпрессора, камеры смешения, паровой турбины, входной ресивер которой соединен с теплообменником-испарителем, а выходной ресивер - с камерой смешения, котла-утилизатора, стоящего в линии между камерой смешения и теплообменниками испарителями, отличающаяся тем, что теплообменник-испаритель, стоящий за турбиной турбокомпрессора соединен с камерой смешения турбокомпрессора, а теплообменник-испаритель, стоящий за ним, соединен с входным ресивером паровой турбины, экономайзер с одной стороны соединен с питательной водой, а с другой - с камерой смешения. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 50 603 (13) U1 (51) МПК F01K 21/04 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2004136680/22 , 14.12.2004 (24) Дата начала отсчета срока действия патента: 14.12.2004 (45) Опубликовано: 20.01.2006 (72) Автор(ы): Письменный Владимир Леонидович (RU) (73) Патентообладатель(и): Письменный Владимир Леонидович (RU) R U Адрес для переписки: 141103, Московская обл., г.Щелково-3, ул.Супруна, 1, кв.40, В.Л. Письменному U 1 5 0 6 0 3 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Парогазовая установка, состоящая из турбокомпрессора с расположенными между компрессором и турбиной камерами сгорания и смешения, двух теплообменников-испарителей и экономайзера, расположенными последовательно в выходной части турбокомпрессора, камеры смешения, паровой турбины, входной ресивер которой соединен с теплообменником-испарителем, а выходной ресивер - с камерой смешения, котла-утилизатора, стоящего в линии между камерой смешения и теплообменниками испарителями, отличающаяся тем, что теплообменник-испаритель, стоящий за турбиной турбокомпрессора соединен с камерой смешения ...

Подробнее
27-01-2006 дата публикации

ТЕПЛОФИКАЦИОННАЯ ГАЗОТУРБИННАЯ УСТАНОВКА

Номер: RU0000051112U1

Теплофикационная газотурбинная установка, содержит воздушный компрессор, рекуператор, камеру сгорания, газовую турбину, электрогенератор, водогрейный котел, трубопроводы обратной и прямой воды теплосети; выход воздушного компрессора через рекуператор и камеру сгорания связан трубопроводами с входом газовой турбины, выход последней соединен газоходами через рекуператор и водогрейный котел с атмосферой, водогрейный котел соединен на входе с трубопроводами обратной, а на выходе прямой сетевой воды; ротор газовой турбины соединен валами с ротором воздушного компрессора и ротором электрогенератора, при этом, в трубопроводе между воздушным компрессором и рекуператором размещен дополнительный воздухо-водяной теплообменник, подключенный на входе к трубопроводу обратной, а на выходе к трубопроводу прямой сетевой воды. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 51 112 (13) U1 (51) МПК F01K 21/04 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ Адрес для переписки: 443045, г.Самара, ул. Авроры, 122, кв.333, Л.И. Синицыной (73) Патентообладатель(и): Общество с ограниченной ответственностью "Самара-Авиагаз" (RU) (24) Дата начала отсчета срока действия патента: 23.05.2005 U 1 5 1 1 1 2 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Теплофикационная газотурбинная установка, содержит воздушный компрессор, рекуператор, камеру сгорания, газовую турбину, электрогенератор, водогрейный котел, трубопроводы обратной и прямой воды теплосети; выход воздушного компрессора через рекуператор и камеру сгорания связан трубопроводами с входом газовой турбины, выход последней соединен газоходами через рекуператор и водогрейный котел с атмосферой, водогрейный котел соединен на входе с трубопроводами обратной, а на выходе прямой сетевой воды; ротор газовой турбины соединен валами с ротором воздушного компрессора и ротором электрогенератора, при этом, в трубопроводе между воздушным компрессором и рекуператором размещен ...

Подробнее
27-08-2006 дата публикации

ПОРШНЕВАЯ ПАРОВАЯ МАШИНА

Номер: RU0000055872U1

Поршневая машина, включающая паровой цилиндр с рабочим поршнем и соединенный с ним конденсатор, отличающаяся тем, что, паровой цилиндр с рабочим поршнем установлен вертикально с возможностью возвратно-поступательного перемещения рабочего поршня сверху вниз, причем верхняя часть парового цилиндра имеет сообщение с атмосферой, а нижняя часть соединена с конденсатором вакуумного типа, в котором создается разряжение за счет откачки конденсата вакуум-насосом через кондесатосборник, расположенный в нижней части конденсатора вакуумного типа. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 55 872 (13) U1 (51) МПК F01K 21/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2006102793/22 , 31.01.2006 (24) Дата начала отсчета срока действия патента: 31.01.2006 (45) Опубликовано: 27.08.2006 (72) Автор(ы): Барсуков Сергей Лукич (RU) (73) Патентообладатель(и): Барсуков Сергей Лукич (RU) U 1 5 5 8 7 2 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Поршневая машина, включающая паровой цилиндр с рабочим поршнем и соединенный с ним конденсатор, отличающаяся тем, что, паровой цилиндр с рабочим поршнем установлен вертикально с возможностью возвратно-поступательного перемещения рабочего поршня сверху вниз, причем верхняя часть парового цилиндра имеет сообщение с атмосферой, а нижняя часть соединена с конденсатором вакуумного типа, в котором создается разряжение за счет откачки конденсата вакуум-насосом через кондесатосборник, расположенный в нижней части конденсатора вакуумного типа. 5 5 8 7 2 (54) ПОРШНЕВАЯ ПАРОВАЯ МАШИНА R U Адрес для переписки: 680000, г. Хабаровск, ул. Фрунзе, 71, оф.601, ХКОО ВОИР, пат.пов. И.Н.Бочковой (рег.№ 910) RU 5 10 15 20 25 30 35 40 45 50 55 872 U1 Полезная модель относится к энергомашиностроению и касается усовершенствования паровых поршневых машин. Известна паросиловая установка с поршневой паровой машиной, содержащая паровой котел, трубопроводы, цилиндр с поршнем (см. ...

Подробнее
10-01-2007 дата публикации

ПАРОГАЗОВАЯ УСТАНОВКА

Номер: RU0000060139U1

Парогазовая установка, содержащая компрессоры низкого и высокого давлений, связанные между собой через воздухоохладитель, и через камеру сгорания высокого давления с турбиной высокого давления, камеру сгорания низкого давления с турбиной низкого давления и котлом-утилизатором, соединенным паропроводами с камерами сгорания высокого и низкого давлений, отличающаяся тем, что камера сгорания низкого давления установлена на обводном воздухопроводе после компрессора низкого давления и связана паропроводом с котлом-утилизатором и газопроводом с турбиной низкого давления. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 60 139 (13) U1 (51) МПК F01K 21/04 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2006136274/22 , 13.10.2006 (24) Дата начала отсчета срока действия патента: 13.10.2006 (45) Опубликовано: 10.01.2007 (73) Патентообладатель(и): Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ГОУВПО "КубГТУ") (RU) U 1 6 0 1 3 9 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Парогазовая установка, содержащая компрессоры низкого и высокого давлений, связанные между собой через воздухоохладитель, и через камеру сгорания высокого давления с турбиной высокого давления, камеру сгорания низкого давления с турбиной низкого давления и котлом-утилизатором, соединенным паропроводами с камерами сгорания высокого и низкого давлений, отличающаяся тем, что камера сгорания низкого давления установлена на обводном воздухопроводе после компрессора низкого давления и связана паропроводом с котлом-утилизатором и газопроводом с турбиной низкого давления. 6 0 1 3 9 (54) ПАРОГАЗОВАЯ УСТАНОВКА R U Адрес для переписки: 350072, г.Краснодар, ул. Московская, 2, ГОУВПО "КубГТУ", Отдел интеллектуальной и промышленной собственности, проректору по НиМД, проф. В.С. Симанкову (72) Автор(ы): Бирюков Борис Васильевич (RU) U 1 U 1 6 0 1 3 9 6 ...

Подробнее
10-06-2007 дата публикации

ГЕОТЕРМАЛЬНАЯ УСТАНОВКА ЭНЕРГОСНАБЖЕНИЯ ПОТРЕБИТЕЛЕЙ

Номер: RU0000063867U1

Геотермальная установка энергоснабжения потребителей, содержащая контур съема тепла Земли, включающий циркуляционный насос, подъемную трубу и опускную, расположенную в скважине, и теплообменник, контур испарения и конденсации рабочего тела турбины, содержащий испаритель, насос, конденсатор, входом подключенный к турбине, соединенной с электрогенератором, подключенным к потребителю электроснабжения, контур охлаждения конденсатора с охладителем, теплообменником и насосом, отличающаяся тем, что она снабжена контуром теплоснабжения потребителя, содержащим циркуляционные насосы, запорную, регулирующую и промежуточную задвижки, отводящий и подводящий трубопроводы, при этом подводящий трубопровод подключен к выходу теплообменника контура съема тепла Земли, ко входу потребителя тепловой энергии и выходу запорной задвижки, вход которой соединен с выходом высокопотенциального теплообменника теплового насоса, вход которого подключен к выходу циркуляционного насоса контура теплоснабжения потребителей, входом соединенным с выходом потребителя тепловой энергии, при этом вход высокопотенциального теплообменника теплового насоса соединен с входом регулирующей задвижки, выход которой отводящим трубопроводом подключен к входу циркуляционного насоса и выходу задвижки контура съема тепла Земли, при этом выход циркуляционного насоса указанного контура соединен с опускной трубой, вход низкопотенциального теплообменника теплового насоса соединен с одним концом цепи, образованной последовательно соединенными промежуточной задвижкой и циркуляционным насосом, при этом другой конец этой цепи включен на выходе теплообменника конденсатора контура испарения и конденсации рабочего тела турбины и входом задвижки контура охлаждения конденсатора, выход которой подключен к входу охладителя, выходом соединенным с выходом низкопотенциального теплообменника теплового насоса и входом циркуляционного насоса контура охлаждения конденсатора, а выход этого насоса подключен к входу теплообменника конденсатора ...

Подробнее
20-03-2009 дата публикации

ТЕПЛОВАЯ СТАНЦИЯ

Номер: RU0000081530U1

Тепловая станция, содержащая несколько парогенераторов, вырабатывающих пар высоких параметров, которые подключены к общей паровой магистрали, питающей паровые турбины, отличающаяся тем, что содержит газотурбинную установку с паровым котлом-утилизатором, паропровод которого подключен к общей паровой магистрали, при этом в камере сгорания парового котла-утилизатора дополнительно установлены горелки для сжигания топлива, обеспечивающие получение в паровом котле-утилизаторе пара высоких параметров, соответствующих параметрам пара в общей паровой магистрали. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 81 530 U1 (51) МПК F01K 21/04 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ Адрес для переписки: 125009, Москва, Средний Кисловский пер., 7/10, кв.26, А.С.Попову (73) Патентообладатель(и): Горбуров Вячеслав Иванович (RU), Горбуров Дмитрий Вячеславович (RU) (24) Дата начала отсчета срока действия патента: 23.12.2008 U 1 8 1 5 3 0 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели Тепловая станция, содержащая несколько парогенераторов, вырабатывающих пар высоких параметров, которые подключены к общей паровой магистрали, питающей паровые турбины, отличающаяся тем, что содержит газотурбинную установку с паровым котлом-утилизатором, паропровод которого подключен к общей паровой магистрали, при этом в камере сгорания парового котла-утилизатора дополнительно установлены горелки для сжигания топлива, обеспечивающие получение в паровом котле-утилизаторе пара высоких параметров, соответствующих параметрам пара в общей паровой магистрали. 8 1 5 3 0 (54) ТЕПЛОВАЯ СТАНЦИЯ R U (45) Опубликовано: 20.03.2009 (72) Автор(ы): Горбуров Вячеслав Иванович (RU), Горбуров Дмитрий Вячеславович (RU), Паули Виктор Карлович (RU), Рыжиков Николай Васильевич (RU) (21), (22) Заявка: 2008150667/22, 23.12.2008 U 1 U 1 8 1 5 3 0 8 1 5 3 0 R U R U Ñòðàíèöà: 2 RU 5 10 15 20 25 30 35 40 45 50 81 530 U1 Полезная модель относится к ...

Подробнее
20-07-2011 дата публикации

БЕЗДЕАЭРАТОРНАЯ УСТАНОВКА

Номер: RU0000106656U1

Бездеаэраторная установка, содержащая последовательно включенные конденсатный насос первой ступени, конденсатоочистку, два подогревателя смешивающего типа, конденсатный насос второй ступени, два поверхностных подогревателя низкого давления, дренажный насос, питательный насос высокого давления, приводную турбину питательного насоса, конденсатор приводной турбины, отличающаяся тем, что она дополнительно содержит конденсатный насос третьей ступени, установленный после поверхностных подогревателей низкого давления, а также дополнительный блок подогревателей низкого давления, установленный перед питательным насосом. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 106 656 (13) U1 (51) МПК F01K 21/04 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2011105358/06, 14.02.2011 (24) Дата начала отсчета срока действия патента: 14.02.2011 (45) Опубликовано: 20.07.2011 1 0 6 6 5 6 Адрес для переписки: 195251, Санкт-Петербург, ул. Политехническая, 29, ГОУ ВПО "СанктПетербургский государственный политехнический университет" (ГОУ "СПбГПУ"), Отдел интеллектуальной и промышленной собственности (73) Патентообладатель(и): Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ГОУ "СПбГПУ") (RU) 1 0 6 6 5 6 R U Формула полезной модели Бездеаэраторная установка, содержащая последовательно включенные конденсатный насос первой ступени, конденсатоочистку, два подогревателя смешивающего типа, конденсатный насос второй ступени, два поверхностных подогревателя низкого давления, дренажный насос, питательный насос высокого давления, приводную турбину питательного насоса, конденсатор приводной турбины, отличающаяся тем, что она дополнительно содержит конденсатный насос третьей ступени, установленный после поверхностных подогревателей низкого давления, а также дополнительный блок подогревателей низкого давления, ...

Подробнее
10-01-2013 дата публикации

КОМБИНИРОВАННАЯ ТЕПЛОСИЛОВАЯ УСТАНОВКА (ВАРИАНТЫ)

Номер: RU0000123840U1

1. Комбинированная теплосиловая установка, содержащая замкнутый паросиловой контур, работающий на воде и включающий последовательно соединенные парогенератор, паровую турбину с генератором, конденсатор и насос, а также замкнутый контур, работающий на низкокипящей жидкости и содержащий компрессор, теплообменник-конденсатор, устройство, понижающее давление, и теплообменник-испаритель, отличающаяся тем, что в паросиловой контур включен пароперегреватель, установленный перед турбиной, при этом установка дополнительно снабжена незамкнутым водяным контуром, теплообменные поверхности которого размещены в конденсаторе паросилового контура и в теплообменнике-испарителе контура низкокипящей жидкости, теплообменник-конденсатор установлен в паросиловой контур после конденсатора, а в качестве устройства понижающего давление используется дроссель. 2. Комбинированная теплосиловая установка, содержащая замкнутый паросиловой контур, работающий на воде и включающий последовательно соединенные парогенератор, паровую турбину с генератором, конденсатор и насос, а также замкнутый контур, работающий на низкокипящей жидкости и содержащий компрессор, теплообменник-конденсатор, устройство, понижающее давление, и теплообменник-испаритель, отличающаяся тем, что в паросиловой контур включен пароперегреватель, установленный перед турбиной, при этом установка дополнительно снабжена незамкнутым водяным контуром, теплообменные поверхности которого размещены в конденсаторе паросилового контура и в теплообменнике-испарителе контура низкокипящей жидкости, теплообменник-конденсатор установлен в паросиловой контур после конденсатора, а в качестве устройства, понижающего давление, используется турбодетандер, который связан кинематически с компрессором. 3. Установка по п.2, отличающаяся тем, что турбодетандер кинематически связан с генератором. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F01K 21/00 (13) 123 840 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ...

Подробнее
10-01-2013 дата публикации

ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Номер: RU0000123841U1

1. Энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора, выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того, в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара, отличающаяся тем, что установка снабжена тепловым насосом, контур которого включает испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины, при этом выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора, причем контур теплового насоса сообщен с расходной цистерной хладагента, кроме того, на газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания. 2. Энергетическая установка по п.1, отличающаяся тем, что газовый выход конденсатора снабжен вакуумным насосом. 3. Энергетическая установка по п.1, отличающаяся тем, что линия, связывающая выход тепловоспринимающего контура конденсатора и вход дополнительного компрессора, выполнена с возможностью отвода тепла на технологические нужды. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 123 841 U1 (51) МПК F01K 21/04 (2006.01) F01K 23/10 (2006.01) F24H 4/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2012133726/06, 06. ...

Подробнее
10-01-2013 дата публикации

ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Номер: RU0000123842U1

1. Энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора, выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того, в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара, отличающаяся тем, что установка снабжена тепловым насосом, контур которого включает испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины, при этом выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора, кроме того, установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной, кроме того, на газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую питательный насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания и входом паровой турбины, при этом выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком. 2. Энергетическая установка по п.1, отличающаяся тем, что газовый выход конденсатора снабжен вакуумным насосом. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 123 842 U1 (51) МПК F01K 21/04 (2006.01) F01K 23/10 (2006.01) F24H 4/02 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ ...

Подробнее
27-06-2013 дата публикации

ПАРОКОНДЕНСАТОРНЫЙ ДВИГАТЕЛЬ

Номер: RU0000129557U1

1. Пароконденсаторный двигатель, включающий в себя нагреватель, турбину, электрогенератор, конденсаторный теплообменник, внешний охладитель и насос, соединенные между собой непосредственно или при помощи коммуникаций (паропроводы и трубопроводы, вал электрогенератора), отличающийся тем, что турбина представляет собой полый винт с камерами для жидкого хладагента, снабженными жиклерами, полый винт снабжен соплами для пара. 2. Устройство по п.1, отличающееся тем, что лопасти турбины изогнуты по спирали. 3. Устройство по п.1, отличающееся тем, что вал электрогенератора может быть снабжен муфтой. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 129 557 U1 (51) МПК F01D 1/32 (2006.01) F01K 21/02 (2006.01) F01K 25/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2011134530/06, 16.08.2011 (24) Дата начала отсчета срока действия патента: 16.08.2011 (72) Автор(ы): Погорелов Владимир Иванович (RU) (73) Патентообладатель(и): Погорелов Владимир Иванович (RU) R U Приоритет(ы): (22) Дата подачи заявки: 16.08.2011 (45) Опубликовано: 27.06.2013 Бюл. № 18 R U 1 2 9 5 5 7 Формула полезной модели 1. Пароконденсаторный двигатель, включающий в себя нагреватель, турбину, электрогенератор, конденсаторный теплообменник, внешний охладитель и насос, соединенные между собой непосредственно или при помощи коммуникаций (паропроводы и трубопроводы, вал электрогенератора), отличающийся тем, что турбина представляет собой полый винт с камерами для жидкого хладагента, снабженными жиклерами, полый винт снабжен соплами для пара. 2. Устройство по п.1, отличающееся тем, что лопасти турбины изогнуты по спирали. 3. Устройство по п.1, отличающееся тем, что вал электрогенератора может быть снабжен муфтой. Стр.: 1 U 1 U 1 (54) ПАРОКОНДЕНСАТОРНЫЙ ДВИГАТЕЛЬ 1 2 9 5 5 7 Адрес для переписки: 353860, Краснодарский край, г.ПриморскоАхтарск, пер. Пионерский, 15, Чехомову М.Л. RU 5 10 15 20 25 30 35 40 45 129 557 U1 Предлагаемая полезная модель ...

