THRUST PIECE FOR A DIAPHRAGM VALVE
This application claims the priority of German Patent Application, Serial No. 203 07 457.2, filed May 13, 2003, pursuant to 35 U.S.C. 119(a)-(d), the disclosure of which is incorporated herein by reference. The present invention relates, in general, to a compressor for operating a membrane of a diaphragm valve. A diaphragm valve of a type involved here includes a diaphragm acted upon by a compressor for opening and closing as the diaphragm is pressed against a valve stem of a valve body. The diaphragm may be made, for example, of polymer material. Normally, the compressor is made of metal and is moved by an adjustment drive in such a manner that the diaphragm is deflected by the compressor against the valve stem for closing the diaphragm valve. In open position of the diaphragm valve, the diaphragm is deflected away from the valve stem, as the compressor moves in a direction away from the valve stem. In diaphragm valves of this type, the compressor touches the diaphragm to thereby deflect it. During opening, the compressor executes a partial roll-off motion and is pushed away from the diaphragm. The polymer diaphragm is a sensitive component of the diaphragm valve and is exposed to increased wear as a result of local overstretching caused by the pressure applied by the compressor and as a result of frictional forces between the compressor and the diaphragm. Friction between the compressor and the diaphragm decreases also the operating force applied by the compressor so that the operation of the diaphragm valve requires an increase in the applied operating force. Wear of the diaphragm and local overstretching thereof reduces the service life of the diaphragm. It would therefore be desirable and advantageous to provide an improved compressor for operating a membrane of a diaphragm valve to obviate prior art shortcomings and to provide a longer service life of the diaphragm while reducing a friction between the compressor and the diaphragm. According to one aspect of the present invention, a compressor for operating a diaphragm of polymer material for a diaphragm valve includes a base body having a diaphragm-proximal surface, and a material layer at least partially provided on the diaphragm-proximal surface and having a very low coefficient of friction. The present invention resolves prior art problems by providing a material layer of very low coefficient of friction so that the friction between the compressor and the diaphragm is reduced and wear of the diaphragm is less during operation of the diaphragm valve. The provision of such a material layer also more effectively exploits the pressure forces applied by the compressor for deflecting the diaphragm against the valve stem of the valve body. As a consequence, contact between the diaphragm and the valve stem is improved. In addition, risk of local overstretching of the elastomer of the diaphragm is reduced so that overall the service life is significantly extended when taking into account reduced wear, more effective use of the pressure force, and prevention of local overstretching. According to another feature of the present invention, the material layer may be made of polytetrafluoroethylene (Teflon). Although the use of polytetrafluoroethylene is currently preferred, other materials are conceivable as well so long as they have a very low coefficient of friction. To ensure clarity, it is necessary to establish the definition of the term “very low coefficient of friction” that will be used throughout this disclosure. The term “very low coefficient of friction” relates hereby to material with a coefficient of friction in the range of 0.04 to 0.3. Polytetrafluoroethylene, for example, has a coefficient of friction of 0.04. According to another feature of the present invention, the material layer may be disposed at least in an area of the stem of the diaphragm valve for deflecting the diaphragm. In other words, the material layer is provided in the area of greatest pressure application upon the diaphragm, when the diaphragm valve assumes the closed position. Therefore, the compressor can be precisely constructed to include the material layer upon those areas that are exposed to greatest stress. Suitably, the material layer may be placed in the base body so that the base body acts as carrier for the material layer. According to another feature of the present invention, the material layer may be constructed as formed body for providing the diaphragm-proximal surface, with the formed body being firmly secured to the base body. In this way, the compressor has a two-part construction, in which the base body may, e.g., be made of metal, and assumes the function of a carrier for the material layer as formed body which covers at least the area that interacts with the diaphragm of the diaphragm valve. According to another feature of the present invention, the diaphragm-proximal surface of the base body may be, at least partially, coated with the material layer. Currently preferred is however to coat the diaphragm-proximal surface of the base body entirely with the material layer. A coating of the diaphragm-proximal surface of the base body is cost-efficient and easy to provide and also provides the compressor with properties of very low coefficient of friction so that wear of the diaphragm can be entirely reduced. According to another feature of the present invention, the material layer is molded around the base body, e.g. with PFA (perfluoralkoxy). Molding the material layer around the compressor is also easy to implement and cost-efficient. The present invention is thus based on the recognition to at least construct those areas of the compressor that come in direct contact with the diaphragm during opening and closing of the diaphragm valve with a very low coefficient of friction. As a result, the service life of the diaphragm valve is prolonged and the diaphragm can be operated by the compressor with little friction. Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which: FIG. 1 is a fragmentary schematic sectional view of a diaphragm valve with illustration of a compressor according to the present invention; FIG. 2 is a schematic, partly cross-sectional view of a variation of a compressor for the diaphragm valve of FIG. 1; FIG. 3 is a schematic, partly sectional view of another variation of a compressor for the diaphragm valve of FIG. 1; FIG. 4 is a side view of still another variation of a compressor for the diaphragm valve of FIG. 1; FIG. 4 FIG. 4 Throughout all the Figures, same or corresponding elements are generally indicated by same reference numerals. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way. It should also be understood that the drawings are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted. Turning now to the drawing, and in particular to FIG. 1, there is shown a fragmentary schematic sectional view of a diaphragm valve having a compressor, generally designated by reference numeral 1 and made, for example, of metal. The compressor 1 is connected to an adjustment device 2, shown only schematically, for actuating the compressor 1 to act upon a diaphragm 3, made for example of polymer material so that the diaphragm 3 is pushed against a valve stem 10 (FIG. 4 Referring now to FIG. 2, there is shown a schematic, partly cross-sectional view of a variation of a compressor for use in the diaphragm valve. In the following description, parts corresponding with those in FIG. 1 will be identified by corresponding reference numerals followed by an “a”. In this embodiment, provision is made for a compressor 1 FIG. 3 shows is a schematic, partly sectional view of another variation of a compressor for use in the diaphragm valve. Parts corresponding with those in FIG. 1 will be identified by corresponding reference numerals followed by a “b”. In this embodiment, provision is made for a compressor 1 Referring now to FIG. 4, there is shown a side view of yet another variation of compressor for use in the diaphragm valve. Parts corresponding with those in FIG. 1 will be identified by corresponding reference numerals followed by a “c”. In this embodiment, provision is made for a compressor 1 Common to all compressors 1, 1 While the invention has been illustrated and described in connection with currently preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit of the present invention. The embodiments were chosen and described in order to best explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims and includes equivalents of the elements recited therein: A pressing member for use on a membrane valve membrane (3), for opening and closing the polymeric membrane against a valve body slat, comprises a layer of low friction material, e.g. polytetrafluoroethylene, on the pressing member surface facing the membrane. The low friction material is located near the slat. The pressing member has a perfluoro alkoxy alkene polymer coating. Thrust piece for application of pressure to a diaphragm (3) of a diaphragm valve, which diaphragm (3) consists of polymeric material, for opening and closing under contact pressure of the diaphragm (3) against a web of a valve body, in which a material layer (6) having a very low coefficient of friction and comprising polytetrafluoroethylene or PFA is provided at least partly on that surface of a thrust piece base body (5, 5', 5'') which faces the diaphragm (3). Thrust piece according to Claim 1, characterized in that the material layer (6) having a very low coefficient of friction is provided at least on that region of the thrust piece base body (5'') which is coordinated with the web. Thrust piece according to either of Claims 1 and 2, characterized in that the material layer (6) having a very low coefficient of friction is inlaid in the thrust piece base body (5''). Thrust piece according to Claim 1 or 2, characterized in that the material layer (6) having a very low coefficient of friction is in the form of a moulding (7) for the formation of the surface which comes into contact with the diaphragm (3) and is firmly mounted on the thrust piece base body (5'). Thrust piece according to Claim 1 to 3, characterized in that that surface of the thrust piece base body (5) with the material layer (6) having a very low coefficient of friction which faces the diaphragm (3) is at least partly, preferably completely, coated. Thrust piece according to Claim 5, characterized in that the thrust piece base body (5) with the material layer (6) having a very low coefficient of friction is extrusion-coated.CROSS-REFERENCES TO RELATED APPLICATIONS
BACKGROUND OF THE INVENTION
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWING
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS