Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 11010. Отображено 100.
16-09-1999 дата публикации

УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МИКРОШАРИКОВ

Номер: RU0000011199U1

1. Установка для получения микрошариков, включающая в себя блок подготовки сырья, блок гранулирования и блок подготовки готовой продукции, отличающаяся тем, что в составе блока подготовки сырья она содержит устройства для предварительного и окончательного помола, а блок подготовки готовой продукции содержит устройство, обеспечивающее фракционирование и расфасовку микрошариков. 2. Установка для получения микрошариков по п.1, отличающаяся тем, что в составе блока подготовки готовой продукции она дополнительно содержит устройство для зачистки и/или полировки поверхности микрошариков. 3. Установка для получения микрошариков по пп.1 и 2, отличающаяся тем, что в качестве блока грануляции она содержит установку термической грануляции. 4. Установка для получения микрошариков по п.1, отличающаяся тем, что в составе блока грануляции она дополнительно содержит циклон. (19) RU (11) 11 199 (13) U1 (51) МПК C03B 19/10 (1995.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 99108236/20, 27.04.1999 (24) Дата начала отсчета срока действия патента: 27.04.1999 (46) Опубликовано: 16.09.1999 U 1 1 1 1 9 9 R U (54) УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МИКРОШАРИКОВ (57) Формула полезной модели 1. Установка для получения микрошариков, включающая в себя блок подготовки сырья, блок гранулирования и блок подготовки готовой продукции, отличающаяся тем, что в составе блока подготовки сырья она содержит устройства для предварительного и окончательного помола, а блок подготовки готовой продукции содержит устройство, обеспечивающее фракционирование и расфасовку микрошариков. 2. Установка для получения микрошариков по п.1, отличающаяся тем, что в составе блока подготовки готовой продукции она дополнительно содержит устройство для зачистки и/или полировки поверхности микрошариков. 3. Установка для получения микрошариков по пп.1 и 2, отличающаяся тем, что в качестве блока грануляции она содержит установку термической грануляции. 4. Установка ...

Подробнее
16-12-1999 дата публикации

УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МИКРОШАРИКОВ

Номер: RU0000012124U1

1. Установка для получения микрошариков, включающая в себя блок подготовки сырья, блок гранулирования и блок подготовки готовой продукции, отличающаяся тем, что в составе блока подготовки сырья она содержит устройства для помола, а блок подготовки готовой продукции содержит устройство, обеспечивающее фракционирование микрошариков. 2. Установка для получения микрошариков по п.1, отличающаяся тем, что в составе блока подготовки готовой продукции она дополнительно содержит устройство для зачистки и/или полировки поверхности микрошариков. 3. Установка для получения микрошариков по пп.1 и 2, отличающаяся тем, что в качестве блока грануляции она содержит установку термической грануляции. 4. Установка для получения микрошариков по п.1, отличающаяся тем, что в составе блока грануляции она дополнительно содержит циклон. (19) RU (11) 12 124 (13) U1 (51) МПК C03B 19/10 (1995.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 99117455/20, 17.08.1999 (24) Дата начала отсчета срока действия патента: 17.08.1999 (46) Опубликовано: 16.12.1999 (72) Автор(ы): Касаткина М.В., Горохов М.В., Буляускас А.З., Остапенко В.М., Николаев А.В., Федоров С.Е. 1 2 1 2 4 R U (57) Формула полезной модели 1. Установка для получения микрошариков, включающая в себя блок подготовки сырья, блок гранулирования и блок подготовки готовой продукции, отличающаяся тем, что в составе блока подготовки сырья она содержит устройства для помола, а блок подготовки готовой продукции содержит устройство, обеспечивающее фракционирование микрошариков. 2. Установка для получения микрошариков по п.1, отличающаяся тем, что в составе блока подготовки готовой продукции она дополнительно содержит устройство для зачистки и/или полировки поверхности микрошариков. 3. Установка для получения микрошариков по пп.1 и 2, отличающаяся тем, что в качестве блока грануляции она содержит установку термической грануляции. 4. Установка для получения микрошариков по п.1, ...

Подробнее
16-12-1999 дата публикации

СТРУКТУРООБРАЗОВАТЕЛЬ И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ЕГО ОСНОВЕ

Номер: RU0000012125U1

1. Структурообразователь из стекла сферической формы, отличающийся тем, что он выполнен в виде фракции монолитных микрошариков диаметром от 50 до 1000 мкм. 2. Структурообразователь по п.1, отличающийся тем, что состоит из фракции микрошариков диаметром 50 - 250 мкм. 3. Структурообразователь по п.1, отличающийся тем, что состоит из фракции микрошариков диаметром 300 - 500 мкм. 4. Структурообразователь по п.1, отличающийся тем, что состоит из фракции микрошариков диаметром 200 - 900 мкм. 5. Структурообразователь по п.1, отличающийся тем, что состоит из фракции микрошариков диаметром 100 - 1000 мкм. 6. Структурообразователь по п.1, отличающийся тем, что состоит из фракции микрошариков диаметром 100 - 500 мкм. 7. Структурообразователь по п.1, отличающийся тем, что состоит из фракции микрошариков диаметром 85 - 110 мкм. 8. Структурообразователь по п.1, отличающийся тем, что состоит из фракции микрошариков диаметром 500 - 160 мкм. 9. Структурообразователь по пп.1 - 8, отличающийся тем, что содержание микрошариков, диаметр которых не соответствует параметру фракции, составляет не более 5% от общей массы фракции. 10. Композиционный материал неоднородной структуры, состоящий из связующего начала, в массе которого распределены элементы структурообразователя, содержащие фрагменты, выполненного из стекла, отличающийся тем, что в качестве структурообразователя он содержит стеклянные микрошарики диаметром от 50 до 1000 мкм. 11. Композиционный материал по п.10, отличающийся тем, что стеклянные микрошарики составляют от 2 до 80% массы композиционного материала. (19) RU (11) 12 125 (13) U1 (51) МПК C04B 14/00 (1995.01) C03B 19/10 (1995.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 99117454/20, 17.08.1999 (24) Дата начала отсчета срока действия патента: 17.08.1999 (46) Опубликовано: 16.12.1999 (72) Автор(ы): Касаткина М.В., Горохов М.В., Буляускас А.З., Остапенко В.М., Николаев А.В., Федоров С.Е. 1 2 1 2 5 R U ...

Подробнее
10-05-2003 дата публикации

Полый стеклянный шарик

Номер: RU0000029302U1

Полый стеклянный шарик, содержащий внутреннюю полость, образованную сферической стеклянной оболочкой, отличающийся тем, что оболочка выполнена герметичной и, по крайней мере, часть оболочки содержит сферический слой из алюмосиликатного стекла, а внутренняя полость вакуумирована. (19) RU (11) 29 302 (13) U1 (51) МПК C03B 19/10 (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 2002130653/20 , 20.11.2002 (24) Дата начала отсчета срока действия патента: 20.11.2002 (46) Опубликовано: 10.05.2003 (72) Автор(ы): Якунин Г.Н., Якунин А.Г. (73) Патентообладатель(и): Якунин Геннадий Николаевич, Якунин Андрей Геннадиевич (57) Формула полезной модели Полый стеклянный шарик, содержащий внутреннюю полость, образованную сферической стеклянной оболочкой, отличающийся тем, что оболочка выполнена герметичной и, по крайней мере, часть оболочки содержит сферический слой из алюмосиликатного стекла, а внутренняя полость вакуумирована. 2 9 3 0 2 (54) Полый стеклянный шарик R U Адрес для переписки: 454080, г. Челябинск, ул. Васенко, 63, ЮУТПП, пат.пов. Е.А. Крешнянской, рег. № 690 (71) Заявитель(и): Якунин Геннадий Николаевич, Якунин Андрей Геннадиевич R U 2 9 3 0 2 U 1 U 1 Ñòðàíèöà: 1 RU 29 302 U1 RU 29 302 U1 RU 29 302 U1 RU 29 302 U1 RU 29 302 U1 RU 29 302 U1

Подробнее
27-06-2003 дата публикации

Полый стеклянный шарик

Номер: RU0000030352U1

1. Полый стеклянный шарик, содержащий стеклянную оболочку и внутреннюю полость, отличающийся тем, что шарик снабжен, по меньшей мере, одним дополнительным полым стеклянным шариком, расположенным внутри основного, при этом оболочки шариков выполнены из алюмосиликатного стекла с содержанием соединений железа 0,5-2,5% по весу. 2. Полый стеклянный шарик по п.1, отличающийся тем, что он снабжен дополнительными шариками, зажатыми внешними поверхностями оболочек между собой и внутренней поверхностью стеклянной оболочки основного шарика. (19) RU (11) 30 352 (13) U1 (51) МПК C03B 19/00 (2000.01) РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К СВИДЕТЕЛЬСТВУ (21), (22) Заявка: 2003105916/20 , 03.03.2003 (24) Дата начала отсчета срока действия патента: 03.03.2003 (46) Опубликовано: 27.06.2003 (72) Автор(ы): Якунин Г.Н., Якунин А.Г. (73) Патентообладатель(и): Якунин Геннадий Николаевич, Якунин Андрей Геннадиевич U 1 3 0 3 5 2 R U Ñòðàíèöà: 1 U 1 (57) Формула полезной модели 1. Полый стеклянный шарик, содержащий стеклянную оболочку и внутреннюю полость, отличающийся тем, что шарик снабжен, по меньшей мере, одним дополнительным полым стеклянным шариком, расположенным внутри основного, при этом оболочки шариков выполнены из алюмосиликатного стекла с содержанием соединений железа 0,5-2,5% по весу. 2. Полый стеклянный шарик по п.1, отличающийся тем, что он снабжен дополнительными шариками, зажатыми внешними поверхностями оболочек между собой и внутренней поверхностью стеклянной оболочки основного шарика. 3 0 3 5 2 (54) Полый стеклянный шарик R U Адрес для переписки: 454080, г. Челябинск, ул. Васенко, 63, ЮУТПП, Пат. пов. Е.А. Крешнянской, рег. № 690 (71) Заявитель(и): Якунин Геннадий Николаевич, Якунин Андрей Геннадиевич RU 30 352 U1 RU 30 352 U1 RU 30 352 U1 RU 30 352 U1

Подробнее
20-11-2003 дата публикации

Установка для производства блоков пеностеклокристаллита

Номер: RU0000033947U1

1. Установка для производства блоков пеностеклокристаллита, включающая печь вспенивания, имеющую зоны подогрева, вспенивания и фиксации, печь отжига, механизм отделения и передачи блоков пеностеклокристаллита от форм в печь отжига, транспортный путь для перемещения форм с крышками, состоящий из четырех участков, образующих совместно с транспортным путем вспенивания замкнутый прямоугольный контур, отличающаяся тем, что она снабжена вагонетками, образующими подвижный под печи вспенивания, на которые установлены формы с крышками. 2. Установка по п.1, отличающаяся тем, что формы с крышками установлены приподнятыми, при этом на внутренней поверхности крышки размещены зацепы, обеспечивающие возможность центрирования крышки с формой и удержание блока пеностеклокристаллита при ее поднятии, а днище формы снабжено диском с рычагом для поворота на некоторый угол при помощи упоров, расположенных на выходе печи вспенивания. 3. Установка по п.1, отличающаяся тем, что в печи вспенивания в зонах подогрева и вспенивания электронагреватели установлены с четырех сторон на боковых поверхностях стен, своде и поде. 4. Установка по п.1, отличающаяся тем, что в зоне фиксации на боковых поверхностях стен печи вспенивания расположены отверстия ниже уровня основания установленных форм. 5. Установка по п.1, отличающаяся тем, что печь отжига имеет многоярусный по высоте отжиговый канал с транспортирующими устройствами, в крайних положениях которого установлены механизмы перекладки блоков пеностеклокристаллита с яруса на ярус. 6. Установка по п.1, отличающаяся тем, что блоки пеностеклокристаллита перекладываются из форм на транспортирующее устройство печи отжига в закрытом пространстве, являющимся продолжением печи вспенивания и началом печи отжига. 7. Установка по п.1, отличающаяся тем, что на участках транспортного пути, расположенных перпендикулярно печи вспенивания, вагонетки передаются конвейером, несущим органом которого являются рельсы, перемещаемые на каретках и установленные с шагом, ...

Подробнее
20-12-2003 дата публикации

Устройство для формования гранул из расплава

Номер: RU0000034935U1
Автор:

1. Устройство для формования гранул из расплава, включающее питатель, пару валков, расположенных параллельно друг другу, привод, отличающееся тем, что устройство содержит полый формующий барабан, по меньшей мере, один охладитель и, по меньшей мере, один выталкиватель гранул, при этом цилиндрическая стенка формующего барабана расположена между валками без зазоров и выполнена с формующими ячейками, а ось вращения формующего барабана установлена параллельно осям вращения валков и соединена с приводом. 2. Устройство по п.1, отличающееся тем, что, по меньшей мере, один охладитель установлен за валками по ходу вращения формующего барабана, выполнен, по меньшей мере, из двух частей, по меньшей мере, одна из которых расположена с внутренней стороны формующего барабана. 3. Устройство по пп.1 и 2, отличающееся тем, что, по меньшей мере, одна из, по меньшей мере, двух частей охладителя расположена с внешней стороны формующего барабана. 4. Устройство по п.1, отличающееся тем, что, по меньшей мере, один выталкиватель гранул установлен за охладителем по ходу вращения формующего барабана и расположен внутри формующего барабана. 5. Устройство по пп.1 и 4, отличающееся тем, что, по меньшей мере, один выталкиватель гранул выполнен пневматическим. 6. Устройство по пп.1 и 4, отличающееся тем, что, по меньшей мере, один выталкиватель гранул выполнен механическим в виде барабана с выступами, расположенными на его цилиндрической стенке, при этом барабан установлен с возможностью вращения вокруг своей оси, а выступы выполнены соизмеримо и расположены соответственно ячейкам формующего барабана. 7. Устройство по п.1, отличающееся тем, что, по меньшей мере, один охладитель установлен с внутренней стороны формующего барабана и расположен перед питателем по ходу вращения формующего барабана. 8. Устройство по п.1, отличающееся тем, что с внешней стороны формующего барабана установлен нагреватель, расположенный перед питателем по ходу вращения барабана. 9. Устройство по п.1, отличающееся тем, что ...

Подробнее
20-07-2004 дата публикации

МИКРОСФЕРИЧЕСКИЙ НАПОЛНИТЕЛЬ

Номер: RU0000039135U1

Микросферический наполнитель, преимущественно, для композиционных материалов и изделий, содержащий полые стеклянные микросферы, каждая из которых содержит сферическую оболочку из алюмосиликатного стекла, отличающийся тем, что, по крайней мере, часть микросфер содержит дополнительные сферические образования, жестко закрепленные на внешней поверхности оболочки, при этом содержание микросфер размером 0-160 мкм составляет 40-60% по весу. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 39 135 (13) U1 (51) МПК C03B 19/10 (2000.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2003121141/20 , 10.07.2003 (24) Дата начала отсчета срока действия патента: 10.07.2003 (46) Опубликовано: 20.07.2004 (73) Патентообладатель(и): Якунин Геннадий Николаевич (RU), Якунин Андрей Геннадиевич (RU) U 1 3 9 1 3 5 R U Ñòðàíèöà: 1 U 1 Формула полезной модели Микросферический наполнитель, преимущественно, для композиционных материалов и изделий, содержащий полые стеклянные микросферы, каждая из которых содержит сферическую оболочку из алюмосиликатного стекла, отличающийся тем, что, по крайней мере, часть микросфер содержит дополнительные сферические образования, жестко закрепленные на внешней поверхности оболочки, при этом содержание микросфер размером 0-160 мкм составляет 40-60% по весу. 3 9 1 3 5 (54) МИКРОСФЕРИЧЕСКИЙ НАПОЛНИТЕЛЬ R U Адрес для переписки: 454080, г. Челябинск, ул. Васенко, д. 63, ЮУТПП, пат. пов. Е.А. Крешнянский, рег. № 690 (72) Автор(ы): Якунин Г.Н. (RU), Якунин А.Г. (RU) RU 5 10 15 20 25 30 35 40 45 50 39 135 U1 Полезная модель относится к области производства стеклянных изделий, а именно, полых стеклянных шариков диаметром до 0,5 мм, которые могут быть использованы в качестве наполнителя в различных материалах и процессах. Известны полые шарики, выполненные из силикатного материала, содержащие оболочку из натриевого жидкого стекла и внутреннюю полость (Проспект фирмы PQ Corp. США, "Шарики ...

Подробнее
27-01-2005 дата публикации

СТЕНД ДЛЯ ИЗГОТОВЛЕНИЯ МИКРОСФЕР

Номер: RU0000043476U1

1. Стенд для изготовления микросфер, включающий вертикальную трубчатую высокотемпературную печь с вакуумными затворами на входе и выходе, устройство загрузки шихты, сборник микросфер, холодильник, установленный между печью и сборником микросфер, источник газа, вакуумный насос и датчики давления, установленные в магистралях, соединяющих печь с источником газа и вакуумным насосом, отличающийся тем, что стенд дополнительно содержит элементы для создания в печи непрерывного газового потока и регулирования его скорости при заданном составе и давлении газовой среды, при этом один элемент установлен в магистрали, соединяющей источник газа с печью, а второй - между сборником микросфер и вакуумным насосом. 2. Стенд по п.1, отличающийся тем, что сборник микросфер с вакуумным насосом соединен двумя параллельными магистралями с разной пропускной способностью, в одной из которых установлен второй элемент для регулирования скорости газового потока. 3. Стенд по п.1 или 2, отличающийся тем, что элемент регулирования скорости газового потока выполнен в виде ротаметра и вентиля. 4. Стенд по п.1, отличающийся тем, что перед вакуумным насосом установлен защитный электромагнитный клапан. 5. Стенд по п.1, отличающийся тем, что между устройством загрузки и вакуумным затвором установлен предохранительный клапан. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 43 476 (13) U1 (51) МПК B01J 13/02 (2000.01) C03B 19/10 (2000.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2004127348/22 , 13.09.2004 (24) Дата начала отсчета срока действия патента: 13.09.2004 (45) Опубликовано: 27.01.2005 4 3 4 7 6 R U Формула полезной модели 1. Стенд для изготовления микросфер, включающий вертикальную трубчатую высокотемпературную печь с вакуумными затворами на входе и выходе, устройство загрузки шихты, сборник микросфер, холодильник, установленный между печью и сборником микросфер, источник газа, вакуумный насос и датчики давления ...

Подробнее
10-05-2005 дата публикации

УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ РАСПЛАВА

Номер: RU0000045384U1

1. Устройство для изготовления изделий из расплава, содержащее средство для получения расплава, в частности аморфного материала, например, стекла, выходной канал которого связан через рабочие каналы с соответствующими средствами формования различных изделий, отличающееся тем, что продольная ось хотя бы части одного или более рабочих каналов ориентирована непараллельно, в частности, нормально или почти нормально к продольной оси средства для получения расплава. 2. Устройство для изготовления изделий из расплава по п.1, отличающееся тем, что средство формования изделий выполнено в виде средства формования стеклошариков или стекловолокна. 3. Устройство для изготовления изделий из расплава по п.2, отличающееся тем, что длины частей выходного канала L и L между выходом средства для получения расплава и входами рабочих каналов, связывающих его со средствами формования стеклошариков и стекловолокна соответственно, соотносятся как L Подробнее

10-10-2005 дата публикации

ПОЛЫЙ СТЕКЛЯННЫЙ ШАРИК

Номер: RU0000048324U1
Автор: Якунин Г.Н.

Полый стеклянный шарик, содержащий наружную стенку и внутреннюю полость, с изолированными отдельными отсеками, отличающийся тем, что изолированные отсеки образованы перегородками и наружной стенкой, причем наружная стенка и перегородки выполнены из алюмосиликатного стекла с общим содержанием соединений железа 0,5-2,5% по весу. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 48 324 (13) U1 (51) МПК C03B 19/10 (2000.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2004135866/22 , 07.12.2004 (24) Дата начала отсчета срока действия патента: 07.12.2004 (45) Опубликовано: 10.10.2005 (72) Автор(ы): Якунин Г.Н. (RU) (73) Патентообладатель(и): Якунин Геннадий Николаевич (RU) R U Адрес для переписки: 454112, г.Челябинск, а/я 9874, Г.Н. Якунину (54) ПОЛЫЙ СТЕКЛЯННЫЙ ШАРИК 4 8 3 2 4 Формула полезной модели Полый стеклянный шарик, содержащий наружную стенку и внутреннюю полость, с изолированными отдельными отсеками, отличающийся тем, что изолированные отсеки образованы перегородками и наружной стенкой, причем наружная стенка и перегородки выполнены из алюмосиликатного стекла с общим содержанием соединений железа 0,5-2,5% по весу. R U 4 8 3 2 4 U 1 U 1 Ñòðàíèöà: 1 RU 5 10 15 20 25 30 35 40 45 50 48 324 U1 Полезная модель относится к области производства стеклянных изделий, а именно: полых стеклянных шариков из алюмосиликатного стекла диаметром 0,1-0,5 мм которые могут быть использованы в качестве наполнителя в различных материалах и процессах. Известен полый стеклянный шарик, содержащий наружную стенку и внутреннюю полость, причем наружная стенка выполнена из боросиликатного стекла, способного при высокой температуре расплавляться на капли и раздуваться до сферической частицы под действием генерируемого газа (Проспект фирмы PQ Corp. США, Шарики семейства Q-cell, 1989 г.) Недостатком данного шарика является резкое уменьшение объема (почти до нуля) при его разрушении. При воздействии внешней ...

Подробнее
10-12-2007 дата публикации

ВЫСОКОТЕМПЕРАТУРНАЯ ВЕРТИКАЛЬНАЯ ПЕЧЬ ДЛЯ ПОЛУЧЕНИЯ МИКРОСФЕР

Номер: RU0000069062U1

1. Высокотемпературная вертикальная печь для получения микросфер, включающая, по меньшей мере, один высокотемпературный модуль, содержащий установленные в корпусе трубчатую рабочую камеру, нагреватель, теплоизоляционный элемент, расположенный между корпусом и нагревателем, термодатчики и токоподводы к нагревателю, отличающаяся тем, что нагреватель выполнен из графита, модуль состоит из одной или более секций, а токоподводы подведены к торцам модуля и соединены с нагревателем графитовыми втулками. 2. Высокотемпературная вертикальная печь по п.1, отличающаяся тем, что трубчатая рабочая камера совмещена с нагревателем. 3. Высокотемпературная вертикальная печь по п.1, отличающаяся тем, что при выполнении модуля из нескольких секций их нагреватели соединены между собой графитовыми втулками. 4. Высокотемпературная вертикальная печь по п.1, отличающаяся тем, что корпус снабжен рубашкой водяного охлаждения. 5. Высокотемпературная вертикальная печь по п.1, отличающаяся тем, что секции модуля и модули между собой соединены уплотнительными элементами, обеспечивающими герметичность. 6. Высокотемпературная вертикальная печь по п.1, отличающаяся тем, что она состоит из разного количества модулей с разным количеством секций. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 69 062 (13) U1 (51) МПК C03B 19/10 C04B 20/06 (2006.01) (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2007127456/22 , 17.07.2007 (24) Дата начала отсчета срока действия патента: 17.07.2007 (45) Опубликовано: 10.12.2007 6 9 0 6 2 R U Формула полезной модели 1. Высокотемпературная вертикальная печь для получения микросфер, включающая, по меньшей мере, один высокотемпературный модуль, содержащий установленные в корпусе трубчатую рабочую камеру, нагреватель, теплоизоляционный элемент, расположенный между корпусом и нагревателем, термодатчики и токоподводы к нагревателю, отличающаяся тем, что нагреватель выполнен из графита, ...

Подробнее
10-03-2009 дата публикации

СТЕКЛОПЕНОМАТ (СПМ)

Номер: RU0000081192U1

Стеклопеномат, содержащий газообразователь, наносимый на пленочное стекло при следующих соотношениях компонентов: отличающийся тем, что газообразователь нанесен послойно с последующим выкладыванием из пленочного стекла пакета и образования блока стеклопеномата. (19) РОССИЙСКАЯ ФЕДЕРАЦИЯ RU (11) (13) 81 192 U1 (51) МПК C03B 19/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2008100874/22, 09.01.2008 (24) Дата начала отсчета срока действия патента: 09.01.2008 (45) Опубликовано: 10.03.2009 (72) Автор(ы): Грецков Дмитрий Георгиевич (RU) (73) Патентообладатель(и): Леухин Николай Николаевич (RU) R U Адрес для переписки: 606443, Нижегородская обл., г. Бор-3, ул. Чугунова, 1, кв.14, Н.Н. Леухину Формула полезной модели Стеклопеномат, содержащий газообразователь, наносимый на пленочное стекло при следующих соотношениях компонентов: газообразователь 8 1 1 9 2 (54) СТЕКЛОПЕНОМАТ (СПМ) до 3% R U 8 1 1 9 2 отличающийся тем, что газообразователь нанесен послойно с последующим выкладыванием из пленочного стекла пакета и образования блока стеклопеномата. Ñòðàíèöà: 1 ru CL U 1 U 1 пленочное стекло остальное, RU 5 10 15 20 25 30 35 40 81 192 U1 Данная полезная модель относится к области промышленности строительных материалов и может быть использована для теплоизоляции зданий. Стеклопеномат это новый материал с низким коэффициентом теплопроводности и экологически безопасный. Стеклопеномат получается благодаря тому, что газообразователь равномерно располагается послойно непосредственно на поверхности пленочного стекла в процессе его изготовления при следующих соотношениях: Газообразователь до 3%; Пленочное стекло остальное. На стадии вытяжки пленочного стекла на его поверхность наносится газообразователь, затем из него выкладывается пакет в виде слоенного пирога и под действием остаточной температуры стекла происходит вспучивание его, образуя блок стеклопеномата (СПМ). Производство ...

Подробнее
10-09-2010 дата публикации

УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА БЛОКОВ ПЕНОСТЕКЛА

Номер: RU0000097367U1

1. Установка для производства блоков пеностекла, включающая печь вспенивания и печь отжига, металлические формы, транспортный путь, передаточные тележки, толкатели, бункер-дозатор пенообразующей смеси, отличающаяся тем, что, с целью повышения производительности установки и качества пеностекла, улучшения условий труда и снижения энергозатрат, металлические формы выполнены в виде прямоугольных параллелепипедов из жаростойкого металла толщиной 0,6-4 мм, имеют ребра жесткости, подвижную крышку и подаются в печь установленными на меньшую по площади грань так, чтобы вспенивание шихты происходило параллельно плоскости наибольшей грани формы. 2. Установка по п.1, отличающаяся тем, что блоки пеностекла подаются в печь отжига в формах, а технологический этап извлечения блоков из форм осуществляется после завершения процесса отжига. 3. Установка по п.1, отличающаяся тем, что для отжига блоков пеностекла дополнительно содержит две отжигательные печи, которые загружаются формами последовательно по схеме 1-2-3-1-2-3 и обеспечивают скорость охлаждения блоков в пределах 0,6-0,9°С/мин. 4. Установка по п.1, отличающаяся тем, что передаточная тележка на участке транспортного пути от печи вспенивания до печей отжига дополнительно имеет приемную камеру с системой подогрева, исключающую появление термических напряжений в блоках пеностекла. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 97 367 (13) U1 (51) МПК C03B 19/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2010120322/03, 21.05.2010 (24) Дата начала отсчета срока действия патента: 21.05.2010 (45) Опубликовано: 10.09.2010 (72) Автор(ы): Кононыхин Вячеслав Семенович (RU) (73) Патентообладатель(и): Кононыхин Вячеслав Семенович (RU) U 1 9 7 3 6 7 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели 1. Установка для производства блоков пеностекла, включающая печь вспенивания и печь отжига, металлические формы, транспортный путь, передаточные ...

Подробнее
20-09-2010 дата публикации

ПОЛАЯ МИКРОСФЕРА

Номер: RU0000097726U1

1. Полая микросфера, содержащая внутреннюю сферическую полость, образованную стенкой из алюмосиликатного материала, содержащего кристаллическую и аморфную фазы, причем стенка выполнена переменной толщины, и в ней имеются микропоры, отличающаяся тем, что стенка микросферы выполнена симметричной относительно диаметра, проходящего через полюса сферы с минимальной и максимальной толщиной стенки, а внутренняя и наружная поверхности стенки покрыты нанослоем кристаллического материала. 2. Полая микросфера по п.1, отличающаяся тем, что микропоры расположены в утолщенной части стенки. 3. Полая микросфера по п.1, отличающаяся тем, что внутренняя поверхность микропор покрыта нанослоем кристаллического материала. 4. Полая микросфера по п.1, отличающаяся тем, что полюс с минимальной толщиной стенки вогнут во внутреннюю полость микросферы. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 97 726 (13) U1 (51) МПК C03B 19/10 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2010105735/22, 17.02.2010 (24) Дата начала отсчета срока действия патента: 17.02.2010 (45) Опубликовано: 20.09.2010 (73) Патентообладатель(и): Якунин Геннадий Николаевич (RU), Прокопьев Иван Прокопьевич (RU) U 1 9 7 7 2 6 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели 1. Полая микросфера, содержащая внутреннюю сферическую полость, образованную стенкой из алюмосиликатного материала, содержащего кристаллическую и аморфную фазы, причем стенка выполнена переменной толщины, и в ней имеются микропоры, отличающаяся тем, что стенка микросферы выполнена симметричной относительно диаметра, проходящего через полюса сферы с минимальной и максимальной толщиной стенки, а внутренняя и наружная поверхности стенки покрыты нанослоем кристаллического материала. 2. Полая микросфера по п.1, отличающаяся тем, что микропоры расположены в утолщенной части стенки. 3. Полая микросфера по п.1, отличающаяся тем, что внутренняя поверхность микропор ...

Подробнее
10-12-2010 дата публикации

УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА БЛОКОВ ПЕНОСТЕКЛА

Номер: RU0000100072U1

1. Установка для производства блоков пеностекла, включающая печь вспенивания и печь отжига, металлические формы, транспортный путь, передаточные тележки, толкатели, бункер-дозатор пенообразующей смеси, отличающаяся тем, что, с целью повышения производительности установки и качества пеностекла, улучшения условий труда и снижения энергозатрат, металлические формы выполнены в виде прямоугольных параллелепипедов из жаростойкого металла и подаются в печь вертикально, установленными на одну из меньших по площади граней так, чтобы вспенивание шихты происходило параллельно плоскости наибольшей грани формы. 2. Установка по п.1, отличающаяся тем, что формы подаются в печь вспенивания в четыре ряда. 3. Установка по п.1, отличающаяся тем, что блоки пеностекла подаются в печь отжига в формах с регулируемой жесткостью, а технологический этап извлечения блоков из форм осуществляется полностью после завершения процесса отжига. 4. Установка по п.1, отличающаяся тем, что передаточная тележка на участке транспортного пути от печи вспенивания до печи отжига имеет приемную камеру с системой подогрева, исключающую появление критических термических напряжений в блоках пеностекла. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 100 072 (13) U1 (51) МПК C03B 19/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21), (22) Заявка: 2010134828/03, 23.08.2010 (24) Дата начала отсчета срока действия патента: 23.08.2010 (45) Опубликовано: 10.12.2010 (72) Автор(ы): Кононыхин Вячеслав Семенович (RU) (73) Патентообладатель(и): Кононыхин Вячеслав Семенович (RU) U 1 1 0 0 0 7 2 R U Ñòðàíèöà: 1 ru CL U 1 Формула полезной модели 1. Установка для производства блоков пеностекла, включающая печь вспенивания и печь отжига, металлические формы, транспортный путь, передаточные тележки, толкатели, бункер-дозатор пенообразующей смеси, отличающаяся тем, что, с целью повышения производительности установки и качества пеностекла, улучшения условий ...

Подробнее
27-04-2011 дата публикации

УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА БЛОКОВ ПЕНОСТЕКЛА

Номер: RU0000103803U1

1. Установка для производства блоков пеностекла, включающая печь, формы, транспортный путь, передаточные тележки, толкатели, бункер-дозатор пенообразующей смеси, отличающаяся тем, что, с целью повышения производительности установки и качества пеностекла, формы выполнены в виде прямоугольных параллелепипедов из жаростойкого металла, дилатометрически согласованного с пеностеклом, и подаются в печь в один ярус установленными вертикально на одну из меньших по площади граней. 2. Установка по п.1, отличающаяся тем, что конструкция зоны быстрого охлаждения после вспенивания шихты обеспечивает охлаждение форм со скоростью 20-50°С/мин. 3. Установка по п.1, отличающаяся тем, что зона отжига имеет выделенные параллельные участки - высокотемпературный со скоростью охлаждения 0,5-0,7°С/мин, содержащий верхнюю и нижнюю границы отжига, и низкотемпературный со скоростью охлаждения 0,7-1,1°С/мин. 4. Установка по п.1, отличающаяся тем, что для отжига блоков пеностекла содержит два низкотемпературных участка отжига, которые загружаются формами поочередно. 5. Установка по п.1, отличающаяся тем, что высокотемпературный и низкотемпературные участки зоны отжига связаны между собой тепловым шлюзом с подогревом, согласующим участки по температуре. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 103 803 (13) U1 (51) МПК C03B 19/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2010149477/03, 06.12.2010 (24) Дата начала отсчета срока действия патента: 06.12.2010 (73) Патентообладатель(и): Кононыхин Вячеслав Семенович (RU) R U Приоритет(ы): (22) Дата подачи заявки: 06.12.2010 (72) Автор(ы): Кононыхин Вячеслав Семенович (RU) (45) Опубликовано: 27.04.2011 1 0 3 8 0 3 R U Формула полезной модели 1. Установка для производства блоков пеностекла, включающая печь, формы, транспортный путь, передаточные тележки, толкатели, бункер-дозатор пенообразующей смеси, отличающаяся тем, что, с целью повышения ...

Подробнее
27-05-2011 дата публикации

МИКРОСФЕРИЧЕСКИЙ НАПОЛНИТЕЛЬ

Номер: RU0000104937U1

Микросферический наполнитель для огнеупорных и износостойких изделий, содержащий сферическую оболочку из алюмосиликатного материала, состоящего из кристаллической и аморфной фазы, отличающийся тем, что наполнитель дополнительно содержит внешнюю сферическую оболочку из карбида кремния и промежуточную оболочку из кристаллического муллита, расположенную между оболочкой из алюмосиликатного материала и оболочкой из карбида кремния. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 104 937 (13) U1 (51) МПК C03B 19/10 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2010140345/03, 01.10.2010 (24) Дата начала отсчета срока действия патента: 01.10.2010 (72) Автор(ы): Якунин Геннадий Николаевич (RU), Прокопьев Иван Прокопьевич (RU) (45) Опубликовано: 27.05.2011 R U 1 0 4 9 3 7 Формула полезной модели Микросферический наполнитель для огнеупорных и износостойких изделий, содержащий сферическую оболочку из алюмосиликатного материала, состоящего из кристаллической и аморфной фазы, отличающийся тем, что наполнитель дополнительно содержит внешнюю сферическую оболочку из карбида кремния и промежуточную оболочку из кристаллического муллита, расположенную между оболочкой из алюмосиликатного материала и оболочкой из карбида кремния. Ñòðàíèöà: 1 ru CL U 1 U 1 (54) МИКРОСФЕРИЧЕСКИЙ НАПОЛНИТЕЛЬ 1 0 4 9 3 7 Адрес для переписки: 454080, г.Челябинск, ул. С. Кривой, 56, ЮУТПП, О.А. Миллер R U (73) Патентообладатель(и): Якунин Геннадий Николаевич (RU), Прокопьев Иван Прокопьевич (RU) Приоритет(ы): (22) Дата подачи заявки: 01.10.2010 U 1 U 1 1 0 4 9 3 7 1 0 4 9 3 7 R U R U Ñòðàíèöà: 2 RU 5 10 15 20 25 30 35 40 45 50 104 937 U1 Полезная модель относится к области производства стеклокерамических изделий, а именно к производству полых стеклянных (керамических) микросфер, которые могут быть использованы для наполнения огнеупорных и износостойких изделий, таких, как абразивы, подшипники, пенометаллы. Широко известен ...

Подробнее
20-08-2011 дата публикации

УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА БЛОКОВ ПЕНОСТЕКЛА

Номер: RU0000107523U1

1. Установка для производства блоков пеностекла, включающая печь вспенивания и печь отжига, транспортный путь, передаточные тележки, толкатели, бункер-дозатор пенообразующей смеси, металлические формы, установленные вертикально на одну из меньших по площади граней так, чтобы вспенивание шихты происходило параллельно плоскости наибольшей грани формы, отличающаяся тем, что, с целью расширения функциональных и технологических возможностей, повышения эксплуатационной надежности и оптимизации весогабаритных характеристик, содержит дополнительно одну, две или три печи отжига, которые загружаются блоками пеностекла поочередно по схеме 1-2-1-2, 1-2-3-1-2-3 или 1-2-3-4-1-2-3-4 соответственно. 2. Установка по п.1, отличающаяся тем, что снабжена дополнительной линией возврата свободных форм. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) 107 523 (13) U1 (51) МПК C03B 19/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2011111632/03, 29.03.2011 (24) Дата начала отсчета срока действия патента: 29.03.2011 (73) Патентообладатель(и): Кононыхин Вячеслав Семенович (RU) R U Приоритет(ы): (22) Дата подачи заявки: 29.03.2011 (72) Автор(ы): Кононыхин Вячеслав Семенович (RU) (45) Опубликовано: 20.08.2011 1 0 7 5 2 3 R U Формула полезной модели 1. Установка для производства блоков пеностекла, включающая печь вспенивания и печь отжига, транспортный путь, передаточные тележки, толкатели, бункер-дозатор пенообразующей смеси, металлические формы, установленные вертикально на одну из меньших по площади граней так, чтобы вспенивание шихты происходило параллельно плоскости наибольшей грани формы, отличающаяся тем, что, с целью расширения функциональных и технологических возможностей, повышения эксплуатационной надежности и оптимизации весогабаритных характеристик, содержит дополнительно одну, две или три печи отжига, которые загружаются блоками пеностекла поочередно по схеме 1-2-1-2, 1-2-3-1-2-3 или 1-2-34-1- ...