Подробнее
20-10-2013 дата публикации

ПАРОГАЗОВАЯ УСТАНОВКА

Номер: RU0000133566U1

Парогазовая установка, включающая газовую турбину, котел-утилизатор с пароперегревательными и испарительно-экономайзерными частями, камерой сжигания дополнительного топлива, газовым подогревателем конденсата и паровую турбину, отличающаяся тем, что котел-утилизатор дополнительно снабжен газовым подогревателем сетевой воды, при этом в газоходе котла-утилизатора за пароперегревательными и испарительно-экономайзерными камерами последовательно установлены газовый подогреватель конденсата, газоплотные шиберы, камера сжигания дополнительного топлива, оборудованная воздушными каналами, и газовый подогреватель сетевой воды, а паровая турбина конденсационного типа. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F01K 21/04 (13) 133 566 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2013122448/06, 15.05.2013 (24) Дата начала отсчета срока действия патента: 15.05.2013 (45) Опубликовано: 20.10.2013 Бюл. № 29 R U 1 3 3 5 6 6 Формула полезной модели Парогазовая установка, включающая газовую турбину, котел-утилизатор с пароперегревательными и испарительно-экономайзерными частями, камерой сжигания дополнительного топлива, газовым подогревателем конденсата и паровую турбину, отличающаяся тем, что котел-утилизатор дополнительно снабжен газовым подогревателем сетевой воды, при этом в газоходе котла-утилизатора за пароперегревательными и испарительно-экономайзерными камерами последовательно установлены газовый подогреватель конденсата, газоплотные шиберы, камера сжигания дополнительного топлива, оборудованная воздушными каналами, и газовый подогреватель сетевой воды, а паровая турбина конденсационного типа. Стр.: 1 U 1 U 1 (54) ПАРОГАЗОВАЯ УСТАНОВКА 1 3 3 5 6 6 Адрес для переписки: 153003, г. Иваново, ул. Рабфаковская, 34, ИГЭУ, патентно-лицензионный отдел, Трухиной О.Г. (73) Патентообладатель(и): федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский ...

Подробнее
27-10-2013 дата публикации

ГЕОТЕРМАЛЬНАЯ ПАРОТУРБИННАЯ СИСТЕМА С ВОДОРОДНЫМ АККУМУЛИРОВАНИЕМ ЭНЕРГИИ

Номер: RU0000133880U1

Геотермальная паротурбинная система с водородным аккумулированием энергии, состоящая из геотермальной скважины, системы подготовки пара, паропровода и паротурбинной установки с электрогенератором, отличающаяся тем, что к паротурбинной установке с электрогенератором присоединен электролизер с аккумулятором водорода и кислорода, связанный с водородным пароперегревателем и далее смесителем, установленным на паропроводе. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F01K 21/00 (13) 133 880 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2013126167/06, 07.06.2013 (24) Дата начала отсчета срока действия патента: 07.06.2013 (72) Автор(ы): Федоров Владимир Алексеевич (RU), Мильман Олег Ошеревич (RU) (45) Опубликовано: 27.10.2013 Бюл. № 30 R U 1 3 3 8 8 0 Формула полезной модели Геотермальная паротурбинная система с водородным аккумулированием энергии, состоящая из геотермальной скважины, системы подготовки пара, паропровода и паротурбинной установки с электрогенератором, отличающаяся тем, что к паротурбинной установке с электрогенератором присоединен электролизер с аккумулятором водорода и кислорода, связанный с водородным пароперегревателем и далее смесителем, установленным на паропроводе. Стр.: 1 U 1 U 1 (54) ГЕОТЕРМАЛЬНАЯ ПАРОТУРБИННАЯ СИСТЕМА С ВОДОРОДНЫМ АККУМУЛИРОВАНИЕМ ЭНЕРГИИ 1 3 3 8 8 0 Адрес для переписки: 248010, г. Калуга, Комсомольская роща, 43, ЗАО НПВП "Турбокон", Федорову В.А. R U (73) Патентообладатель(и): Закрытое акционерное общество Научнопроизводственное внедренческое предприятие "Турбокон" (RU) Приоритет(ы): (22) Дата подачи заявки: 07.06.2013 U 1 U 1 1 3 3 8 8 0 1 3 3 8 8 0 R U R U Стр.: 2 RU 5 10 15 20 25 30 133 880 U1 Полезная модель относится к области энергетики, в частности к водородной энергетике. Известны энергетические установки, использующие в качестве топлива водород, полученный путем конверсии газообразного или твердого топлива, см. патент РФ №2335642. Основной ...

Подробнее
20-05-2014 дата публикации

ПАРОГАЗОВАЯ УСТАНОВКА

Номер: RU0000140778U1

Парогазовая установка, содержащая компрессоры низкого и высокого давлений, связанные между собой через воздухоохладитель, при этом компрессор высокого давления последовательно связан через камеру сгорания высокого давления с турбиной высокого давления и турбиной низкого давления, а компрессор низкого давления через камеру сгорания низкого давления связан с турбиной низкого давления, турбина низкого давления связана с котлом-утилизатором, отличающаяся тем, что между компрессором высокого давления и камерой сгорания высокого давления дополнительно установлен регенератор высокого давления по холодной стороне, связанный по горячей стороне с турбиной низкого давления, а между компрессором низкого давления и камерой сгорания низкого давления дополнительно установлен регенератор низкого давления по холодной стороне, связанный по горячей стороне с регенератором высокого давления. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F01K 21/00 (13) 140 778 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2014102850/06, 28.01.2014 (24) Дата начала отсчета срока действия патента: 28.01.2014 (45) Опубликовано: 20.05.2014 Бюл. № 14 1 4 0 7 7 8 R U Формула полезной модели Парогазовая установка, содержащая компрессоры низкого и высокого давлений, связанные между собой через воздухоохладитель, при этом компрессор высокого давления последовательно связан через камеру сгорания высокого давления с турбиной высокого давления и турбиной низкого давления, а компрессор низкого давления через камеру сгорания низкого давления связан с турбиной низкого давления, турбина низкого давления связана с котлом-утилизатором, отличающаяся тем, что между компрессором высокого давления и камерой сгорания высокого давления дополнительно установлен регенератор высокого давления по холодной стороне, связанный по горячей стороне с турбиной низкого давления, а между компрессором низкого давления и камерой сгорания низкого давления дополнительно ...

Подробнее
27-05-2014 дата публикации

ПАРОГАЗОВАЯ УСТАНОВКА

Номер: RU0000141127U1

Парогазовая установка, содержащая компрессоры низкого и высокого давлений, связанные между собой через воздухоохладитель, при этом компрессор высокого давления последовательно связан через камеру сгорания с турбиной высокого давления и турбиной низкого давления, а компрессор низкого давления связан с турбиной низкого давления, турбина низкого давления, в свою очередь, связана с котлом-утилизатором, отличающаяся тем, что между компрессором высокого давления и камерой сгорания дополнительно установлен регенератор по холодной стороне, соединенный по горячей стороне с турбиной низкого давления и котлом-утилизатором. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F01K 21/04 (13) 141 127 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2014102848/06, 28.01.2014 (24) Дата начала отсчета срока действия патента: 28.01.2014 (45) Опубликовано: 27.05.2014 Бюл. № 15 R U 1 4 1 1 2 7 Формула полезной модели Парогазовая установка, содержащая компрессоры низкого и высокого давлений, связанные между собой через воздухоохладитель, при этом компрессор высокого давления последовательно связан через камеру сгорания с турбиной высокого давления и турбиной низкого давления, а компрессор низкого давления связан с турбиной низкого давления, турбина низкого давления, в свою очередь, связана с котлом-утилизатором, отличающаяся тем, что между компрессором высокого давления и камерой сгорания дополнительно установлен регенератор по холодной стороне, соединенный по горячей стороне с турбиной низкого давления и котлом-утилизатором. Стр.: 1 U 1 U 1 (54) ПАРОГАЗОВАЯ УСТАНОВКА 1 4 1 1 2 7 Адрес для переписки: 350072, г. Краснодар, ул. Московская, 2, ФГБОУ ВПО "КубГТУ", отдел интеллектуальной и промышленной собственности, нач. ИОПС Разведской Л.В. (73) Патентообладатель(и): Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" ( ...

Подробнее
20-06-2014 дата публикации

ГАЗОТУРБИННАЯ ЭНЕРГОУСТАНОВКА

Номер: RU0000141902U1

1. Газотурбинная энергоустановка, содержащая полезную нагрузку, например электрический генератор, компрессор для выработки сжатого воздуха и турбину, расположенные на одном валу, камеру сгорания топлива, выход которой связан с входом турбины, теплообменник, предназначенный для генерации пара, соединенный входом с водяным питательным насосом и размещенный в газоходе отходящих после турбины газов в атмосферу, отличающаяся тем, что содержит дополнительный размещенный в газоходе теплообменник, предназначенный для подачи в камеру сгорания окислителя в виде предварительно подогретой паро-воздушной смеси, соединенный входом с выходами компрессора и теплообменника, предназначенного для генерации пара, а выходом - с камерой сгорания. 2. Газотурбинная энергоустановка по п.1, отличающаяся тем, что теплообменники выполнены в виде змеевика. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (51) МПК F01K 21/00 (13) 141 902 U1 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2013154963/06, 11.12.2013 (24) Дата начала отсчета срока действия патента: 11.12.2013 (45) Опубликовано: 20.06.2014 Бюл. № 17 1 4 1 9 0 2 R U Формула полезной модели 1. Газотурбинная энергоустановка, содержащая полезную нагрузку, например электрический генератор, компрессор для выработки сжатого воздуха и турбину, расположенные на одном валу, камеру сгорания топлива, выход которой связан с входом турбины, теплообменник, предназначенный для генерации пара, соединенный входом с водяным питательным насосом и размещенный в газоходе отходящих после турбины газов в атмосферу, отличающаяся тем, что содержит дополнительный размещенный в газоходе теплообменник, предназначенный для подачи в камеру сгорания окислителя в виде предварительно подогретой паро-воздушной смеси, соединенный входом с выходами компрессора и теплообменника, предназначенного для генерации пара, а выходом - с камерой сгорания. 2. Газотурбинная энергоустановка по п.1, отличающаяся тем, что ...

Подробнее
10-07-2014 дата публикации

АВТОНОМНАЯ ПАРОГАЗОВАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Номер: RU0000142804U1

1. Автономная парогазовая энергетическая установка, содержащая источник тепловой энергии, к выходу из которого присоединена турбина, имеющая корпус, сопловой аппарат, рабочее колесо, установленное на валу, и выхлопное устройство с глушителем шума, к валу присоединен генератор энергии, отличающаяся тем, что источник тепловой энергии выполнен в виде печи, которая выполнена в виде цилиндрического корпуса, пристыкованного к корпусу турбины, и содержит катализатор и установленную против него, по меньшей мере, одну топливоэмульсионную форсунку, соединенную с эмульгатором. 2. Автономная парогазовая энергетическая установка по п.1, отличающаяся тем, что к входу в эмульгатор присоединены системы подачи топлива, воды и воздуха. 3. Автономная парогазовая энергетическая установка по п.1 или 2, отличающаяся тем, что в выхлопном устройстве установлен теплообменник-утилизатор. 4. Автономная парогазовая энергетическая установка по п.1 или 2, отличающаяся тем, что глушитель шума выполнен в виде кассет в форме параллелепипеда, частично заполненных катализатором. 5. Автономная парогазовая энергетическая установка по п.4, отличающаяся тем, что в качестве катализатора применен минерал шунгит. 6. Автономная парогазовая энергетическая установка по п.1 или 2, отличающаяся тем, что к выходу теплообменника-утилизатора присоединена паровая турбина. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 142 804 U1 (51) МПК F01K 21/04 (2006.01) F02C 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2014100307/06, 09.01.2014 (24) Дата начала отсчета срока действия патента: 09.01.2014 (72) Автор(ы): Дудышев Валерий Дмитриевич (RU) (73) Патентообладатель(и): Дудышев Валерий Дмитриевич (RU) R U Приоритет(ы): (22) Дата подачи заявки: 09.01.2014 (45) Опубликовано: 10.07.2014 Бюл. № 19 1 4 2 8 0 4 R U Формула полезной модели 1. Автономная парогазовая энергетическая установка, содержащая источник тепловой энергии, к выходу из которого ...

Подробнее
20-02-2015 дата публикации

ПАРОГАЗОТУРБИННАЯ УСТАНОВКА

Номер: RU0000150661U1

Парогазотурбинная установка, содержащая входное устройство, компрессор, первую камеру сгорания, камеру смешения, турбину привода компрессора, свободную турбину, теплообменник-испаритель, расположенный за свободной турбиной и соединенный с источником рабочего тела - жидкостью (вода), выходное устройство, в котором установлен теплообменник-конденсатор паров воды, соединенный с источником легкокипящей жидкости (водород, метан), отличающаяся тем, что во входном устройстве парогазотурбинной установки дополнительно установлен теплообменник-пароперегреватель легкокипящей жидкости, турбина привода компрессора выполнена с охлаждаемыми сопловыми лопатками и расположена за первой камерой сгорания, в камере смешения установлена вторая камера сгорания, за которой размещена свободная турбина с охлаждаемыми сопловыми лопатками, топливные коллекторы первой и второй камер сгорания соединены с выходом теплообменника-пароперегревателя легкокипящей жидкости, вход которого соединен с выходом теплообменника-конденсатора паров воды, а его вход соединен через топливный насос с системой подачи легкокипящей жидкости, причем под теплообменником-конденсатором паров воды выполнен сборник конденсата паров воды, который соединен через источник рабочего тела, насос высокого давления со входом теплообменника-испарителя, выход которого соединен с охлаждаемыми сопловыми лопатками турбин. И 1 150661 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВО“” 150 661” 94 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 31.07.2019 Дата внесения записи в Государственный реестр: 17.04.2020 Дата публикации и номер бюллетеня: 17.04.2020 Бюл. №11 Стр.: 1 па 990 <р ЕП

Подробнее
10-11-2015 дата публикации

ВОДОРОДНЫЙ МИНИПАРОГЕНЕРАТОР

Номер: RU0000156407U1

Водородный минипарогенератор, содержащий комбинированную камеру сгорания-смешения, корпус которой связан с магистралью подачи воды, электросвечу, связанную со смесительным элементом, связанным с магистралями подвода водорода, кислорода и форсунками подачи водорода и кислорода, и сужающее сопло, расположенное на выходе из камеры сгорания-смешения, отличающийся тем, что камера сгорания-смешения снабжена внутренней охлаждаемой водой стенкой, длина которой составляет 0,4...0,8 длины камеры сгорания-смешения. И 1 156407 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВО“ 156 407” 91 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 19.03.2020 Дата внесения записи в Государственный реестр: 08.12.2020 Дата публикации и номер бюллетеня: 08.12.2020 Бюл. №34 Стр.: 1 па 0799 ЕП

Подробнее
27-03-2016 дата публикации

ГИБРИДНАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Номер: RU0000160574U1

Гибридная энергетическая установка, содержащая реактор получения пароводородной смеси, первый вход которого связан с блоком подготовки суспензии, а также блок разделения водорода, оксидов алюминия и воды, связанный с Сегнеровым колесом, имеющим возможность соединения с потребителем или преобразователем энергии, отличающаяся тем, что установка оснащена камерой сгорания, парогазовой турбиной и воздушным компрессором, ротор которого связан с Сегнеровым колесом, первый вход камеры сгорания связан с выходом блока разделения водорода, оксидов алюминия и воды, а второй - с каналом подачи воздуха воздушного компрессора, с которым также связан второй вход реактора, а выход камеры сгорания связан с парогазовой турбиной, ротор которой имеет возможность соединения с потребителем или преобразователем энергии. И 1 160574 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ 7 ВУ‘’” 160 574? 91 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ МЕЭК Восстановление действия патента Дата, с которой действие патента восстановлено: 23.11.2021 Дата внесения записи в Государственный реестр: 23.11.2021 Дата публикации и номер бюллетеня: 23.11.2021 Бюл. №33 Стр.: 1 па 1909 ЕП

Подробнее
30-03-2018 дата публикации

ПАРОГАЗОТУРБИННАЯ УСТАНОВКА

Номер: RU0000178331U1

Полезная модель относится к энергетике, в частности к парогазотурбинным установкам транспортных средств, работающих на легкокипящих жидкостях (метан, водород). Парогазотурбинная установка, содержащая входное устройство с теплообменником-пароперегревателем легкокипящей жидкости, компрессор, первую камеру сгорания с топливными коллекторами, турбину привода компрессора с охлаждаемыми сопловыми лопатками, вторую камеру сгорания с топливными коллекторами, свободную турбину с охлаждаемыми сопловыми лопатками, выходное устройство с теплообменником испарителем паров воды, теплообменником-конденсатором паров воды из отработавших газов, вход теплообменника-испарителя паров воды через насос высокого давления соединен с источником рабочего тела (вода), а выход соединен со входами охлаждаемых сопловых лопаток турбин, вход теплообменника-конденсатора через топливный насос соединен с системой подачи легкокипящей жидкости (водород, метан), под теплообменником-конденсатором паров воды расположен сборник конденсата паров воды, выход которого соединен со входом источника рабочего тела, выход теплообменника-конденсатора соединен со входом теплообменника-пароперегревателя легкокипящей жидкости, а выход теплообменника-пароперегревателя соединен с топливными коллекторами первой и второй камер сгорания, отличающаяся тем, что дополнительно введены два местных регулятора расхода топлива, которые установлены на входе в камеры сгорания, две камеры смешения, которые установлены за первой и второй камерами сгорания и в них выполнены два коллектора подачи паров воды, четыре местных регулятора расхода паров воды, два из которых установлены на входе в камерах смешения, и два регулятора расхода паров воды, которые установлены на входе в сопловые лопатки турбин, причем коллектора подачи паров воды первой и второй камер смешения соединены через местные регуляторы расхода паров воды с выходом теплообменника-испарителя. Предложенное техническое решение по сравнению с прототипом повышает мощность ...

Подробнее
03-07-2019 дата публикации

Импульсный паровой двигатель с ядерным источником тепла для космических аппаратов

Номер: RU0000190508U1

Полезная модель относится к двигательным установкам с ядерным источником тепла для космических аппаратов и может быть использована для управления ориентацией и положением на орбите искусственных спутников Земли и КА, а так же для их ускоренного перемещения в космическом пространстве. Двигатель содержит камеру генерации водяного пара постоянного объема, выполненную с возможностью многократного заполнения водой и герметизации или разовой паяной заглушкой, установленный в ней ядерный источник тепла, выполненный, по меньшей мере, из двух ТВЭЛов подкритической массы, разделенных замедлителем, при этом в качестве рабочего тела - водяного пара, используется вода, размещенная в камере. Камера может быть выполнена многосопловой с размещением сопл, например, в 2-х или в 3-х взаимно перпендикулярных плоскостях с осями, пересекающимися в центре и противоположно направленными по своим осям, что обеспечит при одновременном открытии 2-х сопл, лежащих в одной плоскости, перемещение КА в требуемой плоскости, при открытии 3-х камер в 2-х перпендикулярных плоскостях перемещение КА в любом направлении. И 1 190508 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 190 508” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 08.09.2019 Дата внесения записи в Государственный реестр: 17.08.2020 Дата публикации и номер бюллетеня: 17.08.2020 Бюл. №23 Стр.: 1 па 80$%06 1 ЕП

Подробнее
19-01-2021 дата публикации

Газогенератор

Номер: RU0000201875U1

Полезная модель относится к энергетике, а именно к водородной энергетике.Технический эффект, достигаемый предложенным газогенератором, заключается в повышении качества смешения балластировочной среды с продуктами сгорания и уменьшении массогабаритных характеристик за счет эффективного эжектирования продуктов сгорания балластировочной средой к стенке камеры смешения, высокой турбулизации потока и укорочения продольной длины газогенератора. Увеличение расхода балластировочной среды приводит к увеличению эжектирования и температурной равномерности потока на выходе газогенератора.Данный технический эффект достигается в газогенераторе, содержащем корпус, запальное устройство, камеру смешения и расположенные в ней датчики определения параметров полученной смеси, камеру сгорания, на начальном участке которой расположен ввод балластировочной среды, выполненный в виде вставки со спиральными сопловыми каналами, причем к газогенератору подведены магистраль подачи окислителя, магистраль подачи горючего, магистраль подачи балластировочной среды, в которой на входе в камеру сгорания установлен регулятор расхода, согласно полезной модели, камера смешения имеет диаметр поперечного сечения больше, чем камера сгорания, и она выполнена в виде диффузора с короткой цилиндрической частью после расширения.Преимуществом приведенного газогенератора являются уменьшенные массогабаритные характеристики газогенератора и повышенное качество смешения низкотемпературной балластировочной среды с высокотемпературными продуктами сгорания водорода в кислороде за счет использования камеры смешения, имеющей диффузор с короткой цилиндрической частью после расширения.Таким образом, реализация данной полезной модели приведет к повышению долговечности и надежности энергоустановок. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 201 875 U1 (51) МПК F02C 3/30 (2006.01) F23R 3/00 (2006.01) F02K 9/60 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК F02C 3/30 ...

Подробнее
28-06-2012 дата публикации

System and method for increasing efficiency and water recovery of a combined cycle power plant

Номер: US20120159924A1
Принадлежит: General Electric Co

A combined cycle power plant includes a gas turbine, a condensing stage, a steam turbine, and a heat recovery steam generator (HRSG). The HRSG is configured to generate steam for driving the steam turbine in response to heat transferred from exhaust gas received from the gas turbine at a first temperature and to transmit the exhaust gas to the condensing turbine at a second temperature that is lower than the first temperature.

Подробнее
04-04-2013 дата публикации

VAPORIZATION METHOD AND VAPORIZATION APPARATUS USED FOR VAPORIZATION METHOD, AND VAPORIZATION SYSTEM PROVIDED WITH VAPORIZATION APPARATUS

Номер: US20130081390A1
Принадлежит:

A vaporization method includes a preparing step of preparing a vaporizing tube that covers at least a part of a heat exchange unit for cold energy of a Stirling engine and is capable of forming an ascending flow of the liquid flowing from a bottom to a top of the heat exchange unit for cold energy, and a vaporizing step of feeding the liquid in the vaporizing tube to thereby form the ascending flow and bringing the liquid into contact with the Stirling engine to vaporize the liquid. In the preparing step, a flowing direction of the ascending flow is adjusted to suppress occurrence of separated flows of the liquid and gas in the vaporizing tube. In the vaporizing step, the liquid is fed at a flow velocity at which a gas-liquid two-phase flow in which the liquid and the gas are mixed is formed in the vaporizing tube. 1. A method of vaporizing liquid using a Stirling engine including a heat exchange unit for cold energy , the method comprising:a preparing step of preparing a conduit that covers at least a part of the heat exchange unit for cold energy of the Stirling engine and is capable of forming an ascending flow of the liquid flowing from a bottom to a top of the heat exchange unit for cold energy; anda vaporizing step of feeding the liquid in the conduit to thereby form the ascending flow and bringing the liquid into contact with the Stirling engine to vaporize the liquid, whereinin the preparing step, a flowing direction of the ascending flow is adjusted to be an angle set in advance for suppressing occurrence of separated flows of the liquid and gas in the conduit, andin the vaporizing step, the liquid is fed at a flow velocity at which a gas-liquid two-phase flow in which the liquid and the gas are mixed is formed in the conduit.2. The vaporization method according to claim 1 , wherein claim 1 , in the vaporizing step claim 1 , the liquid is fed at a flow velocity at which an intermittent flow or an air bubble flow is formed in a heat exchange section of the ...

Подробнее
25-04-2013 дата публикации

System for turbine combustor fuel assembly

Номер: US20130098040A1
Принадлежит: General Electric Co

A system includes a gas turbine engine having a combustor, a liquid fuel supply coupled to the combustor, and a water supply coupled to the liquid fuel supply. The water supply is configured to flow water through the liquid fuel supply while the liquid fuel supply is not in use to flow a liquid fuel.

Подробнее
23-05-2013 дата публикации

Decarbonized Fuel Generation

Номер: US20130127163A1
Принадлежит: AIR PRODUCTS AND CHEMICALS, INC.

Systems and methods are provided for generating and using decarbonized fuel for power generation. In particular, the integrated systems and methods are provided for generating a synthesis gas, removing carbon dioxide from the synthesis gas and using the synthesis gas for producing power. 1. A process for the generation of low carbon-intensity power comprising:reacting a first gaseous hydrocarbon stream with steam, an oxygen-containing stream, or a combination thereof to produce a syngas stream;reacting carbon monoxide and water in the syngas stream to form hydrogen and carbon dioxide;removing a substantial portion of the carbon dioxide from the syngas stream to create a decarbonized fuel stream;combusting a first portion of the decarbonized fuel stream in the presence of compressed air to produce a first combustion product gas;expanding the first combustion product gas through a turbine to generate electrical power;using a second portion of the decarbonized fuel stream to generate a first steam stream; andreacting the first steam stream with the first gaseous hydrocarbon stream.2. The process of claim 1 , further comprising using the expanded first combustion product gas to generate electrical power and steam in a heat recovery steam generation unit.3. The process of claim 1 , wherein the second portion of the decarbonized fuel stream is used to generate the first steam stream in a steam generation unit.4. The process of claim 3 , further comprising generating a second steam stream in the steam generation unit.5. The process of claim 4 , further comprising directing a portion of second steam stream to the turbine.6. The process of claim 4 , further comprising combining a portion of the second steam stream with the second portion of the decarbonized fuel stream to form a steam generation fuel stream and directing the steam generation fuel stream to the steam generation unit.7. The process of claim 4 , wherein the second steam stream is at a lower pressure than the ...

Подробнее
04-07-2013 дата публикации

WASTE HEAT STEAM GENERATOR

Номер: US20130167533A1
Принадлежит:

A waste heat steam generator for a gas and steam turbine power plant is provided. The generator has economizer, evaporator and superheater heating surfaces which form a flow path and through which a flow medium flows. An overflow line branches off from the flow path and leads to injection valves arranged downstream at a flow side of a superheater heating surface in the flow path. The overflow line permits a brief power increase of a downstream steam turbine without resulting in an excessive loss in efficiency of the steam process. The brief power increase is permitted independently of the type of waste heat steam generator. The branch location of the overflow line is arranged upstream of an evaporator heating surface at the flow medium side and downstream of an economizer heating surface. 19.-. (canceled)10. A waste heat steam generator for a combined cycle power plant , comprising:a plurality of economizer heating surfaces, evaporator heating surfaces, and superheater heating surfaces that form a flow path through which a flow medium flows; andan overflow line that branches off from the flow path and leads to an injection valve disposed in the flow path on a flow medium side downstream of the superheater heating surface,wherein a branching-off point of the overflow line is disposed on the flow medium side upstream of an evaporator heating surface and downstream of an economizer heating surface.11. The waste heat steam generator as claimed in claim 10 , wherein the branching-off point of the overflow line is disposed on the flow medium side downstream of a last economizer heating surface.12. The waste heat steam generator as claimed in claim 10 , wherein a throughflow valve for the flow medium is disposed on the flow medium side downstream of the branching-off point of the overflow line.13. The waste heat steam generator as claimed in claim 10 , wherein a throughflow measurement device for the flow medium is disposed downstream of the branching-off point of the ...

Подробнее
11-07-2013 дата публикации

Gas Turbine System, Control Device for Gas Turbine System, and Control Method for Gas Turbine System

Номер: US20130174549A1
Принадлежит: HITACHI LTD

Provided is a gas turbine system capable of dealing with a request for output increase even when high-pressure hot water generated using solar thermal energy cannot be used according to the operating state of the gas turbine system. A gas turbine system which sucks in intake air from an air intake duct by a compressor and drives a gas turbine by combustion gas obtained by burning air and fuel by a combustor, said gas turbine system being provided with pipes for generating high-pressure hot water by providing a solar collecting tube that utilizes solar heat and spraying the high-pressure hot water into the intake air sucked in by the compressor, and pipes for spraying normal temperature water into the intake air sucked in by the compressor.

Подробнее
18-07-2013 дата публикации

METHOD FOR SUPPRESSING CORROSION IN PLANT AND PLANT

Номер: US20130182814A1
Принадлежит: KABUSHIKI KAISHA TOSHIBA

In a plant including a system which is provided with a steam generator a turbine a condenser and a heater and in which non-deaerated water circulates, and a pipe, the steam generator the heater and of the system which comes into contact with the non-deaerated water is deposited with a protective substance. 1. A method for suppressing corrosion in a plant including a system which is provided with a steam generator , a turbine , a condenser and a heater and in which non-deaerated water circulates , wherein depositing a structural member of the system which comes into contact with the non-deaerated water with a protective substance.2. The method for suppressing corrosion in a plant according to claim 1 , wherein the system is a secondary system of a pressurized water nuclear power plant claim 1 , and the non-deaerated water is circulating water which is neither subjected to deaeration processing by a deaerator nor subjected to chemical injection by a chemical injection device.3. The method for suppressing corrosion in a plant according to claim 1 , wherein the structural member is a steel material claim 1 , a non-steel material claim 1 , a nonferrous metal claim 1 , or a weld metal.4. The method for suppressing corrosion in a plant according to claim 1 , wherein the protective substance is an oxide claim 1 , a hydroxide claim 1 , a carbonate compound claim 1 , an acetic acid compound claim 1 , or an oxalic acid compound of a metallic element selected from a group consisting of Ti claim 1 , Y claim 1 , La claim 1 , Zr claim 1 , Fe claim 1 , Ni claim 1 , Pd claim 1 , U claim 1 , W claim 1 , Cr claim 1 , Zn claim 1 , Co claim 1 , Mn claim 1 , Cu claim 1 , Ag claim 1 , Al claim 1 , Mg claim 1 , and Pb.5. The method for suppressing corrosion in a plant according to claim 4 , wherein the protective substance is TiO claim 4 , YO claim 4 , or LaO.6. A plant including a system which is provided with a steam generator claim 4 , a turbine claim 4 , a condenser and a heater and in ...

Подробнее
08-08-2013 дата публикации

GENERATING STEAM FROM CARBONACEOUS MATERIAL

Номер: US20130200624A1
Принадлежит: POWERDYNE, INC.

A system and method of generating steam comprising providing a continuous supply of coal, combusting the coal in a primary processing chamber in the presence of oxygen and water to provide a first product gas stream, recovering heat from the first product gas stream in a first heat recovery steam generator to produce a first steam output, processing the first product gas stream in a secondary processing chamber in the presence of oxygen and water to provide a second Processing HRSG product gas stream, recovering heat from the second product gas stream in a second heat recovery steam generator to produce a second steam output, and combining the first steam output and the second steam output. Preferably, the combined steam output is used to drive a steam turbine and the turbine is coupled to a generator. 1. A method of for generating steam comprising:providing a continuous supply of a carbonaceous material;combusting the carbonaceous material in a first processing chamber having a first at least one plasma arc torch in the presence of oxygen a first treatment gas and water to provide a first product gas stream;recovering heat from the first product gas stream in a first heat recovery steam generator to produce a first steam output:processing the first product gas stream in a second processing chamber having a second at least one plasma arc torch in the presence of oxygen a second treatment gas and water to provide a second product gas stream substantially free of carbon monoxide and hydrogen; andrecovering heat from the second product gas stream in a second heat recovery steam generator to produce a second steam output; andusing the first steam output and the second steam output wherein each of the first plasma torch and the second plasma torch generates heat from 5540° C. to 11,080° C.2. The method of further comprising the step of using the first steam output and the second steam output to operate a steam turbine.3. The method of further comprising the step of using ...

Подробнее
15-08-2013 дата публикации

SYSTEM AND METHOD FOR THERMOELECTRIC ENERGY GENERATION

Номер: US20130205780A1
Принадлежит:

Embodiments of the invention provide methods and apparatus for using a controllable heat source to generate electricity. One embodiment provides an energy generation module comprising a controllable heat source, one or more jackets of thermoelectric devices, and heat conducting fluids surrounding or otherwise thermally coupled to the jackets. The energy generation module can be used to convert heat from a heat source such as a gas combustion chamber into electricity. Embodiments of the invention are particularly useful for generating electricity when electrical power is not existent, cost prohibitive or otherwise in short supply. The generated electricity can be used by the user, stored in an electrical storage battery or sold to a local or remote power grid. 1. An energy generation module , comprising:a first jacket of thermoelectric devices having an inner side and an outer side, the inner side of the first jacket being placed in proximity to a controllable heat source so as to at least partially surround the heat source to generate electricity from the heat source; anda first enclosure surrounding the outer side of the first jacket and spaced for containing a first heat conducting fluid.2. The energy generation module of claim 1 , wherein the first enclosure comprises a heat conducting material and has an inner side and an outer side claim 1 , the inner side of the first enclosure being configured to contain the first heat conducting fluid.3. The energy generation module of claim 1 , wherein the first enclosure comprises a second jacket of thermoelectric devices having an inner side and an outer side claim 1 , the inner side of the second jacket being configured to contain the first heat conducting fluid.4. The energy generation module of claim 3 , further comprising:a second enclosure surrounding the outer side of the second jacket and spaced for containing a second heat conducting fluid.5. The energy generation module of claim 4 , wherein the first heat ...

Подробнее
15-08-2013 дата публикации

STEAM TURBINE

Номер: US20130205783A1
Принадлежит: ROBERT BOSCH GMBH

The invention relates to a steam turbine (10), in particular for using the waste heat of an internal combustion engine (2), comprising at least one rotor (26) and at least one stator (20), said stator (20) comprising at least two nozzles (22) which are arranged in parallel in relation to each other. The nozzles (22) are designed for different load points of the rotor (26) and can be switched on and off independently from each other. 110262020222226. A steam turbine () , comprising at least one rotor () and at least one stator () , said stator () comprising at least two nozzles () which are arranged in parallel in relation to each other , characterized in that the nozzles () are designed for different load points of the rotor () and can be switched on and off independently from each other.210262. The steam turbine () according to claim 1 , wherein the steam turbine uses the waste heat of an internal combustion engine claim 1 , and characterized in that the different load points of the rotor () correspond to different operating points of the internal combustion engine ().310222226. The steam turbine () according to claim 1 , characterized in that the different design of the nozzles () is defined by at least one of a geometry thereof claim 1 , an amount of unblocked flow cross section and an angle of inclination of the nozzle () with respect to the rotor ().41022262226. The steam turbine () according to claim 1 , characterized in that one of the nozzles () is designed for a low load point of the rotor () and another of the nozzles () is designed for a high load point of the rotor ().5102224. The steam turbine () according to claim 1 , characterized in that at least one of the nozzles () is a Laval nozzle ().61026. The steam turbine () according to claim 1 , characterized in that the rotor () is partially impinged with steam.710222830. The steam turbine () according to claim 1 , characterized in that the nozzles () are switched on and off via switching equipment () ...

Подробнее
19-09-2013 дата публикации

METHOD FOR OPERATING A COMBINED CYCLE POWER PLANT AND PLANT TO CARRY OUT SUCH A METHOD

Номер: US20130239573A1
Принадлежит: ALSTOM Technologies Ltd

Disclosed is a method for operating a gas turbine () comprising a compressor (), which is equipped with variable inlet guide vanes () and receives at its inlet an inlet air flow, which has passed a temperature-affecting air inlet system (), a combustor (′) and a turbine (′). In a closed loop control scheme, a control variable indicative of the turbine outlet temperature (TAT) is generated, and the air inlet system () and/or the variable inlet guide vanes () are controlled in accordance with said control variable such that the turbine outlet temperature (TAT) is kept at or above a desired setting value (TAT). 1111214121315151416161515acac. Method for operating a combined cycle power plant comprising , a gas turbine () with an inlet temperature affecting air inlet system (-) for adjusting the temperature of inlet air , a compressor () downstream of the inlet temperature affecting air inlet system (-) , for increasing the pressure of the air , and which is equipped with variable inlet guide vanes () for adjusting the inlet mass flow , at least one combustor ( , ′) downstream of the compressor for combustion of fuel with compressed air from the compressor () , and at least one turbine ( , ′) downstream of the combustor ( , ′) for expanding hot combustion gases thereby generating mechanical power;{'b': 18', '11, 'a HRSG () downstream of the gas turbine () for generating live steam;'}{'b': 19', '22', '12', '13, 'sub': steam', 'steam', 'steam,t, 'i': a', 'c, 'a steam turbine () for expanding the live steam thereby generating mechanical power; and a control system (), characterized in that, in a closed loop control scheme, a control variable indicative of the live steam temperature (T) is generated, and that the inlet temperature affecting air inlet system (-) and/or the variable inlet guide vanes () are controlled in accordance with said control variable such that the live steam temperature (T) is kept at or above a desired target steam temperature (T).'}2. Method ...

