Настройки

Укажите год
-

Небесная энциклопедия

Космические корабли и станции, автоматические КА и методы их проектирования, бортовые комплексы управления, системы и средства жизнеобеспечения, особенности технологии производства ракетно-космических систем

Подробнее
-

Мониторинг СМИ

Мониторинг СМИ и социальных сетей. Сканирование интернета, новостных сайтов, специализированных контентных площадок на базе мессенджеров. Гибкие настройки фильтров и первоначальных источников.

Подробнее

Форма поиска

Поддерживает ввод нескольких поисковых фраз (по одной на строку). При поиске обеспечивает поддержку морфологии русского и английского языка
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Ведите корректный номера.
Укажите год
Укажите год

Применить Всего найдено 4907. Отображено 199.
04-10-2018 дата публикации

МАЛОГАБАРИТНАЯ СМЕСИТЕЛЬНО-ЗАРЯДНАЯ МАШИНА ДЛЯ ПОДЗЕМНЫХ ГОРНЫХ РАБОТ

Номер: RU2668894C2

Изобретение относится к области горного дела, в частности к конструкции смесительно-зарядных машин, используемых для механизированного приготовления эмульсионного взрывчатого вещества и заряжания шпуров и скважин при ведении подземных горных работ. Рама выполнена в виде передвижной тележки с ручками и защитными кожухами. Емкость для эмульсии выполнена в виде отдельного контейнера, подключаемого через адаптер с помощью шланга к гидравлической системе устройства. Пневматические поршневые насосы, связанные через пневматическую станцию с внешним источником энергии, соединены гидравлически с емкостями для эмульсии, газогенерирующей добавки, воды и с зарядным шлангом. Трехходовой кран используют для калибровки расхода газогенерирующей добавки. Для управления процессом приготовления эмульсии используют контроллеры. В качестве смесителя эмульсии и газогенерирующей добавки используют инжектор и статический миксер, установленный на конце зарядного шланга. В инжекторе в поток эмульсии вводят газогенерирующую ...

Подробнее
20-10-2016 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ПОРИЗОВАННОЙ ГРАНУЛИРОВАННОЙ АММИАЧНОЙ СЕЛИТРЫ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Номер: RU2600061C2

Изобретение относится к технологии получения поризованной гранулированной аммиачной селитры для применения на пунктах изготовления взрывчатых веществ на предприятиях, ведущих взрывные работы. Изобретение может быть использовано при открытом и подземном способе добычи рудных и нерудных твердых полезных ископаемых при разрабатке пластовых, штокверковых, жильных месторождений. Способ получения поризованной гранулированной аммиачной селитры включает термическую обработку гранулированной аммиачной селитры, при этом гранулированную аммиачную селитру обрабатывают в два этапа, на первом этапе проводят первичную стадию термической обработки гранулированной аммиачной селитры путем ее нагрева во вращающемся барабане до температуры 32,3-50°С, вторичную стадию термической обработки проводят при этой температуре в режиме качания барабана, а нагрев гранулированной аммиачной селитры в барабане проводят преимущественно попеременно в режиме или вращения, или в режиме качания, при этом после нагрева и выдержки ...

Подробнее
24-03-2022 дата публикации

СПОСОБ ПОВЫШЕНИЯ ДЕТОНАЦИОННОЙ СПОСОБНОСТИ ВТОРИЧНЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Номер: RU2768622C1

Изобретение относится к взрывчатым веществам (ВВ), которые в дальнейшем могут быть использованы как самостоятельно - в виде прессованных деталей, так и в составе смесевых взрывчатых веществ оборонного и гражданского назначения с применением энергии взрыва. Производят перемешивание суспензии ВВ в жидкой рабочей среде с последующей ультразвуковой обработкой. Осуществляют механическое перемешивание кристаллического вторичного ВВ в акустической жидкости, не смешивающейся и не взаимодействующей с кристаллами вторичных ВВ при соотношении ВВ: акустическая жидкость в интервале от 0,5:30 до 2,5:30 вес.ч. Производят центрифугирование и повторное механическое перемешивание. Далее производят ультразвуковую обработку в кавитационном или докавитационном режиме, продолжительностью от 5 до 120 минут, при температуре суспензии от 30°С до 60°С. После чего осуществляют фильтрование суспензии в вакууме с получением кристаллов вторичного ВВ и их сушкой при температуре 60°С-80°С в течение 4-16 часов. Обеспечивается ...

Подробнее
04-03-2024 дата публикации

Перемещаемое устройство для приготовления гранулита

Номер: RU223791U1

Полезная модель относится к области взрывных работ. Перемещаемое устройство для приготовления гранулита содержит раму, смонтированную на свободно вращающихся колесах, на которой размещен бункер с сужающейся в сторону дна нижней частью, снизу к которой в зоне проема прикреплен шнековый конвейер, вал которого связан с закрепленным на свободном конце трубы этого конвейера электродвигателем с редуктором. Труба шнекового конвейера направлена наклонно вверх по отношению к нижней части бункера и на стороне размещения электродвигателя оснащена выпускным патрубком, направленным вниз и расположенным на расстоянии от электродвигателя с редуктором. Бункер оснащен съемной перегородкой, делящей объем бункера на две секции для разнородных сыпучих компонентов гранулита и закрывающей сверху крышкой. В зоне стенки бункера, обращенной в сторону электродвигателя, размещена емкость для жидкостного компонента гранулита, сообщенная через гидронасос и узел дозирования с полостью трубы шнекового конвейера. Рама ...

Подробнее
14-08-2018 дата публикации

Номер: RU2015135736A3
Автор:
Принадлежит:

Подробнее
24-08-2022 дата публикации

Комплекс для формования изделия из взрывчатого состава

Номер: RU2778757C1

Изобретение относится к ракетной технике, а именно к комплексу для формования изделия из взрывчатого состава (ВС). Комплекс содержит сменную чашу с взрывчатым составом, герметично подсоединенную к корпусу системы вытеснения, включающей поршень, скрепленный со штоком, и систему вакуумирования подпоршневого пространства через надпоршневой объем посредством клапанов и фильтров, расположенных в поршне. Между крышкой корпуса системы вытеснения и поршнем размещена пластина, выполненная с возможностью перемещения вдоль штока, оснащенная со стороны чаши стержнями. Поршень снабжен отверстиями, расположенными ответно стержням, выполненными с обеспечением возможности герметичного перемещения поршня вдоль стержней. На свободном торце каждого из стержней закреплен наконечник в искробезопасном исполнении или пластина соединена с крышкой корпуса системы вытеснения, расположенными равномерно по окружности гибкими связями расчетной длины, обеспечивающей образование искробезопасного зазора между стержнями ...

Подробнее
05-09-2017 дата публикации

Устройство для формования адгезионных образцов с полимерным покрытием

Номер: RU173674U1

Полезная модель относится к устройству для формования адгезионных образцов с полимерным покрытием. Таблетки из полимерного материала с нанесенным клеем размещают в корпусе между бобышками грибковой формы, на ножки устанавливают втулки высотой Н=(1,05…1,35)h, где h - высота ножки бобышки до рабочей поверхности, при этом с обоих торцов корпуса на резьбу устанавливают крышки. Данное устройство позволяет изготовить качественные образцы для определения прочности адгезии различных материалов и практически исключить брак.

Подробнее
29-05-2023 дата публикации

Установка для смешения компонентов смесевого твердого ракетного топлива

Номер: RU2796958C1

Изобретение относится к области ракетной техники, а именно к установкам для смешения смесевых твердых ракетных топлив. Установка для смешения компонентов смесевого твердого ракетного топлива содержит верхний и нижний аппараты смешения со шнеками, устройство регулирования потока топливной массы, размещенное между ними, имеющее внешний и внутренний цилиндрические корпуса. Внешний корпус оснащен средством отвода сжатого воздуха с дросселем и средством подачи сжатого воздуха, снабженного пульсатором. На внутреннем корпусе закреплена эластичная мембрана и внутри него размещена поперечная перегородка, по обе стороны которой выполнены сквозные отверстия. Средство подачи сжатого воздуха в зазор между внешним корпусом и мембраной выполнено в виде одной или двух линий, проходящих через пульсатор. Поперечная перегородка выполнена заодно целое с рассекателями потока в виде тела вращения равносторонней гиперболы, один из которых направлен вершиной в сторону верхнего аппарата смешения, а другой - в сторону ...

Подробнее
23-06-2023 дата публикации

Способ получения пористого сферического пороха для дробовых патронов 12 калибра к гладкоствольному оружию

Номер: RU2798486C1

Изобретение может быть использовано для получения пористого сферического пороха для дробовых патронов 12 калибра к гладкоствольному оружию с массой дроби 36 г. Осуществляют перемешивание в водной среде смеси пироксилина в количестве 80,0 мас.% с возвратно-технологическими отходами в количестве 20,0 мас.%. В качестве возвратно-технологических отходов используют некондиционные флегматизированные пороха в количестве 20,0 мас.%. Вводят расплав динитротолуола в количестве 3,0 мас.%, сверх 100%. Приготовление лака в этилацетате ведут в течение 45-60 минут. Далее проводят диспергирование на пороховые элементы с использованием желатина в количестве 0,8-1,0 мас.% к воде и их обезвоживание с применением Na2SО4 в количестве до 0,3 мас.%. Удаление этилацетата ведут при температуре до 96-98°С. Полученный порох промывают, сортируют на фракцию 0,2-0,4 мм, графитуют и сушат. Обеспечивается получение пористого сферического пороха со следующими баллистическими характеристиками: масса порохового заряда для ...

Подробнее
14-04-2021 дата публикации

СПОСОБ ОПРЕДЕЛЕНИЯ РЕОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК ПОЛИМЕРНОГО ПОРОХОВОГО ЛАКА

Номер: RU2746512C1

Изобретение относится к области производства сферических порохов по водно-дисперсионной технологии и предназначено для оценки реологических характеристик порохового лака на фазе формирования гранул. Определяют реологические свойства полимерного порохового лака на штативном пенетрометре. В отобранную пробу лака, имеющего концентрацию 10-50% при температуре 20-68°С, находящуюся в цилиндрической чаше глубиной до 90 мм, погружают под действием силы тяжести всю измерительную систему. Измерительная система состоит из стержня с упором и взаимозаменяемых инденторов, а именно сферы или конуса, или перфорированного диска, накручивающихся на нижнюю часть стержня в зависимости от вязкости порохового лака. Измеряют глубину погружения системы, масса которой находится в пределах от 24,8 до 51,4 г, за фиксированное время погружения, равное 15 с. Обеспечивается возможность экспрессно корректировать дозировку растворителя непосредственно в процессе приготовления лаков, обеспечивая стабильность выхода целевой ...

Подробнее
10-11-2016 дата публикации

СПОСОБ И АППАРАТ ДЛЯ ДОБАВЛЕНИЯ ПАРА ДЛЯ ПРОЦЕССА ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ ПАРОВЫМ ВЗРЫВОМ

Номер: RU2015114575A
Принадлежит:

... 1. Способ обработки сырьевого материала биомассы, который включает:подачу сырьевого материала через изолирующее давление устройство и в верхний впуск системы вертикального реакционного сосуда, где сырьевой материал располагают на столбе сырьевого материала внутри вертикального реакционного сосуда;добавление тепловой энергии для того, чтобы нагревать и повышать давление в сырьевом материале посредством введения первого объема пара в верхний участок системы вертикального реакционного сосуда;продвижение сырьевого материала через выпуск в нижнем участке системы вертикального реакционного сосуда посредством введения по меньшей мере второго объема пара в биомассу на уровне, соответствующем нижнему участку вертикального реакционного сосуда в, около или после нижнего выпуска вертикального реакционного сосуда;где введение первого объема пара и введение по меньшей мере второго объема пара вертикально разделяют посредством по меньшей мере части колонны биомассы, иперемещение продвигаемого сырьевого ...

Подробнее
03-11-1983 дата публикации

Номер: DE0002512341C2
Принадлежит: DR.-ING. MARIO BIAZZI S.A., VEVEY, CH

Подробнее
14-02-1974 дата публикации

Номер: DE0001667132B2

Подробнее
22-12-1977 дата публикации

PATRONE ZUM AUFBEWAHREN EINER PYROPHOREN SUBSTANZ

Номер: DE0002110133B2
Автор:
Принадлежит:

Подробнее
11-05-2011 дата публикации

Cast explosive composition

Номер: GB0002475198A
Принадлежит:

The invention relates to a cast explosive composition comprising a polymer-bonded explosive and a defoaming agent, and to a process for reducing the number and/or total volume of voids in a cast explosive composition comprising the steps of: combining a polymer-bonded explosive and a defoaming agent; and casting the explosive composition. The defoaming agent may be used for reducing the number and/or total volume of voids in a cast explosive composition and the cast explosive composition may be used in an explosive product.

Подробнее
03-12-1969 дата публикации

System for Producing a Blended Fluid Explosive Composition.

Номер: GB0001172677A
Автор:
Принадлежит:

... 1,172,677. Mixing explosive compositions. INTERMOUNTAIN RESEARCH & ENG. CO. Inc. 14 Dec., 1966, No. 55967/66. Heading B1C. In a process and apparatus for making a fluid, slurry or gel explosive, solids are metered from vibratory feeders as 31-37 into a funnel 11 and mixing container 61 to which liquids are metered by pumps 81, 103 through regulating valves 89, 105 and stop valves 91, 107. After mixing by a height-adjustable impeller 67 the batch may be discharged to a package or borehole by a valve 71; continuous mixing may be carried out with valve 71 open. The apparatus is electrically controlled (see Fig. 2, not shown) from a pressurized control box 180 so that the materials may be supplied and mixed in any sequence and for anytime normally the liquid feed is started before the solids the feed rate of which may be varied progressively by altering the vibrator amplitude during the mixing of a batch (see Figs. 3 and 6, not shown). The liquid may be injected as a spray; the impeller drive ...

Подробнее
06-12-2006 дата публикации

Crystalline explosive form

Номер: GB0002426755A
Принадлежит:

The invention relates to crystalline explosive particles that have a volume fraction of closed pores & 0.05%, are rounded /spherical in shape and that are sized between 70-1000 žm. Some of the particles may be nitramines such as RDX. Also disclosed is a process for preparing crystalline particles without any internal defects, the process including the steps of controlling the cooling of the particles in a saturated solution such as hexogen (RDX) in acetone. In the first stage cooling of 1 degree per minutes from 50 to 44 {C is occurs followed by the same rate from 44 to 20 {C, before partial dissolution in cyclohexanone.

Подробнее
11-08-1939 дата публикации

Improvements in or relating to weighing apparatus

Номер: GB0000511046A
Автор:
Принадлежит:

... 511,046. Weighing-apparatus. BERKEL AUTO SCALE CO., Ltd. (Maatschappij van Berkel's Patent N.V.) Feb. 11, 1938, No. 4307. [Class 143] An automatic weighing machine of the type having means for changing its weighing capacity and giving illuminated indications is provided with means whereby during a capacity-changing operation the source of illumination is cut off to prevent an indication being given. The scale beam 3, Fig. 1, is connected by flexible bands 7 to a duplicate rolling-pendulum system from which is suspended a bridge 30, Fig. 3, carrying parts of two optical systems, one system fur the customer and one for the vendor. The customer's system is shown in Fig. 3 and comprises a lamp 25, condenser lens 59, reflecting prisms,. 42, 31, 35, 41, objective lens 40,' mirrors 47, 48 and the customer's window (not shown). The prisms 31, 35 and lens 40 are carried on the bridge 30 which moves up and down in accordance with the weight of the commodity, and the beam of light passes through.

Подробнее
10-11-1971 дата публикации

Номер: GB0001253220A
Автор:
Принадлежит:

Подробнее
11-03-1981 дата публикации

MANUFACTURE OF DOUBLE-BASE PROPERGOL PROPELLANT CHARGES

Номер: GB0001585697A
Автор:
Принадлежит:

Подробнее
09-03-1960 дата публикации

Driving arrangement particularly for propellant powder cutting machines

Номер: GB0000829947A
Автор:
Принадлежит:

... 829,947. Variable-speed friction gear. FRANCAIS ETAT. May 16, 1956 [May 23, 1955], No. 15266/56. Classes 80 (1) and 80 (2). [Also in Group XXI] In bevel reduction gearing, particularly for a propellant powdercutting machine, a driving metal cone 6 frictionally engages a ring 7 of rubber or the like on a driven wheel 8. The ring 7 may be a simple ring of square section which assumes a frusto-conical shape when fitted on the pulley 8. The resilience of the ring 7 allows small changes in the speed ratio to be effected either by exchanging the cone 6 for a cone of larger or smaller diameter without moving the ring 7, or by bodily shifting the carriage 21 supporting the shaft 9 of the wheel 8 by means of a micrometric screw 24, or by changing the ring 7. The cone 6 is on the shaft of a pneumatic motor 1, and the shaft 9 drives two intergeared grooved rollers 11, 14 between which a cord 12 of extruded powder paste is fed to a channel 13, whence it is cut by an adjustable knife 4 on a rotating ...

Подробнее
30-06-1982 дата публикации

PRODUCTION OF EXPLOSIVE EMULSIONS

Номер: GB0002007206B
Автор:
Принадлежит: ATLAS POWDER CO

Подробнее
31-07-1980 дата публикации

High-strength explosive, and device and process of explosion.

Номер: OA0000004667A
Автор:
Принадлежит:

Подробнее
15-07-1966 дата публикации

Improvements brought to the systems for the mixture and the pumping of the pasty explosives.

Номер: OA0000000500A
Автор:
Принадлежит:

Подробнее
15-04-1976 дата публикации

ZUNDPATRONENEINHEIT, INSBESONDERE FUR GASGERATE

Номер: ATA166871A
Автор:
Принадлежит:

Подробнее
25-06-1969 дата публикации

Exploding igniter cord and procedure for their production

Номер: AT0000272171B
Автор:
Принадлежит:

Подробнее
10-10-1985 дата публикации

TRACEABLE EXPLOSIVES

Номер: AU0000547252B2
Принадлежит:

Подробнее
08-06-1989 дата публикации

PACKAGED EMULSION EXPLOSIVES AND METHODS OF MANUFACTURE THEREOF

Номер: AU0002640588A
Принадлежит:

Подробнее
30-03-1976 дата публикации

FIELD SENSITIZED EXPLOSIVE PACKAGE

Номер: CA0000986472A1
Принадлежит:

Подробнее
04-03-2010 дата публикации

CAST EXPLOSIVE COMPOSITION

Номер: CA0002735320A1
Принадлежит:

The invention relates to a cast explosive composition comprising a polymer-bonded explosive and a defoaming agent, and to a process for reducing the number and/or total volume of voids in a cast explosive composition comprising the steps of: combining a polymer-bonded explosive and a defoaming agent; and casting the explosive composition. The defoaming agent may be used for reducing the number and/or total volume of voids in a cast explosive composition and the cast explosive composition may be used in an explosive product.

Подробнее
13-05-2003 дата публикации

IGNITION COMPOSITIONS FOR INFLATOR GAS GENERATORS

Номер: CA0002162391C
Принадлежит: AUTOMOTIVE SYSTEMS LABORATORY, INC.

Autoigniting compositions and processes for a gas generator of a vehicle occ upant restraint system result in rapid autoignition at relatively low temperatures from approximately 135 .degree.C to 210 .degree. C, thereby allowing the gas generator to operate at lowe r temperatures to facilitate use of an aluminum canister. The autoignition compositions of the present invention are safely manufactured by wet blendi ng, remain effective following long-term high temperature ageing, and produce an energy output that is suitable for use with gas generat ing compositions.

Подробнее
31-12-1932 дата публикации

Verfahren zur Herstellung von Sprengladungen.

Номер: CH0000159162A
Принадлежит: MATTER OSKAR, MATTER,OSKAR

Подробнее
15-12-1933 дата публикации

Verfahren zur Vergütung des Gefüges von Formkörpern aus durch Abbinden erhärtenden Massen.

Номер: CH0000165752A
Принадлежит: BERGMANN C, BERGMANN,C.

Подробнее
15-11-1976 дата публикации

Номер: CH0000581495A5
Автор:

Подробнее
14-08-1981 дата публикации

Method for series production and introducing an explosive charge into containers for explosive bodies

Номер: CH0000624654A5
Принадлежит: IMI KYNOCH LTD, IMI KYNOCH LTD.

The necessary quantity component of detonating charge, containing initiating explosive, is supplied to each individual container. The detonating charge is produced at a rate which corresponds in practice to that of its supply to the individual containers so that, in practice, no excess detonating charge is formed. The production of the detonating charge comprises the formation of at least a part of the initiating explosive by chemical reaction between two or more relatively insensitive components in the presence of a fluid reaction medium. The method makes possible continuous and automated incorporation of detonating charges into rim-firing cartridges and into detonating capsules for centre-firing cartridges while avoiding the risk element, which was previously extremely high.

Подробнее
31-12-2002 дата публикации

Pass-detonation for pumping circuit of bulk explosives.

Номер: CH0000692963A5
Принадлежит: NOBEL EXPLOSIFS FRANCE

Подробнее
15-09-1989 дата публикации

SYSTEM FOR THE BATCH WAY CHEMICAL AND/OR PHYSICAL TREATING OF AMOUNTS OF MATERIAL.

Номер: CH0000671542A5
Автор: SCHMID, RAYMOND

Подробнее
29-09-2017 дата публикации

METHOD OF PRESSING INHIBITORS FOR NON-ELECTRIC INITIATORS

Номер: EA0201790783A1
Автор:
Принадлежит:

Подробнее
10-09-2019 дата публикации

A METHOD FOR PROCESSING OF EXPIRED SOLID ROCKET PROPELLANT

Номер: UA0000119977C2
Принадлежит:

Подробнее
18-01-2019 дата публикации

Kilogram-grade preparation method of 3,3'-diamino-4,4'-azoxyfurazan

Номер: CN0109232460A
Принадлежит:

Подробнее
14-06-1985 дата публикации

Process for the preparation of explosives by a wet route

Номер: FR0002556338A1
Автор: GERARD DASSE, DASSE GERARD
Принадлежит:

Подробнее
10-09-1999 дата публикации

Explosion trap for bulk explosives pumping circuit

Номер: FR0002775771A1
Принадлежит:

La présente invention concerne un dispositif coupe-détonation pour circuit de pompage d'explosifs en vrac comprenant : - un tube 1 en forme de boucle délimitée par 2 portions de tube 2, 3 qui se croisent, - un marteau 4 intercalé entre les 2 portions de tube 2, 3 en contact avec elles, - une enclume 5 située en contact avec l'une (2) des 2 portions de tube 2, 3, en regard du marteau 4, de façon à ce que cette portion de tube 2 soit prise en sandwich entre le marteau 4 et l'enclume 5. Ce dispositif permet l'arrêt d'une détonation même pour des explosifs de faible diamètre critique, inférieur à 25 mm. L'invention concerne également un circuit de pompage d'explosifs en vrac comprenant un tel dispositif, des canules de chargement, un réservoir d'explosifs et une pompe.

Подробнее
05-01-1973 дата публикации

Explosive compsn with elastomer binders - treated with ionizing rays

Номер: FR0002138513A1
Автор:
Принадлежит:

Подробнее
16-03-1976 дата публикации

PIN COATING

Номер: BE0000835713A1
Автор:
Принадлежит:

Подробнее
25-06-1973 дата публикации

Номер: SE7116557L
Автор:
Принадлежит:

Подробнее
22-08-1978 дата публикации

Novel triaminoguanidine nitrate propellants

Номер: US0004108697A1
Автор: Goddard; Terrence P.

This invention describes pyrotechnic compositions made by suitably combining, preferably by coprecipitation, triaminoguanidine nitrate with bis-triaminoguanidinium decahydrodecaborate. Propellants comprising these compounds are also included.

Подробнее
16-05-1978 дата публикации

Screw extruder

Номер: US4089510A
Автор:
Принадлежит:

A screw extruder comprises a casing connected to a bed, the casing comprising two portions connected together longitudinally by connecting elements. At least one of the casing portions is articulated with respect to the bed, and the connecting elements are adapted to release the connection between the casing portions at a predetermined casing pressure to allow the casing portion to articulate to thereby open the casing.

Подробнее
19-06-2001 дата публикации

EXPLOSIVE PACKAGE

Номер: JP2001163692A
Принадлежит:

PROBLEM TO BE SOLVED: To develop an explosive package which increases efficiency of loading work, improves packaging density of an explosive and heightens effect of blasting. SOLUTION: W/O type emulsion explosive having 40 to 3000 Pa.s viscosity at 25°C is wrapped with a synthetic resin film and one end or both ends of the package are clamped to provide an explosive package. COPYRIGHT: (C)2001,JPO ...

Подробнее
20-03-2003 дата публикации

СПОСОБ ЗАГРУЗКИ ВОДОСОДЕРЖАЩИХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ В ШПУРЫ ИЛИ ПАТРОНЫ

Номер: RU2200932C2
Принадлежит: ДИНО АСА (NO)

Изобретение относится к области горного дела. Сущность изобретения: способ загрузки и активации водосодержащего взрывчатого вещества в шпуре или в патроне, предусматривающий непосредственное введение газообразующей добавки, проходящей тонкой нитью, в водосодержащее взрывчатое вещество после нагнетания взрывчатого вещества в загрузочную трубу, в котором водосодержащее взрывчатое вещество и газообразующая добавка перемешиваются на конце загрузочной трубы и активируются в шпуре или в патроне; для уменьшения давления насоса загрузочная труба смазывается водой или водным раствором. Упрощается система средств загрузки водосодержащих взрывчатых веществ в шпуры или патроны. 7 з.п.ф-лы, 2 ил.

Подробнее
03-08-2017 дата публикации

СИСТЕМЫ ДОСТАВКИ ВЗРЫВЧАТЫХ ВЕЩЕСТВ И СВЯЗАННЫЕ С НИМИ СПОСОБЫ

Номер: RU2627059C2
Принадлежит: ДАЙНО НОБЕЛ ИНК. (US)

Изобретение относится к области горного дела. В изобретении раскрыты системы доставки взрывчатых веществ с переменными значениями плотности и способы изменения энергии взрывчатых веществ в шпуре. Способ изменения энергии взрыва взрывчатых веществ в шпуре включает следующие действия: вводят загрузочную трубу в шпур; пропускают гомогенизированный продукт, содержащий эмульсионную матрицу, через загрузочную трубу; вводят газообразующую добавку проксимально по отношению к выходному отверстию загрузочной трубы с первым постоянным расходом; смешивают гомогенизированный продукт с газообразующей добавкой проксимально по отношению к выходному отверстию загрузочной трубы с первым расходом с образованием первого активированного продукта, имеющего первую плотность; перекачивают первый активированный продукт в шпур; вводят газообразующую добавку проксимально по отношению к выходному отверстию загрузочной трубы со вторым постоянным расходом; смешивают гомогенизированный продукт с газообразующей добавкой ...

Подробнее
11-09-2017 дата публикации

Устройство получения поризованной гранулированной аммиачной селитры

Номер: RU2630557C2

Изобретение относится к горному делу и может быть использовано на предприятиях, ведущих взрывные работы на пунктах изготовления взрывчатых веществ для получения поризованной гранулированной аммиачной селитры. Устройство для получения поризованной гранулированной аммиачной селитры включает барабан, установленный под небольшим углом α к горизонту, с полой осью, выполненный с рубашкой для жидкого теплоносителя и возможностью циркуляции жидкого теплоносителя по оси барабана, питатель-дозатор и загрузочный коллектор для подачи гранулированной аммиачной селитры в барабан, распределительные насадки, разгрузочный люк, устройство разгрузки с раздельной выдачей фракций, внешний теплозащитный кожух со смотровым люком, вытяжные устройства для отвода воздуха из теплозащитного кожуха, а со стороны разгрузочного торца барабана установлено сито, выполненное в виде перфорированного кольца, имеющее разгрузочный люк эллиптической формы с соотношением большей оси эллипса к меньшей равным 1,7-2,2 и смещением ...

Подробнее
15-05-2023 дата публикации

Способ снижения критического сечения детонации вторичных взрывчатых веществ

Номер: RU2795967C1

Изобретение относится к способам обработки взрывчатых веществ. Более конкретно к способу повышения детонационной способности вторичных взрывчатых веществ (ВВ). Способ может быть использован для обработки различных классов ВВ, например, нитраминов, нитроэфиров, ароматических нитросоединений в виде прессованных деталей или в составе смесевых взрывчатых веществ оборонного и гражданского назначения для задач с использованием энергии взрыва. Осуществляют контакт кристаллов вторичного ВВ с теплоносителем без смешивания и взаимодействия между собой. Помещают ВВ в термоустойчивый контейнер, который помещают в одну из двух термоизолированных камер с теплоносителем. Нагревают в термоизолированной камере тепла теплоноситель и ВВ от +50°С до +100°С. Охлаждают в термоизолированной камере холода теплоноситель и ВВ от +10°С до -100°С. Попеременно переносят контейнер с ВВ из одной камеры в другую камеру. Один нагрев и одно охлаждение контейнера с ВВ составляют цикл обработки. Суммарный перепад температур ...

Подробнее
04-07-2018 дата публикации

Крепящий заполнитель

Номер: RU2660072C1

Изобретение связано с разработкой композиции для скрепления пучка топливных элементов твердого топлива с дном камеры стартового двигателя противотанковых управляемых гранат «ПТУРС» методом дозирования расчетной навески крепящего состава координационным манипулятором перемещения смесительно-дозирующей машины. Крепящий заполнитель содержит гидроксилсодержащий полибутадиеновый каучук СКД-ГТРА, 1,4-бутандиол, триметилолпропан, трансформаторное масло, дибутилдилаурат олова, окись цинка, составляющие смесь А, и отвердитель - смесь Б с содержанием изоцианатных групп в пределах 11,0-15,0%, который получают взаимодействием гидроксилсодержащего полибутадиенового каучука СКД-ГТРА с 4,4-дифенилметандиизоцианатом в присутствии трансформаторного масла. При этом смеси А и Б перед применением смешивают друг с другом в соотношении 2,1-3,67:1 соответственно. Технический результат заключается в снижении вязкости крепящего заполнителя и жизнеспособности для обеспечения технологического процесса и сокращении ...

Подробнее
27-09-2021 дата публикации

ТЕРМОПЛАСТИЧНЫЙ ВЗРЫВЧАТЫЙ СОСТАВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Номер: RU2756081C1

Группа изобретений относится к области технологий получения смесевых термопластичных взрывчатых материалов. Термопластичный взрывчатый состав в качестве взрывчатых компонентов содержит диаминодинитроэтилен, 3,4-бис-(4-нитрофуразан-3-ил)-фуразан, а в качестве инертной добавки - полибутилметакрилат при следующем соотношении ингредиентов, % мас.д.: диаминодинитроэтилен - 87-93 мас.д. совместно с 3,4-бис-(4-нитрофуразан-3-ил)-фуразаном - 4-10 мас.д., полибутилметакрилат - остальное. Осуществляют подготовку компонентов состава. Производят смешение компонентов с использованием смешивающего устройства. Первоначально проводят входной контроль порошкообразных компонентов смесевого взрывчатого состава на соответствие физико-химических характеристик взрывчатых компонентов номинальным значениям, а именно температуры плавления, массовой доли нерастворимых в ацетоне веществ, влаги, летучих веществ, рН водной вытяжки. Берут навеску полимерной инертной составляющей смесевого взрывчатого состава в виде ...

Подробнее
21-04-2021 дата публикации

АВТОМАТИЗИРОВАННАЯ ЦЕНТРИФУГА КИСЛОТООТЖИМА ДЛЯ ПРОИЗВОДСТВА НИТРАТОВ ЦЕЛЛЮЛОЗЫ

Номер: RU2746866C1

Изобретение относится к центрифугам с пульсирующим осадком. Автоматизированная центрифуга кислотоотжима для производства нитратов целлюлозы содержит корпус, расположенный внутри корпуса ротор, станину, размещенный внутри станины главный вал с гидроцилиндром, маслостанцией и привод главного вала. Ротор является двухкаскадным. Конструкция каскадов представляет собой перфорированную обечайку с днищем и с установленными внутри фильтрующими ситами. Первый каскад является толкателем. Центрифуга содержит узел ликвидации разложения нитратов целлюлозы и устройство регулирования частоты ходов толкателя. Корпус соединен с фугатным коллектором, содержит перегородки, делящие его внутреннее пространство на пять полостей, промывочное устройство, орошающие форсунки. Ротор содержит питающие диски с устройством регулирования зазора между ними. Обеспечивается повышение эффективности и безопасности работы действующего производства нитратов целлюлозы. 1 з.п. ф-лы, 3 ил.

Подробнее
24-10-2019 дата публикации

МЕТАТЕЛЬНЫЙ ЗАРЯД С ПОВЫШЕННЫМИ ЭНЕРГЕТИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ К БРОНЕБОЙНОМУ ПОДКАЛИБЕРНОМУ СНАРЯДУ

Номер: RU2704160C1

Изобретение относится к боеприпасам танкового вооружения, а именно к выстрелу с бронебойным подкалиберным снарядом, и может быть использована в танковых военных подразделениях. Метательный заряд с повышенными энергетическими характеристиками к бронебойному подкалиберному снаряду с энергетической добавкой в составе компонентов метательного заряда одного вида. Общий химический состав метательного заряда включает в себя: коллоксилин 50,4%, нитродигликоль (НДГ) 23,85%, динитротолуол (ДНТ) 8,1%, дибутилфталат (ДБФ) 4,05%, вазелин 3,6%, энергетическая добавка (ЭД) 10%. Изобретение обеспечивает повышение значений энергетических и баллистических характеристик метательного заряда, способствующих увеличению дальности стрельбы до цели бронебойным подкалиберным снарядом на 4%. Изобретение позволяет повысить дальность стрельбы до цели и эффективность поражения бронированных, легкобронированных огневых средств противника и небронированных целей. 2 ил, 2 табл.

Подробнее
09-04-2024 дата публикации

СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНЫХ ВТОРИЧНЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Номер: RU2817026C1

Изобретение относится к взрывчатым веществам, которые в дальнейшем могут быть использованы как самостоятельно - в виде прессованных деталей, так и в составе смесевых взрывчатых веществ оборонного и гражданского назначения с применением энергии взрыва. При получении высокодисперсных вторичных взрывчатых веществ (ВВ) осуществляют механическое перемешивание кристаллического вторичного ВВ до получения однородной суспензии в акустической жидкости, не смешивающейся и не взаимодействующей с кристаллами вторичных ВВ. Производят ультразвуковую обработку в кавитационном режиме с последующими фильтрованием суспензии в вакууме с получением кристаллов вторичного ВВ и их сушкой при температуре 60-80°С в течение 4-16 часов. Перемешивание суспензии осуществляют в течение 10-20 минут при соотношении ВВ: акустическая жидкость в интервале от 1:10 до 2,5:30, не включая 2,5:30 вес. ч. Ультразвуковую обработку производят в области развитой кавитации на расстоянии от волновода не более 40 мм, не включая 40 мм ...

Подробнее
15-01-2021 дата публикации

Способ изготовления изделия из взрывчатого состава

Номер: RU2740588C1

Изобретение относится к ракетной технике, а именно к способу изготовления изделия из взрывчатого состава. Способ включает приготовление взрывчатого состава в сменной чаше вертикального смесителя, отсоединение ее от смесительной головки с мешалками, транспортирование на фазу формования, подсоединение чаши к корпусу поршневой гидравлической системы вытеснения, удаление воздуха из подпоршневого пространства через систему фильтров и клапанов в поршне, формование изделия. При этом производят герметичное подсоединение сменной чаши к корпусу поршневой гидравлической системы вытеснения с образованием над поршнем герметичного объема. Перемещение поршня начинают после вакуумирования подпоршневого пространства, которое осуществляют опосредованно через газодинамически связанный с ним герметичный надпоршневой объем корпуса поршневой системы вытеснения. Технический результат - обеспечение высокого качества изделия по монолитности, а также одновременное упрощение способа и его аппаратурного оформления ...

Подробнее
22-04-2019 дата публикации

Способ измельчения нитратов целлюлозы

Номер: RU2685662C1

Изобретение относится к области технологии производства нитратов целлюлозы (НЦ) с содержанием азота 209,0 мл NO/г и более, изготавливаемых из древесного целлюлозного сырья марки ЦА и хлопкового сырья марки ХЦ, а именно к технологии промышленного измельчения их на дисковой мельнице МД-31 и последующего фракционирования измельченных волокон на промышленном фракционере. Способ включает предварительное сгущение исходной суспензии НЦ до концентрации от 3 до 9 мас.% и последующее измельчение сгущенной массы НЦ непрерывно и в одну ступень на мельнице МД-31, имеющей тонкие ножи и рабочий зазор между ножами ротора и статора в пределах от 0,07 до 0,10 мм. Затем суспензию измельченных НЦ направляют для сортирования волокон по их длине во фракционер, где осуществляется выделение деловой, крупной и мелкой фракций продукта, причем деловую (основную) фракцию измельченных НЦ, имеющую по длине волокна узкий фракционный состав в интервале от 0,20 до 0,60 мм, направляют в лавер для окончательной стабилизации ...

Подробнее
24-03-2017 дата публикации

СМЕСИТЕЛЬНО-ЗАРЯДНАЯ МАШИНА

Номер: RU169613U1

Полезная модель относится к горной промышленности и строительству, а именно к взрывным работам, и может быть применена при ведении взрывных работ на открытых работах горнодобывающих предприятий.Смесительно-зарядная машина снабжена шнеком боковой разгрузки, перемещаемым гидроцилиндром с помощью джойстика из кабины. Емкости для аммиачной селитры снабжены индикаторами уровня загрузки емкостей, установленными над дистанционно открывающимися крышками, а дистанционно поднимаемые ограждения, установленные в верхней части емкостей, связаны с панелью управления. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 169 613 U1 (51) МПК C06B 21/00 (2006.01) F42D 1/08 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ФОРМУЛА ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ (21)(22) Заявка: 2017103088, 30.01.2017 (24) Дата начала отсчета срока действия патента: 30.01.2017 (72) Автор(ы): Оверченко Михаил Николаевич (RU), Мозер Сергей Петрович (RU) 24.03.2017 Приоритет(ы): (22) Дата подачи заявки: 30.01.2017 (56) Список документов, цитированных в отчете о поиске: RU 2312301 C1, 10.12.2007. RU Адрес для переписки: 196158, Санкт-Петербург, ул. Пулковская, 6, корп. 4, кв. 241, Мозеру Сергею Петровичу 2304756 C1, 20.08.2007. RU 8411 U1, 16.11.1998. RU 142777 U1, 10.07.2014. RU 160048 U1, 27.02.2016. KZ 26113 A4, 14.09.2012. 1 6 9 6 1 3 (57) Формула полезной модели 1. Смесительно-зарядная машина, содержащая автомобильное шасси, емкости для аммиачной селитры, эмульсии, газогенерирующей добавки, воды и нефтепродукта, питатель аммиачной селитры, насосы-дозаторы для подачи эмульсии, газогенерирующей добавки, воды и нефтепродукта, смеситель эмульсии и газогенерирующей добавки, смеситель компонентов, панели управления, отличающаяся тем, что шнек боковой разгрузки перемещается гидроцилиндром с помощью джойстика из кабины, емкости для аммиачной селитры снабжены индикаторами уровня загрузки емкостей, установленными над дистанционно открывающимися крышками, а дистанционно поднимаемые ограждения ...

Подробнее
09-11-2022 дата публикации

УСТАНОВКА МЕШКИ ПОРОХА

Номер: RU214663U1

Полезная модель относится к производству пироксилиновых и сферических порохов и может быть использована при смешении любых других сыпучих материалов. Установка мешки пороха имеет соединенные пятью вертикальными стойками-колоннами верхнюю и нижнюю части, включающие верхние приемную воронку и конус-распределитель и нижние приемную воронку и конус-распределитель. Между верхней и нижней частями имеются двенадцать приемных бункеров, вмещающих партию пороха 5000-10000 кг, по 500-800 кг в каждом, с дроссельными клапанами, управляемыми с помощью гидроцилиндров. В верхней части одной из вертикальных стоек-колонн над верхней приемной воронкой расположены циклон-осадитель пневмотранспорта и транспортирующее устройство. Транспортирующее устройство состоит из промежуточной конической воронки, матерчатого рукава и конической трубки, имеющей внутри четыре спиральные лопатки для закручивания потока сыпучего материала при его падении на конический диск, установленный на резьбовой шток верхнего конуса-распределителя ...

Подробнее
09-11-2023 дата публикации

КОНТЕЙНЕР С НИЖНЕЙ ВЫГРУЗКОЙ

Номер: RU221529U1

Полезная модель относится к технике для переработки порошкообразных взрывчатых веществ (ВВ), используемых для изготовления твердотопливных изделий (ТТИ). Полезная модель применяется в технологическом процессе изготовления ТТИ для межфазовой транспортировки, а также в качестве расходной емкости порошкообразных ВВ. Контейнер с нижней выгрузкой состоит из вертикального цилиндро-конического корпуса, верхней крышки, нижнего выгрузочного патрубка, закрываемого клапаном. В цилиндрической части корпус имеет смотровое окно с бигельной крышкой, на конической части корпуса установлен вибратор, выгрузочный патрубок снабжен крышкой. Верхняя крышка снабжена загрузочным люком, двумя штуцерами для подачи инертной среды и стаканом в центре с размещенной в нем упругой пружиной. Клапан удерживается в створе выгрузочного патрубка посредством взаимодействия с упругой пружиной и стаканом. Клапан состоит из конуса, приваренного к нему штока и соединенной с ним осью. Места взаимодействия штока с осью и оси со ...

Подробнее
22-08-2017 дата публикации

Сферический порох для патронов стрелкового оружия

Номер: RU2628783C1

Изобретение относится к области производства порохов, в частности двухосновных сферических порохов, предназначенных для снаряжения 5,6-мм спортивно-охотничьих патронов кольцевого воспламенения. Сферический порох для снаряжения 5,6-мм патронов кольцевого воспламенения включает пироксилин, нитроглицерин, централит №2, этилацетат, влагу, графит. Изобретение обеспечивает порох, в составе которого источник канцерогена - дифениламин и повышенная удельная теплота сгорания. 2 табл.

Подробнее
25-02-2020 дата публикации

СПОСОБ ИЗГОТОВЛЕНИЯ ВЗРЫВЧАТОГО НАНОСТРУКТУРИРОВАННОГО МАТЕРИАЛА

Номер: RU2715195C1

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в центре которой выполнено осевое сквозное отверстие, возгонку навески ВВ при температуре 80-180°С и вакууме и осаждение сублимированного ВВ на подложку при остаточном давлении (10-10) Па в виде слоя из поликристаллических частиц. По направлению движения потока возгоняемых частиц ВВ на подложку устанавливают экран в виде диска с кольцевым сквозным пазом. Подложку устанавливают на опоре с возможностью вращения ее вокруг центральной оси, а ось вращения подложки устанавливают с эксцентриситетом (Δ). Полученный слой ВВ механически отделяют от подложки и механически измельчают до заданной величины удельной поверхности частиц ВВ с получением нанокристаллического порошкообразного материала для последующего формирования ...

Подробнее
18-10-2018 дата публикации

СПОСОБ ПОВЫШЕНИЯ ТЕМПЕРАТУРНОЙ СТОЙКОСТИ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Номер: RU2670111C1

Изобретение относится к способам изготовления кумулятивных зарядов для перфорационных систем, применяемых для интенсификации нефтеотдачи. Способ повышения температурной стойкости взрывчатых веществ, содержащих основное взрывчатое вещество, флегматизированных техническим парафином, в котором основное взрывчатое вещество выполнено в форме кристаллов, покрытых техническим парафином, капсулируют вторым взрывчатым веществом, а пространство между закапсулированными кристаллами впоследствии заполняют также вторым взрывчатым веществом. В качестве второго взрывчатого вещества используют гексоген или октоген. В качестве второго взрывчатого вещества используют флегматизированные взрывчатые вещества. Изобретение позволяет повысить термостойкость кумулятивных зарядов и надежность их срабатывания. 3 з.п. ф-лы, 6 ил.

Подробнее
18-04-2018 дата публикации

Способ сушки газогенерирующих составов

Номер: RU2651160C1

Изобретение относится к получению газогенерирующих композиций, в частности композиционных порохов, которые могут применяться в пиропатронах различного назначения. Сушка композиционного пороха на основе поливинилбутираля осуществляется в три стадии путем подачи в несколько этапов нагретого воздуха с последующим охлаждением продукта. Первая стадия осуществляется при температуре 40±2°C в течение 13-14 часов, вторая стадия - при температуре 50±2°C в течение 13-14 часов и третья стадия - при температуре 60±2°C в течение 3-4 часов. Данный способ сушки пороха позволяет снизить массовую долю спирта до 0,055%, а также избежать слипания элементов газогенерирующего состава при повышении безопасности операции сушки. 1 ил., 1 табл.

Подробнее
10-06-2016 дата публикации

Способ получения поризованной гранулированной аммиачной селитры и устройство для его реализации

Номер: RU2014145754A
Принадлежит:

... 1. Способ получения поризованной гранулированной аммиачной селитры, включающий термическую обработку гранулированной аммиачной селитры, отличающийся тем, что гранулированную аммиачную селитру подвергают термической обработке до получения заданной степени поризации в два этапа, на первом этапе проводят термическую обработку гранулированной аммиачной селитры путем ее нагрева в режиме вращения барабана в течении 1-5 мин до температуры 32,3-50°C, второй этап включает термическую обработку гранулированной аммиачной селитры при той же температуре в режимах первого этапа в режиме качания барабана, при этом нагрев гранулированной аммиачной селитры в барабане проводят преимущественно попеременно или в режиме вращения первого этапа, или в режиме качания до получения требуемой поризации гранулированной аммиачной селитры, после нагрева и выдержки селитры ее рассеивают с разделением по фракциям в зоне сепарации.2. Устройство для получения поризованной гранулированной аммиачной селитры, включающее барабан ...

Подробнее
24-11-1927 дата публикации

Improvements in or relating to means or apparatus for heating cordite discs or other materials

Номер: GB0000280653A
Автор:
Принадлежит:

... 280,653. Barker, J. H. Aug. 25, 1926. Heating systems.-Cordite discs 28 are moved intermittently through a chamber or oven 10 on a heated bed 4, Figs. 3 and 5, by means of pushers 25 loosely mounted on transverse bars 19 carried by trucks provided with a reciprocating. movement. The hollow bed 4, which is adapted to be heated by steam, hot water, or oil, has a top plate 27 and is mounted upon girders 3 carried bv pillars. Above the bed is a hood 9 composed of iron plates forming an oven 10 divided into a number of compartments by partitions 14. The trucks, each of which consists of a pair of angle-irons 17, Figs. 12 and 13, braced together by metal strips 18 and transverse rods or tubes 19, are adapted to reciprocate on rollers 20 mounted on angle-irons 16 fixed to the partitions 14, and side rollers 22 are provided to, centralize the trucks. If desired, the angle-irons 16 may be dispensed with and the truck frames may slide on rollers mounted directly on the partitions 14. The pushers ...

Подробнее
16-11-1983 дата публикации

MAKING EXPLOSIVE IN FORM OF EMULSION

Номер: GB0008327257D0
Автор:
Принадлежит:

Подробнее
12-07-1948 дата публикации

Improvements in or relating to the continuous manufacture of nitroglycerine and the like explosive liquid nitric esters

Номер: GB0000604874A
Автор:
Принадлежит:

... Explosive liquid nitric esters, especially nitroglycerine, are manufactured from rapidly esterifiable liquid polyhydric alcohols by continuously introducing the alcohol and nitrating acid into a mixing space, subjecting the incipiently reacted mixture to continuous circulation by impelling it at a rate sufficient to maintain turbulence throughout the circulation out of the lower part of said space through a narrow externally cooled tubular conduit external to said space to a horizontally remote locus at which the reaction is complete and back into the upper part of said space, bleeding off a portion of the substantially completely reacted mixture at said remote locus and separating by continuous centrifugal action the liquid nitric ester from the bled-off portion while the latter is still in emulsion form. Preferably, the explosive ester is then immediately emulsified in an aqueous washing medium. In the Figure, 1 is the mixing vessel, 2 the rotating impeller, 3 the ...

Подробнее
27-03-1972 дата публикации

Device and procedure for mixing and pumping liquid, explosive compositions

Номер: AT0000297560B
Автор:
Принадлежит:

Подробнее
15-02-1992 дата публикации

PACKED EMULSION EXPLOSIVES AND PROCEDURE FOR YOUR PRODUCTION.

Номер: AT0000072559T
Принадлежит:

Подробнее
27-12-1976 дата публикации

ZUNDPATRONENEINHEIT, IN PARTICULAR FUR GAS-TURN OUT

Номер: AT0000333927B
Автор:
Принадлежит:

Подробнее
10-09-1981 дата публикации

PROCEDURE FOR THE PRODUCTION OF INITIAL FINAL MEANS

Номер: AT0000363837B
Автор:
Принадлежит:

Подробнее
02-04-1992 дата публикации

APPARATUS AND PROCESS FOR PROPELLANT CHARGE GRANULAR MATERIAL

Номер: AU0000622151B2
Принадлежит:

Подробнее
08-08-2017 дата публикации

Смесительно-зарядная машина

Номер: RU0000173061U1

Полезная модель относится к горной промышленности и строительству, а именно к взрывным работам, и может быть применена при ведении взрывных работ на открытых работах горнодобывающих предприятий.Смесительно-зарядная машина снабжена двумя или более отдельными независимыми барабанами с зарядными шлангами. Зарядные шланги параллельно соединены с насосом-дозатором с возможностью переключения подачи с одного шланга на другой с помощью арматуры, управляемой с пульта управления. Ц 1 173061 ко РОССИЙСКАЯ ФЕДЕРАЦИЯ 19 11 за за в з (13 7 ВУ 17308194 (51) МПК ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ 442) 1/10 (2006.01) СОбВ 21/00 (2006.01) (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (21)(22) Заявка: 2017101773, 19.01.2017 (24) Дата начала отсчета срока действия патента: 19.01.2017 Дата регистрации: 08.08.2017 Приоритет(ы): (22) Дата подачи заявки: 19.01.2017 (45) Опубликовано: 08.08.2017 Бюл. № 22 Адрес для переписки: 196158, Санкт-Петербург, ул. Пулковская, 6, кори. 4, кв. 241, Мозеру Сергею Петровичу (72) Автор(ы): Оверченко Михаил Николаевич (КП), Мозер Сергей Петрович (КП) (73) Патентообладатель(и): Оверченко Михаил Николаевич (КП), Мозер Сергей Петрович (КП) (56) Список документов, цитированных в отчете о поиске: КО 2312301 С1, 10.12.2007. КО 2573660 СТ, 27.01.2016. КО 114953 01, 20.04.2012. КО 130309 91, 20.07.2013. КО 141174 01, 27.05.2014. Е$ 2122832 АТ, 16.12.1998. (54) СМЕСИТЕЛЬНО-ЗАРЯДНАЯ МАШИНА (57) Реферат: Полезная модель относится к горной промышленности и строительству, а именно к взрывным работам, и может быть применена при ведении взрывных работ на открытых работах горнодобывающих предприятий. Смесительно-зарядная машина 20. снабжена двумя или более отдельными независимыми барабанами с зарядными шлангами. Зарядные шланги параллельно соединены с насосом- дозатором с возможностью переключения подачи содного шланга на другой с помощью арматуры, управляемой с пульта управления. Стр.: 1 па 90$ ЕП 10 15 20 25 30 35 40 45 КО 173061 91 Полезная модель ...

Подробнее
30-01-2020 дата публикации

Установка для газификации нитроцеллюлозных порохов

Номер: RU0000195525U1

Полезная модель относится к области военной техники, в частности к оборудованию по утилизации непригодных нитроцеллюлозных порохов артиллерийских боеприпасов. При производстве и эксплуатации прототипа предлагаемой установки выявлен ряд технических проблем. Сущность полезной модели выражается в изменении конструкции установки, которое заключается в том, что загрузочное устройство отсутствует, а электровоспламенительный узел 4 с воспламенителем 3 объединены в единую сборочную единицу с регистрирующей аппаратурой 6 и выпускным вентилем 7, данная сборочная единица дополнительно оборудована предохранительным клапаном 5 сброса давления из камеры для газификации пороха, камера имеет только одно отверстие для загрузки нитроцеллюлозного пороха 2 и соединения с вышеуказанной сборочной единицей. Нитроцеллюлозный порох перед закладкой в камеру газификации пороха предварительно флегматизируют углеводородным соединением. Полученные технические результаты полезной модели подтверждены экспериментально и позволяют решить технические проблемы прототипа и улучшить показатели технологичности, надежности и безопасности при эксплуатации установки. 1 ил. РОССИЙСКАЯ ФЕДЕРАЦИЯ (19) RU (11) (13) 195 525 U1 (51) МПК C06B 21/00 (2006.01) C10J 3/00 (2006.01) ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ (12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ (52) СПК C06B 21/0016 (2019.08); C10J 3/00 (2019.08); C10J 2300/0946 (2019.08) (21)(22) Заявка: 2019131080, 30.09.2019 (24) Дата начала отсчета срока действия патента: (73) Патентообладатель(и): Бабаев Джамиль Джониевич (RU) Дата регистрации: 30.01.2020 Приоритет(ы): (22) Дата подачи заявки: 30.09.2019 (45) Опубликовано: 30.01.2020 Бюл. № 4 1 9 5 5 2 5 R U (54) Установка для газификации нитроцеллюлозных порохов (57) Реферат: Полезная модель относится к области военной предохранительным клапаном 5 сброса давления техники, в частности к оборудованию по из камеры для газификации пороха, камера имеет утилизации непригодных нитроцеллюлозных только одно ...

Подробнее
15-03-2012 дата публикации

Reactive compositions including metal

Номер: US20120060985A1
Принадлежит: Alliant Techsystems Inc

A precursor composition of a reactive material that comprises a metal material and an energetic material, such as at least one oxidizer or at least one class 1.1 explosive. The metal material defines a continuous phase at a processing temperature of the precursor composition and the energetic material is dispersed therein. The metal material may be a fusible metal alloy having a melting point ranging from approximately 46° C. to approximately 250° C. The fusible metal alloy may include at least one metal selected from the group consisting of bismuth, lead, tin, cadmium, indium, mercury, antimony, copper, gold, silver, and zinc. The reactive composition may have a density of greater than approximately 2 g/cm 3 . The reactive composition may also include a polymer/plasticizer system.

Подробнее
21-02-2013 дата публикации

Systems and Methods for Casting Hybrid Rocket Motor Fuel Grains

Номер: US20130042951A1
Автор: Jerome Keith Fuller
Принадлежит: Aerospace Corp

Embodiments of the invention relate to systems and methods for casting hybrid rocket motor fuel grains. In one embodiment, a method for casting a rocket motor fuel grain can be provided. The method can include providing a positive image of a port made from at least one material. The method can further include disposing at least one fuel material around at least a portion of the positive image of the port. Further, the method can include removing the at least one material, wherein a negative image of the port is formed in the at least one fuel material.

Подробнее
12-12-2013 дата публикации

PROCESS FOR THE PRODUCTION OF INTERMEDIATE EMULSIONS FOR USE IN EMULSION EXPLOSIVES

Номер: US20130327456A1
Принадлежит: ORICA INTERNATIONAL PTE LTD.

A process for producing an intermediate emulsion comprising an oxidizer solution, fuel and emulsifier, which process comprises the steps of: (a) mixing in a micromixer an oxidizer solution with a fuel blend comprising a fuel and an emulsifier so as to solubilise a portion of the oxidizer solution in the fuel blend to produce a precursor product; (b) mixing the precursor product obtained in step (a) using a micromixer in one or more successive stages in order to form the intermediate emulsion. 1. A process for producing an intermediate emulsion comprising an oxidizer solution , fuel and emulsifier , which process comprises the steps of:(a) mixing in a micromixer an oxidizer solution with a fuel blend comprising a fuel and an emulsifier so as to solubilise a portion of the oxidizer solution in the fuel blend to produce a precursor product;(b) mixing the precursor product obtained in step (a) using a micromixer in one or more successive stages in order to form the intermediate emulsion.2. The process of claim 1 , wherein the dispersed oxidizer phase is selected to control the inherent sensitivity of the intermediate emulsion.3. The process of claim 1 , wherein the output of each stage of mixing claim 1 , and of the process as a whole claim 1 , is 50 to 125 ml/min.4. The process of claim 1 , wherein the residence time for the entire process is from 20 to 100 milliseconds.5. The process of claim 1 , wherein the pressure drop over the process as a whole is less than 20 bar.6. The process of claim 1 , wherein the volume supply rates for the aqueous oxidizer solution and fuel blend respectively are 10 to 250 ml/min and 0.5 to 25 ml/min.7. The process of claim 1 , wherein the intermediate emulsion has a viscosity of at least 6 claim 1 ,000 cP (Brookfield viscosity taken with spindle #7 at 50 rpm) at ambient temperature.8. The process of claim 1 , wherein the droplet size of the intermediate emulsion is less than 40 μm.9. A method for the manufacture of an emulsion explosive ...

Подробнее
10-04-2014 дата публикации

Process for Producing Non-Detonable Training Aid Materials for Detecting Explosives

Номер: US20140097551A1
Автор: Vu Doan-Trang T.
Принадлежит: THE JOHNS HOPKINS UNIVERSITY

A method for manufacturing training aid materials for detecting homemade explosives includes spreading an explosive powder on a porous surface, storing the surface in a container that facilitates sublimation of the explosive powder such that the explosive powder redeposits onto the surface and into the pores over a period of time, and removing the surface from the container after the period of time to yield training aid materials. An additional method includes preparing a dilute solution of an explosive reaction mixture, and depositing the dilute solution on a surface prior to formation of an explosive product by the explosive reaction mixture. The surface is stored in a contain that facilitates formation of the explosive product, and removed after a period of time and cleaned to remove unreacted precursors to yield training aid materials. 1. A method for manufacturing training aid materials for detecting homemade explosives , comprising:spreading an explosive powder on a porous surface;storing the porous surface in a container that facilitates sublimation of the explosive powder such that the explosive powder redeposits onto the porous surface over a period of time; andremoving the porous surface from the container after the period of time.2. The method of claim 1 , wherein the surface comprises a glass microfiber filter claim 1 , and the explosive powder redeposits over the porous surface and into pores of the glass microfiber filter as part of the sublimation.3. The method of claim 1 , wherein the container comprises a plurality of aluminum foil layers claim 1 , and the storing the porous surface comprises wrapping the porous surface between the plurality of aluminum foil layers.4. The method of claim 1 , wherein the container comprises one or more substantially circular aluminum dishes having a similar diameter as a diameter or length of the porous surface.5. The method of claim 1 , wherein the container comprises a glass jar with a substantially air tight lid.6 ...

Подробнее
02-01-2020 дата публикации

IMPROVED EXPLOSIVE COMPOSITION

Номер: US20200002241A1
Принадлежит:

The present invention provides an explosive composition comprising from about 2 to about 25 w/w hydrogen peroxide, from greater than 0 and up to about 90% w/w of one or more of other oxidisers. The present invention also provides a method of 5 preparing an explosive composition and use of the explosive composition of the invention to break and move ground, such as in mining operations. 1. An explosive composition comprising:a. from about 2 to about 25% w/w hydrogen peroxide; andb. from greater than 0 and up to about 90% w/w of at least one other oxidiser.2. The explosive composition according to claim 1 , wherein the at least one other oxidiser is selected from the group consisting of nitrate salts claim 1 , perchlorate salts claim 1 , sodium peroxide claim 1 , potassium peroxide and optionally nitric acid claim 1 , wherein the nitrate salts are selected from the group consisting of ammonium nitrate claim 1 , calcium ammonium nitrate claim 1 , calcium nitrate and sodium nitrate claim 1 , and wherein the perchlorate salts are selected from the group consisting of ammonium perchlorate and sodium perchlorate.36-. (canceled)7. The explosive composition according to claim 1 , comprising at most 50% w/w of water.8. (canceled)9. The explosive composition according to claim 1 , comprising from about 5 to about 25% w/w hydrogen peroxide.10. The explosive composition according to claim 1 , comprising from about 0.1 to about 75% w/w of the at least one other oxidiser.11. The explosive composition according to claim 1 , further comprising at least one of an additive selected from the group consisting of a sensitiser claim 1 , fuel claim 1 , secondary fuel claim 1 , water claim 1 , thickener claim 1 , crosslinker claim 1 , emulsifier claim 1 , and energy diluent.12. (canceled)13. The explosive composition according to claim 11 , wherein the sensitiser comprises at least one of a compressible material and bubbles of gas claim 11 , wherein the bubbles of gas are formed in situ and ...

Подробнее
02-01-2020 дата публикации

GAS-GENERATING PYROTECHNIC SOLID OBJECTS

Номер: US20200002243A1
Принадлежит:

Gas-generating pyrotechnic solid objects, the composition of which, free of binder and of explosive ingredient, expressed as weight percentages, contains from 35 to 50%, advantageously from 40 to 50%, of guanidine nitrate, from 35 to 50% of basic copper nitrate, from 0.5 to 6% of at least one compound chosen from alumina and inorganic titanates, the melting point of which is above 2100 K, and from 5 to 18% of at least one inorganic oxalate, chosen from sodium oxalate, tin oxalate, strontium oxalate, iron oxalate, copper oxalate and mixtures thereof. 1. A gas-generating pyrotechnic solid object , the composition of which , expressed as weight percentages , contains:from 35 to 50% of guanidine nitrate,from 35 to 50% of basic copper nitrate,from 0.5 to 6% of at least one compound selected from the group consisting of alumina and inorganic titanates, the melting point of which is above 2100 K, andfrom 5 to 18% of at least one inorganic oxalate, selected from the group consisting of sodium oxalate, tin oxalate, strontium oxalate, iron oxalate, copper oxalate and mixtures thereof;said composition being free of binder and of explosive ingredient.2. The object as claimed in claim 1 , wherein said at least one inorganic oxalate is selected from the group consisting of sodium oxalate claim 1 , strontium oxalate and copper oxalate.3. The object as claimed in claim 1 , the composition of which claim 1 , expressed as weight percentages claim 1 , contains:from 35 to 50% of guanidine nitrate,from 35 to 45% of basic copper nitrate,from 1 to 6%, advantageously 3 to 5%, of at least one compound selected from the group consisting of alumina and inorganic titanates, the melting point of which is above 2100 K, andfrom 5 to 15% of at least one inorganic oxalate selected from the group consisting of sodium oxalate, tin oxalate and mixtures thereof.4. The object as claimed in claim 1 , wherein said at least one inorganic titanate chosen is selected from the group consisting of strontium ...

Подробнее
03-01-2019 дата публикации

Additive manufactured combustible element with fuel and oxidizer

Номер: US20190002362A1
Принадлежит: Raytheon Co

A combustible element includes regions of fuel material interspersed with regions of oxidizer material. The element may be made by additive manufacturing processes, such as three-dimensional printing, with the fuel material regions and the oxidizer material regions placed in appropriate locations in layer of the combustible element. For example, different extruders may be used to extrude and deposit portions of a fuel filament and an oxidizer filament at different locations in each layer of the combustible element. The combustible element may define a combustion chamber within the element, where combustion occurs when the combustible element is ignited. The fuel material and the oxidizer material may be selected, and their relative amounts may be controlled, such that desired relative amounts of fuel and oxidizer are present for combustion with desired characteristics, such as combustion rate.

Подробнее
12-01-2017 дата публикации

CURING METHOD FOR POLYETHER

Номер: US20170009004A1
Принадлежит:

This invention relates to a novel curing method of oligomers, using metal triflates, and particularly to the curing of hydroxyl terminated elastomers to achieve crosslinked polymers. The method finds particular use as an alternative cure methodology to replace isocyanate curing. There is further provided a cured and crosslinked polymer binder, which is particularly suitable and compatible for use with energetic materials. 125.-. (canceled)27. A method according to claim 26 , wherein at least one of the at least one hydroxy terminated oligomer and the at least one epoxy terminated oligomer comprises at least 5 to 10% w/w of an oligomer which has 3 to 5 functional groups selected from the group consisting of hydroxyl and epoxy functional groups.27. A method according to claim 26 , wherein the admixture comprises a further epoxy terminated oligomer claim 26 , which contains an average of 2.5 to 4 epoxy groups per oligomer chain claim 26 , and is present in the range of from 5-10% w/w.28. A method according to wherein the metal of the at least one metal catalyst is a lanthanide or group III metal.29. A method according to wherein the metal of the at least one metal catalyst is scandium or yttrium.30. A method according to claim 26 , wherein the curing step is carried out in the temperature range of from 40 to 85° C.31. A method according to claim 30 , wherein the curing step is carried out in the temperature range of from 40 to 60° C.32. A method according to claim 26 , wherein the catalyst is added to the admixture in a minimum quantity of a volatile solvent claim 26 , wherein said solvent is removed prior to curing the admixture.33. A method according to claim 26 , wherein the admixture is formed in the substantial absence of solvent.34. A method according to wherein the catalyst is present in an amount of from 0.01% to 2% by mass of the reaction mixture.35. A method according to wherein the admixture further comprises at least one filler material.36. A method ...

Подробнее
17-01-2019 дата публикации

ACOUSTIC MIXING AS A TECHNIQUE FOR COATING PROPELLANT

Номер: US20190015826A1
Принадлежит:

A process for mixing two materials using acoustic energy. A first material and a second material are placed within a mixing vessel and acoustic energy is transferred to the vessel. The first material has a plurality of particles with porosity and the second material may or may not be a polymeric liquid. The acoustic energy mixes the first material and the second material, the second material coats the first material, and shear forces are created that force the second material into at least a portion of the porosity of the first material. 1. A process for mixing two materials , the process comprising:providing a mixing vessel;providing a first material;placing the first material into the mixing vessel;providing a second material;placing the second material into the mixing vessel;providing an acoustic energy source and transferring acoustic energy from the acoustic energy source to the mixing vessel, the first material and the second material, the acoustic energy mixing the first material with the second material and coating the first material with the second material.2. The process of claim 1 , wherein the first material has porosity claim 1 , the second material is a plurality of metal particles and the acoustic energy forces the plurality of metal particles into the porosity of the first material.3. The process of claim 8 , wherein the plurality of metal particles are a plurality of catalytic particles.4. The process of claim 9 , wherein the first material is a plurality of porous metal particles.5. The process of claim 1 , wherein the first material has a structured matrix and the second material is an active material.6. The process of claim 11 , further including removing the first material and leaving the active material claim 11 , the active material having a form of the structured matrix.7. The process of claim 12 , wherein the first material is removed by dissolution.8. The process of claim 1 , wherein the first material is a filter media material and the ...

Подробнее
17-04-2014 дата публикации

LAYERED REACTIVE PARTICLES WITH CONTROLLED GEOMETRIES, ENERGIES, AND REACTIVITIES, AND METHODS FOR MAKING THE SAME

Номер: US20140102605A1
Принадлежит: THE JOHNS HOPKINS UNIVERSITY

An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite. 115-. (canceled)16. A method for fabricating an energetic composite comprising a plurality of reactive particles , the method comprising:(a) providing a mesh substrate;(b) successively depositing one or more materials onto one side of the mesh substrate to form thereon a reactive multilayer having a trough shape; and(c) removing the reactive multilayer from the mesh substrate to provide an energetic composite comprising a plurality of reactive particles, wherein each reactive particle has a substantially uniform geometry and a cylindrically-curved body radially spaced from a corresponding cylindrical axis, wherein the cylindrically-curved body has a trough shape and a reactive multilayer construction with successive reactive layers stacked in a radially outward direction from the cylindrical axis.17. The method of claim 16 , wherein at least one of the one or more materials is deposited onto the mesh substrate by a deposition method selected from the group consisting of physical vapor deposition claim 16 , chemical vapor deposition claim 16 , electrochemical deposition claim 16 , electrolytic deposition claim 16 , and atomic layer epitaxy.18. The method of claim 16 , wherein the physical vapor deposition comprises magnetron sputter deposition.19. The ...

Подробнее
10-02-2022 дата публикации

A WATER-BASED EXPLOSIVE

Номер: US20220041524A1
Автор: CECHANSKI Michael
Принадлежит:

An explosive, in particular a water-in-oil emulsion explosive, comprising a water-based explosive composition and a gas, wherein the gas is infused with two different ranges of sizes of nanobubbles, to provide controlled hotspots for detonation to improve emulsion stability and detonation sensitivity. Into the Nano Bubble tank () are fed the pressurised gas in water through valve () and also a sample is fed into the Nano Bubble tank (). This then provides the NanoBubble Input NBIbp to be fed by NB Feed Pump () into static mixer (). Also fed to the Static Mixer () by matrix pump () is the explosives containing PIBSA (Poly-Iso-Butylene Succinic Anhydride) in emulsion form as Emulsion Input EInp from Emulsion Matrix truck. The static mixer allows for the gas to be infused into the water-based explosive composition in at least a substantial part in the form of nanobubbles (NB) which then forms a controlled explosive output for use in the blast hole () by the bubbles acting as a sensitiser as so called “hot spots” which transfer the energy throughout the explosive charge once initiated. This allows the thermal “hot spot” detonation wave to travel through and carries the explosive to a full and controlled detonation. 124-. (canceled)25. An explosive comprising:a. a water-based explosive composition; andb. a gas wherein the gas is infused to the water-based explosive composition in at least a substantial part in the form of nanobubbles (NB) and wherein the gas is infused with two different ranges of sizes of nanobubbles.26. The explosive according to wherein the gas is a combination of one or more of:a. air;b. oxygen;{'sub': '2', 'c. CO;'}d. nitrogen; ande. hydrogen.27. The explosive according to wherein the water-based explosive is a water-based gel explosive.28. The explosive according to wherein the water-based explosive is a water-in-oil emulsion explosive.29. The explosive according to 25 wherein a first range of sizes of nanobubble is 50-100 nm and a second range of ...

Подробнее
24-01-2019 дата публикации

CAST EXPLOSIVE COMPOSITION

Номер: US20190023628A1
Принадлежит: BAE SYSTEMS plc

The invention relates to a cast explosive composition comprising a polymer-bonded explosive and a defoaming agent, and to a process for reducing the number and/or total volume of voids in a cast explosive composition comprising the steps of: combining a polymer-bonded explosive and a defoaming agent; and casting the explosive composition. The defoaming agent may be used for reducing the number and/or total volume of voids in a cast explosive composition and the cast explosive composition may be used in an explosive product. 116-. (canceled)17. A method for producing a cast and cured explosive composition , the method comprising vacuum casting a castable explosive composition comprising a polymer-bonded explosive in admixture with 0.01-2 wt % of a silicone-free defoaming agent and wherein said castable explosive composition contains entrained bubbles therein which become substantially removed by coalescence and egress , as facilitated by the silicone-free defoaming agent , during casting; and curing the cast; wherein said polymer-bonded explosive comprises an explosive and a polymer binder; and wherein said cast and cured explosive composition possesses a substantial absence of voids , wherein said silicone-free defoaming agent possesses the characteristic of being surface active at interfaces between bubbles and the polymer-bonded explosive and facilitating the coalescence and egress of bubbles.18. The method according to claim 17 , wherein the defoaming agent is present in an amount of 0.03-2 wt %.19. The method according to claim 17 , wherein said defoaming agent is present in an amount of 0.5 to 2 wt %.20. The method according to claim 17 , wherein said defoaming agent is present in an amount of 0.25 to 1 wt %.21. The method according to claim 17 , wherein said defoaming agent is present in an amount of 0.5 to 1 wt %.22. The method according to claim 17 , wherein said defoaming agent is present in an amount of 0.25 to 2 wt %.23. The method according to claim 17 , ...

Подробнее
23-01-2020 дата публикации

SOLID PROPELLANT ADDITIVE MANUFACTURING SYSTEM

Номер: US20200024210A1
Принадлежит:

A system is used for additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited. 1. A system for additively manufacturing a propellant piece , the system comprising:a first mixer;a second mixer;a dispenser; anda heater;wherein the material continuously moves from 1) the first mixer, in which fuel, oxidizer, and a binder are mixed to form a propellant mixture, to 2) the second mixer, in which a curative is added to the propellant material to produce a curable propellant mixture, to 3) the dispenser, with the heater used to heat and partially cure the curable propellant mixture before the curable propellant mixture is dispensed by the dispenser.2. The system of claim 1 , wherein the first mixer is an acoustic mixer.3. The system of claim 1 , wherein the dispenser is an extruder.4. The system of claim 1 , wherein the heater is an electrical heater.5. The system of claim 1 , wherein the dispenser includes an array of nozzles.6. The system of claim 5 , wherein the array of nozzles includes nozzles with different sizes and/or shapes of openings.7. The system of claim 5 , wherein the array of nozzles is a wheel of nozzles.8. The system of claim 5 ...

Подробнее
31-01-2019 дата публикации

3D PRINTED FLUOROPOLYMER-BASED ENERGETIC COMPOSITIONS

Номер: US20190030789A1
Принадлежит: PURDUE RESEARCH FOUNDATION

The present disclosure relates to three-dimensional (3D) printed fluoropolymer-based energetic compositions and 3D printing methods for making the 3D printed fluoropolymer-based energetic compositions. 1. A 3D printing method for fluoropolymer-based energetic material , wherein the method comprises:a) preparing a fluoropolymer-based energetic material pellet, wherein the fluoropolymer-based energetic material pellet comprises at least a fluoropolymer as an oxidizer and at least a reactive metal or metal oxide;b) preparing a fluoropolymer-based energetic material filament by adding the fluoropolymer-based energetic material pellet to a filament extruder; andc) 3D printing the fluoropolymer-based energetic material filament to provide a 3D printed fluoropolymer-based energetic material at a temperature below the onset to reaction temperature of the fluoropolymer,wherein the total weight percentage of the fluoropolymer and the reactive metal or metal oxide is at least 70-100% of the 3D printed fluoropolymer-based energetic material, and the weight percentage of the reactive metal or metal oxide is 5-85 wt % of the total weight of the 3D printed fluoropolymer-based energetic material.2. The method of claim 1 , wherein the fluoropolymer is selected from the group consisting of PVF (polyvinylfluoride) claim 1 , PVDF (polyvinylidene fluoride) claim 1 , PTFE (polytetrafluoroethylene) claim 1 , PCTFE (polychlorotrifluoroethylene) claim 1 , PFA (perfluoroalkoxy polymer) claim 1 , [P(VDF-TrFE)] (poly(vinylidene fluoride-trifluoroethylene)) claim 1 , [P(VDF-TrFE-CFE)] (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) claim 1 , THV (a polymer of tetrafluoroethylene claim 1 , hexafluoropropylene and vinylidene fluoride) claim 1 , FEP (fluorinated ethylene-propylene) claim 1 , ETFE (polyethylenetetrafluoroethylene) claim 1 , HTE (a polymer of hexafluoropropylene claim 1 , tetrafluoroethylene and ethylene) claim 1 , ECTFE (polyethylenechlorotrifluoroethylene) claim ...

Подробнее
04-02-2021 дата публикации

IGNITION BOOSTER COMPOSITIONS AND METHODS OF MAKING THE SAME

Номер: US20210032180A1
Принадлежит: Autoliv ASP, Inc.

An igniter composition has (i) a source of copper selected from basic copper nitrate, copper oxide, copper hydroxide, and/or copper complex of guanylurea nitrate, (ii) one or more oxidizers, (iii) a binder selected from guanidine nitrate and/or guanylurea nitrate, and (iv) an inorganic fuel comprising an elemental metal or metal hydride selected from the group consisting of: titanium, silicon, aluminum, magnesium, iron, and combinations thereof. The igniter composition may be substantially free of boron or contain minimal amounts of boron. A minimum flame temperature at combustion (T) of ≥about 2300K (2,027° C.). Such a mixture may be spray dried to form a powder that is compacted to form a solid igniter composition, such as a pellet or grain. The mixture that is spray dried may have a heat of explosion (HEX) of ≤about 1,000 calories per gram (cal/g). Inorganic fuel can then be added to the spray-dried powder. 1. An igniter composition comprising:(v) a source of copper selected from the group consisting of: basic copper nitrate, copper oxide, copper hydroxide, copper complex of guanylurea nitrate, and combinations thereof;(vi) one or more oxidizers;(vii) a binder selected from the group consisting of: guanidine nitrate guanylurea nitrate, and combinations thereof; and(viii) an inorganic fuel comprising an elemental metal or metal hydride comprising a metal selected from the group consisting of: titanium, silicon, aluminum, magnesium, iron, and combinations thereof.2. The igniter composition of claim 1 , wherein the inorganic fuel is selected from the group consisting of: titanium hydride claim 1 , titanium claim 1 , silicon claim 1 , aluminum claim 1 , and combinations thereof.3. The igniter composition of that is substantially free of boron.4. The igniter composition of claim 1 , further comprising less than or equal to about 3 weight % of boron or a compound comprising boron.5. The igniter composition of claim 1 , further comprising at least one organic fuel ...

Подробнее
08-02-2018 дата публикации

Fuel procurement tool and method(s) of use

Номер: US20180037518A1
Автор: Chris D. Willis
Принадлежит: Individual

A handheld tool configured to procure fuel is described. Embodiments of the fuel procurement tool include a handhold having a cutting mechanism located proximate one end of the handhold. Typically, the cutting mechanism can include at least one cutter link having a depth gauge, a top plate, and a gullet formed between the depth gauge and the top plate. The fuel procurement tool can be implemented to procure kindling from a piece of wood.

Подробнее
24-02-2022 дата публикации

Ignition powder, preparation method therefor and use thereof, and airbag gas generator

Номер: US20220055966A1

Disclosed are an ignition powder, a preparation method therefor and a use thereof, and an airbag gas generator, which belong to the technical field of ignition powders. The raw materials of the ignition powder include the following components in percentages by mass: potassium perchlorate. 30%˜50%; basic copper nitrate: 5%˜20%; a fuel: 15%˜60%; a metal oxide: 1%˜25%; and a metal powder: 1%˜25%, wherein the metal powder is at least one of a titanium powder, a magnesium powder, a copper powder, an iron powder, a zirconium powder, a hafnium powder, a tungsten powder or a silicon powder.

Подробнее
07-02-2019 дата публикации

Synthesis of energetic material particles with controlled morphology

Номер: US20190039966A1
Принадлежит:

A surfactant-assisted self-assembly method can be used to crystallize energetic materials with controlled morphology. Microparticles of hexanitrohexaazaisowurtzitane (CL-20) formed by this method may have enhanced functional reproducibility due to their monodisperse nature, and decreased shock sensitivity due to their sub-2 μm particle size. 1. A method to synthesize energetic material particles , comprising:providing a first solution comprising hexanitrohexaazaisowurtzitane and a first solvent;providing a second solution comprising a second solvent that is immiscible in and has a higher boiling point than the first solvent;providing a surfactant in the first or the second solution;mixing the first and the second solutions to form an emulsion comprising the first solvent dispersed in the second solvent; andevaporating the first solvent to form particles of hexanitrohexaazaisowurtzitane.2. The method of claim 1 , wherein the first solvent comprises a polar aprotic solvent.3. The method of claim 2 , wherein the polar aprotic solvent comprises ethyl acetate or acetone.4. The method of claim 1 , wherein the second solvent comprises a hydrocarbon.5. The method of claim 4 , wherein the hydrocarbon comprises heptane or octane.6. The method of claim 1 , wherein the surfactant comprises an ionic surfactant.7. The method of claim 6 , wherein the ionic surfactant comprises cetyl trimethylammonium bromide or sodium dodecyl sulfate.8. The method of claim 1 , wherein the surfactant comprises a nonionic surfactant.9. The method of claim 8 , wherein the nonionic surfactant comprises a sorbitan ester claim 8 , ethoxylated sorbitan ester claim 8 , or polyethylene glycol alkyl ether.10. The method of claim 1 , wherein the hexanitrohexaazaisowurtzitane particles are spherical in shape.11. The method of claim 1 , wherein the hexanitrohexaazaisowurtzitane particles are less than 4 microns in diameter.12. The method of claim 1 , wherein the hexanitrohexaazaisowurtzitane particles have an ...

Подробнее
07-02-2019 дата публикации

Method for the preparation of uniform triaminotrinitrobenzene microparticles

Номер: US20190039967A1

A new, rapid and inexpensive synthesis method for monodispersed triaminotrinitrobenzene (TATB) microparticles based on micelle-confined precipitation that enables control of microscopic morphology. The morphology of the TATB microparticles can be tuned between quasi-spherical and faceted by controlling the speed of recrystallization. The method enables improved performance and production consistency of TATB explosives for military grade explosives and propellants

Подробнее
15-02-2018 дата публикации

SOLID PROPELLANT ADDITIVE MANUFACTURING METHOD AND SYSTEM

Номер: US20180044257A1
Принадлежит:

A method of additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited. 1. A method of additively manufacturing a propellant element , the method comprising:mixing together fuel, oxidizer, and a binder, to form a propellant mixture;after the mixing, adding a curative to the propellant material to produce a curable propellant mixture;after the adding the curative, partially curing the curable propellant mixture; andafter the partially curing, dispensing the curable propellant mixture as part of the propellant element.2. The method of claim 1 , wherein the mixing claim 1 , the adding claim 1 , and the dispensing are all parts of a continuous process claim 1 , with material proceeding from one step directly to subsequent steps.3. The method of claim 1 , wherein the mixing includes mixing the fuel claim 1 , the oxidizer claim 1 , and the binder in an acoustic mixer claim 1 , to produce the propellant mixture.4. The method of claim 3 , wherein the adding the curative occurs in a second mixer claim 3 , downstream from the acoustic mixer.5. The method of claim 1 , further comprising heating the propellant mixture after the adding the curative to ...

Подробнее
25-02-2016 дата публикации

METHOD FOR THE "ON-SITE" MANUFACTURE OF WATER-RESISTANT LOW-DENSITY WATER-GEL EXPLOSIVES

Номер: US20160052834A1
Принадлежит:

Manufacture is carried out in a continuous manner while simultaneously loading the blast holes in a device with mixing capability where (a) a less sensitive or non-explosive water-based matrix containing a cross-linkable polymer, (b) a cross-linking agent for cross-linking the polymer contained in the matrix, (c) a gas-generating agent, are mixed. The presence of the polymer distributed uniformly in the matrix together with the cross-linking agent results in a three-dimensional network formed by molecular polymer chains bound to one another in a short period of time after mixing. The process can be performed in trucks for loading explosives in blast holes having compartments for the different components of the mixture and one or several mixing devices allowing the manufacture of the final mixture which would be unloaded into the blast holes either by means of a pump or an auger. 1. A method for the continuous “on-site” manufacture of a water-resistant low-density water-gel explosive , which comprises: (i) a non-explosive or low-sensitivity matrix product comprising an aqueous solution or suspension of at least one oxidizing salt, and at least one cross-linkable water-soluble polymer;', '(ii) a gas bubble-generating agent; and', '(iii) a cross-linking agent capable of cross-linking said cross-linkable water-soluble polymer contained in said matrix;, 'a) transporting to the manufacturing siteb) mixing said products (i), (ii) and (iii) in at least one device with mixing capability to obtain a mixture which can be conveyed by means of a pump and/or an auger;c) loading the mixture resulting from b) directly in the blast hole by means of a pump or an auger; andd) generating gas bubbles by means of said gas bubble-generating agent and cross-linking said polymer by means of said cross-linking agent within the mixture already introduced in the blast hole, under conditions in which the chemical cross-linking process is slower than the chemical bubble-generating process, and ...

Подробнее
13-02-2020 дата публикации

SYSTEM AND METHOD FOR UNIFORMLY MANUFACTURING A ROCKET FUEL GRAIN HORIZONTALLY IN A SINGLE SECTION

Номер: US20200048158A1
Автор: Wallace Kineo
Принадлежит: ROCKET CRAFTERS PROPULSION LLC

A system and method for producing fuel grain for a rocket engine horizontally with an additive manufacturing machine is disclosed. To begin, a fuel grain model is received. The fuel grain model is oriented in a direction of a central core axis and divided into two-dimensional layers with defined footprint areas. In accordance with the fuel grain model, a first layer is printed by applying successive fuel beads in a direction primarily parallel to the central core axis. 1. A method for producing a fuel grain for a rocket engine horizontally with an additive manufacturing machine comprising:receiving a fuel grain model that is oriented in a direction of a central core axis and divided into two-dimensional layers with defined footprint areas; andin accordance with the fuel grain model, printing the fuel grain by applying successive fuel beads in a direction primarily parallel to the central core axis.2. The method of claim 1 , wherein printing includes applying successive fuel beads continuously for a predefined distance in the direction primarily parallel to the central core axis.3. The method of claim 1 , wherein printing includes printing a first layer thereby filling a determined footprint area associated with the first layer with fuel material; andprinting at least one subsequent layer on top of the first layer after moving a print head to a height of the first layer in order to produce a fuel grain in a horizontal position with respect to the central core axis of the fuel grain model.4. The method of claim 1 , further comprising:printing successive layers by applying successive fuel beads continuously in each layer to complete the fuel grain.5. The method of claim 4 , wherein the fuel grain is formed by printing successive layers of dissolvable core.6. The method of claim 5 , wherein the fuel grain and the dissolvable core are printed simultaneously claim 5 , layer by layer.7. The method of claim 1 , wherein the fuel grain is supported by a support structure ...

Подробнее
25-02-2021 дата публикации

Disassembly and disposal of munition components

Номер: US20210057121A1
Автор: Henry Crichlow
Принадлежит: Individual

Methods for disposing of munition components may include separating propellants from heavy metal penetrators and disposing of those separated components into different types of geological formations. The initially solid form propellants may be converted into a stable liquified propellant form, by a particular disclosed process, that may be injected within salt water (injection) disposal wells, where distal portions of such salt water disposal wells may be located in a geological formation of substantially at least one salt. The separated heavy metal penetrators (with or without their associated projectile jackets) may be disposed of within human-made caverns, where such human-made caverns may be located within a deep geological formation that is often 2,000 feet or more below the Earth's surface. The heavy metal penetrators may include uranium (depleted uranium). Portions of a given munition, to be disposed of, may be radioactive.

Подробнее
21-02-2019 дата публикации

ENERGETIC MATERIALS

Номер: US20190055171A1

The invention is directed to a radiation curable energetic composition, to a method of forming a three-dimensional energetic object, to a three-dimensional energetic object, and to uses of the radiation curable energetic composition. The radiation curable energetic composition of the invention comprises (a) one or more polymerisable components, (b) one or more polymerisation photoinitiators, and (c) one or more energetic components. 1. A radiation curable energetic composition , comprising(a) one or more polymerisable components,(b) one or more polymerisation photoinitiators, and(c) one or more energetic components.2. The radiation curable energetic composition of claim 1 , wherein said one or more polymerisable components comprise fuel and oxidiser.3. The radiation curable energetic composition of claim 1 , wherein said polymerisable components comprise (al) one or more free radical polymerisable components claim 1 , and said polymerisation photoinitiators comprise (bl) one or more polymerisation photoinitiators for free radical polymerisation.4. The radiation curable energetic composition of claim 3 , wherein said free radical polymerisable components comprise one or more components selected from the group consisting of an aliphatic (meth)acrylate claim 3 , an aromatic (meth)acrylate claim 3 , a cycloaliphatic (meth)acrylate claim 3 , an arylaliphatic (meth)acrylate claim 3 , and a heterocyclic (meth)acrylate.5. The radiation curable energetic composition of claim 1 , wherein said polymerisable components comprise (a2) one or more cationically polymerisable components claim 1 , and said polymerisation photoinitiators comprise (b2) one or more polymerisation photoinitiators for cationic polymerisation.6. The radiation curable energetic composition of claim 5 , wherein said cationically polymerisable component comprises one or more components selected from the group consisting of cyclic ether compounds claim 5 , cyclic acetal compounds claim 5 , cyclic thioether ...

Подробнее
27-02-2020 дата публикации

RESONANT ACOUSTIC MIXING (RAM) OF AN EXPLOSIVE COMPOSITION

Номер: US20200062669A1
Принадлежит: BAE SYSTEMS plc

The invention relates to a cast explosive composition, particularly to a pre-cure castable explosive composition comprising an explosive material, a polymerisable binder, a microencapsulated cross linking reagent, said microencapsulated cross linking reagent, comprising a cross linking agent encapsulated in a microcapsule. Providing a process for formulating a homogenous crosslinked polymer bonded explosive composition comprising the steps of: 1. A process for formulating a homogenous crosslinked polymer bonded explosive composition , the process comprising:forming an admixture of a pre-cure castable explosive composition, said composition comprising an explosive material, a polymerisable binder, and a microencapsulated cross linking reagent, said microencapsulated cross linking reagent comprising a cross linking reagent encapsulated in a microcapsule, wherein the microcapsule comprises at least one shell wall polymer, wherein the microcapsule's shell wall polymer comprises at least one resonant acoustic stimulus labile linkage;wherein applying a resonant acoustic stimulus to the admixture causes the microcapsule to rupture and release said cross linking reagent.2. The process according to claim 1 , comprising:applying a resonant acoustic stimulus to the admixture, thereby causing the microcapsule to rupture and release said cross linking reagent; andfilling a munition with the admixture.3. A process for filling a munition with a homogenous crosslinked polymer bonded explosive composition claim 1 , the process comprising:forming an admixture of a pre-cure castable explosive composition, said composition comprising an explosive material, a polymerisable binder, and a microencapsulated cross linking reagent, said microencapsulated cross linking reagent comprising a cross linking reagent encapsulated in a microcapsule, wherein the microcapsule, comprises at least one shell wall polymer, wherein the microcapsule's shell wall polymer comprises at least one resonant ...

Подробнее
27-02-2020 дата публикации

PROCESS FOR MAKING AND FILLING A PBX COMPOSITION

Номер: US20200062670A1
Принадлежит: BAE SYSTEMS plc

The invention relates to a cast explosive composition. 1. A process for formulating a homogenous crosslinked polymer bonded explosive composition , the process comprising:forming an admixture of a pre-cure castable explosive composition, said composition comprising an explosive material, a polymerisable binder, and a cross linking reagent which comprises at least two reactive groups each of which is protected by a labile blocking group, wherein the labile blocking group comprises at least one resonant acoustic mixing stimulus labile linkage; andapplying resonant acoustic mixing stimulus to the admixture, causing the at least one resonant acoustic mixing stimulus labile linkage to be removed and to release said cross linking reagent, to cause a cure process to start.2. The process according to claim 1 , further comprising: filling a munition with the curing admixture.3. A process for filling a munition with a homogenous crosslinked polymer bonded explosive composition claim 1 , the process comprising:forming an admixture of pre-cure castable explosive composition, comprising an explosive material, a polymerisable binder, and a cross linking reagent which comprises at least two reactive groups each of which is protected by a labile blocking group, wherein the labile blocking group; comprises at least one resonant acoustic mixing stimulus labile linkage;filling the munition with the admixture; andapplying resonant acoustic mixing stimulus to the munition; causing the at least one resonant acoustic mixing stimulus labile linkage to be removed and release said cross linking reagent, to cause a cure process to start in the munition.4. The process according to claim 1 , wherein the polymerisable binder is selected claim 1 , such that it will form with the cross linking reagent a polyurethane claim 1 , a cellulosic material claim 1 , a polyester claim 1 , a polybutadiene claim 1 , a polyethylene claim 1 , a polyisobutylene claim 1 , polyvinyl acetate (PVA) claim 1 , ...

Подробнее
27-02-2020 дата публикации

HIGH ENERGY REDUCED SENSITIVITY TACTICAL EXPLOSIVES

Номер: US20200062671A1
Принадлежит:

A high energy explosive having reduced shock sensitivity for tactical weapon platforms to increase the safety margins to the warfighter if the weapon became involved in an unplanned event on the battlefield. The high energy explosive having a reduced crystalline particle size below about 30 microns, preferably 10 microns, and coated with a thermoplastic elastomer, which is capable of being compressed into a warhead configuration and attached to a weapon. The high energy explosive having a greater than 25% reduction in shock sensitivity compared to the same crystalline energetic material without undergoing size reduction prior to being coated. 1. A high energy insensitive explosive composition , the composition comprising:a plurality of crystalline energetic particles coated with at least one elastomeric material, wherein at least 20% of the plurality of crystalline energetic particles have an average particle size of less than about 30 microns, and wherein the plurality of coated crystalline energetic particles have an average particle size greater than about 50 microns.2. The high energy insensitive explosive composition of claim 1 , wherein the plurality of crystalline energetic particles prior to being coated has an average particle size between about 0.5 microns to about 20 microns.3. The high energy insensitive explosive composition of claim 1 , wherein at least 80% of the plurality of crystalline energetic particles prior to being coated have an average particle size of less than 10 microns.4. The high energy insensitive explosive composition of claim 1 , wherein the plurality of crystalline energetic particles comprises 1 claim 1 ,3 claim 1 ,5 claim 1 ,7-tetranitro-1 claim 1 ,3 claim 1 ,5 claim 1 ,7-tetraazacyclooctane.5. The high energy insensitive explosive composition of claim 1 , wherein the at least one elastomeric material comprises a polyester-based thermoplastic polyurethane claim 1 , a polyether-based thermoplastic polyurethane claim 1 , a ...

Подробнее
16-03-2017 дата публикации

Additive Manufactured Thermoplastic-Aluminum Nanocomposite Hybrid Rocket Fuel Grain and Method of Manufacturing Same

Номер: US20170073280A1
Автор: Jones Ronald D.
Принадлежит:

A hybrid rocket solid fuel grain having a cylindrical shape and defining a center port is additive manufactured from a compound of thermoplastic fuel and passivated nanocomposite aluminum additive. The fuel grain comprises a stack of fused layers, each formed as a plurality of fused abutting concentric circular beaded structures of different radii arrayed defining a center port. During operation, an oxidizer is introduced along the center port, with combustion occurring along the exposed port wall. Each circular beaded structure possesses geometry that increases the surface area available for combustion. As each layer ablates the next abutting layer, exhibiting a similar geometry is revealed, undergoes a gas phase change, and ablates. This process repeats and persists until oxidizer flow is terminated or the fuel grain material is exhausted. To safety achieve this construction, a fused deposition additive manufacturing apparatus, modified to shield the nanocomposite material from the atmosphere is used. 1. A method of making a fuel grain for use in a hybrid rocket engine , the method comprising:compounding a first material suitable as a hybrid rocket fuel and a second energetic and pyrophoric nanoscale metallic material according to a predetermined mixture ratio to form a third material;the third material serving as feedstock material for use in an additive manufacturing apparatus; andoperating the additive manufacturing apparatus using the feedstock material to fabricate a fuel grain comprising a plurality of fused stacked layers of solidified fuel grain material, each layer of the plurality of layers comprising a plurality of bonded and concentric substantially circular ring-shaped beads of different radii and defining a center combustion port.2. The method of further comprising drying the feedstock material and then elevating a temperature of the feedstock material to attain a predetermined viscosity for the feedstock material.3. The method of the step of ...

Подробнее
16-03-2017 дата публикации

Nanoenergetic material composite having remote ignition characteristic by high-power pulsed laser beam and method of preparing same

Номер: US20170073282A1
Автор: Ji Hoon Kim, Soo Hyung Kim

A nanoenergetic material composite having a remote ignition characteristic by a high-power pulsed laser beam is prepared by adding various contents of multiwalled carbon nanotubes (MWCNTs) to a nanoenergetic composite material (nEM) to enable remote ignition by a high-power laser beam. The nanoenergetic material composite is a MWCNT/nEM composite powder prepared by adding multiwalled carbon nanotubes to the nanoenergetic material, which is a mixture of fuel material nanoparticles and metal oxidizer nanoparticles, wherein the multiwalled carbon nanotubes enhance a combustion rate of the MWCNT/nEM composite powder by delivering thermal energy upon remote optical ignition by the high-power pulsed laser beam.

Подробнее
26-03-2015 дата публикации

PRODUCTION OF NANOPARTICLES USING HOMOGENEOUS MILLING AND ASSOCIATED PRODUCTS

Номер: US20150086416A1
Принадлежит:

A method of producing nanoparticles can comprise milling a plurality of milling bodies sufficient to produce the nanoparticles from exterior surfaces of the plurality of milling bodies. In this manner, the milling bodies are simultaneously the milling media and the feedstock for production of nanoparticles such that additional solids are not present during milling. Nanoparticles can be readily formed and optional milling agent and capping agents can be provided to stabilize and/or customize the nanoparticles for a particular application. 1. A method of producing nanoparticles , comprising: milling a plurality of milling bodies in the presence of a milling agent sufficient to produce the nanoparticles from exterior surfaces of the plurality of milling bodies.2. The method of claim 1 , wherein the exterior surfaces comprise at least one of aluminum claim 1 , iron claim 1 , steel claim 1 , gold claim 1 , palladium claim 1 , platinum claim 1 , silver claim 1 , nickel claim 1 , chromium claim 1 , zinc claim 1 , oxides thereof claim 1 , and alloys thereof.3. The method of claim 1 , wherein the plurality of milling bodies are compositionally homogeneous.4. The method of claim 1 , wherein the plurality of milling bodies are core-shell structures.5. The method of claim 4 , wherein the exterior surfaces of the core-shell structure are formed of a precious metal.6. The method of claim 1 , wherein the plurality of milling bodies include a first plurality of milling bodies having exterior surfaces of a first metal and a second plurality of milling bodies having exterior surfaces of a second metal which is different than the first metal claim 1 , such that the nanoparticles comprise both the first and second metals.7. The method of claim 1 , wherein the plurality of milling bodies are substantially spherical in shape.8. The method of claim 1 , wherein the plurality of milling bodies are substantially cylindrical in shape.9. The method of claim 1 , wherein the plurality of milling ...

Подробнее
21-03-2019 дата публикации

Vehicle adapted for making mixtures of waste lubricating oil/fuel oil for the in situ production of bulk products, and associated process

Номер: US20190084899A1
Принадлежит: ENAEX SERVICIOS SA

The invention relates to a transport vehicle designed preferably for producing a mixture of waste lubricating oils/fuel oil (ALR/FO), mounted preferably on a chassis and comprising at least one metal tank. The metal tank is divided internally into at least two compartments having respective wave-breaks, wherein each compartment comprises a pump system, a plurality of lines for recharging products, at least one quick-filling system for respective FO and ALR compartments, at least one manual traditional filling system, and the vehicle comprises at least one logical control system having at least one actuating panel, at least one actuating reel for the actuation of at least one hose, and at least one static mixer for the ALR/FO mixture having an overpressure safety system, wherein said safety system includes a recirculation system to the ALR compartment, a plurality of double-acting vent valves, at least one man access, at least one battery, a plurality of filters for the suction of recycled oils and at least two filters for direct supply to manufacturing equipment. The invention also relates to an associated process.

Подробнее
01-04-2021 дата публикации

EXPLOSIVE COMPOSITIONS FOR USE IN REACTIVE GROUND AND RELATED METHODS

Номер: US20210094889A1
Принадлежит:

Explosive compositions for use in high temperature, reactive ground, or both, are disclosed. The explosive compositions can include an emulsion with a continuous organic fuel phase and a discontinuous oxidizer phase. The oxidizer phase can include one or more Group I or Group II nitrates. 1. An explosive composition comprising an emulsion comprising:a continuous organic phase comprising fuel oil; urea, wherein the urea is about 0.5% to about 35% of the discontinuous oxidizer phase by weight;', 'a non-Group I or Group II nitrate; and', 'one or more Group I or Group II nitrates, wherein the Group I or Group II nitrates are about 3% to about 35% of the discontinuous oxidizer phase by weight., 'a discontinuous oxidizer phase comprising2. The explosive composition of claim 1 , wherein water in the discontinuous oxidizer phase is between 10% and 30% of the discontinuous oxidizer phase by weight.3. The explosive composition of claim 1 , wherein the urea is about 1% to about 25% of the discontinuous oxidizer phase by weight.4. The explosive composition of claim 1 , wherein the one or more Group I or Group II nitrates are about 5% to about 25% of the discontinuous oxidizer phase by weight.5. The explosive composition of claim 1 , wherein the one or more Group I or Group II nitrates are about 10% to about 35% of the discontinuous oxidizer phase by weight.6. The explosive composition of claim 1 , wherein the emulsion is at least 30% of the explosive composition by weight.7. The explosive composition of claim 1 , wherein the one or more Group I or Group II nitrates comprise sodium nitrate claim 1 , potassium nitrate claim 1 , calcium nitrate claim 1 , or combinations thereof.8. The explosive composition of claim 1 , wherein the emulsion further comprises a sensitizer.9. A method of forming a blend claim 1 , the method comprising:mixing a slurry comprising ammonium nitrate and fuel oil with an emulsion, the emulsion comprising:a continuous organic phase comprising fuel oil; and ...

Подробнее
12-05-2022 дата публикации

Coating method for energetic material and coating system for coating energetic material using said type of coating method

Номер: US20220144719A1
Принадлежит:

The invention relates to a coating method for energetic material (), in particular in a vacuum. The energetic material () is coated by chemical or physical vapor deposition. The coating material () is electrically conductive and/or hydrophobic or hydrophilic. The energetic material () is shaped as grains and/or pellets and/or is in the form of a powder. 111-. (canceled)1312. The coating method according to claim 12 , characterized in that the energetic material () comprises an explosive claim 12 , a pyrotechnic composition and/or a propellant.1412. The coating method according to claim 12 , characterized in that the energetic material () has an explosion heat of more than 2500 kJ/kg claim 12 , a burn rate of more than 30 m/s and/or a Trauzl number of more than 30 cm.1512. The coating method according to claim 12 , characterized in that the energetic material () comprises black powder claim 12 , nitroglycerin and/or nitrocellulose.1616. The coating method according to claim 12 , characterized in that the coating material () contains halogens; monomers containing at least one halogen; silicon; monomers containing silicon; silazanes claim 12 , in particular hexamethyldisilazane; siloxanes; silanes; fluorine; hydrocarbon; in particular saturated and/or unsaturated hydrocarbon; aliphatic hydrocarbon; aromatic hydrocarbon; derivatives of aliphatic hydrocarbon and/or aromatic hydrocarbon claim 12 , in particular containing heteroatoms; oxygen; conductive polymers; alkanes claim 12 , in particular fluoroalkanes; cycloalkanes; mixtures containing alkanes and halogens claim 12 , alkenes claim 12 , mixtures containing alkenes and halogens; hexamethyldisiloxane; fluoroacrylates; octafluorocyclobutane; ethine; parylene; paraffin; octene; hexafluoroethane; acrylic acid and/or combinations of the aforementioned substances.17. The coating method according to claim 12 , characterized in that the coating takes place at a pressure of a maximum of 10 millibars and/or a temperature of a ...

Подробнее
12-05-2022 дата публикации

ENERGY-RELEASING COMPOSITE MATERIAL AND METHOD FOR MANUFACTURING SAME

Номер: US20220144720A1
Принадлежит:

The invention relates to an energy-releasing composite material comprising at least one nanoporous material and at least one inorganic oxidant, characterised in that said nanoporous material is a nanoporous carbon material. 1. Composite energetic material comprising at least one nanoporous material and at least one inorganic oxidiser , characterised in that said nanoporous material is a nanoporous carbonaceous material , said composite energetic material has a decomposition initiation temperature on a thermogram obtained by differential scanning calorimetry of less than 5° C./minute in a closed crucible (DSC peak start temperature) preferably from 50° C. to 200° C. , more preferably from 100° C. to 150° C. , relative to the decomposition initiation temperature on the DSC thermogram of the inorganic oxidiser , and has at least 30% , preferably at least 50% , particularly preferably at least 70% , even more preferably at least 80% of the porosity occupied by said inorganic oxidiser , and at most 90% of the porosity , preferably at most 95% , more particularly at most 97% , more preferably at most 98% of the porosity occupied by said inorganic oxidiser , said energetic material having an impact sensitivity of at least 2J.2. Composite energetic material according to claim 1 , having a bulk density greater than or equal to 1.0 g/cm claim 1 , preferably greater than or equal to 1.25 g/cm claim 1 , more preferably greater than 1.35 g/cmand even more preferably greater than 1.5 g/cm.3. Composite energetic material according to claim 1 , having a micropore volume of pores with a diameter of less than 2 nm of between 0.01 cm/g and 1.0 cm/g claim 1 , calculated by applying the Dubinin-Radushkevitch model applied to nitrogen adsorption isotherms at 77.4K.4. Composite energetic material according to claim 1 , comprising a mesopore volume of pores with a diameter of between 2 nm and 50 nm of between 0.05 cm/g and 3.0 cm/g claim 1 , calculated based on the pore size distribution ...

Подробнее
12-04-2018 дата публикации

METHODS FOR MANUFACTURING PYROTECHNIC MATERIAL FOR THERMAL BATTERIES

Номер: US20180099912A1
Принадлежит: EAGLEPICHER TECHNOLOGIES, LLC

Embodiments directed to a method of manufacturing a pyrotechnic article for use with a thermal battery are disclosed. The method includes forming an iron oxide preform from iron oxide powder. The method also includes reducing the iron oxide preform to an iron preform made of metallic iron. The method further includes impregnating the iron preform with an oxidizer to form the pyrotechnic article. 1. A method of manufacturing a pyrotechnic article for use with a thermal battery , the method comprising:forming an iron oxide preform from iron oxide powder;reducing the iron oxide preform to an iron preform made of metallic iron; andimpregnating the iron preform with an oxidizer to form the pyrotechnic article.2. The method of claim 1 , wherein the iron oxide preform is an iron oxide pellet claim 1 , and wherein forming the iron oxide preform comprises pressing a volume of iron oxide powder to form the iron oxide pellet.3. The method of claim 1 , wherein the iron oxide preform is a tape-cast iron oxide sheet claim 1 , and wherein forming the iron oxide preform comprises:forming an iron oxide slip comprising iron oxide powder and a fluid medium; anddepositing the iron oxide slip on a carrier substrate to form the tape-cast iron oxide sheet.4. The method of claim 1 , further comprises pre-sintering the iron oxide preform.5. The method of claim 1 , wherein reducing the iron oxide preform to the iron preform comprises exposing the iron oxide preform to hydrogen gas at a predetermined range of temperature to reduce iron oxide to metallic iron.6. The method of claim 1 , wherein impregnating the iron preform comprises spraying the iron preform with a solution of the oxidizer and a solvent or immersing the iron preform in a solution of the oxidizer and a solvent.7. The method of claim 6 , wherein the oxidizer is lithium perchlorate and the solvent is acetone.8. The method of claim 1 , wherein the oxidizer is potassium perchlorate.9. A method of manufacturing a pyrotechnic pellet ...

Подробнее
08-04-2021 дата публикации

SPHERICAL COMPOSITE POWDER

Номер: US20210101157A1
Принадлежит: NEW JERSEY INSTITUTE OF TECHNOLOGY

An example method of preparing spherical composite powders is provided. The method includes introducing one or more starting material powders into an agitation mill. The method includes introducing a process control agent into the agitation mill, the process control agent including at least two immiscible liquids. The method includes agitating and milling the one or more starting material powders and the process control agent with the agitation mill to produce substantially spherical composite powders. 1. A method of preparing spherical composite powders , the method comprising:introducing one or more starting material powders into an agitation mill;introducing a process control agent into the agitation mill, the process control agent including at least two immiscible liquids; andagitating and milling the one or more starting material powders and the process control agent with the agitation mill to produce substantially spherical composite powders.2. The method of claim 1 , wherein the agitation mill is a ball mill claim 1 , and the method comprises introducing one or more milling balls as a milling media into the ball mill.3. The method of claim 2 , wherein the one or more starting material powders and the process control agent are introduced into a milling vial of the ball mill.4. The method of claim 1 , wherein the at least two immiscible liquids are different from each other.5. The method of claim 1 , wherein the at least two immiscible liquids are selected from water and oil claim 1 , acetonitrile and hexane claim 1 , acetonitrile and heptane claim 1 , acetic acid and pentane claim 1 , or acetic acid and hexane.6. The method of claim 4 , wherein a first of the at least two immiscible liquids is polar claim 4 , and a second of the at least two immiscible liquids is non-polar.7. The method of claim 1 , wherein the agitation mill is at least one of a shaker mill claim 1 , a planetary mill claim 1 , or an attritor mill.8. The method of claim 1 , wherein interaction ...

Подробнее
09-06-2022 дата публикации

IMPROVED PRINTING OF ENERGETIC MATERIALS

Номер: US20220177387A1

The invention is directed to a method for the preparation of an energetic material product such as a propellant or explosive charge or grain, wherein said method comprises additive manufacturing comprising co-extrusion of at least two materials to form a multi-layered filament and layer-by-layer deposition of said multi-layered filament, wherein said multi-layered filament comprises a first material layer and a second material layer of which at least one comprises an energetic material. In another aspect, the invention is directed to an apparatus for use in this method, said apparatus comprising a co-extrusion nozzle 11233132. Method for the preparation of an energetic material product such as a pyrotechnic , propellant , or explosive charge or grain , wherein said method comprises additive manufacturing comprising co-extrusion of at least two materials ( ,) to form a multi-layered filament and layer-by-layer deposition of said multi-layered filament , wherein said multi-layered filament () comprises a first material layer () and a second material layer () of which at least one comprises an energetic material.2. Method according to the previous claim , wherein during said co-extrusion for forming the multi-layered filament , the volume ratio of the first material layer to the second material layer is varied.3. Method according to any of the previous claims , wherein the volume ratio of the first material layer to the second material layer is varied such that a gradient of at least one material property is obtained throughout at least part of the energetic material product , preferably wherein said gradient is a continuous or essentially continuous gradient.4. Method according to any of the previous claims , wherein the volume ratio of the first material layer to the second material layer is controlled by independently controlling the extrusion rates of each material feed and preferably by maintaining the sum of all extrusion rates essentially constant.5. Method ...

Подробнее
11-05-2017 дата публикации

DISCONTINUOUS CRYSTALLIZATION UNIT FOR THE PRODUCTION OF BALL-SHAPED CRYSTALS

Номер: US20170128854A1
Принадлежит:

The invention introduces a discontinuous crystallization unit for the production of ball-shaped crystals comprising a crystallizer () that consists of a metallic cylindrical vessel with its inner surface of a hard material, with an oval or circular cross-section with a conical or vaulted bottom (), fitted along its length with a duplicator () for cooling of the solution and/or suspension of the solution and crystals and a high-speed agitator () of a hard material with a drive () enabling speed control and thus the rate of the impact of the mechanical action of the agitator on roundness of crystals inside the vessel together with the inner surface of the vessel containing at least 2 baffles () of a hard material while the vessel is fitted with at least orifice () at the top that at least independent branch of the circulation circuit () is connected to from the outside for the inlet of a heated solution and/or heated suspension of the solution and crystals by means of at least 1 circulation pump () and through at least heat exchanger () and together with the duplicator () ensuring controlled periodic changes of temperatures of the crystal suspension around the cooling curve while an interconnection () pipeline is connected to the bottom () of the crystallizer () vessel that is connected to at least one branch of the circulation circuit (). 1112489510112341312111. A discontinuous crystallization unit for the production of ball-shaped crystals , characterized in that it comprises a crystallizer () that consists of a metallic cylindrical vessel with its inner surface of a hard material , with an oval or circular cross-section with a conical or vaulted bottom () , fitted along its length with a duplicator () for cooling of the solution and/or suspension of the solution and crystals and a high-speed agitator () of a hard material with a drive () enabling speed control and thus the rate of the impact of the mechanical action of the agitator on roundness of crystals inside ...

Подробнее
11-05-2017 дата публикации

A METHOD FOR CONTINUOUSLY PRODUCING EMULSION EXPLOSIVE BY EMULSIFICATION AND SENSITIZATION IN A STATIC STATE WITHOUT A LOADING PUMP

Номер: US20170129824A1

A method continuously produces emulsion explosive by emulsification and sensitization in a static state without a loading pump. After the water phase and oil phase enters a static emulsifier for emulsification, the emulsion enters a static sensitization device; the sensitizer enters the static sensitization device through the sensitizer charging inlet and mixes with the emulsion in the static sensitization device. After emulsification and sensitization, the sensitized explosive directly enters an injection pipe for encapsulation. By adopting the static emulsifier and sensitization device, the explosive material storage amount is greatly reduced, and mechanical stirring and shearing for emulsification is avoided. Meanwhile, mechanical mixing for sensitization is omitted and replaced with full-static high-temperature sensitization, and the safety of sensitization is improved. The loading pump is omitted, and the sensitized emulsion directly enters the injection pipe, thus the risk points in the production process and the online explosive material storage amount are reduced. 1. A method for continuously producing emulsion explosive by emulsification and sensitization in a static state without a loading pump , including emulsification , sensitization , encapsulation , wherein:(1) during emulsification and sensitization, a continuous producing process of static emulsification and static sensitization is used, wherein the static emulsifier and the static sensitization device are made up with at least one of the following: a static mixer, an orifice plate, a jet flow device and a Venturi nozzle;(2) after emulsification and sensitization, the sensitized explosive directly enters the encapsulation process for encapsulation.2. The method according to claim 1 , wherein the static emulsifier includes an oil phase inlet claim 1 , a water phase inlet claim 1 , a shell and cores claim 1 , the shell has diverging ports on its inner wall claim 1 , and each of the cores comprises an ...

Подробнее
01-09-2022 дата публикации

ENERGETIC MATERIALS

Номер: US20220274898A1

The invention is directed to a radiation curable energetic composition, to a method of forming a three-dimensional energetic object, to a three-dimensional energetic object, and to uses of the radiation curable energetic composition. 126-. (canceled)27. A method of forming a three-dimensional energetic object comprising the steps of forming and selectively curing a layer of a radiation curable energetic composition comprising(a) one or more polymerisable components,(b) one or more polymerisation photoinitiators, and(c) one or more energetic components,with actinic radiation and repeating the steps of forming and selectively curing a layer of the radiation curable energetic composition a plurality of times to obtain a three-dimensional energetic object.28. The method of claim 27 , wherein said one or more polymerisable components comprise fuel and oxidiser.29. The method of claim 27 , wherein said polymerisable components comprise (a1) one or more free radical polymerisable components claim 27 , and said polymerisation photoinitiators comprise (b1) one or more polymerisation photoinitiators for free radical polymerisation.30. The method of claim 29 , wherein said radical polymerisable components comprise one or more selected from the group consisting of an aliphatic (meth)acrylate claim 29 , an aromatic (meth)acrylate claim 29 , a cycloaliphatic (meth)acrylate claim 29 , an arylaliphatic (meth)acrylate claim 29 , and a heterocyclic (meth)acrylate.31. The method of claim 27 , wherein said polymerisable components comprise (a2) one or more cationically polymerisable components claim 27 , and said polymerisation photoinitiators comprise (b2) one or more polymerisation photoinitiators for cationic polymerisation.32. The method of claim 31 , wherein said cationically polymerisable component comprises one or more selected from the group consisting of cyclic ether compounds claim 31 , cyclic acetal compounds claim 31 , cyclic thioether compounds claim 31 , spiro-orthoester ...

Подробнее
28-05-2015 дата публикации

MODULAR INSTALLATION FOR THE MANUFACTURE OF AN EXPLOSIVE EMULSION PRECURSOR

Номер: US20150144236A1
Принадлежит:

The present invention provides a modular installation () for carrying out a method of manufacturing an explosive emulsion precursor comprising at least three containers: —a first container () for preparing an aqueous phase, including a dissolution first tank (); and —at least one second and/or third container () including a second tank for preparing oily phase () and a third tank for preparing emulsion (); and —at least one fourth and/or fifth container () including means () for feeding heat and means () for feeding electrical energy; and —said first, second and/or third containers () being juxtaposed over at least a portion of one of their walls () and being provided with openings () in their walls. 115-. (canceled)16. A modular installation for carrying out a method of manufacturing an explosive emulsion precursor constituted by a water-in-oil reverse emulsion , the method comprising:a) a step of preparing an aqueous phase by dissolving nitrates in water and heating;b) a step of preparing an oily phase by mixing components comprising at least one vegetable and/or mineral fat and a surfactant, and heating; andc) a step of preparing said emulsion by mixing said aqueous phase into said oily phase,the modular installation comprising at least:a first container for preparing the aqueous phase, said first container including a first dissolution tank provided with first heater means and first stirrer means capable of heating and stirring the aqueous phase contained in the first container,wherein the first container includes a first rectangular tank with at least five walls arranged against and parallel to the respective at least five walls of said first container, said first heater means for said first tank comprising a first tube heat exchanger, said first tube heat exchanger being constituted by a network of continuous heat transfer fluid transfer lines arranged longitudinally and transversely at different heights, which are capable of heating the liquid contained in ...

Подробнее
18-05-2017 дата публикации

METHOD AND DEVICE FOR RECOVERING, FROM SUSPENSIONS CONTAINING EXPLOSIVE CHARGES, SAID EXPLOSIVE CHARGES, DRY

Номер: US20170137336A1
Принадлежит: EURENCO

A method for obtaining the explosive charge in dry granular form as well as a device suitable for implementing the method. The method includes: filtering the suspension, by passing same through a static filter in order to obtain a cake containing the granular explosive charge agglomerated by residual liquid; dewatering the cake by subjecting the cake to pressurized gas; splitting the dewatered cake and obtaining a fluidized bed of the desired explosive charge by exposing the dewatered cake to at least one stream of gas; at least one stream of gas being injected, under the dewatered cake to impinge said dewatered cake, according to two consecutive modes and the gas having a humidity height below that of the dewatered cake and a dew point temperature higher than the injection temperature thereof; and stopping at least one stream of gas and recovering the explosive charge in dry, granular form. 113-. (canceled)15. The process as claimed in claim 14 , wherein the explosive charge is recovered in granular form and containing less than 1% by weight of liquid.16. The process as claimed in claim 14 , wherein said suspension exhibits a liquid/explosive charge ratio by weight of between 5 and 20.17. The process as claimed in claim 14 , wherein said cake exhibits a liquid/explosive charge ratio by weight of between 1 and 8.18. The process as claimed in claim 14 , wherein dewatering is carried out under a gas pressure between 2×10and 3×10Pa absolute (2 and 3 bar absolute).19. The process as claimed in claim 14 , wherein claim 14 , on conclusion of step b) claim 14 , said dewatered cake exhibits a thickness of a maximum of 10 cm.20. The process as claimed in claim 14 , wherein said dewatered cake exhibits a liquid/explosive charge ratio by weight of between 0.5 and 2.21. The process as claimed in claim 14 , wherein said pressure p and said flow rates f and F are increasing.22. The process as claimed in claim 14 , wherein said gas is injected in the form of at least two jets.23. ...

Подробнее
18-05-2017 дата публикации

PYROPHORIC FOAM MATERIALS AND METHODS OF MAKING THE SAME

Номер: US20170137340A1
Принадлежит:

An in-situ process for synthesizing highly pyrophoric foam materials using metal and carbon precursors wherein the precursors serve as foaming and activating agents to disperse and lock nano-sized metal particles within a rigid porous carbon matrix. The resulting carbon matrix is also pyrophoric. 1. A process for preparing a pyrophoric porous foam material comprising:(a) mixing a precursor pyrophoric composition comprising, precursor metal molecules wherein said precursor metal molecules is one or more of a member selected from the group consisting of an inorganic metal salt or organometallic compound, a carbon precursor, and a solvent to form a homogenous mixture;(b) casting the homogenous mixture of step (a) into a geometric shape;(c) curing the product of step (b) at above ambient temperature; and(d) activating the product of step (c) by heating said product under an inert or reducing atmosphere to carbonize the carbon matrix and uniformly embed the metal nanoparticles in said matrix; and(e) wherein the steps of mixing, casting, and curing are performed in-situ.2. The process of claim 1 , wherein the inorganic metal salt or organometallic compound comprises metal ions or metal elements of iron claim 1 , aluminum claim 1 , bismuth claim 1 , boron claim 1 , calcium claim 1 , hafnium claim 1 , iron claim 1 , magnesium claim 1 , manganese claim 1 , tin claim 1 , titanium claim 1 , cobalt claim 1 , uranium claim 1 , zinc claim 1 , and/or zirconium.3. The process of claim 1 , wherein the inorganic metal salt is aluminum sulfate.4. The process of claim 1 , wherein the inorganic metal salt is a metal dihydrate.5. The process of claim 4 , wherein the metal dihydrate is iron oxalate dihydrate.6. The process of claim 1 , wherein the organometallic compound is triethylaluminum or ferrocene.7. The process of claim 1 , wherein the carbon precursor is selected from the group consisting of resole phenolic resin claim 1 , petroleum mesopitch claim 1 , and carbohydrate.8. The ...

Подробнее
26-05-2016 дата публикации

A Method of Producing an Explosive Emulsion Composition

Номер: US20160145165A1
Принадлежит:

A method of producing an explosive composition comprising a liquid energetic material and sensitizing voids, the sensitizing voids being present in the liquid energetic material with a non-random distribution, which method comprises: providing a flow of liquid energetic material; and delivering sensitizing voids into the flow of liquid energetic material in a series of pulses to provide regions in the liquid energetic material in which sensitizing voids are sufficiently concentrated to render those regions detonable and regions in the liquid energetic material in which the sensitizing voids are not so concentrated. 1. A method of producing an explosive composition comprising a liquid energetic material and sensitizing voids , the sensitizing voids being present in the liquid energetic material with a non-random distribution , which method comprises:providing a flow of liquid energetic material; anddelivering sensitizing voids into the flow of liquid energetic material in a series of pulses to provide regions in the liquid energetic material in which sensitizing voids are sufficiently concentrated to render those regions detonable.2. The method of claim 1 , wherein a chemical gassing solution is delivered into the liquid energetic material in a series of pulses claim 1 , the chemical gassing solution reacting with one or more components of the liquid energetic material to generate gas bubbles that are the sensitizing voids.3. The method of claim 1 , wherein the sensitizing voids are selected from glass micro-balloons claim 1 , plastic micro-balloons and expanded polystyrene beads.4. The method of claim 2 , wherein the distribution of gas bubbles in the liquid energetic material is manipulated by controlling one or more of the flow rate of the liquid energetic material at the location(s) of delivery of the chemical gassing solution claim 2 , the amount claim 2 , type of the chemical gassing solution used claim 2 , the concentration of the chemical gassing solution ...

Подробнее
10-06-2021 дата публикации

PROPELLANT CHARGE

Номер: US20210171415A1

The invention is directed to a propellant charge for guns, to a combination of a propellant charge and a primer, to a firearms cartridge, and to a method for modifying the surface of a propellant charge. 1. A propellant charge for guns , comprising multiple propellant grains , wherein an exterior part of part of the propellant grains has been subjected to a surface modification treatment comprising the successive steps ofsuspending propellant grains in water to prepare a slurry,adding an organic solvent to the propellant grains before, after and/or during the preparation of the slurry,mixing the slurry that comprises water and organic solvent for a period of 120 minutes or less,lowering the concentration of organic solvent,removing organic solvent, anddrying the propellant grains to remove water;wherein part of the propellant grains has not been subjected to the surface modification treatment.2. The propellant charge for guns of claim 1 , wherein the organic solvent is added to the propellant grains before the preparation of the slurry.3. The propellant charge for guns of claim 1 , wherein the organic solvent is added to the propellant grains after the preparation of the slurry.4. The propellant charge for guns of claim 1 , wherein the organic solvent is added to the propellant grains during the preparation of the slurry.5. The propellant charge for guns of claim 1 , wherein the surface modification treatment further comprises removing water and/or organic solvent after mixing the slurry that comprises water and organic solvent for a period of 120 minutes or less and before lowering the concentration of organic solvent.6. A propellant charge for guns claim 1 , comprising multiple propellant grains claim 1 , wherein an exterior part of part of the propellant grains has been subjected to a surface modification treatment comprising the successive steps ofwetting propellant grains with water or water vapour,adding an organic solvent to the propellant grains before, ...

Подробнее
10-06-2021 дата публикации

COATINGS ON PARTICLES OF HIGH ENERGY MATERIALS AND METHODS OF FORMING SAME

Номер: US20210171416A1
Принадлежит:

The present invention relates to the field of coatings on high-energy materials, devices or products that comprise the coated high-energy materials, functional coating materials and methods for producing and using the same. In particular, the present invention relates to energetic materials having initiated release coatings to improve the performance and shelf-life of the devices, products and/or raw materials, suitable for use as energetics or propellants for munitions, rockets, pyrotechnics, flares or other devices or components. 1. A method of making a coated particle , comprising providing core particles having particle surfaces and moving the core particles to expose the particle surfaces in a first reaction chamber;first dosing the core particles with an amount of first precursor that is less than that required to fully saturate all the surfaces to form first coated particles;after the first dosing, evacuate or purge the first reaction chamber, and/or transport the first coated particles to a second reaction chamber;second dosing the first coated particles with an amount of first precursor that is less than that required to fully saturate all the surfaces on the core particles to form second coated particles in the first reaction chamber or the second reaction chamber; wherein there is no step of reacting with a second precursor between the first dosing and the second dosing;after the second dosing, evacuate or purge the reaction chamber used in the second dosing step; andthird dosing the second coated particles with a second precursor wherein the second precursor reacts with the coated particles to form a passivation coating on the core particles.2. The method of wherein claim 1 , in the third dosing claim 1 , there is an amount of second precursor that is less than that required to fully saturate all the surfaces on the second coated particles; and after the third dosing claim 1 , evacuate or purge the reaction chamber used in the third dosing step;and ...

Подробнее
02-06-2016 дата публикации

REACTIVE COMPOSITE FOIL

Номер: US20160152526A1
Принадлежит:

A reactive composite foil, including metallic fuel particles, oxidizer particles, and a diluent, which, when ignited, produces a self-propagating thermite reaction to produce a molten metal. 1. A reactive composite foil , comprising:a reactant comprising a plurality of metallic fuel particles and a plurality of oxidizer particles; anda diluent,wherein, the reactive composite foil produces a thermite reaction to produce a molten metal when ignited,wherein, the reactive composite foil has a first mass before the thermite reaction and a second mass after the thermite reaction, andwherein, the diluent reduces an amount of gas during the thermite reaction, such that when ignited in an inert environment, the second mass is less than the first mass by 5% or less.2. The reactive composite foil of claim 1 , wherein the diluent is configured to act as a heat sink to reduce a maximum reaction temperature of the thermite reaction.3. The reactive composite foil of claim 1 , wherein thermite reaction is a self-propagating thermite reaction.4. The reactive composite foil of claim 1 , wherein the reactive composite foil is configured to bond two materials via the thermite reaction without requiring pre-wetting or metallization of the materials to be bonded.5. The reactive composite foil of claim 1 , wherein a thickness of the reactive composite foil is between 50 μm and 1500 μm.6. The reactive composite foil of claim 1 , wherein claim 1 , when ignited in an inert environment claim 1 , the second mass is less than the first mass by 0.5% or less.7. The reactive composite foil of claim 1 , wherein the plurality of oxidizer particles include metal oxides claim 1 , and the diluent comprises the metal of said metal oxides.8. The reactive composite foil of claim 1 , wherein the reactant comprises a plurality of composite particles formed of milled metallic fuel particles and oxidizer particles.9. The reactive composite foil of claim 1 , wherein the plurality of oxidizer particles comprise ...