Подробнее
27-07-2016 дата публикации

ПЕЧЬ ДЛЯ ВСПЕНИВАНИЯ ГРАНУЛ

Номер: RU0000163661U1

1. Печь для вспенивания гранул, содержащая горелку и устройство ввода гранулята-сырца, отличающаяся тем, что печь установлена вертикально и функционально разделена на зону предварительного нагрева гранулята-сырца, зону вспенивания во взвешенном состоянии и зону охлаждения вспененных гранул во взвешенном состоянии, горелка установлена в нижней части печи, а устройство ввода гранулята-сырца размещено с возможностью подачи гранулята-сырца в зону предварительного нагрева печи. 2. Печь по п. 1, отличающаяся тем, что стенки печи в зоне вспенивания снабжены системой охлаждения. 3. Печь по п. 1 и 2, отличающаяся тем, что в зоне охлаждения вспененных гранул размещено устройство для ввода охлаждающего воздуха, установленное с возможностью его регулирования по высоте. 4. Печь по п. 3, отличающаяся тем, что устройство для ввода охлаждающего воздуха выполнено в виде вертикальной трубы, размещенной внутри зоны охлаждения. 5. Печь по п. 3, отличающаяся тем, что устройство для ввода охлаждающего воздуха выполнено в виде окон в стенке печи. И 1 163661 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ Во“” 163 661“° ц4 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 01.01.2020 Дата внесения записи в Государственный реестр: 07.10.2020 Дата публикации и номер бюллетеня: 07.10.2020 Бюл. №28 Стр.: 1 па Е99$5Э9р ЕП

Подробнее
10-11-2016 дата публикации

ПЕНОСТЕКЛО

Номер: RU0000165773U1

Пеностекло, состоящее из газонаполненной замкнутой ячеистой структуры, ограниченной тонкими стеклянными стенками, выполненное вспениванием при обжиге шихты из природного алюмосиликатного сырья и плавня, отличающееся тем, что стеклянные стенки пор содержат микрокристаллы, образованные при обжиге кристаллизацией расплава шихты, дополнительно содержащей кристаллообразующие соединения с концентрацией не более 25 мас. %. Ц 165773 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ ВУ” 165 773” 44 ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ИЗВЕЩЕНИЯ К ПАТЕНТУ НА ПОЛЕЗНУЮ МОДЕЛЬ ММ9К Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе Дата прекращения действия патента: 08.06.2021 Дата внесения записи в Государственный реестр: 29.06.2022 Дата публикации и номер бюллетеня: 29.06.2022 Бюл. №19 Стр.: 1 па $11991 ЕП

Подробнее
09-06-2017 дата публикации

Устройство для получения блочного пеностекла

Номер: RU0000171679U1

Полезная модель относится к области получения блочного пеностекла и может быть использована в промышленности строительных материалов. Технический результат, на который направлена полезная модель - увеличение производительности получения блочного пеностекла. Для достижения указанного технического результата предлагаемое устройство включает порошковый питатель и плазменный реактор, представляющий собой цилиндр, выполненный из медного корпуса с водоохлаждаемыми рубашками, содержащий вольфрамовый электрод с каналами для подачи плазмообразующего газа, закрепленные в проеме верхней стенки корпуса перпендикулярно металлическим формам для формования блочного пеностекла, которые транспортируются на пластинчатом конвейере, причем плазменный реактор снабжен кварцевыми трубопроводами, установленными параллельно оси плазменного факела. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 171 679 U1 (51) МПК C03C 11/00 (2006.01) C03B 19/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ (21)(22) Заявка: 2017105961, 21.02.2017 (24) Дата начала отсчета срока действия патента: 21.02.2017 09.06.2017 Приоритет(ы): (22) Дата подачи заявки: 21.02.2017 (45) Опубликовано: 09.06.2017 Бюл. № 16 Адрес для переписки: 308023, г. Белгород, Садовая, 116А, ректору Автономной некоммерческой организации высшего образования "Белгородский университет кооперации, экономики и права" Теплову В.И. (56) Список документов, цитированных в отчете о поиске: RU 2417170 C2, 27.04.2011. CN 101676233 A, 24.03.2010. JP 0060239330 A, 28.11.1985. US 5319176 A1, 07.06.1994. US 6817211 B2, 16.11.2004 . U 1 1 7 1 6 7 9 R U (57) Формула полезной модели Устройство для получение блочного пеностекла, включающее порошковый питатель и плазменный реактор, представляющий собой цилиндр, выполненный из медного корпуса с водоохлаждаемыми рубашками, содержащий вольфрамовый электрод с каналами для подачи плазмообразующего газа, причем порошковый питатель и плазменный ...

Подробнее
07-02-2022 дата публикации

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА

Номер: RU0000209213U1

Полезная модель относится к оборудованию для получения блочного пеностекла и может быть использована в стекольной промышленности. Технический результат, на который направлена полезная модель – снижение энергоемкости устройства. Технический результат достигается тем, что предлагаемое устройство для получения блочного пеностекла, включающее цилиндрический корпус, футерованный огнеупором с четырьмя проемами, в которые установлены симметрично друг другу четыре порошковых питателя для загрузки шихты, корпус устройства снабжен плазменным реактором, выполненным в виде медного цилиндра с водоохлаждаемой рубашкой, содержащим вольфрамовый электрод с каналами для подачи плазмообразующего газа аргона, отличающееся тем, что выполнены дополнительные четыре проема корпуса, в которые установлены еще четыре порошковых питателя для загрузки шихты, кроме того, в устройстве выполнены трубопроводы с вентиляторами для отбора отработанного плазмообразующего газа, с которыми соединены все восемь порошковых питателя. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 209 213 U1 (51) МПК C03B 19/08 (2006.01) C03C 11/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C03B 19/08 (2022.01); C03C 11/00 (2022.01) (21)(22) Заявка: 2021133864, 22.11.2021 (24) Дата начала отсчета срока действия патента: Дата регистрации: 07.02.2022 (73) Патентообладатель(и): Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" (RU) (45) Опубликовано: 07.02.2022 Бюл. № 4 Адрес для переписки: 308023, г. Белгород, ул. Садовая, 116А, Здоренко Наталья Михайловна U 1 2 0 9 2 1 3 R U (54) УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ БЛОЧНОГО ПЕНОСТЕКЛА (57) Реферат: Полезная модель относится к оборудованию реактором, выполненным в виде медного для получения блочного пеностекла и может быть цилиндра с водоохлаждаемой рубашкой, использована в стекольной промышленности. содержащим вольфрамовый электрод с каналами Технический ...

Подробнее
08-03-2012 дата публикации

Apparatus, systems and methods for producing particles using rotating capillaries

Номер: US20120056342A1
Автор: Evan E. Koslow
Принадлежит: GABAE TECHNOLOGIES LLC

An apparatus for forming particles from a liquid, including a rotor assembly having at least one surface sized and shaped so as to define at least one capillary. Each capillary has an inner region adjacent an axis of rotation of the rotor assembly, an outer region distal from the axis of rotation, and an edge adjacent the outer region. The rotor assembly is configured to be rotated at an angular velocity selected such that when the liquid is received in the inner region of the at least one capillary, the liquid will move from the inner region to the outer region, adopt an unsaturated condition on the at least one surface such that the liquid flows as a film along the at least one surface and does not continuously span the capillary, and, upon reaching the edge, separates from the at least one surface to form at least one particle.

Подробнее
08-03-2012 дата публикации

Titania-doped quartz glass and making method

Номер: US20120058419A1
Принадлежит: Shin Etsu Chemical Co Ltd

A titania-doped quartz glass suited as an EUV lithographic member is prepared by feeding a silicon-providing reactant gas and a titanium-providing reactant gas through a burner along with hydrogen and oxygen, subjecting the reactant gases to oxidation or flame hydrolysis to form synthetic silica-titania fine particles, depositing the particles on a rotating target, and concurrently melting and vitrifying the deposited particles to grow an ingot of titania-doped quartz glass. The target is retracted such that the growth front of the ingot may be spaced a distance of at least 250 mm from the burner tip.

Подробнее
08-03-2012 дата публикации

Crystallized glass with negative coefficient of thermal expansion and method for manufacturing the same

Номер: US20120058876A1
Принадлежит: Jeongkwan Co Ltd

A crystallized glass with negative coefficient of thermal expansion includes 38 wt % to 64 wt % of silica (SiO2); 30 wt % to 40 wt % of alumina (Al2O3); and 5 wt % to 12 wt % of lithium oxide (Li2O) as a basic component, and further includes more than one component selected from the group consisting of 0.5 wt % to 15 wt % of zirconia (ZrO2), 0.5 wt % to 6.5 wt % of titanium dioxide (TiO2), 0.5 wt % to 4 wt % of phosphorus pentoxide (P2O5), 2 wt % to 5 wt % of magnesium oxide (MgO), and 0 wt % to 5 wt % of magnesium fluoride (MgF2) in addition to the basic components. The crystallized glass may have a high negative coefficient of thermal expansion so that it has an advantage that it can be used as a thermal expansion compensation material according to the temperatures of all kinds of glasses and similar products thereof.

Подробнее
31-05-2012 дата публикации

Apparatus and method for manufacturing vitreous silica crucible

Номер: US20120131954A1
Принадлежит: Japan Super Quartz Corp

There are provided an apparatus and a method for manufacturing a vitreous silica crucible which can prevent the deterioration of the inner surface property in the manufacturing process of a vitreous silica crucible. The apparatus includes a mold defining an outer shape of a vitreous silica crucible, and an arc discharge unit having electrodes and a power-supply unit, wherein each of the electrodes includes a tip end directed to the mold, the other end opposite to the tip end, and a bent portion provided between the tip end and the other end.

Подробнее
31-05-2012 дата публикации

Vitreous silica crucible

Номер: US20120132133A1
Принадлежит: Japan Super Quartz Corp

The present invention provides a vitreous silica crucible which can suppress buckling and sidewall lowering of the crucible without fear of mixing of impurities into silicon melt. According to the present invention, provided is a vitreous silica crucible for pulling a silicon single crystal, wherein a ratio I2/I1 is 0.67 to 1.17, where I1 and I2 are area intensities of the peaks at 492 cm −1 and 606 cm −1 , respectively, in Raman spectrum of vitreous silica of the region having a thickness of 2 mm from an outer surface to an inner surface of a wall of the crucible.

Подробнее
07-06-2012 дата публикации

Vitreous silica crucible

Номер: US20120137964A1
Принадлежит: Japan Super Quartz Corp

The present invention provides a vitreous silica crucible which can suppress buckling and sidewall lowering of the crucible and the generation of cracks. According to the present invention, a vitreous silica crucible is provided for pulling a silicon single crystal having a wall, the wall including a non-doped inner surface layer made of natural vitreous silica or synthetic vitreous silica, a mineralizing element-maldistributed vitreous silica layer containing dispersed island regions each containing a mineralizing element, and wherein the vitreous silica of the island regions and the vitreous silica of a surrounding region of the island regions is a combination of mineralizing element-doped natural vitreous silica and non-doped synthetic vitreous silica, or a combination of mineralizing element-doped synthetic vitreous silica and non-doped natural vitreous silica, and the inner surface layer is made of vitreous silica of a different kind from that of the island region.

Подробнее
28-06-2012 дата публикации

Composite crucible, method of manufacturing the same, and method of manufacturing silicon crystal

Номер: US20120160155A1
Принадлежит: Japan Super Quartz Corp

The purpose of the present invention is to provide a crucible which has high viscosity at high temperature, and can be used for a long time, and can be manufactured at low cost, and a method of manufacturing the same. The composite crucible 10 is characterized in the use of mullite (3Al 2 O 3 .2SiO 2 ) as the basic material of the crucible. The composite crucible 10 has the crucible body 11 made of mullite material whose main component is alumina and silica, and a transparent vitreous silica layer 12 formed on the inner surface of the crucible body 11 . The thickness of the transparent vitreous silica layer 12 is smaller than that of the crucible body 11 . The crucible body 11 can be formed by the slip casting method, and the transparent vitreous silica layer 12 can be formed by the thermal spraying method.

Подробнее
28-06-2012 дата публикации

Vitreous silica crucible for pulling silicon single crystal and method of manufacturing the same

Номер: US20120160159A1
Принадлежит: Japan Super Quartz Corp

The present invention provides a vitreous silica crucible which can suppress the sidewall lowering of the crucible under high temperature during pulling a silicon single crystal, and a method of manufacturing such a vitreous silica crucible. The vitreous silica crucible 10 includes an opaque vitreous silica layer 11 provided on the outer surface side of the crucible and containing numerous bubbles, and a transparent vitreous silica layer 12 provided on the inner surface side. The opaque vitreous silica layer 11 includes a first opaque vitreous silica portion 11 a provided on the crucible upper portion, and a second opaque vitreous silica portion 11 b provided on the crucible lower portion. The specific gravity of the second opaque vitreous silica portion 11 b is 1.7 to 2.1, and the specific gravity of the first opaque vitreous silica portion 11 a is 1.4 to 1.8, and smaller than that of the second opaque vitreous silica portion. The particle size distribution of the material silica powder for the first opaque vitreous silica portion 11 a is wider than that of the second opaque vitreous silica portion 11 b, and the material silica powder for the first opaque vitreous silica portion 11 a includes more fine powder than that for the second opaque vitreous silica portion 11 b.

Подробнее
05-07-2012 дата публикации

Method and apparatus for manufacturing vitreous silica crucible

Номер: US20120167623A1
Принадлежит: Japan Super Quartz Corp

Accurate temperature measurement during manufacturing a vitreous silica crucible is enabled. The present invention provides an apparatus for manufacturing a vitreous silica crucible including: a mold for forming a silica powder layer by supplying silica powder therein; an arc discharge unit having carbon electrodes and a power supply unit and for heating and fusing the silica powder layer by arc discharge; and a temperature measurement unit for measuring temperature of a fused portion in the mold, wherein the temperature measurement unit is an radiation thermometer for measuring temperature by detecting radiation energy of a wavelength of 4.8 to 5.2 μm.

Подробнее
05-07-2012 дата публикации

Method of manufacturing vitreous silica crucible

Номер: US20120167627A1
Принадлежит: Japan Super Quartz Corp

There is provided a method of manufacturing a vitreous silica crucible having a suitably controlled inner surface property. The present invention provides a method of manufacturing a vitreous silica crucible by heating and fusing a silica powder layer in a rotating mold by arc discharge generated by carbon electrodes including: a preparation process for determining optimal fusing temperatures during heating and fusing the silica powder layer at plural points of different heights of the silica powder layer; a temperature measuring process for measuring actual temperatures during heating and fusing the silica powder layer at the plural points; a temperature controlling process for controlling the actual temperatures at the plural points so that the actual temperatures matches the optimal fusing temperatures at the respective points.

Подробнее
12-07-2012 дата публикации

Nano-porous precursors for opto-ceramics via novel reactive dissolution

Номер: US20120175558A1
Принадлежит: Schott Corp

The invention relates to a process for preparing porous glass particles suitable for use as precursor materials for production of an opto-ceramic element. The process comprises: providing particles of a soluble glass composition comprising at least one soluble component, at least one component having low solubility in an aqueous solution, and at least one lasing dopant which also has a low solubility in the aqueous solution; and immersing the particles in an aqueous solution having low solubility for said at least one component and said at least one lasing dopant, to thereby dissolve substantially all of the soluble portions of the glass particles.

Подробнее
11-10-2012 дата публикации

Vitreous silica crucible and method of manufacturing the same

Номер: US20120255487A1
Принадлежит: Japan Super Quartz Corp

Provided is a method of manufacturing a vitreous silica crucible for pulling a silicon single crystal which can suppress melt surface vibration of silicon melt filled therein and has a long lifetime. The crucible includes a peripheral wall portion, a curved portion and a bottom portion, and has a plurality of micro recesses on the specific region of the inner surface of the peripheral wall portion.

Подробнее
01-11-2012 дата публикации

Apparatus for manufacturing vitreous silica crucible

Номер: US20120272682A1
Принадлежит: Japan Super Quartz Corp

During fabrication of a vitreous silica crucible, contamination of the vitreous silica crucible due to wear particles and debris of components of an apparatus for manufacturing a vitreous silica crucible is reduced by preventing damage and wear of the components of the apparatus due to silica fume. The apparatus for manufacturing a vitreous silica crucible is divided into a lower section for accommodating a mold and a mold driving system and an upper section for accommodating an arc electrode driving system, wherein a sectioning member including one or more communication paths for allowing penetration of arc electrodes, thereby the air flow is controlled so as to reduce exchange between gas in the upper section and gas in the lower section.

Подробнее
22-11-2012 дата публикации

Copper-contaning silica glass, method for producing the same, and xenon flash lamp using the same

Номер: US20120291488A1

It is an object of the present invention to provide a copper-containing silica glass which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength of 400 nm or less, and which is excellent in long term stability even in the high output use. The copper-containing silica glass is made to have copper of from 5 wtppm to 200 wtppm, which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength ranging from 160 nm to 400 nm, and in which an internal transmittance per 2.5 mm thickness at a wavelength of 530 nm is 95% or more.

Подробнее
20-12-2012 дата публикации

Synthetic amorphous silica powder and method for producing same

Номер: US20120321894A1
Автор: Toshiaki Ueda
Принадлежит: Mitsubishi Materials Corp

The synthetic amorphous silica powder of the present invention is characterized in that it comprises a synthetic amorphous silica powder obtained by applying a spheroidizing treatment to a silica powder, and by subsequently cleaning and drying it so that the synthetic amorphous silica powder has an average particle diameter D 50 of 10 to 2,000 μm; wherein the synthetic amorphous silica powder has: a quotient of 1.00 to 1.35 obtained by dividing a BET specific surface area of the powder by a theoretical specific surface area calculated from the average particle diameter D 50 ; a real density of 2.10 to 2.20 g/cm 3 ; an intra-particulate porosity of 0 to 0.05; a circularity of 0.75 to 1.00; and a spheroidization ratio of 0.55 to 1.00.

Подробнее
04-04-2013 дата публикации

Quartz glass body and a method and gel body for producing a quartz glass body

Номер: US20130085056A1
Автор: Thomas Kreuzberger
Принадлежит: QSIL GMBH QUARZSCHMELZE ILMENAU

A method for producing a quartz glass body from a get body is provided, wherein the gel body generated from a colloidal suspension is at least formed and compressed into the quartz glass body Displacement bodies are added to the colloidal suspension prior to gelating into the gel body, and are completely removed from the gel body after gelating, wherein hollow spaces are generated at the positions of the removed displacement bodies, so that a translucent or opaque quartz glass body is generated. Further, a gel body for producing a quartz glass body is provided, wherein displacement bodies are introduced into the gel body that can be completely removed from the gel body, so that hollow spaces arise at the positions of the displacement bodies. A quartz glass body is also provided that includes vacuoles or hollow spaces filled with gas.

Подробнее
02-05-2013 дата публикации

Porous Glass Articles Formed Using Cold Work Process

Номер: US20130108855A1
Принадлежит:

Glass articles and methods for making the articles are provided. The glass articles are comprised of microscopic glass particles bound together to form an interconnected porous network within the articles. The porous interconnected network of fused glass particles provides an apparent porosity to the article, and thereby the ability to deliver water uniformly throughout the glass article via capillary forces. 1. A method for forming a glass article comprising a porous interconnected network of fused glass particles that has an apparent porosity of 1-55% , the method comprising the steps of:(a) providing a dry precursor in a mold, said dry precursor comprising a glass powder having a particle size of from 0.001-2200 microns;(b) packing the dry precursor in the mold; and (i) heating at a first rate to a first temperature and holding for a first hold time;', '(ii) heating at a second rate to a second temperature and holding for a second hold time, wherein the second temperature is greater than the first temperature;', '(iii) cooling by convection at a third rate to a third temperature and holding for a third hold time, wherein the third temperature is less than the first temperature; and, '(c) heating the dry precursor in the mold to produce a glass article, wherein heating the dry precursor comprises a first heating schedule that includes at least the sequential steps of(iv) cooling by convection at a fourth rate to a fourth temperature and holding for a fourth hold time, wherein the fourth temperature is less than the third temperature.2. The method of claim 1 , wherein the first temperature is 1150° F. or less claim 1 , the second temperature is 1495° F. or less claim 1 , the third temperature is 805° F. or less claim 1 , and the fourth temperature is 230° F. or less.3. The method of claim 1 , wherein the dry precursor comprises a particle binder selected from the group consisting of a polysaccharide claim 1 , an oligosaccharide claim 1 , a disaccharide claim 1 , a ...

Подробнее
09-05-2013 дата публикации

HIGH PURITY SYNTHETIC SILICA AND ITEMS SUCH AS SEMICONDUCTOR JIGS MANUFACTURED THEREFROM

Номер: US20130115391A1
Принадлежит: Heraeus Quartz UK Limited

Hollow ingots of transparent synthetic vitreous silica glass of external diameter greater than 400 mm and internal diameter greater than 300 mm are disclosed. The ingots are substantially free from bubbles or inclusions greater than 100 μm in diameter, have no more than 100 ppB of any individual metallic impurity, and have chlorine concentration less than 5 ppM. Also disclosed are methods for producing such ingots, in which a porous soot body of density greater than 0.4 g/cmis deposited on an oxidation resistant mandrel. The soot body is dehydrated on a mandrel comprising graphite, carbon fibre reinforced carbon, silicon carbide, silicon impregnated silicon carbide, silicon carbide-coated graphite or vitreous silica, either under vacuum or in the presence of a reducing gas, and then sintered to transparent pore-free glass under vacuum or in an atmosphere of helium. 1. A hollow ingot of transparent synthetic vitreous silica glass of external diameter greater than 400 mm and internal diameter greater than 300 mm , wherein said ingot:is substantially free from bubbles or inclusions greater than 100 μm in diameter;has no more than 100 ppB of any individual metallic impurity; andhas chlorine concentration less than 5 ppM.2. A hollow ingot according to claim 1 , substantially free from bubbles or inclusions greater than 10 μm in diameter.3. A hollow ingot according to claim 1 , having no more than 10 ppB of any individual metallic impurity.4. A hollow ingot according to claim 1 , substantially free from bubbles or inclusions greater than 10 μm in diameter and having no more than 10 ppB of any individual metallic impurity.5. A hollow ingot according to claim 1 , wherein the ratio of external to internal diameter is not greater than 1.33.6. A hollow ingot according to claim 1 , having OH content less than 50 ppM.7. A hollow ingot according to claim 6 , having OH content less than 20 PPM.8. A hollow ingot according to claim 1 , having chlorine concentration less than 1 ppM.9 ...

Подробнее
30-05-2013 дата публикации

Method for producing synthetic quartz glass

Номер: US20130133377A1
Принадлежит: Heraeus Quarzglas GmbH and Co KG

A known method for producing synthetic quartz glass comprises the method steps of: forming a stream of a SiO 2 feedstock material which contains octamethylcyclotetrasiloxane (D4) as the main component which has a reference molecular mass assigned to it, feeding the stream to a reaction zone in which the feedstock material is converted under formation of amorphous SiO 2 particles by pyrolysis or hydrolysis into SiO 2 , depositing the amorphous SiO 2 particles on a deposition surface while forming a porous SiO 2 soot body, and vitrifying the SiO 2 soot body while forming the synthetic quartz glass. Starting therefrom, to enable the production of large-volume cylindrical soot bodies with outer diameters of more than 300 mm of improved material homogeneity, it is suggested according to the invention that the feedstock material contains additional components in the form of further polyalkylsiloxanes, wherein light polyalkylsiloxanes with a relative molecular mass of less than the reference molecular mass are contained with a weight fraction of at least 50 ppm, and heavy polyalkylsiloxanes with a relative molecular mass of more than the reference molecular mass are contained with a weight fraction of at least 30 ppm.

Подробнее
30-05-2013 дата публикации

METHOD FOR FORMING FUNCTIONAL PART IN MINUTE SPACE

Номер: US20130136645A1
Принадлежит: NAPRA CO., LTD.

A method for forming a functional part in a minute space includes the steps of; filling a minute space with a dispersion functional material in which a thermally-meltable functional powder is dispersed in a liquid dispersion medium; evaporating the liquid dispersion medium present in the minute space; and heating the functional powder and hardening it under pressure. 1. A method for forming a functional part in a minute space , comprising the steps of:filling a minute space with a dispersion functional material in which a thermally-meltable functional powder is dispersed in a liquid dispersion medium;evaporating the liquid dispersion medium present in the minute space; andheating the functional powder and hardening it under pressure.2. The method of claim 1 , wherein the functional powder is a low-melting metallic powder.3. A method for forming a functional part in a minute space claim 1 , comprising the steps of:filling a minute space with a dispersion functional material in which a functional powder and a binder powder are dispersed in a liquid dispersion medium;evaporating the liquid dispersion medium present in the minute space; andheating the functional powder and the binder powder and hardening them under pressure.4. The method of claim 3 , wherein the functional powder and the binder powder comprise a high-melting metallic powder and a low-melting metallic powder.5. A method for forming a functional part in a minute space claim 3 , comprising the steps of:filling a minute space with a dispersion functional material in which a functional powder is dispersed in a liquid dispersion medium;evaporating the liquid dispersion medium present in the minute space;filling a liquid binder into a gap between particles of the functional powder present in the minute space; andhardening the functional powder and the liquid binder under pressure after the liquid binder is reacted with the functional powder by a heat treatment.6. The method of claim 5 , wherein the functional ...

Подробнее
05-09-2013 дата публикации

SILICA CONTAINER AND METHOD FOR PRODUCING THE SAME

Номер: US20130227990A1
Принадлежит: SHIN-ETSU QUARTZ PRODUCTS CO., LTD.

A method for producing a silica container includes forming a preliminarily molded substrate, wherein a first powdered raw material is fed to an inner wall of an outer frame having aspiration holes while rotating the outer frame; forming a preliminarily molded intermediate layer, wherein a second powdered raw material added with an aluminum compound or a crystal nucleating agent as an additive is fed to an inner wall of the preliminarily molded substrate; and forming an inner layer, wherein the preliminarily molded substrate and the preliminarily molded intermediate layer are degassed by aspiration from a peripheral side with heating from an inside forming a substrate and an intermediate layer, and a third powdered raw material having a high silica purity is spread from inside the substrate having the formed intermediate layer with heating from the inside forming an inner layer on an inner surface of the intermediate layer. 1. A method for producing a silica container comprising at least a substrate comprised of a silica as its main component and having a rotational symmetry , an intermediate layer formed on an inner wall of the substrate , and an inner layer formed on an inner wall of the intermediate layer , wherein the method comprises:a step of preparing a first powdered raw material, silica particles, for forming the substrate,a step of adding, as an additive, at least any one of an aluminum compound and a powdered compound capable of becoming a crystal nucleating agent for crystallization of a silica glass, into a second powdered raw material, silica particles, for forming the intermediate layer,a step of forming a preliminarily molded substrate, wherein the first powdered raw material is fed to an inner wall of an outer frame having a rotational symmetry and aspiration holes arranged splittingly in the inner wall while rotating the outer frame thereby preliminarily molding to an intended shape in accordance with the inner wall of the outer frame,a step of ...

Подробнее
05-09-2013 дата публикации

SILICA CONTAINER AND METHOD FOR PRODUCING THE SAME

Номер: US20130227991A1
Принадлежит: SHIN-ETSU QUARTZ PRODUCTS CO., LTD.

Producing a silica container includes forming a powder mixture by adding an Al compound or a crystal nucleating agent into a first powdered raw material; preliminarily molding to an intended shape by feeding the powder mixture to an inner wall of an outer frame while rotating the outer frame having aspiration holes; forming a silica substrate; and forming a transparent silica glass layer on an inner surface of the silica substrate, wherein the preliminarily molded article is degassed by aspiration from a peripheral side and heated from inside the preliminarily molded article at high temperature making a peripheral part of the preliminarily molded article to a sintered body while an inner part to a fused glass body, and a second powdered raw material having a higher silica purity than the first powdered raw material is spread from inside the silica substrate and heated from the inside at high temperature. 1. A method for producing a silica container , the method for producing a silica container comprised of a silica as its main component and having a rotational symmetry , comprising at least:a step of forming a powder mixture by adding at least any one of an Al compound and a powdered compound capable of becoming a crystal nucleating agent for crystallization of a silica glass, into a first powdered raw material, silica particles,a step of forming a preliminarily molded article, wherein the powder mixture is fed to an inner wall of an outer frame having a rotational symmetry and aspiration holes arranged splittingly in the inner wall while rotating the outer frame thereby preliminarily molding the powder mixture to an intended shape in accordance with the inner wall of the outer frame,a step of forming a silica substrate, wherein the preliminarily molded article is degassed by aspiration from a peripheral side through the aspiration holes formed in the outer frame and at the same time heated from inside the preliminarily molded article by a discharge-heat melting ...

Подробнее
19-09-2013 дата публикации

Non-reducible low temperature sinterable dielectric ceramic composition for multi layer ceramic capacitor and manufacturing method thereof

Номер: US20130244857A1
Принадлежит: Samhwa Capacitor Co Ltd

The present invention relates to a dielectric ceramic composition for multilayer ceramic capacitor (MLCC), including a first component of 91 to 98 wt % and a second component of 2 to 9 wt %, wherein the first component includes a main component BaTiO 3 of 94 to 98 wt %, a first subcomponent of 0.5 to 2 wt % including a glass powder having a mesh structure, and a second subcomponent of 1 to 4 wt % including at least one of MgO, Cr 2 O 3 and Mn 3 O 4 , and the second component includes (Ba 1-y-x Ca y Sr x )(Zr y Ti 1-y )O 3 , and x satisfies 0.2≦x≦0.8 and y satisfies 0.03≦y≦0.15.

Подробнее
26-09-2013 дата публикации

Silica container and method for producing the same

Номер: US20130248408A1
Принадлежит: Shin Etsu Quartz Products Co Ltd

A silica container contains a substrate having a rotational symmetry, containing mainly a silica, and gaseous bubbles in a peripheral part of the substrate; a transparent silica glass in an inner peripheral part of the substrate; and an inner layer, formed on an inner surface of the substrate and containing a transparent silica glass; wherein the substrate contains Li, Na, and K in a total concentration of 50 or less ppm by weight; the substrate has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm; the inner layer contains Li, Na, and K in a total concentration of 100 or less ppb by weight and at least one of Ca, Sr, and Ba in a total concentration of 50 to 2000 ppm by weight; and the inner layer has a linear light transmittance of 91.8% to 93.2% at a light wavelength of 600 nm.

Подробнее
10-10-2013 дата публикации

PROCESS FOR PRODUCING PHOSPHORESCENT BODY AND PHOSPHORESCENT BODY PRODUCED BY THE PROCESS, AND NAIL STONE INCLUDING PHOSPHORESCENT BODY

Номер: US20130263872A1
Принадлежит:

To provide a process for producing a phosphorescent body which allows efficient production of a granule-shaped phosphorescent body with a simple facility and a phosphorescent body produced by the process, and a nail stone including the phosphorescent body. In a process for producing a phosphorescent body containing at least a phosphorescent material and a glass material, at least the phosphorescent material and the glass material are mixed to give a paste mixture A plurality of layers of the mixture are stacked to form a granule-shaped laminate The laminate is sintered so that the laminate is melted and shaped by the action of the surface tension of the melted laminate 1. A process for producing a phosphorescent body containing at least a phosphorescent material and a glass material , comprising: preparing a paste mixture by mixing at least the phosphorescent material and the glass material; forming a granule-shaped laminate by stacking a plurality of layers of the mixture; and sintering the laminate so that the laminate is melted and shaped by an action of a surface tension of the melted laminate.2. The process for producing a phosphorescent body according to claim 1 , wherein the laminate formed is moved into a furnace by means of a resin support layer having adhesion to the laminate claim 1 , to be sintered therein.3. The process for producing a phosphorescent body according to claim 2 , wherein the laminate is formed by sequentially stacking the layers on a surface of the support layer and subjected to the sintering while being oriented on the support layer.4. The process for producing a phosphorescent body according to claim 3 , wherein the support layer is a transfer layer of a transfer paper claim 3 , the transfer layer of the transfer paper is provided on a mount via an adhesion layer made of a water-soluble material claim 3 , the adhesion layer dissolves when the transfer paper is immersed in water claim 3 , and the transfer layer is separated from the ...

Подробнее
10-10-2013 дата публикации

GLASS SUBSTRATE AND METHOD FOR MANUFACTURING SAME

Номер: US20130267402A1
Автор: Nishizawa Manabu
Принадлежит: Asahi Glass Company, Limited

The present invention provides a glass substrate having high glass transition temperature and small compaction (C) in a heat treatment at a low temperature (150 to 300° C.), the glass substrate including SiO, AlO, BO, MgO, CaO, SrO, BaO, ZrO, NaO, KO, and LiO, wherein each amount of these compounds is specifically limited, AlO+KO is 7 to 27 mass %, NaO+KO is 11.5 to 22 mass %, MgO+CaO+SrO+BaO is 0.2 to 14 mass %, MgO+0.357AlO−0.239KO−5.58 is −3.0 to 1.5, NaO+0.272AlO+0.876KO−16.77 is −2.5 to 2.5, a glass transition temperature is 500° C. or higher, and an average thermal expansion coefficient at 50 to 350° C. is 100×10/° C. or less. 1. A glass substrate comprising , in mass percent based on the oxides:{'sub': '2', 'from 68 to 81% of SiO,'}{'sub': 2', '3, 'from 0.2 to 18% of AlO,'}{'sub': 2', '3, 'from 0 to 3% of BO,'}from 0.2 to 11% of MgO,from 0 to 3% of CaO,from 0 to 3% of SrO,from 0 to 3% of BaO,{'sub': '2', 'from 0 to 1% of ZrO,'}{'sub': '2', 'from 1 to 18% of NaO,'}{'sub': '2', 'from 0 to 15% of KO, and'}{'sub': '2', 'from 0 to 2% of LiO,'}{'sub': 2', '3', '2, 'wherein AlO+KO is from 7 to 27%,'}{'sub': 2', '2, 'NaO+KO is from 11.5 to 22%,'}MgO+CaO+SrO+BaO is from 0.2 to 14%,{'sub': 2', '3', '2, 'MgO+0.357AlO−0.239KO−5.58 is from −3.0 to 1.5,'}{'sub': 2', '2', '3', '2, 'NaO+0.272AlO+0.876KO−16.77 is from −2.5 to 2.5,'}a glass transition temperature is 500° C. or higher, and{'sup': '−7', 'an average thermal expansion coefficient at from 50 to 350° C. is 100×10/° C. or less.'}2. The glass substrate according to claim 1 , wherein a relationship between a temperature (T) at which a viscosity becomes 10dPa·s and a glass surface devitrification temperature (T) is T−T≧0° C.3. The glass substrate according to claim 1 , wherein a relationship between a temperature (T) at which a viscosity becomes 10dPa·s and a glass inner devitrification temperature (T) is T−T≧150° C.4. A method for manufacturing a glass substrate claim 2 , comprising molding a molten glass obtained by ...

Подробнее
07-11-2013 дата публикации

HOLLOW MICROSPHERES AND METHOD OF MAKING HOLLOW MICROSPHERES

Номер: US20130291590A1
Автор: Nayar Satinder K., Qi Gang
Принадлежит:

There is provided a method for making hollow microspheres by means of dispensing the feed using vibratory energy, preferably ultrasonic energy, hollow microspheres made using the method, and an apparatus for making hollow microspheres. 1. A method of forming hollow microspheres comprising dispensing a feed , heating the feed using conditions sufficient to convert at least a portion of the feed into hollow microspheres , wherein the dispensing is conducted using vibratory energy.2. A method according to wherein the vibratory energy is ultrasonic energy.3. A method according to wherein the hollow microspheres have a substantially single cell structure.4. A method according to wherein the dispensing system further comprises one of an ultrasonic horn and shaker.5. A method according to wherein the ultrasonic horn is further connected to a booster which is connected to a piezoelectric transducer.6. A method according to wherein the dispensing system further comprises an elongated housing having a hollow inner tube vertically centered therein claim 1 , and the feed is introduced into the hollow inner tube using a carrier gas.7. A method according to wherein the heating is provided under vacuum.8. A method according to wherein the vacuum is maintained at equal to or less than 6 claim 7 ,773 Pa (2 inches Hg) absolute.9. (canceled)10. A method according to wherein the feed is selected from at least one of glass claim 1 , recycled glass claim 1 , perlite claim 1 , and combinations thereof.11. A method according to wherein the feed comprises{'sub': '2', '(a) between 50 wt % and 90 wt % of SiO;'}(b) between 2 wt % and 20 wt % of alkali metal oxides;{'sub': 2', '3, '(c) between 1 wt % and 30 wt % of BO;'}(d) between 0 wt % to 0.5 wt % of sulfur;(e) between 0 wt % and 25 wt % divalent metal oxides;{'sub': '2', '(f) between 0 wt % and 10 wt % of tetravalent metal oxides other than SiO;'}(g) between 0 wt % and 20 wt % of trivalent metal oxides;(h) between 0 wt % and 10 wt % of ...

Подробнее
28-11-2013 дата публикации

METHOD FOR PRODUCING SILICA GLASS BODY CONTAINING TITANIA, AND SILICA GLASS BODY CONTAINING TITANIA

Номер: US20130316890A1
Принадлежит: Asahi Glass Company, Limited

The present invention relates to a method for producing a silica glass body containing titania, containing: a flame hydrolysis step of feeding a silica (SiO) precursor and a titania (TiO) precursor into an oxyhydrogen flame and causing a hydrolysis reaction in the flame to form silica glass fine particles containing titania, in which in the flame hydrolysis step, a reaction rate of the hydrolysis reaction of the silica precursor is 80% or more. 1. A method for producing a silica glass body containing titania , comprising:{'sub': 2', '2, 'a flame hydrolysis step of feeding a silica (SiO) precursor and a titania (TiO) precursor into an oxyhydrogen flame and causing a hydrolysis reaction in the flame to form silica glass fine particles containing titania; and'}a glass fine particle deposition step of depositing the silica glass fine particles containing titania formed in the flame hydrolysis step, whereinin the flame hydrolysis step, a reaction rate of the hydrolysis reaction of the silica precursor is 80% or more.2. The method for producing a silica glass body containing titania according to claim 1 , whereinthe glass fine particle deposition step is a step of depositing the silica glass fine particles containing titania formed in the flame hydrolysis step on a base material to form a porous glass body; andthe production method further comprises a step of heating the porous glass body to cause transparent vitrification.3. The method for producing a silica glass body containing titania according to claim 1 , whereinthe glass fine particle deposition step is a step of depositing the silica glass fine particles containing titania formed in the flame hydrolysis step in a fire-resistant vessel and simultaneously with the deposition, fusing them to form a silica glass body containing titania.4. The method for producing a silica glass body containing titania according to claim 1 , whereinin the flame hydrolysis step, a reaction calorie of oxyhydrogen to be fed into the ...

Подробнее
26-12-2013 дата публикации

Silica glass crucible, method for manufacturing same, and method for manufacturing silicon single crystal

Номер: US20130340671A1
Принадлежит: Shin Etsu Handotai Co Ltd

A method for manufacturing a silica glass crucible, includes: preparing a crucible base material that is made of silica glass and has a crucible shape; fabricating a synthetic silica glass material based on a direct method or a soot method; processing the synthetic silica glass material into the crucible shape without being pulverized; and bonding an inner wall of the crucible base material and an outer wall of the synthetic silica glass material processed into the crucible shape through a silica powder by performing a heat treatment. As a result, it is possible to provide the silica glass crucible that can avoid occurrence of dislocations of silicon single crystal at the time of manufacturing the silicon single crystal, has high heat-resisting properties, and can suppress a reduction in productivity and yield ratio, the manufacturing method thereof, and the method for manufacturing silicon single crystal using such a silica glass crucible.

Подробнее
23-01-2014 дата публикации

Method for Producing Foam Glass by Recycling a Waste Glass Mixture

Номер: US20140021419A1
Автор: Baier Ralf, Daniel Rainer

Method for producing foam glass by recycling wasteglass mixture containing screen glass from television sets, computers, monitors and glass from fluorescent tubes, light bulbs and photovoltaic systems. Steps are: separately grinding individual fractions of wasteglass from various sources, forming glass powder; mixing a sintered glass composition including components of various glass powder fractions and an inorganic carbon carrier substance as activator in a dry process without adding water or liquids; and thermally treating the sintered glass composition. This composition is first subjected to a sintering process and later to a foaming process, at temperatures in a range of 855° C. to 890° C. The arising foam glass is subsequently cooled down. The sintered glass composition, which is thermally sintered glass powder and activator, is composed of at least 10 wt % of screen glass, with 85 to 90 wt % originating from screen glass and glass from fluorescent tubes, light bulbs and photovoltaic systems. 2. The method according to claim 1 ,characterized in thatsilicon carbide (SiC) is used as activator.3. The method according to or claim 1 ,characterized in thatapparatuses, which are substantially gas-tight or which can be subjected to negative pressure, are used for the thermal processing.4. A method according to one of the to claim 1 ,characterized in thatthe sintered glass composition is composed of 15 wt %-45 wt % of screen glass, 10 wt %-83 wt % of glass from fluorescent tubes and/or energy-efficient lamps and/or photovoltaic systems, 0 wt %-8 wt % of glass containers, and 1 wt % to 2 wt % of the activator.5. The method according to one of the to claim 1 ,characterized in thatthe foaming process is carried out at ter peratures in a temperature range from 855° C. to 880° C.6. The method according to one of the to claim 1 ,characterized in that{'sub': 2', '2', '2', '2', '3', '2', '2', '2', '3, 'the representative chemical composition of the employed screen g given in ...

Подробнее
13-02-2014 дата публикации

Luminophore composition for uv-visible light conversion and light converter obtained therefrom

Номер: US20140042477A1

A luminophore composition comprising amorphous aluminoborate powders is disclosed. The composition is obtainable by preparing an aluminoborate resin by a wet chemical route based on precursors solutions substantially free from monovalent and divalent cations; drying the resin to obtain a solid; grinding the solid to obtain a powder; pyrolyzing the powder at a pyrolysis temperature lower than the crystallization temperature of the composition; and calcinating the powder so pyrolyzed at a calcination temperature lower than the crystallization temperature of the composition. Furthermore, a process for the preparation of said composition is disclosed. The composition is particularly suitable for use in solid-state lighting, and for example for converting UV light into warm white visible light.

Подробнее
13-02-2014 дата публикации

Porous carbon product with layer composite structure, method for producing same and use thereof

Номер: US20140045072A1
Принадлежит: Heraeus Quarzglas GmbH and Co KG

Inexpensive product consisting of porous carbon, with a pore structure which is suitable for retaining electrode parts which can be used in particular for a use as an electrode material for a lithium-sulphur secondary battery, and a method comprising the following method steps: (a) providing a template consisting of inorganic material which contains spherical nanoparticles and pores, (b) infiltrating the pores of the template with a precursor for carbon of a first variety, (c) carbonizing so as to form an inner layer on the nanoparticles with a first microporosity, (d) infiltrating the remaining pores of the template with a precursor substance for carbon of a second variety, (e) carbonizing the precursor substance, wherein an outer layer with a second microporosity which is lower than the first microporosity is produced on the inner layer, and (f) removing the template so as to form the carbon product with layer composite structure, comprising an inner layer consisting carbon with a first, relatively high microporosity, which has a free surface facing a cavity, and an outer layer consisting of carbon with a second, relatively low microporosity, which has a free surface facing away from the cavity.

Подробнее
27-02-2014 дата публикации

MOULD ASSEMBLY

Номер: US20140053609A1
Принадлежит: GRAIL INVENTIONS (PTY) LTD

A method of forming a mould assembly () is provided. The method includes providing a mould body () defining a mould insert receiving zone (). The method includes providing a mould insert (), defining opposed sides (). One side () defines a mould cavity surface (), against which an article is to be moulded, and the opposed side () defines a mould body seating arrangement () for seating the mould insert () in the mould insert receiving zone (). The method further includes positioning the mould insert in the mould insert receiving zone () of the mould body (). 127-. (canceled)28. A mould assembly , the mould assembly including:a mould body defining a mould insert receiving zone; anda mould insert defining opposed sides, one side of which defines a mould cavity surface against which an article is to be moulded, the opposed side of which defines a mould body seating arrangement for seating the mould insert in the mould insert receiving zone, the mould insert being positioned in the mould insert receiving zone of the mould body.29. The mould assembly as claimed in claim 28 , in which the mould body is in the form of a plurality of mould body parts claim 28 , the plurality of mould body parts being arranged to be located together to define the mould body.30. The mould assembly as claimed in claim 29 , in which the mould insert is defined by a plurality of mould insert parts claim 29 , the plurality of mould insert parts being arranged to be positioned together to define the mould cavity when positioned in the mould body parts and the mould body parts are located together.31. The mould assembly as claimed in claim 30 , in which at least one of the mould body and the mould insert is arranged to define cooling passages.32. The mould assembly as claimed in claim 31 , in which the mould body and the mould insert together define the cooling passages.33. The mould assembly as claimed in claim 32 , in which the mould cavity surface is irregularly shaped and the cooling passages ...

Подробнее
06-03-2014 дата публикации

NIOBIUM DOPED SILICA TITANIA GLASS AND METHOD OF PREPARATION

Номер: US20140066286A1
Принадлежит: CORNING INCORPORATED

This disclosure is directed to a silica-titania-niobia glass and to a method for making the glass. The composition of the silica-titania-niobia (SiO—TiO—NbO) glass, determined as the oxides, is NbOin an amount in the range of 0.005 wt. % to 1.2 wt. %, TiOin an amount in the range of 5 wt. % to 10 wt. %, and the remainder of glass is SiO. In the method, the STN glass precursor is consolidated into a glass by heating to a temperature of 1600° C. to 1700° C. in flowing helium for 6 hours to 10 hours. When this temperature is reached, the helium flow can be replaced by argon for the remainder of the time. Subsequently the glass is cooled to approximately 1050° C., and then from 1050° C. to 700° C. followed by turning off the furnace and cooling the glass to room temperature at the natural cooling rate of the furnace. 1. A silica-titania-niobia glass comprising , in wt. % measured as the oxides , niobia in an amount in the range of 0.005 wt. % to 1.2 wt. % , titania in an amount in the range of 5 wt. % to 10 wt. % , and the remainder of the glass is silica , SiO.2. The silica-titania-niobia glass according to claim 1 , wherein the titania content is in the range of 6 wt. % to 9 wt. %.3. The silica-titania-niobia glass according to claim 1 , wherein the silica-titania-niobia has a lower expansivity slope than that of a silica-titania glass having a substantially equivalent titania content.4. The silica-titania-niobia glass according to claim 1 , wherein the OH content of the glass is less than 200 ppm.5. The silica-titania-niobia glass according to claim 1 , wherein the OH content of the glass is less than 100 ppm.6. The silica-titania-niobia glass according to claim 1 , wherein the OH content of the glass is in the range of 10-70 ppm.7. A method for making a silica-titania-niobia glass having a composition comprising niobia in an amount in the range of 0.005 wt. % to 1.2 wt. % claim 1 , titania in an amount in the range of 5 wt. % to 10 wt. % claim 1 , and the remainder ...

Подробнее
13-03-2014 дата публикации

High-purity silicon dioxide granules for quartz glass applications and method for producing said granules

Номер: US20140072803A1
Принадлежит: EVONIK DEGUSSA GmbH

It has been found that conventional cheap waterglass qualities in a strongly acidic medium react to give high-purity silica grades, the treatment of which with a base leads to products which can be processed further to give glass bodies with low silanol group contents.

Подробнее
03-04-2014 дата публикации

COMPOSITIONS INCORPORATING DIELECTRIC ADDITIVES FOR PARTICLE FORMATION, AND METHODS OF PARTICLE FORMATION USING SAME

Номер: US20140094551A1
Принадлежит:

A method of forming particles that includes performing a strong force attenuation of a mixture to form pre-particles. The mixture including a base compound and a dielectric additive having an elevated dielectric constant dispersed therein. The pre-particles are then dielectrically spun in an electrostatic field to further attenuate the pre-particles and form the particles. 1. A method of forming particles , comprising:a. performing a strong force attenuation of a mixture to form pre-particles, the mixture including a base compound and a dielectric additive having an elevated dielectric constant dispersed therein; thenb. dielectrically spinning the pre-particles in an electrostatic field to further attenuate the pre-particles and form the particles.2. The method of claim 1 , wherein the strong force attenuation includes mechanically attenuating the mixture.3. (canceled)4. (canceled)5. The method of claim 1 , wherein the base compound is a polymer.6. The method of claim 5 , further comprising melting the polymer to form a liquid polymer melt claim 5 , then dielectrically spinning the liquid polymer melt to form polymer particles.7. The method of claim 1 , wherein the mixture includes a dispersant selected to encourage the dielectric additive to disperse within the base compound.8. (canceled)9. (canceled)10. A composition for particle formation claim 1 , comprising:a base compound; anda dielectric additive selected to encourage dielectrophoretic attenuation of the base compound during dielectric spinning.11. The composition of claim 10 , wherein the dielectric additive includes a mild dielectric additive having a dielectric constant above 5.12. (canceled)13. (canceled)14. The composition of claim 10 , wherein the dielectric additive includes polyglycerol-3.15. The composition of claim 10 , wherein the dielectric additive includes titanium dioxide (TiO).16. The composition of claim 10 , wherein the dielectric additive includes barium titanate.17. (canceled)18. (canceled ...

Подробнее
01-01-2015 дата публикации

METHOD OF REDUCING THE OCCURRENCE OF CRYSTALLINE SILICA IN FOAMED GLASS BY THE INTRODUCTION OF CHEMICAL ADDITIVES

Номер: US20150000337A1
Принадлежит:

A method of making a foamed glass body, including preparing an admixture of powdered glass, at least one carbonate based foaming agent, and at least devitrification inhibitor, heating the admixture to a first temperature to soften the glass, heating the admixture to a second, higher temperature to foam the softened glass into a foamed glass body, and cooling the foamed glass body, wherein the temperature of the foamed glass body always remains too cold for silica crystal growth. The crystal silica content of the so-formed foamed glass body is less than 1 weight percent. 1. A method of making a foamed glass body , comprising;preparing an admixture of powdered glass and at least one carbonate based foaming agent;heating the admixture to a first temperature below about 650 degrees Celsius to soften the glass;soaking the admixture at the first temperature below about 650 degrees Celsius for a first predetermined period of time to yield a softened glass billet;heating the softened glass billet to a second, higher temperature below about 800 degrees Celsius to foam the softened glass billet into a foamed glass body;soaking the foamed glass body at the second, higher temperature below about 800 degrees Celsius for a second predetermined period of time; andcooling the foamed glass body;wherein the crystal silica content of the foamed glass body is less than 1 weight percent.2. The method according to claim 1 , wherein the admixture further includes a devitrification inhibitor is selected from the group including potassium phosphate claim 1 , potassium phosphate tribasic claim 1 , sodium phosphate and combinations thereof; and wherein the devitrification inhibitor is present in a finite amount less than 10 percent by weight of the admixture.3. The method according to claim 2 , wherein the first temperature below about 650 degrees Celsius is about 625 degrees Celsius; and wherein the second claim 2 , higher temperature below about 800 degrees Celsius is about 775 degrees ...

Подробнее
02-01-2020 дата публикации

Particles having a sinterable core and a polymeric coating, use thereof, and additive manufacturing method using the same

Номер: US20200001359A1
Принадлежит: HOGANAS AB

Particles each having a sinterable core and a polymeric coating on at least a part of the core, wherein the polymeric coating includes a polymer that can be removed via decomposition by heat, catalytically or by solvent treatment, and wherein the polymeric coating is present in an amount of 0.10 to 3.00% by weight, relative to the total weight of the particles, as well as the use of these particles in an additive manufacturing process such as a powder bed and inkjet head 3D printing process. The particles and the process are able to provide a green part having improved strength and are thus suitable for the production of delicate structures which require a high green strength in order to minimize the risk of structural damage during green part handling.

Подробнее
07-01-2021 дата публикации

MICROSPHERE-BASED INSULATING MATERIALS FOR USE IN VACUUM INSULATED STRUCTURES

Номер: US20210002162A1
Принадлежит: WHIRLPOOL CORPORATION

A low-density insulating material for use in a vacuum insulated structure for an appliance includes a plurality of microspheres that includes a plurality of leached microspheres. Each leached microsphere has an outer wall and an interior volume. The outer wall has a hole that extends through the outer wall and to the interior volume. A binder engages outer surfaces of the plurality of leached microspheres, wherein the binder cooperates with the plurality of leached microspheres to form at least one microsphere aggregate. The interior volume of each leached microsphere defines an insulating space that includes an insulating gas. The insulating space of each leached microsphere is at least partially defined by the binder. 147-. (canceled)48. A low-density insulating material for use in a vacuum insulated structure for an appliance , the low-density insulating material comprising:a plurality of microspheres that includes a plurality of leached microspheres, each leached microsphere having an outer wall and an interior volume, wherein the outer wall has a hole that extends through the outer wall and to the interior volume; and the interior volume of each leached microsphere defines an insulating space that includes an insulating gas; and', 'the insulating space of each leached microsphere is at least partially defined by the binder., 'a binder that engages outer surfaces of the plurality of leached microspheres, wherein the binder cooperates with the plurality of leached microspheres to form at least one microsphere aggregate; wherein'}49. The low-density insulating material of claim 48 , wherein the binder engages the outer surface of each leached microsphere claim 48 , wherein the binder is disposed within a portion of the holes of the plurality of leached microspheres.50. The low-density insulating material of claim 48 , wherein the insulating gas includes at least one of carbon dioxide claim 48 , argon claim 48 , xenon claim 48 , krypton and neon.51. The low-density ...

Подробнее
07-01-2016 дата публикации

FOAMS MADE OF AMORPHOUS HOLLOW SPHERES AND METHODS OF MANUFACTURE THEREOF

Номер: US20160002086A1
Принадлежит:

Novel cellular solids and foams from amorphous materials with a glass transition temperature (T) and methods of forming such materials are provided. In particular, foams are formed by expanding or compressing hollow spheres made of a high strength amorphous material, which is defined as a material having high strength characteristics, but also possessing a glass transition within a confined space. Using such a method, it has been unexpectedly found that it is possible to make cellular structures, including both open and closed cell foams, with customizable properties from materials that have been inaccessible with conventional methods. Moreover, based on calculations high specific strengths and stiffnesses are expected. 1. A method of forming a cellular solid from an amorphous material comprising ,obtaining an amorphous material exhibiting a glass transition at a glass transition temperature, and having a material yield strength greater than 500 MPa;forming a plurality of hollow spheres wherein at least the outer surface of the sphere is formed from the amorphous material, the hollow spheres each having an internal pressure;confining the hollow spheres within a body having a fixed volume and having an atmosphere;heating the plurality of hollow spheres to a temperature above the glass transition temperature of the amorphous material; andapplying a pressure differential between the internal pressures of the plurality of hollow spheres and the pressure of the atmosphere within the confining body, wherein the internal pressures of the plurality of hollow spheres is higher than the pressure of the atmosphere within the confining body such that the plurality of hollow spheres undergo an expansion within the boundary defined by the confining body such that adjacent hollow spheres make contact to form an open celled cellular solid.2. The method of claim 1 , wherein the plurality of hollow spheres rupture at each point of contact.3. The method of claim 1 , wherein the ...

Подробнее
07-01-2016 дата публикации

OPTICAL COMPONENT MADE OF QUARTZ GLASS FOR USE IN ArF EXCIMER LASER LITHOGRAPHY AND METHOD FOR PRODUCING THE COMPONENT

Номер: US20160002092A1
Автор: Kuehn Bodo
Принадлежит: HERAEUS QUARZGLAS GMBH & CO. KG

An optical component made of synthetic quartz glass includes a glass structure substantially free of oxygen defect sites and having a hydrogen content of 0.1×10to 1.0×10molecules/cm, an SiH group content of less than 2×10molecules/cm, a hydroxyl group content of 0.1 to 100 wt. ppm, and an Active temperature of less than 1070° C. The optical component undergoes a laser-induced change in the refractive index in response to irradiation by a radiation with a wavelength of 193 nm using 5×10pulses with a pulse width of 125 ns and a respective energy density of 500 μJ/cmat a pulse repetition frequency of 2000 Hz. The change totals a first measured value Mwhen measured using the applied wavelength of 193 nm and a second measured value Mwhen measured using a measured wavelength of 633 nm. The ratio M/Mis less than 1.7. 111-. (canceled)12. An optical component made of synthetic quartz glass for use in ArF excimer laser lithography with an applied wavelength of 193 nm , the optical component comprising:{'sup': 16', '3', '18', '3', '17', '3, 'a glass structure which is substantially free of oxygen defect sites, the glass structure having a hydrogen content in the range of 0.1×10molecules/cmto 1.0×10molecules/cm, a content of SiH groups of less than 2×10molecules/cm, a content of hydroxyl groups in the range between 0.1 and 100 wt. ppm, and a fictive temperature of less than 1070° C.,'}{'sub': '193nm', 'sup': '633nm', 'wherein the glass structure reacts to irradiation with radiation of an applied wavelength of 193 nm with 5×109 pulses with a pulse width of 125 ns and an energy density of 500 μJ/cm2 each time and a pulse repetition frequency of 2000 Hz with a laser-induced refractive-index change, the amount of which upon measurement with the applied wavelength of 193 nm yields a first measured value Mand upon measurement with a measurement wavelength of 633 nm yields a second measured value M, and'}{'sub': 193nm', '633nm, 'wherein M/M<1.7.'}13. The optical component according to ...

Подробнее
04-01-2018 дата публикации

GLASS MATERIAL AND METHOD FOR MANUFACTURING SAME

Номер: US20180002220A1
Автор: SUZUKI Futoshi
Принадлежит:

Provided is a glass composition that exhibits greater Faraday effect than ever before. A glass composition contains 48% or more of TbO(exclusive of 48%) in % by mole. 1. A glass material containing 50% or more of TbOand 40% or less of AlOin % by mole.2. The glass material according to claim 1 , having a TbOcontent of not more than 80% by mole.3. The glass material according to claim 1 , further containing claim 1 , in % by mole claim 1 , 0 to 50% SiO claim 1 , 0 to 50% BO claim 1 , and 0 to 50% PO.4. The glass material according to claim 1 , being used as a magneto-optical element.5. The glass material according to claim 4 , being used as a Faraday rotator. The present invention relates to a glass material suitable for a magneto-optical element making up part of a magnetic device, such as an optical isolator, an optical circulator or a magnetic sensor, and a method for manufacturing the same.A glass material containing terbium oxide which is a paramagnetic compound is known to exhibit the Faraday effect which is one of magneto-optical effects. The Faraday effect is an effect of rotating the polarization plane of linearly polarized light passing through a material placed in a magnetic field. This effect is utilized in optical isolators, magnetic field sensors, and so on.The optical rotation θ (angle of rotation of the polarization plane) due to the Faraday effect is expressed by the following formula where the intensity of a magnetic field is represented by H and the length of a substance through which polarized light passes is represented by L. In the formula, V represents a constant dependent on the type of the substance and is referred to as a Verdet constant. The Verdet constant takes positive values for diamagnetic substances and negative values for paramagnetic substances. The larger the absolute value of the Verdet constant, the larger the absolute value of the optical rotation, resulting in exhibition of greater Faraday effect.θ=VHLConventionally known glass ...

