Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 1590. Отображено 100.
10-11-2015 дата публикации

ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, НА ОСНОВЕ КВАНТОВЫХ ТОЧЕК И МАГНИТНЫХ НАНОЧАСТИЦ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000156174U1

1. Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка, включающий кантилевер с зондирующей иглой, соединенной с покрытой защитным прозрачным слоем полимерной сферой, нанометровые поры которой заполнены квантовыми точками структуры ядро-оболочка, внешний источник возбуждения квантовых точек, отличающийся тем, что кантилевер с зондирующей иглой соединенной с полимерной сферой с нанометровыми порами выполнены магнитопрозрачными, магнитопрозрачная полимерная сфера с нанометровыми порами содержит нанометровые поры большого и малого диаметра, нанометровые поры малого диаметра заполнены сферическими квантовыми точками структуры ядро-оболочка, а нанометровые поры большого диаметра заполнены сферическими магнитными наночастицами структуры ядро-оболочка, количество которых больше двух и определяется диаметром магнитопрозрачной полимерной сферы с нанометровыми порами и количеством пор большого и малого диаметра, способных разместить сферические квантовые точки структуры ядро-оболочка и сферические магнитные наночастицы структуры ядро-оболочка без выхода их оболочек за периметр окружности полимерной сферы с нанометровыми порами. 2. Зонд по п. 1, отличающийся тем, что внешний источник магнитного поля, в виде плоской микрокатушки, соединенный с выходом ЦАП, закреплен у основания магнитопрозрачной иглы и его магнитный поток направлен на центр магнитопрозрачной полимерной сферы с нанометровыми порами, заполненными сферическими квантовыми точками, структуры ядро-оболочка и сферическими магнитными наночастицами, структуры ядро-оболочка. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 156 174 U1 (51) МПК G01Q 60/24 (2010.01) G01Q 70/08 (2010.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015113575/28, 13.04.2015 (24) Дата начала отсчета срока действия патента: 13.04.2015 (45) Опубликовано: 10.11.2015 Бюл. № 31 1 5 6 1 7 4 R ...

Подробнее
10-11-2015 дата публикации

ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, ЛЕГИРОВАННЫМ КВАНТОВЫМИ ТОЧКАМИ И МАГНИТНЫМИ НАНОЧАСТИЦАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000156299U1

Зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро - оболочка, включающий кантилевер с электропроводящей зондирующей иглой, соединенной за счет продевания ее вершины с трением, на расстояние, равное максимальной глубине исследуемых наноколодцев, в одну из нанометровых сквозных пор полимерной сферы, покрытой защитным прозрачным полимерным слоем, сквозные нанометровые поры которой заполнены квантовыми точками структуры ядро - оболочка, внешний источник возбуждения квантовых точек, отличающийся тем, что кантилевер с электропроводящей зондирующей иглой, соединенной с полимерной сферой с нанометровыми порами, выполнены магнитопрозрачными, магнитопрозрачная полимерная сфера содержит сквозные нанометровые поры большого и малого диаметров, нанометровые сквозные поры малого диаметра заполнены сферическими квантовыми точками структуры ядро - оболочка, а нанометровые сквозные поры большого диаметра заполнены сферическими магнитными наночастицами структуры ядро - оболочка, число которых больше двух и определяется диаметром магнитопрозрачной полимерной сферы с нанометровыми сквозными порами и числом сквозных пор большого и малого диаметров, способных разместить сферические квантовые точки структуры ядро - оболочка и сферические магнитные наночастицы структуры ядро - оболочка без выхода их оболочек за периметр окружности полимерной сферы с нанометровыми порами. 2. Зонд по п. 1 отличающийся тем, что внешний источник магнитного поля в виде плоской микрокатушки, соединенной с выходом ЦАП, закреплен у основания электропроводящей магнитопрозрачной иглы и его магнитный поток направлен на центр магнитопрозрачной полимерной сферы с нанометровыми порами, заполненными сферическими квантовыми точками, структуры ядро - оболочка и сферическими магнитными наночастицами, структуры ядро - оболочка. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 156 299 U1 (51) МПК G01Q 60/24 (2010.01) G01Q 70/08 (2010.01) ...

Подробнее
10-07-2016 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, ЛЕГИРОВАННЫМ КВАНТОВЫМИ ТОЧКАМИ И МАГНИТНЫМИ НАНОЧАСТИЦАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000163240U1

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом, легированным квантовыми точками и магнитными наночастицами структуры ядро-оболочка, включающий магнитопрозрачные кантилевер с электропроводящей зондирующей иглой, соединенной с магнитопрозрачной полимерной сферой, содержащей сквозные нанометровые поры малого и большого диаметра, заполненные соответственно квантовыми точками и магнитными наночастицами структуры ядро-оболочка, покрытой защитным оптомагнитопрозрачным полимерным слоем, внешний источник возбуждения квантовых точек, внешний источник магнитного поля в виде плоской микрокатушки, соединенной с выходом ЦАП, отличающийся тем, что содержит двухслойную углеродную нанотрубку, состоящую из подвижной однослойной углеродной нанотрубки большего диаметра, длиной, равной диаметру магнитопрозрачной полимерной сферы, и вложенную в нее с зазором, приближенно равным расстоянию между слоями кристаллического графита, однослойную углеродную нанотрубку меньшего диаметра, длиной, равной максимальной глубине сканируемых боковых стенок наноколодцев, причем внутренняя поверхность вложенной углеродной нанотрубки малого диаметра жестко соединена с внешней поверхностью электропроводящей магнитопрозрачной зондирующей иглы, а внешняя поверхность внешней подвижной углеродной нанотрубки большего диаметра продета и жестко закреплена в одной из нанометровых сквозных пор малого диаметра магнитопрозрачной полимерной сферы, причем одноименные полюса всех магнитных наночастиц структуры ядро-оболочка, размещенных в ней, ориентированы в одном направлении и расположены параллельно вершине электропроводящей магнитопрозрачной зондирующей иглы. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 163 240 U1 (51) МПК G01Q 60/24 (2010.01) G01Q 70/08 (2010.01) B82Y 35/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2016102583/28, 26.01.2016 (24) Дата начала отсчета срока действия патента: 26.01.2016 (45) ...

Подробнее
10-09-2016 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ НА ОСНОВЕ КВАНТОВЫХ ТОЧЕК И МАГНИТНЫХ НАНОЧАСТИЦ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000164733U1

Сканирующий зонд атомно-силового микроскопа с нанокомпозитным излучающим элементом на основе квантовых точек и магнитных наночастиц структуры ядро-оболочка, включающий магнитопрозрачные кантилевер с зондирующей иглой, вершина которой соединена с магнитопрозрачной полимерной сферой с нанометровыми конусообразными порами наименьшего диаметра, которые заполнены квантовыми точками структуры ядро-оболочка, покрытой защитным оптомагнитопрозрачным полимерным слоем, внешний источник возбуждения квантовых точек, внешний источник магнитного поля в виде плоской микрокатушки, соединенной с выходом ЦАП, отличающийся тем, что содержит магнитопрозрачную полимерную сферу со сквозными нанометровыми порами малого и большого диаметра, заполненными соответственно квантовыми точками и магнитными наночастицами структуры ядро-оболочка, двухслойную углеродную нанотрубку, состоящую из подвижной однослойной углеродной нанотрубки большего диаметра, длиной, равной диаметру магнитопрозрачной полимерной сферы со сквозными нанометровыми порами и вложенную в нее с зазором приближенно равным расстоянию между слоями кристаллического графита, однослойную углеродную нанотрубку меньшего диаметра, длиной, равной максимальной глубине сканируемых боковых стенок наноколодцев, причем внутренняя поверхность вложенной углеродной нанотрубки малого диаметра жестко соединена с внешней поверхностью выполненной электропроводящей магнитопрозрачной зондирующей иглы, а внешняя поверхность внешней подвижной углеродной нанотрубки большего диаметра продета и жестко закреплена в одной из нанометровых сквозных пор малого диаметра магнитопрозрачной полимерной сферы, причем одноименные полюса всех магнитных наночастиц структуры ядро-оболочка, размещенных в ней, ориентированы в одном направлении и расположены параллельно вершине электропроводящей магнитопрозрачной зондирующей иглы. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 164 733 U1 (51) МПК G01Q 60/24 (2010.01) G01Q 70/08 (2010.01) B82Y 35/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ...

Подробнее
10-10-2016 дата публикации

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ НАНООБЪЕКТОВ

Номер: RU0000165121U1

1. Устройство для измерения температуры нанообъектов, представляющее собой сканирующий зондовый микроскоп, в состав которого входят держатель зонда, термочувствительный элемент и омические контакты, подсоединенные к измерительной цепи, отличающееся тем, что держатель зонда выполнен в виде пластины с коническим выступом, на боковой поверхности которого сформированы омические контакты, а термочувствительный элемент выполнен из графена в форме ленты переменной ширины, имеющей вид петли, концы которой закреплены на омических контактах, причем высота петли не менее высоты конического выступа, а ширина ленты, из которой выполнена петля, на концах больше, чем в центральной ее части. 2. Устройство по п. 1, отличающееся тем, что в центральной части графеновая лента имеет ширину менее 500 нм. 3. Устройство по п. 1, отличающееся тем, что держатель выполнен из кремния или германия. 4. Устройство по п. 1, отличающееся тем, что боковая поверхность конического выступа покрыта электроизолирующим слоем, гальванически разъединяющим конический выступ и графеновую ленту. 5. Устройство по п. 1, отличающееся тем, что графеновая лента выполнена в виде двутаврового профиля. 6. Устройство по п. 1, отличающееся тем, что центральная часть графеновой ленты выполнена в форме прямоугольника, а периферийные участки графеновой ленты выполнены в форме трапеции, причем нижние основания трапеций являются торцевыми кромками графеновой ленты. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 165 121 U1 (51) МПК G01Q 70/02 (2010.01) G01Q 60/00 (2010.01) G01K 7/00 (2006.01) B82Y 35/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ (21)(22) Заявка: ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ 2015157125/28, 30.12.2015 (24) Дата начала отсчета срока действия патента: 30.12.2015 (45) Опубликовано: 10.10.2016 U 1 1 6 5 1 2 1 R U Стр.: 1 U 1 (54) УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ НАНООБЪЕКТОВ (57) Реферат: Полезная модель относится к области больше, чем в центральной ее части. В измерительной техники, в ...

Подробнее
28-06-2017 дата публикации

ЗОНД ДЛЯ АТОМНО-СИЛОВОЙ НАНОЛИТОГРАФИИ

Номер: RU0000172090U1

Полезная модель относится к области нанотехнологии, а именно к технике и устройствам сканирующего зонда, и может быть использована для формирования массива наноразмерных структур методами зондовой нанолитографии (атомно-силовая нанолитография, локальное анодное окисление), а также для измерения электрических параметров наноструктур методом токовой АСМ спектроскопии. Зонд содержит балку кантилевера и острие сложной формы на конце балки кантилевера. Нижняя сторона балки кантилевера и острие зонда покрыты тонкой пленкой золота. Острие зонда выполнено в форме усеченного конуса, на вершине которого изготовлен окруженный слоем диэлектрика массив профилированных проводящих наноразмерных углеродных структур прямоугольной формы. Технический результат - увеличение количества наноразмерных структур, изготовленных в одном технологическом цикле зондовой нанолитографии. 2 ил. И 1 172090 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 172 090” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 20.09.2018 Дата внесения записи в Государственный реестр: 25.06.2019 Дата публикации и номер бюллетеня: 25.06.2019 Бюл. №18 Стр.: 1 па обосль ЕП

Подробнее
17-07-2017 дата публикации

ЗОНД АТОМНО-СИЛОВОГО МИКРОСПОПА С ПРОГРАММИРУЕМОЙ ДИНАМИКОЙ ИЗМЕНЕНИЯ СПЕКТРАЛЬНЫХ ПОРТРЕТОВ ИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА ЛЕГИРОВАННОГО, КВАНТОВЫМИ ТОЧКАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000172624U1

Полезная модель относится к измерительной технике и может быть использована в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Согласно полезной модели кантилевер соединен с электропроводящей зондирующей иглой, вершина которой продета в одну сквозную нанопору полимерной сферы, содержащей равномерно распределенный по ее поверхности упорядоченный массив ранжированных по диаметру сквозных нанопор с конусообразными входами, заполненных безызлучательными и излучательными квантовыми точками структуры ядро-оболочка с калиброванными интервалами времени флуоресценции, с различными дискретными спектрами излучения и различными интервалами времени излучения, с помощью комбинации сочетаний которых программируется общий пакет спектральных портретов излучения и их последовательность. Техническим результатом является возможность одновременного сочетания электромагнитного мультиволнового с программируемой динамикой изменения спектров излучения воздействия с измерением характеристик электрического сигнала на это стимулирующее воздействие в одной общей точке поверхности объекта диагностирования без влияния на соседние участки. 6 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 172 624 U1 (51) МПК G01Q 60/24 (2010.01) G01Q 70/08 (2010.01) B82Y 35/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2017105633, 20.02.2017 (24) Дата начала отсчета срока действия патента: 20.02.2017 Дата регистрации: (73) Патентообладатель(и): Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет" (RU) Приоритет(ы): (22) Дата подачи заявки: 20.02.2017 (45) Опубликовано: 17.07.2017 Бюл. № 20 U 1 2016127969 A1, 18.08.2016. WO 2005006347 A1, 20.01.2005. R U (54) ЗОНД АТОМНО-СИЛОВОГО МИКРОСПОПА С ПРОГРАММИРУЕМОЙ ДИНАМИКОЙ ИЗМЕНЕНИЯ СПЕКТРАЛЬНЫХ ПОРТРЕТОВ ИЗЛУЧАЮЩЕГО ЭЛЕМЕНТА ЛЕГИРОВАННОГО, ...

Подробнее
20-08-2018 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С РАЗДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ НА ОСНОВЕ КВАНТОВЫХ ТОЧЕК И МАГНИТНЫХ НАНОЧАСТИЦ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000182469U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, которая продета и жестко закреплена в одной из сквозных нанопор полимерной сферы большего диаметра с квантовыми точками структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из полимерной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей полимерной сферой малого диаметра со сквозными нанопорами, заполненными квантовыми точками и магнитными наночастицами с одинаковой ориентацией полюсов структуры ядро-оболочка. Компоненты сканирующего зонда выполнены магнитопрозрачными и оптомагнитопрозрачными. Дистанционное управление возбуждением квантовых точек структуры ядро-оболочка и их автономное перемещение по координате Z при сканировании боковых стенок наноколодцев объекта диагностирования осуществляется с помощью двух внешних встречно-направленных синхронизированных электромагнитных полей. Техническим результатом является возможность осуществления сканирования наноколодцев по координате Z, глубина которых больше длины зондирующей иглы, с одновременным сочетанием комбинаций точечного теплового и электромагнитного с оптической длиной волны воздействия на стенки наноколодцев с одновременным измерением механических характеристик (модуля ЮНГА) на это стимулирующее воздействие в одной точке поверхности объекта диагностирования с координатами X, Y, без влияния на соседние участки. 3 ил. И 1 182469 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 182 469” 4 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 28.08.2018 Дата внесения записи в Государственный реестр: 18.11.2019 Дата публикации и номер ...

Подробнее
22-10-2018 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С ОТДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, ЛЕГИРОВАННЫМ КВАНТОВЫМИ ТОЧКАМИ И МАГНИТНЫМИ НАНОЧАСТИЦАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000184332U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сущность полезной модели заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных нанотрубок с магнитопрозрачной отделяемой и автономно функционирующей полимерной сферой со сквозными нанометровыми порами, заполненными квантовыми точками и магнитными наночастицами с одинаковой ориентацией полюсов структуры ядро-оболочка. Дистанционное управление возбуждением квантовых точек структуры ядро-оболочка и их автономное перемещение по координате Z при сканировании боковых стенок наноколодцев объекта диагностирования осуществляется с помощью двух внешних встречно направленных синхронизированных электромагнитных полей. Техническим результатом является возможность осуществления сканирования наноколодцев по координате Z, глубина которых больше длины зондирующей иглы, с одновременным сочетанием комбинаций точечного теплового и электромагнитного с оптической длиной волны воздействия на стенки наноколодцев с одновременным измерением электрических характеристик на это стимулирующее воздействие в одной точке поверхности объекта диагностирования с координатами X, Y, без влияния на соседние участки. 3 ил. И 1 184332 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 184 332” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 15.10.2018 Дата внесения записи в Государственный реестр: 20.01.2020 Дата публикации и номер бюллетеня: 20.01.2020 Бюл. №2 Стр.: 1 па ССОСЗУВЗЬ ЕП

Подробнее
15-08-2019 дата публикации

Квазиоптический зонд для ближнепольного микроскопа

Номер: RU0000191646U1

Полезная модель относится к области ближнепольной микроскопии в оптическом, терагерцовом и СВЧ диапазонах и может быть использована при исследовании микрорельефа отражающих поверхностей, например, в кристаллографии, метрологии, при изучении высокомолекулярных соединений, в биологии, медицине и т.п. Технический результат - обеспечение фокусировки электромагнитного излучения в область шириной менее дифракционного предела, 0,15λ. Квазиоптический зонд для ближнепольного микроскопа включает источник электромагнитного излучения, приемник электромагнитного излучения, устройство канализации электромагнитного излучения, линзу. Линза выполнена в виде мезоразмерной частицы диаметром примерно не менее λ и не более 5λ, где λ - длина волны электромагнитного излучения, показатель преломления материала мезоразмерной частицы не более 2, а по оптической оси мезоразмерной частицы на ее теневой стороне выполнен канал постоянного сечения с характерным поперечным размером не более d=0,15λ. 1 з.п. ф-лы, 2 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 191 646 U1 (51) МПК G01Q 60/22 (2010.01) G01Q 70/10 (2010.01) B82Y 35/00 (2011.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК G01Q 60/22 (2019.05); G01Q 70/10 (2019.05); B82Y 35/00 (2019.05) (21)(22) Заявка: 2019111834, 18.04.2019 (24) Дата начала отсчета срока действия патента: 15.08.2019 Приоритет(ы): (22) Дата подачи заявки: 18.04.2019 (45) Опубликовано: 15.08.2019 Бюл. № 23 1 9 1 6 4 6 R U (56) Список документов, цитированных в отчете о поиске: Marouane Salhi and Philip G. Evans, "Photonic nanojet as a result of a focused nearfield diffraction," J. Opt. Soc. Am. B 36, 1031-1036 (2019). Zhu Hengyu, Chen Zaichun, Chong Tow Chong, and Hong Minghui, "Photonic jet with ultralong working distance by hemispheric shell," Opt. Express 23, 6626-6633 (2015). US 7394535 B1, 01.07.2008. (54) Квазиоптический зонд для ближнепольного микроскопа (57) Реферат: Полезная модель относится к области ...

Подробнее
01-10-2019 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С РАЗДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ НА ОСНОВЕ АПКОНВЕРТИРУЮЩИХ И МАГНИТНЫХ НАНОЧАСТИЦ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000192782U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии. Сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, которая продета и жестко закреплена в одной из сквозных нанопор полимерной сферы большего диаметра с апконвертирующими наночастицами структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из полимерной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей полимерной сферой малого диаметра со сквозными нанопорами, заполненными апконвертирующими наночастицами и магнитными наночастицами. Дистанционное управление возбуждением апконвертирующих наночастиц структуры ядро-оболочка и их автономное перемещение по координате Z при сканировании боковых стенок наноколодцев объекта диагностирования осуществляется с помощью работающего в диапазоне ближнего инфракрасного излучения внешнего источника возбуждения апконвертирующих наночастиц и двух внешних встречно направленных синхронизированных электромагнитных полей. Техническим результатом является возможность при сканировании осуществлять возбуждение ближним инфракрасным излучением. 3 ил. Ц 192782 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 192 782” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 15.10.2019 Дата внесения записи в Государственный реестр: 11.01.2021 Дата публикации и номер бюллетеня: 11.01.2021 Бюл. №2 Стр.: 1 па СС 6р ЕП

Подробнее
02-10-2019 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С ОТДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, ЛЕГИРОВАННЫМ АПКОНВЕРТИРУЮЩИМИ И МАГНИТНЫМИ НАНОЧАСТИЦАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000192810U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сущность полезной модели заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных нанотрубок с магнитопрозрачной отделяемой и автономно функционирующей полимерной сферой со сквозными нанометровыми порами, заполненными апконвертирующими наночастицами и магнитными наночастицами структуры ядро-оболочка, постоянно находящимися в управляющих электромагнитных полях. Дистанционное управление возбуждением апконвертирующих наночастиц структуры ядро-оболочка и их автономное перемещение по координате Z при сканировании боковых стенок наноколодцев биологического объекта диагностирования осуществляется с помощью двух работающих на выделенных длинах волн в диапазоне ближнего инфракрасного излучения встречно направленных внешних источников возбуждения апконвертирующих наночастиц и двух управляемых внешних встречно направленных синхронизированных электромагнитных полей. Техническим результатом является возможность осуществления сканирования наноколодцев по координате Z, глубина которых в десятки раз больше длины зондирующей иглы, электромагнитным, с разной оптической длиной волны воздействием на стенки наноколодцев с одновременным измерением электрических характеристик на это стимулирующее воздействие в одной точке поверхности объекта диагностирования с координатами X, Y, без влияния на соседние участки. 192810 И 1 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 192 810” 94 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 21.10.2019 Дата внесения записи в Государственный реестр: 11.01.2021 Дата публикации и номер бюллетеня: 11. ...

