СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА АЛЮМИНИЯ

18-12-2017 дата публикации
Номер:
RU2638847C1
Контакты: 199106, Sankt-Peterburg, V.O., 21 liniya, 2, FGBOU VO "Sankt-Peterburgskij gornyj universitet", otdel intellektualnoj sobstvennosti i transfera tekhnologij (otdel IS i TT)
Номер заявки: 25-15-201671
Дата заявки: 29-12-2016

[1]

Изобретение относится к области химии и цветной металлургии и может быть использовано при переработке алюминийсодержащего сырья, в том числе бокситов, нефелинов и других руд щелочными способами.

[2]

Известен способ извлечения металлов из металлсодержащих отработанных катализаторов на основе оксидов алюминия и/или кремния (патент RU №2075526, опубл. 20.03.1997 г.), включающий выделение гидроксида алюминия из алюминатного раствора в присутствии затравочного гидроксида алюминия последовательно карбонизацией и декомпозицией, фильтрацию, промывку гидроксида алюминия и его последующую кальцинацию, отличающийся тем, что на стадию карбонизации вводят затравочный гидроксид алюминия с содержанием класса минус 45 мкм в количестве 80-100%, и затравочное отношение поддерживают в пределах 0,02-0,25 ед., кроме того, при карбонизации вводят модификатор роста кристаллов.

[3]

К недостаткам способа относится получение продукта с широким интервалом крупности частиц, необходимость приготовления и введения на стадию карбонизации кальцийсодержащего модификатора, с которым в конечный продукт вносится нежелательное количество оксида кальция, необходимость нейтрализации алюминатных растворов углекислым газом.

[4]

Известен способ получения гидроксида алюминия (авторское свидетельство SU №599481, опубл. 10.06.1999 г.) карбонизацией алюминатного раствора и последующей флотацией в присутствии поливинилового спирта, отличающийся тем, что с целью получения мелкодисперсной гидроокиси алюминия с узким интервалом содержания фракций, поливиниловый спирт вводят в алюминатный раствор перед карбонизацией.

[5]

К недостаткам данного способа относится необходимость использования поливинилового спирта в качестве дополнительного расходного материала, применение флотации для отделения мелкодисперсной гидроокиси алюминия, необходимость частичной или полной нейтрализации алюминатных растворов углекислым газом.

[6]

Известен способ переработки алюминатного раствора при производстве глинозема из нефелина (патент RU №2184703, опубл. 10.07.2002 г.), включающий выщелачивание, обескремнивание, разделение потока алюминатного раствора на две части, одну из которых подают в содовую батарею и разлагают карбонизацией с получением гидроксида алюминия, вторую - в содощелочную батарею и разлагают карбонизацией и выкручиванием, классифицируют полученную суспензию в классификаторе, фильтруют гидроксид алюминия и маточный раствор. Раствор, поступающий в содощелочную батарею, предварительно смешивают с гидроксидом алюминия, отобранным из верхней зоны классификатора, и выдерживают при постоянном перемешивании и температуре 87-65°C в течение 1-4 часов. Полученную суспензию смешивают с гидроксидом алюминия из содовой батареи и обрабатывают углекислым газом. Количество гидроксида алюминия, отобранное из верхней зоны классификатора и возвращаемое в содощелочную ветвь составляет 0,07-0,5 от концентрации Al2O3 в алюминатном растворе. Суспензию после обработки углекислым газом выдерживают при постоянном перемешивании до достижения каустического модуля 3,1-4,1.

[7]

К недостаткам способа относится необходимость организации многопотоковой схемы движения растворов и пульп, включая их промежуточную классификацию, невозможность получения гидроксида алюминия высокой дисперсности, а также необходимость частичной или полной нейтрализации алюминатных растворов углекислым газом.

[8]

Известен способ переработки алюминатных растворов (патент RU №2200706, опубл. 20.03.2003 г.), включающий разложение алюминатных растворов карбонизацией путем смешения с дымовыми газами, содержащими CO2, отделение жидкости от частиц образовавшегося гидроксида алюминия, переработку жидкой фазы на содопродукт, а твердой - на продукционный гидрат и глинозем. Алюминатные растворы берут с концентрацией 70,1-79 г/л. Смешение алюминатных растворов с газами, содержащими CO2, осуществляется при соотношении ТСр-раку=33÷44, а в конце карбонизации соотношение уменьшается до ТСр-раку=18÷24, где ТСр-ра - температура алюминатного раствора, а αку - каустический модуль алюминатного раствора.