Подробнее
16-05-2019 дата публикации

Chemical Heat Sources for use in Down-Hole Operations

Номер: US20190144355A1
Автор: Carragher Paul
Принадлежит: BiSN Tec LTD

A chemical reaction heat source for use in heaters for downhole applications is provided. The heat source has a solid fuel composition that comprises thermite and a binding agent. The binding agent serving to maintain the solid form of the solid fuel composition during burning and ensure a predetermined uniform heating pattern can be provided for longer. The solid fuel composition can be provided in the form of blocks. The solid fuel composition can also be provided in the form of a plurality of fragments that, during burning, behave more like powdered thermite and have the ability to flow. 1. A chemical reaction heat source for use in heaters for down-hole applications , said heat source having a solid fuel composition; and wherein the fuel composition comprises thermite and one or more binding agents that maintain the solid form of the solid fuel composition during burning.2. The chemical reaction heat source of claim 1 , wherein the solid fuel composition is provided in one or more solid blocks.3. The chemical reaction heat source of claim 2 , wherein at least one of the solid blocks further comprises a damping agent.4. The chemical reaction heat source of claim 3 , wherein the proportion of damping agent to thermite varies from block to block.5. The chemical reaction heat source of claim 3 , or claim 3 , wherein at least one of said solid blocks comprises a conduit running there through.6. The chemical reaction heat source of claim 5 , wherein each conduit receives a wicking fuel composition that burns quicker and/or hotter than the solid fuel composition.7. The chemical reaction heat source of any of to claim 5 , wherein said solid blocks are configured to be stacked one on top of another.8. The chemical reaction heat source of any of the preceding claims claim 5 , wherein said binding agents make up between about 5-35% by weight of the fuel composition.9. The chemical reaction heat source of any of the preceding claims claim 5 , further comprising an outer ...

Подробнее
07-05-2020 дата публикации

METHOD AND DEVICE FOR DRYING AN EXPLOSIVE

Номер: US20200141643A1
Автор: Ulrich Thomas
Принадлежит: RHEINMETALL WAFFE MUNITION GMBH

A method and a device for drying an explosive, wherein the explosive contains moisture and microwave radiation causes the explosive to expel the moisture contained in the explosive. Provided is a drying chamber having magnetrons that exert the required microwave radiation on the explosive to be dried and thereby heat the explosive. During heating, the moisture in the explosive is then expelled. 1. A method for drying an explosive that contains moisture , the method comprising:subjecting the explosive to microwave radiation; andheating the explosive and the moisture via the microwave radiation such that the moisture is expelled from the explosive by the heating.2. The method as claimed in claim 1 , wherein the explosive is arranged on a support device claim 1 , which reflects the microwave radiation.3. The method as claimed in claim 1 , wherein the expulsion takes place by evaporation claim 1 , wherein the moisture is expelled in an expulsion direction from the explosive.4. A device for drying an explosive that contains moisture claim 1 , the device comprising:a drying chamber in which the explosive is dried;a support device on which the explosive is stored;at least one magnetron being associated with the drying chamber, via which the explosive is subjected to microwave radiation.5. The device as claimed in claim 4 , wherein at least one sensor is associated with the drying chamber claim 4 , which permits a moisture and/or temperature measurement.6. The device as claimed in claim 4 , wherein the support device is a transportation belt claim 4 , which has a transportation direction.7. The device as claimed in claim 4 , wherein a first chamber is upstream of the drying chamber so that a transportation belt guides the explosive through the first chamber and then through the drying chamber.8. The device as claimed in claim 6 , wherein a second chamber is downstream of the drying chamber claim 6 , so that the transportation belt guides the explosive through the second ...

Подробнее
01-06-2017 дата публикации

IGNITION COMPOSITIONS, AND PREPARATIONS AND USES THEREOF

Номер: US20170152196A1
Принадлежит:

An ignition composition comprising a low electron affinity material, an oxidizer and a binder. The ignition composition may be made by A1) preparing a coagulation composition by a shock-gel process using the ingredients of the ignition composition disclosed herein, which comprises: A1-a) dissolving the binder in a low-boiling-point polar solvent to provide a binder solution; A1-b) mixing the low electron affinity material and the oxidizer with the binder solution; and A1-c) adding a low-boiling-point non-polar solvent to the mixture provided by step 1-b) to precipitate the binder and form the coagulation composition; and A2) converting the coagulation composition into granular composition using a suitable method. 1. An ignition composition comprising a low electron affinity material , an oxidizer and a binder.2. The ignition composition according to claim 1 , wherein the low electron affinity material is selected from the group consisting of boron (B) claim 1 , magnesium (Mg) claim 1 , zirconium (Zr) claim 1 , tungsten (W) claim 1 , tantalum (Ta) claim 1 , aluminum (Al) claim 1 , iron (Fe) claim 1 , and manganese (Mn).3. The ignition composition according to claim 1 , wherein the oxidizer is selected from the group consisting of nitrates claim 1 , perchlorates claim 1 , and oxides.4. The ignition composition according to claim 3 , wherein the oxidizer is selected from the group consisting of barium nitrate claim 3 , calcium nitrate claim 3 , ammonium perchlorate claim 3 , and CuO.5. The ignition composition according to claim 1 , wherein the binder is selected from the group consisting of Fluorel claim 1 , acrylic rubbers claim 1 , Hytemps claim 1 , Kraton rubbers claim 1 , and any combinations thereof.6. The ignition composition according to claim 1 , further comprising additives selected from the group consisting of antioxidants claim 1 , moisture scavengers claim 1 , and combinations thereof.7. The ignition composition according to claim 6 , wherein the ignition ...

Подробнее
08-06-2017 дата публикации

METHOD FOR PRODUCING COCRYSTALS BY MEANS OF FLASH EVAPORATION

Номер: US20170157528A1
Принадлежит:

The invention relates to a method for producing a cocrystal of at least two compounds by means of instantaneous evaporation or flash evaporation, for example for the production of cocrystals in the fields of energetic materials, pharmaceutical compounds, phytopharmaceutical compounds, ferroelectric materials, non-linear response materials or bioelectronic materials. 1. A method for preparing a co-crystal of at least two compounds bound through hydrogen bonds , ionic bonds , bonds of the stacking type (π-πstacking) or Van der Waals bonds , comprising the successive steps of: a solution comprising at least one solvent and at least two organics, mineral or organometal compounds, which may be bound through hydrogen bonds, ionic bonds, bonds of the stacking type (π-πstacking) or through Van der Waals bonds; or', 'at least two solutions each comprising at least un solvent and at least one organic, mineral or organometal compound, which may be bound through hydrogen bonds, ionic bonds, bonds of the stacking type (π-πstacking) or through Van der Waals bonds;, 'preparing'}heating the solution or the solutions, under a pressure ranging from 3 to 300 bars, at a temperature above the boiling point of the solvent or at a temperature above the boiling point of the mixture of solvents;atomizing the solution or of the solutions in an atomization chamber by means of at least one dispersion device and under an angle ranging from 30 to 150° C. at a pressure ranging from 0.0001 to 2 bars; andseparating the solvent or of the solvents in gaseous form.2. The method according to comprising the successive steps of:preparing a solution comprising at least one solvent and at least two organics, mineral or organometal compounds, which may be bound through hydrogen bonds, ionic bonds, through bonds of the stacking type (π-πstacking) or through Van der Waals bonds;heating the solution, under a pressure ranging from 3 to 300 bars, to a temperature above the boiling point of the solvent or to a ...

Подробнее
08-06-2017 дата публикации

Method for Producing an ANFO Explosive Using Ammonium Nitrate and Residual Oils and Product Thus Produced

Номер: US20170158577A1
Принадлежит: Exsa Sa

The present invention relates to a method for producing ANFO on the basis of filtration and purification of the residual oils of a mine in a filter truck especially designed and developed for this purpose, with the aim of completely replacing the diesel fuel 2 with said residual oils that have been previously treated in order to mix same with ammonium nitrate, as well as the product resulting from said method. The aim of this invention is to use the residual oil produced in mines in large quantities, as the only combustible agent in the production of ANFO, generating cost savings by completely substituting diesel 2 and additionally eliminating the existing risk inherent in the removal of the residual oil from the mine and the negative impact that it can generate in the environment if it is not used appropriately.

Подробнее
24-06-2021 дата публикации

KNEADING METHOD

Номер: US20210187455A1
Принадлежит: Chuo University

A kneading method for kneading a mixture by repetitively forming a compressed space that is formed by an expanding-contracting body of a segment in an open state and an expanding-contracting body of a segment in a closed state adjacent to the segment in the open state and filled with the mixture in a compressed state pressed by the expanding-contracting body, by changing a combination of an operation state of each of the plurality of segments. 1. A kneading method for kneading a mixture using a kneading apparatus ,wherein the kneading apparatus includes a plurality of segments that are continuously arranged,each of the plurality of segments has a cylindrical expanding-contracting body,an operation state of each of the plurality of segments can be switched between a closed state in which the expanding-contracting body is deformed expanding inward to substantially seal an inner side of the expanding-contracting body and an open state in which the expanding-contracting body is deformed outward from the closed state, andthe mixture is kneaded by repetitively forming a compressed space that is formed at least by an expanding-contracting body of a segment in the open state and an expanding-contracting body of a segment in the closed state adjacent to the segment in the open state, substantially sealed, and filled with the mixture in a compressed state pressed by the expanding-contracting body, by changing a combination of the operation state of each of the plurality of segments.2. The kneading method according to claim 1 ,wherein the compressed space is repetitively formed by shifting the compressed space together with at least a portion of the mixture between the plurality of segments.3. The kneading method according to claim 1 ,wherein the compressed space is repetitively formed by reciprocating the compressed space together with at least a portion of the mixture between the plurality of segments.4. The kneading method according to claim 1 ,wherein the compressed space ...

Подробнее
24-06-2021 дата публикации

Sorbent and Devices for Capturing, Stabilizing and Recovering Volatile and Semi-volatile Compounds

Номер: US20210187474A1
Принадлежит: XPLOSAFE, LLC

The present invention provides an improved sorbent and corresponding device(s) and uses thereof for the capture and stabilization of volatile organic compounds (VOC) or semi-volatile organic compounds (SVOC) from a gaseous atmosphere. The sorbent is capable of rapid and high uptake of one or more compounds and provides quantitative release (recovery) of the compound(s) when exposed to elevated temperature and/or organic solvent. Uses of particular improved grades of mesoporous silica are disclosed. 2) The method of claim 1 , wherein the sorbent has been functionalized with one or more adsorption modifier functional groups that improve in at least one aspect the adsorption of particular VOC or SVOC.3) The method of claim 2 , wherein a) the one or more adsorption modifier functional groups are covalently bound to the porous medium; b) the one or more adsorption modifier functional groups are non-covalently bound to the porous medium; c) the mass content of functional groups in the porous medium as determined by thermogravimetric analysis is in the range of 20-25%; or d) a combination of any two or more thereof.4) The method of claim 1 , wherein the mesoporous silica sorbent comprises: a) at least one non-functionalized mesoporous silica; b) at least one functionalized mesoporous silica; or c) a combination of one or more non-functionalized mesoporous silica and one or more functionalized mesoporous silica.5) The method of claim 4 , wherein a weight ratio of non-functionalized mesoporous silica sorbent to functionalized mesoporous silica range from about 1:100 to about 100:1.6) The method of claim 4 , wherein said at least one functionalized sorbent is silane-functionalized mesoporous silica.7) The method of claim 6 , wherein the silane functionalized mesoporous silica has been functionalized by treating unfunctionalized mesoporous silica with a trialkoxyalkylsilane (RSi(OR)) claim 6 , wherein:{'sup': '1', 'Ris selected from the group consisting of aromatic group, ...

Подробнее
30-05-2019 дата публикации

Demilitarization and disposal of hc smoke ordinance

Номер: US20190160391A1
Автор: John Potee Whitney
Принадлежит: Individual

Demilitarization and disposal of HC smoke ordnance with recovery of constituents thereof as commodities entails mechanically removing from the ordnance a filler comprising hexachloroethane, zinc oxide and grained aluminum; heating the filler to a temperature above the sublimation temperature of hexachloroethane but safely below the temperature at which hexachloroethane chemically decomposes, and draining and collecting the dense hexachloroethane vapor; and conventionally separating the aluminum from the zinc oxide. Filler is supplied to and removed from a heating compartment from above; hexachloroethane drains via a lower portion of the heating compartment.

Подробнее
21-05-2020 дата публикации

Flash directed reactive target and method of manufacture

Номер: US20200158478A1
Принадлежит: I P Creations Ltd

A concealed amalgamated neutralizer device covertly combines neutralizer material of inert materials such as calcium carbonate or silicates with common energetic material for the prevention of malicious use of the energetic material. The concealed amalgamated neutralizer device may vary in shape, size, and color and is therefore adaptable to varying methods of containment. The neutralizer material mimics the energetic material without detection. Upon disassembly of the concealed amalgamated neutralizer device, the neutralizer material is mixed with and neutralizes the energetic material rendering the energetic material useless. A container is provided which has a bottom section having an interior surface including a plurality of integrally formed recesses that are filled with the energetic material which allow manipulation of flash direction and intensity upon detonation.

Подробнее
18-09-2014 дата публикации

GENERANT GRAIN ASSEMBLY FORMED OF MULTIPLE SYMMETRIC PIECES

Номер: US20140261040A1
Принадлежит: Autoliv ASP, Inc.

Pressed and segmented gas generant grain assemblies formed from a plurality of symmetric gas generant pieces or segments are disclosed. The symmetric pieces or segments are arranged circumferentially to define a substantially round, segmented body. In certain variations, the symmetric segments are substantially free of polymeric binder and have a high density. The segmented pressed grain assemblies are more robust and less expensive to manufacture, while still exhibiting desired combustion performance. Methods of making such segmented gas generant grain assemblies are also provided. 1. A segmented gas generant grain assembly comprising:a plurality of gas generant segments arranged circumferentially to define a segmented body of the gas generant grain assembly, wherein each gas generant segment is pressed and has a shape that is symmetric with respect to at least one axis defined by the segment and comprises at least one void having a first dimension, wherein the segmented body has a central aperture having a second diameter greater than the first dimension.2. The segmented gas generant grain assembly of claim 1 , wherein the segmented body comprises 3 to 6 of the gas generant segments.3. The segmented gas generant grain assembly of claim 1 , wherein the shape of each gas generant segment has two axes of symmetry corresponding to an x-axis and a y-axis of the segment.4. The segmented gas generant grain assembly of claim 1 , wherein the at least one void in each gas generant segment is an aperture and each gas generant segment comprises 3 to 7 apertures having the first dimension.5. The segmented gas generant grain assembly of claim 1 , wherein the shape of the gas generant segment defines 3 to 6 sides.6. The segmented gas generant grain assembly of claim 1 , wherein each gas generant segment defines at least two distinct sides for contacting adjacent complementary sides of two distinct adjacent gas generant segments.7. The segmented gas generant grain assembly of ...

Подробнее
18-09-2014 дата публикации

Desensitisation of energetic materials

Номер: US20140261928A1
Автор: Douglas C. Wagstaff

An energetic material comprises an energetic crystalline material substantially coated in an energetic plasticiser material. Advantageously the energetic material comprises from 90 to 99% by weight of an energetic crystalline material and from 1 to 10% by weight of an energetic plasticiser material comprising a plasticiser selected from the group comprising Butane Triol trinitrate (BTTN), Trimethylanol ethane trinitrate (TMETN), Diazidonitrazapentane (DANPE), Glycidyl Azide Polymer (Azide Derivative) (GAP Azide), Bis(2,2-dinitropropyl)acetal/bis(2,2-dinitropropyl)formal (BDNPA/F) or mixtures of two or more of these plasticisers. The inventors have found that the combination of just a small quantity of energetic plasticiser material to the energetic crystalline material prior to incorporation into the bulk plasticiser, binder and filler mixture of an explosive or propellant composition has unexpected and advantageous effects.

Подробнее
18-09-2014 дата публикации

Methods and systems for producing demn eutectic, and related methods of producing energetic compositions

Номер: US20140261930A1
Принадлежит: Alliant Techsystems Inc

A method of producing DEMN eutectic comprises reacting a reactant mixture comprising ethylenediamine and diethylenetriamine with aqueous nitric acid to form a reaction mixture comprising diethylentriamine trinitrate and ethylenediamine dinitrate. The reaction mixture is combined with methylnitroguanidine and nitroguanidine to form an aqueous slurry. Water is removed from the aqueous slurry. A method of producing an energetic composition, and a system for producing DEMN eutectic are also described.

Подробнее
06-06-2019 дата публикации

Solid combustible propellant composition

Номер: US20190169083A1
Принадлежит: Goodrich Corp

A combustible solid propellant composition is disclosed that includes an oxidizer of the reaction product under vacuum of potassium periodate and isocyanate, a polymer binder, a plasticizer, and a fuel.

Подробнее
28-05-2020 дата публикации

A METHOD FOR PRODUCING POTASSIUM 1,1 -DINITRAMINO-5,5-BISTETRAZOLATE AND EXPLOSIVE COMPOSITIONS COMPRISING SAID SALT

Номер: US20200165228A1
Принадлежит: DETNET SOUTH AFRICA (PTY) LTD

A method of producing KDNABT wherein a biztetrazole intermediate is nitrated using a nitrating agent selected from the following: dinitronium disulphate; a mixture of nitric acid and sulfuric acid; a mixture of nitric acid and phosphorous pentoxide; and nitric acid with acetic anhydride. 1. A method of producing KDNABT which includes the steps of:(a) reacting dialkyl carbonate with hydrazine hydrate to produce alkyl carbazate;(b) reacting the alkyl carbazate with glyoxal to produce dialkyloxy carbonyl glyoxal bishydrazone;(c) halogenating the dialkyloxy carbonyl glyoxal bishydrazone with a halogenating agent to form halogenated bishydrazone;(d) azidation of the halogenated bishydrazone with an azide to produce diazido dialkyloxycarbonylglyoxal bishydrazone;(e) cyclization of the diazido dialkyloxycarbonylglyoxal bishydrazone with a ring closing electrophile reactant to produce bistetrazole intermediate;(f) deprotecting the bistetrazole intermediate with a nitrating agent to produce nitramino intermediate; and{'sub': '2', '(g) alkaline hydrolysing the nitramino intermediate with a potassium hydroxide to produce KDNABT;'}wherein the nitrating agent is selected from the following: a mixture of about 10:1 nitric acid and phosphorous pentoxide; and a mixture of nitric acid with acetic anhydride in a range between 1:1 and 4:1.2. (canceled)3. A method according to wherein the nitrating agent is the 4:1 mixture of nitric acid with acetic anhydride.4. A method according to or wherein steps (a) and (b) are combined in a first one-pot reaction step in which hydrazine hydrate is added to dialkyl carbonate to form a alkyl carbazate intermediate claim 1 , and then glyoxal is added to produce a dialkyloxy carbonyl glyoxal bishydrazone.5. A method according to or wherein steps (c) and (d) are combined in a second one-pot reaction step in which dialkyloxy carbonyl glyoxal bishydrazone is dissolved in a first solvent before the halogenating (step (c)) to produce a halogenated ...

Подробнее
07-07-2016 дата публикации

SOLID GRAIN STRUCTURES, SYSTEMS, AND METHODS OF FORMING THE SAME

Номер: US20160194256A1
Принадлежит: Utah State University

Devices, methods, and systems for providing a solid grain fuel for a hybrid rocket. In one embodiment, the solid grain fuel includes a housing having a length extending between a first side and a second side. The housing defines a central axis and a bore extending from the first side to the second side. The bore of the housing extends with a helical configuration along the length of the housing. Further, the housing includes multiple segments configured to interlock together to form the bore along the length of the housing. 1. A solid grain fuel for a hybrid rocket , comprising:a housing having a length extending between a first side and a second side, the housing defining a central axis and a bore extending from the first side to the second side, the bore extending with a helical configuration along the length of the housing, the housing including multiple segments configured to interlock together to form the bore along the length of the housing.2. The solid grain fuel of claim 1 , wherein:each of the multiple segments comprises multiple flat layers and each flat layer defines a plane that is transverse relative to the central axis of the housing, andthe bore extends through each of the multiple flat layers3. The solid grain fuel of claim 1 , wherein the housing is formed of acrylonitrile butadiene styrene (ABS).4. The solid grain fuel of claim 1 , wherein the bore comprises a circular cross-section.5. The solid grain fuel of claim 1 , wherein the multiple segments include opposite ends claim 1 , at least one of the opposite ends including an orientation feature configured to couple to an end of another one of the multiple segments so that the bore in each of the multiple segments collectively defines the helical configuration within the coupled multiple segments.6. A solid grain fuel for a hybrid rocket claim 1 , comprising:a housing having a length extending between a first side and a second side, the housing defining a central axis and a bore extending from the ...

Подробнее
20-06-2019 дата публикации

Graphene/Metal or Metalloid Core-Shell Composite and Manufacturing Method Thereof

Номер: US20190185391A1
Принадлежит:

The present invention relates to a manufactured graphene/metal or metalloid core-shell composite and manufacturing method thereof. The method comprising: using a modified graphene oxide as a base, then performing concentration and steam drying followed by organic solvent replacement to obtain a modified graphene oxide organic solvent; using a liquid-phase self-assembly method to coat the modified graphene oxide onto a surface of the metal or metalloid to form a graphene/metal or metalloid coated particle solution, then filtering and drying to obtain the graphene metal/metalloid core-shell composite. The method improves upon a conventional organic and inorganic material coating technique, and reduces an impact of a water-based solvent and high temperature on a highly reactive metal and metalloid, thereby expanding the feasibility of the coating technique and addressing a barrier of applicability of graphene and reactive metal or metalloid in the field of energetic materials. 1. A graphene/metal or semi-metal composite material with shell-core structure , of which the general structure formula is (R-GO)M , wherein R is a surface functional group , GO is graphene oxide , and M is a metal or a semi-metal.2. The graphene/metal or semi-metal composite material with shell-core structure according to claim 1 , wherein the surface functional group is amine group claim 1 , hydroxylamine group claim 1 , acyl group claim 1 , amide group or epoxy group.3. The graphene/metal or semi-metal composite material with shell-core structure according to claim 1 , wherein the metal is Ni claim 1 , Zn claim 1 , Al claim 1 , Mg claim 1 , Zr claim 1 , Fe claim 1 , Ag claim 1 , Pt or Au.4. The graphene/metal or semi-metal composite material with shell-core structure according to claim 1 , wherein the semi-metal is metal hydride claim 1 , intermetallic compound or metal oxide.5. The graphene/metal or semi-metal composite material with shell-core structure according to claim 4 , wherein the ...

Подробнее
27-06-2019 дата публикации

METHODOLOGY FOR DEVELOPING TEXTURE IN SIMULANTS

Номер: US20190194086A1

Various embodiments of the present invention are directed towards a simulant and method relating to producing a simulant. For example, a simulant of a textured target threat includes a background material associated with a background attenuation, and a texture component(s) dispersed in the background material and associated with a component attenuation and a component characteristic. The component characteristic prevents the component attenuation of the texture component from being homogeneously dispersed throughout the background attenuation of the background material, to cause the simulant to mimic an aspect(s) of an X-ray signature of the textured target threat. 1. A simulant of a textured target threat , comprising:a background material associated with a background attenuation; anda first texture component dispersed in the background material and associated with a first component attenuation and a first component characteristic;wherein the first component characteristic prevents the first component attenuation of the first texture component from being homogeneously dispersed throughout the background attenuation of the background material, to cause the simulant to mimic a first aspect of an X-ray signature of the textured target threat.2. The simulant of claim 1 , further comprising a second texture component dispersed in the background material and associated with a second component attenuation and a second component characteristic claim 1 , wherein the second component characteristic prevents the second component attenuation of the second texture component from being homogeneously dispersed throughout the background attenuation of the background material claim 1 , to cause the simulant to mimic a second aspect of an X-ray signature of the textured target threat.3. The simulant of claim 2 , wherein dispersion of at least one of the first texture component or the second texture component causes the simulant to have a spatially variant texture profile.4. The ...

Подробнее
26-07-2018 дата публикации

CAST EXPLOSIVE COMPOSITION

Номер: US20180208521A1
Принадлежит: BAE SYSTEMS plc

The invention relates to a cast explosive composition, particularly to a pre-cure castable explosive composition comprising an explosive material, a polymerisable binder, a microencapsulated cross linking reagent, said microencapsulated cross linking reagent, comprising a cross linking agent encapsulated in a microcapsule. 1. A pre-cure castable explosive composition comprising an explosive material , a polymerisable binder , and a microencapsulated cross linking reagent , said microencapsulated cross linking reagent comprising a cross linking reagent encapsulated in a microcapsule.2. The composition according to claim 1 , wherein the polymerisable binder is selected claim 1 , such that it will form with the cross linking reagent one or more of: a polyurethane claim 1 , a cellulosic material claim 1 , a cellulose acetate claim 1 , a polyester claim 1 , a polybutadiene claim 1 , a polyethylene claim 1 , a polyisobutylene claim 1 , a PVA claim 1 , a chlorinated rubber claim 1 , an epoxy resin claim 1 , a two-pack polyurethane system claim 1 , an alkyd/melanine claim 1 , a vinyl resin claim 1 , an alkyd claim 1 , a butadiene-styrene block copolymer claim 1 , a polyNIMMO claim 1 , a polyGLYN claim 1 , a GAP claim 1 , and a blend claim 1 , copolymer and/or combination thereof.3. The composition according to claim 1 , wherein the explosive material is selected from RDX claim 1 , HMX claim 1 , FOX-7 claim 1 , TATND claim 1 , HNS claim 1 , TATB claim 1 , NTO claim 1 , HNIW claim 1 , GUDN claim 1 , picrite claim 1 , aromatic nitramines such as tetryl claim 1 , ethylene dinitramine claim 1 , nitroglycerine claim 1 , butane triol trinitrate claim 1 , pentaerythritol tetranitrate claim 1 , DNAN trinitrotoluene claim 1 , inorganic oxidisers such as ammonium nitrate claim 1 , ADN claim 1 , ammonium perchlorate claim 1 , energetic alkali metal salts claim 1 , energetic alkaline earth metal salts claim 1 , and combinations thereof.4. The composition according to claim 1 , wherein ...

Подробнее
02-08-2018 дата публикации

PBX COMPOSITION

Номер: US20180215678A1
Принадлежит: BAE SYSTEMS plc

The invention relates to a cast explosive composition. There is provided a precure castable explosive composition comprising an explosive material, a polymerisable binder, said cross linking reagent comprising at least two reactive groups each of which is protected by a labile blocking group. 1. A precure castable explosive composition comprising an explosive material , a polymerisable binder , and a cross linking reagent which comprises at least two reactive groups each of which is protected by a labile blocking group.2. The composition according to claim 1 , wherein the polymerisable binder is selected claim 1 , such that it will form a polyurethane claim 1 , cellulosic material claim 1 , polyester claim 1 , polybutadiene claim 1 , polyethylene claim 1 , polyisobutylene claim 1 , PVA claim 1 , chlorinated rubber claim 1 , epoxy resin claim 1 , a two-pack polyurethane system claim 1 , alkyd/melanine claim 1 , vinyl resin claim 1 , alkyd claim 1 , butadiene-styrene block copolymer claim 1 , polyNIMMO claim 1 , polyGLYN claim 1 , GAP claim 1 , and a blend claim 1 , copolymers and/or combinations thereof.3. The composition according to claim 1 , wherein the explosive material is selected from RDX claim 1 , HMX claim 1 , FOX-7 claim 1 , TATND claim 1 , HNS claim 1 , TATB claim 1 , NTO claim 1 , HNIW claim 1 , GUDN claim 1 , picrite claim 1 , aromatic nitramine claim 1 , ethylene dinitramine claim 1 , nitroglycerine claim 1 , butane triol trinitrate claim 1 , pentaerythritol tetranitrate claim 1 , DNAN trinitrotoluene claim 1 , inorganic oxidiser claim 1 , ADN claim 1 , ammonium perchlorate claim 1 , energetic alkali metal salt claim 1 , energetic alkaline earth metal salt claim 1 , and a combination thereof.4. The composition according to claim 1 , wherein the labile blocking group comprises at least two nitro groups or at least one sterically hindered branched chain hydrocarbyl group.5. The composition according to claim 1 , wherein the polymerisable binder and cross ...

Подробнее
02-07-2020 дата публикации

FUEL PROCUREMENT TOOL AND METHOD(S) OF USE

Номер: US20200207679A1
Автор: Willis Chris D.
Принадлежит:

A handheld tool configured to procure fuel is described. Embodiments of the fuel procurement tool include a handhold having a cutting mechanism located proximate one end of the handhold. Typically, the cutting mechanism can include at least one cutter link having a depth gauge, a top plate, and a gullet formed between the depth gauge and the top plate. The fuel procurement tool can be implemented to procure kindling from a piece of wood. 1. A handheld tool for procuring kindling , the handheld tool comprising:a handhold having a first end and a second end; a depth gauge;', 'a first top plate having a cutting edge;', 'a first gullet formed between the depth gauge and the first top plate;', 'a second top plate having a cutting edge; and', 'a second gullet formed between the first top plate and the second top plate., 'a cutting mechanism disposed proximate the first end, the cutting mechanism consisting of2. The handheld tool of claim 1 , wherein the cutting mechanism is an integral part of the handhold.3. The handheld tool of claim 1 , wherein the first top plate is oriented opposite of the second top plate.4. The handheld tool of claim 3 , wherein (i) the first top plate extends out perpendicular in a first direction from a parallel orientation to the depth gauge claim 3 , and (ii) the second top plate extends out perpendicular in a second direction from a parallel orientation to the depth gauge that is opposite the first direction.5. The handheld tool of claim 1 , wherein the cutting mechanism is oriented down at approximately 45 degrees from parallel with a longitudinal axis of the handhold.6. The handheld tool of claim 1 , wherein a width and a thickness of the second end is tapered towards a face of the second end.7. The handheld tool of claim 6 , wherein the face of the second end includes a concave shape.8. The handheld tool of claim 1 , wherein the first end includes a multi-ridged edge located at a trailing end of the cutting mechanism.9. The handheld tool of ...

Подробнее
11-07-2019 дата публикации

EXPLOSIVE COMPOSITIONS FOR USE IN REACTIVE GROUND AND RELATED METHODS

Номер: US20190210939A1
Принадлежит:

Explosive compositions for use in high temperature, reactive ground, or both, are disclosed. The explosive compositions can include an emulsion with a continuous organic fuel phase and a discontinuous oxidizer phase. The oxidizer phase can include one or more Group I or Group II nitrates. 1. A method of blasting in high temperature ground , reactive ground , or both , the method comprising:placing an explosive composition comprising an emulsion explosive including a continuous organic fuel phase and a discontinuous oxidizer phase in ground to be blasted, wherein the explosive composition comprises about 3% to about 35% by weight of one or more Group I or Group II nitrates, and wherein the ground contains reactive ground, high temperature ground, or both; anddetonating the emulsion explosive in a controlled manner.2. The method of claim 1 , further comprising determining that the ground to be blasted contains reactive ground.3. The method of claim 2 , wherein the reactive ground includes a sulfidic mineral.4. The method of claim 2 , wherein the reactive ground includes iron pyrite claim 2 , marcacites claim 2 , chalcopyrites claim 2 , or combinations thereof.5. The method of claim 1 , wherein the one or more Group I or Group II nitrates comprise sodium nitrate claim 1 , potassium nitrate claim 1 , calcium nitrate claim 1 , or combinations thereof.6. The method of claim 5 , wherein the one or more Group I or Group II nitrates consists of one or more Group I nitrates.7. The method of claim 1 , further comprising determining that the ground to be blasted is high temperature ground.8. The method of claim 1 , wherein the one or more Group I or Group II nitrates comprise about 3% to about 35% claim 1 , about 5% to about 25% claim 1 , about 5% to about 18% claim 1 , about 10% to about 35% claim 1 , or about 10% to about 25% of the oxidizer phase by weight.9. The method of claim 8 , wherein the oxidizer phase further comprises water at about 5% to about 30% or about 12% to ...

Подробнее
10-08-2017 дата публикации

Persistent Vortex Generating High Regression Rate Solid Fuel Grain for A Hybrid Rocket Engine and Method for Manufacturing Same

Номер: US20170226026A1
Автор: Jones Ronald D.
Принадлежит:

An additively manufactured solid fuel grain for a hybrid rocket engine having a cylindrical shape, defining a center combustion port and comprising a stack of fused layers of polymeric material suitable for hybrid rocket fuel. Each layer is formed as a plurality of fused abutting concentric beads of solidified material arrayed around the center port. An oxidizer is introduced into the solid fuel grain through the center port, with combustion occurring along the exposed surface area of the solid fuel grain center port wall. Each concentric bead possesses a surface pattern that increases the combustion surface area and when stacked forms a rifling pattern of undulations that induces oxidizer-fuel gas axial flow to improve combustion efficiency. The port wall surface pattern persists during the rocket engine's operation as the fuel phase changes from solid to gas and is ablated. 1. A method of making a fuel grain for a hybrid rocket engine , the method comprising:forming a first layer of grain material further comprising a plurality of concentric circular beaded ring-shaped structures of different radii fused together to form a cylindrically-shaped disc and defining a central opening therein;forming a plurality of additional layers of grain material each comprising a plurality of concentric circular ring-shaped beaded structures of different radii fused together to form a cylindrically-shaped disc and defining a central opening therein;the first layer and the plurality of additional layers of cylindrically shaped discs having a substantially equal outer and inner diameter or non-equal outer and inner diameter;stacking and fusing the first layer and the additional layers together to form the fuel grain such that the central opening of the first layer and each of the additional layers is aligned to form a center combustion port extending through the fuel grain;wherein the grain material includes at least one chemical component suitable for a hybrid rocket propulsion ...

Подробнее
19-08-2021 дата публикации

SYSTEMS FOR PRODUCING DEMN EUTECTIC

Номер: US20210253492A1
Принадлежит:

A method of producing DEMN eutectic comprises reacting a reactant mixture comprising ethylenediamine and diethylenetriamine with aqueous nitric acid to form a reaction mixture comprising diethylentriamine trinitrate and ethylenediamine dinitrate. The reaction mixture is combined with methylnitroguanidine and nitroguanidine to form an aqueous slurry. Water is removed from the aqueous slurry. A method of producing an energetic composition, and a system for producing DEMN eutectic are also described. 1. A system for producing DEMN eutectic , comprising:a single reaction vessel configured to react a reactant mixture comprising diethylenetriamine and ethylenediamine and aqueous nitric acid at a temperature of from about 10° C. to about 90° C. to produce a reaction mixture comprising ethylenediamine dinitrate and diethylentriamine trinitrate, to combine the reaction mixture with methylnitroguanidine and nitroguanidine to form an aqueous slurry, and to heat the aqueous slurry at a temperature of from about 50° C. to about 150° C.2. (canceled)3. The system of claim 1 , wherein the single reaction vessel is a glass-lined reactor.4. The system of claim 3 , further comprising:at least one source of diethylenetriamine and ethylenediamine in fluid communication with the glass-lined reactor;at least one source of aqueous nitric acid in fluid communication with the glass-lined reactor; andat least one source of methylnitroguanidine and nitroguanidine in fluid communication with the glass-lined reactor.5. The system of claim 3 , wherein the glass-lined reactor comprises:a first inlet configured and positioned to receive a reactant feed stream comprising diethylenetriamine and ethylenediamine;a second inlet configured and positioned to receive an aqueous nitric acid stream comprising aqueous nitric acid;a third inlet configured and positioned to receive another reactant feed stream comprising methylnitroguanidine and nitroguanidine;a first outlet configured and positioned to remove ...

Подробнее
27-08-2015 дата публикации

METHOD AND DEVICE FOR DECOMMISSIONING BODIES CONTAINING EXPLOSIVE MATERIAL

Номер: US20150239791A1
Принадлежит: SPREEWERK LUEBBEN GMBH

Method for decommissioning a body containing explosive material includes opening the body containing explosive material in a secured and/or currentless state, and cutting individual bodies along a cutting plane into at least two parts in a liquid by one or more cutting processes to expose the main charge carriers intact in the respective individual bodies for removal without destruction. Method further includes removing main charge carrier essentially intact while still in the liquid from the individual bodies, and transferring the main charge carrier to a container, structured and arranged to store each individual main charge carrier free from contact with other main charge carriers, and which includes a material that is absorbent for liquids. Method further includes feeding the container with the main charge carriers to an incineration process and grinding all of the other parts of the individual bodies in a grinding process to produce ground material. 117-. (canceled)18. A method for decommissioning a body containing explosive material , wherein the body containing explosive material one of is an individual body containing explosive material and contains one or more individual bodies containing explosive material , and wherein each respective individual body comprises one or more main charge carriers and other parts , the method comprising:opening the body containing explosive material in at least one of a secured and currentless state;cutting at least one of the one or more individual bodies in a liquid along a cutting plane into at least two parts by one or more cutting processes to expose the one or more main charge carriers intact in the one or more individual bodies for removal without destruction;removing the one or more main charge carriers essentially intact while still in the liquid from the individual bodies containing explosive material;transferring the one or more main charge carriers to a container, which is structured and arranged to store each ...

Подробнее
27-08-2015 дата публикации

Flameless Igniting Slurry Composition and Method of Preparing

Номер: US20150239793A1
Автор: Stoenescu Lucian
Принадлежит:

A flameless igniting slurry composition has an oxidizer, a fuel, a flame retardant, a liquid, and a rheology modifier. The rheology modifier and the flame retardant may be in particulate form. The flame retardant may be a water-soluble salt. The liquid may be water. The oxidizer may be potassium nitrate. The fuel may be silicon and charcoal. The composition may consist of on a mass basis 25-50% oxidizer, 20-30% fuel, 2-5% flame retardant, and 0.5-10% rheology modifier. The invention may be a device consisting of a shape of absorbent web material impregnated with the composition in a dried state. The invention may be a device consisting of the composition in a dried, particulate form. A process for producing the composition is also disclosed. 1. A pyrotechnic flameless ignition composition comprising:an oxidizer;a fuel;a flame retardant;a liquid; anda rheology modifier.2. The composition of wherein the rheology modifier is in particulate form.3. The composition of wherein the rheology modifier is at least one of the group consisting of polyethylene glycol claim 1 , polyvinyl alcohol claim 1 , polyvinyl pyrrolidone claim 1 , polysaccharides claim 1 , sucroglycerides of edible vegetable oil claim 1 , and powdered smectite clay.4. The composition of wherein the flame retardant is in particulate form.5. The composition of wherein the flame retardant is a water-soluble salt.6. The composition of wherein the water-soluble salt is at least one of the group consisting of guanidine hydrochloride claim 5 , guanidine acetate claim 5 , guanidine sulfate claim 5 , guanidine carbonate claim 5 , guanidine thiocyanate claim 5 , guanidine nitrate claim 5 , and guanidine carbonate.7. The composition of wherein the liquid is an organic solvent.8. The composition of wherein the liquid is water.9. The composition of wherein the oxidizer is potassium nitrate.10. The composition of wherein the fuel is at least one of the group consisting of silicon and charcoal.11. The composition of ...

Подробнее
16-08-2018 дата публикации

Method for the Degassing of Hypergolic Propellants

Номер: US20180229154A1
Принадлежит: Arianegroup Gmbh

A method for the degassing of hypergolic propellants includes introducing hypergolic propellant into a vacuum-tight vessel, cooling the vacuum-tight vessel containing the hypergolic propellant, and applying a pressure that is reduced as compared to the atmospheric pressure to the hypergolic propellant.

Подробнее
17-08-2017 дата публикации

SYSTEMS FOR PRODUCING DEMN EUTECTIC, AND RELATED METHODS OF FORMING AN ENERGETIC COMPOSITION

Номер: US20170233307A1
Принадлежит:

A method of producing DEMN eutectic comprises reacting a reactant mixture comprising ethylenediamine and diethylenetriamine with aqueous nitric acid to form a reaction mixture comprising diethylentriamine trinitrate and ethylenediamine dinitrate. The reaction mixture is combined with methylnitroguanidine and nitroguanidine to form an aqueous slurry. Water is removed from the aqueous slurry. A method of producing an energetic composition, and a system for producing DEMN eutectic are also described. 1. A method of producing an energetic composition , comprising:reacting a reactant mixture comprising ethylenediamine and diethylenetriamine with an aqueous solution comprising from about 60 percent by weight nitric acid to about 75 percent by weight nitric acid at a temperature of from about 10° C. to about 90° C. to form a reaction mixture comprising ethylenediamine dinitrate and diethylentriamine trinitrate and exhibiting a pH within a range of from about 0 to about 7;combining the reaction mixture with methylnitroguanidine and nitroguanidine to form an aqueous slurry; andheating the aqueous slurry at a temperature of from about 50° C. to about 150° C. and under at least one of negative pressure and air sparge to form a DEMN eutectic comprising ethylenediamine dinitrate, diethylentriamine trinitrate, methylnitroguanidine, nitroguanidine, and from about 0.1 percent by weight water to about 2 percent by weight water.2. The method of claim 1 , further comprising cooling the DEMN eutectic to form a solid DEMN eutectic.3. The method of claim 1 , further comprising forming particles of DEMN eutectic from the DEMN eutectic.4. The method of claim 1 , further comprising combining the DEMN eutectic with an energetic material.5. The method of claim 1 , further comprising combining the DEMN eutectic with at least one of 1 claim 1 ,3 claim 1 ,5-triaza-1 claim 1 ,3 claim 1 ,5-trinitocyclohexane claim 1 , 1 claim 1 ,3 claim 1 ,5 claim 1 ,7-tetraaza-1 claim 1 ,3 claim 1 ,5 claim 1 ,7- ...

Подробнее
26-08-2021 дата публикации

Sorbent and Devices for Capturing, Stabilizing, and Recovering Volatile and Semi-volatile Compounds

Номер: US20210260562A1
Принадлежит: XPLOSAFE, LLC

The present invention provides an improved sorbent and corresponding device(s) and uses thereof for the capture and stabilization of volatile organic compounds (VOC) or semi-volatile organic compounds (SVOC) from a gaseous atmosphere. The sorbent is capable of rapid and high uptake of one or more compounds and provides quantitative release (recovery) of the compound(s) when exposed to elevated temperature and/or organic solvent. Uses of particular improved grades of mesoporous silica are disclosed. 1) A flexible device for passive sampling of volatile organic compound or semi-volatile organic compound in air or gaseous environment , the device comprisinga flexible facing layer;a flexible intermediate layer;a flexible backing layer comprising attachment means; andone or more sorbent-holding containers disposed between said facing layer and said intermediate layer, said containers retaining respective charges of sorbent; whereinsaid facing layer, said intermediate layer, and said one or more sorbent-holding containers are permeable to volatile organic compound (VOC) and/or semi-volatile organic compound (SVOC).2) The device of claim 1 , wherein a) said facing layer and said intermediate layer are independently selected upon each occurrence from a mesh claim 1 , fabric claim 1 , foam claim 1 , material through which VOC or SVOC can pass claim 1 , or any combination thereof; b) said device further comprises one or more non-permeable sorb ent-holding containers comprising VOC- and SVOC-impermeable material defining a sealed chamber retaining a charge of sorbent; c) said device further comprises VOC- and SVOC-impermeable packaging material enclosing said device; d) said one or more porous sorbent-holding containers is replaceable; e) said device is reusable; f) said device further comprises VOC- and SVOC-impermeable packaging material enclosing said one or more sorbent-holding containers; g) said backing layer is non-permeable to VOC or SVOC; h) said backing layer is ...

Подробнее
09-09-2021 дата публикации

Energetic Feedstock for Additive Manufacturing

Номер: US20210276931A1
Принадлежит:

The present invention comprises formulations and method for additive manufacturing comprising: a pot-stable photo-curable polymer; one or more fillers; and one or more additives, wherein the formulation cures into a polymer in six hours or less upon exposure to light. In certain examples, the additive manufacturing is a moldless method of additive manufacturing by preparing a formulation comprising: a pot-stable photo-curable polymer, one or more fillers, and one or more additives, and exposing the formulation to light in an amount that substantially cures the polymer in 6 hours or less. 1. A formulation for additive manufacturing comprising:a pot-stable photo-curable polymer;one or more fillers; andone or more additives, wherein the formulation cures into a polymer in six hours or less upon exposure to light.2. The formulation of claim 1 , wherein the one or more fillers are selected from at least one of: nitrotriazolone (NTO); 1 claim 1 ,3 claim 1 ,5-trinitro-1 claim 1 ,3 claim 1 ,5-triazinane (RDX); 1 claim 1 ,3 claim 1 ,5 claim 1 ,7-tetranitro-1 claim 1 ,3 claim 1 ,5 claim 1 ,7-tetrazocane (HMX); hexanitrohexaazaisowurtzitane (HNIW/CL-20); ethylene dinitramine (EDNA); aromatic nitramines such as trinitrophenylmethylnitramine (tetryl); nitroglycerine (NG); butanetriol trinitrate (BTTN); pentaerythritol tetranitrate (PETN); 2 claim 1 ,4-dinitroanisole (DNAN); trinitrotoluene (TNT); hexanitrostilbene (HNS); triaminotrinitrobenzene (TATB); 1 claim 1 ,1-diamino-2 claim 1 ,2-dinitroethene (DADNE/FOX-7); inorganic oxidizers such as ammonium nitrate (AN); ammonium perchlorate (AP); ammonium dinitramide (ADN); guanylurea dinitramide (GUDN/FOX-12); energetic alkali metal salts; energetic alkaline earth metal salts; and combinations thereof; orwherein the polymer has a backbone (linear or branched) that is selected from at least one of: polybutadiene, poly(butadiene-co-acrylonitrile), poly(azidomethyl ethylene oxide), poly(bis-azidomethyl oxetane), poly(nitratomethyl- ...

Подробнее
31-08-2017 дата публикации

EMULSION MATRIX GROUND STATION WITH INTRINSIC SAFETY

Номер: US20170246598A1
Автор: TANG Qiuming

Provided is an emulsion matrix ground station with intrinsic safety, which relates to the technical field of emulsion matrix preparation process and apparatus of mobile ground auxiliary equipment in civil explosive industry. The emulsion matrix ground station may include a water phase tank, an oil phase tank, a water phase pump, an oil phase pump and a static emulsification device. The water phase pump may have an inlet connected to an outlet of the water phase tank by a pipeline, and an outlet connected to a water phase inlet of the static emulsification device by a pipeline. The oil phase pump may have an inlet connected to an outlet of the oil phase tank by a pipeline, and an outlet connected to an oil phase inlet of the static emulsification device by a pipeline. 19. An emulsion matrix ground station with intrinsic safety , comprising a water phase tank , an oil phase tank , a water phase pump , an oil phase pump () and a static emulsification device , wherein ,the water phase pump has an inlet connected to an outlet of the water phase tank by a pipeline, and an outlet connected to a water phase inlet of the static emulsification device by a pipeline;the oil phase pump has an inlet connected to an outlet of the oil phase tank by a pipeline, and an outlet connected to an oil phase inlet of the static emulsification device by a pipeline.2. The emulsion matrix ground station with intrinsic safety of claim 1 , wherein claim 1 , the static emulsification device comprises the oil phase inlet claim 1 , the water phase inlet claim 1 , a flange sleeve claim 1 , emulsification inner cores and an emulsification device outlet claim 1 , wherein claim 1 ,an inner sleeve is provided inside the flange sleeve with a sealed cavity formed between an outer wall of the inner sleeve and an inner wall of the flange sleeve, the water phase inlet is provided on a side wall of the flange sleeve and is communicated with the sealed cavity, at least three stages of emulsification inner ...

Подробнее
31-08-2017 дата публикации

Additive manufacturing using pressurized slurry feed

Номер: US20170246800A1
Принадлежит: Aerojet Rocketdyne Inc

An additive manufacturing process includes pressurizing and heating a slurry, flowing the pressurized heated slurry through a nozzle, and depositing the slurry in a predetermined pattern.

Подробнее
30-07-2020 дата публикации

ACOUSTIC MIXERS

Номер: US20200238238A1
Принадлежит:

A processing vessel () provided with a material inlet () and a processed material outlet () wherein the material flows continuously through the vessel which is split into a series of zones () through which the material passes wherein the zones are shielded from each other by controlling the rate at which the material flows and an increasing level of vacuum is applied inconsecutive zones and the system is provided with acoustic energy which imparts energy to the process material by virtue of the contact between the zone dividers and the process material and processing material in such a vessel. 1. A continuous processing system comprising a processing vessel provided with a material inlet and a processed material outlet wherein the material flows through the vessel and the vessel comprises a series of dividers which split the process vessel into a series of zones through which the material passes wherein during operation the zones are shielded from each other by controlling the rate at which the material can flow passed the dividers and an increasing level of vacuum is applied in consecutive zones and wherein the system is provided with acoustic energy which imparts energy to the process material by virtue of the contact between the dividers and the process material.2. A system according to in which the process material is introduced at the top of the process vessel and passes downwards through the process vessel under gravity through the series of zones and is taken off towards the bottom of the process vessel through the process material outlet.3. A system according to in which the dividers are provided with holes for passage of the process material.4. A system according to in which the flow of the process material down the process vessel is controlled by the dividers such that it flows through the holes provided in the dividers whilst at the same time sufficient process material lies in the holes in the dividers as it passes through them to ensure that there is a ...

Подробнее
30-07-2020 дата публикации

Co-Layered Propellant Charge

Номер: US20200239380A1
Принадлежит:

The invention is directed to a co-layered propellant grain having an exposed outer surface, wherein said propellant grain comprises an outer layer comprising a slow burning propellant composition located on essentially the entire outer surface of the grain, and an inner layer comprising a fast burning propellant composition having a higher linear burn rate than said slow burning propellant composition; wherein said propellant grain has a structure such that after ignition, the inner layer becomes increasingly exposed at the outer surface. 1. A propellant grain having an exposed outer surface , wherein said propellant grain comprises an outer layer comprising a slow burning propellant composition located on essentially the entire outer surface of the grain , and an inner layer comprising a fast burning propellant composition having a higher linear burn rate than said slow burning propellant composition; wherein said propellant grain has a structure such that after ignition , the inner layer becomes increasingly exposed at the outer surface , wherein the grain further comprises an exposed inner surface having an area that increases after ignition.2. The propellant grain according to claim 1 , wherein said inner layer is located on at least part of the inner surface.3. The propellant grain according to claim 1 , having a longitudinally extending shape and one or more perforations passing through the grain in the length direction that provide said inner surface of the grain.4. The propellant grain according to having a L/D ratio of more than 2 claim 1 , wherein the L/D ratio is defined as the ratio of the maximum dimension of the grain in the length direction divided by the maximal dimension of the grain perpendicular to the length direction of the grain.5. The propellant grain according to claim 1 , having a cylindrical or prism shape.6. The propellant grain according to claim 1 , wherein said inner layer has a cross-sectional shape that has one or more vertices ...

Подробнее
07-09-2017 дата публикации

SOLID PROPELLANT WITH INTEGRAL ELECTRODES, AND METHOD

Номер: US20170253536A1
Принадлежит:

A device may include an electrically-operated propellant or energetic gas-generating material, additively manufactured together with electrodes for producing a reaction in the material. The device may also include a casing that is additively manufactured with the other components. The additive manufacturing may be accomplished by extruding or otherwise depositing raw materials for the different components where desired. The electrodes may be made of a conductive polymer material, for example using an electrically-conductive fill in a polymer. 1. A method of making a gas-producing device , the method comprising: forming electrodes; and', 'forming electrically-controlled solid propellant material in contact with and operatively coupled to the electrodes., 'in a single additive manufacturing process2. The method of claim 1 , wherein the single additive manufacturing process further includes forming a casing around the electrodes and the electrically-controlled solid propellant material.3. The method of claim 1 , further comprising inserting the electrodes and the electrically-controlled solid propellant material into a pre-formed casing.4. The method of claim 1 , wherein the forming the electrically-controlled solid propellant material includes forming the electrically-controlled solid propellant materials between adjacent pairs of electrodes.5. The method of claim 1 ,wherein the forming the electrodes includes forming multiple adjacent pairs of electrodes; andwherein the forming the electrically-controlled solid propellant material includes forming the electrically-controlled solid propellant materials between the adjacent pairs of electrodes.6. The method of claim 1 , wherein the forming the electrodes includes forming multiple plate electrodes with the electrically-controlled solid propellant material between adjacent of the plate electrodes.7. The method of claim 6 , wherein the plate electrodes are parallel to one another.8. The method of claim 1 , wherein the ...

Подробнее
07-09-2017 дата публикации

METHOD OF PRODUCING SOLID PROPELLANT ELEMENT

Номер: US20170253537A1
Принадлежит:

A method of producing a propellant material element, such as an electrically-operated propellant material, includes extruding a propellant material through a heated nozzle. The nozzle may be heated to a temperature that is above the boiling point of a solvent that is part of the propellant material, yet is below a decomposition temperature of the propellant material. This allows some of the solvent to be driven off during the extruding process, while still preventing initiation of an energy-creating reaction within the material. The heating of the material in the extruding process, and especially the heating of the nozzle that the material is extruded through, may be controlled to remove an amount of solvent that results in the extruded material having desirable properties. 1. A method of additively manufacturing a solid propellant element , the method comprising:heating a nozzle to produce a heated nozzle; andextruding through the heated nozzle a propellant material that includes a solvent, to form the solid propellant element;wherein the extruding occurs when the heated nozzle is at a temperature that above a boiling point of the solvent and below a decomposition temperature of the propellant material; andwherein the extruding removes some of the solvent from the propellant material.2. The method of claim 1 ,wherein the solvent is water and/or glycerol; andwherein the extruding through the heated nozzle removes some of the water and/or glycerol from the propellant material.3. The method of claim 1 , wherein the extruding includes extruding through a heated nozzle that is between 100 and 210 degrees C.4. The method of claim 3 , wherein the extruding includes extruding through a heated nozzle that is between 150 and 210 degrees C.5. The method of claim 1 , wherein the extruding includes directing the propellant material from a reservoir of the propellant material claim 1 , to the heated nozzle.6. The method of claim 5 , wherein the directing includes using a stepper ...

Подробнее
30-09-2021 дата публикации

PBX COMPOSITION

Номер: US20210300838A1
Принадлежит: BAE SYSTEMS plc

The invention relates to a cast explosive composition. There is provided a precure castable explosive composition comprising an explosive material, a polymerisable binder, said cross linking reagent comprising at least two reactive groups each of which is protected by a labile blocking group.

Подробнее
21-09-2017 дата публикации

SOLID COMBUSTIBLE PROPELLANT COMPOSITION

Номер: US20170267601A1
Принадлежит:

A combustible solid propellant composition is disclosed that includes an oxidizer of the reaction product under vacuum of potassium periodate and isocyanate, a polymer binder, a plasticizer, and a fuel.

Подробнее
20-09-2018 дата публикации

Extended bulk explosives and method of making the same

Номер: US20180265426A1
Автор: Michael Alan Fritz
Принадлежит: Individual

A resulting extended bulk explosive and the process for preparing and blending oil shale particulate with bulk explosives is provided, whereby the extending bulk explosive reduces its detonation velocity. The process includes the proper preparation of oil shale granulates to gain different cost effects and performance levels with predetermined blending percentages. The oil shale granulates may be crushed, screened, dried and prepared for blending in accordance to the disclosure of the present invention.

Подробнее
11-12-2014 дата публикации

Method for Producing a Fragment / Reactive Material Assembly

Номер: US20140360635A1
Автор: Alven David A.
Принадлежит: Aerojet Rocketdyne, Inc.

A method for the manufacture of a composite fragmenting material having exothermic properties includes the steps of packing a mold with preformed metal fragments; filling interstitial spaces surrounding the metal fragments with a reactive metal powder to form a mixture; and then sintering the mixture at a temperature effective to both coat the metal fragments with the reactive metal powder and to bond the metal fragments together. In one embodiment the composite fragmenting material is formed into a nosecone for a warhead. 1. A method for the manufacture of a composite fragmenting material having exothermic properties , comprising the steps of:packing a mold with preformed metal fragments;filling interstitial spaces surrounding said metal fragments with a reactive metal powder to form a mixture; andsintering said mixture at a temperature effective to both coat said metal fragments with said reactive metal powder and to bond said metal fragments together.2. The method of wherein said reactive metal powder is selected to be pyrophoric in the presence of oxygen at temperatures reached during detonation of a warhead.3. The method of wherein said reactive metal powder is selected from the group consisting of zirconium claim 2 , niobium claim 2 , hafnium claim 2 , aluminum claim 2 , titanium claim 2 , magnesium and alloys of those metals containing more than 50% claim 2 , by weight claim 2 , of those metals.4. The method of wherein said reactive metal is selected to be zirconium or a zirconium-base alloy.5. The method of wherein said mixture is sintered at a temperature of between 1200° C. and 1500° C.6. The method of wherein a vacuum of between 10torr and 10torr is applied to said mixture during the step of sintering.7. A composite fragmenting material claim 5 , comprising:a plurality of metal fragments dispersed in a reactive metal matrix.8. The composite fragmenting material of wherein the fragments are selected from the group consisting of steel claim 7 , tantalum ...

Подробнее
08-10-2015 дата публикации

METHOD OF MANUFACTURING MULTI-LAYERED PROPELLANT GRAINS

Номер: US20150284301A1

A method of manufacturing a multi-layered propellant grain is provided. The method of the present disclosure simplifies the setup necessary to produce multi-layered propellants by using industrial equipment that is more energy and space efficient than the machinery that is conventionally employed for such processes. The method comprises providing a first propellant formulation; providing a die configured to provide a structure having an outer shell and a hollow interior when material is extruded therethrough; extruding the first propellant formulation through said die, to produce a first propellant layer having an outer shell defining a hollow interior in the form channel having open ends; providing a second propellant formulation, said second propellant formulation being of low viscosity; injecting said second propellant formulation into said channel defined by said first propellant layer to form a second propellant layer disposed in said channel; and hardening said second propellant layer. The first and second propellant layers have different rates of burning. 2. The method according to wherein the viscosity of the said second propellant formulation is in the range of about 0 to about 2000 pascal·seconds.3. The method according to wherein the first propellant layer is shaped as tube.4. The method according to wherein the propellant grain produced is composed of two concentric cylinders.5. The method according to wherein the first propellant layer is a slow burning layer composed of about 55% nitrocellulose and about 45% trimethylolethane trinitrate (TMETN).6. The method according to wherein the second propellant layer is a fast burning layer composed of about 26% GAP claim 1 , about 39% TMETN and about 35% RDX.7. The method according to wherein the step of extruding the first propellant formulation through said die is carried out with a ram press or a screw extruder.8. The method according to wherein the step of injecting said second propellant formulation into ...

Подробнее
18-12-2014 дата публикации

PROCESSING EXPLOSIVES

Номер: US20140367003A1
Принадлежит:

The invention relates to a method of producing a range of particulate energetic materials with tailored particle sizes and extremely narrow particle size distributions. The use of membrane emulsification apparatus provides a means of formulating explosives with a selectable particle size, without the use of milling techniques to physically reduce the size of the particulates. 1. A method of providing an energetic material composition with a narrow particulate size distribution , the method comprising:forming a dispersed phase, comprising at least one first solvent wherein at least one energetic material is dissolved therein;forming a continuous phase, comprising at least one second solvent which is substantially immiscible with said dispersed phase;causing a forming droplet of said dispersed phase to be furnished in said continuous phase; andcausing a shear force to be exerted on the forming droplet of dispersed phase material, to furnish a droplet.2. A method according to wherein the continuous phase comprises an aliquot of the first solvent claim 1 , to prevent premature precipitation of particulates of said newly formed emulsion.3. A method according to wherein there is pre-saturation of the continuous phase with the first solvent.4. A method according to wherein the forming droplet is caused by a micro porous membrane or microcavity structure.5. A method according to wherein the micro porous membrane or microcavity structure is initially wetted with an aliquot of the continuous phase.6. A method according to where the solvent can dissolve at least 5% w/v of energetic material.7. A method according to wherein the continuous phases comprises surfactants claim 1 , stabilisers and crystal habit modifiers8. A method according to wherein the dispersed phase comprises stabilisers claim 1 , polymers claim 1 , binders claim 1 , energetic binders claim 1 , crystal habit modifiers.9. A method according to wherein removal of the first solvent from the dispersed phase is ...

Подробнее
27-09-2018 дата публикации

Propellant Grain for Optimizing the Interior Ballistic Performance of a Weapon

Номер: US20180273438A1

A method of manufacturing and optimizing energetic propellant grains includes generating an optimal surface area to mass fraction burned ratio profile for a predetermined solid structure including propellant grains; using the profile as a target function of a topological optimization process to generate a 3D form of a propellant grain; developing a negative of the 3D form of the propellant grain; mixing and densifying the negative with an energetic material in an uncured form in a mixer to create a structure including the energetic material and embedded negative; and solvating the negative from the structure, wherein the negative comprises a 3D propellant grain. The developing of the negative of the 3D form of the propellant grain may occur using a predetermined material in an additive manufacturing process. The negative may be soluble in the predetermined material, and the energetic material may be insoluble in the predetermined material.

Подробнее
05-09-2019 дата публикации

Three part mixing process for energetic materials and epoxy binder

Номер: US20190270683A1
Принадлежит: US Department of Navy

The present invention relates to methods of preparing pre-mixed compositions that can be combined to form pyrotechnic compositions. In exemplary embodiments, a binder ingredient is premixed with the pyrotechnic fuels and can also include other pyrotechnic additives and processing aides. Other binder ingredients can be premixed with the pyrotechnic oxidizers and can also include other pyrotechnic additives and processing aides. The resulting mixtures are not explosive and are therefore easier to store and much safer to handle. These pre-mixed mixtures can be stored in bulk until needed and rapidly combined to achieve final composition.

Подробнее
06-10-2016 дата публикации

COMPOSITE PYROTECHNIC PRODUCT WITH NON-CROSSLINKED BINDER AND METHOD FOR PREPARING SAME

Номер: US20160289133A1
Принадлежит:

A composite pyrotechnic product, especially a propellant powder for barrel weapons, has a composition, expressed as weight percentages, that contains from 78% to 90% of organic energetic charges, and from 10% to 22% of a polymeric gum, chosen from polyurethane-polyester gums, polyurethane-polyether gums and mixtures thereof, the number-average molecular weight of which is greater than 20 000 g/mol and the Mooney viscosity of which is between 20 and 70 ML (5+4) at 100° C. 1. A composite pyrotechnic product whose composition , expressed as weight percentages , contains:from 78% to 90% of organic energetic charges, andfrom 10% to 22% of a polymeric gum, chosen from polyurethane-polyester gums, polyurethane-polyether gums and mixtures thereof, a number-average molecular weight of which is greater than 20 000 g/mol and a Mooney viscosity of which is between 20 and 70 ML (5+4) at 100° C.2. The composite pyrotechnic product as claimed in claim 1 , wherein said organic energetic charges consist of hexogen claim 1 , octogen claim 1 , nitroguanidine claim 1 , ethylene dinitramine claim 1 , N-guanylurea dinitramide claim 1 , 1 claim 1 ,1-diamino-2 claim 1 ,2-dinitroethylene claim 1 , bis(triaminoguanidinium) 5 claim 1 ,5′-azotetrazolate claim 1 , dihydrazinium 5 claim 1 ,5′-azotetrazolate claim 1 , 5 claim 1 ,5′-bis(tetrazolyl)hydrazine claim 1 , bis(2 claim 1 ,2-dinitropropyl)nitramine claim 1 , a nitropyrazole claim 1 , or a mixture of such charges.3. The composite pyrotechnic product as claimed in claim 1 , wherein said organic energetic charges contain ethylene dinitramine charges.4. The composite pyrotechnic product as claimed in claim 1 , wherein said polymeric gum has a number-average molecular weight of greater than 50 000 g/mol.5. The composite pyrotechnic product as claimed in claim 1 , wherein said gum is a polyurethane-polyester gum or a polyurethane-polyether gum.6. The composite pyrotechnic product as claimed in claim 1 , wherein the composition also contains at ...

Подробнее
06-10-2016 дата публикации

COMPOSITE PYROTECHNIC PRODUCT WITH CROSSLINKED BINDER AND METHOD FOR PREPARING SAME

Номер: US20160289134A1
Принадлежит:

A composite pyrotechnic product, especially a propellant powder for barrel weapons, containing organic energetic charges in a crosslinked binder, has a composition, expressed as weight percentages, that contains from 78% to 90% of organic energetic charges, and from 10% to 22% of an energetic crosslinked binder obtained by crosslinking, via 8% to 12% of its azide functions, a polyglycidyl azide with a number-average molecular weight of between 700 and 3000 g/mol, with a crosslinking agent containing at least two propargyl functions in its chemical formula, in the presence of a polymeric gum, chosen from polyurethane-polyester gums, polyurethane-polyether gums and mixtures thereof, the number-average molecular weight of which is greater than 20000 g/mol and the Mooney viscosity of which is between 20 and 70 ML (5+4) at 100° C.; the at least one polymeric gum representing from 1% to 5% by weight of the composition of the pyrotechnic product. 1. A composite pyrotechnic product containing organic energetic charges in a crosslinked binder , wherein a composition of said composite pyrotechnic product , expressed as weight percentages , contains:from 78% to 90% of organic energetic charges, andfrom 10% to 22% of an energetic crosslinked binder obtained by crosslinking, via only 8% to 12% of its azide functions, a polyglycidyl azide with a number-average molecular weight of between 700 and 3000 g/mol, with at least one crosslinking agent containing at least two propargyl functions in its chemical formula, in the presence of a polymeric gum, chosen from polyurethane-polyester gums, polyurethane-polyether gums and mixtures thereof, a number-average molecular weight of which is greater than 20000 g/mol and a Mooney viscosity of which is between 20 and 70 ML (5+4) at 100° C.; said at least one polymeric gum representing from 1% to 5% by weight of the composition of said pyrotechnic product.2. The composite pyrotechnic product as claimed in claim 1 , wherein said organic ...

Подробнее
25-12-2014 дата публикации

MICROBIAL DEACTIVATION OF EXPLOSIVE COMPOSITIONS

Номер: US20140377844A1
Принадлежит:

A method of deactivating an explosive composition being used in a blasting operation, which method comprises exposing the explosive composition to a micro-organism that is indigenous to the environment in which the explosive composition is being used and that is capable of producing an enzyme that degrades the explosive composition, wherein the explosive composition has associated with it a chemical inducing agent that promotes production of the enzyme by the micro-organism. 1. A method of deactivating an explosive composition being used in a blasting operation , which method comprises exposing the explosive composition to a micro-organism that is indigenous to the environment in which the explosive composition is being used and that is capable of producing an enzyme that degrades the explosive composition , wherein the explosive composition has associated with it a chemical inducing agent that promotes production of the enzyme by the micro-organism.2. An explosive composition comprising associated with it a chemical inducing agent that is capable of promoting production of an enzyme that degrades the explosive composition by a micro-organism that is indigenous to the environment in which the explosive composition is to be used.3. The method of or the explosive composition of , wherein the explosive composition is provided in an explosive cartridge , and wherein the cartridge has associated with it a chemical inducing agent that promotes production of the enzyme by the micro-organism.4PseudomonasEscherichia coli, Morganella morganii, RhodococcusComamanosAgrobacterium radiobacter, Enterobacter cloacae, Agrobacterium tumifaciens, Klebsiella pneumonia, Gibberella moniliformis. The method of or the explosive composition of , wherein the micro-organism is selected from the group consisting of spp. , spp. , spp. , and denitrifying bacteria.5. The method of or the explosive composition of , wherein the enzyme that degrades the explosive composition is selected from the ...

Подробнее
18-10-2018 дата публикации

METHOD OF MANUFACTURING PRESS POLYMER-BONDED EXPLOSIVE USING POLYMER EMULSION AND PRESS POLYMER-BONDED EXPLOSIVE MANUFACTURED USING THE SAME

Номер: US20180297909A1
Принадлежит:

A method of manufacturing a press polymer-bonded explosive, in which a polymer emulsion is used to maximize the efficiency of a process, and a press polymer-bonded explosive manufactured using the same. The method includes a polymer-emulsion-manufacturing step of mixing a monomer of a polymer binder and an emulsifier with a process water and then adding an initiator to thus manufacture a polymer emulsion using a polymerization reaction, a slurry-manufacturing step of mixing a raw material including an explosive and an emulsion breaker with fresh process water to thus manufacture a slurry, an agglomerated-particle-forming step of adding the manufactured polymer emulsion to the manufactured slurry to thus form agglomerated particles in which a surface of the raw material is coated with the polymer binder, and an agglomerated-particle-obtaining step of collecting the agglomerated particles using filtration and drying the collected agglomerated particles. 1. A method of manufacturing a press polymer-bonded explosive using a polymer emulsion , the method comprising:a polymer-emulsion-manufacturing step of mixing a monomer of a polymer binder and an emulsifier with a process water and then adding an initiator to thus manufacture a polymer emulsion using a polymerization reaction;a slurry-manufacturing step of mixing a raw material including an explosive and an emulsion breaker with fresh process water to thus manufacture a slurry;an agglomerated-particle-forming step of adding the manufactured polymer emulsion to the manufactured slurry to thus form agglomerated particles in which a surface of the raw material is coated with the polymer binder; andan agglomerated-particle-obtaining step of collecting the agglomerated particles using filtration and drying the collected agglomerated particles.2. The method of claim 1 , wherein claim 1 , during the polymer-emulsion-manufacturing step claim 1 , the monomer forms the polymer binder of one or more among a styrene butadiene ...

Подробнее
03-10-2019 дата публикации

NANOENERGETIC MATERIAL COMPOSITE-BASED SOLID PROPELLANT, METHOD OF PREPARING THE SAME, AND PROJECTILE USING THE SAME

Номер: US20190300453A1

Disclosed are a nanoenergetic material composite-based solid propellant, a method of preparing the same, and a projectile using the same. The propellant includes: potassium nitrate-sucrose (KNSU) composite powder; and nanoenergetic material (nEM) composite powder in a solid powder form mixed with the KNSU composite powder to prepare a KNSU/nEM propellant. The method includes: preparing KNSU composite powder; preparing nEM composite powder; and preparing a KNSU/nEM propellant by mixing the KNSU composite powder and the nEM composite powder in a solid powder form. The projectile includes: a clay block; a clay nozzle responsible for releasing the pressure generated by explosion of a propellant; and a propellant lamination area disposed between the clay block and the clay nozzle. Upon ignition of the KNSU/nEM propellant, the nEM composite powder increases the combustion rate and combustion temperature of a potassium nitrate-sucrose (KNSU) propellant. 1. A nanoenergetic material composite-based solid propellant , comprising:potassium nitrate-sucrose (KNSU) composite powder; andnanoenergetic material (nEM) composite powder in a solid powder form mixed with the potassium nitrate-sucrose (KNSU) composite powder to prepare a KNSU/nEM propellant,wherein upon ignition of the KNSU/nEM propellant, the nanoenergetic material (nEM) composite powder increases the combustion rate and combustion temperature of a potassium nitrate-sucrose (KNSU) propellant.2. The nanoenergetic material composite-based solid propellant according to claim 1 , wherein the potassium nitrate-sucrose (KNSU) composite powder is prepared by physically mixing sucrose (CHO) and potassium nitrate (KNO) in a mass ratio of 35 to 65 (CHO:KNO=35:65).3. The nanoenergetic material composite-based solid propellant according to claim 1 , wherein the nanoenergetic material (nEM) composite powder is prepared by mixing Al nanoparticles (Al NPs) as a fuel material and CuO nanoparticles (CuO NPs) as an oxidizing material in ...

Подробнее
10-11-2016 дата публикации

METHOD FOR PROCESSING OF EXPIRED SOLID ROCKET PROPELLANT

Номер: US20160325992A1
Принадлежит:

A method for processing of expired solid rocket propellant containing ammonium perchlorate, powdered aluminium, and a rubber-based binder for the purpose of recycling ammonium perchlorate, the method comprising: a) wet disintegration of solid propellant in a solution to produce a suspension of solid substances; b) leaching of the suspension of solid substances at an increased temperature in a leaching solution to produce an ammonium perchlorate solution, the leaching solution including at least one of water and unsaturated ammonium perchlorate and containing added inert material based on at least one of porous carbon, diatomaceous earth and a polymer; c) wherein the use of the inert material during the leaching process increases de-agglomeration and decreases re-agglomeration of solid substances of the suspension of solid substances; d) separation of the ammonium perchlorate solution from the suspension of solid substances, the separated ammonium perchlorate solution also containing at least some of the inert material; e) refining of the separated ammonium perchlorate solution from step d) at an increased temperature; f) separation of the at least some of the inert material from the separated ammonium perchlorate solution to produce recycled ammonium perchlorate; g) crystallization of the recycled ammonium perchlorate. 1. A method for processing of expired solid rocket propellant containing ammonium perchlorate , powdered aluminium , and a rubber-based binder for the purpose of recycling ammonium perchlorate , the method comprising:a) wet disintegration of the solid propellant in a solution to produce a suspension of solid substances;b) leaching of the suspension of solid substances at an increased temperature in a leaching solution to produce an ammonium perchlorate solution, the leaching solution including at least one of water and unsaturated ammonium perchlorate and containing added inert material based on at least one of porous carbon, diatomaceous earth and a ...

Подробнее
24-10-2019 дата публикации

NEUTRALIZATION METHOD USING REACTIVE ENERGETIC MATERIALS

Номер: US20190321671A1
Принадлежит: MATSYS INC.

Formulations of reactive materials, such as aluminum, magnesium and alloys thereof, with combustible additives such as wood derivatives or charcoal, provide a composition for neutralizing energetic materials via combustion. Specifically, explosive substances such as ammonium nitrate and urea nitrate, which are commonly used as homemade explosives, are rapidly incinerated in a non-propagating manner by the contact with burning reactive material formulations. 1. A method for neutralizing energetic materials , their formulations and precursors , comprising the steps of:contacting an energetic material to neutralize with a formulation comprising one or more reactive materials,arranging the energetic material to neutralize and the one or more reactive materials in a suitable configuration, andigniting the one or more reactive materials to initiate the combustion.2. The method of claim 1 , wherein the formulation of reactive materials consists of a plurality of reactive metals.3. The method of claim 1 , wherein the formulation of reactive materials consists of a plurality of reactive metals and an additive.4. The method of claim 2 , wherein the reactive metals consist of metals in elemental form claim 2 , alloy form claim 2 , or a mixture thereof.5. The method of claim 2 , wherein the reactive metals comprise one or more elemental metals selected from the group consisting of boron claim 2 , aluminum claim 2 , magnesium claim 2 , iron claim 2 , cobalt claim 2 , nickel claim 2 , titanium claim 2 , zirconium claim 2 , hafnium claim 2 , niobium claim 2 , tantalum claim 2 , zinc claim 2 , in any suitable ratio.6. The method of claim 2 , wherein the reactive metals comprise one or more alloys selected from the group consisting of an aluminum-magnesium alloy claim 2 , a zirconium-zinc alloy claim 2 , an aluminum-zirconium alloy claim 2 , an aluminum-titanium alloy claim 2 , and an aluminum-iron alloy.7. The method of claim 2 , wherein the reactive metals are intimately blended ...

Подробнее