Подробнее
09-10-2019 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С РАЗДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, ЛЕГИРОВАННЫМ АПКОНВЕРТИРУЮЩИМИ И МАГНИТНЫМИ НАНОЧАСТИЦАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000192995U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сущность полезной модели заключается в том, что сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, которая продета и жестко закреплена в одной из сквозных нанопор полимерной сферы большего диаметра с апконвертирующими наночастицами структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из полимерной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей полимерной сферой малого диаметра со сквозными нанопорами, заполненными апконвертирующими наночастицами и магнитными наночастицами. Дистанционное управление возбуждением апконвертирующих наночастиц структуры ядро-оболочка и их автономное перемещение по координате Z при сканировании боковых стенок наноколодцев биологического объекта диагностирования осуществляется с помощью двух работающих на выделенных длинах волн в диапазоне ближнего инфракрасного излучения встречно направленных внешних источников возбуждения апконвертирующих наночастиц и двух внешних встречно направленных синхронизированных электромагнитных полей. Техническим результатом является возможность осуществления сканирования наноколодцев по координате Z, глубина которых в десятки раз больше длины зондирующей иглы, с сочетанием электромагнитного с оптической длиной волны воздействия на стенки наноколодцев с одновременным измерением механических характеристик (модуля Юнга) на это стимулирующее воздействие в одной точке поверхности объекта диагностирования с координатами X, Y без влияния на соседние участки. 2 ил. И 1 192995 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 192 995” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента ...

Подробнее
05-11-2019 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С ОТДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ НА ОСНОВЕ АПКОНВЕРТИРУЮЩИХ И МАГНИТНЫХ НАНОЧАСТИЦ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000193569U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии для диагностирования наноразмерных структур. Магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных нанотрубок с магнитопрозрачной отделяемой и автономно функционирующей полимерной сферой со сквозными нанометровыми порами, заполненными апконвертирующими наночастицами и магнитными наночастицами с одинаковой ориентацией полюсов структуры ядро-оболочка, постоянно находящимися в управляющих электромагнитных полях. Дистанционное управление возбуждением апконвертирующих наночастиц структуры ядро-оболочка и их автономное перемещение по координате Z при сканировании боковых стенок наноколодцев биологического объекта диагностирования осуществляется с помощью работающего в ближнем ИК-диапазоне волн внешнего источника возбуждения апконвертирующих наночастиц и двух управляемых внешних встречно направленных синхронизированных электромагнитных полей. Техническим результатом является возможность осуществления сканирования наноколодцев по координате Z, глубина которых в десятки раз больше длины зондирующей иглы, электромагнитным, с оптической длиной волны воздействием на стенки наноколодцев с одновременным измерением электрических характеристик на это воздействие в одной точке поверхности объекта диагностирования с координатами X, Y, без влияния на соседние участки. 3 ил. И 1 193569 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 193 569” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 13.10.2019 Дата внесения записи в Государственный реестр: 11.01.2021 Дата публикации и номер бюллетеня: 11.01.2021 Бюл. №2 Стр.: 1 па 699$6 | ЕП

Подробнее
05-02-2020 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С РАЗДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, ЛЕГИРОВАННЫМ КВАНТОВЫМИ ТОЧКАМИ, АПКОНВЕРТИРУЮЩИМИ И МАГНИТНЫМИ НАНОЧАСТИЦАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000195784U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сущность полезной модели заключается в том, что сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, продетой и жестко закрепленой в одной из сквозных нанопор полимерной сферы большего диаметра с апконвертирующими наночастицами и квантовыми точками структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из полимерной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей полимерной сферой малого диаметра со сквозными нанопорами с конусообразными входами, заполненными квантовыми точками, апконвертирующими наночастицами и магнитными наночастицами структуры ядро-оболочка. Дистанционное управление возбуждением апконвертирующих наночастиц, возбуждающие рядом расположенные квантовые точки структуры ядро-оболочка и их автономное перемещение по координате Z, при сканировании боковых стенок наноколодцев, осуществляется с помощью двух работающих в диапазоне ближнего инфракрасного излучения встречно направленных внешних источников возбуждения апконвертирующих наночастиц и двух внешних встречно направленных синхронизированных электромагнитных полей. Техническим результатом является возможность осуществления сканирования наноколодцев, глубиной в десятки раз больше длины зондирующей иглы, стабильным спектром электромагнитного излучения в оптическом диапазоне, с одновременным измерением механических характеристик (модуля Юнга) на это стимулирующее воздействие. Ц 195784 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ Во“ 195 784” 91 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 30.01.2020 Дата внесения записи в Государственный реестр: 12.04.2021 Дата ...

Подробнее
11-02-2020 дата публикации

СКАНИРУЮЩИЙ ЗОНД АТОМНО-СИЛОВОГО МИКРОСКОПА С ОТДЕЛЯЕМЫМ ТЕЛЕУПРАВЛЯЕМЫМ НАНОКОМПОЗИТНЫМ ИЗЛУЧАЮЩИМ ЭЛЕМЕНТОМ, ЛЕГИРОВАННЫМ КВАНТОВЫМИ ТОЧКАМИ, АПКОНВЕРТИРУЮЩИМИ И МАГНИТНЫМИ НАНОЧАСТИЦАМИ СТРУКТУРЫ ЯДРО-ОБОЛОЧКА

Номер: RU0000195925U1

Полезная модель относится к измерительной технике и может быть использована в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сущность полезной модели заключается в том, что магнитопрозрачный кантилевер соединен с электропроводящей магнитопрозрачной зондирующей иглой, вершина которой подвижно соединена с помощью двух вложенных углеродных нанотрубок с магнитопрозрачной отделяемой и автономно функционирующей полимерной сферой со сквозными нанометровыми порами с конусообразными входами, заполненными квантовыми точками, апконвертирующими наночастицами и магнитными наночастицами структуры ядро-оболочка, постоянно находящимися в управляющих электромагнитных полях. Дистанционное управление возбуждением апконвертирующих наночастиц структуры ядро-оболочка, возбуждающие рядом расположенные вокруг них квантовые точки структуры ядро-оболочка и их автономное перемещение по координате Z, при сканировании боковых стенок наноколодцев биологического объекта диагностирования, осуществляется с помощью двух встречно направленных внешних источников возбуждения апконвертирующих наночастиц и двух управляемых внешних встречно направленных синхронизированных электромагнитных полей. Техническим результатом является возможность осуществления сканирования наноколодцев, глубина которых в десятки раз больше длины зондирующей иглы, стабильным спектром электромагнитного излучения в оптическом диапазоне, с одновременным измерением электрических характеристик, изменяющихся на это стимулирующее воздействие. 3 ил. И 1 195925 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 195 925” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 21.02.2020 Дата внесения записи в Государственный реестр: 11.05.2021 Дата публикации и номер бюллетеня: 11.05.2021 Бюл. №14 Стр.: 1 па чсб9б6 р ЕП

Подробнее
01-11-2012 дата публикации

Scanning probe microscope with compact scanner

Номер: US20120278957A1
Принадлежит: BRUKER NANO INC

A scanner for a scanning probe microscope (SPM) including a head has a scanner body that houses an actuator, and a sensor that detects scanner movement. The scanner body is removable from the head by hand and without the use of tools and has a total volume of less than about five (5) square inches. Provisions are made for insuring that movement of a probe device coupled to the scanner is restricted to be substantially only in the intended direction. A fundamental resonance frequency for the scanner can be greater than 10 kHz.

Подробнее
06-12-2012 дата публикации

Multi-axis actuating apparatus

Номер: US20120306317A1
Автор: En-Te Hwu, Ing-Shouh Hwang
Принадлежит: Academia Sinica

A multi-axis actuating apparatus for a nano-positioning apparatus includes a movable element attached to a sample platform, a plurality of driving elements, and a plurality of actuators. The driving elements frictionally engage the movable element and are configured to selectively move the movable element along a first direction. The plurality of actuators move the plurality of driving elements when driving signals are applied to the plurality of actuators. Different driving signals may be applied to the plurality of actuators to cause different movement of the driving elements such that the movable element has different displacements in different directions along the plurality of driving elements. The movable element is titled due to the different displacements.

Подробнее
21-03-2013 дата публикации

Method and System for Characterizing or Identifying Molecules and Molecular Mixtures

Номер: US20130071837A1
Принадлежит:

A system and method for identifying a material passing through a nanopore filter wherein an electrical signal is detected as a result of the passage and that signal is processed in real-time using mathematical and statistical tools to identify the molecule. A carrier molecule is preferably attached to one or more molecule(s) under consideration using a non-covalent bond and the pore in the nanopore filter is sized so that the molecule rattles around in the pore before being discharged without passing through the filter pore. The present invention includes not only a method and system for identifying the molecule(s) under consideration but also a kit for setting up the filter as well as mathematical tools for analyzing the signals from the sensing circuitry for the molecule(s) under consideration. 1. A device for identifying at least one molecule , the device comprising two chambers of buffer separated by a membrane over an aperture having at least one nanometer-scale nanopore channel in the membrane , with an applied potential applied between the two chambers , a single blockade molecule that enters the nanopore channel but does not pass immediately therethrough , remaining in the nanopore channel for a period of time and modulating the nanopore channel , a sensor generating electrical signals associated with the blockading molecule and at least one processor using an algorithm for analyzing the electrical signal to characterize the blockade molecule.2. The device according to claim 1 , wherein the membrane includes a plurality of nanopore-scale nanopore channels.3. The device according to further including a system to externally excite the nanopore-scale nanopore channel.4. The device according to further including a sensor for identifying a binding event in the blockade molecule.5. The device according to further including a selector to read one nanopore channel at a selected time.6. The device claim 1 , according to further including signal processing calibration ...

Подробнее
28-03-2013 дата публикации

Ammonia Nanosensors, and Environmental Control System

Номер: US20130075690A1
Принадлежит: Nanomix, Inc.

Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described. 1. A nanostructure sensor for sensing an analyte of interest in a sample , comprising:a substrate;a nanostructured element disposed adjacent the substrate;one or more conducting elements in electrical communication with the first nanostructure; andat least one functionalization operatively associated with the nanostructured element, the at least one functionalization configured to provide sensitivity for the analyte of interest.2. A sensor as in claim 1 , wherein the nanostructured element includes a network of carbon nanotubes disposed adjacent the substrate.3. A sensor as in claim 2 , wherein the analyte of interest includes ammonia.4. A sensor as in claim 2 , wherein the at least one functionalization includes an organic recognition material.5. A sensor as in claim 4 , wherein the organic recognition material includes a polymer.6. A sensor as in claim 5 , wherein the polymer includes at least one of a conductive polymer and a semi-conductive polymer.7. A sensor as in claim 4 , wherein the organic recognition material includes PABS.8. A sensor as in claim 4 , wherein the organic recognition material includes a nonionic surfactant.9. A sensor as in claim 4 , wherein the organic recognition material includes glycerol.10. A sensor as in claim 4 , wherein the network includes at least one SWNTs which is stably associated with the organic recognition material prior to formation of the network.11. A sensor as in claim 2 , wherein the at least one functionalization includes an inorganic recognition material.12. A sensor as in claim 2 , wherein the one or more conducting ...

Подробнее
28-03-2013 дата публикации

ELECTRONIC DEVICE FOR MONITORING SINGLE MOLECULE DYNAMICS

Номер: US20130078622A1

A single molecule sensing device includes a first electrode, a second electrode and a single-walled carbon nanotube (SWNT) connected to the first and second electrodes. At least one linker molecule having first and second functional groups is functionalized with a sidewall of the SWNT, the at least one linker molecule having the first functional group non-covalently functionalized with a sidewall of the single-walled carbon nanotube. A single sensitizing molecule having at least one functional group is functionalized with the second functional group of the at least one linker molecule. 1. A single molecule sensing device comprising:a first electrode;a second electrode;a conductive channel connected to the first electrode and the second electrode;at least one linker molecule having first and second functional groups, the at least one linker molecule having the first functional group non-covalently functionalized with the conductive channel; anda single sensitizing molecule having at least one functional group, said at least one functional group of the single sensitizing molecule being functionalized with the second functional group of the at least one linker molecule.2. The single molecule sensing device of claim 1 , wherein the conductive channel comprises a single-walled carbon nanotube.3. The single molecule sensing device of claim 1 , wherein the first functional group is a functional group which interacts with the conductive channel through pi-pi stacking.4. The single molecule sensing device of claim 2 , wherein the first functional group is a functional group which interacts with the sidewall of the single-walled carbon nanotube through pi-pi stacking.5. The single molecule sensing device of claim 1 , wherein the single sensitizing molecule having at least one functional group is selected from a group consisting of an enzyme claim 1 , a protein claim 1 , a nucleic acid claim 1 , a ribozyme claim 1 , an aptamer claim 1 , and a polysaccharide.6. The single ...

Подробнее
11-04-2013 дата публикации

KIT FOR DOT IMMUNOGOLD DIRECTED FILTRATION ASSAY AND USE THEREOF

Номер: US20130089854A1
Автор: Lin Yuan
Принадлежит: XIAN WEITONG BIOSCIENCE LIMITED COMPANY

A kit for dot immunogold directed filtration assay including a dot immunogold directed filtration card, a detection probe labeled by nano colloidal gold or latex beads, a negative standard, a positive standard, and a cleaning solution. 114-. (canceled)15. A kit for dot immunogold directed filtration assay , comprising a dot immunogold filtration card , a detection probe labeled by nano colloidal gold or latex beads , a negative standard , a positive standard , and a cleaning solution , wherein the dot immunogold filtration card is a dot immunogold directed filtration card being capable of allowing a sample to be assayed and a probe labeled by colloidal gold to sequentially filtrate along a region covered by a coated probe.16. The kit for dot immunogold directed filtration assay of claim 15 , wherein the dot immunogold directed filtration card consists of four layers of a surface layer claim 15 , a microporous membrane claim 15 , a filtration limiting layer claim 15 , and a water absorbent pad from top to bottom claim 15 , the surface layer is formed of a water nonabsorbent material and has an opening at a central portion thereof claim 15 , the microporous membrane has an affinity for protein molecules claim 15 , at least one kind of probe is coated on the microporous membrane claim 15 , the filtration limiting layer is formed of a water nonabsorbent material and has an opening at a central portion thereof claim 15 , and the opening of the filtration limiting layer corresponds to the coated probe and has a shape fit to that of the coated probe.17. The kit for dot immunogold directed filtration assay of claim 16 , wherein the filtration limiting layer of the dot immunogold directed filtration card is formed of PVC claim 16 , PE claim 16 , PP claim 16 , PS claim 16 , ABS plastic claim 16 , a double side adhesive claim 16 , or a waterproof coating.18. The kit for dot immunogold directed filtration assay of claim 15 , wherein the dot immunogold directed filtration card ...

Подробнее
25-04-2013 дата публикации

Novel Phosphorylation of Cardiac Troponin I as a Monitor for Cardiac Injury

Номер: US20130101606A1
Принадлежит:

This invention relates to novel phosphorylation sites in cardiac Troponin I that are associated with the onset of heart failure. The phosphorylation sites, i.e., serine 5, tyrosine 26, threonine 51, serine 166, threonine 181 and/or serine 199, can be used as biomarkers for (i) identifying subjects at risk for the development of heart failure, (ii) treating subjects having a higher than normal level of the biomarker, and (iii) monitoring therapy of a subject at risk for the development of heart failure. Also described are antibodies, reagents, and kits for carrying out a method of the present invention. 1. An antibody that specifically recognizes phosphorylated serine 5 , tyrosine 26 , threonine 51 , serine 166 , threonine181 and/or serine 199 in cardiac Troponin I.2. The antibody of claim 1 , wherein the antibody is a monoclonal antibody.3. The antibody of claim 1 , wherein the antibody is a polyclonal antibody.4. The antibody of claim 1 , wherein the antibody is labeled.5. The antibody of claim 4 , wherein the label is a fluorescent label claim 4 , a moiety that binds another reporter ion claim 4 , a heavy ion claim 4 , a gold particle claim 4 , or a quantum dot.6. A kit for identifying a subject at risk for developing heart failure claim 4 , comprising at least one agent that detects the phosphorylation state of a cardiac Troponin I protein at serine 5 claim 4 , tyrosine 26 claim 4 , threonine 51 claim 4 , serine 166 claim 4 , threonine181 and/or serine 199.7. The kit of claim 6 , wherein the agent is an antibody that recognizes the phosphorylation state of serine 5 claim 6 , tyrosine 26 claim 6 , threonine 51 claim 6 , serine 166 claim 6 , threonine181 and/or serine 199.8. The kit of claim 6 , wherein the agent is an antibody that recognizes un- claim 6 , mono claim 6 , di- claim 6 , and/or tri-phosphorylated serine 5 claim 6 , tyrosine 26 claim 6 , threonine 51 claim 6 , serine 166 claim 6 , threonine181 and/or serine 199.9. The kit of claim 6 , wherein the ...

Подробнее
25-04-2013 дата публикации

MULTI-LEG LUMINESCENT NANOPARTICLES, MULTI-LEG LUMINESCENT NANOPARTICLE COMPOUNDS AND VARIOUS APPLICATIONS

Номер: US20130101999A1
Принадлежит: NANOAXIS, LLC

Multi-leg luminescent nanoparticles (“MLN's”) that can be paired to other MLN's as well s biological molecules to film branched multi-leg luminescent nanoparticles (“BMLN's) that can be used in biological multiplexing applications, imaging applications, biological detection applications and other biological applications. 1. A multi-leg luminescent nanoparticle , comprising:one or more legs extending from a base wherein the one or more legs and the base comprise a luminescent semiconductor nanoparticle;a shell that coats the one or more legs and the base; anda pairing moiety connected to the shell coated one or more legs and base, and configured to connect to an targeting molecule.2. The nanoparticle of claim 1 , wherein the base and one or more legs are a semiconductor or a III-V semiconductor.3. The nanoparticle of claim 2 , wherein the base and one or more legs are a II-VI semiconductor.4. The nanoparticle of claim 2 , wherein the base and one or more legs are a semiconductor.5. The nanoparticle of claim 3 , wherein the semiconductor is MgS claim 3 , MgSe claim 3 , MgTe claim 3 , CaS claim 3 , CaSe claim 3 , CaTe claim 3 , SrS claim 3 , SrSe claim 3 , SrTe claim 3 , BaS claim 3 , BaSe claim 3 , BaTe claim 3 , ZnS claim 3 , ZnSe claim 3 , ZnTe claim 3 , CdS claim 3 , CdSe claim 3 , CdTe claim 3 , HgS claim 3 , HgSe claim 3 , or HgTe.6. The nanoparticle of claim 4 , wherein the semiconductor is GaAs claim 4 , InGaAs claim 4 , InP claim 4 , or InAs.7. The nanoparticle of claim 1 , wherein the shell semiconductor is a II-VI semiconductor or a III-V semiconductor.8. The nanoparticle of claim 7 , wherein said shell is a II-VI semiconductor or a III-V semiconductor.9. The nanoparticle of claim 8 , wherein the semiconductor is MgS claim 8 , MgSe claim 8 , MgTe claim 8 , CaS claim 8 , CaSe claim 8 , CaTe claim 8 , SrS claim 8 , SrSe claim 8 , SrTe claim 8 , BaS claim 8 , BaSe claim 8 , BaTe claim 8 , ZnS claim 8 , ZnSe claim 8 , ZnTe claim 8 , CdS claim 8 , CdSe claim 8 , ...

Подробнее
02-05-2013 дата публикации

Probe head scanning probe microscope including the same

Номер: US20130111635A1
Автор: In-Su Jeon
Принадлежит: SAMSUNG ELECTRONICS CO LTD

A probe head and a scanning probe microscope (SPM) including the probe head are provided. The probe head includes a plurality of cantilevers, each including a probe; and a holder on which the plurality of cantilevers are installed, wherein a cantilever facing a sample is changed by rotating the holder.