Подробнее
03-10-2013 дата публикации

POWER RECOVERY FOR USE IN START-UP OR RE-START OF A PURE TEREPHTHALIC ACID PRODUCTION PROCESS

Номер: US20130255259A1
Принадлежит:

The invention relates to a method and system for recovering power from the gaseous stream produced by a paraxylene-air oxidation reaction. Specifically, the invention is based on heating the gaseous stream from the oxidation reaction to a temperature of at least 600° C., recovering energy through an expander, heating the expander vent stream and recovering heat from the vent stream. The recovered heat is used to maintain the oxidation process, purification process, start-up the process, or re-start the process after an interruption. 1. A process for generating and recovering power from a paraxylene-air oxidation reaction to produce terephthalic acid utilising an internal combustion open cycle gas turbine (ICOCGT) which includes a compressor , combustor and expander , wherein the oxidation reaction produces a gaseous stream. comprising:a. heating the gaseous stream to a temperature of at least 600° C.;b. sending the gaseous stream to an ICOCGT expander that drives an ICOCGT compressor, wherein the compressor compresses air fed to the oxidation reactor and the expander emits a gaseous vent stream;c. feeding the gaseous vent stream to a heat recovery system to produce recovered heat; andd. generating high grade heat from the recovered heat.2. The process of claim 1 , wherein the heat recovery system comprises a heat exchanger or a combustor feed interchanger.3. The process of claim 1 , wherein said heating is achieved in the ICOCGT combustor.4. The process of claim 1 , further comprising feeding the gaseous stream to a catalytic combustion unit prior to heating to at least 600° C.5. The process of claim 4 , wherein the catalytic combustion unit heats the gaseous stream to a temperature between about 300° C. to about 600° C.6. The process of wherein a fuel stream is fed to the ICOCGT combustor.7. The process of claim 1 , wherein the gaseous stream is mixed with a compressed air stream prior to said heating.8. The process of claim 1 , wherein make-up air is added to the ...

Подробнее
06-02-2014 дата публикации

RANKINE CYCLE SYSTEM

Номер: US20140033710A1
Принадлежит: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI

In a configuration in which a first shaft portion configured to drive a pump mechanism and a second shaft portion configured to drive an expansion mechanism are coupled to each other, a Rankine cycle system which is capable of continuing the circulation of working fluid by an expansion machine even when the pump mechanism is locked is provided. This Rankine cycle system of the invention employs a pump and an expansion machine coupled in a tandem manner. A first shaft of the pump and a second shaft of the expansion machine are concentric and the first shaft is capable of transmitting power to the second shaft. A pump torque limiter is provided between the first shaft and a main gear. A one-way clutch is provided between a sensing shaft and the second shaft. 1. A Rankine cycle system comprising: a pump; a boiler; an expansion machine; a condenser; and pipes;the pipes are connecting the pump to the condenser via the boiler and the expansion machine for circulating the working fluid, whereinthe pump includes a first shaft portion coupled to a drive source, and a pump mechanism capable of being rotated by the first shaft portion,the expansion machine includes a second shaft portion coupled to the first shaft portion, and an expansion mechanism rotatable by the second shaft portion, anda pump torque limiter is provided between the first shaft portion and the pump mechanism.2. The Rankine cycle system according to whereinthe first shaft portion and the second shaft portion are concentric,a one-way clutch is provided between the first shaft portion and the second shaft portion so as to block power transmission between the second shaft portion and the first shaft portion if the rotational speed of the second shaft portion is smaller than the rotational speed of the first shaft portion, and allow the power transmission between the second shaft portion and the first shaft portion if the rotational speed of the second shaft portion reaches to exceed the rotational speed of the ...

Подробнее
21-01-2016 дата публикации

GAS TURBINE UNIT OPERATING MODE AND DESIGN

Номер: US20160017762A1

Gas turbine unit (GTV) provides compressed air and steam methane-hydrogen mixture to a combustion chamber to enrich combustion products and cooling by evaporation or superheating of water steam. The temperature of heat exchange processes of the gas turbine unit is increased by additional fuel combustion in the steam-methane-hydrogen mixture postcombustion flow extracted at the output from the additional free work gas turbine, and before supply of steam-methane-hydrogen mixture to the combustion chamber it is previously cooled to the temperature of 200+240° C. with simultaneous differential condensation of water steam. The condensate is processed for preparation of methane steam-gas mixture and low pressure water steam which is passed through the additional free work gas turbine.

Подробнее
08-02-2018 дата публикации

CONTROL SYSTEM FOR SUPERCRITICAL WORKING FLUID TURBOMACHINERY

Номер: US20180038245A1
Автор: MOXON Matthew
Принадлежит: ROLLS-ROYCE PLC

A turbomachinery control system for controlling supercritical working fluid turbomachinery. The control system includes a light emitter to project light through working fluid of the turbomachinery toward a primary light detector provided within a line of sight to the emitter. The system further includes one or more secondary light detectors spaced from the line of sight, and a controller determining one or both of an intensity of light detected by the primary detector relative to the detected light intensity by the secondary detector, and wavelength of light detected by the primary detector relative to wavelength of light detected by the secondary detector. The controller determines the working fluid proximity of the critical point based on one or both of the determined relative intensity and determined relative wavelength, and controlling an actuator to control turbomachinery inlet or outlet conditions in accordance with the working fluid determined proximity of the critical point. 1. A turbomachinery control system for controlling supercritical working fluid turbomachinery , the control system comprising:a light emitter configured to project light through working fluid of the turbomachinery toward a primary light detector provided within a line of sight to the emitter;one or more secondary light detectors spaced from the line of sight;a controller configured to determine one or both of an intensity of light detected by the primary detector relative to an intensity of light detected by the secondary detector, and a wavelength of light detected by the primary detector relative to a wavelength of light detected by the secondary detector;the controller being configured to determine a proximity of the working fluid to a critical point based on one or both of the determined relative intensity and the determined relative wavelength, and to control an actuator configured to control turbomachinery inlet or outlet conditions in accordance with the determined proximity of ...

Подробнее
24-02-2022 дата публикации

Method and apparatus for increasing useful energy/thrust of a gas turbine engine by one or more rotating fluid moving (agitator) pieces due to formation of a defined steam region

Номер: US20220056842A1
Принадлежит: Individual

A gas turbine engine comprising a housing coupled to an upstream source of hot gas and superheated water droplets, the housing having a centerline, an annular bay section positioned radially away from the centerline and protruding in an upstream direction, a rotatable shaft positioned along the centerline, a fluid mover coupled to the rotating shaft and positioned to receive the hot gas and superheated water droplets from the upstream source and to move the hot gas and superheated water droplets radially toward the annular bay section of the housing, a separator plate that is fixedly coupled to the housing; and an extractive turbine assembly positioned downstream from the separator plate and the annular bay section. The superheated water droplets mix thoroughly with the hot gas inside the annular bay section causing the water droplets to covert to steam, and the steam flows to the extractive turbine, increasing an efficiency of turbine rotation.

Подробнее
15-02-2018 дата публикации

MODIFIED GOSWAMI CYCLE BASED CONVERSION OF GAS PROCESSING PLANT WASTE HEAT INTO POWER AND COOLING

Номер: US20180045078A1
Принадлежит: Saudi Arabian Oil Company

A system includes a waste heat recovery heat exchanger configured to heat a heating fluid stream by exchange with a heat source in a crude oil associated gas processing plant. The system includes a modified Goswami cycle energy conversion system including a first group of heat exchangers configured to heat a first portion of a working fluid by exchange with the heated heating fluid stream and a second group of heat exchangers configured to heat a second portion of the working fluid. The modified Goswami cycle energy conversion system includes a separator configured to receive the heated first and second portions of the working fluid and to output a vapor stream of the working fluid and a liquid stream of the working fluid; a first turbine and a generator are configured to generate power by expansion of a first portion of the vapor stream of the working fluid; a cooling subsystem including one or more cooling elements configured to cool a chilling fluid stream by exchange with a cooled second portion of the vapor stream of the working fluid; and a second turbine configured to generate power from the liquid stream of the working fluid. 134-. (canceled)35. A system comprising:a waste heat recovery heat exchanger configured to heat a heating fluid stream by exchange with a heat source in a crude oil associated gas processing plant; and a first energy conversion heat exchanger configured to heat a first portion of a working fluid by exchange with the heated heating fluid stream;', 'a second energy conversion heat exchanger configured to heat a second portion of the working fluid by exchange with (i) a liquid stream of the working fluid and (ii) the heated heating fluid stream;', 'a separator configured to receive the heated first and second portions of the working fluid and to output a vapor stream of the working fluid and the liquid stream of the working fluid;', 'a first turbine and a generator, wherein the turbine and generator are configured to generate power by ...

Подробнее
15-02-2018 дата публикации

SYSTEM AND METHOD FOR GENERATING ELECTRIC ENERGY

Номер: US20180045079A1
Принадлежит: Finno Energy Oy

An object of the present invention is to provide a method and a system for implementing the method so as to alleviate the disadvantages of a reciprocating combustion engine and gas turbine in electric energy production. The invention is based on the idea of arranging a combustion chamber outside a gas turbine and providing compressed air to the combustion chamber in order to carry out a combustion process supplemented with high pressure steam pulses. 1. An electric generator system havinga turbine in connection with a generator and a compressor for converting energy fed to the turbine into electric energy with the generator and for using the energy fed to the turbine to compress air with the compressor,a combustion chamber outside said turbine, wherein the combustion chamber is arranged to receive compressed air from the compressor and fuel from a fuel tank to initiate a combustion process and output combustion products into the turbine for rotating the rotor of the turbine, the combustion process within the combustion chamber being a cyclic combustion process, each cycle comprising a compression phase and an expansion phase,one or more controllable fuel input valves for providing fuel to the combustion chamber,one or more controllable air input valves for providing compressed air to the combustion chamber,wherein the combustion chamber comprises an open output which is not controlled by a closing valve.2. An electric generator system as claimed in claim 1 , wherein in that the compressor is a first screw compressor and the system further comprises a second screw compressor connected in series with the first screw compressor.3. An electric generator system as claimed in claim 1 , wherein the system further comprises an air tank for accumulating compressed air from the compressor and for providing the compressed air to the combustion chamber.4. An electric generator system as claimed in claim 1 , wherein the fuel used in the system is one of the following group: ...

Подробнее
08-05-2014 дата публикации

System to Improve Gas Turbine Output and Hot Gas Path Component Life Utilizing Humid Air for Nozzle Over Cooling

Номер: US20140123666A1
Принадлежит: GENERAL ELECTRIC COMPANY

A system to improve gas turbine output and extend the life of hot gas path components includes a subsystem for estimating an amount of water or steam to be added to the flow of air to achieve the desired hot gas path temperature. The system includes a water or steam injection component adapted to inject the amount of water or steam to the flow of air to generate a flow of humid air and an injection subsystem adapted to inject the flow of humid air into a nozzle at the turbine stage are also included. The system includes a temperature sensor disposed at a turbine stage, and a subsystem for determining a desired hot gas path temperature at the turbine stage. An extraction conduit is coupled to a compressor stage and is adapted to extract a flow of air. 1. A method for operating a gas turbine engine , comprising:determining a desired state at a turbine stage;determining a current hot gas path temperature determining a desired hot gas path temperature at the turbine stage;extracting a flow of air from a compressor stage;estimating an estimated amount of fluid to be added to the flow of air to achieve a desired hot gas path temperature at the turbine stage;adding a fluid in an amount substantially equal to the estimated amount of fluid to the flow of air to generate a flow of humid air; andinjecting the flow of humid air into a nozzle at the turbine stage.2. The method of claim 1 , wherein the fluid is water or steam.3. The method for operating a gas turbine engine of claim 1 , wherein determining a current hot gas path temperature comprises measuring the current hot gas path temperature with an optical transducer.4. The method for operating a gas turbine engine of claim 1 , wherein determining a current hot gas path temperature comprises measuring a combustor exhaust temperature.5. The method for operating a gas turbine engine of wherein determining a current hot gas path temperature comprises determining a current hot gas path temperature at a first turbine stage and ...

Подробнее
25-02-2016 дата публикации

Caes plant using steam injection and bottoming cycle expander

Номер: US20160053682A1
Автор: Ian M. PAGE
Принадлежит: Dresser Rand Co

A system and method are provided for a compressed air energy storage (CAES) system. The system and method may include compressing a process gas with a compressor train to produce a compressed process gas. The compressed process gas may be directed to a compressed gas storage unit and stored therein. The compressed process gas from the compressed gas storage unit may be released to a heat recovery unit via a feed line. The heat recovery unit may heat the compressed process gas and direct the heated compressed process gas to an expansion assembly to generate a power output. Feed water from a feed water source may be heated in the heat recovery unit to produce steam for injection into a combustion turbine assembly. The combustion turbine assembly may heat the heat recovery unit via an exhaust line.

Подробнее
25-02-2021 дата публикации

DEVICES, SYSTEMS, AND METHODS FOR GENERATING POWER

Номер: US20210054766A1
Автор: WANG Chih Hung
Принадлежит: Taiwan Happy Energy Co., Ltd.

A heat pump includes a first chamber, a second chamber fluidly coupled with the first chamber, a first and a second spray devices. The first and second chambers contain working fluid flowable between the first and second chambers via a flow passage between the first and second chambers, and a first and a second space above a portion of the working fluid that is within the first and second chambers. First spray device is coupled with the first chamber to heat or cool the first space in the first chamber. Second spray device is coupled with the second chamber to heat or cool the second space in the second chamber. At least one of the heating and cooling of the first space may cause at least one of a compression or expansion of the second space, which may drive a power-extraction unit coupled with the second chamber. 1. A heat pump comprising:a first chamber containing a working fluid and a first space within the first chamber, the first space being above at least a portion of the working fluid that is within the first chamber;a second chamber fluidly coupled with the first chamber, the working fluid flowable between the first chamber and the second chamber via at least one flow passage between the first chamber and the second chamber, the second chamber containing a second space within the second chamber, the second space being above at least a portion of the working fluid that is within the second chamber;at least one first spray device coupled with the first chamber, the at least one first spray device being configured to heat or cool the first space in the first chamber by spaying at least one of liquid or gas into the first chamber; anda first liquid collecting device coupled to the at least one first spray device and arranged to float near a surface of the working fluid within the first chamber;at least one second spray device coupled with the second chamber, the at least one second spray device being configured to heat or cool the second space in the second ...

Подробнее
02-03-2017 дата публикации

MODIFIED GOSWAMI CYCLE BASED CONVERSION OF GAS PROCESSING PLANT WASTE HEAT INTO POWER AND COOLING

Номер: US20170058708A1
Принадлежит:

A system includes a waste heat recovery heat exchanger configured to heat a heating fluid stream by exchange with a heat source in a crude oil associated gas processing plant. The system includes a modified Goswami cycle energy conversion system including a first group of heat exchangers configured to heat a first portion of a working fluid by exchange with the heated heating fluid stream and a second group of heat exchangers configured to heat a second portion of the working fluid. The modified Goswami cycle energy conversion system includes a separator configured to receive the heated first and second portions of the working fluid and to output a vapor stream of the working fluid and a liquid stream of the working fluid; a first turbine and a generator are configured to generate power by expansion of a first portion of the vapor stream of the working fluid; a cooling subsystem including one or more cooling elements configured to cool a chilling fluid stream by exchange with a cooled second portion of the vapor stream of the working fluid; and a second turbine configured to generate power from the liquid stream of the working fluid. 1. A system comprising:a waste heat recovery heat exchanger configured to heat a heating fluid stream by exchange with a heat source in a crude oil associated gas processing plant; and a first group of energy conversion system heat exchangers configured to heat a first portion of a working fluid by exchange with the heated heating fluid stream, the working fluid comprising ammonia and water;', a first heat exchanger configured to heat the second portion of the working fluid by exchange with a liquid stream of the working fluid; and', 'a second heat exchanger configured to receive the second portion of the working fluid from the first heat exchanger and to heat the second portion of the working fluid by exchange with the heated heating fluid stream;, 'a second group of energy conversion system heat exchangers configured to heat a second ...

Подробнее
02-03-2017 дата публикации

MODIFIED GOSWAMI CYCLE BASED CONVERSION OF GAS PROCESSING PLANT WASTE HEAT INTO POWER AND COOLING WITH FLEXIBILITY

Номер: US20170058709A1
Принадлежит:

A system includes a waste heat recovery heat exchanger configured to heat a heating fluid stream by exchange with a heat source in a crude oil associated gas processing plant; and a modified Goswami energy conversion system. The modified Goswami energy conversion system includes a first group of heat exchangers configured to heat a first portion of a working fluid by exchange with the heated heating fluid stream; and a second group of heat exchangers configured to heat a second portion of the working fluid. The modified Goswami energy conversion system includes a rectifier configured to receive the heated first and second portions of the working fluid and a third portion of the working fluid and to output an overhead discharge stream and a liquid stream, the third portion of the working fluid being at a lower temperature than the heated first and second portions of the working fluid. The modified Goswami energy conversion system includes a cooling subsystem including one or more cooling elements configured to cool a chilling fluid stream by exchange with the overhead discharge stream; and a turbine configured to generate power from the liquid stream of the working fluid. 1. A system comprising:a waste heat recovery heat exchanger configured to heat a heating fluid stream by exchange with a heat source in a crude oil associated gas processing plant; and a first group of energy conversion system heat exchangers configured to heat a first portion of a working fluid by exchange with the heated heating fluid stream, the working fluid comprising ammonia and water;', a first heat exchanger configured to heat the second portion of the working fluid by exchange with a liquid stream of the working fluid; and', 'a second heat exchanger configured to receive the second portion of the working fluid from the first heat exchanger and to heat the second portion of the working fluid by exchange with the heated heating fluid stream;, 'a second group of energy conversion system heat ...

Подробнее
02-03-2017 дата публикации

SYSTEM AND METHOD FOR OPERATING A DRY LOW NOx COMBUSTOR IN A NON-PREMIX MODE

Номер: US20170058769A1
Принадлежит: General Electric Co

A system for operating a combustor in a non-Premix mode of operation includes a combustor comprising a plurality of primary fuel nozzles annularly arranged around a center fuel nozzle, a fuel supply system that is fluidly coupled to the plurality of primary fuel nozzles and the center fuel nozzle, a steam injection system that is fluidly coupled to the fuel supply system and to at least one of the plurality of primary fuel nozzles or the center fuel nozzle and a controller. The controller is electronically coupled to the fuel supply system and the steam injection system. The controller is programmed to initiate the steam injection system to inject a flow of superheated steam into a flow of fuel from the fuel supply system upstream from at least one of the plurality of primary fuel nozzles or the center fuel nozzle during a non-Premix mode of operation of the combustor.

