05-02-2015 дата публикации
Номер: US20150034925A1
The present invention provides an organic light emitting diode substrate configured so that the light extraction efficiency of a single color organic light emitting diode element made from one type of light emitting material is high, so that there is no risk of an extraction wavelength deviating from a target light emission wavelength due to slight variations in a fine uneven structure, and so as to enable extraction of a narrow bandwidth of light, from visible light, that has any central wavelength within the near infrared band and that has a degree of broadness. Also provided are an organic light emitting diode, a manufacturing method for the organic light emitting diode substrate, a manufacturing method for the organic light emitting diode, an image display device, and an illumination device. The organic light emitting diode, which is a top emission-type, is configured so that at least the following are laminated on the substrate: a reflective layer comprising a metal material; an anode conductive layer comprising a transparent conductive material; an organic EL layer having a light emitting layer which contains an organic light emitting material; and a cathode conductive layer in which a semi-transmissive metal layer and a transparent conductive layer comprising a transparent conductive material are laminated. On the surface of the semi-transmissive metal layer that is in contact with the transparent conducive layer side, a two-dimensional lattice structure is formed in which a plurality of protrusions are arranged periodically and two-dimensionally. If in the surface the real part of propagation constant of a surface Plasmon expressed by complex numbers is k, a distance between centers (P), which is the distance between centers (P) of adjacent protrusions from among the protrusions formed on the surface, is set to be a value within the range of formula (1). When forming a triangular lattice structure as the two-dimensional lattice structure, P0 in formula (1) ...
Подробнее