Подробнее
23-05-2013 дата публикации

PIEZOELECTRIC DEVICE OF POLYMER

Номер: US20130127299A1
Принадлежит: SAMSUNG ELECTRO-MECHANICS CO., LTD.

The present invention relates to a piezoelectric device of a multi-layered structure on which first electrodes and second electrodes are sequentially stacked on a piezoelectric polymer and single surfaces or both surfaces of piezoelectric polymer. 1. A piezoelectric device with a multi-layered structure , comprising:a piezoelectric polymer; anda plurality of first electrodes and a plurality of second electrodes stacked sequentially a single surface or both surface of the piezoelectric polymer.2. The piezoelectric device according to claim 1 , wherein the piezoelectric polymer is polyvinylidene fluoride (PVDF) and polyvinylidene florodide-trifluoroethylene (PVDF-TrFE).3. The piezoelectric device according to claim 1 , wherein the first electrodes are graphene or a graphene composite including the same.4. The piezoelectric device according to claim 3 , wherein the graphene composite is made of a material obtained by mixing the graphene with at least one type material selected from a group consisting of a metal nano wire claim 3 , a metal nano particle claim 3 , a carbon nano tube and conductive polymer.5. The piezoelectric device according to claim 1 , wherein the second electrodes are transparent electrodes or opaque electrodes.6. The piezoelectric device according to claim 5 , wherein the transparent electrode is a grid electrode.7. The piezoelectric device according to claim 5 , wherein the opaque electrodes are obtained by coating metal on a whole surface.8. The piezoelectric device according to or claim 5 , wherein the metal is at least one powder claim 5 , a nano wire or a nano particle selected from a group consisting of Au claim 5 , Cu claim 5 , Al and Ag.9. The piezoelectric device according to claim 1 , further comprises:a plurality of third electrodes on the second electrodes.10. The piezoelectric device according to claim 9 , wherein the third electrodes are graphene or graphene composites including the same.11. The piezoelectric device according to claim ...

Подробнее
20-06-2013 дата публикации

ELECTRODE PATTERN OF TOUCH PANEL AND FORMING METHOD FOR THE SAME

Номер: US20130155011A1
Принадлежит: LG INNOTEK CO., LTD.

The present invention relates to an electrode pattern of a touch panel and a forming method of the electrode pattern of a touch panel. The electrode pattern of a touch panel according to the present invention includes a plurality of electrode pattern cells which are arranged on a substrate in a space, a dielectric layer formed on the electrode pattern cell, and a bridge electrode which is formed on the dielectric layer by using conductive material of black color and connects the electrode pattern cells. 1. A forming method of an electrode pattern of a touch panel , comprising:forming a plurality of electrode pattern cells formed to each other in a space on a substrate;forming a dielectric layer on the electrode pattern cell; andforming a bridge electrode which is formed on the dielectric layer by using conductive material of black color and connects the electrode pattern cells.2. The forming method of an electrode pattern of a touch panel of claim 1 , wherein the bridge conductive is formed with a metal oxide claim 1 , nitride or fluoride as a blackened metal material.3. The forming method of an electrode pattern of a touch panel of claim 1 , wherein the bridge conductive is blackened claim 1 , corresponding to the luminosity of the substrate claim 1 , the electrode pattern cell or the dielectric layer.4. The forming method of an electrode pattern of a touch panel of claim 2 , wherein the metal material is one of Al claim 2 , Au claim 2 , Ag claim 2 , Sn claim 2 , Cr claim 2 , Ni claim 2 , Ti and Mg.5. The forming method of an electrode pattern of a touch panel of claim 1 , wherein the bridge conductive is formed with Carbon Nano Tube.6. The forming method of an electrode pattern of a touch panel of claim 1 , wherein the bridge conductive is formed as a plurality of layers formed by using a plurality of conductive materials.7. The forming method of an electrode pattern of a touch panel of claim 6 , wherein among the plurality of layers of the bridge conductive claim ...

Подробнее
27-06-2013 дата публикации

ELECTRICAL-MECHANICAL COMPLEX SENSOR FOR NANOMATERIALS

Номер: US20130167272A1

Disclosed is an electrical-mechanical complex sensor for nanomaterials, including: a detector having a piezoelectric film therein, for measuring a mechanical property of a nanomaterial when a bending or tensile load is applied to the nanomaterial; a first detection film formed at an end of the detector to measure the mechanical property and an electrical property of the nanomaterial) in real time at the same time, when the nanomaterial contacts the first detection film; and a support to which one end of the detector is integrally connected, for supporting the detector. 1. An electrical-mechanical complex sensor for nanomaterials , comprising:{'b': 20', '35', '35, 'a detector () having a piezoelectric film therein, for measuring a mechanical property of a nanomaterial () when a bending or tensile load is applied to the nanomaterial ();'}{'b': 21', '20', '35', '35', '21, 'i': a', 'a, 'a first detection film () formed at an end of the detector () to measure the mechanical property and an electrical property of the nanomaterial () in real time at the same time, when the nanomaterial () contacts the first detection film (); and'}{'b': 10', '20', '20, 'a support () to which one end of the detector () is integrally connected, for supporting the detector (),'}{'b': 10', '11', '14', '35', '15', '21', '21', '35, 'i': b', 'a, 'wherein the support () comprises first to fourth electrodes ( to ) constituting a Wheatstone bridge circuit to measure the load applied to the nanomaterial (), and a fifth electrode () haying a second detection film () at an end thereof to be connected to a first detection film (), for measuring an electrical property of the nanomaterial ().'}220222324232224. The electrical-mechanical complex sensor of claim 1 , wherein the detector () has a structure in which a silicon oxide film () claim 1 , an Au layer () claim 1 , a piezoelectric film () formed of a piezoelectric material claim 1 , an Au layer () claim 1 , and a silicon oxide film () are laminated ...

Подробнее
11-07-2013 дата публикации

TOUCH SENSOR AND TOUCH PANEL INCLUDING THE SAME

Номер: US20130176072A1
Принадлежит: SAMSUNG ELECTRONICS CO., LTD.

A touch sensor using a graphene diode and/or a touch panel including the touch sensor. The touch sensor includes a first sensing electrode configured to sense a touch; a first output line configured to transmit an electrical signal; and a first diode device including a first control terminal connected to the first sensing electrode, a first anode terminal connected to a voltage application unit, and a first cathode terminal connected to the first output line. 1. A touch sensor for transforming a touch of a user into an electrical signal , the touch sensor comprising:a first sensing electrode configured to sense the touch;a first output line configured to transmit the electrical signal; anda first diode device including a first control terminal connected to the first sensing electrode, a first anode terminal connected to a voltage application unit, and a first cathode terminal connected to the first output line.2. The touch sensor of claim 1 , wherein the first sensing electrode is configured to increase or decrease a voltage based on the touch claim 1 , the first diode device is configured to turn on or off based on the voltage and the electrical signal is generated by the turned-on or turned-off first diode device.3. The touch sensor of claim 1 , further comprising:a capacitive device connected to the first diode device; anda switching device connected between the capacitive device and the first output line.4. The touch sensor of claim 3 , wherein the capacitive device is configured to store the electrical signal generated by the first diode device claim 3 , andwherein the switching device is configured to transmit the electrical signal stored in the capacitive device to the first output line in response to a scan signal.5. The touch sensor of claim 3 , wherein the switching device includes a transistor device.6. The touch sensor of claim 5 , wherein the transistor device includes a gate terminal configured to receive the scan signal claim 5 , a first source or ...

Подробнее
11-07-2013 дата публикации

PROBE SHAPE EVALUATION METHOD FOR A SCANNING PROBE MICROSCOPE

Номер: US20130180019A1
Принадлежит: SII NANOTECHNOLOGY INC.

Provided is a method of evaluating a probe tip shape in a scanning probe microscope, including: measuring the probe tip shape by a probe shape test sample having a needle-like structure; determining radii of cross-sections at a plurality of distances from the apex; and calculating, based on the distances and the radii, a radios of curvature when the probe tip shape is approximated by a circle. 1. A probe shape evaluation method of measuring a tip shape of a probe by a scanning probe microscope to evaluate sharpness of a tip of the probe , comprising:a proximity step of relatively bringing the tip of the probe provided to the scanning probe microscope one of into contact with and into close distance at a predetermined interval to a surface of an evaluation sample disposed to oppose the tip of the probe;a scanning step of performing predetermined scanning while keeping a constant physical quantity that acts between the tip of the probe and the surface of the evaluation sample;a data acquisition step of acquiring a surface shape of the evaluation sample;a data extraction step of extracting, from pieces of acquired data, at least two sets of data pieces each containing a predetermined height (h) on a central axis drawn from an apex of the probe and a distance (r) between the central axis and an outer edge of the measured tip shape at the predetermined height, the at least two sets of data pieces having different heights (h); and{'sub': 'tip', 'a calculation step of calculating, based on the heights (h) and the distances (r) of the at least two extracted sets of data pieces, a radius of curvature (R) when the tip of the probe is approximated as a spherical shape.'} 1. Field of the InventionThe present invention relates to a method of measuring a radius of curvature of a probe of a cantilever used in a scanning probe microscope.2. Description of the Related ArtIn a scanning probe microscope, the tip shape of a probe directly involves a contact state with a sample, and ...

Подробнее
12-09-2013 дата публикации

DIRECT DETECTION OF UNAMPLIFIED HEPATITIS C VIRUS RNA USING UNMODIFIED GOLD NANOPARTICLES

Номер: US20130236880A1
Принадлежит: American University of Cairo

A gold nanoparticle-based colorimetric assay kit for hepatitis C virus RNA that detects unamplified HCV RNA in clinical specimens using unmodified AuNPs and oligotargeter polynucleotides that bind to HCV RNA. A method for detecting hepatitis C virus comprising contacting a sample suspected of containing hepatitis C virus with a polynucleotide that binds to hepatitis C virus RNA and with gold nanoparticles, detecting the aggregation of nanoparticles, and detecting hepatitis C virus in the sample when the nanoparticles aggregate (solution color becomes blue) in comparison with a control or a negative sample not containing the virus when nanoparticles do not aggregate (solution color remains red). 1. A method for detecting hepatitis C virus comprisingcontacting a sample suspected of containing hepatitis C virus with an oligotargeter that binds to hepatitis C virus RNA and with gold nanoparticles,detecting the aggregation of nanoparticles, anddetecting hepatitis C virus in the sample when the nanoparticles aggregate (solution becomes blue) in comparison with a control or a negative sample not containing the virus where the nanoparticles do not aggregate (solution remains red).2. The method of claim 1 , wherein the sample is blood or plasma.3. The method of claim 1 , wherein the sample is serum claim 1 , optionally containing EDTA.4. The method of claim 1 , wherein the sample is saliva.5. The method of claim 1 , wherein the sample is urine.6. The method of claim 1 , wherein the gold nanoparticles are spherical and have an average diameter of 12 to 20 nm.7. The method of claim 1 , wherein the gold nanoparticles are spherical and have an average diameter of 15-18 nm.8. The method of claim 1 , wherein the oligotargeter that binds to hepatitis C RNA comprises a portion of a 5′ untranslated region of hepatitis C genomic RNA.9. The method of claim 1 , wherein the oligotargeter that binds to hepatitis C RNA comprises a portion of hepatitis C genomic RNA other than the 5′ ...

Подробнее
31-10-2013 дата публикации

Microscale Metallic CNT Templated Devices and Related Methods

Номер: US20130285160A1
Принадлежит: BRIGHAM YOUNG UNIVERSITY

A microscale device comprises a patterned forest of vertically grown and aligned carbon nanotubes defining a carbon nanotube forest with the nanotubes having a height defining a thickness of the forest, the patterned forest defining a patterned frame that defines one or more components of a microscale device. A conformal coating of substantially uniform thickness at least partially coats the nanotubes, defining coated nanotubes and connecting adjacent nanotubes together, without substantially filling interstices between individual coated nanotubes. A metallic interstitial material infiltrates the carbon nanotube forest and at least partially fills interstices between individual coated nanotubes. 1. A microscale device , comprising:a patterned forest of vertically grown and aligned carbon nanotubes defining a carbon nanotube forest with the nanotubes having a height defining a thickness of the forest, the patterned forest defining a patterned frame that defines one or more components of a microscale device;a conformal coating of substantially uniform thickness at least partially coating the nanotubes, defining coated nanotubes and connecting adjacent nanotubes together, without substantially filling interstices between individual coated nanotubes; anda metallic interstitial material infiltrating the carbon nanotube forest and at least partially filling interstices between individual coated nanotubes.2. The device of claim 1 , wherein at least one component of the patterned frame is fixed and at least one component of the patterned frame is moveable relative to the fixed component.3. The device of claim 1 , wherein the metallic interstitial material is applied by an electroplating process.4. The device of claim 1 , wherein conformal coating comprises a carbon material.5. The device of claim 1 , wherein the thickness of the carbon nanotube forest is between 3 μm (microns) and 9 mm.6. The device of claim 1 , wherein the microscale device comprises a MEMS device.7. The ...

Подробнее
31-10-2013 дата публикации

SEMICONDUCTOR DEVICES HAVING NANOCHANNELS CONFINED BY NANOMETER-SPACED ELECTRODES

Номер: US20130288417A1
Принадлежит:

Semiconductor devices having integrated nanochannels confined by nanometer spaced electrodes, and VLSI (very large scale integration) planar fabrication methods for making the devices. A semiconductor device includes a bulk substrate and a first metal layer formed on the bulk substrate, wherein the first metal layer comprises a first electrode. A nanochannel is formed over the first metal layer, and extends in a longitudinal direction in parallel with a plane of the bulk substrate. A second metal layer is formed over the nanochannel, wherein the second metal layer comprises a second electrode. A top wall of the nanochannel is defined at least in part by a surface of the second electrode and a bottom wall of the nanochannel is defined by a surface of the first electrode. 1. A method of forming a semiconductor device , comprising:depositing a first metal layer on a bulk substrate, the first metal layer comprising a first electrode;depositing a first dielectric layer on the first metal layer, the first dielectric layer having a thickness h;depositing a second dielectric layer on the first dielectric layer;forming a second metal layer on the second dielectric layer, the second metal layer comprising a second electrode having a width w, which extends through the second dielectric layer down to the first dielectric layer;etching the first dielectric layer selective to the first metal layer, the second metal layer and the second dielectric layer to faun an undercut structure at a lateral depth d into a side surface of the first dielectric layer; andanisotropically depositing a third dielectric layer to enclose the undercut structure in the first dielectric layer to form a nanochannel that longitudinally extends in a direction parallel to a plane of the bulk substrate,wherein a top wall of the nanochannel is defined at least in part by a surface of the second electrode and a bottom surface of the second dielectric layer,wherein a bottom wall of the nanochannel is defined by ...

Подробнее
07-11-2013 дата публикации

BIO-CHIP FOR SECONDARY ION MASS SPECTROSCOPY AND METHOD OF FABRICATING THE SAME

Номер: US20130292561A1

There are provided a bio-chip for secondary ion mass spectrometry and a method of fabricating the same, the bio-chip, which is a bio-chip for analyzing a biochemical material using the secondary ion mass spectrometry, including: a substrate; and core-shell particles positioned above substrate, wherein the core-shell particles each include a metal nanoparticle as a core and a metal shell surrounding the metal nanoparticle.

Подробнее
07-11-2013 дата публикации

METHOD AND APPARATUS FOR PROVIDING A MULTIFUNCTION SENSOR USING MESH NANOTUBE MATERIAL

Номер: US20130293429A1

A method and apparatus for providing multiple functions using nanotube threads comprising: a first nanotube thread and a second nanotube thread, the first nanotube thread and the second nanotube thread arranged to form a mesh, wherein the first nanotube thread further comprises a measurable invariant property and the second nanotube thread comprises a measurable variant property. 1. An apparatus for providing multiple functions using nanotube threads comprising:a first nanotube thread and a second nanotube thread, the first nanotube thread and the second nanotube thread arranged to form a mesh;wherein the first nanotube thread further comprises a measurable invariant property and the second nanotube thread comprises a measurable variant property.2. The apparatus of claim 1 , wherein the nanotubes are carbon nanotubes and the first nanotube thread and the second nanotube thread claim 1 , alternately orthogonally cross each other to form the mesh.3. The apparatus of claim 1 , wherein the first nanotube thread is a conductive material and the second nanotube thread is a semiconductive material claim 1 , the semiconductive material having a characteristic that changes when the semiconductive material is exposed to a particular gas.4. The apparatus of claim 3 , wherein the first nanotube thread comprises at least one of a conductive multiwall nanotube thread or a conductive single wall nanotube thread claim 3 , and the second nanotube thread comprises at least one of a semiconductive multiwall nanotube thread with defects added or a single wall nanotube thread with defects added.5. The apparatus of claim 1 , further comprising the mesh on a substrate mounted on a ground plane claim 1 , a microstrip feedline on the ground plane claim 1 , and an aperture in the substrate and ground plane to couple the mesh to the microstrip feedline.6. The apparatus of claim 5 , wherein the feedline is coupled to a transceiver and a gas detector.7. The apparatus of wherein intersections of ...

Подробнее
07-11-2013 дата публикации

OPTICAL PHANTOMS FOR USE WITH OCULAR SURFACE INTERFEROMETRY (OSI) DEVICES AND SYSTEMS CONFIGURED TO MEASURE TEAR FILM LAYER THICKNESS(ES), AND RELATED USE FOR CALIBRATION

Номер: US20130293842A1
Принадлежит: TearScience, Inc.

Embodiments of the detailed description include optical phantoms for use with ocular surface interferometery (OSI) devices and systems configured to measure tear film layer thickness(es), and related use for calibration. The ocular surface interferometry (OSI) devices, systems, and methods can be used for imaging an ocular tear film and/or measuring a tear film layer thickness (TFLT) in a patient's ocular tear film. The OSI devices, systems, and methods can be used to measure the thickness of the lipid layer component (LLT) and/or the aqueous layer component (ALT) of the ocular tear film. “TFLT” as used herein includes LLT, ALT, or both LLT and ALT. “Measuring TFLT” as used herein includes measuring LLT, ALT, or both LLT and ALT. Imaging the ocular tear film and measuring TFLT can be used in the diagnosis of a patient's tear film, including but not limited to lipid layer and aqueous layer deficiencies. 1. An optical phantom having specularly reflective characteristics of an ocular tear film , comprising:a substrate; andat least one material layer disposed onto the substrate;wherein the at least one material layer provides a refractive index ratio between the at least one material layer and the substrate to mimic or substantially mimic a refractive index ratio between a lipid layer and an aqueous layer of an ocular tear film.2. The optical phantom of claim 1 , wherein the substrate comprises fused silica.3. The optical phantom of claim 2 , wherein an index of refraction of the fused silica is about 1.46.4. The optical phantom of claim 1 , wherein the substrate comprises crown glass.5. The optical phantom of claim 4 , wherein an index of refraction of the crown glass is approximately 1.517.6. The optical phantom of claim 1 , wherein the at least one material layer comprises magnesium oxide (MgO).7. The optical phantom of claim 1 , wherein the at least one material layer has an index of refraction of approximately 1.68.8. The optical phantom of claim 1 , wherein at ...

Подробнее
14-11-2013 дата публикации

TOUCH PANEL AND METHOD FOR MANUFACTURING ELECTRODE MEMBER

Номер: US20130299220A1
Принадлежит: LG INNOTEK CO., LTD.

Provided is a touch panel. The touch panel includes a substrate and an electrode member disposed on the substrate. The electrode member includes a base material for electrode having first and second surfaces opposite to each other, a first electrode disposed on the first surface, and a second electrode disposed on the second surface. 1. A touch panel comprising:a substrate; andan electrode member disposed on the substrate, wherein the electrode member comprises:a base material for electrode having first and second surfaces opposite to each other;a first electrode disposed on the first surface; anda second electrode disposed on the second surface.2. The touch panel according to claim 1 , wherein the first electrode is disposed in a first direction claim 1 , and the second electrode is disposed in a second direction crossing the first direction.3. The touch panel according to claim 1 , wherein the first and second electrodes are formed of at least one selected from the group consisting of indium tin oxide claim 1 , indium zinc oxide claim 1 , carbon nano tube (CNT) claim 1 , conductive polymer claim 1 , and Ag nano wire.4. The touch panel according to claim 1 , wherein the base material for electrode is formed of at least one of poly (ethylene terephthalate (PET)) film and glass.5. The touch panel according to claim 1 , further comprising an optically clear adhesive (OCA) between the substrate and the electrode member.6. A method for manufacturing an electrode member claim 1 , the method comprising:preparing a base material for electrode; andforming a electrode on first and second surfaces opposite to each other.7. The method according to claim 6 , wherein the forming of the electrode comprises an exposure process.8. The method according to claim 7 , wherein the forming of the electrode comprises exposing the first and second surfaces of the base material for electrode at the same time to form the electrode.9. (canceled)10. (canceled)11. The method according to claim ...