Подробнее
05-03-2020 дата публикации

System and Method of Phase Change Expansion

Номер: US20200072088A1
Автор: Cann Mark
Принадлежит:

The present invention is a system and method of power medium expansion that functions with a rate of efficiency higher than systems found in prior art. Novel features of the system increase the overall efficiency with the use of a power medium that begins the cycle in the liquid state and enters the gaseous state. An additional novel feature is the use of additional heat that may also increase the overall cycle efficiency. Another additional novel feature is recuperating energy that can supplement the phase change of the power medium along with isolating the components from the ambient. 1. A phase change expansion system comprising:a. a compressible gas source;b. a liquid power medium source;{'b': 8', '12', '20', '8, 'c. a vessel with a first input port connected to the compressible gas source and a second input port connected to the liquid power medium source, compressible gas from the compressible gas source and liquid power medium from the liquid power medium source being mixed together in the vessel ;'}{'b': 16', '12, 'd. a compression device is located after the first input port ;'}{'b': 18', '20, 'e. an expansion turbine located after the second input port ;'}{'b': 14', '18', '16, 'f. a shaft that connects the expansion turbine to the compression device ;'}{'b': 22', '24, 'g. a mixing area that contains inlet port(s) connected to a compressible gas source;'}{'b': 26', '28', '30, 'h. a shaft with stator(s) and a rotor(s) ;'}{'b': 32', '28', '36, 'i. input ports located within the stator(s) connected to a heat transfer fluid ;'}{'b': '34', 'j. a liquid gas separator ;'}{'b': '38', 'k. a transfer fluid return pipe ;'}{'b': '46', 'l. a compressible gas return pipe ;'}{'b': '58', 'm. a heat exchanger ;'}{'b': 42', '44, 'n. a recovery turbine that connects with a recovery compressor ;'}{'b': '56', 'o. a heat pipe(s) ; and,'}{'b': 52', '8, 'p. an insulating layer to isolate the vessel .'}2. A method of phase change expansion , comprising the following steps: a ...

Подробнее
24-03-2016 дата публикации

SYSTEM FOR TURBINE COMBUSTOR FUEL MIXING

Номер: US20160084160A1
Принадлежит:

A system includes a plurality of interconnected mixing assemblies configured to mix a first fuel and water to generate a first mixture, and mix a second fuel and the water to generate a second mixture. The first and second fuel mixtures are configured to combust in a plurality of combustors of a gas turbine. The interconnected mixing assemblies include first and second fuel passages, a water passage, first and second mixers, first and second fuel valves, and first and second water valves disposed in an integrated housing. The first fuel valve has a first fuel flow coefficient between approximately 1.0 to 1.5, the second fuel valve has a second fuel flow coefficient between approximately 3.0 to 5.0, the first water valve has a first water flow coefficient between approximately 0.4 to 0.55, and the second water valve has a second water flow coefficient between approximately 3.5 to 5.0. 112.-. (canceled)13. A system , comprising: a main fuel inlet port configured to receive a main fuel;', 'a main fuel passage coupled to the main fuel inlet port and configured to route the main fuel to a first mixing tee;', 'a main fuel valve coupled to the main fuel passage, wherein the main fuel valve is configured to adjust a main flow rate of the main fuel and has a main fuel flow coefficient between approximately 3.0 to 5.0;', 'a water inlet port configured to receive water;', 'a water passage coupled to the water inlet port and configured to route the water to the first mixing tee, wherein the first mixing tee is configured to mix the main fuel and the water to generate a main fuel mixture;', 'a main fuel mixture outlet port configured to discharge the main fuel mixture; and', 'a first water valve coupled to the water passage, wherein the first water valve is configured to adjust a first water flow rate of the water and has a first water flow coefficient between approximately 3.5 to 5.0, the main fuel valve and the first water valve are proximate to one another., 'a plurality of ...

Подробнее
05-05-2022 дата публикации

Hybrid power generation equipment

Номер: US20220136412A1
Принадлежит:

Disclosed is a hybrid power generation facility. The hybrid power generation facility includes a gas turbine including a compressor configured to compress air introduced from an outside, a combustor configured to mix the compressed air with fuel and to combust the air and fuel mixture, and a turbine configured to produce power with first combustion gas discharged from the combustor, a boiler including a combustion chamber and configured to burn a mixture of the first combustion gas and air, a first water heat exchanger configured to pass second combustion gas discharged from the boiler and to heat water through heat exchange with the second combustion gas, a water supply device configured to supply water to the first water heat exchanger, a steam turbine through which steam generated in the combustion chamber passes, and a first air preheater configured to pass second combustion gas discharged from the first water heat exchanger and to pass air supplied to the boiler.

Подробнее
05-05-2022 дата публикации

Air supplying apparatus and method of hybrid power generation equipment

Номер: US20220136437A1

Disclosed are an air supply device and an air supply method for a hybrid power generation facility in which a gas turbine compresses air introduced from an outside, mixes the compressed air with fuel, and burns a mixture of the compressed air and the fuel to produce combustion gas. The air supply device includes a mixing chamber configured to selectively receive the combustion gas from the gas turbine, an air preheater configured to supply air to the mixing chamber, a burner configured to burn a fluid supplied from the mixing chamber, a first over-firing air supplier configured to receive a fluid from the gas turbine or the air preheater, a first pipeline connecting the gas turbine and the mixing chamber, and a second pipeline connecting the gas turbine and the first over-firing air supplier.

Подробнее
23-04-2015 дата публикации

METHODS FOR PERIODIC REMOVAL OF CONTAMINATED WORKING FLUID FROM ORGANIC RANKINE CYCLE POWER SYSTEMS

Номер: US20150107250A1
Автор: Kalina Alexander I.
Принадлежит:

An optimized Rankine thermodynamic cycle system and method include utilizing a working fluid including a base component and an effective amount of a lower boiling point component, where the effective amount is sufficient to raise a power utilization efficiency of the systems by up to 10%, without changing a weight of the fluid reducing turbine efficiency for the particular base component and for optimizing output control valves for adjusting the working fluid composition and temperature sensors measuring an initial temperature of a coolant medium and a final temperature of a heat source stream to computer control valves to continuously adjust a pressure and a flow rate of a working fluid stream to be vaporized so that a heat utilization of the system is about 99% increasing output by approximately 3% to 6% on a sustained and permanent yearly basis. 2. The method of claim 1 , wherein the periodic basis occurs when a degree of oil contamination of the working fluid decreases a performance of the system.3. The method of claim 1 , wherein the periodic basis is yearly.4. The method of claim 1 , wherein the method occurs in a time period of less than 1 day.5. The method of claim 4 , wherein the time period is between about 4 and about 24 hours.6. The method of claim 5 , wherein the time period is between about 6 and about 24 hours.7. The method of claim 1 , wherein as the amount of working fluid in the vaporization or boiling subsystem is reduced claim 1 , a concentration of contaminating oil in a remaining working fluid in the vaporization subsystem goes up and a temperature in the vaporization or boiling subsystem goes up claim 1 , when this temperature reaches a desired level only a small amount of heavily contaminated working fluid is left in the vaporization or boiling subsystem claim 1 , which is safely removed from the system for disposal removing all or substantially all of the oil contamination from the system.8. The method of claim 7 , wherein the small amount ...

Подробнее
28-04-2016 дата публикации

WATER DELIVERY SYSTEM FOR GAS TURBINE COMPRESSOR

Номер: US20160115867A1
Принадлежит:

A water delivery system for a gas turbine compressor having a plurality of blade stages positioned about a rotating shaft is provided. The plurality of blade stages are configured to compress an airflow. The water delivery system includes a nozzle system to inject water between at least one pair of the plurality of blade stages; and a controller controlling whether the water injected by the nozzle system is injected at a first pressure that augments power output during an operation mode of the plurality of blade stages and a second, lower pressure that washes at least some of blades of the plurality of blade stages during a wash mode of the plurality of blade stages. 1. A water delivery system for a gas turbine compressor having a plurality of blade stages positioned about a rotating shaft , the plurality of blade stages configured to compress an airflow , the water delivery system comprising:a nozzle system to inject water between at least one pair of the plurality of blade stages; anda controller controlling whether the water injected by the nozzle system is injected at a first pressure that augments power output during an operation mode of the plurality of blade stages and a second, lower pressure that washes at least some of blades of the plurality of blade stages during a wash mode of the plurality of blade stages.2. The water delivery system of claim 1 , wherein the water at the first pressure is sourced from a low pressure steam turbine via a heat recovery steam generator claim 1 , and the water at the second pressure is sourced from a high pressure steam turbine via the heat recovery steam generator.3. The water delivery system of claim 1 , further comprising a wetting system to inject water into the airflow upstream of the plurality of blade stages.4. The water delivery system of claim 3 , wherein the water injected by the nozzle system is sourced from a high pressure steam turbine via a heat recovery steam generator claim 3 , and the water injected by the ...

Подробнее
27-04-2017 дата публикации

Gas turbine cycle equipment, equipment for recovering co2 from flue gas, and method for recovering exhaust heat from combustion flue gas

Номер: US20170114718A1
Автор: Masaki Iijima
Принадлежит: Mitsubishi Heavy Industries Ltd

By using a combustion flue gas ( 18 ) from a power turbine ( 16 ), a high-pressure secondary compressed air ( 12 C) is subjected to heat exchange in a first heat exchange unit ( 19 A) of an exhaust heat recovery device ( 19 ), and by using resultant heat-exchanged flue gas ( 18 A), a low-pressure primary compressed air ( 12 A) is subjected to heat recovery in a second heat exchange unit ( 19 B) of a saturator ( 31 ). Then, a primary compressed air ( 12 B) that has been subjected to heat recovery in the second heat exchange unit ( 19 B) is introduced into a secondary air compressor ( 22 ) to increase the pressure of the air, and then the high-pressure air is subjected to heat recovery in the first heat exchange unit ( 19 A), producing a secondary compressed air ( 12 D). The secondary compressed air ( 12 D) is introduced into a combustor ( 14 ) and combusted using fuel.

Подробнее
10-05-2018 дата публикации

METHOD AND APPARATUS FOR REMOVING A STRAINER BASKET FROM A STEAM VALVE

Номер: US20180126315A1
Принадлежит:

A valve strainer basket of an interceptor-type or control-type steam valve is removed from its nested orientation within a counter bore and valve rim of the valve casing. A strong back beam straddles the casing rim over the strainer basket. It is coupled to the strainer basket, such as by engagement of threaded rods into threaded apertures formed in the strainer basket rim. Biasing cylinders, such pressurized fluid cylinders or screw jacks, are interposed between the casing rim and opposite ends of the strong back beam. When the biasing cylinders are actuated, the strong back beam rises, lifting and separating the strainer rim from its nested engagement with the counter bore of the valve casing. 2. The system of claim 1 , the first and second portions of the first and second coupling members further comprising first and second threaded apertures in the outer surface of the strainer rim and mating claim 1 , first and second threaded rods that are coupled to the strong back beam.3. The system of claim 2 , further comprising the strong back beam defining respective first and second through passages extending through the beam claim 2 , from the top surface to the bottom surface thereof claim 2 , for receipt of the respective first and second threaded rods therein.4. The system of claim 3 , the strong back beam further comprising a pair of spaced claim 3 , opposing plates claim 3 , which define the first and second through passages there between.5. The system of claim 1 , the top surface of the strong back beam having a pair of swivels coupled thereto claim 1 , for receipt of a lifting sling.6. The system of claim 1 , the biasing cylinders comprising pressurized fluid cylinders.7. The system of claim 6 , the pressurized fluid cylinders sharing a common pressurized-fluid source claim 6 , for selectively raising or lowering the strong back beam relative to the casing rim.8. The system of claim 1 , further comprising:an array of threaded bonnet studs projecting upwardly ...

Подробнее
10-05-2018 дата публикации

THERMO-KINETIC REACTOR WITH MICRO-NUCLEAR IMPLOSIONS

Номер: US20180128480A1
Автор: Tomoiu Constantin
Принадлежит:

A thermo-kinetic process where a micro-packet of a mixture of air, fuel, and water are exposed to high energy ultrasound, a high frequency electromagnetic field, and thermal energy to initiate micro-nuclear fusion. A reaction chamber with a nozzle and adjacent resonance chamber form micro-packets and micro-explosions. The micro-explosions form high negative pressure bubbles which implode accelerating fusible elements towards a center forming a nucleus generating kinetic energy. 1. A thermo-kinetic reactor with micro-nuclear implosions comprising:a micro-packet and ultrasound generator having a nozzle and a resonance chamber with a conic-cylindrical geometry placed in a reaction chamber;a passage formed between the nozzle and the resonance chamber of said micro-packet and ultrasound generator;a coil placed in the reaction chamber having an input port for noncombustible fluid or water and an output port coupled to the nozzle;the reaction chamber having an exhaust port and an iron cylinder placed inside the reaction chamber;an induction coil wrapped around the reaction chamber having an induction coil input and an induction coil output port for water cooling; anda thermal insulation chamber, whereby heat loss is minimized,whereby the nozzle introduces a mixture of fuel and air and water steam from the coil,whereby the mixture of fuel and air and water steam flow into the conic-cylindrical geometry of the resonance chamber to form a micro-packet and generate a pressure wave,whereby the micro-packet ignites to form a micro-explosion in the reaction chamber and generating high frequency acoustic wave.2. A thermo-kinetic reactor with micro-nuclear implosions as in wherein:said induction coil wrapped around the nozzle and resonance chamber is for direct heating; andthe nozzle and resonance chamber are made of materials with magnetic properties.3. A thermo-kinetic reactor with micro-nuclear implosions which creates momentary micro-nuclear fusion reactors or MMNFR comprising ...

Подробнее
08-09-2022 дата публикации

STEAM TURBINE PLANT AND CONTROL DEVICE, AND WATER QUALITY MANAGEMENT METHOD FOR STEAM TURBINE PLANT

Номер: US20220282639A1
Принадлежит:

A steam turbine plant includes a chemical supply part configured to supply a pH adjuster to feedwater to a steam generator, an adjustment part for adjusting a supply amount of the pH adjuster to the feedwater by the chemical supply part, and at least one carbon steel component that includes a pipe or a device formed from carbon steel and through which the feedwater flows, the carbon steel component being configured such that an internal temperature at least partially falls within a range of not less than 120° C. and not greater than 180° C. under load operating condition of the steam turbine plant. The adjustment part is configured to, under the load operating condition, adjust the supply amount of the pH adjuster such that pH of the feedwater in each of the at least one carbon steel component is not less than 9.8. 1. A steam turbine plant , comprising:a chemical supply part configured to supply a pH adjuster to feedwater to a steam generator;an adjustment part for adjusting a supply amount of the pH adjuster to the feedwater by the chemical supply part; andat least one carbon steel component which includes a pipe or a device formed from carbon steel and through which the feedwater flows, the carbon steel component being configured such that an internal temperature at least partially falls within a range of not less than 120° C. and not greater than 180° C. under a load operating condition of the steam turbine plant,wherein the adjustment part is configured to, under the load operating condition, adjust the supply amount of the pH adjuster such that pH of the feedwater in each of the at least one carbon steel component is not less than 9.8.2. The steam turbine plant according to claim 1 ,wherein the pH adjuster includes a volatile substance.3. The steam turbine plant according to claim 1 ,wherein the pH adjuster includes ammonia.4. The steam turbine plant according to claim 3 , comprising one or more steam drums for temporarily accommodating steam generated by a ...

Подробнее
21-08-2014 дата публикации

HYDRODYNAMICS TO LIMIT BOILER FOULING

Номер: US20140230756A1
Принадлежит: ConocoPhillips Company

Methods and systems relate to generating steam from water that may be recycled in thermal oil recovery processes and is heated in tubes having non-obtrusive features to limit fouling formation. The tubes may include jets to generate enhanced flow mixing along an inner wall of the tubes in order to increase heat transfer and disrupt bubble nucleation. Employing the tubes with the inner wall having an average surface roughness of less than one micron may further facilitate disruption of the bubble nucleation. 1. A method of generating steam for oil production , comprising:passing a first quantity of water through a tube of a boiler;heating the water in the tube by heat transfer across the tube to a temperature for boiling nucleation; andinjecting a second quantity of the water jetted at multiple locations through a wall of the tube to induce enhanced flow mixing inside the tube along where the heating of the water occurs.2. The method according to claim 1 , wherein the second quantity of the water is jetted aligned with flow through a length of the tube.3. The method according to claim 1 , wherein the multiple locations are spaced along a length of the tube.4. The method according to claim 1 , wherein the multiple locations are spaced along a length of the tube and are circumferentially dispersed around the tube.5. The method according to claim 1 , wherein the second quantity of the water is jetted tangential to flow through a length of the tube.6. The method according to claim 1 , wherein the second quantity of the water is injected into the tube without restricting an internal diameter of the tube.7. The method according to claim 1 , further comprising polishing an inside of the tube to have an average surface roughness between 0.2 to 0.1 microns.8. The method according to claim 1 , further comprising one of acid treating and coating an inside of the tube to provide an internal average surface roughness less than 1.0 micron.9. The method according to claim 1 , ...

Подробнее
09-06-2016 дата публикации

MULTI-FLUID THERMAL ENERGY CONVERSION SYSTEM

Номер: US20160160693A1
Автор: Cooper Benjamin J
Принадлежит:

Briefly, an engine is provided that has a cavity constructed to enable a working liquid to be vaporized upon contact with a hot liquid. As the working liquid is vaporized, the liquid rapidly expands into a vigorous gas. The ensuing rise in pressure causes a moving member to be moved, thereby converting the explosive rise in pressure within the cavity into useful work. In one embodiment, the engine is a piston engine that allows a hot liquid oil to be injected into a piston cavity. Water is then injected, which immediately flashes into steam as the water hits the hot oil. The steam causes the pressure to dramatically rise in the piston cavity, thereby driving the piston. 1. An engine , comprising:a cavity constructed to enable a working liquid to mix with a hot liquid;a first port in the cavity constructed to deliver the hot liquid into the cavity, the hot liquid delivered into the cavity at a temperature that exceeds the flashpoint of the working liquid;a second port in the cavity constructed to deliver the working liquid into the cavity, the working liquid having a flashpoint lower than the temperature of the hot liquid;a third port in the cavity constructed as an exhaust;a moving member operably coupled to the cavity and arranged to convert pressure energy in the cavity to motion energy; andwherein the hot liquid causes the working liquid to vaporize and increase the pressure in the cavity and causing the moving member to move in response to the increased pressure.2. The engine according to claim 1 , wherein the moving member is a piston.3. The engine according to claim 1 , wherein the moving member is a rotor.4. The engine according to claim 1 , wherein the hot liquid is an oil.5. The engine according to claim 1 , wherein the working liquid is water.6. The engine according to claim 1 , further including a heater for heating the hot liquid.7. The engine according to claim 6 , wherein the heater is solar powered.8. The engine according to claim 6 , wherein the ...

Подробнее
07-06-2018 дата публикации

HEAT ENGINES, SYSTEMS FOR PROVIDING PRESSURIZED REFRIGERANT, AND RELATED METHODS

Номер: US20180156072A1
Принадлежит:

A method for generating power from a heat source includes mixing a refrigerant in a liquid phase with a lubricating oil, heating the mixture to evaporate the refrigerant, mixing the heated mixture with additional refrigerant in a superheated phase, and atomizing the lubricating oil to disperse the lubricating oil within the refrigerant. The atomized lubricating oil and the refrigerant are passed through a decompressor to generate an electrical current. The refrigerant may be an organic material having a boiling point below about −35 C. Related systems and heat engines are also disclosed. 1. A method comprising:mixing a lubricating oil with a first portion of a refrigerant to form a mixture, the first portion of the refrigerant in a liquid phase;heating the mixture of the lubricating oil and the first portion of the refrigerant to form a heated mixture, wherein at least a portion of the first portion of the refrigerant is in a gaseous phase;mixing the heated mixture with a second portion of the refrigerant, the second portion of the refrigerant in a superheated phase; andatomizing the lubricating oil to disperse the lubricating oil within the refrigerant.2. The method of claim 1 , wherein atomizing the lubricating oil comprises passing the lubricating oil and the refrigerant through a metal mesh.3. (canceled)4. The method of claim 1 , wherein heating the mixture of the lubricating oil and the first portion of the refrigerant to form a heated mixture comprises transferring heat to the mixture from at least one source selected from the group consisting of a waste heat source claim 1 , an exhaust gas claim 1 , a compressor intercooler claim 1 , biomass claim 1 , a geothermal heat source claim 1 , and a solar array.5. The method of claim 1 , wherein the refrigerant exhibits a boiling point below about −35° C.6. The method of claim 1 , further comprising:passing the atomized lubricating oil and the refrigerant through a decompressor operatively associated with an ...