[9]

Недостатком способа является необходимость изменения температурного режима карбонизации алюминатных растворов от начала процесса к его окончанию, получение продукта с широким интервалом крупности частиц, невозможность получения гидроксида алюминия высокой дисперсности, а также необходимость частичной или полной нейтрализации алюминатных растворов углекислым газом.

[10]

Известен способ разложения алюминатных растворов карбонизацией (патент RU №2305101, опубл. 27.08.2007 г.), включающий смешение их с газами, содержащими CO2 в присутствии затравки гидроксида алюминия, отделение жидкости от частиц образовавшегося в процессе кристаллизации гидроксида алюминия и последующую переработку его на глинозем, отличающийся тем, что в качестве затравки в процесс вводится гидроксид алюминия, содержащий не менее 75% частиц размером более 40 мкм при затравочном отношении от 0,05 до 0,4 ед.

[11]

Недостатком способа является невозможность получения гидроксида алюминия высокой дисперсности, а также необходимость частичной или полной нейтрализации алюминатных растворов углекислым газом, т.е. признаков характерных и для ранее рассмотренных способов.

[12]

Известен способ получения песчаного глинозема при переработке глиноземсодержащего сырья способом спекания (патент RU №2381992, опубл. 20.02.2010 г.), включающий переработку низкокачественного глиноземсодержащего сырья способом спекания с выделением гидроксида алюминия из алюминатного раствора в присутствии затравочного гидроксида алюминия последовательно карбонизацией и декомпозицией. На стадии карбонизации вводят затравочный гидроксид алюминия с содержанием класса минус 45 мкм в количестве 80-100%, и затравочное отношение поддерживают в пределах 0,02-0,25 ед. При карбонизации алюминатного раствора возможно введение модификатора роста кристаллов. Полученный гидроксид алюминия подвергают фильтрации, промывке и кальцинации.

[13]

Недостатком способа является необходимость использования модификатора роста, невозможность получения гидроксида алюминия высокой дисперсности, а также необходимость частичной или полной нейтрализации алюминатных растворов углекислым газом, т.е. признаков характерных и для ранее рассмотренных способов.

[14]

Известен способ карбонизации алюминатных растворов (патент RU №2424980, опубл. 27.07.2011 г.), согласно которому проводят карбонизацию алюминатных растворов газами, содержащими CO2, в присутствии затравки гидроксида алюминия, отделяют гидроксид алюминия, образовавшийся в процессе карбонизации, от жидкой фазы и перерабатывают его на глинозем. Обработку алюминатного раствора газом, содержащим CO2, начинают до подачи затравки при достижении каустического модуля в растворе 1,15-1,55 единиц.

[15]

Недостаток данного способа заключается в невозможности получения гидроксида алюминия высокой дисперсности, а также необходимости частичной или полной нейтрализации алюминатных растворов углекислым газом, т.е. признаков характерных и для ранее рассмотренных способов.

[16]

Известен способ разложения алюминатных растворов при переработке нефелинового сырья (патент RU №2599295, опубл. 10.10.2016 г., бюл. №28), включающий деление раствора после первой стадии обескремнивания на содощелочную и содовую ветви, при этом раствор в содощелочной ветви подвергают декомпозиции и карбонизации, а в содовой ветви раствор после глубокого обескремнивания подвергают карбонизации, вводя в качестве затравки гидроксид алюминия, полученный в содощелочной ветви, согласно которому разложение алюминатного раствора в содощелочной и содовой ветви выполняется путем декомпозиции, длительность которой составляет от 3 до 4 часов при начальной концентрации затравки от 120 до 130 г/л и температуре процесса от 60 до 80°C с последующей карбонизацией растворов газами, содержащими CO2, обеспечивающими снижение концентрации каустической щелочи в растворе со скоростью на уровне 10 г/л⋅час, до достижения требуемой концентрации углекислой щелочи и степени разложения алюминатного раствора.

[17]

Недостаток данного способа заключается в невозможности получения гидроксида алюминия высокой дисперсности, а также необходимости частичной или полной нейтрализации алюминатных растворов углекислым газом, т.е. признаков характерных и для ранее рассмотренных способов.