Подробнее
14-11-2013 дата публикации

ANALYSIS APPARATUS FOR HIGH ENERGY PARTICLE AND ANALYSIS METHOD USING THE SAME

Номер: US20130299706A1

Provided is an analysis apparatus for a high energy particle and an analysis method for a high energy particle. The analysis apparatus for the high energy particle includes a scintillator generating photons with each unique wavelength by the impinging with a plurality of kinds of accelerated high energy particles, a parallel beam converting unit making the photons proceed in parallel to one another, a diffraction grating panel making the photons proceeding in parallel to one another enter at a certain angle, and refracting the photons at different angles depending on each unique wavelength, and a plurality of sensing units arranged on positions where the photons refracted at different angles from the diffraction grating panel reach in a state of being spatially separated, and detecting each of the photons. 1. An analysis apparatus for a high energy particle comprising:a scintillator generating photons with each unique wavelength by the impinging with a plurality of kinds of accelerated high energy particles;a parallel beam converting unit making the photons proceed in parallel to one another;a diffraction grating panel making the photons proceeding in parallel to one another enter at a certain angle, and refracting the photons at different angles depending on each unique wavelength; anda plurality of sensing units arranged on positions where the photons refracted at different angles from the diffraction grating panel reach in a state of being spatially separated, and detecting each of the photons.2. The analysis apparatus of claim 1 , wherein the diffraction grating panel comprises a diffraction grating on which 500 to 2 claim 1 ,000 linear patterns per 1 mm are arranged in parallel to one another.3. The analysis apparatus of claim 2 , wherein the linear patterns are metallic or insulating materials.4. The analysis apparatus of claim 1 , wherein the scintillator comprises a plurality of components that respond to each of the plurality of kinds of the high energy ...

Подробнее
21-11-2013 дата публикации

METHOD OF MANUFACTURING THREE-DIMENSIONAL NANOCHANNEL DEVICE

Номер: US20130306595A1

A method of manufacturing a three-dimensional nanochannel device is provided. In the method, a first insulation layer is formed on a substrate, a first opening is formed in the first insulation layer, and a patterned photoresist is formed on the first insulation layer. The patterned photoresist includes at least one second opening, wherein the second opening is adjacent to the first opening and exposes the first insulation layer. Afterwards, the first insulation layer is etched and the substrate is also continued to be etched by using the patterned photoresist as a mask, so as to form a housing space, wherein a depth of the housing space is at least two orders greater than a thickness of the first insulation layer. Thereafter, the patterned photoresist is removed, and a second insulation layer is formed on a surface of the substrate. 1. A method of manufacturing a three-dimensional nanochannel device , comprising:forming a first insulation layer on a substrate;forming a first opening in the first insulation layer;forming a first patterned photoresist on the first insulation layer, the patterned photoresist comprises at least one second opening, wherein the second opening is adjacent to the first opening and exposes the first insulation layer;etching the first insulation layer and continuing to etch the substrate by using the patterned photoresist as a mask, so as to form a housing space, wherein a depth of the housing space is at least two orders greater than a thickness of the first insulation layer;removing the patterned photoresist; andforming a second insulation layer on an etched surface of the substrate.2. The method of manufacturing the three-dimensional nanochannel device as claimed in claim 1 , wherein the substrate comprises a silicon chip claim 1 , and the first insulation layer comprises an oxide layer.3. The method of manufacturing the three-dimensional nanochannel device as claimed in claim 1 , wherein a bottom of the housing space is smaller than a ...

Подробнее
12-12-2013 дата публикации

NANONEEDLE PLASMONIC PHOTODETECTORS AND SOLAR CELLS

Номер: US20130330875A1

The present disclosure provides a method for a catalyst-free growth mode of defect-free Gallium Arsenide (GaAs)-based nanoneedles on silicon (Si) substrates with a complementary metal-oxide-semiconductor (CMOS)-compatible growth temperature of around 400° C. Each nanoneedle has a sharp 2 to 5 nanometer (nm) tip, a 600 nm wide base and a 4 micrometer (μm) length. Thus, the disclosed nanoneedles are substantially hexagonal needle-like crystal structures that assume a 6° to 9° tapered shape. The 600 nm wide base allows the typical micro-fabrication processes, such as optical lithography, to be applied. Therefore, nanoneedles are an ideal platform for the integration of optoelectronic devices on Si substrates. A nanoneedle avalanche photodiode (APD) grown on silicon is presented in this disclosure as a device application example. The APD attains a high current gain of 265 with only 8V bias. 1. A method of making a photodetector device comprising:providing a wafer having a substrate onto which a nanostructure is to be grown;cleaning contaminates from the wafer;annealing the wafer;growing a nanostructure core onto the substrate of the wafer;growing a shell over the nanostructure core;depositing a metal film onto a side of a top portion of the shell;etching away a portion of the shell not having the metal film;applying an insulating layer over the nanostructure core;depositing a top metal contact over the metal film and the insulating layer; anddepositing a bottom metal contact on the substrate.2. The method of wherein the substrate is made of gallium arsenide (GaAs).3. The method of further including a deoxidizing step.4. The method of wherein the substrate is either gallium arsenide (GaAs) or silicon (Si).5. The method of claim 4 , further including a step of mechanically treating the substrate to initiate surface roughness in order to catalyze a three-dimensional island growth.6. The method of wherein the annealing of the wafer takes place within a temperature range of ...

Подробнее
26-12-2013 дата публикации

FIELD EFFECT TRANSISTOR HAVING GERMANIUM NANOROD AND METHOD OF MANUFACTURING THE SAME

Номер: US20130344664A1
Принадлежит: SAMSUNG ELECTRONICS CO., LTD.

A field effect transistor having at least one Ge nanorod and a method of manufacturing the field effect transistor are provided. The field effect transistor may include a gate oxide layer formed on a silicon substrate, at least one nanorod embedded in the gate oxide layer having both ends thereof exposed, a source electrode and a drain electrode connected to opposite sides of the at least one Ge nanorod, and a gate electrode formed on the gate oxide layer between the source electrode and the drain electrode. 19.-. (canceled)10. A method of manufacturing a field effect transistor , the method comprising:forming an insulating layer and a first silicon layer on a silicon substrate;sequentially forming a SiGe layer and a second silicon layer on the first silicon layer;forming silicon oxide layers by oxidizing the first and second silicon layers and Si of the SiGe layer on the silicon substrate, and forming at least two Ge nanorods from the SiGe layer;forming a source electrode connected to one end of each of the at least two Ge nanorods and forming a drain electrode connected to another end of each of the at least two Ge nanorodsforming a gate insulation layer that surrounds the at least two Ge nanorods in a region for forming a channel region between the source electrode and the drain electrode; andforming a gate electrode on the gate insulation layer.11. The method of claim 10 , wherein the sequentially forming of the SiGe layer and the second silicon layer is repeated 2 to 5 times on the first silicon layer.12. The method of claim 10 , wherein the insulating layer is formed of a material having an etching rate different from that of the silicon oxide layers.13. The method of claim 10 , wherein forming the source electrode and the drain electrode comprises:forming a first photoresist in the region for forming the channel region;exposing both ends of the at least two Ge nanorods by removing the silicon oxide layers in regions for forming the source electrode and the ...

Подробнее
02-01-2014 дата публикации

METHOD OF PREPARING AND IMAGING A LAMELLA IN A PARTICLE-OPTICAL APPARATUS

Номер: US20140007307A1
Принадлежит:

The invention relates to a method of preparing and imaging a sample using a particle-optical apparatus, equipped with an electron column and an ion beam column, a camera system, a manipulator. 1. A method of preparing and imaging a sample using a particle-optical apparatus , the particle-optical apparatus comprising:an electron column mounted on an evacuable sample chamber, the electron column equipped to produce a beam of electrons, the beam of electrons for irradiating the sample,a camera system for forming an electron image of the diffraction pattern caused by electrons transmitted through the sample, anda manipulator for positioning the sample in the sample chamber with respect to the beam of electrons, preparing the sample,', 'positioning the sample in the sample chamber with respect to the beam of electrons,', 'forming an electron image on the camera system using the electron column, and', 'deriving a first ptychographic image of the sample from said first electron image, the ptychographic image the result of an iterative converging process in which estimates of the sample are formed,, 'the method comprising the steps of the particle-optical apparatus comprises a focused ion beam column mounted on the sample chamber for producing a focused ion beam, the focused ion beam for machining the sample,', 'preparing the sample involves positioning the sample with respect to the ion beam and thinning the sample using the focused ion beam,', 'after forming the first image, a layer of the sample is removed using the ion beam, after which a second electron image is formed using the electron column, and', 'a second ptychographic image of the sample is derived using the second electron image, and', 'the sample is kept under vacuum at least from the moment that the sample is prepared by thinning the sample with the focused ion beam until the moment that the second electron image is taken., 'wherein2. The method of in which the first ptychographic image or one of the guesses ...

Подробнее
16-01-2014 дата публикации

HYBRID MICROPROBE FOR ELECTROCHEMICAL AND SERS MONITORING, SCANNING AND FEEDBACK STIMULATION AND THE PREPARATION METHOD THEREOF

Номер: US20140014507A1
Принадлежит: SNU R&DB FOUNDATION

The present disclosure relates to a probe capable of electrochemical and Raman spectroscopic monitoring wherein a Raman-active gold microshell having conductivity is attached to the tip of a glass microcapillary tube in which a conductive material is coated on an inner wall thereof by electroless plating. By coupling the probe with a system capable of moving the probe, the activities of various catalyst materials can be detected quickly and information of intermediate products moving from and adsorbed on the surface can be provided. 1. A method for preparing a probe , comprising (a) preparing a metallic microshell by coating a first metallic material on the surface of a spherical template , (b) preparing a conductive capillary tube by coating a conductive material on the inner wall of a capillary tube , (c) trapping the metallic microshell in a tip of the conductive capillary tube and (d) coating a second metallic material on the inner wall of the conductive capillary tube wherein the metallic microshell is trapped.2. The method for preparing a probe according to claim 1 , wherein the template is selected from polystyrene claim 1 , poly(methyl methacrylate) claim 1 , silica and a mixture thereof claim 1 , the first metallic material is selected from Au claim 1 , Ag claim 1 , Pt claim 1 , Pd claim 1 , Cu and a mixture thereof claim 1 , the conductive material is selected from Ru claim 1 , Pt claim 1 , Cu claim 1 , Co claim 1 , Ni and a mixture thereof and the second metallic material claim 1 , which may be identical to or different from the first metallic material claim 1 , is selected from Au claim 1 , Ag claim 1 , Pt claim 1 , Pd claim 1 , Cu and a mixture thereof.3. The method for preparing a probe according to claim 1 , wherein the metallic microshell has a diameter of 1-3 μm and the tip of the capillary tube has a diameter corresponding to 50-99% of the diameter of the metallic microshell.4. The method for preparing a probe according to claim 1 , wherein (a) is ...

Подробнее
16-01-2014 дата публикации

CARBON NANOTUBE BASED ELECTROSTRICTIVE ELEMENT

Номер: US20140015372A1
Принадлежит:

An carbon nanotube based electrostrictive element includes two electrostrictive layers spaced with each other, an electrical connector, and two electrodes. The two electrostrictive layers are electrically connected to each other at a first side, and spaced and insulated from each other at a second side via the electrical connector. The two electrodes are located at the second side and electrically connected respectively to the two electrostrictive layers. 1. A carbon nanotube based electrostrictive element comprising:two electrostrictive layers electrically connected to each other at a first side, and spaced and insulated from each other at a second side, wherein the first side is opposite to the second side, the two electrostrictive layers are substantially parallel to each other and spaced from each other, and the two electrostrictive layers extend from the first side to the second side, wherein each of the two electrostrictive layers comprises a flexible polymer matrix and a plurality of carbon nanotubes disposed in the flexible polymer matrix, and the plurality of carbon nanotubes are interconnected with each other forming a conductive network;an electrical connector located at the first side, wherein the two electrostrictive layers are electrically connected to each other via the electrical connector at the second side; andtwo electrodes located at the second side, wherein the two electrodes are electrically connected respectively to the two electrostrictive layers.2. The carbon nanotube based electrostrictive element of claim 1 , wherein the two electrostrictive layers are located at two different planes and are substantially parallel to each other.3. The carbon nanotube based electrostrictive element of claim 1 , wherein the electrical connector has a same composition as the two electrostrictive layers claim 1 , and the carbon nanotubes in the electrical connector and the electrostrictive layers connect to each other to form a whole conductive network.4. The ...

Подробнее
23-01-2014 дата публикации

CARBON NANOTUBE TEMPERATURE AND PRESSURE SENSORS

Номер: US20140023116A1
Принадлежит: UT-BATTELLE LLC

The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein. 1. A method of measuring temperature comprising:providing a sensor element composed of a plurality of electrically interconnected nanostructures having a fixed number of junctions between each of the electrically interconnected nanostructures;applying a current through the electrically interconnected nanostructures, measuring electrical properties of the electrically interconnected nanostructures in response to an application of temperature to the sensor element comprised of the plurality of electrically interconnected nanostructures, andcorrelating the electrical properties of the electrically interconnected nanostructures to temperature.2. The method of claim 1 , wherein the rigid substrate has a shear modulus of 0.1 Gpa or greater.3. The method of claim 2 , wherein the electrically interconnected nanostructures are carbon nanotubes having a purity of greater than 50%. This application is a divisional of U.S. patent application Ser. No. 12/547,562, filed Aug. 26, 2009 the entire content and disclosure of which is incorporated herein by reference.This invention was made with government support under contract no. DE-AC05-000R22725 awarded by the U.S. Department of Energy. The government has certain rights in the invention.The present invention generally relates to sensors composed of nanoscale structures, such as carbon nanotubes.Materials technology has had a profound impact on the evolution of human civilization. In the ...

Подробнее
23-01-2014 дата публикации

ADAPTIVE MODE SCANNING PROBE MICROSCOPE

Номер: US20140026263A1
Автор: Humphris Andrew
Принадлежит: Infinitesima Limited

A scanning probe microscope comprising a probe that is mechanically responsive to a driving force. A signal generator provides a drive signal to an actuator that generates the driving force, the drive signal being such as to cause the actuator to move the probe repeatedly towards and away from a sample. A detection system is arranged to output a height signal indicative of a path difference between light reflected from the probe and a height reference beam. Image processing apparatus is arranged to use the height signal to form an image of the sample. Signal processing apparatus is arranged to monitor the probe as the probe approaches a sample and to detect a surface position at which the probe interacts with the sample. In response to detection of the surface position, the signal processing apparatus prompts the signal generator to modify the drive signal. 1. A scanning probe microscope comprising:a probe that is mechanically responsive to a driving force,a signal generator for providing a drive signal to an actuator that generates the driving force, the drive signal being such as to cause the actuator to move the probe repeatedly towards and away from a sample;a detection system arranged to output a height signal indicative of a path difference between light reflected from the probe and a height reference beam;image processing apparatus that is arranged to use the height signal to form an image of the sample; andsignal processing apparatus arranged to monitor the probe as the probe approaches a sample and to detect a surface position at which the probe interacts with the sample; wherein in response to detection of the surface position the signal processing apparatus prompts the signal generator to modify the drive signal.2. A scanning probe microscope according to in which the signal processing apparatus is arranged to monitor the height signal as the probe approaches a sample and to detect the surface position at which the probe interacts with the sample.3. A ...

Подробнее
30-01-2014 дата публикации

SYSTEM FOR FABRICATING NANOSCALE PROBE AND METHOD THEREOF

Номер: US20140033374A1
Принадлежит: Academia Sinica

Disclosed is a method for fabricating a nanoscale probe. A first conductor and a second conductor are immersed into an electrolyte contained in an electrolytic tank. The first conductor and the second conductor are connected to a power source respectively. An electrolytic reaction is established when an electrical circuit is established between the first conductor and the second conductor. The second conductor is configured to output electrons. The first conductor is configured to receive electrons. Therefore, the first conductor is etched when the electrical circuit is established between the first conductor and the second conductor. A necking portion is created at the first conductor approximately near the surface of the electrolyte. A nanoscale probe is fabricated when first conductor breaks at the necking portion. 1. A method for fabricating a nanoscale probe , comprising:immersing a first conductor into an electrolyte, wherein the first conductor is configured to receive electrons;immersing a second conductor into the electrolyte, wherein the second conductor is configured to output electrons; andforming a necking portion at the first conductor approximately near the surface of the electrolyte by establishing an electrical circuit between the first conductor and the second conductor, wherein the electrical circuit is not terminated before the first conductor breaks substantially from the necking portion,wherein the nanoscale probe has a body and a tip protruding from the body,wherein profiles of the nanoscale probe include at least a radius of curvature of the tip, a taper angle of the tip, a length of the tip, an aspect ratio of the nanoscale probe, and a diameter of the body,wherein the nanoscale probe having predetermined profiles is fabricated by adjusting the establishment of the electrical circuit between the first conductor and the second conductor.2. The method according to claim 1 , wherein the electrolyte is a potassium hydroxide (KOH) solution having ...

Подробнее
13-02-2014 дата публикации

Scanning probe microscopy cantilever comprising an electromagnetic sensor

Номер: US20140047585A1
Принадлежит: International Business Machines Corp

An apparatus and method directed to a scanning probe microscopy cantilever. The apparatus includes body and an electromagnetic sensor having a detectable electromagnetic property varying upon deformation of the body. The method includes scanning the surface of a material with the cantilever, such that the body of the cantilever undergoes deformations and detecting the electromagnetic property varying upon deformation of the body of the cantilever.

Подробнее
27-02-2014 дата публикации

CARBON NANOTUBE TOUCH PANEL HAVING TWO CARBON NANOTUBE FILMS

Номер: US20140055686A1
Автор: WU HO-CHIEN

A touch panel utilizing carbon nanotubes (CNT) includes a base a first CNT film, a second CNT film, and a flexible printed circuit (FPC). The base defines a first touch sensing region, a second touch sensing region, and a gap region. The first CNT film and the second CNT film are respectively positioned on the first touch sensing region and the second touch sensing unit. The FPC is mounted on the base. A plurality of first connection wires are formed on the base, and each first connection wire includes a first electrode, a first wire body and a second electrode. The first electrode is located at the gap region and is connected to both the first CNT film and the second CNT film. The second electrode is attached to the FPC, and the first wire body is connected between the first electrode and the second electrode. 1. A carbon nanotube (CNT) touch panel , comprising:a base defining a touch area comprising a first touch sensing region, a second touch sensing region, and a gap region between the first touch sensing region and the second touch sensing region;a CNT layer comprising a first CNT film and a second CNT film, the first CNT film positioned on the first touch sensing region, and the second CNT film positioned on the second touch sensing region; anda FPC (flexible printed circuit) mounted on the base;wherein at least one first connection wire is formed on the base, each first connection wire comprises a first electrode, a first wire body and a second electrode; the first electrode is located at the gap region and is connected to both the first CNT film and the second CNT film, the second electrode is attached to the FPC, and the first wire body is connected between the first electrode and the second electrode.2. The CNT touch panel of claim 1 , wherein each of the first CNT film and the second CNT film comprises a plurality of CNT units arranged in parallel with each other claim 1 , the CN tubes in the first CNT film have a same orientation as orientation of the ...

Подробнее
06-03-2014 дата публикации

MINIATURIZED CANTILEVER PROBE FOR SCANNING PROBE MICROSCOPY AND FABRICATION THEREOF

Номер: US20140068823A1
Принадлежит:

Cantilever probes are formed from a multilayer structure comprising an upper substrate, a lower substrate, an interior layer, a first separation layer, and a second separation layer, wherein the first separation layer is situated between the upper substrate and the interior layer, the second separation layer is situated between the lower substrate and the interior layer, and wherein the first and the second separation layers are differentially etchable with respect to the first and the second substrates, the interior layer. The upper substrate is a first device layer from which a probe tip is formed. The interior layer is a second device layer from which a cantilever arm is formed. The lower substrate is a handle layer from which a handle, or base portion, is formed. Patterning and etching processing of any layer is isolated from the other layers by the separation layers. 120-. (canceled)21. A method for constructing a cantilever for use with a scanning probe microscope (SPM) , the method comprising:(a) obtaining a multilayer structure comprising an upper substrate, a lower substrate, an interior layer, a first separation layer, and a second separation layer, wherein the first separation layer is situated between the upper substrate and the interior layer, the second separation layer is situated between the lower substrate and the interior layer, and wherein the first and the second separation layers are differentially etchable with respect to the first and the second substrates, respectively and with respect to the interior layer;(b) selectively removing material from the first substrate to form a probe tip structure having a sharp point facing away from the first separation layer and to expose a top surface of the first separation layer;(c) after (b), selectively removing material from the first separation layer to expose a top surface of the interior layer;(d) selectively removing material from the second substrate to expose a bottom surface of the second ...