Подробнее
02-01-2020 дата публикации

HIGH-STRENGTH GEOPOLYMER HOLLOW MICROSPHERE, PREPARATION METHOD THEREOF AND PHASE CHANGE ENERGY STORAGE MICROSPHERE

Номер: US20200002210A1

A high-strength geopolymer hollow microsphere, a preparation method thereof and a phase change energy storage microsphere are provided, including: dissolving sodium hydroxide, sodium silicate and spheroidizing aid in water to form a solution A, and adding active powder to the solution A, stirring and uniformly mixing to form a slurry B, adding the slurry B to an oil phase, stirring and dispersing into balls, filtering to obtain geopolymer microspheres I, washing the geopolymer microspheres I, and then carrying out a high-temperature calcination to obtain the high-strength geopolymer hollow microspheres II; using the high-strength geopolymer hollow microsphere as a carrier, absorbing a phase change material into the carrier, and mixing a microsphere carrying the phase change material with an epoxy resin, adding a powder dispersant and stirring to disperse the microsphere, after the epoxy resin is solidified, screening the superfluous powder dispersant to obtain the phase energy storage microsphere. 1. A method of preparing high-strength geopolymer hollow microspheres , comprising: dissolving sodium hydroxide (NaOH) , sodium silicate (NaSiO.9HO) and a spheroidizing aid in water to form a solution , adding active powder to the solution to obtain a first mixture , stirring and uniformly mixing the first mixture to form a slurry , adding the slurry to an oil phase dispersion medium to obtain a second mixture , stirring the second mixture to disperse the slurry into the oil phase dispersion medium to form balls , after the stirring , filtering the second mixture to obtain geopolymer microspheres , washing the geopolymer microspheres , and then carrying out a high-temperature calcination on the geopolymer microspheres to obtain the high-strength geopolymer hollow microspheres; wherein a mass percentage of the sodium hydroxide (NaOH) , the sodium silicate (NaSiO.9HO) and the spheroidizing aid is (10-40%):(20-60%):(20-60%) , a mass ratio of the water to the active powder is ...

Подробнее
03-01-2019 дата публикации

CONTINUOUS SOL-GEL METHOD FOR PRODUCING QUARTZ GLASS

Номер: US20190002325A1
Принадлежит:

The invention relates to a continuous sol-gel method for producing quartz glass, comprising the following steps: 1. Continuous sol-gel method for producing quartz glass , comprising the following steps:(a) continuously metering a silicon alkoxide into a first reactor (R1) and carrying out an at least partial hydrolysis process by adding an aqueous mineral acid, thereby obtaining a first product flow (A);(b) continuously producing an aqueous silicic acid dispersion by continuously mixing water and silicic acid in a second reactor, thereby obtaining a second product flow (B);(c) continuously mixing the product flows (A) and (B) from steps (a) and (b) in a third reactor (R3) in order to produce a pre-sol, thereby obtaining a third product flow (C);(d) continuously adding an aqueous base to the product flow (C), thereby obtaining a sol;(e) continuously filling the exiting sol from step (d) into moulds, thereby obtaining an aquagel;(f) drying the aquagels from step (e), thereby obtaining xerogels;(g) sintering the xerogels from step (f), thereby obtaining quartz glass, wherein at least one of the steps (a) to (e) additionally includes a degassing process of at least one feed material used in the step.2. Method according to claim 1 , characterised in that the degassing process is carried out by ultrasound claim 1 , vacuum degassing claim 1 , distillation claim 1 , vacuum/freezing cycles claim 1 , thermal degassing claim 1 , chemical methods claim 1 , removing gas by means of inert gas; adding deaerating additives and centrifugation or a combination of two or more of these measures.4. Method according to claim 1 , characterised in that in step (a) claim 1 , tetraethyl orthosilicate (TEOS) is used as the silicon alkoxide.5. Method according to claim 1 , characterised in that in step (a) claim 1 , from approximately 1 to approximately 60 wt. % mineral acid is used based on the silicon alkoxides.6. Method according to claim 1 , characterised in that in step (a) claim 1 , the ...

Подробнее
13-01-2022 дата публикации

INTEGRATED ADDITIVE MANUFACTURING AND LASER PROCESSING SYSTEMS AND METHODS FOR CERAMIC, GLASS, AND SILICON CARBIDE APPLICATIONS

Номер: US20220009124A1
Принадлежит:

A method for fabricating a protonic ceramic energy device includes: coating an electrolyte layer on an anode layer; and densifying the electrolyte layer by a rapid laser reactive sintering (RLRS) process on the electrolyte layer and/or the anode layer to form a half-cell comprising a dense electrolyte and a porous anode. 120-. (canceled)21. A method for fabricating a protonic ceramic energy device , the method comprising:coating an electrolyte layer on an anode layer; anddensifying the electrolyte layer by a rapid laser reactive sintering (RLRS) process on the electrolyte layer and/or the anode layer to form a half-cell comprising a dense electrolyte and a porous anode.22. The method of further comprising depositing a cathode layer on the electrolyte layer or the dense electrolyte.23. The method of further comprising treating the half-cell and cathode layer in a furnace to form a single cell comprising the dense electrolyte claim 22 , the porous anode claim 22 , and a porous cathode.24. The method of wherein the RLRS process comprises a one-step tri-sintering of the anode layer claim 22 , the electrolyte layer claim 22 , and the cathode layer to form a single cell.25. The method of wherein the RLRS process comprises a one-step co-sintering of the anode layer and the electrolyte layer.26. The method of wherein the RLRS process is carried out using a COlaser.27. The method of further comprising preheating the anode layer and the electrolyte layer before the RLRS process.28. The method of wherein the porous anode comprises a nanoporous anode.29. The method of wherein the anode layer comprises a pre-sintered anode.30. The method of wherein the RLRS process allows for the rapid manufacturing of the protonic ceramic half-cell with desired crystal structure claim 21 , microstructure claim 21 , and thickness.31. A method for manufacturing at least one component for a protonic ceramic energy device claim 21 , the method comprising:depositing a precursor on a build surface; ...

Подробнее
07-01-2021 дата публикации

An optical device for modifying light distribution

Номер: US20210003266A1
Принадлежит: Ledil Oy

An optical device includes a center section having a lens portion for modifying distribution of a first part of light emitted by a light source, and a peripheral section surrounding the center section and including a conical surface for modifying distribution of a second part of the light emitted by the light source. The conical surface includes ridges where total internal reflection takes place when a light beam arrives from the light source at one of side surfaces of each ridge, and surface penetration takes place when the reflected light beam arrives at the other side surface of the ridge under consideration. Thus, the conical surface acts both as a reflective surface and as a refractive surface for achieving a desired light distribution pattern.

Подробнее
03-01-2019 дата публикации

DISSOLVABLE PROJECTILES

Номер: US20190003808A1
Принадлежит:

A dissolvable glass projectile for a firearm is molded from dissolvable glass for the ammunitions and firearms industry. The dissolvable glass projectile may be molded into different sizes or geometry based on firearm and user preference. A mixture of chemicals components are heated and melted and then poured into a mold and is allowed to cool to a solid that can be handled. 1. A projectile for a firearm comprising:a body molded from dissolvable glass attached to a casing or shell containing a propellant.2. The projectile of claim 1 , wherein the projectile is designed for use in a firearm with a rifled barrel.3. The projectile of claim 1 , wherein the casing or shell is a shotgun casing claim 1 , and the body comprises a plurality of shot in the shotgun casing.4. The projectile of claim 1 , wherein the dissolvable glass is made from a boron mixture comprising equal measures of boric acid and disodium octaborate tetrahydrate.531-. (canceled) This relates to a dissolvable projectile, molded from a dissolvable glass material, which may be molded into varying shapes and sizes for use as ammunition with a firearm.Dissolvable glasses made up of various compositions are used for multiple applications that include wood preservation, bone repair, and downhole processing. For example, U.S. Pat. No. 8,430,174 (Holderman et al.) entitled “Anhydrous boron-based timed delay plugs” describes the use of dissolvable glass plugs manufactured from anhydrous boron for downhole applications in hydrocarbon-producing wells.According to an aspect, there is provided a dissolvable glass projectile molded from dissolvable glass.According to another aspect, there is provided a projectile attached to a shell or casing, and the projectile may be a dissolvable glass pellet for use in shotgun shells, or a projectile for use in a rifled barrel.According to another aspect, the dissolvable glass projectile may contain a tranquilizing component.According to another aspect, the dissolvable glass ...

Подробнее
13-01-2022 дата публикации

Methods of making glass constructs

Номер: US20220013857A1
Принадлежит: Polyplus Battery Co Inc

Manufacturing methods for making a substantially rectangular and flat glass preform for manufacturing a Li ion conducting glass separator can involve drawing the preform to a thin sheet and may involve one or more of slumping, rolling or casting the glass within a frame that defines a space filling region and therewith the shape and size of the preform. The thickness of the rectangular flat preform so formed may be about 2 mm or less. The frame may be slotted having a back surface and widthwise wall portion that define the height and width of the space filling region. The flat backing surface and surfaces of the widthwise wall portions are defined may be coated by a material that is inert in direct contact with the heated glass material, such as gold.

Подробнее
08-01-2015 дата публикации

METHOD FOR PRODUCING SYNTHETIC QUARTZ GLASS

Номер: US20150007611A1
Принадлежит:

The invention relates to a method for producing synthetic quartz glass by vaporizing a polyalkylsiloxane as a liquid SiOfeedstock (), converting the vaporized SiOfeedstock () into SiOparticles, separating the SiOparticles, forming a soot body () and vitrifying the soot body (). According to the invention, the vaporizing of the heated SiOfeedstock () comprises an injection phase in an expansion chamber (), in which the SiOfeedstock () is atomized into fine droplets, wherein the droplets have an average diameter of less than 5 pm, and wherein the atomizing of the droplets takes place in a preheated carrier gas stream which has a temperature of more than 180° C. 1. A method for producing synthetic quartz glass , said method comprising:{'sub': '2', '(A) providing a liquid SiOfeedstock having more than 70% by wt. of polyalkylsiloxane D4,'}{'sub': 2', '2, '(B) vaporizing the liquid SiOfeedstock into a gaseous SiOfeedstock vapor,'}{'sub': 2', '2, '(C) converting the SiOfeedstock vapor into SiOparticles,'}{'sub': 2', '2, '(D) depositing the SiOparticles on a deposition surface so as to form a SiOsoot body,'}{'sub': '2', 'claim-text': [{'sub': 2', '2, 'wherein the vaporizing of the SiOfeedstock comprises an injection phase in an expansion chamber in which the SiOfeedstock is atomized into fine droplets, wherein the droplets have a mean diameter of less than 5 μm, and'}, 'wherein the atomization of the droplets takes place in a preheated carrier gas stream that has a temperature of more than 180° C., '(E) vitrifying the SiOsoot body so as to form the synthetic quartz glass,'}2. The method according to claim 1 , wherein the droplets have a mean diameter of less than 2 μm. The present invention relates to a method for producing synthetic quartz glass.Chlorine-free feedstocks are tested for the production of synthetic quartz glass for commercial applications. Monosilanes, alkoxysilanes and siloxanes should be mentioned as examples. A particularly interesting group of chlorine- ...

Подробнее
08-01-2015 дата публикации

WAVELENGTH CONVERSION STRUCTURE, APPARATUS COMPRISING WAVELENGTH CONVERSION STRUCTURE, AND RELATED METHODS OF MANUFACTURE

Номер: US20150008816A1
Принадлежит:

A wavelength conversion structure comprises a sintered body comprising a mixture of a wavelength conversion material and a glass composition, wherein the wavelength conversion material comprises a phosphor and the glass composition comprises ZnO—BaO—SiO—BO. 1. A wavelength conversion structure , comprising:a sintered body comprising a mixture of a wavelength conversion material and a glass composition,{'sub': 2', '2', '3, 'wherein the wavelength conversion material comprises a red phosphor and the glass composition comprises ZnO—BaO—SiO—BO.'}2. The wavelength conversion structure of claim 1 , wherein the glass composition further comprises at least one of NaO claim 1 , CaO claim 1 , KO claim 1 , LiO claim 1 , and PO.3. The wavelength conversion structure of claim 2 , wherein the wavelength conversion material further comprises a green or yellow phosphor.4. The wavelength conversion structure of claim 1 , wherein the glass composition comprises 5-15 wt % SiO.5. The wavelength conversion structure of claim 1 , wherein the red phosphor comprises at least one of MAlSiN:Eu(1≦x≦5) and MSiN:Eu claim 1 , and wherein M represents at least one of Ba claim 1 , Sr claim 1 , Ca claim 1 , and Mg.6. The wavelength conversion structure of claim 1 , wherein the red phosphor constitutes approximately 5-20 wt % of the mixture.7. The wavelength conversion structure of claim 1 , wherein the glass composition comprises 30-60 wt % ZnO—BaO claim 1 , 5-20 wt % SiO claim 1 , 10-30 wt % BaO claim 1 , 5-20 wt % PO claim 1 , and less than or equal to 20 wt % of the at least one of NaO claim 1 , CaO claim 1 , KO claim 1 , and LiO.8. The wavelength conversion structure of claim 1 , wherein the glass composition comprises 14-20 wt % NaO+KO.9. The wavelength conversion structure of claim 1 , wherein the sintered body has a refractive index greater than or equal to 1.5.10. The wavelength conversion structure of claim 1 , wherein the sintered body has a total transmittance of at least 90% with ...

Подробнее
11-01-2018 дата публикации

Production of Dental Shaped Parts

Номер: US20180008386A1
Принадлежит: IVOCLAR VIVADENT AG

The invention discloses a process for producing dental shaped parts which consists entirely of porous glass without crystalline portions. The density of the blank is between 50% and 95% of its theoretical density. It has a discoidal shape with a diameter of at least 20 mm. The blank is produced by a process in which glass powder is first pressed at a pressure of between 10 MPa and 300 MPa and this green body is (pre-)sintered at a temperature of between 580° C. and 750° C. to form a blank of porous glass without crystalline portions. From the obtained blank, monolithic dental shaped parts can be obtained by mechanical processing followed by sintering, wherein a process according to the invention for stabilizing the shape of the shaped parts is used.

Подробнее
27-01-2022 дата публикации

STRENGTHENED 3D PRINTED SURFACE FEATURES AND METHODS OF MAKING THE SAME

Номер: US20220024817A1
Принадлежит:

Glass articles including one or more 3D printed surface features attached to a surface of a substrate at a contact interface between the 3D printed surface feature and the surface. The 3D printed surface feature(s) include a glass or a glass-ceramic, a compressive stress region at an exterior perimeter surface of the 3D printed surface feature(s), and a central tension region interior of the compressive stress region. The 3D printed surface feature(s) may be formed of a contiguous preformed material 3D printed on a surface of a substrate. The compressive stress region of a 3D printed surface feature may be formed using an ion-exchange process. 1. A glass article comprising:a substrate comprising a surface; a glass or a glass-ceramic,', 'a compressive stress region at an exterior perimeter surface of the 3D printed surface feature, and', 'a central tension region interior of the compressive stress region., 'a 3D printed surface feature disposed on the surface, the 3D printed surface feature attached to the surface at a contact interface between the 3D printed surface feature and the surface, and the 3D printed surface feature comprising2. The glass article of claim 1 , wherein the 3D printed surface feature comprises one ofthe glass and the glass comprises an ion-exchangeable glass material, andthe glass-ceramic and the glass-ceramic comprises an ion-exchangeable glass-ceramic material.3. (canceled)4. The glass article of claim 1 , wherein the 3D printed surface feature comprises a contiguous preformed material.5. The glass article of claim 1 , wherein:the contact interface has a minimum contact dimension,the compressive stress region has a maximum depth measured inward from the exterior perimeter surface at a direction orthogonal to the exterior perimeter surface, andthe minimum contact dimension is at least three times greater than the maximum depth of the compressive stress region.6. The glass article of claim 5 , wherein the minimum contact dimension is at least ...

Подробнее
11-01-2018 дата публикации

3D PRINTER PRINTHEAD, 3D PRINTER USING SAME, METHOD FOR MANUFACTURING MOLDED PRODUCT BY USING 3D PRINTER, METHOD FOR MANUFACTURING ARTIFICIAL TOOTH BY USING 3D PRINTER, AND METHOD FOR MANUFACTURING MACHINABLE GLASS CERAMIC MOLDED PRODUCT BY USING 3D PRINTER

Номер: US20180009696A1
Автор: Kim Hyeong Jun

The present invention relates to a 3D printer printhead, a 3D printer using the same, a method for manufacturing a molded product by using the 3D printer, a method for manufacturing an artificial tooth by using the 3D printer, and a method for manufacturing a machinable glass ceramic molded product by using the 3D printer, the 3D printer printhead comprising: an inlet through which glass wire, which is a raw material, is introduced; a heating means for heating the glass wire introduced through the inlet; a melting furnace for providing a space in which the glass wire is fused; and a nozzle connected to the lower part of the melting furnace so as to temporarily store the fused glass or discharge a targeted amount of the fused glass, wherein the melting furnace includes an exterior frame made from a heat resistant material and an interior frame having a crucible shape, and the interior frame is made from platinum (Pt), a Pt alloy or graphite, which have a low contact angle, or a material having a surface coated with Pt or a diamond-like carbon (DLC) so as to prevent the fused glass from sticking thereto. According to the present invention, the molded product, the artificial tooth, and the machinable glass ceramic molded product can be manufactured with excellent mechanical properties, thermal durability, chemical durability and oxidation resistance and outstanding texture by using the glass wire as a raw material. 1. A 3D printer printhead comprising:an inlet thorough which a glass wire, which is a raw material, is introduced;a heating means configured to heat the glass wire introduced through the inlet;a melting furnace configured to provide a space in which the glass wire is melted to produce a molten glass; anda nozzle coupled to a lower part of the melting furnace to temporarily store the molten glass or discharge a desired amount of the molten glass,wherein the melting furnace comprises an outer frame made of a heat-resistant material and an inner frame having a ...

Подробнее
11-01-2018 дата публикации

Lithium Silicate Diopside Glass Ceramics

Номер: US20180009701A1
Принадлежит:

Lithium silicate-diopside glass ceramics are described which are characterized by a controllable translucence and can be satisfactorily processed mechanically and therefore can be used in particular as restoration material in dentistry. 1. Lithium silicate-diopside glass ceramic which comprises lithium silicate as main crystal phase and diopside as further crystal phase.2. Glass ceramic according to claim 1 , which comprises 53.0 to 75.0 wt.-% SiO.3. Glass ceramic according to claim 1 , which comprises 10.0 to 23.0 wt.-% LiO.4. Glass ceramic according to claim 1 , which comprises 1.0 to 13.0 wt.-% CaO and/or 1.0 to 12.0 wt.-% MgO.5. Glass ceramic according to claim 4 , wherein the molar ratio of CaO to MgO is 0.5 to 2.0.6. Glass ceramic according to claim 1 , which comprises 0 to 8.0 O.7. Glass ceramic according to claim 1 , which comprises 0 to 10.0 wt.-% further alkali metal oxide MeO claim 1 , wherein MeO is selected from NaO claim 1 , KO claim 1 , RbO and/or CsO.8. (canceled)9. Glass ceramic according to claim 1 , which comprises 0 to 10.0 wt.-% oxide of trivalent elements MeO claim 1 , wherein MeOis selected from AlO claim 1 , BO claim 1 , YO claim 1 , LaO claim 1 , GaOand/or InO.10. (canceled)11. (canceled)12. (canceled)14. (canceled)15. Glass ceramic according to claim 1 , which comprises lithium silicate in the form of lithium disilicate and/or lithium metasilicate.16. (canceled)17. (canceled)18. (canceled)19. Glass ceramic according to claim 1 , which is present in the form of a blank or a dental restoration.20. Starting glass which comprises the components of the glass ceramic according to .21. Starting glass according to claim 20 , which is present in the form of a ground powder or a compact made of ground powder.22. Process for the preparation of the glass ceramic according to claim 1 , wherein{'claim-ref': {'@idref': 'CLM-00020', 'claim 20'}, '(a) the starting glass according to is ground,'}(b) the ground starting glass is optionally pressed to form a ...