Подробнее
24-06-2021 дата публикации

System and methods for igniting and operating a gas turbine engine with alternative fuels

Номер: US20210189965A1
Принадлежит: General Electric Co

A power generation system includes a combustion system, a liquid supply system, and a vapor supply system. The combustion system is configured to generate power by combusting an alternative fuel. The liquid supply system is configured to channel a liquid alternative fuel to the combustion system. The vapor supply system is configured to channel a vapor alternative fuel to the combustion system. The combustion system is ignited by combusting the liquid alternative fuel from the liquid supply system and is operated by combusting the vapor alternative fuel from the vapor supply system.

Подробнее
14-06-2018 дата публикации

SYSTEMS AND METHODS FOR GAS TURBINE COMPRESSOR CLEANING

Номер: US20180163624A1
Принадлежит:

In one embodiment, a gas turbine fluid wash system includes a fluid wash system controller comprising a processor. The processor is configured to receive a cleaning fluid flow demand from a turbine system controller, wherein the turbine system controller is configured to control the turbine system to produce power. The processor is additionally configured to provide a cleaning fluid flow based on the cleaning fluid flow demand transmitted by the turbine system controller. 1. A gas turbine fluid wash system , comprising:a fluid wash system controller comprising a processor, wherein the processor is configured to:receive a cleaning fluid flow demand from a turbine system controller, wherein the turbine system controller is configured to control the turbine system to produce power; andprovide a cleaning fluid flow based on the cleaning fluid flow demand transmitted by the turbine system controller.2. The system of claim 1 , comprising: a fluid reservoir configured to store a cleaning fluid;', 'a frame, wherein the fluid reservoir is disposed on the frame;', 'a flow control system;', 'a pressure increasing system fluidly coupled to the fluid reservoir and to the flow control system and configured to provide the cleaning fluid to a gas turbine system through the flow control system; and', 'the fluid wash system controller comprising the processor, wherein the processor is configured to provide the cleaning fluid flow by actuating the pressure increasing system, the flow control system, or the combination thereof, to deliver the cleaning fluid from the fluid reservoir., 'a fluid wash assembly comprising3. The system of claim 1 , wherein the processor is configured to execute the instructions to communicate to the turbine system controller a measured cleaning fluid flow rate claim 1 , a measured cleaning fluid temperature claim 1 , a measured cleaning fluid pressure claim 1 , a cleaning fluid composition claim 1 , or a combination thereof claim 1 , during gas turbine ...

Подробнее
18-09-2014 дата публикации

STABILIZED HFO AND HCFO COMPOSITIONS FOR USE IN HIGH TEMPERATURE HEAT TRANSFER APPLICATIONS

Номер: US20140260252A1
Принадлежит: HONEYWELL INTERNATIONAL INC.

The present invention relates, in part, to HFO and/or HCFO based working compositions exhibiting chemical and thermal stability in high temperature heat transfer systems. In certain aspects, the HFO and/or HCFO compounds may be represented by formula I 1. An organic Rankine cycle system comprising:(a) an hydrofluoroolefin (HFO) and/or hydrochlorofluoroolefin (HCFO) working fluid circulating in said system;(b) a heat source for vaporing the working fluid;(c) a cooling source for condensing said vaporized working fluid; and(b) at least one oxygen-removing component for removing oxygen from said working fluid.3. The system of wherein the compound contains at least one F atom and at least one Cl atom.4. The system of wherein the HFO working fluid is represented by the formula CFHwherein y+z=2x claim 1 , x is at least 3 claim 1 , y is at least 1 claim 1 , and z is 0 or a positive number.5. The system of wherein the HCFO working fluid is represented by the formula CFHClwherein y+z+n=2x claim 1 , x is at least 3 claim 1 , y is at least 1 claim 1 , z is 0 or a positive number claim 1 , and n is 1 or 2.6. The system of wherein the HFO and/or HCFO working fluid is selected from the group consisting of HFO-1234ze(E) claim 1 , HFO-1234ze(Z) claim 1 , HCFO-1233zd(E) claim 1 , HCFO-1233zd(Z) claim 1 , HFO-1234yf claim 1 , and combinations of two or more of these.7. The system of wherein the at least one oxygen-removing component comprises an oxygen-removing adsorbent or sorbent that is capable of reacting with elemental oxygen in said working fluid to permanently remove it from said working fluid.8. The system of wherein the oxygen-removing adsorbent or sorbent comprises an oxidizable metal claim 7 , metal salt claim 7 , or metal oxide.9. The system of wherein the oxidizable metal is selected from the group consisting of copper claim 8 , iron claim 8 , nickel claim 8 , manganese claim 8 , molybdenum claim 8 , cobalt claim 8 , vanadium claim 8 , chromium claim 8 , zinc claim 8 , ...

Подробнее
16-07-2015 дата публикации

GAS TURBINE OXIDANT SEPARATION SYSTEM

Номер: US20150198089A1
Принадлежит:

In one embodiment, a system includes a gas turbine system, having: a turbine driven by combustion products produced by a turbine combustion system; and a separation unit positioned between turbine stages of the turbine, wherein the separation unit separates oxygen out of the combustion products. The separation unit may include an ion transport membrane. 1. A system , comprising: a turbine comprising first and second turbine stages driven by combustion products produced by a turbine combustion system; and', 'a separation unit positioned between the first and second turbine stages of the turbine, wherein the combustion products comprise oxygen when produced by the turbine combustion system, and the separation unit separates the oxygen out of the combustion products., 'a gas turbine system, comprising2. The system of claim 1 , wherein the separation unit comprises an ion transport membrane.3. The system of claim 2 , wherein the ion transport membrane is only permeable to the oxygen within the combustion products.4. The system of claim 1 , wherein the separation unit comprises a ceramic membrane.5. The system of claim 1 , wherein the turbine comprises an inlet side and an outlet side where the turbine receives the combustion products and outputs an exhaust gas claim 1 , respectively claim 1 , and the first stage is positioned closest to the inlet side and the second stage positioned immediately downstream from the first stage.6. The system of claim 1 , wherein the turbine comprises first and second housings claim 1 , wherein the first housing comprises at least the first turbine stage and the second housing comprises at least the second turbine stage claim 1 , wherein the separation unit is positioned between the first and second housings.7. The system of claim 1 , wherein the turbine combustion system is configured to combust a fuel/oxidant mixture at a combustion equivalence ratio of less than approximately 0.95 such that the combustion products produced by the ...

Подробнее
16-07-2015 дата публикации

SEQUENTIAL COMBUSTION ARRANGEMENT WITH DILUTION GAS

Номер: US20150198334A1
Принадлежит:

The invention refers to a sequential combustor arrangement including a first combustor with a first burner for admitting a first fuel into a combustor inlet gas during operation and a first combustion chamber for burning the first fuel, a dilution gas admixer for admixing a dilution gas to the first combustor combustion products leaving the first combustion chamber, and a second burner for admixing a second fuel and a second combustion chamber. To assure good mixing over a wide operating range, the ratio of the pressure loss of the first combustor to the pressure loss of the dilution gas admixer is in the range of 1 to 6. The invention further refers to a gas turbine including such a sequential combustor arrangement as well as method for operating a gas turbine with such a sequential combustor arrangement. 1. A sequential combustor arrangement comprising a first combustor with a first burner for admitting a first fuel into a combustor inlet gas during operation and a first combustion chamber for burning the first fuel , a dilution gas admixer for admixing a dilution gas to the first combustor combustion products leaving the first combustion chamber , a second burner for admixing a second fuel and a second combustion chamber , wherein the first combustor , the dilution gas admixer , the second burner and second combustion chamber are arranged sequentially in a fluid flow connection , wherein the ratio of the pressure loss of the first combustor to the pressure loss of the dilution gas admixer is in the range of 2 to 12.2. The sequential combustor arrangement as claimed in claim 1 , wherein the ratio of the pressure loss of the first combustor to the pressure loss of the dilution gas admixer is in the range of 3 to 10.3. The sequential combustor arrangement as claimed in claim 1 , wherein the ratio of the pressure loss of the first combustor to the pressure loss of the dilution gas admixer is in the range of 5 to 8.4. The sequential combustor arrangement as claimed in ...

Подробнее
20-06-2019 дата публикации

GAS TURBINE EFFICIENCY AND POWER AUGMENTATION IMPROVEMENTS UTILIZING HEATED COMPRESSED AIR

Номер: US20190186301A1
Принадлежит:

The present invention discloses a novel apparatus and methods for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in power augmentation and engine operation include systems and methods for preheating a steam injection system. 1. A system for preheating a power augmentation system of a power plant comprising:a gas turbine engine comprising a compressor coupled to a turbine by a shaft, the compressor and the turbine in fluid communication with one or more combustors;a heat recovery steam generator;steam injection piping connecting the gas turbine engine to the heat recovery steam generator, the steam injection piping comprising a steam injection valve and an isolation valve; and,an air vent and an air vent valve in communication with the steam injection piping;wherein the isolation valve and air vent valve are configured to selectively permit flow of air from the compressor, through the steam injection piping, and to the air vent, thereby preheating the steam injection piping.2. The system of further comprising a compressor discharge plenum for receiving compressed air from the compressor and with which one or more combustors are in fluid communication.3. The system of claim 2 , wherein the flow of air is taken from the compressor discharge plenum.4. The system of claim 1 , wherein the heat recovery steam generator utilizes heated exhaust from the gas turbine engine for the production of steam.5. The system of claim 1 , wherein the steam injection valve controls flow of steam from the heat recovery steam generator and to the steam injection piping.6. The system of claim 1 , wherein the isolation valve controls a flow of steam to the gas turbine engine and a flow of compressed air from the gas turbine engine.7. The system of claim 1 , wherein steam produced by the heat recovery steam generator is used in part by an external process.8. A ...

Подробнее
22-07-2021 дата публикации

METHOD AND DEVICE FOR CONVERTING THERMAL ENERGY

Номер: US20210222590A1
Принадлежит: Hevatech

An improved efficiency method and device for converting thermal energy into mechanical energy, and then, preferably, into electricity and/or refrigerating energy. A partially liquid stream fof fluid FC is implemented; thermal energy is transferred to the stream f; the heated stream fis sprayed to generate a fragmented stream fof fluid FC. Simultaneously a partially liquid stream fof fluid FT is implemented; thermal energy is transferred to the stream fto generate a stream fthat may be in liquid form or a saturated liquid/vapor mixture; stream fis expanded in a chamber which also receives fragmented stream fto form a two-phase mixed stream fwhose kinetic energy is converted into mechanical energy which is optionally transformed into electrical energy or into refrigerating energy. 1. Method for converting thermal energy , preferably from waste heat , contained in an at least partially gaseous fluid called waste fluid (FF) , into mechanical energy , and preferentially into electrical energy and/or refrigerating energy; said method utilizing at least one working fluid FT and at least one heat-transfer fluid FC , in which:{'sup': 'c0', 'I. a stream fof fluid FC, at least partially liquid, is utilized;'}{'sup': 'c0', 'II. thermal energy to be converted, originating from the fluid FF, is transferred to the stream f;'}{'sup': c0', 'c1, 'III. the stream fheated in (II) is sprayed in order to generate a fragmented stream fof fluid FC;'}{'sup': 't0', 'IV. in parallel, a stream fof fluid FT, at least partially liquid, is utilized;'}{'sup': t0', 't', 't0', 't, 'claim-text': i. in liquid phase;', 'ii. in liquid phase and in vapour phase;', 'iii. in saturated vapour phase;', 'iv. or in superheated vapour phase;, 'V. then thermal energy to be converted, originating from the fluid FF, is transferred to the stream fof fluid FT, in order to generate a stream f, the temperature of which is above that of the stream f, the fluid FT of the stream fbeing{'sup': 't', 'VI. when required, the ...

Подробнее
13-07-2017 дата публикации

HIGH FLOW ON-LINE WATER WASH USING SPRINT NOZZLE

Номер: US20170198635A1
Принадлежит:

A combined water-wash and water injection cooling system for a gas turbine engine including a water delivery system, an air delivery system, and a controller configured to couple to the gas turbine engine, the water delivery system, and the air delivery system to access and execute one or more routines. The water delivery system includes one or more spray nozzles to spray water upstream and directly in front of a compressor of the gas turbine engine. The air delivery system is configured to provide air from the compressor to the water delivery system so that the one or more spray nozzles spray atomized water into the compressor of the gas turbine engine during a cooling mode to cool the compressor. During an on-line water wash mode, air from the air delivery system to the water delivery system is turned off to enable the one or more spray nozzles to spray non-atomized water into the compressor of the gas turbine engine to wash the compressor. 1. A combined water-wash and water injection cooling system for a gas turbine engine , comprising: a water conduit; and', 'one or more spray nozzles coupled to the water conduit and configured to spray a fluid into a compressor of the gas turbine engine;, 'a water delivery system configured to couple to the gas turbine engine, comprising 'an air conduit coupled to the water conduit, wherein the air delivery system is configured to provide air from the compressor to the water delivery system so that the one or more spray nozzles spray atomized water into the gas turbine engine into the compressor, during a cooling operation mode to cool the compressor; and', 'an air delivery system configured to couple to the compressor and to the water delivery system, comprisinga controller configured to couple to the gas turbine engine, the water delivery system, and the air delivery system, wherein the controller comprises a memory encoding one or more processor-executable routines and a processor configured to access and execute the one or ...

Подробнее
21-07-2016 дата публикации

METHOD FOR THE RECOVERY OF PROCESS WASTEWATERS OF A FOSSIL-FUELED STEAM POWER PLANT AND FOSSIL-FUELED STEAM POWER PLANT

Номер: US20160208658A1
Принадлежит: SIEMENS AKTIENGESELLSCHAFT

A fossil-fueled steam power plant and method, the plant has a water-steam circuit, cooling water circuit, flue gas cleaning system and cooling tower. A fossil-fueled steam generator, steam turbine and condenser are connected to the water-steam circuit. In the cooling water circuit, a cooling tower and condenser are connected such that expanded steam is condensed by the exchange of heat with the cooling water circuit. The flue gas from the generator is cleaned in the flue gas cleaning system, and the cleaning system is supplied with process water. Process wastewater leaves the cleaning system. The cleaning system is connected to the cooling water circuit such that process water required for cleaning system is drawn from the cooling water circuit. To remove contaminated process wastewater, the cleaning system is connected to a wastewater treatment system having an evaporator, where system purified process wastewater is generated. 1. A fossil fuel-fired steam power plant , comprisinga water-steam circuit into which are connected a fossil fuel-fired steam generator, a steam turbine, and a condenser,a cooling water circuit, into which are connected a cooling tower and the condenser, wherein expanded steam from the water-steam circuit is condensable in the condenser by heat exchange with the cooling water circuit, anda flue gas purification plant, in which flue gas from the fossil fuel-fired steam generator is purified, wherein the flue gas purification plant is supplied with a process water and a process wastewater is discharged therefrom,wherein the flue gas purification plant is connected to the cooling water circuit, such that the process water required for the flue gas purification plant is drawn from the cooling water circuit, and the flue gas purification plant is connected for discharge of contaminated process wastewater to a wastewater treatment plant comprising an evaporator and by which a purified process wastewater is produced.2. The fossil fuel-fired steam ...

Подробнее
09-10-2014 дата публикации

TURBOMACHINE SYSTEM WITH DIRECT HEADER STEAM INJECTION, RELATED CONTROL SYSTEM AND PROGRAM PRODUCT

Номер: US20140298808A1
Принадлежит: GENERAL ELECTRIC COMPANY

Various embodiments of the invention include a system including: at least one computing device operably connected with a steam turbomachine and an extraction conduit fluidly connected with the steam turbomachine and a steam seal header fluidly coupled with the steam turbomachine, the at least one computing device configured to modify an output of the steam turbomachine by performing actions including: determining a pressure within the steam turbomachine; comparing the pressure within the steam turbomachine with a pressure threshold range; and instructing the extraction conduit to extract steam seal header steam from the steam seal header and provide the extracted steam seal header steam to the steam turbomachine in response to determining the pressure within the steam turbomachine deviates from the pressure threshold range. 1. A system comprising: determining a pressure within the steam turbomachine;', 'comparing the pressure within the steam turbomachine with a pressure threshold range; and', 'instructing the extraction conduit to extract steam seal header steam from the steam seal header and provide the extracted steam seal header steam to the steam turbomachine in response to determining the pressure within the steam turbomachine deviates from the pressure threshold range., 'at least one computing device operably connected with a steam turbomachine and an extraction conduit fluidly connected with the steam turbomachine and a steam seal header fluidly coupled with the steam turbomachine, the at least one computing device configured to modify an output of the steam turbomachine by performing actions including2. The system of claim 1 , further comprising a sensor system coupled to the steam turbomachine and the at least one computing device system claim 1 , the sensor system configured to detect the pressure in the steam turbomachine.3. The system of claim 2 , wherein the sensor system includes a plurality of pressure sensors at axially separated locations along the ...

Подробнее
18-07-2019 дата публикации

SYSTEM AND METHOD FOR GENERATING ELECTRIC ENERGY

Номер: US20190218943A1
Принадлежит: Finno Energy Oy

An object of the present invention is to provide a method and a system for implementing the method so as to alleviate the disadvantages of a reciprocating combustion engine and gas turbine in electric energy production. The invention is based on the idea of arranging a combustion chamber outside a gas turbine and providing compressed air to the combustion chamber in order to carry out a combustion process supplemented with high pressure steam pulses. 1. An electric generator system having:a turbine in connection with a generator and a compressor for converting energy fed to the turbine into electric energy with the generator and for using the energy fed to the turbine to compress air with the compressor,a combustion chamber outside said turbine, wherein the combustion chamber is arranged to receive compressed air from the compressor and fuel from a fuel tank to initiate a combustion process and output combustion products into the turbine for rotating the rotor of the turbine, the combustion process within the combustion chamber being a cyclic deflagration combustion process, each cycle comprising a compression phase and an expansion phase,one or more controllable fuel input valves for providing fuel to the combustion chamber,one or more controllable air input valves for providing compressed air to the combustion chamber,wherein the combustion chamber comprises an open output which is not controlled by a closing valve.2. An electric generator system as claimed in claim 1 , wherein in that the compressor is a first screw compressor and the system further comprises a second screw compressor connected in series with the first screw compressor.3. An electric generator system as claimed in claim 1 , wherein the system further comprises an air tank for accumulating compressed air from the compressor and for providing the compressed air to the combustion chamber.4. An electric generator system as claimed in claim 1 , wherein the fuel used in the system is one of the ...