Подробнее
13-03-2014 дата публикации

Separated Carbon Nanotube-Based Active Matrix Organic Light-Emitting Diode Displays

Номер: US20140070169A1
Принадлежит:

A separated carbon nanotube-based active matrix organic light-emitting diode (AMOLED) device including a substrate and transistors. Each transistor includes an individual back gate patterned on the substrate and a gate dielectric layer disposed over the substrate. An active channel including a network of separated semiconducting nanotubes is disposed over a functionalized surface of the gate dielectric layer. A source contact and a drain contact are formed on two ends of the active channel, with the network of separated nanotubes between the source contact and the drain contact. An organic light-emitting diode (OLED) display device is coupled to the drain of one of the transistors. A system includes a display control circuit having a substrate, with scan lines, data lines, and AMOLED devices formed on the substrate, with each AMOLED device coupled to one of the scan lines and one of the data lines. 1. A device comprising:a substrate; and an individual back gate patterned on the substrate;', 'a gate dielectric layer disposed over the substrate, a surface of the gate dielectric layer being functionalized with linker molecules;', 'an active channel comprising a network of separated nanotubes disposed over the functionalized surface of the gate dielectric layer, wherein the network of separated nanotubes comprises separated semiconducting nanotubes; and', 'a source contact and a drain contact formed on two ends of the active channel with the network of separated nanotubes therebetween., 'transistors, each of the transistors comprising2. The device of claim 1 , wherein the gate dielectric layer comprises a first dielectric layer disposed over the substrate and a second dielectric layer disposed over the first dielectric layer claim 1 , and the second dielectric layer has better adhesion with the linker molecules than the first dielectric layer.3. The device of claim 1 , wherein the surface of the gate dielectric layer comprises SiOand the linker molecules comprise amine ...

Подробнее
03-04-2014 дата публикации

CALIBRATING SINGLE PLASMONIC NANOSTRUCTURES FOR QUANTITATIVE BIOSENING

Номер: US20140095100A1
Принадлежит:

A method for calibrating multiple nanostructures in parallel for quantitative biosensing using a chip for localized surface plasmon resonance (LSPR) biosensing and imaging. The chip is a glass coverslip compatible for use in a standard microscope with at least one array of functionalized plasmonic nanostructures patterned onto it using electron beam nanolithography. The chip is used to collect CCD-based LSPR imagery data of each individual nanostructure and LSPR spectral data of the array. The spectral data is used to determine the fractional occupancy of the array. The imagery data is modeled as a function of fractional occupancy to determine the fractional occupancy of each individual nanostructure. 1. A method for calibrating multiple nanostructures in parallel for quantitative biosensing , comprising:using a chip for localized surface plasmon resonance (LSPR) biosensing and imaging, comprising a glass coverslip compatible for use in a standard microscope, wherein at least one array of functionalized plasmonic nanostructures has been patterned onto the glass coverslip using electron beam nanolithography;collecting CCD-based LSPR imagery data of each individual nanostructure;collecting LSPR spectral data of the array and using this spectral data to determine the fractional occupancy of the array;modeling the imagery data as a function of fractional occupancy; anddetermining the fractional occupancy of each nanostructure.2. The method of claim 1 , wherein the functionalized plasmonic nanostructures comprise functionalized gold plasmonic nanostructures.3. The method of claim 1 , collecting the imagery and spectral data are done simultaneously.4. The method of claim 1 , wherein the pitch between the arrays is in the range from 150 to 1000 nm.5. The method of claim 1 , wherein the size of the patterned nanostructures is in the range from 50 to 150 nm.6. The method of claim 1 , wherein the shape of the nanostructures comprises rectangles claim 1 , squares claim 1 , ...

Подробнее
02-01-2020 дата публикации

Passive Semiconductor Device Assembly Technology

Номер: US20200003801A1
Автор: James Vicary
Принадлежит: Nu Nano Ltd

A method of assembling a group of devices, the method comprising the steps of: evacuating a space between each component of a first group of two or more components on a source device and a transfer device thereby to create a temporary bond between each component of the first group of two or more components and the transfer device; selectively removing the first group of two or more components from the source device whilst the transfer device is temporarily bonded to each component of the first group of two or more components on the source device; positioning the first group of two or more components on a host device; and decoupling the first group of two or more components from the transfer device, thereby to form a first group of assembled devices.

Подробнее
12-01-2017 дата публикации

GOLD NANOSTRUCTURES AND USES THEREOF

Номер: US20170007725A1
Принадлежит:

Charged nanostructure being comprising gold nanoparticle which may bear on at least portion thereof a positively charged polymer wherein the positively charged polymer may bearon at least portion thereof a negatively charged polymer is disclosed. Uses thereof for diagnosis is also disclosed. 1. Nanostructure being negatively charged , said nanostructure comprises at least one gold nanoparticle , wherein said at least one gold nanoparticle:{'smallcaps': 'L', '(a) bears on at least portion thereof a positively charged polymer selected from polyethylenamine (PEI), cationic polyallylamine, poly--lysine, poly(allylamine hydrochloride), and poly(diallyldimethylammonium chloride) or any derivative thereof, wherein said positively charged polymer bears on at least portion thereof a negatively charged polymer selected from poly(acrylic acid) (PAA), polystyrenesulfonate, polyvinyl sulfate, polyvinylsulfonic acid or any derivative thereof; and'}(b) has a diameter of between 5 and 20 nm,and wherein said nanostructure has a hydrodynamic diameter of less than 100 nm.2. The nanostructure of claim 1 , having a hydrodynamic diameter of less than 25 nm.3. The nanostructure of claim 1 , wherein said positively charged polymer has an average molecular weight (MW) that ranges from 6 kDa to 15 kDa.4. The nanostructure of claim 1 , characterized by a zeta-potential of at least |−30| mV in aqueous dispersion.5. The nanostructure of claim 1 , characterized by a high affinity to a positively charged low molecular weight (LMW) molecules.6. The nanostructure of claim 5 , wherein said LMW molecules are selected from peptides claim 5 , proteins claim 5 , platelet-derived microparticles claim 5 , and apoptotic bodies.7. The nanostructure of claim 5 , wherein said LMW molecules have a MW value of less than 15 kDa.8. The nanostructure of claim 5 , wherein said LMW molecules are selected from Stromal Derived Factor-alpha (SDF-alpha) and Platelet Derived Growth Factor B.9. A composition comprising a ...

Подробнее
09-01-2020 дата публикации

NEURO-STEM CELL STIMULATION AND GROWTH ENHANCEMENT WITH IMPLANTABLE NANODEVICE

Номер: US20200009368A1
Принадлежит:

A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo. 1. A nanodevice , comprising:an array of metal nanorods formed on a substrate, the array of metal nanorods being grouped into a first region and a second region;the first region including first nanorods such that upon activation of the first nanorods an electric field consistent with promoting stem cell growth is achieved; andthe second region including second nanorods configured to activate an electropolymerized electrical conductor formed over tops of the second nanorods to form a reservoir between the electropolymerized electrical conductor and the substrate, the electropolymerized electrical conductor including pores that open or close responsively to electrical signals applied to the second nanorods to release a growth factor.2. The nanodevice as recited in claim 1 , wherein the electropolymerized electrical conductor includes electrically conductive polymers selected from the group consisting of polypyrrole claim 1 , polyanilines claim 1 , poly(thiophene) claim 1 , poly(3 claim 1 ,4-ethylenedioxythiophene) claim 1 , poly(p-phenylene sulfide) claim 1 , poly(p-phenylene vinylene) claim 1 , poly(acetylene) and a combination thereof.3. The nanodevice as recited in claim 1 , wherein the substrate includes a semiconductor material and further comprises a control circuit formed in the substrate to control activation of ...

Подробнее
09-01-2020 дата публикации

NEURO-STEM CELL STIMULATION AND GROWTH ENHANCEMENT WITH IMPLANTABLE NANODEVICE

Номер: US20200009369A1
Принадлежит:

A nanodevice includes an array of metal nanorods formed on a substrate. An electropolymerized electrical conductor is formed over tops of a portion of the nanorods to form a reservoir between the electropolymerized conductor and the substrate. The electropolymerized conductor includes pores that open or close responsively to electrical signals applied to the nanorods. A cell loading region is disposed in proximity of the reservoir, and the cell loading region is configured to receive stem cells. A neurotrophic dispensing material is loaded in the reservoir to be dispersed in accordance with open pores to affect growth of the stem cells when in vivo. 1. A nanodevice , comprising:an electropolymerized electrical conductor formed over tops of nanorods to form a reservoir between the electropolymerized electrical conductor and a substrate, the electropolymerized electrical conductor including pores that open and close responsively to electrical signals applied to the nanorods;a cell loading region configured to receive cells; anda neurotrophic dispensing material loaded in the reservoir, the neurotrophic dispensing material being dispersed when the pores are open to affect growth of the cells when in vivo.2. The nanodevice as recited in claim 1 , wherein the electropolymerized electrical conductor includes electrically conductive polymers selected from the group consisting of polypyrrole claim 1 , polyanilines claim 1 , poly(thiophene) claim 1 , poly(3 claim 1 ,4-ethylenedioxythiophene) claim 1 , poly(p-phenylene sulfide) claim 1 , poly(p-phenylene vinylene) claim 1 , poly(acetylene) and a combination thereof.3. The nanodevice as recited in claim 1 , wherein the substrate includes a semiconductor material and further comprises a control circuit formed in the substrate to control activation of electrodes formed by the nanorods.4. The nanodevice as recited in claim 1 , wherein the neurotrophic dispensing material includes a neurotrophin selected from the group consisting ...

Подробнее
14-01-2016 дата публикации

DEVICES AND METHODS FOR DETERMINATION OF SPECIES INCLUDING CHEMICAL WARFARE AGENTS

Номер: US20160011135A1
Принадлежит: Massachusetts Institute of Technology

The present invention generally provides devices, systems, and methods for determination of one or more analytes. The analyte may be determined by monitoring, for example, a change in an electrical, optical, or other signal of a material (e.g., sensor material) present within the device, upon exposure to the analyte. The signal may be an electrical and/or optical property of the device. In some cases, devices described herein may be useful as sensors for the determination of analytes such as explosives, chemical warfare agents, and/or toxins. 1. A device for determining an analyte , comprising:a first electrode and a second electrode,a sensor material in electrochemical communication with the first and the second electrodes, wherein resistance to current flow between the first and second electrode is affected by the sensor material;wherein the sensor material comprises a plurality of carbon nanotubes and a polymer material integrally connected to at least a portion of the plurality of carbon nanotubes, such that the carbon nanotubes are substantially contained within the polymer material;wherein the sensor material comprises a binding site, the binding site comprising a transition metal complex; andwherein the analyte, if present, interacts with the sensor material to affect resistance to current flow between the first and second electrodes, thereby generating a signal in the device by which the analyte is determined.2100.-. (canceled)101. A device as in claim 1 , wherein the analyte comprises an olefin.102. A device as in claim 1 , wherein the analyte comprises nitric oxide.103. A device as in claim 1 , wherein the analyte comprises a thiol or thioether.104. A device as in claim 1 , wherein the analyte comprises an amine.105. A device as in claim 1 , wherein the analyte is an organic compound.106. A device as in claim 1 , wherein at least two analytes are present in the sample.107. A device as in claim 106 , wherein the at least two analytes claim 106 , if present ...

Подробнее
14-01-2016 дата публикации

Three-Dimensional Fine Movement Device

Номер: US20160011231A1
Принадлежит: HITACHI HIGH-TECH SCIENCE CORPORATION

A three-dimensional fine movement device includes a moving body, a fixation member to which the moving body is fixed, a three-dimensional fine movement unit, to which the fixation member is fixed, and which allows for three-dimensional fine movement of the moving body with the fixation member interposed therebetween, a base member to which the three-dimensional fine movement unit is fixed, and movement amount detecting means that is fixed to the base member to detect a movement amount of the fixation member. 1. A three-dimensional fine movement device comprising:a moving body;a fixation member to which the moving body is fixed;a three-dimensional fine movement unit, to which the fixation member is fixed, and which allows for three-dimensional fine movement of the moving body with the fixation member interposed therebetween;a base member to which the three-dimensional fine movement unit is fixed; anda movement amount detector that is fixed to the base member and is configured to detect a movement amount of the fixation member.2. The three-dimensional fine movement device according to claim 1 ,wherein the movement amount detector is configured to detect a detection surface of the fixation member.3. The three-dimensional fine movement device according to claim 2 ,wherein a plurality the detection surfaces are arranged on the respective axes of the three-dimensional axes, and the movement amount detector is provided on the respective detection surface on the respective axes to detect the corresponding detection surfaces.4. The three-dimensional fine movement device according to claim 1 ,wherein the movement amount detector is a non-contact sensor.5. The three-dimensional fine movement device according to claim 4 ,wherein the non-contact sensor is a sensor that uses electrostatic capacitance, optical interference or optical diffraction.6. The three-dimensional fine movement device according to claim 1 ,wherein the moving body is a cantilever that comes into contact with ...

Подробнее
10-01-2019 дата публикации

HYDROGEN SENSOR PRODUCTION METHOD AND HYDROGEN SENSOR PRODUCED THEREBY

Номер: US20190011412A1
Автор: JUNG Gunyoung, PAK Yusin
Принадлежит:

The present invention provides a method of manufacturing a hydrogen sensor and a hydrogen sensor manufactured thereby. Specifically, the method according to the present invention includes a step of forming a self-assembled single layer on a stamp substrate provided with nanoline-patterned uneven parts; a step of depositing a metal thin film layer on the self-assembled single layer; a step of disposing the stamp substrate on a flexible sensor substrate so that a polymer layer formed on the sensor substrate and the metal thin film layer deposited on the uneven parts are brought into contact with each other; a step of transferring a metal nanoribbon array having nanogaps to the sensor substrate by performing pressure and heat treatment on the stamp substrate and removing the stamp substrate; and a step of forming first and second electrodes on both ends of the transferred metal nanoribbon array. 1. A method of manufacturing a hydrogen sensor , comprising:a step of forming a self-assembled single layer on a stamp substrate provided with uneven parts for pattern formation;a step of forming a metal thin film layer on the self-assembled single layer;a step of disposing the stamp substrate on a sensor substrate so that a polymer layer formed on the sensor substrate and the metal thin film layer are brought into contact with each other;a step of transferring a metal nanoribbon array having nanogaps to the sensor substrate by performing pressure and heat treatment on the stamp substrate and removing the stamp substrate; anda step of respectively forming first and second electrodes on both ends of the metal nanoribbon array.2. The method according to claim 1 , wherein the self-assembled single layer is formed of at least one material selected from tridecafluoro-1 claim 1 ,1 claim 1 ,2 claim 1 ,2-tetrahydrooctyltrichlorosilane claim 1 , octadecyltrichlorosilane claim 1 , 3-methacryloxypropyltrimethoxysilane claim 1 , and 3-aminopropyltriethoxysilane.3. The method according to ...

Подробнее
19-01-2017 дата публикации

Compton camera detector systems for novel integrated compton-Pet and CT-compton-Pet radiation imaging

Номер: US20170016999A9
Принадлежит:

The invention provides novel Compton camera detector designs and systems for enhanced radiographic imaging with integrated detector systems which incorporate Compton and nuclear medicine imaging, PET imaging and x-ray CT imaging capabilities. Compton camera detector designs employ one or more layers of detector modules comprised of edge-on or face-on detectors or a combination of edge-on and face-on detectors which may employ gas, scintillator, semiconductor, low temperature (such as Ge and superconductor) and structured detectors. Detectors may implement tracking capabilities and may operate in a non-coincidence or coincidence detection mode. 1. A Compton camera detector system for integrated radiation imaging , wherein the radiation detector is comprised of:One or more detector layers comprised of detector modules,High speed electronics for tracking interactions and analyzing the readout signals using energy integration or photon counting or energy resolution techniques, andAn electronic communications link to a computer for data post-processing, storage, and display.2. The detector layers of claim 1 , wherein the detector layers are configured in planar or focused structure geometries.3. The detector layers of claim 1 , wherein the detector modules are parallel or tilted.4. The detector layers of claim 1 , wherein the detector modules are continuous claim 1 , have gaps claim 1 , are partially offset or are completely offset.5. The detector modules of claim 1 , wherein the detectors offer block claim 1 , 1D claim 1 , 2D or 3D spatial resolution.6. The detector modules of claim 1 , wherein the detector modules are comprised of edge-on claim 1 , face-on or a combination of edge-on and face-on detectors.7. The detector modules of claim 1 , wherein the edge-on detectors incorporate sub-aperture-resolution capabilities.8. The detector modules of claim 1 , wherein the face-on detectors incorporate depth-of-interaction capabilities.9. The detector modules of claim 1 , ...

Подробнее
21-01-2016 дата публикации

METHODS AND SYSTEMS FOR ANALYSIS USING POLYMER DOTS

Номер: US20160018405A1
Автор: Chiu Daniel T.

Methods, systems, compositions and kits are provided for the analysis of target molecules using chromophoric polymer dots conjugated to biomolecules. The use of chromophoric polymer dots improves detection sensitivity and stability when compared with existing techniques. In some aspects, methods, systems, and kits are provided for detecting a target protein using chromophoric polymer dots conjugated to biomolecules in a Western blot analysis. Related methods, systems, compositions and kits are also provided.

Подробнее
17-01-2019 дата публикации

Motion sensor integrated nano-probe n/mems apparatus, method, and applications

Номер: US20190018039A1
Автор: Amit Lal, Kwame Amponsah
Принадлежит: CORNELL UNIVERSITY

A multi-tip nano-probe apparatus and a method for probing a sample while using the multi-tip nano-probe apparatus each employ located over a substrate: (1) an immovable probe tip with respect to the substrate; (2) a movable probe tip with respect to the substrate; and (3) a motion sensor that is coupled with the movable probe tip. The multi-tip nano-probe apparatus and related method provide for improved sample probing due to close coupling of the motion sensor with the movable probe tip, and also retractability of the movable probe tip with respect to the immovable probe tip.

Подробнее
17-01-2019 дата публикации

CANTILEVER AND MANUFACTURING METHOD FOR CANTILEVER

Номер: US20190018042A1
Принадлежит:

A cantilever used in a scanning probe microscope includes a supporting section, a lever section, and a protrusion section, which is a probe. A crystalline carbon composite layer including a crystalline carbon nanomaterial and a metal material, a melting point of which is 420° C. or lower, is deposited on a distal end portion of the protrusion section. 1. A cantilever used in a scanning probe microscope , the cantilever comprising a supporting section , a lever section , and a protrusion section , which is a probe , whereina crystalline carbon composite layer including a crystalline carbon nanomaterial and a metal material, a melting point of which is 420° C. or lower, is deposited on a distal end portion of the protrusion section.2. The cantilever according to claim 1 , wherein thickness of the crystalline carbon composite layer is 7 nm or less claim 1 , and a curvature radius of the distal end portion is 10 nm or less.3. The cantilever according to claim 2 , wherein the metal material includes at least any one of Zn claim 2 , Sn claim 2 , Bi claim 2 , Pb claim 2 , Tl claim 2 , Cs claim 2 , In claim 2 , Cd claim 2 , Rb claim 2 , Ga claim 2 , K claim 2 , Na claim 2 , Se claim 2 , and Li.4. The cantilever according to claim 3 , wherein a melting point of the metal material is 250° C. or lower.5. The cantilever according to claim 4 , wherein the metal material includes at least any one of Sn claim 4 , Zn claim 4 , Bi claim 4 , In claim 4 , and Se.6. The cantilever according to claim 1 , wherein the crystalline carbon composite layer includes a crystalline carbon layer made of the crystalline carbon nanomaterial and a metal layer made of the metal material.7. A manufacturing method for a cantilever in which a crystalline carbon layer made of a crystalline carbon nanomaterial is deposited on a distal end portion of a protrusion section of a cantilever body including a supporting section claim 1 , a lever section claim 1 , and the protrusion section claim 1 , which is a ...