[18]

Известен способ получения гидроксида алюминия (патент RU №2175641, опубл. 10.11.2001 г.), принятый за прототип, включающий декомпозицию алюминатного раствора в присутствии затравки, фильтрацию гидроксида алюминия и его сушку, отличающийся тем, что гидроксид алюминия в процессе сушки подвергают классификации по классу менее 40 мкм, и сухой гидроксид алюминия фракции менее 40 мкм используют в качестве затравки при декомпозиции алюминатного раствора или в качестве товарного продукта, а сухой гидроксид алюминия фракции более 40 мкм прокаливают с получением укрупненного оксида алюминия.

[19]

Недостаток данного способа заключается в невозможности получения гидроксида алюминия высокой дисперсности и необходимости классификации сухого гидроксида алюминия с выделением фракции менее 40 мкм для использования в качестве затравки.

[20]

Техническим результатом изобретения является достижение высокой скорости процесса разложения алюминатного раствора и получение гидроксида алюминия высокой дисперсности. Изобретение позволяет устойчиво получать высокодисперсный гидроксид алюминия и оксид алюминия на его основе с заданным средним диаметром частиц методом разложения алюминатных растворов на затравке.

[21]

Технический результат достигается тем, что декомпозиция алюминатного раствора выполняется при введении затравки в количестве от 20 до 100 г/л, в качестве которой используется гидроксид алюминия после его термической обработки с высокоскоростным нагревом частиц до температуры 340-630°C и их последующим охлаждением.

[22]

Способ осуществляется следующим образом. Для получения гидроксида алюминия используют растворы, полученные при выщелачивании боксита в производстве глинозема способом Байера или при выщелачивании спеков от переработки нефелинового, бокситового и иного низкокачественного алюми-нийсодержащего сырья способом спекания, или иные аналогичные по составу щелочные алюминатные растворы с каустическим модулем от 1,5 до 1,9 при эквивалентной концентрации каустической щелочи в пересчете на Na2Oк от 90 до 140 г/л. При необходимости растворы поступают на очистку от кремния и других примесей до их содержания в растворе, обеспечивающего в процессе декомпозиции получение гидроксида алюминия требуемого качества. Подготовленный алюминатный раствор смешивают с затравкой, в качестве которой используют гидроксид алюминия, который после сушки поступает на высокоградиентную термообработку с достижением максимальной температуры нагрева в диапазоне от 340 до 630°C. Разложение алюминатного раствора выполняется методом декомпозиции при температуре 50-70°C, сущность которого заключается в самопроизвольном гидролизе алюмината натрия при участии затравочной фазы, обеспечивающей возможность его реализации в области метастабильных составов системы Na2O-Al2O3-H2O и ее близких аналогов, отличающихся наличием примесей катионов и анионов. Процесс декомпозиции выполняется в режиме перемешивания раствора и образующейся при декомпозиции пульпы, что обеспечивает создание условий для кристаллизации осадка гидроксида алюминия с получением частиц однотипной структуры и крупности в диапазоне 3-6 мкм. После достижения требуемой степени разложения алюминатного раствора на уровне 50%, полученная пульпа поступает на дальнейшую переработку с отделением гидроксида алюминия от раствора, его промывку, фильтрацию, при необходимости сушку и кальцинацию.

[23]

Теоретическое обоснование достижимости заявленного технического результата связано с кинетическими особенностями процесса кристаллизации и возможностью самопроизвольного образования частиц новой фазы при выходе системы за пределы области метастабильного существования, т.е. в лабильную область, что позволяет создать контролируемое количество центров кристаллизации и обеспечить получение продукта высокой дисперсности. В производственных условиях процесс декомпозиции выполняется с использованием затравки оборотного гидроксида алюминия, что обеспечивает ее рост в области метастабильных составов и исключает возможность образования центров кристаллизации по указанному гомогенному механизму. При использовании затравки, не отвечающей структуре кристаллизующегося осадка, процесс ее роста тормозится согласно теории Фольмера-Гиббса, что не исключает ее растворение с выходом системы в лабильную область. Это обеспечивает самопроизвольное образование центров кристаллизации и их рост, который ввиду большой поверхности новой фазы может вызывать перекристаллизацию с измельчением уже введенной затравки. Таким образом, выбор материала и условий его дополнительной подготовки, для получения высоко пересыщенных алюминатных растворов должны обеспечивать получение активированного реагента с высокоразвитой поверхностью и не идентичного структуре осаждаемого гиббсита.

[24]

Технический результат подтвержден серией опытов, выполненных по следующей методике:

[25]

- приготовление алюминатного раствора, близкого по составу к производственному, с каустическим модулем от 1,5 до 1,9 при эквивалентной концентрации каустической щелочи в пересчете на Na2Oк от 90 до 140 г/л и с использованием известных лабораторных методик, основанных на химических взаимодействиях с участием материалов производственного и лабораторного назначения:

[26]

Al(OH)3+NaOH=NaАl(ОН)4,

[27]

2Al+2NaOH+6H2O=2NaAl(ОН)4+3Н2;

[28]

- приготовление затравки путем высокоскоростного нагрева и охлаждения сухой пробы гидроксида алюминия с достижением максимальной температуры нагрева в диапазоне от 340 до 630°C, для чего используются печи муфельного типа или специальные реакторные системы. Охлаждение продукта от температуры максимального нагрева производится принудительно или в режиме естественного охлаждения при температуре в лаборатории 20-25°C. После охлаждения пробы до температуры около 100°C она помещается в осушенную атмосферу с последующим вакуумированием;

[29]

- нагрев алюминатного раствора в режиме механического перемешивания до температуры 50-70°C с точностью ±0,1°C в реакторах из нержавеющей стали, обеспечивающих стабилизацию объема жидкой фазы за счет возврата конденсата. При этом используются одно- и многореакоторные лабораторные системы Auto-LAB и Auto-MATE II с объемом реакторов от 500 мл до 5 л;

[30]

- декомпозиция алюминатного раствора указанного состава после введения в реактор затравки с последующей изотермической выдержкой пульпы установленной длительности в режиме непрерывного механического перемешивания;

[31]

- после завершения процесса декомпозиции пульпу фильтруют под вакуумом с использованием лабораторной установки, состоящей из воронки Бюхнера и колбы Бунзена или лабораторного нутч-фильтра периодического действия. Затем осадок промывают на фильтре горячей водой, снимают с фильтра (воронки Бюхнера) и сушат при температуре 60°C до постоянной массы;

[32]

- определение показателей разложения алюминатных растворов производится по данным изменения концентрации Al2O3 в растворе и количеству полученного гидроксида алюминия. Эквивалентная концентрация каустической (Na2Oк) и углекислой (Na2Oугл) щелочи, а также концентрация Al2O3 в растворе определялись по результатам химического анализа с использованием известных отраслевых методик, применяемых в практике глиноземного производства. Фазовый состав осадков устанавливался по результатам дифференциально-термического и термовесового исследования с использованием термоанализатора «ТЕРМОСКАН» компании Аналитприбор. Фракционный состав осадка гидроксида алюминия и средний медианный диаметр частиц определялись по результатам лазерного анализа с использованием анализатора размера частиц Horiba LA-950 и Микросайзер 201С.

[33]

Способ поясняется следующими примерами, представленными в таблице 1.

[34]

Пример 1

[35]

Для декомпозиции использованы синтетические алюминатные растворы с каустическим модулем 1,4-1,9 и концентрацией каустической щелочи в пересчете на Na2Oк в диапазоне 90-140 г/л. В качестве затравки использован гидроксид алюминия, полученный в заводских условиях при переработке бокситового сырья способом Байера со средним диаметром частиц 70 мкм. Термообработка гидроксида алюминия выполнялась на установке Цефлар (ТМ), в которой высокая скорость нагрева обеспечивается за счет движения частиц по нагретой металлической поверхности под действием центробежной силы, а высокая скорость охлаждения обеспечивается выводом из реакционной зоны в зону с принудительным охлаждением. Наибольшая температура нагрева гидроксида алюминия составила 340±15°C. Алюминатный раствор указанного состава нагревался до температуры декомпозиции 50-70°C и после ее стабилизации в раствор вводилась затравка в количестве, обеспечивающем ее концентрацию 100 г/л. По окончании процесса декомпозиции, полученная пульпа фильтровалась под вакуумом, а осадок промывался на фильтре и сушился, после чего определялись показатели процесса и характеристики осадка. По результатам анализа степень разложения раствора при длительности процесса 12 часов составила 52,37%, а при длительности 24 часа - 53,18%. Это обеспечило получение осадка гидроксида алюминия со средним диаметром частиц 3,12 мкм.

[36]

Пример 2

[37]

Пример 2 аналогичен Примеру 1, но наибольшая температура нагрева составила 435±15°C. По результатам анализа степень разложения раствора при длительности процесса 12 часов составила 49,95%, а при длительности 24 часа - 52,77%. Это обеспечило получение осадка гидроксида алюминия со средним диаметром частиц 4,97 мкм.

[38]

Примеры 3 и 4

[39]

Примеры 3 и 4 аналогичны Примерам 1 и 2, но температура наибольшего нагрева составила соответственно 530±15°C и 630±15°C. Полученные результаты сведены в таблицу 1.

[40]

Пример 5

[41]

Пример 5 аналогичен примеру 1, но затравка введена на декомпозицию в количестве, обеспечивающем ее концентрацию 20 г/л. По результатам анализа степень разложения раствора при длительности процесса 12 часов составила 54,79%, а при длительности 24 часа - 56,81%. Это обеспечило получение осадка гидроксида алюминия со средним диаметром частиц 3,77 мкм.

[42]

Пример 6

[43]

Пример 6 аналогичен Примеру 1, но в качестве исходного материала для приготовления затравки использовался продукционный гидроксид алюминия, полученный при переработке нефелинового сырья со средним размером частиц 73 мкм, который подвергался нагреву путем внесения в муфельную печь LHT 08/17 NORBETERM (Германия) разогретую до температуры 350°C, а охлаждение выполнялось в режиме естественной конвекции окружающего воздуха при температуре лаборатории 20-25°C. По результатам анализа степень разложения раствора при длительности процесса 12 часов составила 53,14%, а при длительности 24 часа - 53,95%. Это обеспечило получение осадка гидроксида алюминия со средним диаметром частиц 2,95 мкм.

[44]

[45]

Примеры 7 и 8

[46]

Примеры 7 и 8 аналогичны Примеру 6, но затравка введена на декомпозицию в количестве, обеспечивающем ее концентрацию соответственно 20 г/л и 50 г/л. Полученные результаты сведены в таблицу 1.

[47]

Пример 9

[48]

Пример 9 аналогичен примеру 6, но наибольшая температура нагрева составила 550°C. По результатам анализа степень разложения раствора при длительности процесса 12 часов составила 50,16%, а при длительности 24 часа - 50,85%. Это обеспечило получение осадка гидроксида алюминия со средним диаметром частиц 4,90 мкм.

[49]

Экспериментально полученные результаты с использованием описанной методики позволяют установить, что степень разложения алюминатных растворов при времени разложения 24 часа составляет от 49,95% до 56,81%, что находится на уровне промышленных показателей декомпозиции для времени разложения 48 часов и более. При этом показатели разложения для длительности процесса 12 часов находятся в пределах от 49,15% до 54,79%, что позволяет говорить о завершении основного периода разложения алюминатных растворов в пределах этого времени с достижением достаточно высоких показателей по выходу конечного продукта. При этом средний диаметр частиц находится в диапазоне от 2,95 до 6,25 мкм, что удовлетворяет требованиям для производства антипиренов и ряда керамических материалов. Этот показатель в незначительной степени зависит от типа используемого гидроксида алюминия, в то время как количество затравочного материала и режим его термообработки отличаются более заметным влиянием на показатели процесса. Алюминатные растворы, образующиеся в ходе технологического процесса, по своему составу достаточно близки к оборотным растворам глиноземного производства, что делает возможным их повторное использование в соответствующих производственных циклах.



Изобретение может быть использовано при переработке алюминийсодержащего сырья, в том числе бокситов, нефелинов. Способ получения гидроксида алюминия включает декомпозицию алюминатного раствора в присутствии затравки, фильтрацию гидроксида алюминия и его сушку. Декомпозицию выполняют при введении затравки в количестве от 20 до 100 г/л. В качестве затравки используют гидроксид алюминия после его термической обработки с высокоскоростным нагревом частиц до температуры 340-630°C и их последующим охлаждением. Изобретение позволяет повысить скорость разложения алюминатного раствора и получить высокодисперсный гидроксид алюминия. 1 табл., 9 пр.



Способ получения гидроксида алюминия, включающий декомпозицию алюминатного раствора в присутствии затравки, фильтрацию гидроксида алюминия и его сушку, отличающийся тем, что декомпозиция алюминатного раствора выполняется при введении затравки в количестве от 20 до 100 г/л, в качестве которой используется гидроксид алюминия после его термической обработки с высокоскоростным нагревом частиц до температуры 340-630°C и их последующим охлаждением.