Подробнее
19-08-2021 дата публикации

POWER TRANSMISSION APPARATUS AND POWER GENERATION SYSTEM HAVING SAME

Номер: US20210254509A1
Принадлежит:

A power transmission apparatus for transmitting power generated by a power generation apparatus to a generator and a power generation system including the same are provided. The power transmission apparatus for transmitting power generated by the power generation apparatus to the generator may include a first disk part connected to one of the power generation apparatus and the generator, a second disk part connected to the other one of the power generation apparatus and the generator and disposed on a rear side of the first disk part, and a connection part configured to connect the first disk part and the second disk part and include a portion that decreases and then increases in diameter along a longitudinal direction. 1. A power transmission apparatus for transmitting power generated by a power generation apparatus to a generator , the power transmission apparatus comprising:a first disk part connected to one of the power generation apparatus and the generator;a second disk part connected to the other one of the power generation apparatus and the generator and disposed on a rear side of the first disk part; anda connection part configured to connect the first disk part and the second disk part and include a portion that decreases and then increases in diameter along a longitudinal direction.2. The power transmission apparatus according to claim 1 , wherein the connection part includes a recessed groove that is recessed radially inward from an outer circumferential surface.3. The power transmission apparatus according to claim 1 , wherein the first disk part includes a first coupling disk and a first disk shaft coupled to a rear side of the first coupling disk claim 1 ,wherein the second disk part includes a second coupling disk and a second disk shaft coupled to a front side of the second coupling disk, andwherein the connection part is connected to the first disk shaft and the second disk shaft between the first disk shaft and the second disk shaft.4. The power ...

Подробнее
09-07-2020 дата публикации

OCEAN POWERED RANKINE CYCLE TURBINE

Номер: US20200217293A1
Принадлежит:

An ocean powered Rankine cycle turbine includes a loop in which is circulated a working fluid. A first heat exchanger effects a phase change of the working fluid from liquid to gas. The gas expands to power a turbine. Gas exiting the turbine is condensed by a second heat exchanger to effect a phase change from gas back to liquid. A piston assembly is used to compress air. A wave energy converter uses ocean wave energy to reciprocally move the piston. As the wave goes down, the piston is extends drawing air into the piston housing. As the wave goes up, the piston compresses the air. Heat generated as the piston compresses air, is used to as a heat source for the first heat exchanger. Cold compressed air is used as a cold source for the second heat exchanger. 1. An ocean powered Rankine cycle turbine , comprising:a primary Rankine cycle loop in which is circulated a working fluid which changes phase from a liquid to a gas when heated, a liquid phase working fluid supply line feeding working fluid in liquid form to a first heat exchanger to effect a phase change from liquid to gas, the first heat exchanger being connected by a gaseous phase working fluid supply line which supplies working fluid in gas form to a turbine, a working fluid recycle line feeding working fluid in gas form to a second heat exchanger to effect a phase change from gas to liquid, the second heat exchanger being connected by the liquid phase working fluid supply line which supplies working fluid in the form of liquid to the first heat exchanger, a first pump being positioned on the liquid phase working fluid supply line to pump the working fluid in the form of liquid;one or more piston assemblies for compressing air, each piston assembly comprising a piston that is reciprocally movable within an interior of a piston housing between an extended position extending farther out of the piston housing and a retracted position retracted farther into the piston housing;an ocean powered input in the form ...

Подробнее
06-11-2014 дата публикации

Gas Turbine and Operation Method of Gas Turbine

Номер: US20140325990A1
Принадлежит: Hitachi, Ltd.

A gas turbine having a compressor for compressing air, a combustor for taking in compressed air discharged from the compressor, mixing it with fuel, and burning them, and a turbine driven by combustion gas generated in the combustor, comprising: inlet guide vanes installed at a stage near an inlet of the compressor for adjusting a compressor flow rate by changing an attaching angle thereof, a steam injection mechanism for injecting steam to the combustor, a steam adjustment valve for adjusting the steam injection rate, and a steam rate control mechanism for adjusting an opening of the steam adjustment valve, a steam monitoring mechanism for monitoring the steam rate injected to the combustor, an air temperature monitoring mechanism for monitoring an atmospheric temperature, and a control unit for determining whether a restriction value of the steam injection rate using a temperature, an opening of the inlet guide vanes, and the steam injection rate as indexes is satisfied, and controlling at least one of a temperature of air flowing into the compressor, the steam injection rate, and the inlet guide vane opening. 1. A gas turbine having a compressor for compressing air , a combustor for taking in compressed air discharged from the compressor , mixing it with fuel , and burning them , and a turbine driven by combustion gas generated in the combustor , comprising:inlet guide vanes installed at a stage near an inlet of the compressor for adjusting a compressor flow rate by changing an attaching angle thereof,a steam injection mechanism for injecting steam to the combustor,a steam adjustment valve for adjusting the steam injection rate, and a steam rate control mechanism for adjusting an opening of the steam adjustment valve,a steam monitoring mechanism for monitoring the steam rate injected to the combustor,an air temperature monitoring mechanism for monitoring an atmospheric temperature, anda control unit for determining whether a restriction value of the steam ...

Подробнее
24-08-2017 дата публикации

COMBUSTOR AND GAS TURBINE

Номер: US20170241339A1
Принадлежит:

A combustor having a plurality of nozzles (main nozzles) to supply fuel disposed, includes a water supplier that is connected to all or part of the plurality of nozzles to supply water to each of fuel pipes, wherein the water supplier varies a supply amount of water for each of the nozzles to which the water is supplied. 1. A combustor having a plurality of nozzles to supply fuel disposed , the combustor comprising:a water supplier that is connected to all or part of the plurality of nozzles to supply water to each of fuel pipes,wherein the water supplier varies a supply amount of water for each of the nozzles to which the water is supplied.2. The combustor according to claim 1 , wherein the nozzles are main nozzles disposed around a pilot nozzle in the circumferential direction.3. The combustor according to claim 1 , wherein the water supplier comprises:a variable water supply unit that varies the supply amount of water; anda control unit that previously stores water supply information in which the supply amount of water depending on an operating condition of the combustor is set, and controls the variable water supply unit on the basis of the operating condition of the combustor and the water supply information.4. A gas turbine comprising the combustor according to .5. The combustor according to claim 2 , wherein the water supplier comprises:a variable water supply unit that varies the supply amount of water; anda control unit that previously stores water supply information in which the supply amount of water depending on an operating condition of the combustor is set, and controls the variable water supply unit on the basis of the operating condition of the combustor and the water supply information.6. A gas turbine comprising the combustor according to .7. A gas turbine comprising the combustor according to .8. The combustor according to claim 2 , wherein the plurality of the main nozzles alternately makes the supply amount of water different from each other.9. ...

Подробнее
09-09-2021 дата публикации

AN INSTALLATION TO GENERATE MECHANICAL ENERGY USING A COMBINED POWER CYCLE

Номер: US20210277806A1
Принадлежит:

This invention refers to an installation for the generation of mechanical energy using a Combined Power Cycle which comprises, at least; 1. An installation to generate mechanical energy using a Combined Power Cycle including at least:means to implement a closed or semi-closed regenerative constituent Brayton cycle which uses water as thermal fluid,means to implement at least one Rankine cycle, the constituent basic Rankine cycle, interconnected with the regenerative constituent Brayton cycle, anda heat pump (UAX) which makes up a closed circuit that regenerates the regenerative constituent Brayton cycle;3. An installation for the generation of energy according to claim 1 , in which the regenerative Brayton cycle is semi-closed claim 1 , with oxy-combustion and intrinsic capture of CO.4. An installation for the generation of mechanical energy claim 2 , according to claim 2 , which also includes:{'b': '107', 'claim-text': [{'b': '201', 'a regeneration condenser, by which the installation transmits energy to the cold reservoir () of the heat pump UAX, which condenses in one simple stage and'}, {'sub': 2', '2, 'b': 130', '201, 'a COliquefaction plant which receives work from the power shaft () and condenses gases in multiple stages and only transfers the heat released in the successive stages of compression of that COliquefaction plant to the cold reservoir () of the UAX,'}], 'an element (), selected from{'b': 113', '210, 'a Reboiler (), with which heat is returned to the Power Cycle from the hot reservoir () of the heat pump UAX,'}{'b': 111', '107', '113, 'a regeneration condensate Pump (), which drives the condensate obtained in the bottom of the regeneration Condenser (), and makes it flow towards the Reboiler (),'}{'b': '103', 'a heat recovery Conduit (CRC) (), with which water vapour is generated,'}{'b': 122', '101', '102', '103, 'at least two turbines, one of which is a high-pressure Turbine TAP (), which sends water vapour to the essential Heat source (), and ...

Подробнее
30-08-2018 дата публикации

ORC FOR TRANSFORMING WASTE HEAT FROM A HEAT SOURCE INTO MECHANICAL ENERGY AND COMPRESSOR INSTALLATION MAKING USE OF SUCH AN ORC

Номер: US20180245788A1
Автор: ÖHMAN Henrik

An Organic Rankine Cycle (ORC) device and method for transforming waste heat from a heat source containing compressed gas into mechanical energy. The ORC includes a closed circuit containing a two-phase working fluid, the circuit including a liquid pump for circulating the working fluid in the circuit consecutively through an evaporator which is in thermal contact with the heat source; through an expander like a turbine for transforming the thermal energy of the working fluid into mechanical energy; and through a condenser which is in thermal contact with a cooling element. The ORC determines the mechanical energy generated by the expander. A control device regulates the fraction of the working fluid entering the expander based on the determined mechanical energy such that the mechanical energy generated by the expander is maximum. 117-. (canceled)18. An Organic Rankine Cycle (ORC) for transforming waste heat from a heat source containing compressed gas into mechanical energy , the ORC comprising a closed circuit containing a two-phase working fluid , the circuit comprising a liquid pump for circulating the working fluid in the circuit consecutively through an evaporator which is in thermal contact with the heat source; through an expander like a turbine for transforming the thermal energy of the working fluid into mechanical energy; and through a condenser which is in thermal contact with a cooling element , wherein the ORC is equipped with a determiner of the mechanical energy generated by the expander and a control device that regulates the vapor fraction of the working fluid entering the expander , whereby the control device will regulate the aforementioned vapor fraction based on the determined mechanical energy such that the mechanical energy generated by the expander is maximum and whereby the expander is of any kind suitable to accept a mixture of liquid and gaseous working fluid.19. The ORC according to claim 18 , wherein the control device will regulate ...

Подробнее
15-09-2016 дата публикации

NOZZLE, COMBUSTION APPARATUS, AND GAS TURBINE

Номер: US20160265431A1
Принадлежит:

A combustion apparatus includes a nozzle in which a fuel injection port for injecting a fuel is formed on the center of a tip. A plurality of water injection ports are formed with intervals therebetween in a circumferential direction around the fuel injection port of the tip of the nozzle, and the water injection ports are non-uniformly formed in the circumferential direction. 1. A nozzle in which a fuel injection port for injecting a fuel is formed on the center of a tip and a plurality of water injection ports are formed with intervals therebetween in a circumferential direction around the fuel injection port of the tip ,wherein the water injection ports are non-uniformly formed in the circumferential direction, andwherein some of the plurality of water injection ports are formed such that opening diameters are different from opening diameters of the remaining portions of the plurality of water injection ports.2. The nozzle according to claim 1 ,wherein some of the plurality of water injection ports are formed such that inclination angles with respect to the center axis of the nozzle in a radial direction of the nozzle are different from inclination angles of the remaining water injection portions.3. The nozzle according to claim 1 ,wherein some of the plurality of water injection ports are formed such that the inclination angles with respect to the center axis of the nozzle in a circumferential direction of the nozzle are different from the inclination angles of the remaining water injection ports.4. (canceled)5. The nozzle according to claim 1 ,wherein some of the plurality of water injection ports are formed such that opening positions of a diameter direction of the nozzle are different from opening positions of the remaining water injection ports.6. The nozzle according to claim 1 ,wherein some of the plurality of water injection ports are formed such that installation intervals in the circumferential direction of the nozzles are different from those of the ...

Подробнее
22-09-2016 дата публикации

SYSTEMS AND METHODS FOR CONTROL OF COMBUSTION DYNAMICS IN COMBUSTION SYSTEM

Номер: US20160273449A1
Принадлежит:

A system includes a gas turbine engine having a first combustor and a second combustor. Each combustor has at least one fuel nozzle that receives a mixture of liquid fuel and water, via main and pilot fuel supplies, and that injects the mixture and an oxidant into a combustion chamber. A biasing system is disposed in a fuel path upstream of the fuel nozzles in the second combustor to vary the ratios of water/main fuel or water/pilot fuel or the flow rates of such mixtures. The biasing system is configured to help reduce a combustion dynamics amplitude or modal coupling between the first combustor and the second combustor. 1. A system , comprising: a first combustor comprising a first fuel nozzle disposed in a first head end chamber of the first combustor, wherein the first fuel nozzle is configured to inject a first fuel mixture and an oxidant into a first combustion chamber of the first combustor, the first fuel mixture comprising a first ratio of liquid fuel and water;', 'a second combustor comprising a second fuel nozzle disposed in a second head end chamber of the second combustor, wherein the second fuel nozzle is configured to inject a second fuel mixture into a second combustion chamber of the second combustor, the second fuel mixture comprising a second ratio of the liquid fuel and the water; and', 'a biasing system disposed along a fuel path upstream of the first and the second fuel nozzles, wherein the biasing system is configured to help reduce a combustion dynamics amplitude or modal coupling between the first combustor and the second combustor., 'a gas turbine engine comprising2. The system of claim 1 , wherein the biasing system comprises a first orifice plate along the fuel path configured to regulate a first fuel flow rate of the first fuel mixture.3. The system of claim 2 , wherein the biasing system comprises a second orifice plate along the fuel path configured to regulate a second fuel flow rate of the second fuel mixture claim 2 , and wherein ...

Подробнее
11-12-2014 дата публикации

INTEGRATED SEPARATOR TURBINE

Номер: US20140360189A1
Принадлежит: DRESSER-RAND COMPANY

A fluid processing system and method are provided for separating a liquid portion from a multiphase fluid. The system and method may include a steam turbine assembly coupled with a rotary shaft, and a separator coupled with the rotary shaft and positioned upstream of the steam turbine assembly. The separator may include an inlet end configured to receive a multiphase fluid, an outlet end fluidly coupled with the steam turbine assembly, and a separation chamber extending from the inlet end to the outlet end. The separation chamber may be configured to separate a liquid portion from the multiphase fluid to thereby provide a substantially gaseous fluid to the steam turbine assembly. 1. A fluid processing system , comprising:a steam turbine assembly coupled with a rotary shaft; and an inlet end configured to receive a multiphase fluid,', 'an outlet end fluidly coupled with the steam turbine assembly, and', 'a separation chamber extending from the inlet end to the outlet end, the separation chamber configured to separate a liquid portion from the multiphase fluid to thereby provide a substantially gaseous fluid to the steam turbine assembly., 'a separator coupled with the rotary shaft and positioned upstream of the steam turbine assembly, the separator comprising2. The fluid processing system of claim 1 , wherein the separator is a rotary separator.3. The fluid processing system of claim 1 , wherein the multiphase fluid comprises a geothermal fluid.4. The fluid processing system of claim 1 , wherein the steam turbine assembly and the separator are disposed in a common housing.5. The fluid processing system of claim 1 , wherein the separator further comprises a tubular body defining the separation chamber claim 1 , the tubular body including an inner and outer circumferential surface and an annular groove defined by the inner circumferential surface thereof claim 1 , the annular groove at least partially extending radially outward from the inner circumferential surface ...

Подробнее
13-08-2020 дата публикации

NATURAL CIRCULATION MULTI-CIRCULATION PACKAGE BOILER FOR STEAM ASSISTED GRAVITY DRAINAGE (SAGD) PROCESS

Номер: US20200256556A1
Принадлежит:

A boiler includes a steam drum, an intermediate drum, and a lower drum. Each drum is divided into a clean section and a concentrated section. A channel that is fluidly connected to the clean section also runs down one side of the concentrated section in the intermediate drum and the lower drum. The presence of the channels permits low-quality feedwater tubes and high-quality feedwater tubes to be arranged in parallel rows next to each other. 1. A boiler , comprising:an intermediate drum comprising (A) an internal divider that divides the intermediate drum into a clean section and a concentrated section, and (B) a channel that is fluidly connected to the clean section, the channel running adjacent a sidewall of the intermediate drum through the internal divider to a distal end of the concentrated section;a lower drum comprising (A) an internal divider that divides the intermediate drum into a clean section and a concentrated section, and (B) a channel that is fluidly connected to the clean section, the channel running adjacent a sidewall of the intermediate drum through the internal divider to a distal end of the concentrated section;a furnace defined by a furnace sidewall and a baffle wall, wherein tubes in a front portion of the furnace sidewall and a front portion of the baffle wall extend between the intermediate drum channel and the lower drum channel;a clean section steam generating bank extending between the intermediate drum clean section and the lower drum clean section; anda concentrated section steam generating bank extending between the intermediate drum concentrated section and the lower drum concentrated section.2. The boiler of claim 1 , wherein in a gas flowpath claim 1 , the clean section steam generating bank is downstream of the furnace and upstream of the concentrated section steam generating bank.3. The boiler of any one of - claim 1 , wherein the clean section steam generating bank and the concentrated section steam generating bank are located ...

Подробнее
04-10-2018 дата публикации

WATER QUALITY MANAGEMENT DEVICE, WATER TREATMENT SYSTEM, WATER QUALITY MANAGEMENT METHOD, AND PROGRAM FOR OPTIMIZING WATER TREATMENT SYSTEM

Номер: US20180282180A1
Принадлежит: Mitsubishi Hitachi Power Systems, Ltd.

A water quality management device is provided with a water quality index value acquisition unit which acquires water quality index values including a makeup water quality index value indicating water quality of makeup water and a circulating water quality index value indicating water quality of circulating water, and a determining unit which determines an amount of concentration control associated with a concentration rate of a circulating water system based on the water quality index values acquired by the water quality index value acquisition unit. 1. A water quality management device which manages a circulating water system of a plant including a circulation line through which circulating water is circulated , a supply line which supplies makeup water to the circulation line , a discharge line which discharges the circulating water from the circulation line , and a chemical injection line which injects a chemical to the circulation line , the water quality management device comprising:a determining unit configured to determine an amount of concentration control associated with a concentration rate of the circulating water system;an acquisition unit configured to acquire plant data on the plant used by the determining unit to determine the amount of concentration control;a relational storage unit configured to store one or more inference rules associating a condition of the plant data and an amount of concentration control of when the condition is satisfied with each other;an input unit configured to receive an input of an amount of concentration control which satisfies a predetermined limit value and is specified based on the plant data acquired by the acquisition unit; andan updating unit configured to generate a new inference rule based on the amount of concentration control input to the input unit and record the new inference rule on the relational storage unit,wherein the determining unit determines an amount of concentration control based on the plant data ...