Подробнее
17-04-2014 дата публикации

NANOTUBE ARRAY ELECTRONIC AND OPTO-ELECTRONIC DEVICES

Номер: US20140103299A1
Автор: Kastalsky Alexander
Принадлежит:

Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on semiconductor wafers, the CNT-based devices can be combined with the conventional semiconductor circuit elements, thus producing hybrid devices and circuits. 134-. (canceled)35. A Complementary Metal Insulator Nanotube circuit comprised of the following elements: dielectric substrate with deposited first and second spatially separated metal layers on which two nanotube arrays are grown , and one of the nanotube arrays is converted into opposite conductivity type , so that one of said nanotube arrays is of p-type , while another one is of n-type; first dielectric layer covering said first and second metal layers , a half length of the nanotubes and partially sidewalls of the nanotubes; third metal layer covering said first dielectric layer and reaching said first dielectric layer on said sidewalls of the nanotubes in both said nanotube arrays; second dielectric layer deposited on top of said third metal layer and making the total thickness of all deposited metal and dielectric layers smaller than the nanotube length , so that the nanotubes protrude above said second dielectric layer; forth metal layer which covers said two nanotubes arrays and is deposited on the second dielectric layer after polishing the surface of said second dielectric layer , to remove the protruded nanotube ends and expose the nanotube tips , so that said forth metal layer connects both said ...

Подробнее
24-04-2014 дата публикации

Compton camera detector systems for novel integrated compton-Pet and CT-compton-Pet radiation imaging

Номер: US20140110592A1
Принадлежит:

The invention provides novel Compton camera detector designs and systems for enhanced radiographic imaging with integrated detector systems which incorporate Compton and nuclear medicine imaging, PET imaging and x-ray CT imaging capabilities. Compton camera detector designs employ one or more layers of detector modules comprised of edge-on or face-on detectors or a combination of edge-on and face-on detectors which may employ gas, scintillator, semiconductor, low temperature (such as Ge and superconductor) and structured detectors. Detectors may implement tracking capabilities and may operate in a non-coincidence or coincidence detection mode. 1. A Compton camera detector system for integrated radiation imaging , wherein the radiation detector is comprised of:One or more detector layers comprised of detector modules,High speed electronics for tracking interactions and analyzing the readout signals using energy integration or photon counting or energy resolution techniques, andAn electronic communications link to a computer for data post-processing, storage, and display.2. The detector layers of claim 1 , wherein the detector layers are configured in planar or focused structure geometries.3. The detector layers of claim 1 , wherein the detector modules are parallel or tilted.4. The detector layers of claim 1 , wherein the detector modules are continuous claim 1 , have gaps claim 1 , are partially offset or are completely offset.5. The detector modules of claim 1 , wherein the detectors offer block claim 1 , 1D claim 1 , 2D or 3D spatial resolution.6. The detector modules of claim 1 , wherein the detector modules are comprised of edge-on claim 1 , face-on or a combination of edge-on and face-on detectors.7. The detector modules of claim 1 , wherein the edge-on detectors incorporate sub-aperture-resolution capabilities.8. The detector modules of claim 1 , wherein the face-on detectors incorporate depth-of-interaction capabilities.9. The detector modules of claim 1 , ...

Подробнее
25-01-2018 дата публикации

SYSTEMS AND APPROACHES FOR SEMICONDUCTOR METROLOGY AND SURFACE ANALYSIS USING SECONDARY ION MASS SPECTROMETRY

Номер: US20180025897A1
Принадлежит:

Systems and approaches for semiconductor metrology and surface analysis using Secondary Ion Mass Spectrometry (SIMS) are disclosed. In an example, a secondary ion mass spectrometry (SIMS) system includes a sample stage. A primary ion beam is directed to the sample stage. An extraction lens is directed at the sample stage. The extraction lens is configured to provide a low extraction field for secondary ions emitted from a sample on the sample stage. A magnetic sector spectrograph is coupled to the extraction lens along an optical path of the SIMS system. The magnetic sector spectrograph includes an electrostatic analyzer (ESA) coupled to a magnetic sector analyzer (MSA). 1. A secondary ion mass spectrometry (SIMS) system , comprising:a sample stage;a primary ion source and ion optics for producing and directing a primary ion beam to the sample stage;an extraction lens directed at the sample stage, the extraction lens configured to provide a low extraction field for secondary ions emitted from a sample on the sample stage; anda magnetic sector spectrograph coupled to the extraction lens along an optical path of the SIMS system, the magnetic sector spectrograph comprising an electrostatic analyzer (ESA) coupled to a magnetic sector analyzer (MSA).2. The SIMS system of claim 1 , wherein the sample stage contains a Faraday cup.3. The SIMS system of claim 1 , further comprising:a plurality of detectors spaced along a plane of the magnetic sector spectrograph.4. The SIMS system of claim 3 , wherein the plurality of detectors is for detecting a corresponding plurality of different species from a beam of the secondary ions emitted from the sample.5. The SIMS system of claim 1 , further comprising:a first additional ESA coupled along the optical path of the SIMS system, between the extraction lens and the ESA of the magnetic sector spectrograph; anda second additional ESA coupled along the optical path of the SIMS system, between the first additional ESA and the ESA of the ...

Подробнее
28-01-2021 дата публикации

ACTIVE NOISE ISOLATION FOR TUNNELING APPLICATIONS (ANITA)

Номер: US20210025919A1
Автор: Hudson Eric, Pabbi Lavish
Принадлежит:

An active noise isolation apparatus and method for cancelling vibration noise from the probe signal of a scanning tunneling microscope by generating a correction signal by convolution based on the probe signal and the sensor signal, which is based on the ambient vibration that adds noise to the probe signal. 1. A scanning tunneling microscope , comprising:a sample holder for holding a sample with a surface;a probe operable to provide a probe signal based on the surface of the sample disposed on the sample holder;a sensor generating a sensor signal based on an ambient vibration, the ambient vibration signal creating a relative motion between the probe and the sample surface, the relative motion due to the ambient vibration adding noise to the probe signal; anda processing unit generating a correction signal by convolution based on the probe signal and the sensor signal, the processing unit removing noise from the probe signal by applying the correction signal to the probe signal.2. The scanning tunneling microscope of claim 1 , wherein the sensor comprises a plurality of sensors.3. The scanning tunneling microscope of claim 1 , wherein the sensor is selected from the group of an accelerometer claim 1 , velocity sensor claim 1 , proximity sensor and laser displacement sensor.4. The scanning tunneling microscope of claim 1 , wherein the sensor is disposed at a location that is spaced from a location of the probe claim 1 , sample holder and/or the surface of the sample.5. The scanning tunneling microscope of claim 1 , wherein the sensor is not physically attached or connected with the probe claim 1 , sample holder and/or the surface of the sample.6. The scanning tunneling microscope of claim 1 , wherein the sensor generates the sensor signal based on the ambient vibration having a variable frequency and/or amplitude.7. The scanning tunneling microscope of claim 1 , wherein the scanning tunneling microscope includes a constant tip-current or constant tip-height based ...

Подробнее
04-02-2016 дата публикации

Conductive atomic force microscope and method of operating the same

Номер: US20160033550A1
Принадлежит: SAMSUNG ELECTRONICS CO LTD

A conductive atomic force microscope including a plurality of probe structures each including a probe and a cantilever connected thereto, a power supplier applying a bias voltage, a current detector detecting a first current flowing between a sample object and each of the probes and a second current flowing between a measurement object and each of the probes, and calculating representative currents for the sample and measurement objects based on the first and second currents, respectively, and a controller calculating a ratio between representative currents of the sample object measured by each of the probe structures, calculating a scaling factor for scaling the representative current with respect to the measurement object measured by each of the probes, and determine a reproducible current measurement value based on the second measurement current and the scaling factor may be provided.

Подробнее
17-02-2022 дата публикации

PROBE PRODUCTION METHOD AND SURFACE OBSERVATION METHOD

Номер: US20220050125A1
Принадлежит: SHOWA DENKO K.K.

This probe production method is a method of producing a probe () having a coating layer () on a surface thereof, in which the coating layer () is formed on a surface of a base material () having a sharp tip end portion () using a gas phase method. 1. A method of producing a probe having a coating layer on a surface thereof , comprising: forming the coating layer on a surface of a base material having a sharp tip end portion using a gas phase method.2. The method of producing a probe according to claim 1 , wherein a high-frequency plasma treatment method is used as the gas phase method.3. The method of producing a probe according to claim 2 , wherein claim 2 , in the high-frequency plasma treatment method claim 2 , a gas containing at least one type of fluorocarbon is used as a raw material gas.4. The method of producing a probe according to claim 1 , wherein a thickness of the coating layer is 100 Å or less.5. The method of producing a probe according to claim 1 , further comprising: a pretreatment step of pretreating the surface of the base material before performing the gas phase method claim 1 , wherein the pretreatment step includes performing any treatment selected from the group consisting of a sputtering treatment claim 1 , a corona treatment claim 1 , a UV ozone irradiation treatment claim 1 , and an oxygen plasma treatment.6. The method of producing a probe according to claim 2 , wherein the high-frequency plasma treatment method is performed in a plasma generator claim 2 , and wherein a temperature inside the plasma generator is 20° C. or higher and 80° C. or lower.7. The method of producing a probe according to claim 1 , wherein a shape of the base material is a conical shape.8. The method of producing a probe according to claim 1 , wherein a thickness of the coating layer is 0.1 nm or more.9. A surface observation method claim 1 , wherein the probe produced by the probe production method according to is used as a probe of a scanning probe microscope.10. ...

Подробнее
05-02-2015 дата публикации

TOUCH PANEL HAVING A INSULATION LAYER

Номер: US20150035642A1
Принадлежит:

A touch panel including a first insulation substrate, a first conductive film, a first insulation film, first conductive wires, a second insulation substrate, a second conductive film, and second conductive wires is provided. The first conductive film is disposed on the first insulation substrate and the first insulation layer covers a portion of a periphery of the first conductive film so that the first conductive film has an exposed region. The first conductive wires are disposed on the periphery of the first conductive film and each of the first conductive wires includes an electrode segment and an extending segment. The electrode segment is electrically connected with the first conductive film and the extending segment is electrically isolated from the first conductive film. The second conductive film is disposed on the second insulation substrate. The second conductive wires are disposed on the periphery of the second conductive film. 1. A touch panel , comprising:a first insulation substrate;a first conductive film, covering said first insulation substrate, wherein said first conductive film comprises a first side, a second side, a third side, and a fourth side;a first insulation layer, covering a continuous margin area along said first side, second side, and third side of said first conductive so that the first conductive film has a first exposed region uncovered by said first insulation layer; a first electrode segment, contacting with the first exposed region to be electrically connected to the first conductive film; and', 'a first extending segment, contacting with the first insulation layer to be isolated from the first conductive film;, 'a first conductive wire, disposed at a first portion of the first conductive film closest to the first side, comprising a second electrode segment, contacting with the first exposed region to be electrically connected to the first conductive film; and', 'a second extending segment, contacting with the first insulation ...

Подробнее
01-05-2014 дата публикации

TOUCH PANEL, METHOD OF MANUFACTURING THE SAME, AND DISPLAY APPARATUS

Номер: US20140118634A1
Автор: KANG Sung-Ku, PARK Mi-Ae
Принадлежит: Samsung Display Co., Ltd.

In one aspect, a touch panel comprising a substrate and a first conductive patterned portion that is formed on the substrate is provided. The first conductive patterned portion may include: a first direction conductive portion that is formed on the substrate, the first direction conductive portion including a plurality of first body members, a first intermediate member formed between the first body members, and a first connection member which is electrically connected to the first body members; and a second direction conductive portion that is formed on the substrate and is insulated from the first direction conductive portion, the first intermediate member including a plurality of second body members and a second connection member which is electrically connected to the second body members. 1. A touch panel comprising: a substrate; and a first conductive patterned portion that is formed on the substrate , wherein the first conductive patterned portion comprises:a first direction conductive portion that is formed on the substrate, the first direction conductive portion comprising a plurality of first body members, a first intermediate member formed between the first body members, and a first connection member which is electrically connected to the first body members; anda second direction conductive portion that is formed on the substrate and is insulated from the first direction conductive portion, the second direction conductive portion comprising a plurality of second body members and a second connection member which is electrically connected to the second body members,wherein at least one of the first body member and the second body member comprises a plurality of nanowires containing silver (Ag) and an overcoating layer covering the nanowires, and is formed to cover at least one area of the first connection member or the second connection member.2. The touch panel of claim 1 , wherein the plurality of nanowires are formed to partially contact a top surface and a ...

Подробнее
08-02-2018 дата публикации

SOLID-STATE IMAGING ELEMENT AND ELECTRONIC APPARATUS

Номер: US20180040653A1
Автор: Toda Atsushi
Принадлежит:

The present disclosure relates to a solid-state imaging element and an electronic apparatus capable of suppressing color mixing and sensitivity reduction in each of pixels of a solid-state imaging element having a vertical spectral structure. A solid-state imaging element according to a first aspect of the present disclosure is a solid-state imaging element including a vertical spectral structure pixel containing a plurality of photoelectric conversion units stacked in layers. The vertical spectral structure pixel includes a first photoelectric conversion unit configured to generate an electric charge in accordance with light having a first wavelength among incident light, a second photoelectric conversion unit configured to generate an electric charge in accordance with light having a second wavelength among the incident light that has been transmitted through the first photoelectric conversion unit, and a first spectral unit formed on an upper surface of the first photoelectric conversion unit and configured to laterally bend a traveling direction of the light having the first wavelength of the incident light. The present disclosure is applicable to an electronic apparatus including an image sensor, for example. 1. A solid-state imaging element comprising a vertical spectral structure pixel containing a plurality of photoelectric conversion units stacked in layers ,wherein the vertical spectral structure pixel includes:a first photoelectric conversion unit configured to generate an electric charge in accordance with light having a first wavelength among incident light;a second photoelectric conversion unit configured to generate an electric charge in accordance with light having a second wavelength among the incident light that has been transmitted through the first photoelectric conversion unit; anda first spectral unit formed on an upper surface of the first photoelectric conversion unit and configured to laterally bend a traveling direction of the light having ...

Подробнее
24-02-2022 дата публикации

SCANNING PROBE MICROSCOPE, SCAN HEAD AND METHOD

Номер: US20220057430A1
Принадлежит:

The present invention relates to a scan head for a scanning probe microscope arranged for moving a probe including a conductive cantilever relatively to a substrate surface, the head comprising: a first electrode positioned such that a capacitor is formed across a gap between the first electrode and a second electrode, wherein the second electrode is formed by the conductive cantilever; a voltage source for actuating the conductive cantilever by applying a voltage to the capacitor; and at least a first resistor arranged in series between the voltage source and one of the first and second electrodes such as to form an RC circuit for damping a vibration of the cantilever. 1. A scan head for a scanning probe microscope arranged for moving a probe , including a conductive cantilever , relatively to a substrate surface , the scan head comprising:a first electrode positioned such that a capacitor is formed across a gap between the first electrode and a second electrode, wherein the second electrode is formed by the conductive cantilever;a voltage source for actuating the conductive cantilever by applying a voltage to the capacitor formed between the first electrode and the second electrode; andat least a first resistor arranged in series between the voltage source and either one of the first electrode and the second electrode so as to form an RC circuit for damping a vibration of the conductive cantilever.2. The scan head according to claim 1 , wherein the resistor is arranged to provide an RC time suited to enhance damping of the conductive cantilever.3. The scan head according to claim 1 , wherein the resistance of the first resistor is adjustable.4. The scan head according to claim 3 , wherein the first resistor is:a tunable resistor; ora switchable resistor comprising an array of selectable resistors.5. The scan head according to claim 1 , wherein the capacitor is a parallel plate capacitor.6. The scan head according to claim 1 , further comprising a diode and second ...

Подробнее
18-02-2021 дата публикации

Systems and Methods for Mechanosynthesis

Номер: US20210047178A1
Принадлежит:

Methods, systems, and devices are disclosed for performing mechanosynthesis, including those that involve bulk chemical preparation of tips, multiple tips for supplying feedstock, and use of sequential tips such as in a thermodynamic cascade; such features may simplify starting requirements, increase versatility, and/or reduce complexity in the mechanosynthesis equipment and/or process. 1. A method of abstracting atoms from a workpiece , the method comprising the steps of:providing a first atomically-precise tip and a second atomically-precise tip;using positional control of the second tip relative to the workpiece to apply mechanical force to an atomically-precise moiety at a specified site on the workpiece to transfer such moiety from the workpiece to the second tip; andusing positional control of the second tip relative to the first tip to apply mechanical force to the moiety bound to the second tip, to transfer such moiety from the second tip to the first tip.2. The method of wherein said step of using positional control of the second tip relative to the workpiece further comprises:providing a positional device to which the second tip is mounted; andoperating the positional device to move the second tip relative to the workpiece.3. The method of wherein said step of using positional control of the second tip relative to the first tip further comprises:operating the positional device to move the second tip relative to the first tip.4. The method of wherein said step of using positional control of the second tip relative to the first tip further comprises:providing a positional device to which the second tip is mounted; andoperating the positional device to move the second tip relative to the first tip.5. The method of wherein the first tip is mounted to a presentation surface.6. The method of wherein said step of using positional control of the second tip relative to the first tip further comprises:providing a positional device to which the second tip is mounted; ...

Подробнее
01-05-2014 дата публикации

ANALYSIS OF EX VIVO CELLS FOR DISEASE STATE DETECTION AND THERAPEUTIC AGENT SELECTION AND MONITORING

Номер: US20140123347A1

Described herein is the analysis of nanomechanical characteristics of cells. In particular, changes in certain local nanomechanical characteristics of ex vivo human cells can correlate with presence of a human disease, such as cancer, as well as a particular stage of progression of the disease. Also, for human patients that are administered with a therapeutic agent, changes in local nanomechanical characteristics of ex vivo cells collected from the patients can correlate with effectiveness of the therapeutic agent in terms of impeding or reversing progression of the disease. By exploiting this correlation, systems and related methods can be advantageously implemented for disease state detection and therapeutic agent selection and monitoring. 117-. (canceled)18. A nanomechanical analysis system , comprising:an expansion element;a cantilever having a first end and a second end, the first end of the cantilever being connected to the expansion element;a probe disposed adjacent to the second end of the cantilever, the probe being elongated and extending from the cantilever towards an upper surface of a cell to be analyzed;a detector element disposed adjacent to the second end of the cantilever; andan optical microscope disposed adjacent to a lower surface of the cell,wherein the optical microscope is configured to provide visual examination of the cell to position the probe with respect to a central region of the cell,wherein the expansion element is configured to move the first end of the cantilever, such that the probe applies a stimulus to the cell,wherein the detector element is configured to produce an output indicative of an extent of deflection of the second end of the cantilever in accordance with a response of the cell to the stimulus.19. The system of claim 18 , wherein the probe includes a tip that is configured to apply the stimulus to the cell claim 18 , and the tip has a radius in the range of 5 nm to 900 nm.20. The system of claim 18 , further comprising:a ...

Подробнее
01-05-2014 дата публикации

HIGH THROUGHOUT REPRODUCIBLE CANTILEVER FUNCTIONALIZATION

Номер: US20140123348A1
Автор: Evans Barbara R., Lee Ida
Принадлежит: UT-BATTELLE, LLC

A method for functionalizing cantilevers is provided that includes providing a holder having a plurality of channels each having a width for accepting a cantilever probe and a plurality of probes. A plurality of cantilever probes are fastened to the plurality of channels of the holder by the spring clips. The wells of a well plate are filled with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels. Each cantilever probe that is fastened within the plurality of channels of the holder is applied to the functionalization solution that is contained in the wells of the well plate. 1. A method for functionalizing cantilevers comprising:providing a holder comprising a plurality of channels each having a width for accepting a cantilever probe and a plurality of clips each having a beam extending over the plurality of channels;fastening a plurality of cantilever probes to the plurality of channels of the holder, wherein each cantilever probe of the plurality of cantilever probes is fastened within each channel of the plurality of channels by the beam for each of the plurality of clips;filling wells that are present in a well plate with a functionalization solution, wherein adjacent wells in the well plate are separated by a dimension that is substantially equal to a dimension separating adjacent channels of the plurality of channels; andapplying said each cantilever probe of said plurality of cantilever probes that are fastened within the plurality of channels of the holder into the wells containing the functionalization solution that is present in the well plate.2. The method of claim 1 , wherein the plurality of channels ranges from 1 to 20 claim 1 , and the width of the channels ranges from 1 mm to 5 mm.3. The method of claim 1 , wherein the plurality of channels is equal to 12 claim 1 , the width of the channels is less than ...