Подробнее
10-01-2019 дата публикации

Fluorescent Glass For Light Emitting Diode And Manufacturing Method Thereof

Номер: US20190010079A1
Принадлежит:

The present disclosure is related to a fluorescent glass for a light emitting diode and a manufacturing method thereof. The fluorescent glass for the light emitting diode includes a glass powder and a fluorescent powder, wherein the glass powder and the fluorescent powder are mixed to form a fluorescent glass, the material for manufacturing the glass powder comprises silicon dioxide with 20 wt % to 37 wt %, diboron trioxide with 31 wt %-47 wt % and calcium oxide with 16 wt %˜35 wt %, and the material of the fluorescent powder is selected from one of Ce-YAG, LuAG, silicate, and nitrides/oxynitrides fluorescent powder. The fluorescent glass of the present disclosure is formed by mixing and sintering the glass powder and the fluorescent powder and has low sintering temperature, so as to avoid the deterioration of color of the fluorescent powder due to high temperature. Therefore, the fluorescent glass of the present disclosure has good transparency, and the light emitting diode applying this fluorescent glass has good lighting efficiency. 1. A fluorescent glass for a light emitting diode , comprising a glass powder and a fluorescent powder , wherein the glass powder and the fluorescent powder are mixed to form a fluorescent glass , the material for manufacturing the glass powder comprises silicon dioxide with 20 wt % to 37 wt % , diboron trioxide with 31 wt %˜47 wt % and calcium oxide with 16 wt %˜35 wt % , and the material of the fluorescent powder is selected from one of Ce-YAG , LuAG , silicate , and nitrides/oxynitrides fluorescent powder.2. The fluorescent glass for the light emitting diode as claimed in claim 1 , wherein the material for manufacturing the glass powder further comprises magnesium oxide or zinc oxide claim 1 , the weight percent of magnesium oxide or zinc oxide is between 0 wt % and 17 wt %.3. The fluorescent glass for the light emitting diode as claimed in claim 2 , wherein the material for manufacturing the glass powder further comprises aluminum ...

Подробнее
21-01-2016 дата публикации

METHOD FOR THE MANUFACTURE OF DOPED QUARTZ GLASS

Номер: US20160016839A1
Принадлежит: HERAEUS QUARZGLAS GMBH & CO. KG

One aspect relates to a method for the manufacture of doped quartz glass. Moreover, one aspect relates to quartz glass obtainable according to the method including providing a soot body, treating the soot body with a gas, heating an intermediate product and vitrifying an intermediate product.

Подробнее
21-01-2016 дата публикации

GLASS SHEET AND SYSTEM AND METHOD FOR MAKING GLASS SHEET

Номер: US20160016844A1
Принадлежит:

A method includes impregnating a region of a glass sheet with a filler material in a liquid state. The glass sheet includes a plurality of glass soot particles. The filler material is solidified subsequent to the impregnating step to form a glass/filler composite region of the glass sheet.

Подробнее
18-01-2018 дата публикации

Process of manufacturing non-metallic products

Номер: US20180016175A1
Автор: Wu Cheng Kuan
Принадлежит:

A manufacturing process includes creating 3D shells; connecting the 3D shells together to arrange as rows of the 3D shells and fasten same in a sand box; disposing the sand box in a closed chamber having a furnace and a heater; activating a pump to lower pressure in the closed chamber to be less than the atmospheric pressure; heating the sand box; introducing a molten, non-metallic material from the furnace into each 3D shell; deactivating the pump; flowing gas into the closed chamber to increase the pressure in the closed chamber to be greater than the atmospheric pressure; cooling the sand box; taking the sand box out of the closed chamber; shaking the sand box to separate the rows of the 3D shells from sand; cutting the rows of the 3D shell to obtain the 3D shells; rubbing each 3D shell; and finishing non-metallic products. 1(a) repeatedly performing the sub-steps of (a1) drawing a design based on specifications of an object, (a2) converting the drawing into a computer file, and (a3) inputting the computer file to a 3D printer to create a 3D shell having a sprue wherein the 3D shell has a thickness of between 0.5 mm and 10 mm until a predetermined number of the 3D shells are created;(b) connecting a plurality of the 3D shells together to arrange as a plurality of rows of the 3D shells;(c) fastening the rows of the 3D shells in a sand box;(d) disposing the sand box in a closed chamber having a furnace and a heater;(e) activating a pump to lower pressure in the closed chamber to a first predetermined pressure less than the atmospheric pressure wherein air in the closed chamber is exhausted to the atmosphere via a three-port valve;(f) activating the heater to heat the sand box to a predetermined temperature;(g) introducing a molten, non-metallic material from the furnace into the sprue of each 3D shell until each 3D shell is filled with the molten, non-metallic material;(h) deactivating the pump;(i) flowing gas into the closed chamber via the three-port valve to ...

Подробнее
18-01-2018 дата публикации

DEVICE FOR MANUFACTURING SiO2-TiO2 BASED GLASS

Номер: US20180016176A1
Принадлежит: NIKON CORPORATION

A device for manufacturing SiO—TiObased glass by growing a glass ingot upon a target by a direct method. The device includes the target, comprising a thermal storage portion that accumulates heat by being preheated, and a heat insulating portion that suppresses conduction of heat from the thermal storage portion in a direction opposite to the glass ingot. 1. A device for manufacturing SiO—TiObased glass by growing a glass ingot upon a target by a direct method , comprising: a thermal storage portion that accumulates heat by being preheated, and', 'a heat insulating portion that suppresses conduction of heat from the thermal storage portion in a direction opposite to the glass ingot., 'the target, comprising'}2. The device according to claim 1 , wherein:the thermal storage portion and the heat insulating portion comprise a plate-shaped first member and a plate-shaped second member, respectively;the first member has a larger thermal capacity than the second member; andthe second member has a lower thermal conductivity than the first member.3. The device according to claim 1 , wherein:the thermal storage portion comprises a plate-shaped first member, and has convex portions upon a surface of the first member that is opposite to the glass ingot.4. The device according to claim 3 , wherein:the heat insulating portion comprises a plate-shaped second member, and the first member and the second member are in mutual thermal contact via the convex portions. This is a divisional application filed under Rule 1.53(b) as U.S. application Ser. No. 14/582,237 filed Dec. 24, 2014 which is a continuation application filed under 35 U.S.C. §111(a), which claims the benefit of PCT International Patent Application No. PCT/JP2013/067678, filed Jun. 27, 2013, which claims the foreign priority benefit under 35 U.S.C. §119, of Japanese Patent Application No. 2012-144149, filed Jun. 27, 2012, the disclosures of which are herein incorporated by reference.The present invention relates to a ...

Подробнее
18-01-2018 дата публикации

USE OF ARSENIC-FREE CHALCOGENIDE GLASSES FOR HOT-MELT PROCESSING

Номер: US20180016186A1
Принадлежит:

Disclosed herein are methods for producing glass articles by hot-melt processing techniques. The methods involve the use of arsenic-free chalcogenide glasses. Despite the absence of arsenic, the chalcogenide glasses have low characteristic temperatures and are stable against crystallization. The low characteristic temperatures render the glasses capable of being hot-melt processed using conventional equipment. The glasses disclosed herein are suitable for the fabrication of optical devices, including but not limited to IR-transmitting optical devices. 1. A method for producing a glass article , the method comprising hot-melt processing an arsenic-free chalcogenide glass to produce the glass article.2. The method of claim 1 , wherein the hot-melt process comprises injection molding claim 1 , extrusion claim 1 , transfer molding claim 1 , profile extraction claim 1 , or hot embossing.3. The method of claim 1 , wherein the hot-melt process comprises injection molding at a temperature less than 500° C.4. The method of claim 1 , wherein the arsenic-free chalcogenide glass has a viscosity of 10 claim 1 ,000 poise or less at a temperature of 500° C. or less.5. The method of claim 1 , wherein the arsenic-free chalcogenide glass is resistant to crystallization at a shear rate in the range of 1 claim 1 ,000 secto 10 claim 1 ,000 sec.6. The method of claim 1 , wherein the arsenic-free chalcogenide glass comprises selenium (Se) in the amount of 40 atomic % to 85 atomic % and at least one element selected from the group consisting of phosphorus (P) claim 1 , gallium (Ga) claim 1 , antimony (Sb) claim 1 , tin (Sn) claim 1 , germanium (Ge) claim 1 , sulfur (S) claim 1 , or any combination thereof;wherein P is from 0 atomic % to 25 atomic %; Ga is from 0 atomic % to 8 atomic %; Sb is from 0 atomic % to 15 atomic %; Sn is from 0 atomic % to 8 atomic %; Ge is from 0 atomic % to 20 atomic %; and S is from 0 atomic % to 40 atomic % wherein the sum of P, Ga, Sb, Sn, and Ge is from 15 ...

Подробнее
15-01-2015 дата публикации

GLASS-CERAMIC AS DIELECTRIC IN THE HIGH-FREQUENCY RANGE

Номер: US20150018193A1
Принадлежит: SCHOTT AG

A glass-ceramic is disclosed, this glass-ceramic includes at least the following constituents (in mol % on oxide basis): SiO1-30, AlO0-20, BO0-25, TiO10-70, REO0-35, BaO 5-35, SiO+AlO+BO<25, where RE is lanthanum, another lanthanoid, or yttrium, and where Ti may be replaced in part, preferably up to 10%, by Zr, Hf, Y, Nb, V, Ta. A principal phase in the glass-ceramic is BaTiO 1. A glass-ceramic comprising at least the following constituents (in mol % on oxide basis):{'sub': '2', 'SiO1-30'}{'sub': 2', '3, 'AlO0-20'}{'sub': 2', '3, 'BO0-25'}{'sub': '2', 'TiO10-70'}{'sub': 2', '3, 'REO0-<5'}BaO 5-35{'sub': 2', '2', '3', '2', '3, 'SiO+AlO+BO<25'}wherein RE is selected from the group consisting of lanthanum, another lanthanoid, and yttrium, and wherein Ti may be replaced in part by at least one constituent selected from the group consisting of Zr, Hf, Nb, V, and Ta.2. The glass-ceramic of claim 1 , comprising at least the following constituents (in mol % on oxide basis):{'sub': '2', 'SiO2-20'}{'sub': 2', '3, 'AlO0-15'}{'sub': 2', '3, 'BO0-20'}{'sub': '2', 'TiO25-65'}{'sub': '2', 'ZrO1-15'}{'sub': 2', '3, 'REO0-<5'}BaO 10-30{'sub': 2', '2', '3', '2', '3, 'SiO+AlO+BO≦20,'}wherein RE is selected from the group consisting of lanthanum, another lanthanoid, and yttrium, and wherein Ti may be replaced in part by at least one constituent selected from the group consisting of Zr, Hf, Nb, V, and Ta.3. The glass-ceramic of claim 2 , comprising at least the following constituents (in mol % on oxide basis):{'sub': '2', 'SiO2-20'}{'sub': 2', '3, 'AlO0-15'}{'sub': 2', '3, 'BO0-5'}{'sub': '2', 'TiO40-65'}{'sub': '2', 'ZrO5-12'}{'sub': 2', '3, 'REO0-<5'}BaO 10-30{'sub': 2', '2', '3', '2', '3, '10≦SiO+AlO+BO≦20,'}wherein RE is selected from the group consisting of lanthanum, another lanthanoid, and yttrium, and wherein Ti may be replaced in part by at least one constituent selected from the group consisting of Zr, Hf, Nb, V, and Ta.4. The glass-ceramic of claim 1 , comprising at least the ...

Подробнее
17-01-2019 дата публикации

Feedstock Gel and Method of Making Glass-Ceramic Articles from the Feedstock Gel

Номер: US20190016622A1
Автор: Cooper Scott P.
Принадлежит:

A method of making a glass-ceramic article includes synthesizing a feedstock gel that includes a base oxide network comprising NaO, CaO, and SiO, in which a molar ratio of NaO:CaO:SiOin the gel is 1:2:3, and then converting the feedstock gel into a glass-ceramic article such as a container or a partially-formed container. The conversion of the feedstock gel into a glass-ceramic container may be performed at a temperature that does not exceed 900° C. and may include the steps of pressing the feedstock gel into a compressed solid green-body, sintering the green-body into a solid monolithic body of a glass-ceramic material, deforming the solid monolithic glass-ceramic body into a glass-ceramic preform, and cooling the preform. A glass-ceramic article having a glass-ceramic material that has a molar ratio of NaO:CaO:SiOthat is 1:2:3 is also disclosed. 1. A method of making a glass-ceramic article , the method comprising:{'sub': 2', '2', '2', '2, 'synthesizing a feedstock gel that includes a base oxide network comprising NaO, CaO, and SiOin which a molar ratio of NaO:CaO:SiOis 1:2:3;'}pressing the feedstock gel into a compressed solid green-body;sintering the compressed solid green-body of the feedstock gel at a temperature below 900° C. to produce a solid monolithic body of a glass-ceramic material having an amorphous residual glass phase and a crystalline phase distributed within the amorphous residual glass phase, the solid monolithic body of a glass-ceramic material having a density that is greater than a density of the feedstock gel;deforming the solid monolithic body of a glass-ceramic material into a glass-ceramic preform having a container shape at a temperature of 600° C. or above; andcooling the glass-ceramic preform into a glass-ceramic article in the form of a container or a partially-formed container.2. The method set forth in claim 1 , wherein the step of synthesizing the feedstock gel comprises:{'sub': 2', '2, 'providing an aqueous solution that includes ...

Подробнее
16-01-2020 дата публикации

HIGH OPTICAL QUALITY GLASS TUBING AND METHOD OF MAKING

Номер: US20200017392A1
Принадлежит:

A laminated or single layer glass cylinder and its method of making are disclosed. The laminated cylinder glass is a precursor component to enable making subsequent drawn tubing having high optical quality. The laminated cylinder glass may comprise a first layer of glass as a clad glass and a second layer of glass as a core glass. The second layer of glass may be bound to the first layer of glass. The second layer may have a higher CTE from about 5×10/° C. to about 100×10/° C. than the first layer of glass. The first layer and second layer of glass may have different softening points within about 200° C. of each other. In some embodiments, the first layer and second layer of glass may have different softening points from about 50° C. to about 200° C. of each other. 1. A laminated cylindrical glass , comprising:a first layer of glass as a clad glass; and{'sup': −7', '−7, 'a second layer of glass as a core glass bound to the first layer of glass, wherein the second layer has a higher CTE than the first layer of glass with a CTE difference from about 5×10/° C. to about 100×10/° C., wherein the first layer and the second layer of glass have different compositions and softening points within about 200° C. of each other.'}2. The laminated cylindrical glass of claim 1 , further comprising a third layer of glass bound to the second layer of glass claim 1 , wherein the third layer has lower CTE than the second layer of glass.3. The laminated cylindrical glass of claim 2 , wherein the third layer of glass has a different composition than the second layer and the same or different composition as the first layer of glass claim 2 , and wherein the glass composition of the second and third glass have different coefficients of thermal expansion.4. The laminated cylindrical glass of claim 1 , wherein the CTE difference between the first layer and the second layer of glass is from 5×10/° C. to about 50×10/° C. claim 1 , or wherein the first layer and the second layer of glass have ...

Подробнее
16-01-2020 дата публикации

Water-based ceramic three-dimensional laminate material and method for using the same to manufacture ceramic objects

Номер: US20200017414A1
Принадлежит:

The invention relates to a water-based ceramic three-dimensional laminate material and a method for using the same material to manufacture the ceramic objects, comprising: a step Sa of preparing a plurality of projected slice graphics and a slurry, wherein the projected slice graphics are formed by slicing a three-dimensional image along a specific direction with a specific thickness, the slurry is prepared by mixing the material powder, the photo-curing resin, the solvent and the additive; a step Sb of uniformly laying the slurry on the substrate to form a sacrificial layer; and a step Sc of uniformly laying the slurry on the slurry to form a reaction layer on the sacrificial layer; a step Sd of irradiating the reaction layer with a light beam according to one of the plurality of projected slice graphics, and the slurry is cured after being irradiated; a step Se of repeating steps Sc and Sd until a ceramic body is formed; a step Sf of washing the ceramic body with water or an organic solvent; and a step Sg of sintering the ceramic body at a high temperature to form a ceramic object. 1. A method of manufacturing a ceramic object using a water-based ceramic three-dimensional laminate material , comprising:a step (Sa) of preparing a plurality of projected slice graphics and a slurry, wherein the projected slice graphics are generated by slicing a three-dimensional image along a specific direction with a specific thickness; the slurry is prepared by mixing material powder, photo-curable resin, solvent and additive; the material powder comprising at least one of aluminum oxide powder, zirconium oxide powder, and glass ceramic powder, the photo-curable resin comprising at least one of a water-soluble resin and a water-dispersible resin; the solvent is water or a mixed solvent comprising water and alcohols, and the additive includes at least one of a dispersing agent, a binder, and a plasticizer;a step (Sb) of uniformly laying the slurry on a substrate to form a ...

Подробнее
26-01-2017 дата публикации

Injection Molding Pressure Relief and Assist

Номер: US20170021409A1
Автор: LUCKA Kevin
Принадлежит:

An injection molding system and method of operating the system are disclosed. The system may include a hopper, a barrel configured to receive injection material from the hopper, a screw disposed within the barrel, and a mold defining a mold cavity configured to receive the injection material from the barrel. A pressure-balancing conduit may connect the mold cavity and a rear end of the barrel and be configured to allow air to flow from the mold cavity to the rear end of the barrel. A mold valve may be disposed between the pressure-balancing conduit and the mold cavity and a barrel valve may be disposed between the pressure-balancing conduit and the rear end of the barrel. The method may include opening the mold valve and injecting a material into the mold cavity from the barrel. 1. An injection molding system comprising:a hopper;a barrel configured to receive injection material from the hopper;a screw disposed within the barrel;a mold defining a mold cavity configured to receive the injection material from the barrel; anda pressure-balancing conduit connecting the mold cavity and a rear end of the barrel and configured to allow air to flow from the mold cavity to the rear end of the barrel.2. The system of claim 1 , further comprising a mold valve disposed between the pressure-balancing conduit and the mold cavity.3. The system of claim 2 , wherein the mold valve is a one-way valve configured to only allow air to flow from the mold cavity into the pressure-balancing conduit.4. The system of claim 2 , wherein a channel connects the mold cavity to the mold valve.5. The system of claim 1 , further comprising a barrel valve disposed between the pressure-balancing conduit and the rear end of the barrel.6. The system of claim 5 , wherein the barrel valve is configured to allow air flow from the pressure-balancing conduit into the rear end of the barrel and to prevent air flow from the rear end of the barrel into the pressure-balancing conduit.7. The system of claim 6 , ...

Подробнее
10-02-2022 дата публикации

PROCESS FOR THE PREPARATION OF FLUORINATED QUARTZ GLASS

Номер: US20220041488A1
Принадлежит: HERAEUS QUARZGLAS GMBH & CO. KG

A process for the production of a fluorinated quartz glass including the steps of generating SiOparticles in a synthesis burner; depositing the resulting SiOparticles into a body; and vitrifying the resulting body, wherein a fluorinating agent having a boiling point greater than or equal to −10° C. is supplied to the synthesis burner. 1. A process for the production of fluorinated quartz glass , characterized by:{'sub': '2', 'a. generation of SiOparticles in a synthesis burner;'}{'sub': '2', 'b. deposition of the SiOparticles resulting from process a. to form a body; and'}c. vitrification of the body resulting from process b,characterized in that a fluorinating agent having a boiling point of greater than or equal to −10° C. is introduced to the synthesis burner during process a.2. The process according to claim 1 , characterized in that the fluorinating agent is selected from the group consisting of:i. oxygen-containing fluorinating agents;ii. nitrile-containing fluorinating agents;iii. mixtures of the oxygen-containing and nitrile-containing fluorinating agents.3. The process according to claim 2 , characterized in that the oxygen-containing fluorinating agents are selected from the group consisting of: [{'br': None, 'sub': F1', 'F2, 'R—CO—R\u2003\u2003(I),'}, {'sub': F1', 'F2, 'wherein Ris selected from the group consisting of perfluorinated carbon groups having 1 to 7 carbon atoms and fluorine; and Ris selected from the group consisting of perfluorinated carbon groups having 1 to 7 carbon atoms;'}], 'i. Perfluoroketones of the general formula (I)'} [{'br': None, 'sub': F1', '1', '2', 'F2, 'R—C(X)(X)O—R\u2003\u2003(II),'}, {'sub': F1', 'F2', '1', '2', '3, 'wherein Ris selected from the group consisting of perfluorinated carbon groups having 1 to 7 carbon atoms and fluorine; Ris selected from the group consisting of perfluorinated carbon groups having 1 to 7 carbon atoms; and Xand Xare F or CF.'}], 'ii. Perfluoroethers of the general formula (II)'} [{'br': None, ' ...