Подробнее
12-09-2019 дата публикации

COMBINED COOLING, HEATING AND POWER SYSTEM

Номер: US20190277164A1
Принадлежит: GAS TECHNOLOGY INSTITUTE

A combined cooling, heating, and power system, including a working fluid cycling between a compressor and a turbine in combination with a power generator. A humidifying regenerator is disposed between the compressor and the turbine, and in combination with the working fluid upstream and again downstream of the turbine to humidify and then dehumidify the working fluid. A working fluid heat exchanger is in combination with the working fluid between the turbine and the humidifying regenerator for further heat the working fluid. The heat exchanger is in combination with a heat source that heats both the working fluid and provides a separate heating medium. A cooling device is in combination with the working fluid between the humidifying regenerator and the compressor, wherein the cooling device cools the working fluid before entering the compressor and provides a separate cooling medium. 1. A combined cooling , heating , and power system , comprising:a working fluid cycling between a compressor and a turbine in combination with a power generator;a humidifying regenerator disposed between the compressor and the turbine, and in combination with the working fluid upstream and again downstream of the turbine;a working fluid heat exchanger in combination with the working fluid between the turbine and the humidifying regenerator; anda cooling device in combination with the working fluid between the humidifying regenerator and the compressor, wherein the cooling device cools the working fluid before entering the compressor.2. The system of claim 1 , wherein the cooling device cools a return medium flow that is independent of the working fluid.3. The system of claim 1 , wherein the cooling devise is powered by the power generator.4. The system of claim 1 , wherein the working fluid comprises a closed loop in a turbo-compressor cycle.5. The system of claim 1 , wherein condensate from the humidifying regenerator and the cooling device is used by the humidifying regenerator to ...

Подробнее
26-10-2017 дата публикации

METHOD AND APPARATUS FOR INCREASING USEFUL ENERGY/THRUST OF A GAS TURBINE ENGINE BY ONE OR MORE ROTATING FLUID MOVING (AGITATOR) PIECES DUE TO FORMATION OF A DEFINED STEAM REGION

Номер: US20170306843A1
Принадлежит:

A system for increasing useful energy output includes a source of hot combustion gas, such as from a gas turbine engine, and an apparatus that is disposed downstream of and receives the hot combustion gas and acts thereon to optimize electricity/thrust energy output of the system. The apparatus includes a housing that is coupled to the source and receives the hot combustion gas and also includes a rotatable shaft centrally disposed within the housing. A rotatable fluid moving device is coupled to the rotatable shaft and is configured such that the rotatable fluid moving device moves the hot combustion gas into a shape within the housing such that useful energy output/thrust is increased. Optionally, the system includes a spray nozzle that discharges water droplets upstream of the rotatable fluid moving device in a high temperature environment such that the action of the rotatable fluid moving device generates water vapor (steam) having a particular profile (e.g., annular shaped). 1. A gas turbine engine that includes a compressor and a combustion chamber that generates hot thrust gas , the gas turbine engine comprising:a first housing section;a first rotatable shaft disposed within the first housing section;a turbine blade assembly that is downstream of the combustion chamber and is rotatable with the first rotatable shaft within the first housing section, the turbine blade assembly including a plurality of turbine blades; and a second housing section that is coupled to and in fluid communication with the first housing section for receiving the hot trust gas from the turbine blade assembly;', 'a second rotatable shaft centrally disposed within the unit housing;', 'a rotatable fluid moving device that is coupled to the second rotatable shaft and configured such that the rotatable fluid moving device acts on the hot thrust gas from the turbine blade assembly and directs the hot thrust gas in a radially outward direction to cause the hot trust gas to assume a ...

Подробнее
03-11-2016 дата публикации

System and method for high efficiency power generation using a nitrogen gas working fluid

Номер: US20160319741A1
Принадлежит: 8 Rivers Capital LLC

A method of power production using a high pressure/low pressure ratio Brayton Power cycle with predominantly N 2 mixed with CO 2 and H 2 O combustion products as the working fluid is provided. The high pressure can be in the range 80 bar to 500 bar. The pressure ratio can be in the range 1.5 to 10. The natural gas fuel can be burned in a first high pressure combustor with a near stoichiometric quantity of pressurised preheated air and the net combustion gas can be mixed with a heated high pressure recycle N 2 +CO 2 +H 2 O stream which moderates the mixed gas temperature to the value required for the maximum inlet temperature to a first power turbine producing shaft power.

Подробнее
10-11-2016 дата публикации

METHOD AND APPARATUS FOR OPERATING A COMBUSTION DEVICE

Номер: US20160326955A1
Принадлежит: ANSALDO ENERGIA IP UK LIMITED

The present invention generally relates to the field of combustion technology related to gas turbines. More in particular, the present invention refers to a method for operating a combustion device. Advantageously, a pulsation protective load shedding is avoided by adjusting the parameter ω in case of too high combustion pulsation levels from the standard operation set point. This implies that the dynamic pulsation control logic is activated in case the high frequency pulsation level exceeds a predetermined threshold value and a control unit adjusts the ω, preferably in a stepwise manner, until acceptable and optimum pulsation levels are reached or a maximum reduction of the ω is performed. 1. A method for operating a combustion device , the combustion device having: a combustion chamber; a water injection system configured to mix water to fuel in the combustion chamber and to adjust a parameter ω defined as a ratio between water and fuel , said parameter ω having an operating set point value ωand a minimum value ω; and a controller for detecting flame-generated pulsations above a predefined threshold;the method comprising:detecting a flame-generated pulsation event;calculating parameter ω and:{'sub': min', 'nom, 'if ω is greater than ω, reducing parameter ω and subsequently increasing it to ω;'}{'sub': min', 'nom, 'if ω is equal to ω, increasing parameter ω to ω.'}2. The method according to claim 1 , wherein said parameter ω is adjusted based on a measured level of the detected flame-generated pulsation above a predefined threshold.3. The method according to claim 1 , wherein said parameter ω reduction is established substantially simultaneously with the detection of a flame-generated pulsation above a predefined threshold.4. The method according to claim 1 , wherein parameter ω is increased as a linear function of time.5. An apparatus for operating a combustion device claim 1 , the combustion device comprising: a combustion chamber claim 1 , a water injection ...

Подробнее
01-11-2018 дата публикации

ORC BINARY CYCLE GEOTHERMAL PLANT AND PROCESS

Номер: US20180313340A1
Принадлежит: EXERGY S.P.A.

An ORC binary cycle geothermal plant, including at least one ORC closed-cycle system and a geothermal system. The geothermal system includes at least one intake line of a geothermal fluid connected to at least one geothermal production well, wherein the fluid includes non-condensable gases; one interface line connected to the intake line, coupled to the ORC system in an interface zone, wherein the fluid exchanges heat with the organic working fluid; one reinjection line connected to the interface line and to at least one geothermal reinjection well. Further at least one separator device configured to separate at least the gases from the fluid; one expander connected to an outlet of the gases by the separator device; and one auxiliary generator connected to the expander. The expander is for interfacing with the system to receive and expand at least the gases after they have exchanged heat with the organic working fluid. 1. An ORC binary cycle geothermal plant , comprising: one vaporizer;', 'one expansion turbine;', 'one generator operatively connected to the expansion turbine;', 'one condenser;, 'at least one ORC closed-cycle system comprising at leastone pump;ducts configured to connect the vaporizer, the expansion turbine, the condenser and the pump according to a closed cycle in which an organic working fluid (OWF) circulates; one intake line for a geothermal fluid (GF) connected to at least one geothermal production well, wherein the geothermal fluid (GF) comprises non-condensable gases (NCGs);', 'one interface line connected to the intake line and operatively coupled to the at least one ORC closed-cycle system in an interface zone, wherein the geothermal fluid (GF) exchanges heat with the organic working fluid (OWF) of said ORC closed-cycle system;', 'one outlet line connected to the interface line;, 'a geothermal system comprising at least at least one separator device configured to separate at least the non-condensable gases (NCGs) from the geothermal fluid ( ...

Подробнее
08-10-2020 дата публикации

Pump Mixer Separator Unit

Номер: US20200318539A1
Принадлежит:

A pump mixer separator unit is provided in communication with a stripping gas line that provides an inlet stripping gas flow and a fuel line that provides an inlet fuel flow. The pump mixer separator unit includes a first pump in fluid communication with the stripping gas line and the fuel line to form a fuel/gas mixture flow and generate a first pressure rise from the inlet fuel flow to the fuel/gas mixture flow; and a second pump in fluid communication with the first pump, wherein the second pump receives the fuel/gas mixture flow from the first pump, wherein the second pump separates the fuel/gas mixture flow into an outlet stripping gas flow and an outlet fuel flow and generates a second pressure rise from the fuel/gas mixture flow to the outlet fuel flow, wherein the first pump includes a supplemental pump feature for drawing an inlet fuel flow through the fuel line during operation. 1. A pump mixer separator unit in communication with a stripping gas line that provides an inlet stripping gas flow and a fuel line that provides an inlet fuel flow , the pump mixer separator unit comprising:a first pump in fluid communication with the stripping gas line and the fuel line to form a fuel/gas mixture flow and generate a first pressure rise from the inlet fuel flow to the fuel/gas mixture flow; anda second pump in fluid communication with the first pump, wherein the second pump receives the fuel/gas mixture flow from the first pump, wherein the second pump separates the fuel/gas mixture flow into an outlet stripping gas flow and an outlet fuel flow and generates a second pressure rise from the fuel/gas mixture flow to the outlet fuel flow,wherein the first pump comprises a supplemental pump feature for drawing an inlet fuel flow through the fuel line during operation.2. The pump mixer separator unit of claim 1 , wherein the first pump includes a first pump gas inlet claim 1 , a first pump fuel inlet claim 1 , and a first pump outlet claim 1 ,wherein the first pump gas ...

Подробнее
24-10-2019 дата публикации

HEAT PUMP SYSTEM FOR PRODUCING STEAM BY USING RECUPERATOR

Номер: US20190323704A1
Принадлежит: KOREA INSTITUTE OF ENERGY RESEARCH

In the present invention, a recuperator is used in a refrigerant cycle to make a heat exchange between a refrigerant generated in a condenser and a refrigerant before flowing into a compressor, thereby supercooling the refrigerant to minimize the quality of the refrigerant introduced into an evaporator, elevating temperatures at an inlet and an outlet of the compressor, and increasing condensed heat of the condenser. In the present invention, a recuperator is used to increase condensed heat of the condenser, leading to increasing the heat which circulation water circulating in a steam producing cycle receives from the condenser, whereby steam production efficiency can be improved. 1. A heat pump system for producing steam by using a recuperator , the heat pump system comprising:a refrigerant cycle, which comprises a compressor compressing a refrigerant, a condenser condensing the refrigerant generated in the compressor, an expansion device expanding the refrigerant generated in the condenser and an evaporator evaporating the refrigerant generated in the expansion device and in which the refrigerant circulates;a steam producing cycle, which comprises a flash tank generating steam by decompressing circulation water heated while passing through the condenser and a pump pumping the circulation water generated in the flash tank so as to circulate the circulation water into the condenser and in which the circulation water is circulated so that steam is capable of being produced; anda recuperator, which is provided within the refrigerant cycle, heat-exchanges the refrigerant generated in the condenser with the refrigerant introduced into the compressor so as to supercool the refrigerant generated in the condenser and elevates temperatures at an inlet and an outlet of the compressor so as to increase condensed heat of the condenser.2. The heat pump system of claim 1 , further comprising:a temperature sensor measuring temperature of the refrigerant discharged from the ...

Подробнее
21-12-2017 дата публикации

PASSIVE ALTERNATOR DEPRESSURIZATION AND COOLING SYSTEM

Номер: US20170362963A1
Принадлежит: ECHOGEN POWER SYSTEMS, L.L.C.

A pressure reduction system may include an alternator with a casing and a rotor positioned, at least in part, within a cavity defined by the casing. The pressure reduction system may also include a mass management system that includes a control tank configured to be maintained at a tank pressure lower than a cavity pressure within the cavity of the alternator, thereby forming a pressure differential. A first transfer conduit may transfer a working fluid from the cavity of the alternator to the control tank via the pressure differential. The mass management system may be positioned at an elevation above the alternator, and include a refrigeration loop configured to cool the working fluid contained within the control tank. A second transfer conduit may fluidly couple the alternator and the mass management system, and may transfer the cooled working fluid from the control tank to the cavity via gravitational force. 1. A pressure reduction system comprising:an alternator comprising a casing and a rotor positioned, at least in part, within a cavity defined by the casing;a mass management system comprising a control tank configured to be maintained at a tank pressure lower than a cavity pressure within the cavity to form a pressure differential therebetween; anda first transfer conduit configured to transfer a working fluid from the cavity of the alternator to the control tank via the pressure differential.2. The pressure reduction system of claim 1 , further comprising a second transfer conduit configured to transfer the working fluid from the control tank to the cavity.3. The pressure reduction system of claim 1 , wherein the control tank comprises a closed refrigeration loop configured to cool the working fluid.4. The pressure reduction system of claim 1 , further comprising a heat exchanger configured to cool the working fluid prior to the working fluid entering the control tank.5. The pressure reduction system of claim 2 , further comprising:a first valve configured ...

Подробнее
26-12-2019 дата публикации

HYDRO-TURBINE DRIVE METHODS AND SYSTEMS FOR APPLICATION FOR VARIOUS ROTARY MACHINERIES

Номер: US20190390573A1
Принадлежит: GAS TECHNOLOGY INSTITUTE

This invention relates generally to hydro-turbine drive methods and systems and, more particularly, to hydro-turbine drive methods and systems such as for application for various rotary machineries including producing a high pressure fluid with at least one fluid pump by utilizing a fluid heater to create a fluid and vapor mixture for producing mechanical shaft power. 1. A method of driving a rotary machinery end-use unit directly or through a gearbox connected to the rotary machinery unit , the method comprising:producing a high pressure (HP) fluid by one of at least one HP fluid pump driven by at least one prime mover, or at least one first fluid heater;adding vapor to the HP fluid wherein a HP fluid/vapor mixture is formed;supplying the HP fluid/vapor mixture to at least one hydro-turbine and producing mechanical shaft power; andtransferring the mechanical shaft power from the hydro-turbine to the rotary machinery end-use unit.2. The method of wherein the at least one prime mover is a thermally driven pump.3. The method of wherein the HP fluid is supplied to a second fluid heater and evaporator adapted for preheating the HP fluid to a boiling temperature and thereby partially evaporating the HP fluid wherein the partially evaporated HP fluid forms the HP fluid/vapor mixture.4. The method of wherein the HP fluid is supplied to a HP fluid storage unit where a stable pressure is maintained.5. The method of wherein a low pressure (LP) fluid is supplied to an inlet of the HP fluid pump to close a system fluid loop.6. The method of wherein the LP fluid from the at least one hydro-turbine is supplied to a LP fluid storage unit.7. The method of wherein the fluid is water.8. The method of wherein the fluid/vapor mixture is partially evaporated to about 5-20% vapor.9. The method of claim 1 , wherein energy for the at least one prime mover and first fluid heater is provided by waste heat from a combustion unit exhaust upstream of the second fluid heater and evaporator.10. ...

Подробнее
26-12-2019 дата публикации

Power Generation System With Rotary Liquid Piston Compressor for Transcritical and Supercritical Compression of Fluids

Номер: US20190390576A1
Автор: Thatte Azam
Принадлежит:

A rotary liquid piston compressor and a power generation system including a first fluid loop. The first fluid loop includes a pump that circulates a liquid. A second fluid loop that generates power by circulating a supercritical fluid. The second fluid loop includes a turbine that rotates and powers a generator as the supercritical fluid flows through the turbine. A rotary liquid piston compressor fluidly coupled to the first fluid loop and the second fluid loop. The rotary liquid piston compressor exchanges pressure between the liquid circulating in the first fluid loop and the supercritical fluid circulating in the second fluid loop. 1. A power generation system comprising: 'a pump configured to circulate a liquid;', 'a first fluid loop, the first fluid loop comprises 'a turbine configured to rotate and power a generator as the supercritical fluid flows through the turbine; and', 'a second fluid loop configured to generate power by circulating a supercritical fluid, the second fluid loop comprisesa first rotary liquid piston compressor fluidly coupled to the first fluid loop and the second fluid loop, wherein the first rotary liquid piston compressor is configured to exchange pressure between the liquid circulating in the first fluid loop and the supercritical fluid circulating in the second fluid loop.2. The system of claim 1 , wherein the supercritical fluid comprises carbon dioxide claim 1 , helium claim 1 , supercritical steam claim 1 , or an organic fluid.3. The system of claim 1 , wherein the liquid is water.4. The system of claim 1 , wherein the first fluid loop comprises an evaporator chamber downstream from the first rotary liquid piston compressor claim 1 , and wherein the evaporator chamber is configured to separate the supercritical fluid from the liquid as the supercritical fluid changes phases into a gas.5. The system of claim 4 , wherein the first fluid loop comprises an orifice or pressure control valve upstream from the evaporator chamber.6. The ...

Подробнее
02-01-2002 дата публикации

Cylinder piston unit, especially for steam engines

Номер: EP0995014B1

Подробнее
26-10-2000 дата публикации

Method and appliance for rapidly increasing output and maintaining additional output for limited period of gas turbine plant

Номер: DE19918346A1
Автор: Erhard Liebig

To increase the output water, as additional working medium from storage tank (6), is fed, by gravity or pumped, into the gas turbine (1). A valve (9) controls the flow of the water the temperature of which is controlled by a heat exchanger or other suitable device. Steam can also be used as the additional working medium both media being obtained from a waste heat boiler (13) heated by the turbine exhaust gases (30)

Подробнее
26-04-2016 дата публикации

Configurations and methods of generating low-pressure steam

Номер: US9320985B2
Автор: Jeffrey Scherffius
Принадлежит: Fluor Technologies Corp

Low-pressure steam for a steam consuming device, and particularly a steam reboiler, is generated at the steam consumption pressure to maximize the heat recovery from a utility fuel and/or waste heat source. Most preferably, steam is generated at the lowest possible pressure by fluidly coupling the steam generator to the steam consuming device (e.g., by integrating the condensate drum with the steam drum). Therefore, it should be appreciated that the steam generator pressure in such configurations and methods will ride on the reboiler pressure.

Подробнее
12-10-2006 дата публикации

Process to convert low grade heat source into power using dense fluid expander

Номер: US20060225423A1
Автор: Adam Brostow
Принадлежит: Air Products and Chemicals Inc

A process to convert heat into power is set forth wherein, to make the cycle more suitable to low grade heat, the working fluid remains substantially in the liquid state after being heat exchanged against the heat source and a dense fluid expander is used in place of a conventional vapor expander to subsequently work expand the liquid working fluid.

Подробнее