Подробнее
15-02-2018 дата публикации

Scanning Probe and Electron Microscope Probes and Their Manufacture

Номер: US20180045755A1
Принадлежит:

Methods are described for the economical manufacture of Scanning Probe and Electron Microscope (SPEM) probe tips. In this method, multiple wires are mounted on a stage and ion milled simultaneously while the stage and mounted probes are tilted at a selected angle relative to the ion source and rotated. The resulting probes are also described. The method provides sets of highly uniform probe tips having controllable properties for stable and accurate scanning probe and electron microscope (EM) measurements. 1. A method of making SPEM probes , comprising:mounting a plurality of wire pieces to a rotatable stage;rotating the stage with mounted wire pieces and simultaneously milling the wires with an ion beam having an ion energy in the range of 1 to 3500 eV to produce the probe tips mounted to the stage;wherein the rotating stage has an axis of rotation;wherein the angle between the axis of rotation and the ion beam is from 5° to 70°;where the angle is defined with respect to the axis of rotation such that 0° is defined to be the angle if the ion beam originates from directly above the stage and is parallel to the axis of rotation.2. The method of wherein the ion beam comprises Ar ions.3. The method of wherein the angle between the axis of rotation and the ion beam is from 15° to 65°.4. The method of wherein the angle between the axis of rotation and the ion beam is from 45° to 65°.5. The method of wherein the wire pieces mounted to stage are not subjected to electropolishing prior to milling.6. The method of wherein the plurality of wire pieces are tungsten wires.7. The method of wherein the plurality of wire pieces comprise a material selected from the group consisting of beryllium copper (Be—Cu) alloy claim 1 , platinum (Pt) claim 1 , iridium (Jr) claim 1 , platinum-iridium (Pt—Ir) alloy claim 1 , tungsten (W) claim 1 , tungsten-rhenium (W—Re) alloy claim 1 , palladium (Pd) claim 1 , palladium alloy claim 1 , gold (Au) claim 1 , and commercial alloys (NewTek™ claim 1 ...

Подробнее
13-02-2020 дата публикации

SCANNER AND SCANNING PROBE MICROSCOPE

Номер: US20200049733A1
Принадлежит: OSAKA UNIVERSITY

The present invention provides a scanner capable of achieving both a wide range of measurements and a high-speed and high-precision measurement. 114-. (canceled)15. A scanner comprising:an outer frame;a first inner frame disposed inside the outer frame;a wide range Y actuator for moving the first inner frame relative to the outer frame in the Y direction;a second inner frame disposed inside the first inner frame;a wide range X actuator for moving the second inner frame relative to the first inner frame in an X direction orthogonal to the Y direction;a third inner frame disposed inside the second inner frame;a narrow range Y actuator for moving the third inner frame relative to the second inner frame in the Y direction;a movable base disposed inside the third inner frame; anda narrow range X actuator for moving the movable base relatively to the third inner frame in the X direction,wherein:the wide range Y actuator is a piezoelectric element expandable and contractible in the Y direction in response to a control signal, and is disposed between an inner side surface of the outer frame and an outer side surface of the first inner frame;the wide range X actuator is a piezoelectric element expandable and contractible in the X direction in response to a control signal, and is disposed so that one end of the wide range X actuator abuts on the approximate center in the Y direction on the inner side surface of the outer frame or on the approximate center in the Y direction on an inner side surface of the first inner frame, and the other end abuts the approximate center in the Y direction on an outer side surface of the second inner frame; andthe narrow range Y actuator is a piezoelectric element expandable and contractible in the Y direction in response to a control signal, and is disposed so that one end of the narrow range Y actuator abuts on the approximate center in X direction on an inner side surface of the second inner frame, and the other end abuts the approximate ...

Подробнее
08-05-2014 дата публикации

Indented Mold Structures For Diamond Deposited Probes

Номер: US20140130215A1
Принадлежит: RAVE, LLC

The present invention discloses a method of fabricating a scanning probe microscopy probe including positioning a pattern probe over a mold substrate; indenting the pattern probe into the mold substrate material to form a mold pit; depositing a film onto the mold substrate including the mold pit; removing a portion of the deposited film to form a probe, and releasing the probe from the mold substrate material. 1. A method of fabricating a scanning probe microscopy probe , comprising:positioning a pattern probe over a mold substrate;indenting the pattern probe into the mold substrate material to form a mold pit;depositing a film onto the mold substrate including the mold pit;removing a portion of the deposited film to form a probe; andreleasing the probe from the mold substrate material,wherein the probe is monolithic and includes a body, a cantilever extending in a first direction from an edge of the body, and a tip extending from an end of the cantilever at least partly in a second direction,wherein a width of the body in a third direction is greater than a width of the cantilever in the third direction, andwherein the first direction is perpendicular to the second direction, and the third direction is perpendicular to both the first direction and the second direction.2. The method of fabricating a scanning probe microscopy probe of claim 1 , wherein releasing the probe includes removing the probe substrate using a wet etch process.3. The method of fabricating a scanning probe microscopy probe of claim 1 , wherein the mold substrate material is a silicon wafer or a Si(100) wafer.4. The method of fabricating a scanning probe microscopy probe of claim 1 , wherein the pattern probe is a diamond probe claim 1 , a single crystalline diamond probe or an Ultra Nano-Crystalline Diamond probe.5. (canceled)6. The method of fabricating a scanning probe microscopy probe of claim 1 , wherein the depositing step uses vapor phase deposition and the deposited film is Ultra Nano- ...

Подробнее
21-02-2019 дата публикации

SCANNING HEAD OF SCANNING PROBE MICROSCOPE

Номер: US20190056429A1

A scanning head of a scanning probe microscope includes a scanning head frame having a first end portion and a second end portion which are oppositely disposed, the first end portion and the second end portion defining a first receiving space and a second receiving space, respectively; a sample table located in the first receiving space; a scanning module located in the second receiving space; and a plurality of fixed electrodes fixed on the second end portion of the scanning head frame. Signal lines of the scanning head of the present invention do not fall off or tear off during operation. In addition, the scanning head allows a laser to be incident on its scanning probe, enabling the scanning probe to be coupled with the laser, so that the range of application is wide. 1. A scanning head of a scanning probe microscope , comprising:a scanning head frame having a first end portion and a second end portion that are oppositely disposed, the first end portion and the second end portion defining a first receiving space and a second receiving space, respectively;a sample table located in the first receiving space;a scanning module located in the second receiving space; anda plurality of fixed electrodes fixed on the second end portion of the scanning head frame.2. The scanning head of the scanning probe microscope according to claim 1 , further comprising curved wires connected between output terminals of the scanning module and the plurality of fixed electrodes.3. The scanning head of the scanning probe microscope according to claim 2 , wherein the wires are spiral.4. The scanning head of the scanning probe microscope according to claim 1 , further comprising an electrode limiting member fixed on an end face of the second end portion of the scanning head frame claim 1 , and the electrode limiting member has a plurality of limiting holes for passing through by a plurality of fixed electrodes.5. The scanning head of the scanning probe microscope according to wherein a ...

Подробнее
20-02-2020 дата публикации

METHOD OF AND ATOMIC FORCE MICROSCOPY SYSTEM FOR PERFORMING SUBSURFACE IMAGING

Номер: US20200057028A1
Принадлежит:

The document relates to a method of performing subsurface imaging of embedded structures underneath a substrate surface, using an atomic force microscopy system. The system comprises a probe with a probe tip, and a sensor for sensing a position of the probe tip. The method comprises the steps of: positioning the probe tip relative to the substrate: applying a first acoustic input signal to the substrate; applying a second acoustic input signal to the substrate; detecting an output signal from the substrate in response to the first and second acoustic input signal; and analyzing the output signal. The first acoustic input signal comprises a first signal component and a second signal component, the first signal component comprising a frequency below 250 megahertz and the second signal component either including a frequency below 2.5 megahertz or a frequency such as to provide a difference frequency of at most 2.5 megahertz with the first signal component, such as to enable analysis of an induced stress field in the substrate; and wherein the second acoustic input signal comprises a third signal component having a frequency above 1 gigahertz, such that the return signal includes a scattered fraction of the second acoustic input signal scattered from the embedded structures. This enables to perform imaging a various depths in one pass, across a large range of depths. 1. A method of performing subsurface imaging of one or more embedded structures in a substrate underneath a substrate surface , the method being perforated using an atomic force microscopy system , wherein the atomic force microscopy system comprises a probe with at least one probe tip , and a sensor for sensing a position of the probe tip for detecting probe tip motion , the method comprising the steps of:positioning the at least one probe tip relative to the substrate for establishing contact between the at least one probe tip and the substrate surface;applying, using at least one first signal application ...

Подробнее
22-05-2014 дата публикации

THERMOACOUSTIC DEVICE

Номер: US20140140545A1
Принадлежит:

A thermoacoustic device includes a substrate, a sound wave generator, an insulating layer, a first electrode and a second electrode. The first electrode and the second electrode are spaced from each other and electrically connected to the sound wave generator. The substrate includes a first surface and a second surface opposite to the first surface. The first surface defines a plurality of grooves, and a bulge is formed between the adjacent two grooves. The insulating layer is located on the first surface, and continuously attached on the grooves and the bulge. The sound wave generator is located on the insulating layer. The sound wave generator defines a first portion and a second portion. The first portion is suspended on the grooves. The second portion is attached on the bulge. 1. A thermoacoustic device , the thermoacoustic device comprising:a substrate having a first surface and a second surface, opposite to the first surface;an insulating layer on the first surface;a sound wave generator on the insulating layer;a first electrode and a second electrode spaced from each other and electrically connected to the sound wave generator;wherein the substrate comprises silicon, and the first surface defines a plurality of grooves parallel with and spaced from each other, a depth of each of the plurality of grooves ranges from about 100 micrometers to about 200 micrometers, and the sound wave generator comprises a carbon nanotube structure suspended on the plurality of grooves.2. The thermoacoustic device of claim 1 , wherein a size of the substrate ranges from about 25 square millimeters to about 100 square millimeters.3. The thermoacoustic device of claim 1 , wherein a width of each of the plurality of grooves ranges from about 0.2 millimeters to about 1 millimeter.4. The thermoacoustic device of claim 1 , wherein the carbon nanotube structure is free-standing and comprises a plurality of carbon nanotubes substantially oriented along a first direction that intersects ...

Подробнее
28-02-2019 дата публикации

SCANNING PROBE MICROSCOPE

Номер: US20190064211A1
Принадлежит:

A scanning probe microscope has a probe configured to move across the surface of a sample to be monitored. A scanner, to which the probe is mounted, moves the probe across the sample surface such that the probe is deflected in accordance with the structure of the sample surface. A beam system directs a light beam at the probe during the movement of the probe across the sample surface and a detector monitors the deflection of the probe using the light beam. The arrangement is such that the scanner is physically independent of the beam system. 1. A scanning probe microscope , comprising:a probe configured to move across the surface of a sample to be monitored;a scanner, to which the probe is mounted, configured to cause said movement of the probe across the sample surface such that the probe is deflected in accordance with the structure of the sample surface;a beam system for directing a light beam at the probe during said movement of the probe across the sample surface; anda detector for monitoring the deflection of the probe using the light beam;wherein the scanner is physically independent of the beam system.2. A scanning probe microscope according to claim 1 , wherein the light beam is directed at the probe by one or more optical elements and wherein none of the optical elements which direct the light beam so as to be incident upon the probe are mounted to the scanner or the probe.3. A scanning probe microscope according to claim 2 , wherein each of the said optical elements is physically mounted to the beam system.4. A scanning probe microscope according to claim 1 , wherein the scanner is moveable independently of the beam system.5. A scanning probe microscope according to claim 1 , further comprising a sample holder for holding the sample and wherein the sample holder is moveable independently of each of the scanner claim 1 , the probe and the beam system.6. A scanning probe microscope according to claim 1 , wherein the surface of the sample is arranged in use ...

Подробнее
28-02-2019 дата публикации

PROBE ASSEMBLY AND TESTING DEVICE

Номер: US20190064212A1
Принадлежит:

A probe assembly is provided, which is applied to an electrical testing device. The probe assembly includes a probe body, which includes a testing end configured to contact with a to-be-tested device and a connection end opposite to the testing end; an elastic connection structure configured to be deformed when the probe body is subjected to a pressure; and a fixing base. The connection end is fixedly connected to the fixing base via the elastic connection structure. A testing device is further provided. 1. A probe assembly , applied to an electrical testing device , comprising:a probe body, which comprises a testing end configured to contact with a to-be-tested device and a connection end opposite to the testing end;an elastic connection structure, configured to be deformed in the case that the probe body is subjected to a pressure; anda fixing base, wherein the connection end is fixedly connected to the fixing base via the elastic connection structure.2. The probe assembly according to claim 1 , wherein the elastic connection structure is an elastic connection plate.3. The probe assembly according to claim 2 , further comprising: a rigid supporting structure configured to support the elastic connection plate claim 2 , wherein the elastic connection plate is connected with the rigid supporting structure in a contacting manner claim 2 , and one end of the rigid supporting structure is fixedly connected to the fixing base.4. The probe assembly according to claim 3 , wherein the rigid supporting structure comprises a plate structure.5. The probe assembly according to claim 3 , wherein the elastic connection plate comprises a first part located beyond the rigid supporting structure and a second part located on the rigid supporting structure claim 3 , the first part of the the elastic connection plate is close to the connection end of the probe body claim 3 , and the first part of the elastic connection plate is suspended between the connection end of the probe body and ...

Подробнее
09-03-2017 дата публикации

Fixing Mechanism Actuatable Without a Tool and Which Fixes a Measuring Probe in a Detachable Manner for a Scanning Probe Microscope

Номер: US20170067935A1
Принадлежит:

A fixing device selectively fixes a measuring probe of a scanning probe microscope. The fixing device comprises an inserting unit in which the measuring probe is insertable and a master force unit for selectively exerting a master force onto a fixing mechanism. The fixing mechanism is actuatable without a tool. The fixing mechanism is enabled or disabled to controllably detach or fix the measuring probe when the measuring probe is inserted in the inserting unit. 1. Fixing device for selectively fixing a measuring probe of a scanning probe microscope , wherein the fixing device comprises:an inserting unit, in which the measuring probe is insertable; anda master force unit for selectively exerting a master force on a fixing mechanism which is actuatable without a tool, wherein the fixing mechanism is responsive to the master force unit for detaching and/or fixing the measuring probe when the measuring probe is inserted in the inserting unit.2. Fixing device according to claim 1 , wherein the master force unit is configured for controlling the detaching and/or the fixing by exerting an adjustable master force.3. Fixing device according to claim 1 , wherein the fixing mechanism is configured such that claim 1 ,when the master force is disabled, the measuring probe is fixed to the inserting unit, andwhen the master force is enabled, the measuring probe is detached from the inserting unit.4. Fixing device according to claim 1 , comprising at least one of the following features:wherein the master force unit is selected from the group consisting of a master force unit for exerting a magnetic master force, in particular applicable by a movable master force permanent magnet or by an electrically activatable master force electromagnet, a hydraulic master force, a pneumatic master force, an electrical master force, a thermal master force and a mechanical master force;wherein the inserting unit comprises a holding force enhancement element with a curved, in particular ...

Подробнее
12-03-2015 дата публикации

NANODOT AND METHOD FOR MANUFACTURING THE SAME

Номер: US20150073167A1
Принадлежит: NATIONAL SUN YAT-SEN UNIVERSITY

The present disclosure provides a method for manufacturing a nanodot, including: providing a hydrolysable silane, wherein the hydrolysable silane has one or more hydrolysable groups and one or more substituted or non-substituted hydrocarbon groups; and performing a one-step heat treatment to hydrolyze and condensate the hydrolysable silane to form a nanodot. The nanodot includes: a core, the core is selected from the group consisting of a semiconductor core or a metal core; and a self-assembled monolayer (SAM) including the substituted or non-substituted hydrocarbon groups, wherein the self-assembled monolayer is connected to the core by covalent bonds. 1. A method for manufacturing a nanodot , comprising:providing a hydrolysable silane, wherein the hydrolysable silane has one or more hydrolysable groups and one or more substituted or non-substituted hydrocarbon groups; andperforming a one-step heat treatment to hydrolyze and condensate the hydrolysable silane to form a nanodot, wherein the nanodot comprises:a core, the core is selected from the group consisting of a semiconductor core or a metal core; anda self-assembled monolayer (SAM) comprising the substituted or non-substituted hydrocarbon groups, wherein the self-assembled monolayer is connected to the core by covalent bonds.2. The method as claimed in claim 1 , wherein the substituted or non-substituted hydrocarbon groups comprise 2-33 carbon atoms.3. The method as claimed in claim 1 , wherein the one-step heat treatment is performed at a temperature ranging from 120° C. to 220° C. for 30 minutes to 9 hours.4. The method as claimed in claim 1 , wherein the hydrolysable groups comprises a halogen or alkoxy group.5. The method as claimed in claim 1 , wherein the substituent group of the hydrocarbon groups comprises an alkyl group claim 1 , a haloalkyl group claim 1 , a thiol group claim 1 , an amino group or an aryl group.6. The method as claimed in claim 1 , wherein the hydrolysable silane has a general ...

Подробнее
19-03-2015 дата публикации

MICROSCOPE OBJECTIVE MECHANICAL TESTING INSTRUMENT

Номер: US20150075264A1
Принадлежит:

An objective testing module includes a module base configured for coupling with an objective turret of a microscope. The objective testing module includes a mechanical testing assembly. The mechanical testing assembly is configured to mechanically test a sample at macro scale or less, and quantitatively determine one or more properties of the sample based on the mechanical testing. The mechanical testing assembly optionally includes a probe and one or more transducers coupled with the probe. The transducer measures one or more of force applied to a sample by the probe or displacement of the probe within the sample. In operation, an optical instrument locates a test location on a sample and the objective testing module mechanically tests at the test location with the mechanical testing assembly at a macro scale or less. The mechanical testing assembly further determines one or more properties of the sample according to the mechanical test. 1. A microscope assembly comprising:a microscope body;an objective turret movably coupled with the microscope body;an optical instrument configured for optical microscope observations, the optical instrument is coupled with a first socket of the objective turret; and a module base coupled with the second socket of the objective turret, and', 'a mechanical testing assembly coupled with the module base, the mechanical testing assembly includes a probe that is movable relative to the module base, and the mechanical testing assembly is configured to mechanically test a sample at a macro scale or less and quantitatively determine one or more properties of the sample using a measured movement of the probe., 'an objective testing module coupled with a second socket of the objective turret, the objective testing module includes2. The microscope assembly of claim 1 , wherein the mechanical testing assembly includes one or more transducers coupled with the probe claim 1 , and the transducer measures one or more of force applied to a sample ...

Подробнее
05-06-2014 дата публикации

PHOTOELECTRIC CONVERSION ELEMENT AND MANUFACTURING METHOD THEREOF

Номер: US20140150868A1
Принадлежит: JX NIPPON OIL & ENERGY CORPORATION

A photoelectric conversion element comprising: a photoelectric conversion layer; an electron extraction electrode; a hole extraction electrode; and an electron transport layer, wherein the electron transport layer contains a substance represented by the following chemical formula and a reactant thereof: 2. The photoelectric conversion element according to claim 1 , wherein{'sub': 1', '1, 'sup': 5', '−1', '5', '−1, 'X in the chemical formula (1) is a carboxylate group or an acetonate group, and a carboxyl group absorption coefficient (α) in the electron transport layer is 0.5×10cmα≦2.5×10cm.'}3. The photoelectric conversion element according to claim 1 , whereinan ionization potential of the electron transport layer is 6.2 eV or less.4. The photoelectric conversion element according to claim 1 , whereinthe electron transport layer contains one or more metal compounds and a reactant thereof, the metal compounds being selected from the group consisting of zinc acetate, magnesium acetate, aluminum acetylacetonate, aluminum chloride, gallium acetylacetonate, gallium chloride, zinc acetylacetonate, zinc chloride, and diethylzinc.5. The photoelectric conversion element according to claim 1 , wherein{'sup': '+', 'the photoelectric conversion layer includes a fullerene derivative having a first reduction potential of 1160 mV (vs Fc/Fc) or more.'}6. The photoelectric conversion element according to claim 5 , whereinthe fullerene derivative is ICBA (bisindenyl C60). 1. Field of the InventionThe present invention relates to a photoelectric conversion element configured to convert light energy into electric energy by photoelectric conversion.2. Description of the Related ArtBecause an organic solar cell (photoelectric conversion element) is rich in flexibility; its area and weight can be expected to be enlarged and reduced, respectively; and a simple and inexpensive manufacturing method can be expected, it is considered to be a promising next generation solar cell. A large ...