Подробнее
10-02-2022 дата публикации

CEMENTITIOUS REAGENTS, METHODS OF MANUFACTURING AND USES THEREOF

Номер: US20220041504A1
Автор: Lake Donald John
Принадлежит:

Described are cementitious reagent materials produced from globally abundant inorganic feedstocks. Also described are methods for the manufacture of such cementitious reagent materials and forming the reagent materials as microspheroidal glassy particles. Also described are apparatuses, systems and methods for the thermochemical production of glassy cementitious reagents with spheroidal morphology. The apparatuses, systems and methods makes use of an in-flight melting/quenching technology such that solid particles are flown in suspension, melted in suspension, and then quenched in suspension. The cementitious reagents can be used in concrete to substantially reduce the COemission associated with cement production. 2. The cementitious reagent of claim 1 , wherein the cementitious reagent comprises a powder.3. The cementitious reagent of claim 1 , wherein the cementitious reagent is at least about 40% x-ray amorphous.4. The cementitious reagent of claim 1 , wherein the microspheroidal glassy particles are at least about 40% x-ray amorphous.5. The cementitious reagent of claim 1 , wherein the microspheroidal glassy particles have a mean roundness (R) of at least 0.9.6. The cementitious reagent of claim 1 , wherein less than about 50% of the microspheroidal glassy particles have a mean roundness (R) of less than 0.7.7. The cementitious reagent of claim 1 , wherein the microspheroidal glassy particles have a Sauter mean diameter D[3 claim 1 ,2] of about 20 micrometers or less.10. The cementitious reagent of claim 1 , having a molar ratio Si/(Fe claim 1 , Al) of between about 1 and about 30 claim 1 , and a CaO content of between about 1 wt. % and about 45 wt. %.12. The cementitious reagent of claim 1 , comprising less than about 10 wt. % CaO.14. The cementitious reagent of claim 1 , wherein the molar composition comprises (Ca claim 1 ,Mg).(Na claim 1 ,K).(Al claim 1 ,Fe).Si.15. The cementitious reagent of claim 1 , wherein the cementitious reagent is substantially free of ...

Подробнее
24-01-2019 дата публикации

ORGANIC-INORGANIC COMPOSITE FIBERS AND METHODS THEREOF

Номер: US20190023603A1
Принадлежит:

An organic-inorganic composite, including: a discontinuous phase having a plurality of adjacent and similarly oriented fibers of an inorganic material; and a continuous organic phase having a thermoplastic polymer, such that the continuous organic phase surrounds the plurality of adjacent and similarly oriented fibers of the inorganic material, and the organic-inorganic composite is a plurality of adjacent and similarly oriented fibers of inorganic material contained within a similarly oriented host fiber of the thermoplastic polymer. Also disclosed are methods of making and using the composite. 2. The composite of claim 1 , wherein the inorganic material is an oxide glass having a glass transition temperature of from 200° C. to 450° C. claim 1 , and the organic phase is a thermoplastic polymer.3. The composite of claim 2 , wherein the oxide glass is zinc sulfophosphate claim 2 , and the thermoplastic polymer is selected from a polyetherimide (PEI) claim 2 , a polyethersulfone (PS) claim 2 , a polyimide claim 2 , or mixtures thereof.4. A method of making the organic-inorganic composite of claim 1 , comprising:a first melting at a suitable temperature, a batch of suitable proportions of sources or precursors comprising:15 to 20% zinc oxide;8 to 12% lithium phosphate;4 to 8% zinc pyrophosphate;12 to 16% potassium monophosphate;12 to 16% sodium hexametaphosphate;0.1 to 2% calcium carbonate;0.1 to 2% strontium carbonate;4 to 10% aluminum metaphosphate; and20 to 40% zinc sulfate heptahydrate, based on a 100 weight percent total of the inorganic portion of the composite to produce a product of the first melting; anda second melting of the product of the first melting.5. The method of claim 4 , further comprising: pouring or extruding the product of the first melt into a rod and annealing the rod at to form an annealed ZSP glass rod.6. The method of claim 4 , further comprising: extruding the annealed ZSP glass rod form an extruded and annealed ZSP glass rod.7. The method ...

Подробнее
23-01-2020 дата публикации

PROCESS AND DEVICE FOR PREPARING A 3-DIMENSIONAL BODY, IN PARTICULAR A GREEN BODY

Номер: US20200023548A1
Принадлежит:

The invention relates in a first aspect to a process for preparing a 3-dimensional body, in particular a vitreous or ceramic body, which comprises at least the following steps: a) providing an electrostatically stabilized suspension of particles; b) effecting a local destabilization of the suspension of particles by means of a localized electrical discharge between a charge injector and the suspension at a predetermined position and causing an aggregation and precipitation of the particles at said position; c) repeating step b) at different positions and causing the formation of larger aggregates until a final aggregate of particles representing a (porous) 3-dimensional body (green body) having predetermined dimensions has been formed; wherein the charge injector includes i) at least one discharge electrode which does not contact said suspension of particles or ii) a source of charged particles. A second aspect of the invention relates to a device, in particular for performing the above process, comprising at least the following components: —a vessel for receiving an electrostatically stabilized suspension of particles, —a charge injector, in particular including one or more electrodes or a source of high-energy charged particles, —means for moving the electrode and/or the vessel in the x, y and z directions, —a counter electrode arranged in the vessel for a contact with the suspension of particles, —one or more sensors for determining geometrical and physical parameters within said vessel. In one preferred embodiment, said device further comprises a means for directing a beam of gas-ionizing radiation, in particular a laser beam, to a predetermined position within the vessel. 1. A process for preparing a 3-dimensional vitreous or ceramic body , which comprises at least the following steps:a) providing an electrostatically stabilized suspension of particles;b) effecting a local destabilization of the suspension of particles by a localized electrical discharge ...

Подробнее
10-02-2022 дата публикации

METHOD OF MAKING A LENSED CONNECTOR WITH PHOTOSENSITIVE GLASS

Номер: US20220043218A1
Принадлежит:

The present disclosure relates to a method of making a lensed connector in which a glass ferrule has holes within the body of the glass ferrule, and the glass ferrule is subsequently processed to form lens structures along the ferrule. 1. A method of making a lensed connector comprising:inserting a light occluding agent into at least one hole of a ferrule made of glass, wherein the at least one hole extends partially through the ferrule from a first surface;applying UV light onto the first surface of the ferrule such that the light occluding agent prevents a portion of the ferrule from being treated by the UV light, thereby forming an untreated portion of the ferrule;removing the light occluding agent from the ferrule; andthermally developing the ferrule such that the untreated portion of the ferrule forms a dome shaped lens structure protruding from a second surface of the ferrule, wherein the second surface is opposite the first surface.2. The method of claim 1 , further including:inserting an optical fiber into the at least one hole; andbonding the optical fiber to the lens structure within the at least one hole with an adhesive.3. The method of claim 1 , wherein the hole extends into between 25% and 80% of a thickness of the ferrule.4. The method of claim 1 , wherein the dome shaped lens structure has a sag height ranging between 4.5 μm and 13 μm.5. The method of claim 1 , wherein the UV light has a wavelength ranging between 300 nm and 340 nm.6. The method of claim 1 , wherein the glass ferrule comprises a photosensitive glass.7. The method of claim 6 , wherein during the thermally developing claim 6 , the untreated portion of the ferrule softens and the photosensitive glass of the ferrule surrounding the untreated portion shrinks in volume to squeeze the untreated portion and form the dome shaped lens structure.8. The method of claim 2 , wherein the hole is substantially circular in shape having a center and an outer surface with at least one protuberance ...

Подробнее
23-01-2020 дата публикации

ENGINEERED FEEDSTOCKS FOR ADDITIVE MANUFACTURE OF GLASS

Номер: US20200024465A1
Принадлежит:

According to one embodiment, a method includes forming a structure by printing an ink, the ink including a glass-forming material, and heat treating the formed structure for converting the glass-forming material to glass. According to another embodiment, an ink composition includes a glass-forming material and a solvent. 1. A method , comprising:forming a structure by printing an ink, the ink comprising a glass-forming material; andheat treating the formed structure for converting the glass-forming material to glass.2. The method as recited in claim 1 , comprising drying the formed structure for removing a sacrificial material claim 1 , wherein the drying is done prior to heat treating the formed structure.3. The method as recited in claim 1 , wherein the ink is a combination of the glass-forming material and a second component that alters a property to the heat treated structure.4. The method as recited in claim 3 , wherein a concentration of the second component in the ink changes during the printing for creating a compositional gradient in the structure.5. The method as recited in claim 1 , wherein a temperature of the ink is less than about 200° C. during the printing.6. The method as recited in claim 1 , wherein the glass-forming material is selected from a group of materials consisting of: silica claim 1 , fumed silica claim 1 , colloidal silica claim 1 , LUDOX colloidal silica dispersion claim 1 , titania particles claim 1 , zirconia particles claim 1 , alumina particles claim 1 , and metal chalcogenide particles.7. The method as recited in claim 1 , wherein the glass-forming material is suspended in a solvent during forming.8. The method as recited in claim 1 , comprising at least one of grinding and polishing the heat-treated structure.9. The method as recited in claim 1 , wherein the heat-treated structure is in the form of a fiber.10. The method as recited in claim 1 , wherein the heat-treated structure is in the form of a sheet.11. The method as recited ...

Подробнее
02-02-2017 дата публикации

METHOD FOR PRODUCING BLANKS FOR SINTERED GLASS BODIES FOR GLASS SEALS

Номер: US20170029312A1
Принадлежит: IL Metronic Sensortechnik GmbH

A method for the production of blanks for sintered glass bodies for glass seals, wherein with a 3D printing method, a number of layers are arranged one above the other. In a first step, a first layer of a glass powder is spread on a surface, a computer-controlled stream of a printing fluid is directed to selected areas of the first layer in a pattern prescribed by the computer. In a second step, a further layer of the glass powder is spread over the first layer and on it, a computer-controlled stream of printing fluid is directed to selected surfaces of the second layer in a pattern prescribed by the computer, the two steps are repeated until the blank is formed. The glass powder components contain SiO, NaO, KO, CaO, MgO, BO, BaO, AlO, PbO, LiO and SrO as well as a solid binder made of dextrin. 1. A method for producing blanks for sintered glass bodies for glass seals in which with a 3D printing method , a plurality of layers are arranged one above the other , the method comprising:spreading, in a first step, a first layer of a glass powder a surface;directing a computer-controlled stream of a printing fluid to selected areas of the first layer in a pattern prescribed by the computer;spreading, in a second step, a further layer of the glass powder over the first layer;directing a computer-controlled stream of printing fluid to selected surfaces of the second layer in a pattern prescribed by the computer; andrepeating the first and second steps until the blank is formed,{'sub': 2', '2', '2', '2', '3', '2', '3', '2, 'wherein the glass powder contains components of SiO, NaO, KO, CaO, MgO, BO, BaO, AlO, PbO, LiO and SrO and a solid binder made of dextrin,'}wherein the glass powder has a particle size distribution with a maximum particle size of 165 microns, andwherein the printing fluid is made of an aqueous solution of a polymer 2-pyrrolidone.2. The method according to claim 1 , wherein the components of the glass powder have the following composition in mass %:{'sub': ...

Подробнее
02-02-2017 дата публикации

COLORED GLASS PLATE AND METHOD FOR MANUFACTURING SAME

Номер: US20170029320A1
Принадлежит: Asahi Glass Company, Limited

To provide a colored glass plate of which the mass ratio of divalent iron as calculated as FeOto total iron as calculated as FeOcan be stably maintained at a high level while amber coloring derived from salt cake (NaSO) is suppressed by reducing the amount of salt cake used as a refining agent, and which has less bubbles regardless of a small amount of total sulfur as calculated as SO. A colored glass plate which is made of alkali-containing silica glass containing iron, tin and sulfur, wherein, as represented by mass % based on oxides, the proportion of total sulfur as calculated as SOis less than 0.025%, the proportion of divalent iron as calculated as FeOto total iron as calculated as FeOis at least 45%, the proportion of divalent tin as calculated as SnOto total tin as calculated as SnOis at least 0.1% as represented by mol %, and β-OH is at least 0.15 mm. 1. A colored glass plate which is made of alkali-containing silica glass containing iron , tin and sulfur , wherein , as represented by mass % based on oxides , the proportion of total sulfur as calculated as SOis less than 0.025% , the proportion of divalent iron as calculated as FeOto total iron as calculated as FeOis at least 45% the proportion of divalent tin as calculated as SnOto total tin as calculated as SnOis at least 0.1% as represented by mol % , and β-OH is at least 0.15 mm.2. The colored glass plate according to claim 1 , wherein the proportion of divalent tin as calculated as SnOto total tin as calculated as SnOis from 0.2 to 40% as represented by mol %.3. The colored glass plate according to claim 1 , wherein 443−420×β-OH (mm)−4.8×Fe-redox (%) is less than 100.4. The colored glass plate according to claim 1 , wherein the proportion of divalent iron as calculated as FeOto total iron as calculated as FeOis at least 55%.9. The colored glass plate according to claim 1 , wherein the proportion of total sulfur as calculated as SOas represented by mass % based on oxides is at least 0.01% and less than ...

Подробнее
02-02-2017 дата публикации

HEAT-RAY-ABSORBING GLASS PLATE AND METHOD FOR PRODUCING SAME

Номер: US20170029321A1
Принадлежит: Asahi Glass Company, Limited

To provide a heat-absorbing glass plate of which amber coloring is suppressed, and which satisfies both low solar transmittance and high visible light transmittance. The heat-absorbing glass plate of the present invention is one containing iron, tin and sulfur, wherein, as represented by mass % based on oxides, the MgO content is at most 4.5%, the amount of total tin as calculated as SnOis less than 0.4%, and the ratio (SnO/SO) of the amount of total tin to the amount of total sulfur as calculated as SOis from 0.2 to 100. 1. A heat-absorbing glass plate containing iron , tin and sulfur , wherein , as represented by mass % based on oxides , the MgO content is at most 4.5% , the amount of total tin as calculated as SnOis less than 0.4% , and the ratio (SnO/SO) of the amount of total tin to the amount of total sulfur as calculated as SOis from 0.2 to 100.2. The heat-absorbing glass plate according to claim 1 , wherein the ratio Tv/Te of the visible light transmittance Tv (by illuminant A claim 1 , 2° visual field) as defined in JIS R3106 (1998) to the solar transmittance Te as defined in JIS R3106 (1998) claim 1 , and the amount of total iron t-FeOas calculated as FeOas represented by mass % based on oxides claim 1 , calculated as 4 mm thickness of the glass plate claim 1 , are in a relation of the following formulae:{'br': None, 'i': Tv/Te>', 't, 'sub': 2', '3, '1.70 when -FeOis less than 0.351%;'}{'br': None, 'i': Tv/Te>', 't', 't, 'sub': 2', '3', '2', '3, '1.252×(-FeO)+1.260 when -FeOis at least 0.351% and less than 0.559%; and'}{'br': None, 'i': Tv/Te>', 't, 'sub': 2', '3, '1.960 when -FeOis at least 0.559%.'}3. The heat-absorbing glass plate according to claim 1 , wherein the ratio Tv/Te of the visible light transmittance Tv (by illuminant A claim 1 , 2° visual field) as defined in JIS R3106 (1998) to the solar transmittance Te as defined in JIS R3106 (1998) claim 1 , and the amount of total iron t-FeOas calculated as FeOas represented by mass % based on oxides ...

Подробнее
28-01-2021 дата публикации

Inductor component

Номер: US20210027937A1
Принадлежит: Murata Manufacturing Co Ltd

An inductor component includes an element assembly formed of an insulator material and an inner electrode arranged in the element assembly. The insulator material contains a base material formed of an amorphous material containing B, Si, O, and K and a crystalline filler and includes a filler-poor glass portion in a region along the inner electrode. The content of the crystalline filler in the filler-poor glass portion is lower than the content of the crystalline filler in the element assembly excluding the filler-poor glass portion.

Подробнее
01-02-2018 дата публикации

METHOD FOR PRODUCING GLASS PREFORM FOR OPTICAL FIBER

Номер: US20180029921A1
Автор: URATA Yuhei
Принадлежит:

Provided is a method for producing a glass preform for optical fiber which suppresses occurrences of cracks, coloring and foaming in a surface layer when sintering a glass fine particle deposit to allow a production yield to be improved. A method for producing a glass preform for optical fiber comprising the steps of: spraying glass fine particles containing silicon dioxide and germanium dioxide to a starting material moving upward while rotating to produce a glass fine particle deposit; and sintering the glass fine particle deposit while relatively varying a positional relationship between a heating source and the glass fine particle deposit in a sintering apparatus to produce a transparent glass preform, wherein a germanium dioxide reducing gas is contained in an atmosphere gas in the sintering apparatus. 1. A method for producing a glass preform for optical fiber comprising the steps of:spraying glass fine particles containing silicon dioxide and germanium dioxide to a starting material moving upward while rotating to produce a glass fine particle deposit; andsintering the glass fine particle deposit while relatively varying a positional relationship between a heating source and the glass fine particle deposit in a sintering apparatus to produce a transparent glass preform,wherein a germanium dioxide reducing gas is contained in an atmosphere gas in the sintering apparatus.2. The method according to claim 1 , wherein the germanium dioxide reducing gas is carbon monoxide gas and/or chlorine gas.3. The method according to claim 1 , wherein a surface of the produced transparent glass preform is etched with hydrofluoric acid. This non-provisional application claims priority under 35 U.S.C. §119(a) from Japanese Patent Application No. 2016-150465, filed on Jul. 29, 2016, the entire contents of which are incorporated herein by reference.The present invention relates to a method for producing a glass preform for optical fiber which contributes to an improvement in a ...

Подробнее
02-02-2017 дата публикации

Continuous Fiber Molded Part

Номер: US20170030248A1
Принадлежит:

Continuous fiber molded part for silencers or mufflers comprising a continuous fiber and a coat of inorganic binder, wherein the coat encloses the continuous fiber. 1. A continuous fiber molded part for silencers comprising:a continuous fiber;a coat of inorganic binder enclosing said continuous fiber.2. The continuous fiber molded part according to claim 1 , wherein:said continuous fiber is an open or an effect-textured glass fiber; wherein said glass fiber is an E or ECR glass fiber; wherein said continuous fiber is given as a mat or scrim.3. The continuous fiber molded part according to claim 1 , wherein:said inorganic binder comprises a colloidal mineral, in particular a sol-gel based on water glass and silica sol.4. The continuous fiber molded part according to claim 3 , wherein:said water glass is a sodium and/or potassium and/or lithium water glass and wherein the silica sol particle size is between 7 and 40 nm.5. The continuous fiber molded part according to claim 3 , wherein:a water glass content of said sol-gel amounts to 25-75%, typically to 35-65%, and in particular to 45-55%, and a silica sol content of said sol-gel amounts to 25-75%, typically to 35-65%, and in particular to 45-55%; wherein said sol-gel is mixed with a portion of water which comprises plain water and/or distilled water or a mixture of both, wherein a mixture of the water portion with said sol-gel is given at a mixing ratio of 0-1:6, typically of 1:2 and in particular of 1:1.6. The continuous fiber molded part according to claim 3 , wherein:said sol-gel has a pH value of 8≦pH≦9.7. A Method for producing a continuous fiber molded part comprising:providing a continuous fiber which has a predefined density in a supply volume;providing an inorganic binder;applying said inorganic binder onto said continuous fiber so that said continuous fiber is enclosed in a coat-like manner;curing said inorganic binder by applying heat.8. The method according to claim 7 , further comprising:forming said ...

Подробнее