Подробнее
05-06-2014 дата публикации

SILVER ELECTRODE COATED WITH CARBON NANOTUBES

Номер: US20140151219A1

The silver electrode coated with carbon nanotubes is an indicator electrode for microtitrimetry by differential electrolytic potentiometry. The electrode is made by first positioning at least one silver wire electrode within a reaction zone of a floating catalyst chemical vapor deposition reactor. A ferrocene catalyst is evaporated within the floating catalyst chemical vapor deposition reactor, and an inlet gas is fed therein to carry the evaporated ferrocene catalyst into the reaction zone. The inlet gas includes hydrogen and a carbon source, such as acetylene. The reaction zone is then heated for deposition of carbon onto the at least one silver electrode to form at least one silver electrode coated with carbon nanotubes. The electrode is cooled and then removed from the reactor. 1. A method of making silver electrodes coated with carbon nanotubes , comprising the steps of:positioning at least one silver electrode within a reaction zone of a floating catalyst chemical vapor deposition reactor;evaporating a ferrocene catalyst within the floating catalyst chemical vapor deposition reactor;feeding an inlet gas into the floating catalyst chemical vapor deposition reactor to carry the evaporated ferrocene catalyst into the reaction zone, the inlet gas including a source of carbon;heating the reaction zone for deposition of carbon from the inlet gas onto the at least one silver electrode to form at least one silver electrode coated with carbon nanotubes;cooling the at least one silver electrode coated with carbon nanotubes; andremoving the at least one silver electrode coated with carbon nanotubes from the reaction zone of the floating catalyst chemical vapor deposition reactor.2. The method of making silver electrodes coated with carbon nanotubes as recited in claim 1 , wherein the step of evaporating the ferrocene catalyst comprises supporting the ferrocene catalyst in a catalyst boat and placing the catalyst boat and the ferrocene catalyst within a first reaction ...

Подробнее
15-03-2018 дата публикации

CONDUCTIVE PROBE, ELECTRICAL PROPERTY EVALUATING SYSTEM, SCANNING PROBE MICROSCOPE, CONDUCTIVE PROBE MANUFACTURING METHOD, AND ELECTRICAL PROPERTY MEASURING METHOD

Номер: US20180074093A1
Автор: Harada Kazunori
Принадлежит: KABUSHIKI KAISHA TOSHIBA

A conductive probe includes a protruding portion provided on an elastic member, a conductive metal film covering at least a tip of the protruding portion; and an insulating thin film covering the conductive metal film provided on the tip of the protruding portion. 1. A conductive probe comprising:a protruding portion provided on an elastic member;a conductive metal film covering at least a tip of the protruding portion; andan insulating thin film covering the conductive metal film provided on the tip of the protruding portion.2. The conductive probe according to claim 1 ,wherein the insulating thin film has a conductive filament formed by metal ions diffused from the conductive metal film.3. The conductive probe according to claim 1 ,wherein:the elastic member has a cantilever shape; andthe protruding portion is provided on a top portion of the elastic member.4. The conductive probe according to claim 1 ,wherein the conductive metal film contains at least one selected from Ag, Cu, Ni, Ti and W.5. The conductive probe according to claim 1 ,{'sub': 2', '2', '5', 'm', 'n', 'm', 'n, 'wherein the insulating thin film contains at least one selected from SiO, SiON, TaO, AlO, GeSe, WOand MoO.'}6. An electrical property evaluating system comprising;a protruding portion provided on an elastic member;a conductive metal film covering at least a tip of the protruding portion;a conductive probe having an insulating thin film covering the conductive metal film provided on the tip of the protruding portion;a sample stage provided so as to be able to hold a sample to be measured;a scanning mechanism scanning the surface of the sample while changing a relative position between the conductive probe and the sample stage;a power supply portion applying a predetermined voltage between the conductive probe and the sample held by the sample stage; anda detecting portion detecting a current value varying with scanning of the conductive probe.7. A scanning probe microscope comprising:a ...

Подробнее
07-03-2019 дата публикации

MICROFLUIDIC CELL FOR ATOMIC FORCE MICROSCOPY

Номер: US20190072582A1
Автор: Fu Wanyi, Zhang Wen
Принадлежит: NEW JERSEY INSTITUTE OF TECHNOLOGY

A liquid cell for in situ atomic force microscopy (AFM) measurement of a sample during filtration is provided. The liquid cell includes a cantilever probe; a cantilever holder to position the probe near a surface of a sample (e.g., a filtration membrane); a liquid cell housing provided to hold the sample and comprising an opening at the top; an upper part; a lower part; an internal cavity to contain a fluid; a fluid inlet passage located in the upper part; a first fluid outlet passage located in the upper part; and a second fluid outlet passage located in the lower part. A method of in situ atomic force microscopy (AFM) measurement of a sample during filtration in a liquid by using the liquid cell described herein is also provided. 1. A liquid cell for in situ atomic force microscopy (AFM) measurement of a sample , the liquid cell comprising:a cantilever holder to position a cantilever probe near a surface of a sample;a lid part coupled to the cantilever holder;a liquid cell housing to hold the sample, the liquid cell housing includes a top surface defining an opening, an upper part, a lower part, and an internal cavity defined by the liquid cell housing to contain a fluid;the liquid cell housing further including a fluid inlet passage and a first fluid outlet passage both located in the upper part; and a second fluid outlet passage located in the lower part; andwherein, the liquid cell allows real-time and in situ observations and measurements of membrane properties and surface characteristic evolutions during filtration, fouling, and/or aging processes of the sample.2. The liquid cell of claim 1 , wherein the upper part and the lower part is separable by the sample claim 1 , and the internal cavity is separable by the sample to form an upper internal cavity above the sample and a lower internal cavity below the sample.3. The liquid cell of claim 1 , wherein the lid part further comprises an optical window claim 1 , through which a light beam transmits.4. The ...

Подробнее
24-03-2022 дата публикации

CANTILEVER, ULTRASOUND ACOUSTIC MICROSCOPY DEVICE COMPRISING THE CANTILEVER, METHOD OF USING THE SAME AND LITHOGRAPHIC SYSTEM INCLUDING THE SAME

Номер: US20220091069A1
Принадлежит:

A cantilever () for an ultrasound acoustic microscopy device is provided comprising a transmission tip () to contact a sample () to therewith transmit an ultrasound acoustic signal as an ultrasound acoustic wave into the sample. The cantilever further comprises a reception tip () separate from the transmission tip () to contact the sample to receive an acoustic signal resulting from reflections of the ultrasound wave from within the sample. 1. An ultrasound acoustic microscopy device comprising:a carrier for carrying a sample;a signal generator configured to generate an actuation signal having a frequency of at least 1 GHz to be converted into an ultrasound acoustic signal for transmission;{'claim-text': ['a transmission tip configured to contact a sample to transmit the ultrasound acoustic signal as an ultrasound acoustic wave into the sample, and', 'a reception tip, separate from the transmission tip, to contact the sample to receive an acoustic signal resulting from reflections of the ultrasound acoustic wave from within the sample;'], '#text': 'a scanning head including a cantilever with separate tips for transmitting an acoustic wave into the sample and for receiving acoustic waves reflected from features within the sample, the separate tips comprising:'}a signal processor configured to generate an image signal in response to a sensor signal generated in response to the acoustic signal resulting from reflections received by the reception tip; anda scanning mechanism configured to displace the scanning head relative to the sample, along a surface of the sample.2. The ultrasound acoustic microscopy device according to claim 1 , wherein the reception tip is configured to receive the reflection as the acoustic signal to be converted into the sensor signal.3. The ultrasound acoustic microscopy device according to claim 2 , wherein the transmission tip and/or elements acoustically coupled therewith are of a construction or have dimensions different from the reception ...

Подробнее
16-03-2017 дата публикации

PROBE ACTUATION SYSTEM WITH FEEDBACK CONTROLLER

Номер: US20170074901A1
Автор: Humphris Andrew
Принадлежит:

A probe actuation system has a detection system arranged to measure a position or angle of a probe to generate a detection signal. An illumination system is arranged to illuminate the probe. Varying the illumination of the probe causes the probe to deform which in turn causes the detection signal to vary. A probe controller is arranged to generate a desired value which varies with time. A feedback controller is arranged to vary the illumination of the probe according to the detection signal and the desired value so that the detection signal is driven towards the desired value. The probe controller receives as its inputs a detection signal and a desired value, but unlike conventional feedback systems this desired value varies with time. Such a time-varying desired value enables the probe to be driven so that it follows a trajectory with a predetermined speed. A position or angle of the probe is measured to generate the detection signal and the desired value represents a desired position or angle of the probe. 1. A probe actuation system comprising: a detection system arranged to measure a probe to generate a detection signal; an illumination system arranged to illuminate the probe , wherein varying the illumination of the probe causes the probe to deform which in turn causes the detection signal to vary; a probe controller arranged to generate a desired value; and a feedback controller arranged to vary the illumination of the probe according to the detection signal and the desired value so that the detection signal is driven towards the desired value , characterised in that a position or angle of the probe is measured to generate the detection signal and the desired value represents a desired position or angle of the probe.2. A probe actuation system comprising: a detection system arranged to measure a probe to generate a detection signal; an illumination system arranged to illuminate the probe , wherein varying the illumination of the probe causes the probe to ...

Подробнее
14-03-2019 дата публикации

Integrated measurement and micromechanical positioning apparatus for real-time test control

Номер: US20190077024A1
Автор: Vãhãsöyrinki Mikko
Принадлежит: Sensapex Oy

The invention relates to a measurement device (), for example for testing, comprising a micromechanical positioning actuator () for causing movement of a sensor () with respect to a target (), a positioning controller (), the positioning controller () having an output coupled to the actuator () for controlling the movement, and the having an input coupled to the sensor () for receiving a sensor signal from the sensor () to the positioning controller (), and the positioning controller () arranged to control the movement based on the sensor signal. The measurement device () may have memory for storing positioning control instructions (). The positioning controller () may be arranged to control said movement based on said sensor signal and said positioning control instructions (). 1. A measurement device for performing measurements using a sensor , said sensor being positioned related to a target in micromechanical fashion , said measurement device comprising:a body;a micromechanical positioning actuator for causing movement of said sensor with respect to said target;a positioning controller embodied within said body, said positioning controller having a sensor input coupled to said sensor, said sensor input arranged to receive a sensor signal from said sensor to said positioning controller; andsaid positioning controller having an output, said output coupled to said micromechanical positioning actuator for controlling said movement based on said sensor signal.2. The measurement device according to claim 1 , further comprising memory for storing positioning control instructions claim 1 , wherein said positioning control instructions comprise computer-readable instructions suitable for use by said positioning controller in controlling said movement based on said sensor signal claim 1 , wherein said positioning controller is arranged to control said movement based on said sensor signal and said positioning control instructions.3. The measurement device according to claim ...

Подробнее
12-03-2020 дата публикации

METHODS APPARATUSES AND SYSTEMS FOR DETECTING AND QUANTIFYING PHOSPHOPROTEINS

Номер: US20200081012A1
Принадлежит:

Embodiments herein provide methods, apparatuses, and systems for detecting, monitoring, measuring, and/or characterizing the activity of phosphoproteins such as tyrosine kinases (TKs) and downstream proteins in TK signal transduction pathways (e.g., TK pathway proteins). In various embodiments, the methods, apparatuses, and systems may use nanoparticles, such as quantum dots (QD), to detect and/or characterize the abnormally overactive TK signaling pathways that underlie tumorgenesis and tumor progression. In various embodiments, the QD-based methods, apparatuses, and systems may have a sufficiently high degree of sensitivity to enable the identification of new TK signaling pathway markers, for example for use in diagnosing, staging, monitoring, and/or prognosing cancers, or in evaluating the efficacy of cancer therapeutics. 115-. (canceled)16. A method for quantitating protein activity in a biological sample comprising:labeling a protein in the biological sample with a label to form a labeled biological sample;providing the labeled biological sample on a solid support; and automatically counting the labels, wherein automatically counting the labels includes:automatically capturing an image of the labels in each of several Z-planes;automatically detecting labels on the captured images; andmaintaining a count of discrete groups of labels or single labels.17. The method of claim 16 , wherein the protein is a phosphoprotein.18. The method of claim 16 , wherein the label comprises a nanoparticle probe with a detectable nanoparticle.19. The method of claim 18 , wherein the detectable nanoparticle is capable of fluorescence.20. The method of claim 16 , further comprising:positioning the labeled biological sample on a stage adapted to move the biological sample in X, Y, and Z planes;automatically moving the labeled biological sample through multiple predetermined locations using the stage; andcapturing an image at each predetermined location to create a Z-stack.21. The ...

Подробнее
12-03-2020 дата публикации

METHOD OF POSITIONING A CARRIER ON A FLAT SURFACE, AND ASSEMBLY OF A CARRIER AND A POSITIONING MEMBER

Номер: US20200081034A1

The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprising the steps of: operating the positioning member for moving the carrier relative to the flat surface in a direction parallel thereto such as to position the carrier above a landing position; performing an action of placing the carrier on the flat surface at the landing position, said action of placing comprising: moving the base towards the flat surface until at least one of said landing elements is in contact with the flat surface and an associated engagement element of said engagement elements is released from the kinematic mount; continue said moving of the base relative to the flat surface until all landing elements are in contact with the flat surface; and continue said action of placing the carrier until all engagement elements are released from the kinematic mount. 115.-. (canceled)16. Carrier for use in an assembly of the carrier and a positioning member with a support surface having a plurality of sockets , the carrier comprising an upper part , a base , ...

Подробнее
30-03-2017 дата публикации

Integrated Micro Actuator and LVDT for High Precision Position Measurements

Номер: US20170089733A1
Принадлежит:

A single housing with a non-ferromagnetic piezo-driven flexure has primary and secondary coil forms of different diameters, one coaxially inside the other, integrated in the flexure. The cylinders defining the planes of the primary and secondaries do not spatially overlap. The secondary coil forms may be wound in opposite directions and wired to provide a transformer device. Movement of the primary relative to the secondaries in the direction of the central axis of the coils can be differentially detected with high precision. 1. A method , comprising:placing a sample to be tested on a top surface of one part of a housing;moving said top surface with the sample to be tested relative to another part of the housing, where said one part of said housing is movable relative to the another part of the housing, and where said moving is in a z-axis direction substantially perpendicular to said top surface and uses a flexure; anddifferentially detecting said moving of said top surface with the sample to be tested relative to the another part of the housing and producing an output signal indicative thereof.2. A method as in claim 1 , further comprising moving said top surface with the sample to be tested in x and y directions that are substantially perpendicular to each other and parallel to said top surface.3. A method as in claim 1 , wherein said top surface includes a screwable connection part which allows said flexure to be preloaded.4. A detector claim 1 , comprising:a housing, having a top surface that holds a sample to be tested on one part of the top surface, and having and side surfaces that are perpendicular to said top surface;said housing controlled to move by deflecting said sample to move said top surface with the sample,to move said one part of the housing relative to another part of the housing, where said one part moves in a z-axis direction substantially perpendicular to said top surface; anda differential detector, differentially detecting movement of said ...

Подробнее
19-03-2020 дата публикации

DIAMOND PROBE HOSTING AN ATOMIC SIZED DEFECT

Номер: US20200088762A1
Принадлежит:

A method of manufacturing, characterizing, mounting, and a system of a probe may include a pillar having a taper angle and at least one engineered defect. The taper angle may be formed using crystallographic- or etching-based techniques. The probe may be mounted to an AFM chip. Furthermore, an RF waveguide may be connected to the AFM chip for providing RF excitation. 1. A method of fabricating a probe , the method comprising:providing a substrate including at least one engineered defect;applying an etch mask to a first surface of the substrate to form at least one pillar mask portion; a base,', 'a tip,', 'a tapered portion extending from the base toward the tip, the tapered portion having a taper angle controlled by the etching condition, and', 'at least one of the at least one engineered defect;, 'etching the first surface to produce at least one pillar using at least one etching condition, wherein the pillar comprises a masked area located on the second surface configured to mask an area containing the pillar, and', 'an exposed area substantially surrounding the masked area; and, 'applying a second etch mask film to an opposing second surface of the substrate, the second etch mask configured to provideetching the exposed area of the opposing surface of the substrate to release a portion of the substrate comprising the pillar, wherein the released portion comprises the probe.2. The method of claim 1 , wherein the at least one engineered defect comprises a plurality of engineered defects claim 1 , and wherein the etching the first surface to produce at least one pillar using the at least one etching condition comprises etching the first surface to produce a plurality of pillars using the at least one etching condition.3. The method of claim 2 , wherein a density of the plurality of engineered defects on the substrate is configured to provide at least one defect in at least one of the plurality of pillars.4. The method of claim 2 , wherein the density of the ...

Подробнее
26-06-2014 дата публикации

NANOTUBE ELECTROCHEMISTRY

Номер: US20140174924A1
Принадлежит: THE UNIVERSITY OF WARWICK

The invention relates to electrodes for electrochemical analysis comprising: —an insulating surface; —carbon nanotubes situated on the insulating surface at a density of at least 0.1 μmUm; and —an electrically conducting material in electrical contact with the carbon nanotubes; wherein the carbon nanotubes cover an area of no more than about 5.0% of the insulating surface. Methods of making such electrodes and assay devices or kits with such electrodes, are also provided. 142.-. (canceled)43. An electrode for electrochemical analysis , comprising:an insulating surface;{'sub': 'CNT', 'sup': '−2', 'carbon nanotubes situated on the insulating surface at a density of at least 0.1 μmμm; and'}an electrically conducting material in electrical contact with the carbon nanotubes;wherein the carbon nanotubes cover an area of no more than about 1.0% of the insulating surface.44. The electrode of claim 43 , wherein the carbon nanotubes further comprise multi-walled carbon nanotubes (MWNTs).45. The electrode of claim 44 , wherein the carbon nanotubes further comprise single-walled carbon nanotubes (SWNTs).46. The electrode of claim 43 , wherein the insulating surface comprises silicon with a silicon oxide coating.47. The electrode of claim 43 , wherein the electrically conducting material comprises gold.48. The electrode of claim 43 , wherein the carbon nanotubes are partially coated by deposition of a material.49. The electrode of claim 48 , wherein the material is selected from the group consisting of metals claim 48 , semiconducting materials claim 48 , and organic polymers.50. The electrode of claim 49 , wherein the material is selected from the group consisting of platinum claim 49 , silver claim 49 , palladium claim 49 , gold claim 49 , copper claim 49 , mercury claim 49 , titanium claim 49 , CdSe claim 49 , CdTe claim 49 , CdS claim 49 , P3HT claim 49 , pentacene claim 49 , and doped polyaniline.51. The electrode of claim 43 , wherein said electrode is a microelectrode or ...

Подробнее
01-04-2021 дата публикации

SHARPENING METHOD FOR PROBE TIP OF ATOMIC FORCE MICROSCOPE (AFM)

Номер: US20210096153A1
Принадлежит:

A sharpening method for a probe tip of an Atomic Force Microscope (AFM) includes the steps of dripping a prepared slurry on a glass slide to form a droplet on the glass slide, where particles of the prepared slurry are diamond powder; infiltrating the tip to be sharpened with the prepared slurry; setting operation mode of the AFM to tapping in the fluid and lowering the probe into droplet till the probe cantilever beam is immersed completely in the droplet; setting vibration parameters, scanning parameters, and sharpening time, performing tip sharpening; and evaluating the sharpening results, and finishing sharpening. When the AFM works in a tapping mode in fluid, the tip of the self-excited oscillating probe is sharpened under the grinding effect of the diamond particles. The method is simple and effective, and easy to implement. 1. A sharpening method for a probe tip of an atomic force microscope (AFM) , comprising:dropping a prepared slurry on a glass slide mounted on a sample stage of the AFM to form a droplet on the glass slide, wherein particles in the prepared slurry are diamond powder;infiltrating the tip to be sharpened with the prepared slurry;setting operation mode of the AFM to be tapping mode in fluid, and lowering the probe into the slurry droplet till the cantilever beam of the probe where tip is mounted is immersed completely in the droplet;setting vibration parameters, scanning parameters, and sharpening time, and performing tip sharpening; and evaluating the tip sharpening quality, and finishing sharpening.2. The sharpening method for a probe tip of an AFM according to claim 1 , wherein the particles of the prepared slurry are diamond powder with a diameter of 15 nm-25 nm claim 1 , solvents of the prepared slurry are deionized water claim 1 , and the concentration of the prepared slurry is 0.5 vol. conc %.3. The sharpening method for a probe tip of an AFM according to claim 1 , wherein the step of dropping a prepared slurry on a glass slide on a ...

Подробнее